WO2017123013A1 - 코깅 토르크를 최소화하는 영구자석 회전장치와 이를 이용한 영구자석발전기 및 영구자석전동기 - Google Patents

코깅 토르크를 최소화하는 영구자석 회전장치와 이를 이용한 영구자석발전기 및 영구자석전동기 Download PDF

Info

Publication number
WO2017123013A1
WO2017123013A1 PCT/KR2017/000391 KR2017000391W WO2017123013A1 WO 2017123013 A1 WO2017123013 A1 WO 2017123013A1 KR 2017000391 W KR2017000391 W KR 2017000391W WO 2017123013 A1 WO2017123013 A1 WO 2017123013A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
slots
coils
poles
cogging torque
Prior art date
Application number
PCT/KR2017/000391
Other languages
English (en)
French (fr)
Inventor
노순창
Original Assignee
노순창
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노순창 filed Critical 노순창
Priority to EP17738642.2A priority Critical patent/EP3404803A4/en
Priority to CN201780017152.4A priority patent/CN108886277B/zh
Priority to JP2018556773A priority patent/JP2019502358A/ja
Publication of WO2017123013A1 publication Critical patent/WO2017123013A1/ko
Priority to US16/034,684 priority patent/US10916981B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H5/00Musical or noise- producing devices for additional toy effects other than acoustical
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H3/00Dolls
    • A63H3/003Dolls specially adapted for a particular function not connected with dolls
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K5/00Whistles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/085Forming windings by laying conductors into or around core parts by laying conductors into slotted stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/09Magnetic cores comprising laminations characterised by being fastened by caulking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a permanent magnet rotating device for minimizing cogging torque, and a generator and a motor using the same. More specifically, the present invention does not use various methods for reducing the cost of conventional cogging torque, such as skewing and dental machining.
  • Permanent magnet rotating device that minimizes cogging torque by simply combining combination of poles and slots and proper arrangement between permanent magnets, and winding method that can make waveform as close as possible to sine wave considering phase angle and waveform, permanent magnet generator using Permanent magnet electric motor.
  • the wind power generation sector where electricity can be obtained by installing generators at low cost wherever there is wind, is continuing to grow.
  • low RPM, high torque permanent magnet generator has a high cogging torque due to the high magnetic flux density of the permanent magnet and the magnetic field imbalance between the core and the permanent magnet.
  • the slotted Radial Flux Permanent Magnet (RFPM) generator has the advantages of simple structure, high output voltage and efficiency, small size and light weight, but it is difficult to start due to the large cogging torque and vibration occurs even at rated operation. There is this.
  • Cogging torque can be defined as pulsating torque caused by the tendency to keep the reluctance in the minimum direction in the magnetic circuit composed of rotor permanent magnet, stator core core and air gap.
  • the difference between the maximum value and the minimum value of the torque generated by the unbalance of the magnetic field when the rotor is driven can be said.
  • the present invention has been proposed in view of the problems of the prior art as described above, and an object of the present invention is to improve the separation distance between the combination of the number of poles and the number of slots and the permanent magnet inserted into the rotor, and to obtain a waveform as close as possible to the normal polarization.
  • an object of the present invention is to improve the separation distance between the combination of the number of poles and the number of slots and the permanent magnet inserted into the rotor, and to obtain a waveform as close as possible to the normal polarization.
  • Another object of the present invention is to implement an LSPM (Line-Start Permanent Magnet) synchronous motor by reducing the initial starting torque by cogging torque to facilitate the initial starting of the permanent magnet motor.
  • LSPM Line-Start Permanent Magnet
  • a rotor 200 coupled to the center and having a plurality of permanent magnets 210 formed at predetermined intervals;
  • a plurality of slots 310 are formed at predetermined intervals, each of the stator core unit 300 is wound around the coil coil;
  • the number of poles and the number of slots of the permanent magnet is characterized by the following formula 1,
  • the spacing distance (a) between the permanent magnet 210 and the permanent magnet 210 of the rotor 200 is to be formed so that 70% ⁇ 130% of the width of the lower end of the stator core portion (b) (b)
  • the windings of the stator core unit 300 are arranged so that two coils of the coils of each phase are sequentially wound at 180 °, and two coils of the coils of each phase are sequentially wound at a 60 ° angle distance between the phases. It is characterized in that the winding is arranged evenly and the coil pitch is 5,
  • the rated current per 1 mm2 of the wound coil is 6A.
  • Rotation apparatus for minimizing cogging torque, characterized in that the number of turns of the winding is determined by the following equation (2).
  • Number of turns (winding) Rated voltage (Vac) ⁇ K ⁇ / ⁇ Rotational angular velocity (rad / s) ⁇ Magnetic flux density (T) ⁇
  • the starting wind speed can be lowered to 1 m / s or less, and when applied to a permanent magnet motor, cogging torque and torque ripple can be minimized even at high speed, without using a driver or an inverter.
  • LSPM synchronous motors that can be started and operated are possible.
  • the permanent magnet rotating device developed by the combination of the number of poles and the number of slots proposed by the present invention, and the ratio of the separation distance between the magnets and the bottom width of the teeth is a generator or Cogging torque can be minimized without reducing the power and efficiency of the motor.
  • the cogging torque can be minimized regardless of the void and the magnetic flux density, it is possible to use a thick permanent magnet or to minimize the void, thereby providing a compact and lightweight effect compared to a conventional permanent magnet motor or generator.
  • FIG. 1 is a cross-sectional view schematically showing a permanent magnet rotating device to minimize cogging torque according to an embodiment of the present invention.
  • Figure 2 is an exemplary view showing the tooth spacing width and the separation distance between the permanent magnet and the permanent magnet of the permanent magnet rotating device to minimize the cogging torque according to an embodiment of the present invention.
  • Figure 3 is an exemplary view showing a conventional three-phase winding method.
  • Figure 4 is an exemplary view showing a winding method of the permanent magnet rotating device to minimize the cogging torque according to an embodiment of the present invention.
  • FIG. 5 is an exemplary view showing an example in which two coils are successively wound 180 degrees among coils of each phase wound by a three-phase winding method according to an embodiment of the present invention.
  • FIG. 6 is an exemplary view showing a coil pitch of the present invention.
  • a rotor 200 coupled to the center and having a plurality of permanent magnets 210 formed at predetermined intervals;
  • a plurality of slots 310 are formed at predetermined intervals, each of the stator core unit 300 is wound around the coil coil;
  • the number of poles of the permanent magnet and the number of slots are determined by the following equation.
  • the permanent magnet generator and the permanent magnet motor are designed by six main elements: the first is a combination of slots and poles, the second is the separation distance between the magnets, the third is the winding method, the fourth is the coil pitch, and five The second is the cross-sectional area of the coil, and the sixth is the number of coil turns.
  • the permanent magnet rotating device and the permanent magnet motor and permanent magnet generator using the same to minimize the cogging torque according to the present invention is basically composed of six elements, regardless of the capacity of the permanent magnet motor and permanent magnet generator, etc. Design is possible.
  • the cogging torque can be reduced by combining the number of poles (P) and the number of slots (S).
  • the cogging torque is the maximum when the number of poles and slots is the same, the center of the permanent magnet and the center of the tooth coincide, or the slot number is a multiple of the number of poles so that the slots are located symmetrically from the center of the permanent magnet. This is because the attraction of the and slots is most stable.
  • the stable arrangement of the attraction force between the permanent magnet and the slot can be changed to an unstable arrangement so that the center of the tooth is not placed in the symmetrical position from the center of the permanent magnet.
  • the lowest cogging torque is the combination with the highest common multiple of poles and slots.
  • the number of slots must be a multiple of three and even.
  • P S / 3-2.
  • S which is capable of three-phase winding while having a minimum common multiple of the number of poles and the number of slots, is made, but this combination alone does not completely eliminate cogging torque.
  • the cogging torque is reduced by using a technique such as skew for arranging the permanent magnet or stator core core at an angle at an angle, and Arc Fraction, which is a ratio between the magnet width and the magnet pitch.
  • skew for arranging the permanent magnet or stator core core at an angle at an angle
  • Arc Fraction which is a ratio between the magnet width and the magnet pitch.
  • the lower width b of the teeth between the slot 310 and the slot 310 and the permanent magnet are The distance (a) between the permanent magnets was used to solve this problem.
  • the separation distance (a) between the permanent magnet and the permanent magnet is formed to be 70% to 130% of the lower width (b) of the stator core portion 300, more preferably the separation distance between the permanent magnet and the permanent magnet ( a) and the lower end width b of the stator core portion 300 is 1: 1.
  • stator core 300 is formed with the teeth 320, and the lower end of the teeth has a lower width b as shown in FIG. 2.
  • minimizing cogging torque may be performed by increasing the interval where repulsion occurs regardless of the rotor position.
  • the number between the magnet and the magnet should be below the bottom width of the tooth.
  • the distance between the bottom width of the tooth and the magnet is equal to maximize the section where the repulsive force is generated and conversely, the cogging torque is minimized.
  • the section in which repulsion occurs is proportional to the number of poles. If the number of poles increases, the section in which repulsion occurs is increased, and the effect of minimizing cogging torque is increased. The effect of minimizing cogging torque is negligible.
  • the distance between the permanent magnet and the permanent magnet (a) and the width of the posterior width (b) is ideally composed of 1: 1, but if the design is not acceptable, the distance between the permanent magnets (a) is the width of the posterior width. It is preferable to form in 70%-130% of (b).
  • the separation distance (a) between the permanent magnet and the permanent magnet should be set within the range of 7 mm to 13 mm. If it is out of this range, the effect of reducing cogging torque is reduced. .
  • the number of poles, the combination of slots, and the separation distance between magnets are the hardware concepts that determine the structure in generators and motors.
  • the winding method, coil pitch, coil cross-sectional area and coil turns (winding) are software concepts that are very important in determining output density, efficiency, power factor, and vibration.
  • the winding method is very important when the combination of the slot and the number of poles is not a combination of the slot and the number of poles that implement the phase angle 120 °.
  • the windings differ slightly among motor and generator manufacturers, even if they are the same combination of slots and poles, because the winding method does not have a fixed set of rules, and most of them are made by empirical know-how.
  • permanent magnet generators or permanent magnet motors are based on three-phase windings, except in special cases.
  • Figure 3 shows a conventional three-phase winding method, illustrating a winding method of 36 slots 12 poles.
  • phase angle of each phase is constant at 120 °, so that the magnetic field is balanced and symmetrical, so that the output and efficiency are the best, and vibration and noise are minimized.
  • phase angle of each phase In order for the phase angle of each phase to be constant at 120 °, it is ideal that the number of poles is exactly 1/3 of the number of slots.
  • the slot is 36, the number of poles is wound to 12 poles, and if the slot is 48, the number of poles is wound to 16 poles, and if the slot is 72, it is wound to 24 poles.
  • the three-phase winding is the number of poles for the basic three-phase winding of 120 degrees of phase angle, 1/3 of the number of slots, but if the even number is divided by 2 or 3, even the number of poles can be three-phase winding .
  • the basic number of poles capable of three-phase winding with a phase angle of 120 degrees is 8 poles, which is 1/3 of the slot, and 8 poles, which are divided by 2, becomes 4 poles. Dividing by 2 makes it 2 poles, so the number of poles that can be three-phase winding in 24 slots is 8 poles, 4 poles, and 2 poles.
  • the phase angles of the four poles are 60 degrees, and the phase angles of the two poles are 30 degrees, so that the RPMs are increased by two and four times at the same frequency.
  • the number of poles available for three-phase winding is 12, 6, or 2 poles.
  • the number of poles for three-phase winding is 2 poles, 4 poles, 6 poles and 8 poles.
  • the conventional three-phase winding method can produce a 120 ° phase angle. none.
  • the winding method suitable for the combination of the number of poles and the slots described in the present invention is required, while maintaining the phase angle close to 120 ° while maintaining the output, efficiency, vibration and noise at the same level as the conventional three-phase winding method. It is the core of the winding method of the present invention.
  • the winding method suitable for the combination of the number of poles and the number of slots to minimize the cogging torque of the present invention is basically a long winding of the coil pitch is larger than the magnetic pole pitch, the coil winding in two or more slots, the number of coils is the number of slots The same is the second floor.
  • FIGS. 4 and 5 are exemplary views showing the winding method of the present invention.
  • 2 sets of 3 coils of 1 phase are wound from 9 slots to 9 slots
  • 2 coils of 2 phases are wound from 10 slots to 6 slots
  • 2 coils of 3 phases are wound from 11 slots to 11 slots.
  • Three sets of 4 coils of one phase are wound up to 13 slots starting from 9 slots
  • 3 phases of 2 coils are wound up to 14 slots starting from 10 slots
  • 3 phases of 4 coils are wound up to 15 slots starting from 11 slots. Finish the windings of the jaw.
  • the two coils of the coils in the coils of the two coils may be formed at an angle of 60 degrees.
  • the group in which the dog winding portions are arranged must be symmetrical by 180 degrees.
  • the winding order of the group in which two coils of the coils of each phase are consecutively wound is arranged at regular intervals in the order of one phase, three phases, and two phases.
  • the number of groups in which two coils are sequentially wound around each of the coils is always constant as six, and the order is changed according to a combination of slots and poles.
  • a combination of slots and poles of 36: 10 the number of groups in which two coils are wound consecutively is arranged into six sets, and the order in which two coils are wound in succession is arranged in one phase
  • the combination of three phases and two phases in the combination of 48: 14 poles, the number of groups in which two coils are wound consecutively is arranged among the coils of each phase, but the group in which two coils are sequentially wound in each coil
  • the arrangement order is one-phase, two-phase, and three-phase, in order to maintain a 60 ° angle of the group in which two coils of each phase are sequentially wound.
  • two coils are sequentially wound in one phase at 180 degrees facing 0 degrees, and two coils are sequentially wound in three phases at 240 degrees facing 60 degrees, respectively.
  • two coils are successively wound in two phases.
  • the pair of arranging the portions in which two coils are sequentially wound among the coils of each phase is arranged in the order of one phase, three phases, and two phases as shown in FIG. 5.
  • the winding method of the permanent magnet motor having a combination of slots versus poles of 36:10 is as follows.
  • the uses three-phase winding characterized in that 10 sets of one phase to three phases in a group, one set winding one to two coils, one coil of two phases, one coil of three phases in order , 2 sets of 3 coils of 1 phase, 2 coils of 2 phases, 2 to 3 coils of 3 phases, 3 sets of 4 coils of 1 phase, 3 coils of 2 phases, 4 coils of 3 phases, and 4 sets of 1 coils 5 coils of phases, 4-5 coils of two phases, 5 coils of three phases are wound in this order.Team 5 winding 6 coils of 1 phase, 6 coils of 2 phases, 6 coils of 3 phases.
  • Coils, 7-coils of two phases, 7-coils of three phases are wound in this order.Two sets of nine coils of one phase, eight coils of two phases, and eight to nine coils of three phases. 9 coils, 10 coils of three phases are wound in this order, and 9 sets of coils are wound in order of 11 coils of one phase, 10 to 11 coils of two phases, and 11 coils of three phases.
  • Coils on Pinterest Order characterized in that the winding.
  • the winding device of the present invention minimizes the cogging torque, and the winding method of the permanent magnet generator and the permanent magnet motor using the same has a reduction in the number of poles at regular intervals so that the phase angle of each phase is maintained similarly and the unbalance of the magnetic field is minimized. Due to this, it is desirable to arrange the remaining spare coil properly.
  • the number of coils in one phase is S / 3
  • the number of coils in two phases is S / 3
  • the number of coils in three phases is S / 3.
  • the number of poles derived in various ways by the calculation formula proposed by the present invention is always two poles smaller than the number of poles available in the conventional three-phase winding. Therefore, when winding by the conventional three-phase winding method, the number of poles of the rotor is S / 3-2, and the number of poles of the stator core is S / 3, so that the motor and generator cannot be started and operated due to the magnetic field imbalance. It is the cause of the decrease in efficiency.
  • the number of poles of the stator core must be made S / 3-2, but the number of coils of each phase cannot be made S / 3-2 in order to make the number of poles S / 3-2.
  • the total number of coils is (S / 3-2) * 3, so that six coils are always shorter than the number of stator core slots.
  • each of the coils of the two phases of one phase coil is arranged in groups facing each other at 180 °
  • each of the two coils connected in succession are arranged in groups facing each other at 180 °.
  • the two coils are successively arranged in groups with 180 ° facing each other.
  • the angle of the group where the coils of two phases are wound in succession is maintained at 60 °.
  • the order may be 1 phase-2 phase-3 phase or 1 phase-3 phase-2 phase.
  • FIG. 4 is an exemplary view illustrating the winding method of the present invention as described above
  • FIG. 5 illustrates a group in which two coils of the coils of the same phase are sequentially wound to face 180 degrees and two coils of the coils of each phase are sequentially wound. It is an exemplary figure in which the angle of the group in which a part is arrange
  • Figure 4 shows an example of the winding applied to the combination of the number of slots and the number of poles 72: 14, 1 pole, 1 phase, 1 phase, 2 phase, 3 phase and 2 pole: Only phases, two phases and three phases are shown and the winding method for the 3 to 14 poles is not shown.
  • the cogging torque is the minimum when the coil pitch is 5 regardless of the combination of the number of slots and the number of poles.
  • FIG. 6 is an exemplary diagram of windings having a coil pitch of 5.
  • Coil pitch refers to the distance between the winding and the next winding in winding the coil. It is usually expressed as the number of slots.
  • the coil pitch also does not have a constant law, and is designed slightly differently depending on the number of slots and the number of poles and the inner diameter of the stator core.
  • various coil pitches can be designed in consideration of the number of slots, the number of poles, and the inner diameter of the stator core.
  • the output and efficiency can be maximized when the coil pitch is always 5 regardless of the number of slots, the number of poles, and the inner diameter of the stator core.
  • the cross-sectional area of the coils and the number of coil turns (winding) are also very important factors in determining the performance of the motors and generators. .
  • the permanent magnet motor and the permanent magnet generator using the same method as follows.
  • the cross-sectional area of the coil is a parameter that determines the magnitude of the current, and is generally expressed in mm 2 and the amount of current per mm 2 is designed.
  • the power and efficiency are the highest when the rated current per 1 mm2 is designed to 6A.
  • the coil cross-sectional areas of one phase, two phase and three phase may be designed to be 1 mm 2.
  • the number of coil turns (winding) is determined by the following calculation formula.
  • Number of turns (winding) Rated voltage (Vac) ⁇ K ⁇ / ⁇ Rotational angular velocity (rad / s) ⁇ Magnetic flux density (T) ⁇
  • K is a constant
  • ⁇ nominal voltage (Vac) ⁇ constant ⁇ / ⁇ rotational angular velocity (rad / s) ⁇ magnetic flux density (T) ⁇ represents the coil length, and all parameters except constant K are used to design a generator or motor. It is basically provided, so no special know-how is required.
  • the part corresponding to the constant K corresponds to the unique design parameters possessed by the generator or the motor manufacturer.
  • the constant K value is an important factor in determining the voltage at no load and rated load. In general, all generators have a voltage drop when a load is applied. Basically, a generator having a small voltage drop is more efficient.
  • the output and efficiency decreases as the constant K goes down from 1.2, so it is advantageous to design the constant as 1.2 if possible, but the constant K is within 0.84 to 1.56, which is the value range of 70% to 130% of 1.2. You can also use at.
  • the thickness of the permanent magnet 210 of the present invention can be selected within the range of 1mm ⁇ 50mm.
  • the thicker the permanent magnet the higher the magnetic flux density and the higher the output and efficiency.
  • cogging torque increases, thereby limiting the thickness.
  • the cogging torque is minimized by the combination of the minimum common multiple of the number of poles and the slot and the distance (a) between the lower width (b) of the tooth 320 and the permanent magnet and the permanent magnet, Since repulsion occurs between the electrons and the stator core portion 300, the cogging torque is minimized regardless of the thickness and air gap of the permanent magnet.
  • the air gap (c) between the permanent magnet of the rotor 200 and the lower width (b) of the teeth of the stator core portion 300 should be set within the range of 0.1mm ⁇ 2mm If the range is out of the above range, the output and efficiency may be degraded.
  • the size and weight of the rotating device can be greatly reduced than that of the conventional generator or the motor having the same capacity.
  • the method of fixing the permanent magnet to the rotor includes a surface attachment type (SPM) and embedded type (IPM), the method of minimizing cogging torque is the same as the method proposed in the present invention, whether the surface attachment type or embedded type.
  • SPM surface attachment type
  • IPM embedded type
  • the output density is high, the efficiency is increased In addition, the vibration and noise is reduced, as well as a new phenomenon that cannot be implemented in the conventional permanent magnet synchronous motor occurs.
  • the direct type starting motor refers to an electric motor that can be started and operated with a commercial power source.
  • a representative motor is an induction motor.
  • the permanent magnet motor that satisfies the rotation device and pitch, winding method, winding specifications, etc. proposed to minimize the cogging torque proposed in the present invention is started only with commercial power source like induction motor without using a driver or sensorless vector control inverter, etc. And driving is possible.
  • induction motors have lower power density, efficiency, and power factor than permanent magnet motors, they are widely used because of their relatively low price and direct operation.
  • LSPMSM permanent magnet motors
  • Induction motor type permanent magnet motor is a motor that uses the induction motor's starting technology to the permanent magnet motor which can not be directly operated.
  • the structure is complicated and the devices (aluminum bar or copper bar) for induction driving inserted into the rotor are not popularized due to problems such as disturbing the magnetic field of the permanent magnet.
  • the rotary device that minimizes the cogging torque proposed in the present invention, and the permanent magnet motor that satisfies the pitch, winding method, winding specifications, etc. proposed in the present invention the induction motor in the same structure as the permanent magnet motor It can realize the advantages of particle movement and high power density, high efficiency and high power factor of permanent magnet motor.
  • the permanent magnet motor proposed by the present invention can be widely used in the field of induction motors and permanent magnet motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

본 발명은 코깅토르크를 최소화하는 영구자석 회전장치와 이를 이용한 영구자석발전기및 전동기에 관한 것으로서, 더욱 상세하게는 비용이 증가하는 종래의 코깅토르크를 저감하기 위한 여러 가지 방법을 사용하지 않고 단순히 극수와 슬롯의 조합 및 영구자석의 적절한 배열에 의해 전동기 또는 발전기 등에서 사용되는 고정자 및 회전자를 포함하여 구성되는 영구자석 회전장치의 코깅토르크를 최소화하기 위한 것이다. 본 발명을 통해 극수와 슬롯수의 조합 및 슬롯의 치하단폭과 영구자석과 영구자석 사이의 이격거리를 동일하게 하고, 적절한 권선방법과 피치를 적용했을 때 코깅토르크를 최소화하는 효과를 제공하게 된다. 도 1

Description

코깅 토르크를 최소화하는 영구자석 회전장치와 이를 이용한 영구자석발전기 및 영구자석전동기
본 발명은 코깅 토르크를 최소화하는 영구자석 회전장치와 이를 이용한 발전기와 전동기에 관한 것으로서 더욱 상세하게는 스큐와 치가공 등 비용이 증가하는 종래의 코깅토르크를 저감하기 위한 여러 가지 방법을 사용하지 않고, 단순히 극수와 슬롯의 조합 및 영구자석간의 적절한 배열, 그리고 위상각과 파형을 고려하여 정현파에 최대한 근접한 파형을 낼 수 있도록 하는 권선 방법에 의해 코깅토르크를 최소화하는 영구자석 회전 장치와 이를 이용한 영구자석 발전기와 영구자석 전동기에 관한 것이다.
최근 지구온난화의 주범인 이산화탄소 배출을 줄이기 위해 신재생에너지 분야에 많은 연구들이 이루어지고 있다.
특히 바람이 있는 곳이면 어디든지 적은 비용으로 발전기를 설치하여 전기를 얻을 수 있는 풍력발전분야는 지속적인 성장세를 유지하고 있다.
지금까지 육상 대형풍력발전에서는 기어형 유도발전기를 장착한 풍력발전기가 대세를 이루었으나 최근에는 해상풍력발전시장이 급성장하면서 유지보수비가 많이 드는 기어형 동기발전기에서 유지보수비가 적게 드는 기어리스형 영구자석발전기를 장착한 풍력발전기로 시장이 재편되고 있다.
특히 출력 변동이 심한 소형 풍력발전에서는 저RPM, 고TORQUE가 요구되는 영구자석 발전기 사용이 대부분을 차지하고 있다.
그런데 저RPM, 고TORQUE인 영구자석 발전기는 영구자석의 높은 자속밀도 및 코어와 영구자석간의 자계 불균형으로 코깅토르크가 높아 초기 기동이 어려운 단점을 가지고 있다.
따라서 최근 소형풍력발전기에는 기동토르크와 코깅토르크를 최소화하여 낮은 풍속에서도 블레이드의 기동을 가능하게 하기 위하여 철심을 제거한 Coreless형 AFPM(Axial Flux Permanent Magnet) 발전기나, 철심은 있으나 슬롯이 없는 Slotless형 RFPM(Radial Flux Permanent Magnet)발전기 사용이 증가하고 있다.
그러나 철심을 제거한 Coreless형 AFPM(Axial Flux Permanent Magnet) 발전기나, 철심은 있으나 슬롯이 없는 Slotless형 RFPM(Radial Flux Permanent Magnet)발전기는, 슬롯이 있는 RFPM(Radial Flux Permanent Magnet)발전기에 비해 자속누설이 높아 출력 전압이 떨어지고 효율이 감소하는 단점을 가지고 있다.
또한, 구조가 복잡하고 영구자석 사용 개수가 증가하기 때문에 원가가 상승하며, 발전기 자체의 구조적인 문제로 대용량화가 쉽지 않다.
슬롯이 있는 RFPM(Radial Flux Permanent Magnet)발전기는 구조가 간단하고 출력전압과 효율이 높고, 소형, 경량화가 가능한 장점은 있지만 코깅토르크가 크기 때문에 초기 기동이 어렵고, 정격 운전 시에도 진동이 발생하는 단점이 있다.
최근에는 슬롯이 있는 RFPM 발전기를 풍력발전기에 사용하기 위해서 BLDC 전동기 기술을 RFPM발전기에 응용하여 코깅토르크를 최소화하는 작업들이 이루어지고 있으나, 대부분 고RPM용이기 때문에 동기발전기처럼 증속 기어를 사용해야 하는 문제점을 가지고 있다.
코깅토르크는 회전자 영구자석과 고정자 철심 코어, 공극으로 구성되는 자기회로에서 릴럭턴스가 최소인 방향으로 유지하려고 하는 경향에 의해 발생하는 맥동 토르크라고 정의할 수 있는데, 일반적으로는 영구자석 발전기나 영구자석전동기에 있어 회전자가 구동할 때 자계의 불균형에 의해 발생하는 토르크의 최대치와 최소치의 차이값이라고 할 수 있다.
최근 전동기 분야에서는 영구자석을 이용한 슈퍼프리미엄전동기의 수요가 증가하면서 진동과 소음의 주원인이 되는 코깅토르크를 저감하기 위한 다양한 방법들이 제시되고 있는데, 현재까지 코깅토르크를 저감하기 위한 방법들로 사용하고 있는 방법들을 정리해보면, 공극의 길이 증가, 슬롯수와 극수의 증가, 보조슬롯의 사용, 고정자치의 형상 변화, 고정자나 전기자에 스큐(skew), 분수 슬롯 또는 극 사용, 슬롯 개구폭 감소, 자석의 형상 변화, 자극의 착자 변화, 낮은 자속 밀도의 자석 사용, Arc Fraction 등이다.
그런데, 코깅토르크를 저감하기 위한 상기한 방법들은 영구자석전동기와 영구자석발전기의 출력과 효율을 감소시키거나 제조 원가를 증가시키는 주요 요인이 된다.
따라서, 출력과 효율의 감소를 최소화하면서 제조 원가를 증가시키지 않는 코깅토르크 저감 방법 개발이 시급한 과제로 요구되고 있다.
본 발명은 상기와 같은 종래 기술의 문제점을 감안하여 제안된 것으로서, 본 발명의 목적은 극수와 슬롯수의 조합 및 회전자에 삽입된 영구자석간의 이격 거리를 개선하고, 정편파에 최대한 근접한 파형을 낼 수 있도록 하는 권선방법을 사용하여, 코일 단면적과 코일턴수(권선수)를 적절하게 설계함으로써, 출력과 효율은 최대화시키면서도 제조 원가도 증가하지 않게 코깅토르크를 최소화하여 진동과 소음을 획기적으로 감소시키는 영구자석 회전장치를 제공함을 목적으로 한다.
본 발명의 다른 목적은 코깅토르크에 의한 초기 기동토르크를 감소시켜 영구자석전동기의 초기 기동을 쉽게 함으로써 LSPM(Line-Start Permanent Magnet)동기전동기를 구현함에 그 목적이 있다.
본 발명이 해결하고자 하는 과제를 달성하기 위하여 본 발명인 코깅토르크를 최소화하는 영구자석 회전장치는
샤프트(110)와;
중앙에 샤프트가 결합되어 있으며, 복수 개의 영구자석(210)이 일정 간격으로 형성되어 있는 회전자(200)와;
복수 개의 슬롯(310)이 일정 간격으로 형성되어 있으며, 각각의 슬롯에 코일이 권선되는 스테이터코어부(300);를 포함하여 구성되되,
코깅토르크를 최소화하기 위하여 영구자석의 극수와 슬롯의 개수는 하기의 계산식1에 의해 정해지는 것을 특징으로 하고,
회전자(200)의 영구자석(210)과 영구자석(210) 사이의 이격거리(a)는 상기 스테이터코어부(300)의 치하단폭(b)의 70% ~130%가 되도록 형성하는 것을 특징으로 하고,
상기 스테이터코어부(300)의 권선은 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 180°로 마주보게 배열하고, 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 각 상간에는 60° 각도 거리로 균일하게 배열하고 코일피치가 5가 되도록 하는 권선인 것을 특징으로 하고,
권선된 코일의 단면적 1㎟당 정격 전류는 6A인 것을 특징으로 하고.
권선의 턴수는 하기의 계산식2에 의해 결정되는 것을 특징으로 하는 코깅토르크를 최소화하는 회전장치.
[계산식1]
P = S/3 - 2 (P : 극수 , S : 30이상의 슬롯수)
[계산식2]
턴수(권선수)={정격전압(Vac)×K}/{회전각속도(rad/s)×자속밀도(T)}
/슬롯수(S)/스테이터코어 적층길이(mm)
( 상기에서 K는 상수로써 0.84 ~ 1.56 범위의 값)
본 발명에 따른 코깅토르크를 최소화하는 영구자석 회전 장치를 구비한 발전기와 전동기는 기동토르크가 매우 낮기 때문에 적은 힘으로 기동이 가능한 효과를 제공하게 된다. .
따라서 풍력발전기에 본 발명의 발전기를 장착할 경우 기동 풍속을 1m/s이하로 낮출 수 있고, 영구자석전동기에 적용할 경우 고속에서도 코깅토르크와 토르크리플을 최소화할 수 있으며 드라이버나 인버터를 사용하지 않고도 기동 및 운전이 가능한 LSPM동기 모터 구현이 가능하게 된다.
또한, 본 발명이 제안한 극수와 슬롯수의 조합 및 자석 간 이격거리와 치(Teeth)하단폭의 비율에 의해 개발된 영구자석 회전 장치는 영구자석과 슬롯이 스큐없이 일직선으로 배열되어 있기 때문에 발전기 혹은 전동기의 출력과 효율을 감소시키지 않고도 코깅토르크를 최소화할 수 있는 효과를 제공한다.
또한, 스큐, 치가공 등의 추가 가공이 필요 없기 때문에 제조 원가 상승 없이 코깅토르크를 최소화할 수 있는 효과를 제공한다.
또한, 공극과 자속밀도에 상관없이 코깅토르크를 최소화할 수 있기 때문에 두꺼운 영구자석을 사용하거나 공극을 최소화할 수 있어 종래의 영구자석 전동기나 발전기에 비해 소형, 경량화가 가능한 효과를 제공한다.
도 1은 본 발명의 실시예에 따른 코깅토르크를 최소화하는 영구자석 회전장치를 개략적으로 나타낸 단면도이다.
도 2는 본 발명의 일실시예에 따른 코깅토르크를 최소화하는 영구자석 회전장치의 치하단폭과 영구자석과 영구자석 사이의 이격거리를 나타낸 예시도이다.
도 3은 종래의 3상 권선 방법을 나타낸 예시도이다.
도 4는 본 발명의 일실시예에 따른 코깅토르크를 최소화하는 영구자석 회전장치의 권선 방법을 나타낸 예시도이다.
도 5는 본 발명의 일실시예에 따른 삼상 권선법에 의해 권선된 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 180도로 마주보는 예를 나타낸 예시도이다.
도 6은 본 발명의 코일피치를 나타낸 예시도이다.
이하 본 발명에 대하여 도면 및 구체적인 실시예를 참조하여 상세하게 설명한다.
도 1에 도시한 바와 같이, 본 발명인 코깅토르크를 최소화하는 영구자석 회전장치와 이를 이용한 영구자석 발전기 및 영구자석 전동기는,
샤프트(110)와;
중앙에 샤프트가 결합되어 있으며, 복수 개의 영구자석(210)이 일정 간격으로 형성되어 있는 회전자(200)와;
복수 개의 슬롯(310)이 일정 간격으로 형성되어 있으며, 각각의 슬롯에 코일이 권선되는 스테이터코어부(300);를 포함하여 구성되되,
코깅토르크를 최소화하기 위하여 영구자석의 극수와 슬롯의 개수는 하기의 계산식에 의해 정해지는 것을 특징으로 한다.
[계산식]
P = S/3 - 2
상기 계산식에서, P = 극수 , S = 슬롯수)이다.
일반적으로 영구자석발전기와 영구자석전동기는 크게 여섯 가지 요소에 의해 설계되어 지는데 첫 번째가 슬롯과 극수의 조합이고, 두 번째가 자석간의 이격거리, 세 번째가 권선방법, 네 번째가 코일피치, 다섯 번째가 코일의 단면적, 여섯 번째가 코일 턴수이다.
이 여섯 가지 요소 중에서 어느 것 하나라도 잘못 설계가 된다면 코깅토르크, 출력밀도, 효율, 역률, 진동 등에서 현저한 차이를 보이기 때문에 전체적으로 일관성 있는 설계가 매우 중요하다.
본 발명에 의한 코깅토르크를 최소화하는 영구자석 회전장치 및 이를 이용한 영구자석 전동기 및 영구자석 발전기도 기본적으로는 여섯 가지 요소에 의하여 구성되게 되는데, 영구자석 전동기 및 영구자석 발전기의 용량 등에 상관없이 일관성 있는 설계가 가능하다.
먼저 극수(P)와 슬롯수(S)의 조합을 통하여 코깅토르크를 저감하게 하는 방법이다.
지금까지 발표된 종래의 기술들을 보면 극수와 슬롯수의 다양한 조합을 통해 코깅토르크를 저감하게 하는 방법들이 제시되어 있는데 일정한 공식 없이 극수와 슬롯수를 많게 하거나, 극수와 슬롯수의 최소공배수가 클수록 코깅토르크가 저감된다고만 설명하고 있다.
코깅토르크는 극수와 슬롯수가 동일하거나, 영구자석의 중심과 치의 중심이 일치하거나, 슬롯수가 극수의 배수가 되어 슬롯이 영구자석의 중심으로부터 좌우로 대칭으로 위치할 때 가장 최대가 되는데, 이때 영구자석과 슬롯의 인력이 가장 안정적으로 위치하고 있기 때문이다.
따라서, 코깅토르크를 최소하하기 위해서는 영구자석과 슬롯 간 인력의 안정적인 배열을 비안정적인 배열로 바꿔, 치의 중심이 영구자석의 중심으로부터 좌우 대칭의 위치에 놓이지 않게 하면 된다.
극수와 슬롯수의 다양한 조합 중에서 코깅토르크가 가장 낮은 조합은 극수와 슬롯수의 최소공배수가 가장 높은 조합이다.
그런데 극수와 슬롯수의 최소공배수가 가장 높다고 하더라도 대부분의 발전기 혹은 전동기에서 채택하고 있는 3상 권선이 어렵거나 불가능한 경우에는 올바른 조합이라고 할 수 없다.
따라서, 코깅토르크를 최소화하기 위해서는 3상 권선도 가능하면서 동시에 최소공배수가 가장 높은 극수와 슬롯수의 조합이 요구된다고 할 수 있다.
3상 권선이 가능하고 자계 불균형을 최소화하기 위해서는 슬롯 수가 3의 배수가 되어야 하고 짝수이어야 한다.
3의 배수이면서 짝수인 슬롯수를 S라고 할 때 3상 권선도 가능하면서 동시에 최소공배수가 가장 높아 코깅토르크를 최소화할 수 있는 극수 P는 상기 계산식과 같이 S/3 - 2(S는 슬롯 수)가 되는 것이다.
이때, 최소공배수가 큰 조합일 수록 코깅토르크는 더욱 최소화된다.
본 발명의 도 1은 슬롯수가 72개인 회전장치를 예시한 것으로 계산식 P=S/3-2에 의하여 극수는 22개가 되는 것이다. 한편, 극수와 슬롯수의 최소공배수가 높으면서도 3상 권선이 가능한 극수와 슬롯수의 조합 P(S/3 - 2) : S가 만들어졌지만 이 조합만으로는 코깅토르크를 완전히 없앨 수 없다.
즉, 종래에는 영구자석 혹은 고정자 철심 코어를 일정 각도로 비스듬하게 배열하는 스큐(Skew), 자석폭과 자석 피치간의 비율인 Arc Fraction 등의 기법을 사용하여 코깅토르크를 저감하는데, 이런 방법들 역시 출력과 효율은 감소시키고 원가는 상승시키는 요인으로 작용한다.
따라서, 본 발명에서는 출력과 효율은 그대로 유지하면서 원가 상승은 없는 방법으로 코깅토르크를 최소화하기 위하여 슬롯(310)과 슬롯(310) 사이에 있는 치(Teeth)의 하단폭(b)과 영구자석과 영구자석 사이의 이격거리(a)를 이용하여 이 문제를 해결하였다.
즉, 도 2에 도시한 바와 같이,
영구자석과 영구자석 사이의 이격거리(a)를 스테이터코어부(300) 치의 하단폭(b)의 70% ~ 130%가 되도록 형성하며, 더욱 바람직하게는 영구자석과 영구자석 사이의 이격거리(a)와 스테이터코어부(300) 치의 하단폭(b)이 1 :1 이 되도록 형성하는 것이다.
구체적으로 스테이터코어부(300)에는 치(320)가 형성되게 되며, 치의 하단은 도 2와 과 같이 하단폭(b)이 구성되게 된다.
치의 하단폭(b)이 회전자를 구성하는 영구자석과 영구자석의 사이에 위치하게 되면 치하단과 회전자 사이에는 척력이 발생하여 회전자가 일방향으로 스스로 움직이게 된다.
따라서, 코깅토크 최소화는 회전자 위치에 관계없이 척력이 발생하는 구간을 많게 하면 된다.
다시 말하면, 회전자 위치에 관계없이 자석과 자석사이가 치의 하단폭 아래 부분에 위치하는 숫자가 많아야 한다.
본 발명이 제안하는 극수와 슬롯수의 조합에서 치의 하단폭과 자석사이의 이격거리를 동일하게 하면, 척력이 발생하는 구간이 최대화되고, 반대로 코깅토크는 최소화하게 되는 것이다.
이 때 척력이 발생하는 구간은 극수에 비례하게 되는데, 극수가 많으면 척력이 발생하는 구간이 증가하여, 코깅토르크를 최소화하는 효과가 커지며, 되고, 극수가 작으면 척력이 발생하는 구간이 감소하여, 코깅토르크를 최소화하는 효과가 미미하게 된다.
따라서, 계산식 P = S/3 ― 2에서 코깅토르크를 최소화하기 위해서는 S를 30이상으로 하는 것이 바람직하나, 발전기 혹은 전동기의 크기, 출력 등에 따라서 S를 30미만으로 설계해도 코깅토르크를 최소화하는 효과는 발생한다.
한편, 영구자석과 영구자석 사이의 이격거리(a)와 치하단폭(b)은 1 :1 로 구성하는 것이 가장 이상적이나 설계상 여의치 않을 경우는 영구자석간의 이격거리(a)를 치하단폭(b)의 70% ~ 130% 범위 내에서 형성하는 것이 바람직하다.
영구자석간의 이격거리(a)가 치하단폭(b)의 70% ~ 130% 범위를 벗어나게 되면 코깅토르크 저감 효과가 현저히 떨어지게 된다.
예를 들어, 치하단폭(b)이 10mm일 경우에 영구자석과 영구자석 사이의 이격거리(a)는 7mm ~ 13mm 범위 내에서 설정해야 하는데, 이 범위을 벗어나게 되면 코깅토르크 저감 효과가 떨어지게 되는 것이다.
한편, 모터와 발전기는 회전자와 스테이터코어가 적절하게 설계되었다고 해도 권선이 올바르지 않으면 기동 및 운전이 불가능하거나, 출력과 효율이 현저하게 감소하게 된다.
지금까지 살펴본 극수와 슬롯의 조합, 자석사이의 이격거리 등은 발전기와 전동기에서 구조를 결정하는 하드웨어적 개념이다.
반면에 발전기와 전동기를 설계함에 있어 권선방법, 코일 피치, 코일 단면적 및 코일 턴수(권선수)는 소프크웨어적 개념으로 출력밀도와 효율, 역률, 진동 등을 결정하는데 매우 중요하다.
특히, 위상각 120°를 구현하는 슬롯과 극수의 조합이 아닌 변형된 슬롯과 극수의 조합일 경우는 권선 방법이 매우 중요하다.
권선은 동일한 슬롯과 극수의 조합일지라도 모터와 발전기 제조사마다 조금씩 차이를 보이고 있는데, 이것은 권선방법에 일정한 규칙이 정해져있는 것이 아니고 대부분 경험적인 노하우에 의해서 권선이 이루어지기 때문이다.
일반적으로 영구자석발전기 혹은 영구자석전동기는 특수한 경우를 제외하면 3상 권선을 기본으로 한다.
도3은 종래의 3상권선법을 나타낸 것으로 36슬롯 12극의 권선방법을 예시한 것이다.
종래의 3상 권선은 각 상의 위상각이 120°로 일정하기 때문에 자계가 평형상태를 이루고 대칭이 이루어져 출력과 효율이 최고가 되고 진동과 소음이 최소화된다.
각 상의 위상각이 120°로 일정하기 위해서는 정확하게 극수가 슬롯수의 1/3이 되는 것이 이상적이다.
따라서, 슬롯이 36이면 12개의 극수로 권선하며, 슬롯이 48이면 16개의 극수로 권선하며, 슬롯이 72이면 24개의 극수로 권선한다.
또한, 3상 권선은 슬롯 개수의 1/3에 해당하는 극수가 위상각 120도의 기본 삼상 권선을 위한 극수이지만, 이 기본 극수를 2 혹은 3으로 나누어 짝수가 나오면 그 극수 역시 3상 권선이 가능하다.
예를 들어, 슬롯이 24개이면 위상각 120도를 갖는 삼상 권선이 가능한 기본 극수는 슬롯의 1/3인 8극이 되고, 기본 극수인 8극을 2로 나누면 4극이 되고, 4극을 2로 나누면 2극이 되므로 24슬롯에서 삼상 권선이 가능한 극수는 8극, 4극, 2극이 된다. 이 때, 4극의 위상각은 60도가 되고, 2극의 위상각은 30도가 되어 동일한 주파수에서 RPM이 각각 2배, 4배 증가하게 된다.
동일한 원리로 36슬롯을 계산하면 삼상 권선이 가능한 극수는 12극, 6극, 2극이 된다.
대부분의 유도전동기는 12슬롯, 24슬롯, 36슬롯, 48슬롯 등을 사용하기 때문에 삼상 권선이 가능한 극수는 2극, 4극, 6극, 8극 등으로 이루어져 있다.
도3에 도시된 바와 같이, 36슬롯일 경우에 권선을 해보면, 3상 권선을 위해서는 12극이 필요하므로 도3과 같이, 피치가 4일 경우에 1상의 1코일, 2상의 1코일, 3상의 1코일을 1조로 하여 1슬롯에 1상의 1코일을 시작으로 4슬롯까지 권선하게 되며, 2슬롯에 2상의 1코일을 시작으로 5슬롯까지 권선하게 되며, 3슬롯에 3상의 1코일을 시작으로 6슬롯까지 권선하는 식으로 12조까지 권선하면 위상각 120도를 갖는 삼상 권선이 완결되는 것이다.
이러한 삼상 권선법은 일반적으로 알려진 기술이므로 상기한 정도의 설명으로도 충분히 이해할 수 있을 것이다.
그런데 본 발명에서 제시하고 있는 코깅토크를 최소화하는 극수와 슬롯수의 여러 가지 조합들을 위한 권선에 있어 종래의 3상 권선법을 그대로 적용하여 권선하게 되면 극수가 틀리기 때문에 120°위상각을 만들어 낼 수 없다.
따라서 자계 불균형에 의해 발전기 및 전동기의 기동 및 운전이 불가능하거나 출력과 효율이 급격히 감소하고 소음과 진동이 증가하게 된다.
따라서, 본 발명에서 설명하고 있는 극수와 슬롯수의 조합에 알맞은 권선법이 필요한데, 위상각을 120°에 가깝게 구현하면서 출력과 효율, 진동과 소음이 종래의 3상 권선법과 동일한 수준으로 유지하는 것이 본원 발명의 권선법의 핵심이다.
본 발명의 코깅토크를 최소화하는 극수와 슬롯수의 조합에 알맞는 권선법은 기본적으로 코일피치가 자극피치보다 큰 장절권이며, 코일이 2개 이상의 슬롯에 감기는 분포권이며, 코일 갯수가 슬롯 수와 동일한 이층권이다.
도4와 도5는 본 발명의 권선법을 도시하고 있는 예시도이다.
구체적으로 도 4를 참조하여 설명한다.
코일 피치가 5일 경우에 1조는 1상의 1코일을 1슬롯부터 시작하여 5슬롯까지 권선하며, 1상의 2코일을 2슬롯부터 시작하여 6슬롯까지 권선하며, 2상의 1코일을 3슬롯부터 시작하여 7슬롯까지 권선하며, 3상의 1코일을 4슬롯부터 시작하여 8슬롯까지 권선하여 1조 권선을 마무리한다.
이후, 2조는 1상의 3코일을 5슬롯부터 시작하여 9슬롯까지 권선하며, 2상의 2코일을 6슬롯부터 시작하여 10슬롯까지 권선하며, 3상의 2코일을 7슬롯부터 시작하여 11슬롯까지 권선하며, 3상의 3코일을 8슬롯부터 시작하여 12슬롯까지 권선하여 2조 권선을 마무리하는 것이다. 3조는 1상의 4코일을 9슬롯부터 시작하여 13슬롯까지 권선하며, 2상의 3코일을 10슬롯부터 시작하여 14슬롯까지 권선하며, 3상의 4코일을 11슬롯부터 시작하여 15슬롯까지 권선하여 3조의 권선을 마무리한다. 4조는 1상의 5코일을 12슬롯부터 시작하여 16슬롯까지 권선하며, 2상의 4코일을 13슬롯부터 시작하여 17슬롯까지 권선하며, 2상의 5코일을 14슬롯부터 시작하여 18슬롯까지 권선하며, 3상의 5코일을 15슬롯부터 시작하여 19슬롯까지 권선하여 4조의 권선을 마무리한다. 5조는 1상의 6코일을 16슬롯부터 시작하여 20슬롯까지 권선하며, 2상의 6코일을 17슬롯부터 시작하여 21슬롯까지 권선하며, 3상의 6코일을 18슬롯부터 시작하여 22슬롯까지 권선하여 5조의 권선을 마무리한다.
이렇게 순차적으로 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분의 간격을 동일하게 권선하게 되면, 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 각도는 60도를 이루게 되고 동일한 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹은 반드시 180도로 대칭이 이루어진다. 이 때 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹의 권선 순서는 1상, 3상, 2상의 순서로 일정한 간격을 두고 배치되게 되는 것이다.
이때, 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹 수는 6개로 항상 일정하고, 그 순서는 슬롯과 극수의 조합에 따라서 달라지게 된다. 예들 들면 슬롯대 극수가 36 : 10의 조합에서는 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹의 수는 6개조가 되고, 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 순서는 1상, 3상, 2상의 순서가 되며, 극수가 48 : 14의 조합에서는 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹의 수는 6개조이지만, 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 순서는 1상, 2상, 3상의 순서가 되는데, 이것은 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹을 60° 각도로 유지하기 위해서이다. 결국, 상기한 권선 방법을 이용하여 권선함으로써, 본 발명의 권선 방법은 완성되는 것이다.
도 5을 설명하면, 0도와 마주보는 180도에 각각 1상에서 코일 두 개가 연이어 권선되는 부분을 배치시키게 되며, 60도와 마주보는 240도에 각각 3상에서 코일 두 개가 연이어 권선되는 부분을 배치시키게 되며, 120도에 마주보는 300도에 각각 2상에서 코일 두 개가 연이어 권선되는 부분을 배치시키게 되는 것이다. 그리고, 각 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분을 배치시키는 조는 도 5와 같이, 1상, 3상, 2상의 순서로 배열되게 되는 것이다.
여기서, 슬롯수 대 극수가 36 : 10의 조합을 갖는 영구자석전동기의 권선 방법을 다시 한번 살펴보면 다음과 같다.
먼저, 삼상 권선을 이용하되, 1상 ~ 3상을 한 그룹으로 하여 10개조를 이루는 것을 특징으로 하며, 1조는 1상의 1~2코일, 2상의 1코일, 3상의 1코일을 순서대로 권선하며, 2조는 1상의 3코일, 2상의 2코일, 3상의 2~3코일을 순서대로 권선하며, 3조는 1상의 4코일, 2상의 3코일, 3상의 4코일을 순서대로 권선하며, 4조는 1상의 5코일, 2상의 4~5코일, 3상의 5코일을 순서대로 권선하며, 5조는 1상의 6코일, 2상의 6코일, 3상의 6코일을 순서대로 권선하며, 6조는 1상의 7~8코일, 2상의 7코일, 3상의 7코일을 순서대로 권선하며, 7조는 1상의 9코일, 2상의 8코일, 3상의 8~9코일을 순서대로 권선하며, 8조는 1상의 10코일, 2상의 9코일, 3상의 10코일을 순서대로 권선하며, 9조는 1상의 11코일, 2상의 10~11코일, 3상의 11코일을 순서대로 권선하며, 10조는 1상의 12코일, 2상의 12코일, 3상의 12코일을 순서대로 권선하는 것을 특징으로 한다.
이와같이, 본 발명의 코깅토르크를 최소화하는 회전 장치 및 이를 이용한 영구자석 발전기 및 영구자석 전동기의 권선법은 각 상의 위상각이 비슷하게 유지되고 자계의 불평형이 최소화될 수 있도록 일정한 간격을 두고 극수의 감소로 인해 남아있는 여분의 코일을 적절하게 배열해 주는 것이 바람직하다.
종래의 3상 권선은 각 상마다 S(슬롯)/3개의 코일 갯수가 있다.
즉, 1상의 코일 갯수가 S/3개, 2상의 코일갯수가 S/3개, 3상의 코일 개수는 S/3개로, 1상, 2상, 3상의 코일갯수를 모두 합하면 슬롯(S)수가 되어 1상, 2상, 3상 순서대로 권선하게 되면 슬롯에 고르게 권선된다.
그런데 본 발명이 제안하는 계산식에 의해 다양하게 도출된 극수는 종래의 3상 권선이 가능한 극수보다 항상 2극이 작다. 따라서 종래의 3상 권선 방법으로 권선을 하게 되면 회전자의 극수는 S/3-2인데, 스테이터코어의 권선 극수는 S/3이 되어 자계 불균형으로 모터 및 발전기의 기동 및 운전이 불가능하거나 출력과 효율이 떨어지는 원인이 되는 것이다.
따라서 스테이터 코어의 극수를 S/3-2로 만들어야 하는데, 극수를 S/3-2로 만들기 위해서 각 상의 코일 개수를 S/3-2으로 만들 수는 없다.
만약 각 상의 코일 개수를 S/3-2으로 하게 되면 전체 코일뭉치 갯수가 (S/3-2)*3이 되어 스테이터코어 슬롯 갯수보다 항상 여섯 개가 모자라게 되어 코일이 불균형적으로 권선되기 때문이다.
본 발명의 코깅토르크를 최소화하는 슬롯수와 극수 조합비인 S : P(=S/3-2)에서의 권선 역시 각 상의 코일 갯수는 S(슬롯)/3이다.
각 상의 코일 개수 S/3을 S/3-2극수로 권선하기 위해서는 동일한 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹을 적절한 각도로 분배해야 하는데 도5에 도시된 바와 같이 가장 이상적인 각도가 180°로 마주보게 배치하는 것이다.
즉, 1상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹을 180°로 마주보게 각각 배치하고
2상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹을 180°로 마주보게 각각 배치하고
3상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹을 180°로 마주보게 각각 배치하고
이 때 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹의 각도는 60°를 유지하면 되는데
순서는 1상-2상-3상이 되거나, 1상-3상-2상이 될 수도 있다.
도 4는 상기에서 설명한 본 발명의 권선법 예시도이고, 도5는 동일한 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹을 180도 마주보게 배치하고 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 배치되는 그룹의 각도가 60°로 배열되어 있는 예시도이다.
도4에서는 슬롯수와 극수의 조합 72 : 14에 적용된 권선 예시를 나타낸 것으로, 상기 설명 중 1, 2극에 대한 권선법인 1극 : 1상, 1상, 2상, 3상 과 2극 : 1상, 2상, 3상만을 도시하였고 3~14극에 대한 권선법은 도시하지 않았다.
본 발명에 의한 슬롯, 극수의 조합에서는 이와 같은 원리의 권선 방법이 동일하게 적용된다.
상기와 같은 권선법에 의해 출력과 효율을 최대화하고 자계의 균형을 이루어 진동을 최소화할 수 있는 것이다.
본 발명에 의한 코깅토르크를 최소화하는 장치는 슬롯수 및 극수의 조합에 관계없이 코일 피치가 5일 때 코깅토르크가 가장 최소가 된다.
도6은 코일피치가 5인 권선 예시도이다.
코일 피치는 코일을 권선함에 있어서 권선과 다음 권선사이의 거리를 일컫는 말로 일반적으로 슬롯의 개수로 나타낸다.
코일 피치 역시 일정한 법칙이 있는 것이 아니고, 슬롯수와 극수, 스테이터 코어의 내경 등에 의해 조금씩 다르게 설계된다.
본 발명에서 제안하는 계산식에 의해 도출된 극수 및 슬롯수의 조합에서도 슬롯수와 극수, 스테이터 코어의 내경을 고려하여 다양한 코일피치를 설계할 수는 있다.
그러나, 본 발명에서 제안하는 계산식에 의해 도출된 극수 및 슬롯수의 조합에서는 슬롯수와 극수, 스테이터코어의 내경에 관계없이 코일 피치를 항상 5로 설계할 때 출력과 효율을 극대화할 수 있다.
따라서 본 발명에서 제안하는 극수와 슬롯수의 계산식 P =S/3-2에 의해 도출된 극수 및 슬롯의 조합과 코일 피치 5는 일정한 규칙성이 있다고 볼 수 있다.
발전기와 전동기를 설계함에 있어 코일의 단면적 및 코일 턴수(권선수) 역시 전동기 및 발전기의 성능을 결정하는데 매우 중요한 요소이다. .
최근에는 발전기와 전동기 설계프로그램들이 다양하게 출시되어 있어, 여러 파라미터들만 입력하면 코일의 단면적과 코일 턴수를 간단하게 구할 수 있다.
종래의 설계 프로그램들은 이전까지 알려져 있던 파라미터들을 고려하여 설계한 프로그램이기 때문에, 척력을 발생시키는 구조를 갖는 본 발명에서 제안하는 영구자석발전기와 영구자석전동기 설계프로그램으로는 적절치 않다.
본 발명에서 제안하는 회전 장치 및 이를 이용한 영구자석 전동기 및 영구자석 발전기에서 코일의 단면적과 코일턴수를 다양하게 실험해본 결과 출력 및 효율에서 큰 차이를 보이고 있음을 확인할 수 있었다.
따라서 본 발명이 제안하는 회전 장치 및 이를 이용한 영구자석 전동기 및 영구자석 발전기에는 다음과 같은 방법으로 코일의 단면적과 코일 턴수를 결정하는 것이 바람직하다.
코일의 단면적은 전류의 크기를 결정하는 파라미터인데, 일반적으로 ㎟ 단위로 표시하고, 1㎟당 전류량을 설계한다.
본 발명에서는 1㎟당 정격 전류량을 6A로 설계할 때 출력과 효율이 가장 높다.
즉, 영구자석발전기 혹은 영구자석전동기에서 정격전류가 6A이면, 1상, 2상, 3상의 코일 단면적을 1㎟로 설계하면 되는 것이다.
이 때 코일 턴수(권선수)는 다음의 계산 공식에 의해 결정된다.
턴수(권선수)={정격전압(Vac)×K}/{회전각속도(rad/s)×자속밀도(T)}
/슬롯수(S)/스테이터코어 적층길이(mm)
여기서, K는 상수, {정격전압(Vac)×상수}/{회전각속도(rad/s)×자속밀도(T)}는 코일 길이를 나타내는데, 상수K를 제외한 모든 파라미터들은 발전기 혹은 전동기를 설계하는데 있어 기본적으로 제공되는 것이라 특별한 노하우가 필요한 것은 아니다.
다만, 상수K에 해당하는 부분이 발전기나 전동기 제조사들이 보유하고 있는 고유 설계 파라미터에 해당한다.
상수 K값은 무부하 전압과 정격부하 시 전압을 결정하는 중요한 요소가 된다. 일반적으로 모든 발전기들은 부하를 인가하게 되면 전압 강하가 발생하는데, 기본적으로 전압강하가 작은 발전기일 수록 효율이 높다.
따라서 전압강하를 최소화하기 위한 여러 가지 연구들이 진행되고 있는데, 본 발명에서는 코일 단면적 1㎟당 6A를 기준으로 상수 K값을 1.2로 설계할 때 출력과 효율을 최대화할 수 있다.
여기서, 상수 K가 1.2에서 아래위로 멀어질 수록 출력과 효율은 점점 감소하기 때문에 가능하면 상수를 1.2로 정하여 설계하는 것이 유리하나 상수 K를 1.2의 70% ~ 130%의 값 범위인 0.84 ~ 1.56 내에서 사용해도 무방하다.
또한, 본 발명의 영구자석(210)의 두께는 1mm ~ 50 mm 범위 이내에서 선정할 수 있다.
즉, 영구자석이 두꺼울수록 자속밀도가 높기 때문에 출력과 효율이 높아지지만, 종래에는 영구자석이 두꺼워지면 코깅토르크가 증가하므로 두께에 대한 한계가 있었다.
그러나, 본 발명의 경우에는 극수와 슬롯의 최소공배수 조합과, 치(320)의 하단폭(b)과 영구자석과 영구자석 사이의 이격거리(a)로 코깅토르크를 최소화하기 때문에 일정 부분에서 회전자와 스테이터코어부(300) 사이에 척력이 발생하기 때문에, 영구자석의 두께와 에어갭에 상관없이 코깅토르크는 최소화된다.
따라서, 적절한 두께를 갖는 영구자석 회전자를 먼저 설계하고, 회전자의 자속밀도에 알맞은 스테이터코어부를 설계하게 되면 발전기와 전동기의 소형, 경량화를 극대화시킬 수 있다.
또한, 도 3에 도시한 바와 같이, 상기 회전자(200)의 영구자석과 스테이터코어부(300)의 치의 하단폭(b) 간의 에어갭(c)은 0.1mm ~ 2mm 범위 이내에서 설정하여야 하며, 상기 범위를 벗어나게 되면 출력과 효율이 떨어지는 문제점이 발생하게 된다.
상기와 같이 회전 장치를 구성하게 되면 동일한 용량의 종래 발전기 혹은 전동기보다 크기와 무게를 대폭 감소할 수 있는 효과가 발생하게 된다.
영구자석을 회전자에 고정시키는 방법으로는 표면부착형(SPM)과 매입형(IPM)이 있는데 코깅토르크를 최소화하는 방법은 표면부착형이든, 매입형이든 본 발명에서 제시하는 방법과 동일하다.
본 발명에서 제안하는 코깅토르크를 최소화하는 회전 장치와, 본 발명에서 제안하는 피치, 권선법, 권선 사양 등을 동시에 만족시키는 영구자석 전동기 및 영구자석 발전기를 제작하게 되면 출력 밀도가 높아지고, 효율이 증가하며, 진동과 소음이 감소하는 효과를 가져올 뿐만 아니라, 종래의 영구자석 동기 전동기에서는 구현이 불가능한 새로운 현상이 발생한다.
그 중 가장 대표적인 현상이 영구자석 동기 전동기에서는 불가능하다고 알려져 있는 직입기동(Line-Start)이 본 발명에서 제안하는 영구자석 동기전동기에서는 가능해진다.
직입기동 전동기는 상용전원으로 기동 및 운전이 가능한 전동기를 말하는데, 대표적인 전동기가 유도전동기이다.
반면에 영구자석 동기전동기는 직입기동이 불가능하기 때문에 기동 및 운전을 위해서는 드라이버 혹은 센서리스 벡터제어 인버터 등을 사용하여야 한다.
그런데, 본 발명에서 제안하는 코깅토르크를 최소화하는 회전 장치 및 피치, 권선법, 권선 사양 등을 동시에 만족시키는 영구자석 전동기는 드라이버 혹은 센서리스 벡터제어 인버터 등을 사용하지 않고도 유도 전동기 처럼 상용전원만으로 기동 및 운전이 가능하다.
이것은 본 발명에서 제안하는 여러 가지 요소들에 의해 회전자와 스테이터 코어 사이에 척력이 발생하고, 이 척력이 스테이터 코어에서 발생하는 회전자계만으로도 회전자의 기동을 가능하게 하기 때문이다.
유도 전동기가 출력밀도 및 효율, 역률 등이 영구자석동기전동기보다 낮지만 널리 사용되는 이유는 상대적으로 저렴한 가격과 직입기동 때문이다.
반면에, 영구자석동기전동기(Permanent Magnet Synchronous Motor)는 출력밀도 및 효율, 역률 등은 높지만 널리 사용되지 못하는 이유는 상대적으로 비싼 가격 때문이데, 가격이 비싼 이유 중 가장 큰 요소가 직입기동이 불가능하기 때문에 기동 및 운전에 필요한 장치를 추가로 구매해야 하기 때문이다.
따라서, 직입기동이 가능하면서도 영구자석동기전동기의 출력밀도와 효율, 역률이 가능한 전동기를 개발하는 것은 매우 의미가 크다고 할 수 있다.
최근, 직입기동이 가능한 영구자석동기전동기(LSPMSM)를 개발하기 위한 선행 연구들이 활발히 진행되고 있는데, 대표적인 기술이 유도기동형 영구자석동기전동기이다.
유도기동형 영구자석동기전동기는 직입기동이 불가능한 영구자석동기전동기에 유도전동기의 기동 기술을 접목한 것으로, 기동은 유도전동기 방식으로 하고, 운전은 영구자석동기전동기 방식으로 하는 전동기이다.
그런데, 구조가 복잡하고 회전자에 삽입된 유도기동을 위한 장치(알루미늄 바(Bar) 혹은 동 바(Bar)) 들이 영구자석의 자기장을 방해하는 등의 문제점들이 발생하여 대중화되지 못하고 있는 실정이다.
그러나, 본 발명에서 제안하는 코깅토르크를 최소화하는 회전 장치와, 본 발명에서 제안하는 피치, 권선법, 권선 사양 등을 동시에 만족시키는 영구자석 전동기는, 영구자석동기전동기와 동일한 구조에서 유도전동기의 직입기동 장점과 영구자석동기전동기의 고출력밀도, 고효율, 고역률의 장점을 동시에 구현할 수 있다,
따라서, 본 발명에서 제안하는 영구자석전동기는 유도전동기 분야와 영구자석동기전동기 분야에서 폭넓게 활용될 수 있다.
이상에서 설명한 본 발명은 전술한 발명의 상세한 설명, 사용예 및 도면에 의하여 한정되는 것은 아니고, 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 해당 기술분야의 당업자가 다양하게 수정 및 변경시킨 것 또한 본 발명의 범위 내에 포함됨은 물론이다.
110 : 샤프트
200 : 회전자
210 : 영구자석
300 : 스테이터코어부
310 : 슬롯
320 : 치
a : 영구자석과 영구자석 사이의 이격거리
b : 슬롯 하단 치폭
c : 회전자와 슬롯 사이의 에어갭

Claims (5)

  1. 영구자석 회전장치에 있어서,
    샤프트(110)와;
    중앙에 샤프트가 결합되어 있으며, 복수 개의 영구자석(210)이 일정 간격으로 형성되어 있는 회전자(200)와;
    복수 개의 슬롯(310)이 일정 간격으로 형성되어 있으며, 각각의 슬롯에 코일이 권선되는 스테이터코어부(300);를 포함하여 구성되되,
    코깅토르크를 최소화하기 위하여 영구자석의 극수와 슬롯의 개수는 하기의 계산식1에 의해 정해지는 것을 특징으로 하고,
    회전자(200)의 영구자석(210)과 영구자석(210) 사이의 이격거리(a)는 상기 스테이터코어부(300)의 치하단폭(b)의 70% ~130%가 되도록 형성하는 것을 특징으로 하고,
    상기 스테이터코어부(300)의 권선은 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 180°로 마주보게 배열하고, 각 상의 코일 중 코일 두 개가 연이어 권선되는 부분이 각 상간에는 60° 각도 거리로 균일하게 배열하고 코일피치가 5가 되도록 하는 권선인 것을 특징으로 하고,
    권선된 코일의 단면적 1㎟당 정격 전류는 6A인 것을 특징으로 하고.
    권선의 턴수는 하기 계산식2에 의해 결정되는 것을 특징으로 하는 코깅토르크를 최소화하는 회전장치.
    [계산식1]
    P = S/3 - 2 (P : 극수 , S : 슬롯수)
    [계산식2]
    턴수(권선수)={정격전압(Vac)×K}/{회전각속도(rad/s)×자속밀도(T)}
    /슬롯수(S)/스테이터코어 적층길이(mm)
    ( 상기에서 K는 상수로써 0.84 ~ 1.56 범위의 값)
  2. 제 1항에 있어서,
    상기 회전자(200)의 영구자석(210)과 영구자석(210) 사이의 이격거리(a)와 스테이터코어부(300) 치하단폭(b)의 비가 1:1이 되도록 형성하는 것을 특징으로 하는 코깅토르크를 최소화하는 영구자석 회전장치.
  3. 제1항에 있어서
    상수 K의 값이 1.2인 것을 특징으로 하는 코깅토르크를 최소화하는 영구자석 회전 장치.
  4. 제 1항 내지 제3항 중 어느 한 항의 영구자석 회전장치를 구비한 영구자석발전기.
  5. 제 1항 내지 제3항 중 어느 한 항의 영구자석 회전장치를 구비한 영구자석전동기.
PCT/KR2017/000391 2016-01-14 2017-01-12 코깅 토르크를 최소화하는 영구자석 회전장치와 이를 이용한 영구자석발전기 및 영구자석전동기 WO2017123013A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17738642.2A EP3404803A4 (en) 2016-01-14 2017-01-12 PERMANENT MAGNET ROTATING DEVICE WITH MINIMIZED CRIMPING TORQUE, PERMANENT MAGNET GENERATOR USING THE SAME, AND PERMANENT MAGNET MOTOR
CN201780017152.4A CN108886277B (zh) 2016-01-14 2017-01-12 使齿槽转矩最小化的永磁铁旋转装置和利用其的永磁铁发电机及永磁铁电动机
JP2018556773A JP2019502358A (ja) 2016-01-14 2017-01-12 コギングトルクを最小化する永久磁石回転装置とこれを用いた永久磁石発電機及び永久磁石電動機
US16/034,684 US10916981B2 (en) 2016-01-14 2018-07-13 Permanent magnet rotating device having minimized cogging torque, permanent magnet generator using same, and permanent magnet motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160004918A KR101633014B1 (ko) 2016-01-14 2016-01-14 코깅 토르크를 최소화하는 영구자석 회전장치와 이를 이용한 영구자석발전기 및 영구자석전동기
KR10-2016-0004918 2016-01-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/034,684 Continuation US10916981B2 (en) 2016-01-14 2018-07-13 Permanent magnet rotating device having minimized cogging torque, permanent magnet generator using same, and permanent magnet motor

Publications (1)

Publication Number Publication Date
WO2017123013A1 true WO2017123013A1 (ko) 2017-07-20

Family

ID=56353503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000391 WO2017123013A1 (ko) 2016-01-14 2017-01-12 코깅 토르크를 최소화하는 영구자석 회전장치와 이를 이용한 영구자석발전기 및 영구자석전동기

Country Status (6)

Country Link
US (1) US10916981B2 (ko)
EP (1) EP3404803A4 (ko)
JP (1) JP2019502358A (ko)
KR (1) KR101633014B1 (ko)
CN (1) CN108886277B (ko)
WO (1) WO2017123013A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101905512B1 (ko) * 2018-03-02 2018-10-08 노순창 기동 장치가 필요 없는 영구자석 단상 모터
KR20200122528A (ko) 2019-04-18 2020-10-28 배종성 비 자성체 코어 발전방식
DE102019113596A1 (de) * 2019-05-22 2020-11-26 Schaeffler Technologies AG & Co. KG Elektrische Maschine mit einer einen axialen Toleranzausgleich ermöglichenden Befestigung mehrerer Rotorbleche auf einer Rotorwelle
WO2021019703A1 (ja) * 2019-07-30 2021-02-04 株式会社kaisei 三相交流発電機
KR102472116B1 (ko) 2021-06-16 2022-12-05 주식회사 에이치엔디멀티랩 피시험모터의 코깅토크 또는 역기전력 측정이 가능한 무부하 시험장치 및 이를 이용한 무부하 시험방법
KR20240019883A (ko) * 2022-08-05 2024-02-14 한온시스템 주식회사 브러쉬리스 모터

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243621A (ja) * 1997-10-06 1998-09-11 Hitachi Ltd 永久磁石界磁形ブラシレスモータ
JP2002165428A (ja) * 2000-11-20 2002-06-07 Toshiba Transport Eng Inc 同期型回転機及び永久磁石型リラクタンスモータ
JP2002345224A (ja) * 2001-05-18 2002-11-29 Yaskawa Electric Corp 永久磁石形同期電動機
JP2005278268A (ja) * 2004-03-24 2005-10-06 Sanyo Electric Co Ltd 永久磁石式モータ
JP2009201278A (ja) * 2008-02-22 2009-09-03 Shin Daiwa Kogyo Co Ltd 同期発電機の電機子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY155225A (en) * 1995-05-31 2015-09-30 Panasonic Corp Motor with built-in permanent magnets
JPH1198743A (ja) * 1997-09-19 1999-04-09 Fuji Electric Co Ltd 電機子巻線とその鉄心溝挿入方法
JP3746372B2 (ja) * 1998-04-16 2006-02-15 株式会社日立製作所 永久磁石式回転電機及びそれを用いた電動車両
JP4489002B2 (ja) * 2005-10-26 2010-06-23 三菱電機株式会社 ハイブリッド励磁回転電機、及びハイブリッド励磁回転電機を備えた車両
KR101285529B1 (ko) * 2009-11-24 2013-07-17 미쓰비시덴키 가부시키가이샤 영구자석형 회전 전기기계 및 이것을 이용한 전동 파워 스티어링 장치
CN102355109B (zh) * 2011-09-26 2013-07-17 江西省迪普安数字功率技术发展有限公司 一种永磁伺服同步电动机的分数槽三相不等距正弦绕组
DE102013103665A1 (de) * 2013-04-11 2014-10-16 Feaam Gmbh Elektrische Maschine
JP6154673B2 (ja) * 2013-06-14 2017-06-28 株式会社Subaru アキシャルギャップ型の発電体におけるコアの寸法を決定する方法、アキシャルギャップ型発電体およびエンジン発電機
JP6117740B2 (ja) * 2014-06-18 2017-04-19 ファナック株式会社 トルクリップルの低減構造を備える3相交流電動機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243621A (ja) * 1997-10-06 1998-09-11 Hitachi Ltd 永久磁石界磁形ブラシレスモータ
JP2002165428A (ja) * 2000-11-20 2002-06-07 Toshiba Transport Eng Inc 同期型回転機及び永久磁石型リラクタンスモータ
JP2002345224A (ja) * 2001-05-18 2002-11-29 Yaskawa Electric Corp 永久磁石形同期電動機
JP2005278268A (ja) * 2004-03-24 2005-10-06 Sanyo Electric Co Ltd 永久磁石式モータ
JP2009201278A (ja) * 2008-02-22 2009-09-03 Shin Daiwa Kogyo Co Ltd 同期発電機の電機子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3404803A4 *

Also Published As

Publication number Publication date
CN108886277A (zh) 2018-11-23
US10916981B2 (en) 2021-02-09
EP3404803A4 (en) 2019-01-09
KR101633014B1 (ko) 2016-06-23
EP3404803A1 (en) 2018-11-21
CN108886277B (zh) 2021-07-06
US20190006897A1 (en) 2019-01-03
JP2019502358A (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2017123013A1 (ko) 코깅 토르크를 최소화하는 영구자석 회전장치와 이를 이용한 영구자석발전기 및 영구자석전동기
WO2013147550A1 (ko) 3결선 구조의 스테이터, 이를 이용한 bldc 모터 및 그의 구동방법
KR100200667B1 (ko) 브러시리스 직류모터
EP2374192B1 (en) Method for operation of a permanent magnet synchronous machine, and a device in an electric system comprising such a machine
KR20130060176A (ko) 전기기계
WO2013085231A1 (ko) 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
WO2016010361A1 (ko) 스위치드 릴럭턴스 모터
JP5419991B2 (ja) 永久磁石式同期モータ
WO2013032122A1 (ko) 종축자속형 영구자석 동기발전기 및 모터
US20070222408A1 (en) Simplified solid state electric motor drive technique
CN109417340B (zh) 极数切换型旋转电机以及极数切换型旋转电机的驱动方法
JP2010057208A (ja) 回転電機
WO2014121466A1 (zh) 盘式三相无刷永磁直流电机
WO2019050382A2 (ko) 다중브러시와 분배기를 이용한 ac 또는 dc 발전장치
WO2013111968A1 (ko) 다상 전 브리지 전압원 인버터의 전류 제어 펄스 폭 변조 방법
WO2012116618A1 (zh) 一种带c形定子铁心的开关磁阻发电机
KR102120361B1 (ko) 길이가 다른 도체바를 구비하는 회전자 및 그를 포함하는 동기형 모터
WO2019168375A1 (ko) 구동장치 및 이를 포함하는 세탁기
WO2022231153A1 (ko) 전동기
KR20120129162A (ko) 길이가 다른 도체바를 갖는 회전자 및 그를 포함하는 lspm 모터
WO2016006937A1 (ko) 코깅 토르크를 최소화하는 영구자석 회전장치
JP2004096940A (ja) 永久磁石形同期電動機
Ming et al. A novel dc-excited doubly salient machine with modular ii-shaped stator iron core
WO2024080774A1 (ko) 영구 자석이 포함된 스위치드 릴럭턴스 전동기
WO2022114388A1 (ko) 비자성 차단부재를 구비한 이중 공극형 표면 영구자석 동기모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556773

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017738642

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738642

Country of ref document: EP

Effective date: 20180814