WO2023146056A1 - 비접촉식 회전 변압기 및 이를 포함하는 모터 - Google Patents

비접촉식 회전 변압기 및 이를 포함하는 모터 Download PDF

Info

Publication number
WO2023146056A1
WO2023146056A1 PCT/KR2022/014001 KR2022014001W WO2023146056A1 WO 2023146056 A1 WO2023146056 A1 WO 2023146056A1 KR 2022014001 W KR2022014001 W KR 2022014001W WO 2023146056 A1 WO2023146056 A1 WO 2023146056A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor shaft
rotary transformer
motor
primary coil
core
Prior art date
Application number
PCT/KR2022/014001
Other languages
English (en)
French (fr)
Inventor
이주열
Original Assignee
이주열
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이주열 filed Critical 이주열
Publication of WO2023146056A1 publication Critical patent/WO2023146056A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/042Rectifiers associated with rotating parts, e.g. rotor cores or rotary shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/02Casings or enclosures characterised by the material thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor

Definitions

  • the present invention relates to an electricity supply device for supplying electricity to the rotor of a motor, and more particularly, to a non-contact rotary transformer for supplying electricity to the rotor by connecting the rotor of the motor to an external power source in a non-contact manner, and It relates to a motor including this.
  • Wound rotor synchronous motors are mainly used in electric vehicles because of their superior torque and power density compared to other motors.
  • a field winding type synchronous motor adopts a method of supplying electricity by electrically connecting an external power source and a rotor inside the motor using a slip ring and a brush that are mechanically in contact with each other.
  • the conventional contact type electricity supply method using a slip ring and a brush has a problem in that the brush is deformed or damaged due to continuous friction between the slip ring rotating with the motor shaft and the brush fixed to the motor housing while the motor is running. This may cause a spark to occur between the slip ring and lead to a fire.
  • a technology proposed to solve the problems of the prior art is a technology that implements an electrical connection between an external power source and a rotor in a non-contact manner.
  • This technology uses a phenomenon (electromagnetic induction phenomenon) in which a voltage is induced in the other coil when a current is passed through one of the two facing coils, and the current flows (electrostatic induction phenomenon). connection can be implemented.
  • FIG. 1 is a cutaway perspective view schematically illustrating a conventional non-contact field winding type synchronous motor to which a technology for connecting a rotor of a motor with an external power source in a non-contact method is applied
  • FIG. 2 is a perspective view of a rotor of a motor in FIG. It is an exploded perspective view of the transformer, which is the core of electrical connection with
  • a conventional field winding type synchronous motor includes a motor housing 100 and a motor shaft 200 rotatably supported by the motor housing 100 via a bearing.
  • a stator 120 is coupled to the inside of the motor housing 100, and a rotor generates electromagnetic force for rotating the motor shaft 200 by generating electromagnetic interaction with the stator 120 on the motor shaft 200. (Rotor, 220) is installed.
  • the rotor 220 is electrically connected without direct contact with an external power source through a transformer 300 including two facing coils, and a rectifier 400 is installed between the transformer 300 and the rotor 220, thereby ,
  • the current by the external power source is transformed to an appropriate level through the transformer 300 and supplied to the rotor 220, which is converted from alternating current to direct current by a rectifier in the middle and supplied to the rotor 220. .
  • the transformer 300 is coupled to the primary coil 310 on the side of the stator 300 installed in the motor housing 100 and the motor shaft 200 to rotate in synchronization with the rotor 220 (220)
  • a side secondary coil 320 is included.
  • the primary coil 310 and the secondary coil 320 are arranged to face each other at a predetermined interval (air gap), and the primary ferrite core fixed to the motor housing 100 and the motor shaft 200, respectively.
  • a 312 and a secondary ferrite core 322 accommodate the primary coil 310 and the secondary coil 320, respectively.
  • reference numeral 314 denotes a primary ferrite case covering the primary ferrite core 312
  • reference numeral 324 denotes a secondary ferrite case covering the secondary ferrite core 322 .
  • the secondary coil and the secondary ferrite core rotate together with the motor shaft when the motor is driven, and the primary coil and primary ferrite core do not rotate.
  • the core is damaged or the coil is scratched by colliding with each other during rotation because the structure is simply spaced apart with a predetermined air gap (usually within 1 mm).
  • the ferrite material used in the primary ferrite core and secondary ferrite core for magnetic flux concentration and magnetic shielding is fragile due to its nature, and unlike other industrial motors, it is easily exposed to harsh vibration environments. There is a problem in that the durability and reliability of the motor are lowered due to a higher risk of damage to the ferrite core.
  • Patent Document 1 Korean Patent Publication No. 10-2018-0015450 (published on 2018.02.13.)
  • the technical problem to be solved by the present invention is a contactless rotary transformer capable of implementing electrical connection between an external power source and a rotor with a wider air gap than the prior art structure in which coils face each other, and It is intended to provide a motor including this.
  • Another technical problem to be solved by the present invention is to provide a non-contact rotary transformer capable of increasing durability by using a highly durable material such as stainless steel instead of fragile ferrite as a core of the transformer and a motor including the same will be.
  • Another technical problem to be solved by the present invention is to provide a non-contact type rotary transformer that is advantageous for miniaturization of the motor and a motor including the same compared to conventional rotary transformers mounted on the outside of a motor shaft.
  • a device that connects the rotor of a motor with an external power source in a non-contact manner
  • a core part disposed concentrically with the motor shaft inside the hollow motor shaft;
  • a primary coil unit installed on an outer circumferential surface of the core unit
  • a secondary coil unit installed on an inner main surface of the motor shaft and surrounding the primary coil unit at a predetermined interval (air gap);
  • Non-contact type rotary transformer including a; coupled to the motor shaft to perform synchronized rotational motion and a rectifier circuit electrically connected to the secondary coil unit.
  • the core part is installed inside the motor shaft through one or more inner bearings, the core part and the primary coil part are free from rotation of the motor shaft, and are installed on the inner main surface of the motor shaft
  • the secondary coil unit may perform a rotational movement synchronized with the motor shaft.
  • the inner bearing includes a front bearing installed between the core and a motor shaft in front of the primary and secondary coil units, and a motor shaft and the core unit behind the primary and secondary coil units. It can be composed of a rear bearing installed between them.
  • a hole or groove for introducing a cable constituting the primary coil part from the outside to the inside of the motor shaft may be formed in a central part or an outer surface part of the core part.
  • a shielding member for magnetic shielding may be formed between the secondary coil unit and the motor shaft.
  • the shielding member may preferably be an aluminum film.
  • the core portion is made of a magnetic material and is configured in a round bar shape, and the core portion may be made of stainless steel.
  • the rectifier circuit applied to the non-contact rotary transformer according to one aspect of the present invention may be installed outside the motor shaft.
  • the rectifier circuit unit may be accommodated in a metal receptor coupled to one end of the outer surface of the motor shaft, where the metal receptor may be made of aluminum.
  • the rectifier circuit may be configured to be embedded in the inside (hollow part) of the motor shaft together with the core and coil parts.
  • two or more primary coil units may be included, and the secondary coil unit may be configured to correspond to each of the two or more primary coil units.
  • stator coupled to the inside of the motor housing
  • a rotor coupled to the motor shaft and generating rotational force for rotating the motor shaft by interaction with the stator
  • It provides a motor comprising a; non-contact rotary transformer according to the above-described aspect installed on the motor shaft of the hollow structure.
  • an electrical connection between an external power source and a rotor can be implemented with a wider air gap (interval between two coils) than a conventional non-contact transformer in which coils face each other, and structurally between coils The possibility of physical contact and subsequent damage is very low, so the durability of the motor can be greatly improved.
  • the same metal material as the housing of the motor and the motor shaft for example, stainless steel
  • the change (decrease) in the coupling coefficient which is a characteristic value representing the efficiency of the transformer, is not large.
  • the structure can use stainless steel as a core instead of ferrite, which is less durable, it is possible to increase the durability and reliability of the motor.
  • the size can be drastically reduced compared to conventional field winding type synchronous motors in which a rotary transformer is mounted outside the motor shaft. It can respond to the miniaturization demand of the market, it is easy to control by reducing the rotational inertia of the rotor, and it is possible to eliminate the complexity of additionally providing a balancing member to solve the mass imbalance in the direction of rotation of the rotor.
  • FIG. 1 is a cutaway perspective view of a conventional non-contact field winding type synchronous motor to which a technology for connecting a motor rotor with an external power source is applied in a non-contact manner.
  • FIG. 2 is an exploded perspective view of a transformer part which is a key in electrically connecting the rotor of the motor with an external power source in a non-contact manner in FIG.
  • FIG. 3 is a cutaway perspective view of a field winding type synchronous motor to which a non-contact rotary transformer according to an embodiment of the present invention is applied.
  • FIG. 4 is an enlarged view of a portion of a rotary transformer in FIG. 3;
  • FIG. 5 is an exploded view showing the main components of the rotary transformer shown in FIG. 4;
  • 6 and 7 are diagrams showing simulation results of a conventional non-contact rotary transformer having a structure in which two coils face each other in graphic form.
  • FIGS. 6 and 7 are tables summarizing simulation results of FIGS. 6 and 7;
  • 9 and 10 are diagrams showing simulation results in graphic form when stainless steel is used as a core instead of a ferrite core in a conventional non-contact rotary transformer having a structure in which two coils face each other.
  • FIGS. 9 and 10 are tables summarizing simulation results of FIGS. 9 and 10;
  • FIGS. 12 and 13 are diagrams showing simulation results of a rotary transformer having the same configuration as the embodiment of the present invention in which two coils are concentrically arranged inside the motor shaft in graphic form.
  • 15 and 16 are diagrams showing simulation results in graphic form when the core part is made of stainless steel instead of the ferrite core in the rotary transformer having the same configuration as the embodiment of the present invention in which two coils are concentrically arranged inside the motor shaft.
  • FIG. 17 is a table summarizing simulation results of FIGS. 15 and 16;
  • FIG. 18 is a cut-away perspective view showing another preferred embodiment of a non-contact rotary transformer according to the present invention.
  • FIG. 19 is a cutaway perspective view showing another preferred embodiment of a non-contact type rotary transformer according to the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another.
  • ...unit a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software.
  • FIG. 3 is a cut-away perspective view of a field winding type synchronous motor to which a non-contact rotary transformer is applied according to an embodiment of the present invention.
  • the overall configuration of the field winding type synchronous motor to which the non-contact rotary transformer according to an embodiment of the present invention is applied Let's take a simple look.
  • the non-contact field winding type synchronous motor 1 includes a motor housing 10 and a motor shaft 20 installed along the central portion of the motor housing 10 .
  • the motor shaft 20 is configured to be rotatable with respect to the motor housing 10 at the center of the motor housing 10 through a bearing, more specifically, a front bearing 21 and a rear bearing 23, and its outer peripheral surface
  • the rotor (Rotor, 22) is coupled to.
  • the rotor 22 may be composed of a field system made of electromagnets operated by DC voltage.
  • a stator 12 is installed inside the motor housing 10 to correspond to the rotor 22 .
  • the stator 12 may be composed of an armature made of an electromagnet operated by an AC voltage supplied from an inverter of an electric vehicle or an external power source.
  • the rotor 22 may be electrically connected without direct contact with an external power source through a rotary transformer 30 according to an embodiment of the present invention.
  • the rotary transformer 30 includes a rectifying circuit unit 38, and thus, power supplied from the outside is transformed to an appropriate level through the rotary transformer 30 according to an embodiment of the present invention and converted from alternating current to direct current so that the rotor It can be supplied with the field power of (22).
  • Part or all of the rotary transformer 30 according to the embodiment of the present invention may be built into the motor shaft 20.
  • the rest of the components except for the rectifier circuit unit 38 are embedded in the hollow motor shaft 20, or the rectifier circuit unit 38 is installed as in another embodiment of FIG. 18 to be described later. All components including may be installed inside the hollow motor shaft 20.
  • FIG. 4 is an enlarged perspective view of the main part of the rotary transformer in FIG. 3, showing the configuration of a rotary transformer according to an embodiment of the present invention in which the rest of the components except for the rectifier circuit are installed inside the motor shaft;
  • FIG. is an exploded view of the main components of the rotary transformer shown in FIG.
  • a rotary transformer 30 includes a core part 32 .
  • the core part 32 is disposed concentrically with the motor shaft 20 inside the hollow motor shaft 20, and has one or more internal bearings, preferably a distance from the inside of the motor shaft 20 as shown in FIG. It may be installed in a concentric structure inside the motor shaft 20 through two bearings (front bearing B1 and rear bearing B2) spaced apart from each other.
  • the core part 32 is made of a magnetic material and may be configured in the form of a round bar having a circular cross-section.
  • the core part 32 may be a round bar made of the same material as the motor housing 10 and the motor shaft 20, for example, stainless steel.
  • durability is increased while exhibiting motor characteristics similar to the case of using ferrite, which is less durable, so that reliability of the motor can be improved and costs can be reduced.
  • a primary coil unit 34 is formed on the outer circumferential surface of the core unit 32 .
  • the primary coil unit 34 may be formed by continuously winding a conductive cable along the outer surface of the core unit 32, and the power input terminal 345 of the conductive cable constituting the primary coil unit 34 is an electric vehicle. It can be connected to an inverter or an external power source.
  • the conductive cable may be, for example, a Litz wire, a flat angle wire, or an insulated wire.
  • the power input end 345 of the conductive cable constituting the primary coil part 34 passes through an opening at one end of the motor shaft 20 along the groove 33 formed in the longitudinal direction on the outer surface of the core part 32.
  • the motor shaft 20 is drawn from the outside to the inside of the motor shaft 20 or passes through a hole formed in the longitudinal direction at the center of the core part 32 (not shown) or a hole formed in the inner ring of the front bearing B1. It may extend from the outside to a position constituting the primary coil unit 34 .
  • a secondary coil unit 36 is installed on the inner main surface of the motor shaft 20 .
  • the secondary coil unit 36 may be formed of the same conductive cable as the cable constituting the primary coil unit 34 . More specifically, it can be formed by continuously winding a conductive cable in a coil form, and surrounds the primary coil part 34 installed on the outer circumferential surface of the core part 32 at a predetermined interval (air gap) It may be installed on the inner main surface of the motor shaft 20 so as to be.
  • the core part 32 may be installed concentrically inside the motor shaft 20 through one or more inner bearings B1 and B2. Therefore, the core part 32 and the primary coil part 34 installed therein are free from the rotation of the motor shaft 20, and the secondary coil surrounding the primary coil part 34 inside the motor shaft 20
  • the part 36 is installed on the inner main surface of the motor shaft 20 to perform a rotational movement synchronized with the motor shaft 20.
  • the interaction between the rotor 22 and the stator 12 generates a force (electromagnetic force) for rotating the motor shaft 20 in the rotor 22, even if the motor shaft 20 rotates.
  • the core part 32 and the ALC primary coil part 34 disposed concentrically inside the motor shaft 20 do not rotate, and only the secondary coil part 36 installed on the inner main surface of the motor shaft 20 It is a structure that performs rotational movement together with the motor shaft 20.
  • the inner bearing rotatably supporting the core part 32 inside the motor shaft 20 may preferably be composed of a front bearing B1 and a rear bearing B2 as shown in FIG. 4 .
  • the front bearing B1 may be installed between the motor shaft 20 and the core part 32 in front of the primary coil unit 34 and the secondary coil unit 36
  • the rear bearing B2 is the primary coil unit 34 and the secondary coil unit 36. It may be installed between the motor shaft 20 and the core part 32 behind the part 34 and the secondary coil part 36 .
  • a shielding member 37 made of a magnetic material may be installed between the secondary coil unit 36 and the motor shaft 20 .
  • the shielding member 37 is for isolating the primary coil unit 34 and the secondary coil unit 36 from an external magnetic field, and accommodates the entire secondary coil unit 36 surrounding the primary coil unit 34. In order to do so, it may be formed in a longer cylindrical shape than the secondary coil unit 36 . Preferably, it may be an aluminum cylinder longer than the secondary coil unit 36 .
  • a conductive cable constituting the secondary coil unit 36 may be electrically connected to the rectifier circuit unit 38 .
  • the rectifier circuit unit 38 may be installed outside the motor shaft 20.
  • the rectifier circuit unit 38 is coupled to the motor shaft 20 in a space formed between the front end surface of the rotor 22 and the front end plate (signal omitted) of the motor housing 10, so that the motor shaft 20 and It can be configured to make synchronized rotational motion.
  • the rectifying circuit unit 38 may include a substrate and a rectifying element mounted on the substrate, such as a diode, and may be accommodated in a metal receptor 28 coupled to one end of the outer surface of the motor shaft 20.
  • the substrate may be connected to a conductive cable (cable constituting the secondary coil part 36) drawn from the inside of the motor shaft 20 to the outside through a cable lead-out hole 205 formed in the motor shaft 20, and metal Receptacle 28 may be composed of aluminum.
  • An external power source for example, AC current supplied by an inverter of an electric vehicle is applied to the rotary transformer 30 through a power input terminal 345 of a conductive cable constituting the primary coil unit 34 .
  • Current flows in the primary coil unit 34 by the applied alternating current, and the secondary coil unit 36 spaced apart at a predetermined distance by the current flowing in the primary coil unit 34 uses the principle of electromagnetic induction. Secondary currents (transformed currents, alternating currents) are generated accordingly.
  • the secondary current generated in the secondary coil unit 36 is supplied to the rectification circuit unit 38 through the power output terminal 365 of the conductive cable constituting the secondary coil unit 36, and is rectified. After being converted from alternating current to direct current in the circuit part 38, it is supplied to the rotor 22 electrically connected to the output side of the rectifying circuit part 38. As a result, the rotor 22 is magnetized and the rotor 22 is synchronously rotated by the induced magnetic field of the stator 12 .
  • the power output terminal 365 of the conductive cable constituting the secondary coil unit 36 is passed from the inside of the motor shaft 20 to the outside through the cable lead-out hole 205 formed in the radial direction of the motor shaft 20. It is drawn out and can be electrically connected to the rectifier circuit 38 accommodated in the metal receptor 28 coupled to the outside of the motor side 20.
  • 6 to 7 show simulation results of a conventional non-contact rotary transformer having a structure in which two coils face each other.
  • the material of the coil was copper and the permeability of the ferrite core was 3300 as simulation variables.
  • 6(a) is the distance between the primary coil and the secondary coil of a conventional non-contact rotary transformer having a structure in which two coils face each other, that is, when the air gap is 1 mm, the density of the alternating current between the primary coil and the secondary coil indicates Considering that the frequency of the AC current of the electric vehicle inverter is 20 kHz, the analysis was performed as a 20 kHz AC current, and the results are summarized in a table in FIG. 8.
  • FIG. 6(b) shows the primary ferrite core excited in the primary coil and the secondary coil coil excited when the air gap, which is the distance between the primary coil and the secondary coil of a conventional non-contact rotary transformer, is 1 mm ( It represents the magnetic flux between the exciting secondary ferrite cores.
  • the frequency of the AC current of the electric vehicle inverter is 20 kHz
  • the analysis was performed as a 20 kHz AC current, and the results are summarized in FIG. 8 .
  • FIG. 7 (a) to (d) show the distribution of magnetic flux for each case where the air gap (the distance between the facing primary coil and the secondary coil) is 1 mm, 2 mm, 3 mm, and 4 mm in a conventional non-contact rotary transformer.
  • FIG. 8 is a table summarizing simulation calculation values for the graphic results shown in FIGS. 6 and 7 . That is, when the air gap moves from 1 mm to 4 mm, simulation results for each are shown.
  • the coupling coefficient of the rotary transformer decreases as the air gap increases.
  • the coupling coefficient is a characteristic value representing the efficiency of the transformer, and the coupling coefficient is closely related to the efficiency of the transformer. More specifically, the coupling factor is proportional to the transformer efficiency. Therefore, the efficiency of the transformer increases as the coupling coefficient increases. Since the principle is already well known, a detailed description thereof will be omitted.
  • the performance of a rotary transformer can be analyzed from the correlation between transformer efficiency and magnetic flux flow.
  • the magnetic flux between the primary ferrite core excited by the primary coil and the secondary ferrite core excited by the secondary coil forms a solid and small closed loop. This is because the primary coil, which is the primary side of the rotary transformer, and the secondary coil, which is the secondary side, are smoothly exchanged through the ferrite core.
  • a ferrite core is mainly used as a magnetic material for a primary coil and a secondary coil (magnetic material for magnetic shielding and magnetic flux concentration).
  • magnetic material for magnetic shielding and magnetic flux concentration.
  • FIGS. 9 and 10 show simulation results when the ferrite core is changed to a stainless steel core made of the same material as the motor housing and the hollow motor shaft in the conventional non-contact rotary transformer having a structure in which two coils face each other.
  • copper was used as the material of the coil and stainless steel core was used as the ferrite core as the simulation variable.
  • FIG. 9 (a) shows the distance between the primary coil and the secondary coil when the ferrite core is changed to a stainless steel core in a conventional non-contact rotary transformer having a structure in which two coils face each other, that is, when the air gap is 1 mm, the primary Indicates the density of the alternating current between the coil and the secondary coil.
  • the frequency of the AC current of the inverter for electric vehicles is 20 kHz
  • the analysis was performed as a 20 kHz AC current, and the results are summarized in a table in FIG. 11.
  • Figure 9 (b) shows the magnetic flux between the primary stainless steel core excited by the primary coil and the secondary stainless steel core excited by the secondary coil in the same structure as Figure 9 (a). (magnetic flux).
  • the frequency of the AC current of the electric vehicle inverter is 20 kHz
  • the analysis was performed as a 20 kHz AC current, and the results are summarized in FIG. 11.
  • 10(a) to (d) show the magnetic flux for each of the air gaps (the distance between the primary and secondary coils facing each other) in the configuration shown in FIG. 9 when changed to 1 mm, 2 mm, 3 mm, and 4 mm.
  • 11 is a table summarizing the simulation calculation values for the graphic results shown in FIGS. 9 to 10. That is, when the air gap moves from 1 mm to 4 mm, simulation results for each are shown.
  • FIGS. 12 and 13 show simulation results of a rotary transformer having the same configuration as the embodiment of the present invention in which two coils are concentrically arranged inside the motor shaft.
  • a ferrite core having a magnetic permeability of 3300 was applied as the primary core part, and copper was applied as the material of the coil.
  • FIG. 12(a) shows the separation distance between the primary coil unit and the secondary coil unit of the rotary transformer according to an embodiment of the present invention, that is, the AC current density of the primary coil unit and the secondary coil unit when the air gap is 1 mm.
  • the analysis was performed with 20 kHz AC power considering that the frequency of the AC power of the inverter for electric vehicles is 20 kHz, and the results are summarized in a table in FIG. 14 .
  • FIG. 12(b) shows the primary core part (ferrite) excited by the primary coil unit when the air gap, which is the distance between the primary coil unit and the secondary coil unit, is 1 mm as shown in FIG. 12 (a).
  • core and the secondary core (ferrite material as a shielding member) excited by the secondary coil.
  • the frequency of the AC current of the inverter for electric vehicles is 20 kHz
  • the analysis was performed with a 20 kHz AC current, and the results are shown in FIG. 14 .
  • FIG. 13 (a) to (d) show the air gap (distance between the primary coil unit and the secondary coil unit facing each other) of the primary coil unit and the secondary coil unit in the configuration shown in FIG. 12 (a).
  • FIG. 14 is a table summarizing the simulation calculation values for the graphic results shown in FIGS. 12 to 13.
  • the coupling coefficient of the rotary transformer decreases as the air gap increases, but unlike the previous simulation results (simulation results of a conventional rotary transformer in which two coils face each other with an air gap, see FIG. 8), It can be seen that the change (decrease) of the coupling coefficient is relatively insignificant. In other words, in the configuration of the present invention, it means that the rotary transformer can be configured in all air gaps.
  • 15 and 16 also show simulation results for a rotary transformer having the same configuration as the embodiment of the present invention in which two coils are concentrically arranged inside the motor shaft, but unlike the previous simulation, the primary core is replaced with stainless steel. It shows the results of the simulation.
  • 15(a) shows the separation distance between the primary coil unit and the secondary coil unit of the rotary transformer according to an embodiment of the present invention, that is, the AC current density of the primary coil unit and the secondary coil unit when the air gap is 1 mm.
  • the analysis was performed with a 20 kHz AC power supply considering that the frequency of the AC power supply of the electric vehicle inverter is 20 kHz, and the results are summarized in a table in FIG. 17 .
  • 15(b) shows the primary core part excited by the primary coil part (stainless steel) and the secondary core part (using a hollow motor shaft made of stainless steel as the secondary core part) excited by the secondary coil part.
  • FIGS. 15 to 16 show the air gap (distance between the facing primary coil unit and the secondary coil unit) of the primary coil unit and the secondary coil unit in the same configuration as that of FIG. 15 (a).
  • the magnetic flux distribution for each is shown
  • FIG. 17 is a table summarizing the simulation calculation values for the graphic results shown in FIGS. 15 to 16.
  • the coupling coefficient of the rotary transformer decreases as the air gap increases, but compared to the previous simulation results (simulation results in the case where the primary core part is composed of ferrite core and the secondary core part is composed of separate ferrite) It can be seen that the change (decrease) of the coupling coefficient is not large.
  • FIGS. 18 to 19 are cut-away perspective views respectively showing other preferred embodiments of the non-contact type rotary transformer according to the present invention.
  • FIG. 18 is a core part ( 32), the primary coil unit 34, the secondary coil unit 36 and the rectifier circuit unit 38 are also embedded in the hollow motor shaft 20, and
  • FIG. 19 is an embodiment in which the hollow motor shaft 20 ) This is an embodiment in which a plurality of coil groups are configured inside.
  • the conductive cable constituting the primary coil part 34 passes through the inside of the core part 32 so that the power input end 345 is 1
  • the secondary coil unit 34 is drawn in to the position where the secondary coil unit 36 is formed, and the power output terminal 365 of the secondary coil unit 36 passes through the outer ring of the rear bearing B2 and is electrically connected to the rectifier circuit unit 38 at the rear. It is better to organize it as much as possible.
  • the field winding type synchronous motor can be manufactured more robustly and compactly, and the outside of the motor shaft Since the rectifier circuit is much less affected by rotational inertia compared to the above-described embodiment in which the rectifier circuit is configured, the possibility of damage to parts is low and control of the rectifier circuit is easy.
  • the power supplied to the rotor per unit time can be doubled compared to a configuration with a single coil group, so it can be usefully used for high-spec field winding type synchronous motors that require high output.
  • an electrical connection between the external power source and the rotor can be implemented with a wider air gap (interval between the two coils), and structural As a result, the possibility of physical contact between coils and subsequent damage is very low, so the durability of the motor can be greatly improved.
  • the same metal material as the housing of the motor and the motor shaft for example, stainless steel
  • the change (decrease) in the coupling coefficient which is a characteristic value representing the efficiency of the transformer, is not large.
  • the structure can use stainless steel as a core instead of ferrite, which is less durable, it is possible to increase the durability and reliability of the motor.
  • the size can be drastically reduced compared to conventional field winding type synchronous motors in which a rotary transformer is mounted outside the motor shaft. It can respond to the miniaturization demand of the market, it is easy to control by reducing the rotational inertia of the rotor, and it is possible to eliminate the complexity of additionally providing a balancing member to solve the mass imbalance in the direction of rotation of the rotor.
  • motor 10 motor housing
  • stator 20 motor shaft
  • B1 front bearing
  • B2 rear bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

비접촉식 회전 변압기 및 이를 포함하는 모터가 개시된다. 본 발명에 따른 비접촉식 회전 변압기는 모터의 회전자를 비접촉 방식으로 외부 전원과 연결시키는 기기로서, 중공의 모터축 내부에 모터축과 동심 구조로 배치되는 코어부, 코어부의 외주면에 설치되는 1차 코일부, 모터축의 내측 주면에 설치되며 상기 1차 코일부를 일정 간격(에어 갭)을 두고 에워싸는 2차 코일부 및 모터축에 결합되어 동기화된 회전운동을 하며 2차 코일부와 전기적으로 연결되는 정류 회로부를 포함하는 것을 특징으로 한다.

Description

비접촉식 회전 변압기 및 이를 포함하는 모터
본 발명은 모터의 회전자에 전기를 공급하는 전기공급장치에 관한 것으로, 좀 더 구체적으로는 모터의 회전자를 비접촉 방식으로 외부 전원과 연결시켜 상기 회전자에 전기가 공급되도록 하는 비접촉식 회전 변압기 및 이를 포함하는 모터에 관한 것이다.
계자 권선형 동기모터(Wound Rotor Synchronous Motor)는 다른 모터와 비교하여 토크 및 전력밀도가 우수해 전기차에 주로 사용된다. 이러한 계자 권선형 동기모터는 일반적으로, 기구적으로 상호 접촉되는 슬립링과 브러시를 이용하여 외부 전원과 모터 내부의 회전자를 전기적으로 연결함으로써 전기를 공급하는 방식을 채택하고 있다.
그러나 슬립링과 브러시를 이용한 종래 접촉식 전기공급방식은, 모터가 구동되는 동안 모터축과 함께 회전하는 슬립링과 모터 하우징에 고정되는 브러시 사이의 지속적인 마찰로 브러시가 변형되거나 손상되는 문제가 있고, 이로 인해 슬립링과의 사이에 스파크가 발생해 화재로 이어질 염려도 있다. 또한 브러시의 마모로 다량의 분진이 발생하는 단점이 있다.
이러한 종래 기술의 문제점을 해결하고자 제안된 기술이 비접촉 방식으로 외부 전원과 회전자의 전기적인 연결을 구현한 기술이다. 이 기술은 대면하는 두 코일 중 한 코일에 전류를 흘리면 다른 한 코일에 전압이 유도되어 전류가 흐르는 현상(전가기 유도 현상)을 이용한 기술로서, 외부 전원과 회전자를 부품간 직접적인 연결 없이 전기적인 연결을 구현할 수 있다.
도 1은 비접촉 방식으로 모터의 회전자를 외부 전원과 연결시키는 기술이 적용된 종래 비접촉 계자 권선형 동기모터를 개략 도시한 절개 사시도이며, 도 2는 도 1에서 비접촉 방식으로 모터의 회전자를 외부 전원과 전기적으로 연결시킴에 있어 핵심이 되는 변압기의 분해 사시도이다.
도 1 및 도 2를 참조하면, 종래 계자 권선형 동기모터는, 모터 하우징(100) 및 모터 하우징(100)에 베어링을 매개로 회전 가능하게 지지되는 모터축(200)을 포함한다. 모터 하우징(100)의 내측에는 고정자(Stator, 120)가 결합되고, 모터축(200)에는 고정자(120)와 전자기적 상호 작용을 일으켜 모터축(200)을 회전시키기 위한 전자기력을 발생시키는 회전자(Rotor, 220)가 설치된다.
회전자(220)는 대면하는 두 개의 코일을 포함하는 변압기(300)를 통해 외부 전원과 직접적인 접촉 없이 전기적으로 연결되며, 변압기(300)와 회전자(220) 사이에는 정류기(400)가 설치됨으로써, 외부 전원에 의한 전류는 변압기(300)를 거쳐 적정 수준으로 변압되어 회전자(220)에 공급되는데, 중간에 정류기(Rectifier)에 의해 교류에서 직류로 변환되어 상기 회전자(220)에 공급된다.
변압기(300)는 모터 하우징(100)에 설치되는 고정자(300)측 1차 코일(310)과 모터축(200)에 결합되어 회전자(220)와 동기화 된 회전운동을 하는 회전자(220)측 2차 코일(320)을 포함한다.
여기서, 1차 코일(310)과 2차 코일(320)은 서로 소정의 간격(에어 갭)을 두고 마주보도록 배치되며, 모터 하우징(100)과 모터축(200)에 각각 고정되는 1차 페라이트 코어(312)와 2차 페라이트 코어(322)가 상기 1차 코일(310)과 2차 코일(320)을 각각 수용한다.
도 2에서 도면부호 314는 1차 페라이트 코어(312)를 덮는 1차 페라이트 케이스이며, 도면부호 324는 2차 페라이트 코어(322)를 덮는 2차 페라이트 케이스를 가리킨다.
그런데 이처럼 1차 코일과 2차 코일이 서로 마주하는 구조의 변압기는, 모터 구동 시 모터축과 함께 회전하는 상기 2차 코일 및 2차 페라이트 코어와 회전을 하지 않는 상기 1차 코일 및 1차 페라이트 코어 사이가 소정의 에어 갭(통상 1mm 이내)을 두고 단순히 이격된 구성이어서 회전 중에 서로 부딪혀 코어가 손상되거나 코일에 스크래치가 생기는 문제가 있다.
특히 자속 집중과 자기 차폐를 위한 1차 페라이트 코어 및 2차 페라이트 코어에 사용되는 페라이트 물질의 경우 특성상 깨지기 쉬워, 다른 산업용 모터와 달리 가혹한 진동 환경에 노출되기 쉬운 전기차에서는 차량 주행 시 발생하는 노면 충격 등에 의해 페라이트 코어가 파손될 우려가 더욱 높아 모터의 내구성과 신뢰성을 떨어뜨리는 문제가 있다.
더욱이 2차 코일과 2차 페라이트 코어가 모터축의 외부에 위치한 상태로 회전자와 함께 회전하기 때문에, 원심력에 의한 기계적인 스트레스를 강하게 받아 파손의 우려가 더욱 가중되는 문제가 있다.
또한, 두 개의 코일 마주하는 구조에서는 회전자에 대한 전력 공급량이 코일이 서로 마주하는 면적에 비례하므로 고출력 모터일수록 반경방향으로 더욱 확장된 코일을 사용해야 하는데, 이 경우 커진 코일 부피만큼 모터의 크기가 커져야 하기에 모터를 더욱 소형화하려는 근래의 추세에서 그러한 소형화 요구를 만족시키기 못하는 문제도 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국공개특허 제10-2018-0015450호(공개일 2018.02.13.)
본 발명이 해결하고자 하는 기술적 과제는, 코일이 서로 대면하는 구조의 종래 기술에 비해 보다 넒은 간격의 에어 갭(Air gap)으로 외부 전원과 회전자 사이의 전기적인 연결을 구현할 수 있는 비접촉식 회전 변압기 및 이를 포함하는 모터를 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 파손되기 쉬운 페라이트 대신 스테인리스 강철과 같이 내구성이 높은 재질을 변압기의 코어로 사용할 수 있어 내구성을 증대시킬 수 있는 비접촉식 회전 변압기 및 이를 포함하는 모터를 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 또 따른 기술적 과제는, 모터축의 외부에 장착되는 종래 회전 변압기에 비해 모터의 소형화에 유리한 비접촉식 회전 변압기 및 이를 포함하는 모터를 제공하고자 하는 것이다.
과제의 해결 수단으로서 본 발명의 일 측면에 따르면,
모터의 회전자를 비접촉 방식으로 외부 전원과 연결시키는 장치로서,
중공의 모터축 내부에 상기 모터축과 동심 구조로 배치되는 코어부;
상기 코어부의 외주면에 설치되는 1차 코일부;
상기 모터축의 내측 주면에 설치되며 상기 1차 코일부를 일정 간격(에어 갭)을 두고 에워싸는 2차 코일부; 및
상기 모터축에 결합되어 동기화된 회전운동을 하며 상기 2차 코일부와 전기적으로 연결되는 정류 회로부;를 포함하는 비접촉식 회전 변압기를 제공한다.
본 발명의 일 측면에 따른 비접촉식 회전 변압기에서, 상기 코어부는 하나 이상의 내부 베어링을 통해 모터축의 내부에 설치되어 상기 코어부 및 1차 코일부가 상기 모터축의 회전으로부터 자유롭고, 상기 모터축의 내측 주면에 설치되는 상기 2차 코일부는 상기 모터축과 동기화된 회전운동을 할 수 있다.
여기서, 상기 내부 베어링은 상기 1차 코일부 및 2차 코일부 전방의 모터축과 상기 코어부 사이에 설치되는 전방 베어링과, 상기 1차 코일부 및 2차 코일부 후방의 모터축과 상기 코어부 사이에 설치되는 후방 베어링으로 구성될 수 있다.
그리고 상기 코어부의 중심부 또는 외면부에는 상기 모터축의 외부에서 내부로 상기 1차 코일부를 구성하는 케이블 인입을 위한 홀 또는 홈이 형성될 수 있다.
또한, 상기 2차 코일부와 모터축 사이에는 자기차폐를 위한 차폐부재가 형성될 수 있다. 차폐부재는 바람직하게, 알루미늄 막일 수 있다..
또한, 상기 코어부는 자성체 재질이며 환봉 형태로 구성되되, 코어부는 스테인레스 강철로 구성될 수 있다.
바람직한 일례로서, 본 발명의 일 측면에 따른 비접촉식 회전 변압기에 적용되는 상기 정류 회로부는 모터축의 외부에 설치될 수 있다.
이 경우 상기 정류 회로부는 상기 모터축의 일단 외면부에 결합되는 금속 수용체에 수용될 수 있으며, 여기서 금속 수용체는 알루미늄으로 구성될 수 있다.
바람직한 다른 일례로서, 상기 정류 회로부는 상기 코어부 및 코일부들과 함께 모터축의 내부(중공부)에 매입되는 구성일 수 있다.
경우에 따라, 상기 1차 코일부가 둘 이상으로 구성되고, 상기 2차 코일부는 둘 이상의 상기 1차 코일부 각각에 하나씩 대응되도록 구성될 수 있다.
과제의 해결 수단으로서 본 발명의 다른 측면에 따르면,
모터 하우징;
상기 모터 하우징의 중심에 회전 가능하게 지지된 중공 구조의 모터축;
상기 모터 하우징의 내측에 결합되는 고정자;
상기 모터축에 결합되며, 상기 고정자와의 상호 작용으로 모터축을 회전시키기 위한 회전력을 발생시키는 회전자; 및
상기 중공 구조의 모터축에 설치되는 전술한 일 측면에 따른 비접촉식 회전 변압기;를 포함하는 모터를 제공한다.
본 발명의 실시 예에 의하면, 코일을 대면시킨 종래 비접촉식 변압기에 비해 보다 넓은 간격의 에어 갭(두 코일 사이의 간격)으로 외부 전원과 회전자 사이의 전기적인 연결을 구현할 수 있으며, 구조적으로 코일 간 물리적인 접촉 및 그에 따른 손상이 발생할 가능성이 매우 낮아 모터의 내구성을 크게 향상시킬 수 있다.
또한, 구조적으로 파손되기 쉬운 페라이트 대신 모터의 하우징 및 모터축과 동일한 금속재질, 예를 들어 스테인리스 강철을 코어로 사용해도 변압기의 효율을 나타내는 특성치인 결합계수의 변화(감소량)가 크지 않다. 다시 말해 내구성이 떨어지는 페라이트 대신 스테인리스 강철을 코어로 사용할 수 있는 구조이기 때문에 모터의 내구성 증대와 신뢰도 향상을 도모할 수 있다.
더욱이, 스테인리스 강철의 경우 페라이트에 비해 상대적으로 저렴하기 때문에 비용을 절감시킬 수 있으며, 따라서 모터를 보다 경제적인 비용으로 구현할 수 있어 가격 경쟁력을 높일 수 있다.
또한, 본 발명은 회전 변압기의 구성요소 대부분 또는 전부가 중공의 모터축 내부에 설치됨에 따라, 모터축의 외부에 회전 변압기를 장착한 종래 계자 권선형 동기모터에 비해 그 크기를 획기적으로 줄일 수 있는 등 시장의 소형화 요구에 부응할 수 있으며, 회전자의 회전 관성 감소로 제어도 용이하고, 회전자의 회전방향의 질량 불균형을 해소하기 위해 밸런싱 부재를 추가로 구비해야 하는 복잡함을 제거할 수 있다.
도 1은 비접촉 방식으로 모터의 회전자를 외부 전원과 연결시키는 기술이 적용된 종래 비접촉 계자 권선형 동기모터의 절개 사시도.
도 2는 도 1에서 비접촉 방식으로 모터의 회전자를 외부 전원과 전기적으로 연결시킴에 있어 핵심이 되는 변압기 부분의 분해 사시도.
도 3은 본 발명의 실시 예에 따른 비접촉식 회전 변압기가 적용된 계자 권선형 동기모터의 절개 사시도.
도 4는 도 3에서 회전 변압기 부분을 확대 도시한 도면.
도 5는 도 4에 도시된 회전 변압기의 주요 구성을 분해 도시한 도면.
도 6 및 도 7은 두 개의 코일이 대면하는 구조의 종래 비접촉식 회전 변압기에 대한 시뮬레이션 결과를 그래픽 형태로 나타낸 도면.
도 8은 도 6 및 도 7의 시뮬레이션 결과를 정리한 표.
도 9와 도 10은 두 개의 코일이 대면하는 구조의 종래 비접촉식 회전 변압기에서 페라이트 코어 대신 스테인리스 강철을 코어로 사용하는 경우 시뮬레이션 결과를 그래픽 형태로 나타낸 도면.
도 11은 도 9 및 도 10의 시뮬레이션 결과를 정리한 표.
도 12 및 도 13은 두 개의 코일이 모터축 내부에 동심 배치된 본 발명의 실시 예와 같은 구성의 회전 변압기에 대한 시뮬레이션 결과를 그래픽 형태로 나타낸 도면.
도 14는 도 12 및 도 13의 시뮬레이션 결과를 정리한 표.
도 15 및 도 16은 두 개의 코일이 모터축 내부에 동심 배치된 본 발명의 실시 예와 같은 구성의 회전 변압기에서 페라이드 코어 대신 스테인레스 강철로 코어부를 구성한 경우 시뮬레이션 결과를 그래픽 형태로 나타낸 도면.
도 17은 도 15 및 도 16의 시뮬레이션 결과를 정리한 표.
도 18은 본 발명에 따른 비접촉식 회전 변압기의 바람직한 다른 실시 예를 도시한 절개 사시도.
도 19는 본 발명에 따른 비접촉식 회전 변압기의 바람직한 또 다른 실시 예를 도시한 절개 사시도.
이하, 본 발명의 바람직한 실시 예를 첨부도면을 참조하여 상세히 설명하기로 한다.
본 발명을 설명함에 있어서 이하 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
또한, 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
더하여, 명세서에 기재된 "…부", "…유닛", "…모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
첨부 도면을 참조하여 설명함에 있어, 동일한 구성 요소에 대해서는 동일도면 참조부호를 부여하기로 하며 이에 대한 중복되는 설명은 생략하기로 한다. 그리고 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
도 3은 본 발명의 실시 예에 따른 비접촉식 회전 변압기가 적용된 계자 권선형 동기모터의 절개 사시도로서, 이를 참조하여 본 발명의 실시 예에 따른 상기 비접촉식 회전 변압기가 적용된 계자 권선형 동기모터의 전체적인 구성부터 간단하게 살펴보기로 한다.
도 3을 참조하면, 본 발명에 따른 비접촉 계자 권선형 동기모터(1)는, 모터 하우징(10)과 상기 모터 하우징(10)의 중심부를 따라 설치되는 모터축(20)을 포함한다. 모터축(20)은 베어링, 좀 더 구체적으로는 전면 베어링(21)과 후면 베어링(23)을 통해 모터 하우징(10)의 중심에 상기 모터 하우징(10)에 대해 회전 자유롭게 구성되고, 그 외측 주면에는 회전자(Rotor, 22)가 결합된다.
회전자(22)는 직류전압에 의해 작동되는 전자석으로 이루어진 계자(Field system)로 구성될 수 있다. 그리고 모터 하우징(10)의 내측에는 상기 회전자(22)에 대응하여 고정자(Stator, 12)가 설치된다. 고정자(12)는 전기차의 인버터 내지 외부 전원으로부터 공급되는 교류전압에 의해 작동되는 전자석으로 이루어진 전기자(Armature)로 구성될 수 있다.
제어기의 통제로 고정자(12)와 회전자(22)에 교류전압과 직류전압이 각각 인가된 때 둘 사이의 전자기적인 상호 작용으로 회전자(22)에 상기 모터축(20)을 회전시키는 힘(전자기력)이 발생되며, 이러한 힘에 의해 모터축(20)이 회전을 함으로써 회전동력을 출력하게 된다. 고정자(12)와 회전자(22)의 상호 작용에 따른 힘의 발생 원리는 이미 공지된 개념이므로 자세한 설명은 생략한다.
회전자(22)는 본 발명의 실시 예에 따른 회전 변압기(Rotary Transformer, 30)를 통해 외부 전원과 직접적인 접촉 없이 전기적으로 연결될 수 있다. 회전 변압기(30)에는 정류 회로부(38)가 포함되며, 따라서 외부에서 공급된 전원은 본 발명의 실시 예에 따른 회전 변압기(30)를 거쳐 적정 수준으로 변압되고 교류에서 직류로 변환되어 상기 회전자(22)의 계자 전원으로 공급될 수 있다.
본 발명의 실시 예에 따른 회전 변압기(30)는 그 일부 또는 전부가 모터축(20)에 내장될 수 있다. 예를 들어, 도 3의 일 실시 예와 같이 정류 회로부(38)를 제외한 나머지 구성이 중공의 모터축(20)에 내장되거나, 후술하게 될 도 18의 다른 실시 예와 같이 정류 회로부(38)를 포함한 모든 구성이 중공의 모터축(20) 내부에 설치될 수 있다.
도 4는 도 3에서 회전 변압기 부분을 확대 도시한 요부 확대 사시도로서, 정류 회로부를 제외한 나머지 구성이 모터축의 내부에 설치된 본 발명의 일 실시 예에 따른 회전 변압기의 구성을 도시한 도면이며, 도 5는 도 4에 도시된 회전 변압기의 주요 구성을 분해 도시한 도면이다.
도 4 및 도 5를 참조하면, 본 발명의 일 실시 예에 따른 회전 변압기(30)는 코어부(32)를 포함한다. 코어부(32)는 중공의 모터축(20) 내부에 상기 모터축(20)과 동심 구조로 배치되는데, 하나 이상의 내부 베어링, 바람직하게는 도 2와 같이 모터축(20)의 내부에서 거리를 두고 이격되는 두 개의 베어링(전방 베어링(B1)과 후방 베어링(B2))을 통해 모터축(20)의 내부에 동심 구조로 설치될 수 있다.
코어부(32)는 자성체 재질이며 단면 모양이 원형인 환봉 형태로 구성될 수 있다. 코어부(32)는 모터 하우징(10) 및 모터축(20)과 동일한 재질, 예를 들어 스테인레스 강철로 이루어진 환봉일 수 있다. 코어부(32)를 스테인레스 강철로 구성하면, 내구성이 떨어지는 페라이트를 사용할 때와 비슷한 모터 특성을 발휘하면서도 내구성이 증대되므로, 모터 신뢰도 향상과 더불어 비용을 절감시킬 수 있다.
코어부(32)의 외주면에는 1차 코일부(34)가 구성된다. 1차 코일부(34)는 도전성 케이블을 코어부(32)의 외면부를 따라 연속해서 권선시킴으로써 형성될 수 있으며, 1차 코일부(34)를 구성하는 상기 도전성 케이블의 전원 입력단(345)이 전기차의 인버터 내지 외부 전원과 연결될 수 있다. 여기서 도전성 케이블은 예컨대, 리츠(Litz)선, 평동각선, 절연선일 수 있다.
1차 코일부(34)를 구성하는 도전성 케이블의 전원 입력단(345)은 코어부(32)의 외면부에 그 길이 방향으로 형성되는 홈(33)을 따라 모터축(20)의 일단 개구를 통해 모터축(20) 외부에서 내부로 인입되거나, 도시하지는 않았으나 코어부(32)의 중심부에 그 길이 방향으로 형성되는 홀이나 전방 베어링(B1)의 내륜에 형성되는 홀을 통과하여 모터축(20)의 외부에서 1차 코일부(34)를 구성하는 위치까지 연장될 수 있다.
모터축(20)의 내측 주면에는 2차 코일부(36)가 설치된다. 2차 코일부(36)는 1차 코일부(34)를 구성하는 케이블과 동일한 도전성 케이블로 구성될 수 있다. 좀 더 구체적으로는, 도전성 케이블을 코일형태로 연속해서 권선시킴으로써 형성될 수 있으며, 코어부(32) 외주면에 설치되는 상기 1차 코일부(34)를 소정의 간격(에어 갭)을 두고 에워싸도록 모터축(20)의 내측 주면에 설치될 수 있다.
코어부(32)는 앞서 언급한 바와 같이 하나 이상의 내부 베어링(B1, B2)을 통해 모터축(20)의 내부에 동심 구조로 설치될 수 있다. 따라서 코어부(32) 및 여기에 설치되는 1차 코일부(34)는 상기 모터축(20)의 회전으로부터 자유로우며, 모터축(20) 내부에서 1차 코일부(34)를 에워싸는 2차 코일부(36)는 모터축(20)의 내측 주면에 설치됨으로써 상기 모터축(20)와 동기화된 회전운동을 하게 된다.
즉 전원 인가 시 상기 회전자(22)와 고정자(12)의 상호작용으로 회전자(22)에 상기 모터축(20)을 회전시키는 힘(전자기력)이 발생하여 모터축(20)이 회전을 하더라도, 모터축(20) 내부에 동심 배치된 상기 코어부(32) ALC 1차 코일부(34)는 회전을 하지 않으며, 모터축(20) 내측 주면에 설치되는 상기 2차 코일부(36)만 모터축(20)과 함께 회전운동을 하는 구조인 것이다.
코어부(32)를 모터축(20)의 내부에 회전 가능하게 지지하는 내부 베어링은 바람직하게, 도 4에 도시된 바와 같이 전방 베어링(B1)과 후방 베어링(B2)으로 구성될 수 있다. 전방 베어링(B1)은 1차 코일부(34) 및 2차 코일부(36) 전방의 모터축(20)과 코어부(32) 사이에 설치될 수 있으며, 후방 베어링(B2)은 1차 코일부(34) 및 2차 코일부(36) 후방의 모터축(20)과 상기 코어부(32) 사이에 설치될 수 있다.
2차 코일부(36)와 모터축(20) 사이에는 자성체로 이루어진 차폐부재(37)가 설치될 수 있다. 차폐부재(37)는 외부 자기장으로부터 1차 코일부(34)와 2차 코일부(36)를 격리시키기 위한 것으로, 1차 코일부(34)를 에워싸는 상기 2차 코일부(36) 전체를 수용할 수 있도록, 2차 코일부(36)보다 긴 원통 모양으로 형성될 수 있다. 바람직하게는, 2차 코일부(36)보다 긴 알루미늄 원통일 수 있다.
2차 코일부(36)를 구성하는 도전성 케이블은 정류 회로부(38)와 전기적으로 연결될 수 있다. 본 발명의 일 실시 예에서 정류 회로부(38)는 모터축(20)의 외부에 설치될 수 있다. 이 경우 정류 회로부(38)는 회전자(22)의 전단면과 모터 하우징(10)의 전방 엔드 플레이트(부호 생략) 사이로 형성되는 공간에서 상기 모터축(20)에 결합되어 모터축(20)과 동기화된 회전운동을 하도록 구성될 수 있다.
정류 회로부(38)는 기판 및 기판에 실장되는 정류소자, 예컨대 다이오드를 포함하는 구성일 수 있으며, 모터축(20)의 일단 외면부에 결합되는 금속 수용체(28)에 수용될 수 있다. 기판은 모터축(20)에 형성되는 케이블 인출구멍(205)을 통해 모터축(20) 내부에서 외부로 인출되는 도전성 케이블(2차 코일부(36)를 구성하는 케이블)과 연결될 수 있으며, 금속 수용체(28)는 알루미늄으로 구성될 수 있다.
이처럼 구성된 본 발명의 일 실시 예에 따른 회전 변압기(30)를 통해 외부 전원이 회전자(22)의 계자 전원으로 공급되는 과정에 대해 간단히 살펴보기로 한다.
외부 전원, 예컨대 전기차의 인버터가 공급하는 교류 전류는 1차 코일부(34)를 구성하는 도전성 케이블의 전원 입력단(345)을 통해 회전 변압기(30)로 인가된다. 인가된 교류 전류에 의해 1차 코일부(34)에 전류가 흐르게 되고, 1차 코일부(34)에 흐르는 전류에 의해 소정의 거리를 두고 이격된 2차 코일부(36)에는 전자기 유도 원리에 따라 2차 전류(변압 전류, 교류 전류)가 발생된다.
전자기 유도 원리에 따라 상기 2차 코일부(36)에서 발생된 2차 전류는 2차 코일부(36)를 구성하는 도전성 케이블의 전원 출력단(365)을 통해 정류 회로부(38)에 제공되며, 정류 회로부(38)에서 교류에서 직류로 변환된 뒤 정류 회로부(38)의 출력측과 전기적으로 연결된 회전자(22)에 공급된다. 그 결과 회전자(22)가 자화되고 고정자(12)의 유도 자기장에 의해 회전자(22)는 동기 회전을 하게 된다.
여기서, 2차 코일부(36)를 구성하는 도전성 케이블의 전원 출력단(365)은 모터축(20)에 반경방향으로 형성되는 케이블 인출구멍(205)을 통해 모터축(20)의 내부에서 외부로 인출되어, 모터측(20)의 외측에 결합되는 금속 수용체(28)에 수용되는 상기 정류 회로부(38)에 전기적으로 연결될 수 있다.
도 6 내지 도 7은 두 개의 코일이 대면하는 구조의 종래 비접촉식 회전 변압기의 시뮬레이션 결과를 나타낸다. 여기서 시뮬레이션 변수로 코일의 재질은 동(copper), 페라이트 코어의 투자율은 3300을 적용하였다.
도 6의 (a)는 두 개의 코일이 대면하는 구조의 종래 비접촉식 회전 변압기의 1차 코일과 2차 코일 사이의 거리, 즉 에어 갭이 1mm인 경우 1차 코일과 2차 코일의 교류 전류의 밀도를 나타낸다. 전기차용 인버터의 교류 전류의 주파수가 20kHz인 점을 고려하여 20 kHz 교류 전류로 해석을 하였고 그 결과를 도 8에 표로 정리하였다.
도 6의 (b)는 종래 비접촉식 회전 변압기의 1차 코일과 2차 코일의 거리인 에어 갭이 1mm인 경우, 1차 코일에 여기(exciting)된 1차 페라이트 코어와 2차 코일 코일에 여기(exciting)된 2차 페라이트 코어 사이의 마그네틱 플럭스(magnetic flux)를 나타낸다. 여기서도 전기차용 인버터의 교류 전류의 주파수가 20kHz인 점을 고려하여 20 kHz 교류 전류로 해석을 하였고 그 결과를 도 8에 정리하였다.
도 7의 (a) 내지 (d)는 종래 비접촉식 회전 변압기에서 에어 갭(마주하는 1차 코일과 2차 코일 사이의 거리)이 1mm, 2mm, 3mm, 4mm인 경우 각각에 대한 마그네틱 플럭스의 분포를 나타내며, 도 8은 도 6 내지 도 7에서 표시한 그래픽 결과에 대한 시뮬레이션 계산치를 정리한 표이다. 즉 에어 갭이 1mm에서 4mm까지 이동했을 때 각각에 대한 시뮬레이션 결과를 나타낸다.
도 8을 보면, 에어 갭이 증가할수록 회전 변압기의 결합계수가 감소하는 것을 알 수 있다. 결합 계수는 변압기의 효율을 나타내는 특성치로서, 결합계수는 변압기 효율과 밀접한 관련이 있다. 좀 더 구체적으로, 결합계수는 변압기 효율과 비례관계에 있다. 따라서 결합계수가 클수록 변압기의 효율이 증가하게 되는데, 그 원리는 이미 잘 알려졌으므로 자세한 설명은 생략한다.
변압기 효율과 마그네틱 플럭스의 흐름의 상관관계로부터는 회전 변압기의 성능을 분석할 수 있다.
도 7의 (a)에서처럼 1차 코일에 여기(exciting)된 1차 페라이트 코어와 2차 코일에 여기(exciting)된 2차 페라이트 코어 사이의 마그네틱 플럭스(magnetic flux)는 견고하고 작은 폐루프를 형성하는데, 이는 회전 변압기의 1차측(Primary)인 1차 코일과 2차측(Secondary)인 2차 코일이 페라이트 코어를 통해 에너지 교환이 원활히 이루어지기 때문이다.
결론적으로, 두 개의 코일이 대면하는 구조의 종래 비접촉식 회전 변압기에서는 1차 코일과 2차 코일 사이의 거리, 즉 에어 갭이 증가할수록 변압기 효율은 감소한다는 것을 시뮬레이션 결과를 통해 알 수 있다.
한편, 두 개의 코일이 대면하는 구조의 종래 비접촉식 회전 변압기에서는 1차 코일과 2차 코일용 자성체(자기 차폐 및 자속 집중을 위한 자성체)로서 페라이트 코어를 주로 사용하고 있다. 특성이 이미 검증되었고 대안 책이 없어 통상 사용되는 재질이지만, 고속회전 시 에어 갭에 의한 파손의 우려를 감내하면서 사용하고 있는 실정이다.
도 9와 도 10은 두 개의 코일이 대면하는 구조의 종래 비접촉식 회전 변압기에서 페라이트 코어를 모터 하우징과 중공 모터축과 동일한 재질인 스테인리스 강철 코어로 변경했을 때 시뮬레이션 결과를 나타낸다. 여기서 시뮬레이션 변수로 코일의 재질은 동(copper), 페라이트 코어는 스테인리스 강철 코어를 사용하였다.
도 9의 (a)는 두 개의 코일이 대면하는 구조의 종래 비접촉식 회전 변압기에서 페라이트 코어를 스테인리스 강철 코어로 변경했을 때 1차 코일과 2차 코일 사이의 거리, 즉 에어 갭이 1mm인 경우 1차 코일과 2차 코일의 교류 전류의 밀도를 나타낸다. 전기차용 인버터의 교류 전류의 주파수가 20kHz인 점을 고려하여 20 kHz 교류 전류로 해석을 하였고 그 결과를 도 11에 표로 정리하였다.
도 9의 (b)는 도 9의 (a)와 동일한 구조에서 1차 코일에 여기(exciting)된 1차 스테인레스 강철 코어와 2차 코일에 여기(exciting)된 2차 스테인레스 강철 코어 사이의 마그네틱 플럭스(magnetic flux)를 나타낸다. 여기서도 전기차용 인버터의 교류 전류의 주파수가 20kHz인 점을 고려하여 20 kHz 교류 전류로 해석을 하였고 그 결과를 도 11에 정리하였다.
도 10의 (a) 내지 (d)는 도 9와 같은 구성에서 에어 갭(마주하는 1차 코일과 2차 코일 사이의 거리)만 1mm, 2mm, 3mm, 4mm로 변경했을 때 각각에 대한 마그네틱 플럭스의 분포를 나타내며, 도 11은 도 9 내지 도 10에서 표시한 그래픽 결과에 대한 시뮬레이션 계산치를 정리한 표이다. 즉 에어 갭이 1mm에서 4mm까지 이동했을 때 각각에 대한 시뮬레이션 결과치를 나타낸다.
도 11을 보면, 모든 에어 갭(1mm ~ 4mm)에서 마그네틱 에너지가 전달이 안되고 있음을 결합계수의 수치를 통해 확인할 수 있다. 이는 다시 말해 종래 비접촉식 회전 변압기 구조, 즉 두 개의 코일이 대면하는 구조에서는 코일을 수용하는 페라이트 코어를 파손의 우려가 적은 스테인리스 강철 코어로 대체하는 것이 불가능함을 의미한다.
도 12 및 도 13은 두 개의 코일이 모터축 내부에 동심 배치된 본 발명의 실시 예와 같은 구성의 회전 변압기에 대한 시뮬레이션 결과를 나타낸다. 여기서 1차 코어부로서 투자율이 3300인 페라이트 코어를 적용하였고, 코일의 재질은 동(copper)을 적용하였다.
도 12의 (a)는 본 발명의 실시 예에 따른 회전 변압기의 1차 코일부와 2차 코일부의 이격 거리, 즉 에어 갭이 1mm인 경우 1차 코일부와 2차 코일부의 교류 전류 밀도를 나타내는 시뮬레이션 결과로서, 전기차용 인버터의 교류전원의 주파수가 20 kHz인 점을 고려하여 20 kHz 교류전원으로 해석을 하였고, 그 결과를 도 14에 표로 정리하였다.
도 12의 (b)는 도 12의 (a)와 같이 1차 코일부와 2차 코일부의 거리인 에어 갭이 1mm인 경우, 1차 코일부에 여기(exciting)된 1차 코어부(페라이트 코어)와 2차 코일에 여기(exciting)된 2차 코어부(차폐부재로서 페라이트 재질) 사이의 마그네틱 플럭스를 나타낸다. 여기서도 전기차용 인버터의 교류 전류의 주파수가 20kHz인 점을 고려하여 20 kHz 교류 전류로 해석을 하였고 그 결과는 도 14와 같다.
도 13의 (a) 내지 (d)는 도 12의 (a)와 같은 구성에서 1차 코일부와 2차 코일부의 에어 갭(마주하는 1차 코일부와 2차 코일부 사이의 거리)이 1mm, 2mm, 3mm, 4mm인 경우 각각에 대한 마그네틱 플럭스의 분포를 나타내며, 도 14는 도 12 내지 도 13에서 표시한 그래픽 결과에 대한 시뮬레이션 계산치를 정리한 표이다.
도 14를 보면, 에어 갭이 증가할수록 회전 변압기의 결합계수는 감소하지만, 앞선 시뮬레이션 결과(두 개의 코일이 에어 갭을 두고 마주하는 구조의 종래 회전 변압기에 대한 시뮬레이션 결과, 도 8 참조)와는 달리, 결합계수의 변화(감소량)가 상대적으로 크지 않은 것을 알 수 있다. 이는 다시 말해 본 발명과 같은 구성에서는 모든 에어 갭에서 회전 변압기를 구성할 수 있음을 의미한다.
도 15 및 도 16도 두 개의 코일이 모터축 내부에 동심 배치된 본 발명의 실시 예와 같은 구성의 회전 변압기에 대한 시뮬레이션 결과를 나타낸 것이나, 앞선 시뮬레이션과는 달리 1차 코어부를 스테인레스 강철로 대체했을 때의 시뮬레이션 결과를 나타낸 것이다.
도 15의 (a)는 본 발명의 실시 예에 따른 회전 변압기의 1차 코일부와 2차 코일부의 이격 거리, 즉 에어 갭이 1mm인 경우 1차 코일부와 2차 코일부의 교류 전류 밀도를 나타내는 시뮬레이션 결과로서, 전기차용 인버터의 교류전원의 주파수가 20 kHz인 점을 고려하여 20 kHz 교류전원으로 해석을 하였고, 그 결과를 도 17에 표로 정리하였다.
도 15의 (b)는 도 15의 (a)와 같이 1차 코일부와 2차 코일부의 거리인 에어 갭이 1mm인 경우, 1차 코일부에 여기(exciting)된 1차 코어부(스테인레스 강철)와 2차 코일부에 여기(exciting)된 2차 코어부(스테인레스 강철로 이루어진 중공의 모터축을 2차 코어부로 활용) 사이의 마그네틱 플럭스를 나타낸다.
여기서도 전기차용 인버터의 교류 전류의 주파수가 20kHz인 점을 고려하여 20 kHz 교류 전류로 해석을 하였고 그 결과는 도 17과 같다.
도 16의 (a) 내지 (d)는 도 15의 (a)와 같은 구성에서 1차 코일부와 2차 코일부의 에어 갭(마주하는 1차 코일부와 2차 코일부 사이의 거리)이 1mm, 2mm, 3mm, 4mm인 경우 각각에 대한 마그네틱 플럭스의 분포를 나타내며, 도 17은 도 15 내지 도 16에서 표시한 그래픽 결과에 대한 시뮬레이션 계산치를 정리한 표이다.
도 17을 보면, 에어 갭이 증가할수록 회전 변압기의 결합계수는 마찬가지로 감소하지만, 앞선 시뮬레이션 결과(1차 코어부를 페라이트 코어로 구성하고 2차 코어부를 별도의 페라이트로 구성한 경우의 시뮬레이션 결과)와 비교해도 결합계수의 변화(감소량)가 크지 않은 것을 알 수 있다.
이는 다시 말해 종래 코일이 대면하는 구성과는 달리 본 발명처럼 두 개의 코일(1차 코일부와 2차 코일부)이 동심 배치되는 구조에서는, 1차 코어와 2차 코어를 스테인리스 강철로 구성해도 결합계수의 변화(감소량)가 크지 않기 때문에 스테인리스 강철 코어로 회전 변압기를 구성해도 무방하다는 것을 명확하게 확인시켜주는 결과라 할 수 있다.
한편, 도 18 내지 도 19는 본 발명에 따른 비접촉식 회전 변압기의 바람직한 다른 실시 예들을 각각 도시한 절개 사시도로서, 도 18은 정류 회로부만 모터축 외측에 구성한 앞선 일 실시 예와는 달리, 코어부(32), 1차 코일부(34), 2차 코일부(36)와 함께 정류 회로부(38)도 중공의 모터축(20) 내부에 매립시킨 실시 예이며, 도 19는 중공의 모터축(20) 내부에 코일군을 복수로 구성한 실시 예이다.
도 18과 같은 실시 예에서는 코어부(32)를 중공관 형태로 구성함으로써, 1차 코일부(34)를 구성하는 도전성 케이블이 전원 입력단(345)이 코어부(32)의 내부를 경유하여 1차 코일부(34)가 형성되는 위치까지 인입되도록 하고, 2차 코일부(36)의 전원 출력단(365)은 후방 베어링(B2)의 외륜을 통과하여 후방의 정류 회로부(38)와 전기적으로 연결되도록 구성하는 것이 좋다.
이러한 도 18과 같은 다른 실시 예는, 중공의 모터축 내부에 코일부와 정류기를 구성하는 정류 회로부가 함께 내장됨에 따라, 계자 권선형 동기모터를 더욱 견고하면서도 소형으로 제조할 수 있고, 모터축 외측에 정류 회로부를 구성한 전술한 일 실시 예에 비해 정류 회로부가 회전 관성의 영향을 훨씬 덜 받기 때문에 부품의 손상 가능성이 낮고 정류 회로부 대한 제어도 용이하다.
그리고 도 19와 같이 코어부 하나에 코일군을 복수로 구성하면, 다시 말해 1차 코일부(34)를 둘 이상으로 구성하고, 2차 코일부(36)를 둘 이상의 상기 1차 코일부(34) 각각에 하나씩 대응되도록 구성하면, 단위 시간당 회전자에 공급되는 전력을 코일군이 단수인 구성에 비해 배로 증가시킬 수 있어서 고출력을 필요로 하는 고사양 계자 권선형 동기모터에 유용하게 활용될 수 있다.
이상에서 살펴본 본 발명의 실시 예에 의하면, 코일을 대면시킨 종래 비접촉식 변압기에 비해 보다 넓은 간격의 에어 갭(두 코일 사이의 간격)으로 외부 전원과 회전자 사이의 전기적인 연결을 구현할 수 있으며, 구조적으로 코일 간 물리적인 접촉 및 그에 따른 손상이 발생할 가능성이 매우 낮아 모터의 내구성을 크게 향상시킬 수 있다.
또한, 구조적으로 파손되기 쉬운 페라이트 대신 모터의 하우징 및 모터축과 동일한 금속재질, 예를 들어 스테인리스 강철을 코어로 사용해도 변압기의 효율을 나타내는 특성치인 결합계수의 변화(감소량)가 크지 않다. 다시 말해 내구성이 떨어지는 페라이트 대신 스테인리스 강철을 코어로 사용할 수 있는 구조이기 때문에 모터의 내구성 증대와 신뢰도 향상을 도모할 수 있다.
더욱이, 스테인리스 강철의 경우 페라이트에 비해 상대적으로 저렴하기 때문에 비용을 절감시킬 수 있으며, 따라서 모터를 보다 경제적인 비용으로 구현할 수 있어 가격 경쟁력을 높일 수 있다.
또한, 본 발명은 회전 변압기의 구성요소 대부분 또는 전부가 중공의 모터축 내부에 설치됨에 따라, 모터축의 외부에 회전 변압기를 장착한 종래 계자 권선형 동기모터에 비해 그 크기를 획기적으로 줄일 수 있는 등 시장의 소형화 요구에 부응할 수 있으며, 회전자의 회전 관성 감소로 제어도 용이하고, 회전자의 회전방향의 질량 불균형을 해소하기 위해 밸런싱 부재를 추가로 구비해야 하는 복잡함을 제거할 수 있다.
이상의 본 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.
[부호의 설명]
1 : 모터 10 : 모터 하우징
12 : 고정자 20 : 모터축
21 : 전면 베어링 22 : 회전자
23 : 후면 베어링 28 : 금속 수용체
30 : 회전 변압기 32 : 코어부
33 : 홈(전원 입력단이 지나가는 홈)
34 : 1차 코일부 36 : 2차 코일부
37 : 차폐부재 38 : 정류 회로부
345 : 전원 입력단 365 : 전원 출력단
B1 : 전방 베어링 B2 : 후방 베어링

Claims (12)

  1. 모터의 회전자를 비접촉 방식으로 외부 전원과 연결시키는 기기로서,
    중공의 모터축 내부에 상기 모터축과 동심 구조로 배치되는 코어부;
    상기 코어부의 외주면에 설치되는 1차 코일부;
    상기 모터축의 내측 주면에 설치되며 상기 1차 코일부를 일정 간격(에어 갭)을 두고 에워싸는 2차 코일부; 및
    상기 모터축에 결합되어 동기화된 회전운동을 하며 상기 2차 코일부와 전기적으로 연결되는 정류 회로부;를 포함하는 비접촉식 회전 변압기.
  2. 제 1 항에 있어서,
    상기 코어부는 하나 이상의 내부 베어링을 통해 모터축의 내부에 설치되어 상기 코어부 및 1차 코일부가 상기 모터축의 회전으로부터 자유롭고,
    상기 모터축의 내측 주면에 설치되는 상기 2차 코일부는 상기 모터축과 동기화된 회전운동을 하는 비접촉식 회전 변압기.
  3. 제 2 항에 있어서,
    상기 내부 베어링은,
    상기 1차 코일부 및 2차 코일부 전방의 모터축과 상기 코어부 사이에 설치되는 전방 베어링과,
    상기 1차 코일부 및 2차 코일부 후방의 모터축과 상기 코어부 사이에 설치되는 후방 베어링으로 구성되는 비접촉식 회전 변압기.
  4. 제 1 항에 있어서,
    상기 코어부의 중심부 또는 외면부에는 모터축의 외부에서 내부로 상기 1차 코일부를 구성하는 케이블 인입을 위한 홀 또는 홈이 형성되는 비접촉식 회전 변압기.
  5. 제 1 항에 있어서,
    상기 2차 코일부와 모터축 사이에 자기차폐를 위한 차폐부재가 설치되는 비접촉식 회전 변압기.
  6. 제 1 항에 있어서,
    상기 코어부는 자성체 재질이며 환봉 형태로 구성되는 비접촉식 회전 변압기.
  7. 제 6 항에 있어서,
    상기 코어부가 스테인레스 강철로 이루어진 비접촉식 회전 변압기.
  8. 제 1 항에 있어서,
    상기 정류 회로부가 모터축의 외부에 설치되는 비접촉식 회전 변압기.
  9. 제 8 항에 있어서,
    상기 정류 회로부는 상기 모터축의 일단 외면부에 결합되는 금속 수용체에 수용되며, 금속 수용체는 알루미늄으로 구성되는 비접촉식 회전 변압기.
  10. 제 1 항에 있어서,
    상기 정류 회로부가 모터축의 내부에 설치되는 비접촉식 회전 변압기.
  11. 제 1 항에 있어서,
    상기 1차 코일부가 둘 이상으로 구성되고,
    상기 2차 코일부는 둘 이상의 상기 1차 코일부 각각에 하나씩 대응되도록 구성되는 비접촉식 회전 변압기.
  12. 모터 하우징;
    상기 모터 하우징의 중심에 회전 가능하게 지지된 중공 구조의 모터축;
    상기 모터 하우징의 내측에 결합되는 고정자;
    상기 모터축에 결합되며, 상기 고정자와의 상호 작용으로 모터축을 회전시키기 위한 회전력을 발생시키는 회전자; 및
    상기 중공 구조의 모터축에 설치되는 제 1 항 내지 제 11 항 중 어느 하나의 항에 기재된 비접촉식 회전 변압기;를 포함하는 모터.
PCT/KR2022/014001 2022-01-27 2022-09-20 비접촉식 회전 변압기 및 이를 포함하는 모터 WO2023146056A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0012727 2022-01-27
KR1020220012727A KR20230115813A (ko) 2022-01-27 2022-01-27 비접촉식 회전 변압기 및 이를 포함하는 모터

Publications (1)

Publication Number Publication Date
WO2023146056A1 true WO2023146056A1 (ko) 2023-08-03

Family

ID=87472197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014001 WO2023146056A1 (ko) 2022-01-27 2022-09-20 비접촉식 회전 변압기 및 이를 포함하는 모터

Country Status (2)

Country Link
KR (1) KR20230115813A (ko)
WO (1) WO2023146056A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117727542A (zh) * 2023-12-18 2024-03-19 青岛科技大学 一种用于水下无线能量传输的对接式磁耦合结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3259919B2 (ja) * 1992-07-15 2002-02-25 株式会社安川電機 電力および信号の伝送機構を内蔵する回転装置
US20030173936A1 (en) * 2001-02-17 2003-09-18 Acar Sezgin Rotary transformer
JP2011507611A (ja) * 2007-12-20 2011-03-10 ボストン サイエンティフィック サイムド,インコーポレイテッド 回転変圧器
KR20120003747A (ko) * 2010-07-05 2012-01-11 재단법인 포항산업과학연구원 회전체에 탑재된 전자기기에 무선으로 전원 공급이 가능한 전력 공급 시스템
JP2018110498A (ja) * 2017-01-05 2018-07-12 多摩川精機株式会社 回転型差動変圧器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180015450A (ko) 2016-08-03 2018-02-13 한국전기연구원 모터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3259919B2 (ja) * 1992-07-15 2002-02-25 株式会社安川電機 電力および信号の伝送機構を内蔵する回転装置
US20030173936A1 (en) * 2001-02-17 2003-09-18 Acar Sezgin Rotary transformer
JP2011507611A (ja) * 2007-12-20 2011-03-10 ボストン サイエンティフィック サイムド,インコーポレイテッド 回転変圧器
KR20120003747A (ko) * 2010-07-05 2012-01-11 재단법인 포항산업과학연구원 회전체에 탑재된 전자기기에 무선으로 전원 공급이 가능한 전력 공급 시스템
JP2018110498A (ja) * 2017-01-05 2018-07-12 多摩川精機株式会社 回転型差動変圧器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117727542A (zh) * 2023-12-18 2024-03-19 青岛科技大学 一种用于水下无线能量传输的对接式磁耦合结构
CN117727542B (zh) * 2023-12-18 2024-05-07 青岛科技大学 一种用于水下无线能量传输的对接式磁耦合结构

Also Published As

Publication number Publication date
KR20230115813A (ko) 2023-08-03

Similar Documents

Publication Publication Date Title
WO2009099300A2 (ko) 전기모터
WO2012026685A2 (ko) 선형 전동기
WO2023146056A1 (ko) 비접촉식 회전 변압기 및 이를 포함하는 모터
WO2017150909A1 (ko) 버스바 조립체, 이를 포함하는 모터
WO2011049298A2 (ko) 선형 전동기
WO2020138583A1 (ko) 자기부상 회전체를 포함하는 축방향 모터
WO2019203521A1 (ko) 수평형 리니어 진동발생장치
WO2020091313A1 (ko) 자기작용을 조정할 수 있는 장치와 이를 채용한 발전기 장치 및 그를 위한 부품
WO2013085231A1 (ko) 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
WO2019135583A1 (ko) 다중브러시를 이용한 직류발전장치
WO2016002994A1 (ko) 모터
WO2018139791A1 (ko) 모터
JP3258034B2 (ja) 静電帯電方法及びその装置
WO2024034868A1 (ko) 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기
WO2023182749A1 (ko) 순차 독립 발전형 발전장치를 이용한 배터리 클러스터링 시스템
WO2018012885A1 (ko) 로터 및 이를 포함하는 모터
WO2023182750A1 (ko) 유기전류세기 선택기능을 갖는 순차 독립 발전형 발전장치를 이용한 배터리 클러스터링 시스템
WO2014061908A1 (ko) 이중 공극형 발전기
WO2022220579A1 (ko) 프로펠러 구동장치 및 이를 이용한 드론
WO2022250218A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2018117555A1 (ko) 회전축 또는 고정축을 사용할 수 있는 2개의 회전자를 이용하는 발전기
WO2022250217A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2020209650A1 (ko) Pm-assist 구조를 이용한 계자권선형 모터 제너레이터 및 그 제작 방법
WO2022250216A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2024010146A1 (ko) 냉각 구조가 개선된 전기기계

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924311

Country of ref document: EP

Kind code of ref document: A1