WO2020091313A1 - 자기작용을 조정할 수 있는 장치와 이를 채용한 발전기 장치 및 그를 위한 부품 - Google Patents

자기작용을 조정할 수 있는 장치와 이를 채용한 발전기 장치 및 그를 위한 부품 Download PDF

Info

Publication number
WO2020091313A1
WO2020091313A1 PCT/KR2019/014112 KR2019014112W WO2020091313A1 WO 2020091313 A1 WO2020091313 A1 WO 2020091313A1 KR 2019014112 W KR2019014112 W KR 2019014112W WO 2020091313 A1 WO2020091313 A1 WO 2020091313A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
generator
rotor
magnetic
magnetic iron
Prior art date
Application number
PCT/KR2019/014112
Other languages
English (en)
French (fr)
Inventor
신덕호
Original Assignee
신덕호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신덕호 filed Critical 신덕호
Priority to US17/288,209 priority Critical patent/US20210408881A1/en
Priority to EP19879197.2A priority patent/EP3876393A4/en
Priority to CN201980072477.1A priority patent/CN112956112A/zh
Priority to JP2021522475A priority patent/JP2022505805A/ja
Publication of WO2020091313A1 publication Critical patent/WO2020091313A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/022Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/141Stator cores with salient poles consisting of C-shaped cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/141Stator cores with salient poles consisting of C-shaped cores
    • H02K1/143Stator cores with salient poles consisting of C-shaped cores of the horse-shoe type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/022Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
    • H02K21/023Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator by varying the amount of superposition, i.e. the overlap, of field and armature
    • H02K21/024Radial air gap machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/022Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
    • H02K21/025Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator by varying the thickness of the air gap between field and armature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • H02K21/042Windings on magnets for additional excitation ; Windings and magnets for additional excitation with permanent magnets and field winding both rotating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/02Details of the control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/40Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of reluctance of magnetic circuit of generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/09Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/12Structural association with clutches, brakes, gears, pulleys or mechanical starters with auxiliary limited movement of stators, rotors or core parts, e.g. rotors axially movable for the purpose of clutching or braking

Definitions

  • the present invention relates to a device capable of adjusting a magnetic action and a generator employing the same, and more specifically, to a magnetic force between a rotor and an armature of a generator in response to a fluctuation of motive power supplied to the generator shaft and a load fluctuation of electricity induced by the generator. It relates to the provision of generators and parts therefor that modulate the action to compensate for such fluctuations with a variable voltage and to induce constant electricity.
  • a generator is a device that converts mechanical and thermal energy into electrical energy.
  • a generator shaft receiving rotational force from a prime mover, a generator case for installing and protecting the devices, and a permanent magnet installed around the generator shaft and generating a magnetic field
  • a rotor composed of a field winding, an exciter for supplying electricity to the field winding, an armature composed of a winding magnetized and crosslinked to a magnetic field generated by the magnet of the rotor, and rotatably supporting the generator shaft It consists of a bearing, a lubrication device that supplies lubricant to the bearing, and a ventilation and cooling device to remove heat generated by the generator.
  • the generator rotates the circumferential outer surface of the rotor to the circumferential inner surface by rotating the rotor where the unipolar, non-polar (slot part), and other polarity are divided on the outer circumferential surface by interlocking with the shaft receiving mechanical rotational energy and the rotation of the shaft.
  • the alternating magnetic action is performed on the wrapping armature, and due to electromagnetic interaction, the alternating magnetic flux in the armature magnetic core causes an electromagnetic wave in the winding embedded in the armature magnetic core, and the alternating cycle of the rotor is induced by the alternating winding. Determine the frequency and voltage of AC electricity.
  • the output of the generator increases or decreases with the change in the driving force, while the Lorentz force that interferes with the operation of the generator increases or decreases in proportion to the fluctuation of the load using electricity produced from the generator.
  • the Lorentz force that prevents the rotation of the generator also increases or decreases proportionally.
  • the increase and decrease of the Lorentz force and the magnitude of the electric power derived from the generator are relative to each other, and the magnitude and load of the driving force and the change of the Lorentz force and the rotational speed of the generator shaft are closely related.
  • Korean Patent Registration No. 10-1136817 proposes a permanent magnet generator equipped with a mobile rotor.
  • the prior art is configured such that the parallel surfaces of the permanent magnet and the armature core of the rotor are variable while the rotor moves in the axial direction according to the rotational force of the rotor shaft so that only a part of the permanent magnet and the armature core faces when the rotational force decreases.
  • the prior art has a number of disadvantages in terms of structure, and considering the moving distance of the rotor for adjusting the magnetic action from the maximum to the minimum (the minimum condition for the magnetic action is that the rotor and the armature core are almost identical to each other).
  • the device is enlarged because the generator needs to be almost twice as long as the length of the generator is displaced, and it is possible to slide the rotor that needs to rotate while being fixed to the axis in the axial direction. It is unreasonable to move the rotor by adopting a spline key structure for the thing and the shaft, and maintenance may be difficult.
  • the pneumatic cylinder is also used as a means to move the rotor. Because it is used, when the rotating rotor is moved to the precise position precisely to the side It is that there are difficulties.
  • Another problem is that not only is the centrifugal force acting on the rotating rotor, but because the armature and mutual attraction work, movement to the side of the rotor is undesirable, and the problem of supplying lubricant to the spline and the supplied lubricant contaminate the armature. There is a risk of fire, and foreign matters are trapped between the pores, and there is a high possibility that a problem in which efficiency is reduced in ignition and magnetism due to heat generation.
  • Patent Document 1 Korean Patent Registration No. 10-1136817
  • the present invention has been proposed in view of the above, and the magnitude of the organic electromotive force is adjusted by allowing the generator to adjust the magnitude of the interaction between the rotor and the armature itself in response to variations in motive power or variations in load. It is an object of the present invention to provide a generator and components optimized for compensating for the fluctuation and fluctuation of the electric load by a variable of voltage and not only to induce electricity of a constant frequency in the generator, but also to stabilize the prime mover or load.
  • the generator of the present invention not only performs functions such as an efficient speed governor and a productive braking device to control the operation of the prime mover, but also has the utility of being able to appropriately act on the outlet reactance due to the increase or decrease of the electric load.
  • Another object of the present invention is to provide a generator and its components that have a compact size, have high energy conversion, energy saving and efficiency, are easy to manage, and contribute to the stable protection of the power supply and demand system.
  • the magnetic iron piece for the rotor has a U-shaped cross-section body and extends in the longitudinal direction, facing each other
  • the opposite ends of the opposite side walls have a rectangular concavo-convex shape, and among the concavo-convex shapes, the convex portions form a rotor magnetic pole portion, and the concave portions form a rotor non-irritating portion, and the rotor magnetic pole portion and the rotor non-irritating portion alternately repeat. It is characterized by being formed.
  • a first permanent magnet is inserted into a first slot that is concavely formed inside a U-shape of a magnetic iron piece, and the rotor magnetic pole portion and the rotor non-irritating portion each have a size corresponding to its height.
  • the first permanent magnet with is installed to be accommodated, and the N and S poles of the first permanent magnet are arranged to appear in contact with the inner wall surfaces of both sides of the magnetic iron pieces, and all polarities are arranged to face the same direction.
  • the upper end of the rotor magnetic pole portion which is an iron portion, has a magnetic pole concentration portion (head portion) having a jaw protruding more than the wall thickness of the iron piece, and is disposed in the rotor magnetic pole portion.
  • the magnet is installed to be supported on the chin of the magnetic pole concentration portion.
  • a rotor frame fixed to the generator shaft to rotate with the generator shaft and a circumference around the circumference of the rotor frame It includes a plurality of first grooves formed and extending in the axial direction, and a magnetic iron piece for a rotor as defined in claim 2, wherein a part of the lower end of the U-shaped body is inserted and fixedly mounted in the first grooves.
  • the gap between the magnetic iron pieces for the rotor forms a second slot, and a second permanent magnet is inserted into the second slot in the same size and manner as the first permanent magnet, but the second permanent magnets are the magnetic iron pieces for the rotor. It is characterized in that it is arranged to have the same polarity as the polarity of the first permanent magnet with the wall surface therebetween.
  • the rotor frame is formed of an assembly of a plurality of divided unit division bodies, and protective cover plates are bolted to both sides of the assembly.
  • the divided plurality of unit division bodies are coupled through a concave-convex shape of a circular or polygonal shape corresponding to each other in male and female.
  • the magnetic iron piece for the armature has a body having a U-shaped cross section and extends in the longitudinal direction, and the upper ends of both side walls facing each other are square. It has a concavo-convex shape, and among the concavo-convex shapes, the convex portion forms an armature magnetic pole portion, and the concave portion forms an armature non-stimulation portion, and the armature magnetic pole portion and the armature non-stimulation portion are alternately formed repeatedly, and both sides forming the U-shaped cross-section. It is characterized by forming an armature winding by winding a coil around the bobbin after each bobbin is fitted to the wall.
  • the armature in the armature installed with a gap to surround the outer circumference of the rotor mounted on the generator shaft, the armature is made of a non-magnetic hollow cylinder and installed to surround the outer circumferential surface of the rotor A frame, a plurality of second grooves formed at regular intervals around the circumference of the armature frame and extending in the axial direction, and a lower portion of the U-shaped body inserted into the second grooves are fixedly mounted It characterized in that it comprises a magnetic iron piece for the armature as defined in claim 7.
  • the armature frame is formed of an assembly of a single cylindrical body or a plurality of divided ring-shaped bodies, and the LM guides are provided at a plurality of locations to have a predetermined phase angle in the axial direction on the outer circumferential surface of the armature frame.
  • a rail is installed, and the LM guide rail guides linear movement in the axial direction along the guide of the LM guide bearing provided on the inner surface of the generator case, and simultaneously blocks rotation in the circumferential direction of the armature frame. Is used as a fixed binding means for a plurality of divided ring-like bodies.
  • the space between the armature windings of the armature pieces for armature is characterized by being insulated.
  • both sides of the open side of the armature frame cylinder are fastened and mounted by bolts, and a sleeve for bearing the generator shaft is provided at the center of the side frame member, so that the sleeve is It is configured to be capable of sliding within a predetermined distance range along the generator shaft.
  • a generator shaft which is clutch-connected to a rotating shaft of a power source;
  • a generator rotor as defined in any one of claims 4 to 6 mounted to be rotatable together on the generator shaft; It is installed concentrically with a predetermined air gap to surround the outer periphery of the generator rotor, and is installed to allow movement within a predetermined distance range in the direction of the generator shaft, and has irregularities of the same length corresponding to the irregularities of the rotor.
  • the control unit includes the magnetic pole end of the armature and the initial stage of the generator when the driving speed of the generator or the driving speed decreases.
  • the linear motor is controlled so that the position of the armature is moved toward the first position in which the length of the counter corresponding to the rotor's magnetic pole becomes smaller.
  • the open side of the armature frame cylinder of the armature is fastened and mounted by a side frame member by bolts, and a sleeve (bearing housing) for bearing the generator shaft at the center of the side frame member is provided.
  • the sleeve is configured to be slidable within a predetermined distance range along the generator shaft.
  • the axial movement distance of the armature is characterized in that it corresponds to the width of the convex portion or the concave portion of the magnetic iron piece for the armature.
  • control unit controls the axial movement of the armature by the rotation speed information detected by the speed sensor or the output voltage and frequency information of the generator detected by the electric meter.
  • the upper part of the magnetic pole portion of the rotor magnetic iron piece is provided with a magnetic pole concentration part (head part) having a jaw protruding more than the wall thickness of the iron piece, and the rotor
  • the first permanent magnet and the second permanent magnet respectively disposed in the first slot and the second slot in contact with the magnetic pole portion are installed to be supported by the jaw of the magnetic pole concentration portion.
  • the armature and the rotor are characterized in that the length of the concave portion forming the non-stimulating portion is longer than the length of the convex portion forming the magnetic pole portion.
  • the power source for driving the generator is characterized by wind energy, hydro energy, thermal energy, driving power of the engine, and steam energy.
  • the first permanent magnet embedded in the first slot of the rotor magnetic piece is vertically installed in the iron section and horizontally installed in the recessed section, and the upper part of the magnetic iron core forming wall members on both sides.
  • the same poles are connected so as to face the magnetic iron core to be fixed in close contact with a metal adhesive.
  • the armature is linearly reciprocated by forming a central guide provided in the bearing housing of the end shield in a polygonal shape, and installing a polygonal sleeve or a linear bearing in the center of the side frame installed at both ends of the armature. It is characterized by supporting.
  • the groove of the armature frame to which the LM guide rail is mounted forms an axial exhaust passage.
  • an exhaust passage extending in the axial direction is formed on the outer surface of the armature frame between the plurality of LM guide rails.
  • the generator of the present invention employs a device for adjusting the magnetic action, so that the fluctuation of the prime mover output and the fluctuation of the electric load can be compensated by the increase or decrease of the voltage through the adjustment of the magnetic action and induce electricity at a specified frequency. Accordingly, the generator can perform the same role as the braking device that controls the prime mover and the governor that efficiently manages the operation of the prime mover, and the electric load fluctuates. It can play a role in coping effectively. Accordingly, a generator having high energy conversion efficiency, high energy efficiency of the prime mover and the electric system, and good energy saving is provided, and specifically, the following operational effects are expected.
  • the armature applied to the armature can be adjusted widely from the minimum to the maximum by simply moving the armature to a small minimum within a range of about 2cm to 3cm to adjust the length of response. have.
  • the generator employing the device for adjusting the magnetic action of the present invention is highly versatile and economical because it can be adjusted from the minimum to the maximum with respect to the variable capacity of the motive power and the variable electrical load.
  • the generator can be configured compactly. .
  • the generator can adjust the magnetic working range to reduce the strong manpower generated between the armature and the rotor during the initial or low-speed operation of the prime mover, so that the back electromotive force is minimized so that the prime mover can quickly enter normal operation.
  • the inverse electromotive force proportional to this is transferred to the prime mover by adjusting the magnetic action range to increase the induced electromotive force, so that the overspeed operation of the prime mover can be calmed, and accordingly, a separate braking device that controls the overspeed operation of the prime mover
  • Energy productivity and conversion efficiency are high and energy is installed by installing the present invention in all power generation facilities such as thermal power plants, nuclear power plants, small hydro power plants, wind power generators, solar power generation facilities, transmission / substation facilities, and energy storage and regeneration facilities.
  • the loss can be greatly reduced.
  • the armature's movement section is very short, so the high-speed reduction gear is adopted in the small linear servomotor, so that the armature's movement can be performed quickly and smoothly.
  • the present invention is capable of producing a speed-variable mechanical rotation energy suitable for an output load using an electronic circuit, thus simplifying the mechanical transmission used in transportation equipment such as automobiles, ships, and industrial equipment, and as a high-efficiency electric motor. It can be replaced, and other air conditioners, refrigerators, electric heaters, electric heaters, etc., by employing a device for adjusting the magnetic action of the present invention, can have high energy efficiency and energy saving effect.
  • FIG. 1 is a perspective view showing a generator according to the present invention.
  • FIG. 2 is a view showing the generator according to the present invention in cross section.
  • Figure 3 is a view showing a perspective view in front of the generator according to the present invention.
  • FIG. 4 is an A-A sectional view of a generator according to the present invention.
  • FIG. 5 is an exploded perspective view of some parts of a generator rotor according to the present invention.
  • FIG. 6 is a perspective view showing a part of the rotor assembly for a generator according to the present invention.
  • FIG. 7 (a) is a unit divided body of the rotor frame according to the present invention
  • FIG. 7 (b) is a view showing a rotor frame formed by assembling the unit divided bodies according to the present invention.
  • FIG. 8 is a view showing a U-shaped armature magnetic iron piece having a rectangular concavo-convex structure according to the present invention.
  • FIG. 9 is a detailed conceptual view of a permanent magnet embedded in a magnetic iron piece for a rotor, (a) is a cross-sectional view showing a rotor pole end portion, and (b) is a cross-sectional view showing a rotor non-pole end portion.
  • FIG. 10 is a side cross-sectional view showing a non-polar end portion of a rotor according to the present invention in cross section.
  • FIG. 11 is a view showing a state in which the assembly of the rotor, which has been assembled and manufactured by the present invention, is installed on a generator shaft and accommodated in a generator case.
  • FIG. 12 is a perspective view showing the outer shape of the armature according to the present invention.
  • FIG. 13 is a front view showing the outer shape of the armature according to the present invention.
  • FIG. 14 is a perspective view showing an armature frame constituting an armature according to the present invention.
  • 15 is a side view showing an armature frame constituting an armature according to the present invention.
  • FIG. 16 is a front sectional perspective view of an armature according to the present invention.
  • 17 is a perspective view of a magnetic iron piece for an armature of the present invention
  • FIG. 18 is a view showing a magnetic iron piece for an armature completed by inserting a bobbin on the magnetic iron piece for an armature of the present invention and winding a coil around the bobbin.
  • FIG. 19 (a) and (b) are views showing a process of installing a magnetic iron piece for an armature on the inner surface of the armature frame of the present invention.
  • FIG. 20 is a cross-sectional perspective view of an armature showing the state in which the armature for the armature is installed on the inner surface of the armature frame of the present invention, showing a side frame removed on one side and showing the internal structure;
  • 21 is a power generation system and control block diagram of the present invention.
  • FIG. 23 is a conceptual diagram showing the correspondence between the rotor pole and the armature pole according to the operating state of the generator, (a) is the lowest load (no load) operation, (b) is the middle load operation, (c) Denotes a correspondence between the rotor pole portion 25 and the armature pole portion 43a during the maximum load operation.
  • FIG. 1 is a perspective view showing a generator according to the present invention
  • FIG. 2 is a view showing the generator of the present invention in cross-section
  • FIG. 3 is a view showing a generator in accordance with the present invention in cross-section
  • FIG. It is AA sectional view of the generator of the invention.
  • the generator 10 of the present invention is provided with a hollow cylindrical generator case 11 for mounting and protecting parts, and the generator case 11 is formed with wrinkles for cooling on the outer side, and the case 11 ) Covers 11a, 11b covering and protecting both sides thereof to form a part are fastened to the case body using fastening means such as bolts.
  • a rotor 12 and an armature 13 are installed inside the case 11, and a generator shaft 14 is provided at the center of the rotor 12, and this rotor 12 is
  • the generator shaft 14 is coupled with a key with respect to the generator shaft 14 to rotate by the generator shaft 14, and the generator shaft 14 extending through the cover 11a to the outside is a shaft 15a of the prime mover 15, which is a power source. Is connected via a clutch 15b to receive the rotational driving force of the prime mover 15 through the shaft 15a and the generator shaft 14 to change to electrical energy.
  • the generator shaft 14 is rotatably supported by bearing housings 17 and 17a having bearings 16 and 16a therein, and covers 11a and 11b protecting the bearing housing 17a.
  • the armature 13 is installed on the inner circumference of the generator case 11 to surround the outer circumference of the rotor 12, the generator
  • the case 11 is formed in a size having an armature 13 installed therein and having a predetermined clearance 18 (a space for allowing armature movement L1) to allow linear reciprocation movement within a predetermined distance L1 in the axial direction. Is becoming.
  • a linear motion bearing, LM guide mechanism (19: 19a, 19b) for guiding the axial movement of the armature (13) is provided on the inner circumferential surface of the generator case (11) and the outer circumferential surface of the armature (13).
  • a plurality of rows are formed in a direction parallel to (14) so that the armature 13 smoothly reciprocates linearly along the axial direction within a predetermined clearance 18 (L1) within the generator case 11.
  • the LM guide mechanism 19 assists in doing so, so that the armature 13 is fixed with respect to rotation in the circumferential direction, and moves within a predetermined clearance 18 (L1) in the axial direction. It is configured to allow the relative position of the rotor 12 to be changed.
  • a lubrication device is provided on one side of the lids 11a and 11b for lubrication and cooling of the bearing 16, and cooling on one side of the generator case 11 is performed.
  • an exhaust port for discharging heated air to the outside is formed, and a support member 20 is installed at a lower end of the generator case 11, but the support member 20 can adjust dust and level. It is desirable to form a leveler if possible.
  • a flywheel for imparting inertia force to the rotor 12 between the outside of the generator case 11 and the coupling 15b, and a fan for cooling the heat dissipated from the generator in contact with the flywheel Can be mounted.
  • FIG. 7 are views showing the rotor structure and the rotor frame of the present invention
  • the rotor 12 is provided with a rotor frame 21 fixedly mounted to the generator shaft 14.
  • the rotor frame 21 is formed of a non-magnetic body, and may be formed as a single body, but as shown in FIG. 7 (a), a plurality of unit divided bodies 21a, 21b, 21c, and 21r: refer to the whole It will be formed by dividing into 21 as the representative reference numerals) and assembling by inserting it into the generator shaft 14. Further, both sides of the rotor frame 21 are secured by applying a protective cover plate 22 with a bolt, and the rotor frame 21 is securely fixed to the generator shaft 14 without causing slip in the rotational direction.
  • the unit dividing bodies 21a, 21b, 21c ,, and 21r of the rotor frame 21 are respectively key-coupled to the generator shaft 14 or correspond to close contact surfaces with each other to ensure the accuracy of positioning.
  • the male and female coupling portions 56 are provided. 6 and 7, the concave-convex portion 56 may be combined with a circular protrusion and a circular concave, but is preferably protected at both ends after being coupled to prevent relative slip through a polygonal concave-convex coupling.
  • a side cross-sectional shape of the rotor in the direction parallel to the axis to install the magnetic iron piece 23 for the rotor on the outer circumferential surface of the rotor frame 21 forming the rotor 12, a constant distance (
  • a plurality of first grooves 24 having a shape of a semi-circular groove over the circumference of the t1) are formed to be engraved.
  • a portion of the lower end of the U-shaped body of the magnetic iron piece 23 is accommodated in the first recess 24 to be fixed to the rotor frame 21 by a bolt (not shown), and the magnetic iron piece 23 for the rotor
  • the upper end protrudes in the radial direction from the surface of the first recess 24 to maintain a predetermined distance t1 between the magnetic iron pieces 23 adjacent to each other.
  • FIG. 8 is a view showing a rotor magnetic iron piece according to the present invention
  • the magnetic iron piece 23 for a rotor of a steel material installed in a plurality of first grooves 24 of the rotor frame 21 has a side cross-sectional shape A U-shaped recessed portion in the middle forms the first slot 27.
  • the magnetic iron piece 23 for the rotor has a cross-sectional shape like a horseshoe magnet by a rotor pole part 25 which is an iron part positioned on both sides of the first slot 27 along the longitudinal direction,
  • a magnetic pole concentrating portion (head portion) 28 provided with jaws protruding from both sides of the wall surface in the form of an arrowhead.
  • the rotor magnetic pole portion which is an iron part ( 25) and the main portion of the rotor non-irritating portion 26 are alternately formed alternately along the axial direction, and the rotor non-irritating portion 26 picks up the material by pressing punching the upper part of the iron piece at a predetermined interval. It is formed by removal.
  • Second permanent magnets 31 are buried in the second slot 30, which is a space formed between adjacent magnetic iron pieces 23.
  • forming the length (width) of the concave portion longer than the length (width) of the convex portion is more advantageous in enabling the magnetic action to be performed from maximum to minimum.
  • FIG. 9 is a detailed conceptual view of a permanent magnet embedded in a magnetic iron piece for a rotor, (a) is a cross-sectional view showing a rotor pole end portion, and (b) is a cross-sectional view showing a rotor non-pole end portion.
  • First permanent magnets of a shape substantially close to a rectangular parallelepiped embedded in the first slot 27 of the magnetic iron piece 23 for the rotor (but the shape, size and height of the magnet are made to depend on the shape of the inner surface of the first slot) (29)
  • the magnet installed in the rotor magnetic pole portion, which is an iron part is denoted by reference numeral 29a
  • the magnet, which is installed in the non-magnetic rotor portion is denoted by 29b.
  • a first permanent magnet 29a is provided to the rotor pole portion 25, which is the iron portion, in accordance with the height up to the head portion 28, and the wall surface 26a is provided to the rotor non-pole portion 26, which is the main portion. , 26b)
  • the first permanent magnet 29b is installed in accordance with the upper height so as to be closely buried with the inner surface of the rotor magnetic iron piece 23, but as shown in the drawings, all the first permanent magnets 29a, 29b When they are arranged to face the N pole on one side wall surface 25a, 26a of the magnetic iron piece 23, the other side wall surfaces 25b, 26b opposite to them are arranged to be S poles.
  • the second slot 30 formed between the magnetic iron pieces 23 for the rotors that are adjacent to each other by sequentially installing them at a predetermined distance t1 from each other in the circumferential direction is the same form as the first permanent magnet 29
  • the second permanent magnet 31 (hereinafter referred to as a magnet installed vertically in contact with the rotor magnetic pole portion, which is an iron portion in the second slot) is installed at a horizontally low contact with the reference numeral 31a, the main rotor non-stimulation portion.
  • One magnet is divided by 31b, and 31 is used as a representative symbol for the entire magnet, and the size or shape depends on the shape of the second slot.
  • the first permanent magnet 29 buried in the first slot 27 and the second permanent magnet 31 buried in the second slot 30 sandwich the wall surface of the rotor magnetic iron piece 23. If the polarities of the first permanent magnets 29: 29a and 29b that are in contact with each other and have the same polarity, for example, on one side of the wall surface 25b and 26b of the magnetic iron are S-poles, the agent that contacts the one side wall surfaces 25b and 26b 2
  • the permanent magnets 31 (31a, 31b) are arranged so that the polarities of the S poles and the N poles are in contact with each other.
  • first permanent magnet 29 is installed vertically on the rotor magnetic pole portion 25, and the second permanent magnet 31 is horizontally installed on the rotor non-stimulating portion 26, and then a metal adhesive is applied. Use it to fix it tightly.
  • first permanent magnet and the second permanent magnet are buried and fixed in the first slot and the second slot, respectively, to prevent oxidation and moisture and foreign matter contact, and to prevent corrosion and heat loss, non-conductive corrosion resistance and It is preferable to coat the material with a wear-resistant metal or synthetic resin material.
  • both the S-pole and the N-pole can be used due to the arrangement structure of the rotor magnetic iron piece 23 and the first and second permanent magnets 29 and 31, the magnet utilization is high and the structure does not require a separate shielding structure. , The volume of the rotor 12 can be greatly reduced.
  • the rotor magnetic iron piece 23, the first slot 27, the second slot 30, and the permanent magnets 29, 31 form a rotor yoke, a plurality of iron magnetic pole parts
  • the circumferential ring-shaped aggregates of (25) form the rotor pole end 32
  • the circumferential ring-shaped aggregates of the main rotor non-stimulators 26 form the rotor non-pole pole 33
  • the magnetic pole end 32 and the rotor non-pole end 33 appear alternately in a ring shape having a difference in outer diameter along the axial direction.
  • the field winding may be formed by winding a plurality of rotor poles 25 which are iron parts.
  • FIG. 11 is a view showing a state in which the assembly of the rotor 12 is assembled in accordance with the present invention is installed on the generator shaft 14 and accommodated in the generator case 11, the generator shaft 14 is a bearing (16,16a) is supported rotatably by the structure, and the outer circumference of the rotor 12 is assembled in the generator case 11 in a form surrounding the air gap 13 to be described later.
  • Figure 12 is a perspective view showing the outer shape of the armature according to the present invention
  • Figure 13 is a front view showing the outer shape of the armature according to the present invention
  • Figure 14 is a perspective view showing the armature frame constituting the armature according to the present invention
  • 15 is a side view showing an armature frame constituting an armature according to the present invention
  • Figure 16 is a front cross-sectional perspective view of the armature according to the present invention.
  • the armature frame 34 is made of a non-magnetic material and is formed in a hollow cylinder, and is accommodated in the inner circumferential surface of the generator case 11 and installed to surround the outer circumferential surface of the rotor 12.
  • the armature frame 34 may be formed of a hollow single cylindrical body, but is preferably manufactured by assembling a plurality of divided ring-like bodies (34a to 34j, and representative symbols are designated as 34) as shown in the drawing. Therefore, it is good for convenience of processing to form one cylindrical body.
  • the armature frame 34 is made of divided ring-like bodies 34a to 34j as described above, air circulation paths for dissipating heat generated inside the armature 13 to the outside are formed on contact surfaces of each other, or There is an advantage in that it is easy to implement an internal configuration having a complicated bend in a divided ring-shaped body and is easy to manufacture.
  • LM guide rails 19a are provided on the circumferential outer surface of the armature frame 34, for example, in a cross-sectional view shown in FIG. 15 and with a 90 ° phase angle, and the LM guide rail ( 19a) is configured to guide the linear reciprocating movement of the armature 13 in the axial direction by the LM guide bearing 19b by being combined with the LM guide bearing 19b installed on the circumferential inner surface of the generator case 11
  • the plurality of LM guide rails 19a are fastened by each of a plurality of ring-like bodies 34a to 34g and a fixing means, for example, a bolt, to form one cylindrical body assembly (armature frame 34). It also functions as a fixed binding means.
  • the exhaust rails 37a are formed on both sides where the guide rails 19a are provided in a direction parallel to the axis to pass through the exhaust holes provided on the side of the generator case to radiate heat.
  • the LM guide rail (19a) is provided with a free space in the groove portion is seated, the free space to form an axial exhaust passage (37b), the heat dissipation function is superior.
  • a plurality of second semi-circular grooves 35 having an approximately semicircular shape extending along an axial direction at a predetermined interval t2 over the circumference of the armature frame 34 are formed into an engraved shape.
  • Armature frame 34 The side frame 36 composed of a disc shape having a plurality of support ribs is fastened and mounted by bolts on both open sides of the cylinder, so that the opening portion is blocked by the side frame 36, A sleeve 17 (bearing housing) for bearing support of the rotor shaft 14 passing therethrough is provided at the center of the support ribs of the side frame 36 (see FIG. 16).
  • the armature 13 can move in the axial direction within a predetermined section range L1 along the generator shaft 14 through the sleeve 17, and the sleeve 17 is a rotor with a stable guide function
  • the gap between the outer circumferential surface of (12) and the inner circumferential surface of the armature (13) acts to keep it constant.
  • FIG. 17 is a perspective view of an armature for an armature of the present invention
  • FIG. 18 is a view showing a magnetic iron piece for an armature, which is completed by fitting a bobbin to the armature for an armature of the present invention and winding a coil around the bobbin
  • FIG. 19 (a) , (b) is a view showing a process of installing a magnetic iron piece for the armature on the inner surface of the armature frame of the present invention.
  • Figure 20 is a cross-sectional perspective view of the armature showing a state in which the armature for the armature is installed on the inner surface of the armature frame of the present invention, a side frame removed from one side and showing the internal structure
  • 17 to 20 is a view showing the armature for the armature 38 installed on the armature frame of the present invention and its installation structure, wherein the armature for the armature 38 has an armature frame at the bottom of its U-shaped body ( It is installed in the second groove 35 formed on the inner surface of the cylinder of 34).
  • the magnetic iron piece 38 for the armature is the same as the size of the uneven shape and the uneven width (length) of the magnetic iron piece 23 for the rotor, and is manufactured using a silicon iron plate material so that the cross section has a U shape.
  • Two armature magnetic iron cores 39 (symbol 39 denotes the entire sidewall surface) are formed on both sides extending in a direction perpendicular to the axis.
  • the space between the armature magnetic cores 39 forming the sidewall members on both sides, that is, the U-shaped interior forms the first slot 40, and for the armatures arranged adjacently with a predetermined distance t2.
  • a second slot 41 is formed between the magnetic iron pieces 38.
  • armature windings 42 which are coils that generate alternating voltage by relative motion with a magnetic field, are formed on the armature magnetic cores 39 on both sides forming side walls. ) Is formed by winding, and in this case, to protect the covering and winding state of the coil, the bobbin 48 of a failed shape is fitted to the armature magnetic core 39, and then the coil is wound around the outer circumference of the bobbin 48 to form an armature winding ( 42).
  • armature magnetic core 39 denotes the entire sidewall surface
  • the iron portions are provided with armature magnetic pole parts 43a.
  • the recessed portion forms an armature non-stimulating portion 44a.
  • the armature yoke is formed by the armature magnetic core 39 in which the first slot 40, the second slot 41, and the coil are wound.
  • armature windings are provided on n * 2 magnetic iron cores on each side of each of the n magnetic iron pieces, so that the armature is composed of n * 2 multi-pole polyphases. , This is connected to mid-sized, green, open-air, closed-up, fantasy, and high-end areas, and is led to output terminals.
  • the armature pieces 38 for armature around which the armature winding 42 is wound are fixedly mounted by bolts in all the second grooves 35, and the armature pieces for armature 38 It is preferable to fill the insulating space 45 (formed in t2) between the adjacent armature windings 42 to prevent short-circuiting by contacting each other.
  • linear motor 46 As shown in FIG. 2, at least one side of the cover 11b forming a part of the case 11 of the generator 10, and in the embodiment of the present invention, two linear motors 46 vertically or horizontally. Is mounted, and a stepping motor or a servo motor is used as the linear motor 46.
  • the linear motor 46 places a deceleration mechanism for converting the rotational motion of the motor into a linear displacement motion, for example, a ball screw power transmission mechanism 47 having an elongated or immersed axis to the armature's side frame 36.
  • the present invention is a speed sensor 48 for detecting the real-time rotational speed of the generator shaft 14 on one side cover 11b of the generator case 11
  • a control unit 49 is provided to compare and analyze the rotational speed information of the generator shaft that the speed sensor 48 detects in real time with a preset rated rotational speed
  • the control unit 49 is a generator case 11 It may be installed on one side of, but it is also possible to install in a separate place.
  • control unit 49 is a control panel (illustrated) Battery) so as to supply DC power to the speed sensor 48, the controller 49 and the linear motor 46, and to be used as a load device that increases or decreases the magnitude of the Lorentz force.
  • 50 is provided in the generator case 11 or provided near the generator, and an inverter 51 for converting the alternating current induced by the generator 10 into direct current to store electricity in the storage battery 50 ) Is provided.
  • the generator shaft 14 is connected to the shaft 15a of the prime mover 15 through the clutch coupling 15b to obtain rotational power from the prime mover 15.
  • the alternating current generated from the armature winding 42 of the armature 13 by the rotation of the former 12 is output through an output terminal provided in the generator case 11, and the outputted electricity is an automatic voltage regulator ( After adjusting the voltage through 52), it is supplied to the customer.
  • the power supplied from the prime mover (15) to the generator shaft (14) is excessive, or if the load of an electric device using electrical energy converted by the generator (10) sharply decreases, the Lorentz force can be increased or decreased.
  • a separate loader may be provided in the generator system, and load adjustment to adjust the load of the system connection or electric demand receiving information from the control unit 49 to perform air conditioning operation with the generator 10 System.
  • Figure 22 (a) is a view showing the position of the armature in the lowest load (no load) state at the initial start of the generator
  • Figure 22 (b) is a view showing the position of the armature in the normal operating state of the generator
  • Figure 22 ( c) is a diagram showing the position of the armature in the maximum output operation state of the generator
  • FIG. 23 is a conceptual diagram showing the correspondence between the rotor pole end and the armature pole end according to the operation state of the generator, wherein (a) is the lowest load ( No load) during operation, (b) during intermediate load operation, and (c) during the maximum load operation, showing the correspondence between the rotor magnetic pole portion 25 and the armature magnetic pole portion 43a.
  • the prime mover 15 (the prime mover is an engine or a wind power generation unit or other hydroelectric power generation unit) in a state where the coupling 31 provided on the prime mover shaft 15a and the generator shaft 14 are fastened to each other. This can be driven), and the prime mover 15 is driven to rotate the generator shaft 14 that receives the rotational power.
  • the armature stimulation stage 43 of the armature 13 (the ring-shaped aggregate of the armature stimulation unit 43a) as shown in the conceptual diagram shown in Fig. 23 (a) is the rotor visa of the rotor 12 It is positioned to correspond to the extreme end 33 (ring-shaped aggregate of the rotor non-stimulating portion 16), and the armature non-pole pole 44 of the armature 13 (the ring-shaped aggregate of the armature non-stimulating portion 44a) is the rotor pole of the rotor 12 It is positioned to correspond to the stage 32 (ring-shaped aggregate of the rotor pole portion 25).
  • the armature magnetic pole part 43a and the rotor magnetic pole part 25 are positioned to be shifted from each other as much as possible.
  • the controller 49 gradually moves the armature 13 in a direction in which the overlapping amount of the magnetic pole end 43 of the armature and the magnetic pole end 32 of the rotor increases.
  • the generator 10 By controlling to exit (the armature moves from the state of FIG. 22 (a) to the state of FIG. 22 (b)), the generator 10 is driven under a load suitable for the number of revolutions of the prime mover 15 to output electricity. In this way, the load of the generator 10 is automatically adjusted to gradually increase in the minimum state in accordance with the level of the process in which the prime mover 15 is normalized. The prime mover and the generator will enter and reach smoothly at the rated operating state.
  • the armature 13 is moved to reduce the magnetic action range, thereby reducing the load applied to the operation of the prime mover 15.
  • the driving state of the prime mover 15 is able to enter quickly and smoothly at a specified speed.
  • the armature 13 of the generator 10 is automatically moved to a first position with a minimum magnetic working range according to the command of the control unit 49 according to the detection information of the speed sensor 48 during the initial operation of the prime mover connected to the generator. (See FIG. 22 (a)) Since the prime mover 15 is adjusted to operate in an almost no-load state, it is easy to start the prime mover 15 and can quickly enter a normal operation state without an impact due to a sudden load application.
  • the inefficiency problem in which the generator 10 produces poor electricity can be solved.
  • the armature 13 is moved to a first position with minimal magnetic action, so that there is no impact due to repulsive force to the prime mover, and the rotor and armature of the generator 10 are also eliminated. There is no vibration, and it is possible to induce electricity at a specified frequency until the end of the provided mechanical rotational energy.
  • the armature 13 moves to the second position as shown in FIG. 22 (b) to generate electricity.
  • the driving force of the prime mover 15 increases to reach the maximum output operating state, the range of correspondence between the magnetic pole end 32 of the rotor 12 and the magnetic pole end 43 of the armature 13 is maximized. That is, the armature 13 is moved to the third position (maximum load position) to drive the generator (see position 16 of the left bearing in FIG. 22 (c)), and this state is the maximum output operation state of the generator.
  • FIG. 22 (b) the matching range between the pole end 32 of the rotor 12 and the pole end 43 of the armature 13 is shown in FIG. 22 (b).
  • some overlap and some misaligned second position state (any position properly set between the first position and the third position) can be set as the optimal operation condition, or the operation can proceed, or the third position state (maximum load position)
  • the operation can be controlled by setting the state of FIG. 22 (c) as the optimum operation condition.
  • control unit 49 drives the linear motor 46 to move the armature 13 in a direction in which the magnetic action range is increased, that is, the armature stimulation stage 43 and the rotor stimulation stage 32.
  • the load applied to the operation of the prime mover and the generator can be increased to output larger electricity.
  • the generator shaft must rotate at a constant speed so that the linkage between the rotor and the armature is constant so that electricity at a constant frequency can be induced in the generator. Even if it is severe, it is possible to stably produce power at a constant frequency without excessive force by keeping the rotational speed of the generator shaft constant by adjusting the load of the generator accordingly.
  • the remarkable point is that the rotor magnetic pole portion 25 which is the iron portion of the rotor 12 and the rotor non-irritating portion 26 which is the yaw portion are alternately arranged alternately along the axial direction.
  • the armature stimulation part 43a and the armature non-stimulation part 44a of the armature 13 also alternately form the iron part and the yaw part, the range of the movement amount of the armature 13 is increased.
  • the fact is that the width of the iron part (corresponding to the L1 length) can be reduced to cover a wide range of fluctuations and wide frequency fluctuations in the driving force. Accordingly, there is an advantage that the generator size does not have to be very large.
  • first slot which is a space formed in the middle of the U-shaped magnetic iron piece
  • second slot a space formed between the magnetic iron pieces and the magnetic iron pieces arranged adjacent to the magnetic iron piece, so that the outer circumference of the rotor is separately Since there is no space or a shield for blocking polarity, the alternation is not abruptly made, so that the magnetic interaction process between the rotor stimulation unit and the armature stimulation unit is smoothly performed, and the multipole configuration of the rotor is easy.
  • n magnetic slots for the rotor are arranged in n first grooves provided in a direction parallel to the axis on the outer circumferential surface of the rotor frame, thereby providing n first slots, and magnetic iron pieces for the rotors arranged adjacent to each other. Since n second slots are formed between and, 2 * n rotor magnetic cores protrude, and 2 * n first slots and second slots are settled to form a yoke. There is an effect that the rotor is configured.
  • the magnitude of the Lorentz force also increases or decreases, and the force acts on the generator 10 to generate a slip frequency in the armature 13. Therefore, the frequency of electricity induced from the armature causes a difference in the alternating frequency of the rotor 12.
  • the speed sensor 48 that detects the rotational speed of the generator shaft 14 is preferably used as information for checking the operating state between the prime mover 15 and the generator 10, and in addition to the speed sensor 48, the generator When adding a power meter 55 for real-time measurement of the frequency and voltage of the electrical energy converted from, for example, a sensor that detects in real time the fluctuation of the frequency or voltage of the electricity derived from the output terminal, the detection of the sensor The information is highly effective in controlling the output terminal to induce electricity at a specified frequency with respect to the fluctuation of the driving force or the fluctuation of the load amount together with the detection information of the speed sensor 48.
  • the ring-shaped void formed by the recess between the armature and the rotor naturally acts as a passage for heat dissipation, thereby enabling a high-speed, high-efficiency generator.
  • consumers can induce electricity at a frequency suitable for use.
  • the operation of the generator 15 as well as the operation of the prime mover 15 and the operation of a separate load device can be stabilized, and further, the output of the motive power is increased or decreased.
  • the operation control system of the prime mover to provide air conditioning
  • the load adjustment system 54 so that load short circuit or load sharing is executed
  • the controller 49 accurately positions the armature 13 based on the information detected by the power meter (for example, output voltage or frequency measurement sensor and speed sensor) at the output terminal. By controlling to move to, the armature slip frequency problem can be solved and electric energy of a precise specified frequency can be induced.
  • the controller 49 detects the frequency and voltage of electricity output from the generator 10 in addition to the speed sensor 48 that detects the number of revolutions of the generator shaft 14, and the power meter 55 detects each of them. Or, of course, it is possible to control the movement of the armature 13 based on the integrated information.
  • the bearing of the end shield can be configured to support a linear reciprocation by installing a polygonal sleeve or a linear bearing at the center of the side frame installed at both ends of the armature with a polygonal central guide provided in the housing.
  • bearing housing 18 free space (moving space L1)
  • LM guide mechanism 19a LM guide rail

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

본 발명은 원동력의 변동이나 부하의 변동에 대해 발전기에서 자체적으로 회전자와 전기자간의 상호자기작용의 크기가 조정될 수 있도록 함으로써 유기기전력의 크기가 조절되어 원동력의 변동과 전기부하의 변동만큼을 전압의 가변으로 보상하고 발전기에서 일정한 주파수의 전기가 유도되도록 할뿐만 아니라, 원동기나 부하기기가 안정화되도록 하는 발전기 및 그에 최적화된 부품들을 제공하는데 목적이 있다. 이를 위해 본 발명은 발전기의 회전자와 전기자가 요철 구조의 서로 맞대응하는 철편 구조를 구비하고 있으며, 전기자가 발전기의 회전수나 출력전압 또는 주파수 변화에 대응하여 축방향으로 이동하여 요철구조의 맞대응 길이를 가변적으로 조정하므로써 유기기전력의 크기를 조절할 수 있게 구성되어 있다. {대표도} 도 22

Description

자기작용을 조정할 수 있는 장치와 이를 채용한 발전기 장치 및 그를 위한 부품
본 발명은 자기작용을 조정할 수 있는 장치와 이를 채용한 발전기에 관한 것으로, 보다 상세히는 발전기축에 공급되는 원동력의 변동과 발전기에서 유도되는 전기의 부하변동에 대응하여 발전기의 회전자와 전기자 간의 자기작용을 조절하여 그러한 변동을 전압의 가변으로 보상하고 주파수는 일정한 전기를 유도할 수 있도록 하는 발전기 및 그를 위한 부품들의 제공에관한 것이다.
발전기는 기계적 및 열에너지를 전기 에너지로 변환하는 장치로서, 일반적으로 원동기로부터 회전력을 전달받는 발전기축과, 장치들을 설치하고 보호하기 위한 발전기 케이스와, 발전기축을 중심으로 설치되고 자기장을 발생하기 위한 영구자석 또는 계자권선으로 구성되는 회전자와, 계자권선에 전기를 공급하기 위한 여자기, 회전자의 자석에서 발생하는 자기장에 자화되고 이를 쇄교하는 권선으로 구성되는 전기자와, 발전기축을 회전가능하게 지지하는 베어링과, 베어링에 윤활유를 공급하는 급유장치, 발전기에서 발생되는 열을 제거하기 위한 통풍 및 냉각장치 등으로 이루어진다.
발전기는 기계적 회전에너지를 전달받은 축과, 축의 회전에 연동하여 일극성과 무극성(슬롯부분) 및 타극성이 원주외면에 구획된 회전자가 회전함에 따라 회전자의 원주외면을 공극을 두고 원주내면으로 감싸는 전기자에 교호자기작용이 이루어지고, 전자기상호작용으로 전기자 자기철심에 교호자속은 전기자 자기철심에 매설된 권선에서 전자 파동을 일으키게 되며, 그 파동이 교대로 권선에서 유도되어 회전자의 교번주기가 교류전기의 주파수 및 전압을 결정한다.
기계적 에너지를 발생시키는 원동력의 변동과 전기부하의 변동은 발전기의 운전에 직접적으로 영향을 미치며, 1차적으로 발전기의 운전속도와 출력은 발전기에 원동력을 제공하는 원동기의 운전에 달려있다. 또한 발전기로부터 생산되는 전기를 사용하는 부하의 변동 역시 발전기의 운전에 직접적으로 영향을 미친다.
전자기학 이론에 따르면, 회전하는 도체에 전류가 흐르면 당연히 로렌츠 힘(Lorentz force)이 발생하고 이것은 회전하는 역방향으로 작용한다. 따라서 높은 주파수와 전압의 전기를 유도하기 위해 발전기의 회전자를 빠르게 회전시킬수록 그에 비례하여 발전기의 회전을 방해하는 로렌츠 힘도 커지게 된다.
그럼으로 원동력의 변화에 따라 발전기의 출력이 증감하고, 한편 발전기로부터 생산되는 전기를 사용하는 부하의 변동에 따라 발전기의 운전을 방해하는 로렌츠 힘이 비례하여 증감하게 된다. 즉 발전기에 공급되는 원동력의 크기가 변하게 되면 그에 비례하여 발전기의 회전을 방해하는 로렌츠 힘도 상대적으로 커지거나 작아지게 된다. 로렌츠 힘의 증감과 발전기에서 유도되는 전력의 크기는 서로 상대적이고, 원동력의 크기와 부하와 로렌츠 힘과 발전기축의 회전속도의 변화는 상호 밀접하게 관련되어 있다.
그럼으로 발전기에서 더 많은 전기를 유도하기 위해서는 발전기축의 회전을 방해하는 로렌츠 힘을 상쇄시킬 수 있는 더 큰 기계에너지가 원동기로부터 발전기에 공급되어야 한다.
따라서 발전기로 공급되는 원동력의 회전속도가 변하거나, 발전기로부터 생산되는 전기를 사용하는 부하의 크기가 변하게 되면, 발전기의 회전자 주파수와 전기자 주파수가 변하게 되어 회전자와 전기자간의 자기작용이 불안정하게 실행됨으로 인해 발전기로부터 불안정한 전압과 주파수의 전기가 유도된다는 문제가 있다. 특히 원동력으로 변화가 심한 풍력에너지를 사용하는 경우 풍속이 약할 때에는 회전자에 부착된 영구자석이 고정자의 코어를 강하게 흡인하여 브레이크 현상으로 인해 회전자가 전혀 회전하지 않거나 미약하게 회전하게 되므로, 일정 풍속 이하의 약한 바람, 즉 발전을 위해 제공되는 원동력의 크기가 소정 이상으로 작아지게 되면 전력 생산이 아예 중단되는 문제점이 있었다.
이 때문에 전력 계통이나 수요처에 안정적인 전기를 공급하기 위해서는 불규칙한 주파수와 불안정한 전압은 주파수변환장치와 변전압기를 통해 정격 주파수 및 정격 전압의 전류로 가공되어야만 한다. 특히 전압을 조정하는 것은 용이하지만 주파수 변환과정은 설비비용이 높고 복잡할 뿐만 아니라 정류과정에서 에너지가 크게 낭비되는 문제가 있다.
이 같은 점들을 감안하여 한국특허등록 10-1136817호에서는 이동식 회전자가 구비된 영구자석 발전기를 제안하고 있다.
상기 종래기술은 회전자축의 회전력에 따라 회전자가 축방향으로 이동하면서 회전자의 영구자석과 전기자 코어의 마주하는 평행면이 가변되도록 구성하여 회전력이 감소시에는 영구자석과 전기자 코어의 일부분만이 마주하도록 회전자를 이동시켜 회전자 영구자석의 흡인력에 의한 브레이크 작용을 최소화할 수 있게 조정함으로써, 일정 회전력 이하의 외력으로도 회전자를 회전시켜 발전할 수 있게 되기 때문에 발전 효율이 향상되는 장점을 가지고 있다.
그러나 상기 종래기술은 구조적 측면에서 여러 가지 많은 단점들을 가지고 있는바, 자기작용을 최대에서 최소까지로 조절하기 위한 회전자의 이동거리를 감안하면(자기작용 최소 조건은 회전자와 전기자 코어가 서로 거의 어긋나 끝부분에서 일부만 대응하는 상태) 발전기가 길이가 거의 두 배 이상 길어져야 하므로 장치의 비대화라는 문제가 있고, 또 축에 고정된채 회전하여야 하는 회전자를 축 방향으로 슬라이드 이동이 가능하게 구성하는 것 및 축에 스플라인 키 구조를 채용하여 회전자를 이동시키는 것은 불합리적이고 유지관리가 어려울 수 있으며, 특히 무게 편중으로 인한 진동과 마찰을 발생할 여지가 많고, 또한 회전자를 이동시키는 수단으로 공기압 실린더를 사용하기 때문에 회전하는 회전자를 측방으로 정밀하게 정확한 위치로 이동시키는 것에 어려움이 있다.
또 다른 문제점으로 회전하는 회전자에는 원심력이 작용할뿐만 아니라 전기자와 상호 인력이 작용함으로 회전자의 측방으로의 이동은 바람직하지 않으며, 스플라인에 윤활유를 공급하는 문제와 공급된 윤활유가 전기자를 오염시키게 되고 화재를 일으킬 우려가 있으며, 공극사이에 이물질이 끼게 됨으로 발열로 인한 발화와 자기작용에 있어서 효율성이 떨어지게 되는 문제가 발생될 소지가 다분하다.
또한 대용량 발전기에 적용하기 어렵고, 더욱이 고속으로 회전하고 있는 상태의 회전자를 이동시키는 것은 기술적으로 어렵고 소음 진동의 유발로 장치의 사용수명을 현저히 감소시키기 때문에 고속 회전자형 발전기에는 적용이 더욱 어렵다는 문제가 있다.
{선행기술문헌}
(특허문헌 1) 한국특허등록 10-1136817호
이에 본 발명은 상기한 점을 감안하여 제안한 것으로서, 원동력의 변동이나 부하의 변동에 대해 발전기에서 자체적으로 회전자와 전기자간의 상호자기작용의 크기가 조정될 수 있도록 함으로써 유기기전력의 크기가 조절되어 원동력의 변동과 전기부하의 변동만큼을 전압의 가변으로 보상하고 발전기에서 일정한 주파수의 전기가 유도되도록 할뿐만 아니라, 원동기나 부하기기가 안정화되도록 하는 발전기 및 그에 최적화된 부품들을 제공하는데 목적이 있다.
따라서 본 발명의 발전기는 원동기의 운전을 제어하는 효율적인 조속기와 생산적인 제동장치와 같은 기능을 수행할 뿐만 아니라 전기부하의 증감으로 인한 콘센트 리액턴스에 대해서도 적절히 조처할 수 있도록 하는 효용성을 지닌다.
본 발명의 다른 목적은 콤팩트한 크기를 가지며, 에너지 변환성과 에너지 절감 및 효율성이 높고 관리가 용이하며, 전력수급체계가 안정적으로 보호되는데 기여하는 발전기 및 그 부품들을 제공하는 데 있다.
상기한 목적을 달성하기 위한 본 발명의 청구항 1 발명에 따르면, 발전기의 회전자에 사용하는 자기철편에 있어서, 상기 회전자용 자기철편은 U자형 단면의 몸체를 가지고 길이방향으로 연장하고 있으며, 서로 마주 대향하는 양측벽의 상단이 사각형의 요철 형상으로 되어 있으며, 상기 요철 형상중 철부가 회전자 자극부를 형성하고, 상기 요부는 회전자 비자극부를 형성하여, 회전자 자극부와 회전자 비자극부가 교대로 반복하여 형성된 것을 특징으로 한다.
본 발명의 청구항 2 발명에 따르면, 자기철편의 U자형 내부에 오목하게 형성되는 제1슬롯에는 제1영구자석을 삽입하되, 상기 회전자 자극부 및 회전자 비자극부에는 각기 그 높이에 상당하는 크기를 가진 제1영구자석을 수용토록 설치하며, 상기 제1영구자석의 N,S 극이 자기철편의 양측의 내벽면에 각기 접하여 발현되도록 배열하며, 또한 모든 극성이 같은 방향을 향하도록 배치된다.
본 발명의 청구항 3 발명에 따르면, 철부인 회전자 자극부의 상단에는 철편의 벽두께보다 더 돌출하는 턱을 가진 자극집중부(헤드부)를 구비하며, 상기 회전자 자극부에 배치되는 제1영구자석은 상기 자극집중부의 턱에 걸려 지지되도록 설치된다.
본 발명의 청구항 4 발명에 따르면, 발전기축에 장착되는 회전자에 있어서, 발전기축과 함께 회전하도록 상기 발전기축에 고정 설치되는 회전자 프레임과, 상기 회전자 프레임의 원주둘레에 걸쳐 일정한 간격을 두고 형성되고 축방향으로 연장하는 복수의 제1요홈들과, 상기 제1요홈들에 U자형 몸체 하단일부가 삽입 수용되어 고정장착되는 청구항 2항에 정의된 것과 같은 회전자용 자기철편을 포함하며, 상기 회전자용 자기철편들 사이의 간격은 제2슬롯을 형성하며, 상기 제2슬롯에 제1영구자석과 같은 크기와 방식으로 제2영구자석을 삽입하되, 상기 제2영구자석들은 상기 회전자용 자기철편의 벽면을 사이에 두고 상기 제1영구자석의 극성과 같은 극성을 가지도록 배치된 것을 특징으로 한다.
본 발명의 청구항 5 발명에 따르면, 회전자 프레임은 분할된 복수의 단위 분할몸체들의 조립체로 형성되며, 상기 조립체의 양측면에 보호덮개판이 볼트 체결된다.
본 발명의 청구항 6 발명에 따르면, 분할된 복수의 단위 분할몸체들은 서로의 밀착면에 각기 암수로 대응되는 원형 또는 다각형상의 요철결합부를 통해 결합된다.
본 발명의 청구항 7 발명에 따르면, 발전기의 전기자에 사용하는 자기철편에 있어서, 상기 전기자용 자기철편은 U자형 단면의 몸체를 가지고 길이방향으로 연장하고 있으며, 서로 마주 대향하는 양측벽의 상단이 사각형의 요철 형상으로 되어 있으며, 상기 요철 형상중 철부가 전기자 자극부를 형성하고, 상기 요부는 전기자 비자극부를 형성하여, 전기자 자극부와 전기자 비자극부가 교대로 반복하여 형성되며, 상기 U자형 단면을 형성하는 양측벽에 각각 보빈을 끼운 후 그 보빈에 코일을 감아 전기자 권선을 형성한 것을 특징으로 한다.
본 발명의 청구항 8 발명에 따르면, 발전기축에 장착되는 회전자의 외주를 감싸도록 공극을 두고 설치되는 전기자에 있어서, 비자성체의 중공의 원통형으로 제작되어 회전자의 원주외면을 감싸도록 설치되는 전기자 프레임과, 상기 전기자 프레임의 원통 내면으로 원주둘레에 걸쳐 일정한 간격을 두고 형성되고 축방향으로 연장하는 복수의 제2요홈들과, 상기 제2요홈들에 U자형 몸체 하단일부가 삽입 수용되어 고정장착되는 청구항 7항에 정의된 것과 같은 전기자용 자기철편을 포함하는 것을 특징으로 한다.
본 발명의 청구항 9 발명에 따르면, 전기자 프레임은 단일의 원통체 또는 복수개의 분할된 링상몸체의 조립체로 형성하며, 전기자 프레임의 원주 외면에 축방향으로 소정의 위상각을 가지도록 복수개소에 LM 가이드 레일을 설치하며, 상기 LM 가이드 레일은 발전기 케이스 내면에 마련된 LM 가이드 베어링의 안내를 따라 축방향으로의 직선 이동을 가이드함과 동시에 전기자 프레임의 원주방향으로의 회전을 차단하며, 또한 상기 LM 가이드 레일은 복수개의 분할된 링상몸체들의 고정결속수단으로 사용된다.
본 발명의 청구항 10 발명에 따르면, 전기자용 자기철편들의 전기자 권선들 사이의 공간은 절연 처리되는 것을 특징으로 한다.
본 발명의 청구항 11 발명에 따르면, 전기자 프레임 원통의 개방된 양측은 측면 프레임 부재가 볼트에 의해 체결 장착되며, 상기 측면 프레임 부재의 중심에는 발전기축을 베어링 지지하기 위한 슬리브가 구비되어 있어 상기 슬리브가 상기 발전기축을 따라 소정 거리 범위 내에서 미끄럼 이동이 가능하게 구성된다.
본 발명의 청구항 12 발명에 따르면, 동력원의 회전축에 클러치 접속되는 발전기축과; 상기 발전기축에 함께 회전 가능하도록 장착되는 청구항 4 내지 6항 중 어느 한 항에 정의된 것과 같은 발전기용 회전자와; 상기 발전기 회전자의 외주를 감싸도록 소정의 공극을 두고 동심으로 설치되고, 발전기축 방향으로 소정의 간격 범위 내에서 이동이 허용되도록 설치되며, 상기 회전자의 요철과 대응되는 동일 길이의 요철을 가진 청구항 8 내지 10항 중 어느 한 항에 정의된 것과 같은 발전기용 전기자와; 상기 발전기용 전기자의 외주를 감싸 보호하는 발전기 케이스와; 축방향으로 신축이 가능한 기구를 통해 상기 회전자를 이동시키는 리니어 모터와; 상기 발전기축의 회전수를 검출하는 속도센서 또는 발전기의 출력전압과 주파수를 측정하는 전력측정기와; 상기 속도센서 또는 상기 전력 측정기로부터 검출된 정보에 기초하여 상기 리니어 모터를 구동 제어하는 제어부;를 포함하여 구성되며, 상기 제어부는 발전기의 구동 초기나 원동기 구동속도의 저하시, 상기 전기자의 자극단과 상기 회전자의 자극단의 맞대응 길이가 작아지는 제1위치 방향쪽으로 상기 전기자의 위치가 이동되도록 상기 리니어 모터를 제어하며, 반대로 원동기의 구동속도의 증가시에는 상기 전기자의 자극단과 상기 회전자의 자극단의 맞대응 길이가 길어지는 제3위치 방향쪽으로 상기 전기자의 위치가 이동되도록 상기 리니어 모터를 제어하는 것을 특징으로 한다.
본 발명의 청구항 13 발명에 따르면, 전기자의 전기자 프레임 원통의 개방된 양측은 측면 프레임 부재가 볼트에 의해 체결 장착되며, 상기 측면 프레임 부재의 중심에는 발전기축을 베어링 지지하기 위한 슬리브(베어링 하우징)가 구비되어 있어 상기 슬리브가 상기 발전기축을 따라 소정 거리 범위 내에서 미끄럼 이동이 가능하게 구성된다.
본 발명의 청구항 14 발명에 따르면, 전기자의 축방향 이동거리는 상기 전기자용 자기철편의 철부의 폭 또는 요부의 폭에 상당하는 것을 특징으로 한다.
본 발명의 청구항 15 발명에 따르면, 제어부는 상기 속도센서에 의해 검출한 회전수 정보 또는 전기측정기에 의해 검출한 발전기의 출력전압 및 주파수 정보에 의해 상기 전기자의 축방향 이동을 제어한다.
본 발명의 청구항 16 발명에 따르면, 회전자 자기철편의 철(凸)부인 회전자 자극부의 상단에는 철편의 벽두께보다 더 돌출하는 턱을 가진 자극집중부(헤드부)를 구비하며, 상기 회전자 자극부에 접하여 제1슬롯과 제2슬롯에 각각 배치되는 제1영구자석 및 제2영구자석은 상기 자극집중부의 턱에 걸려 지지되도록 설치된다.
본 발명의 청구항 17 발명에 따르면, 전기자 및 회전자는 비자극부를 형성하는 요부의 길이가 자극부를 형성하는 철부의 길이보다 길게 형성되는 것을 특징으로 한다.
본 발명의 청구항 18 발명에 따르면, 발전기를 구동하는 동력원은 풍력에너지, 수력에너지, 화력에너지, 엔진의 구동력, 증기에너지인 것을 특징으로 한다.
본 발명의 청구항 19 발명에 따르면, 회전자 자기철편의 제1슬롯에 매설되는 제1영구자석은 철부 구간에는 세로로, 요부 구간에는 가로로 뉘어 설치하고, 양측의 벽부재를 형성하는 자기철심 상부에 형성된 사각요철구조의 철부와 요부에 일치되도록 하되, 같은 극이 자기철심을 향하도록 연접시켜 금속접착제로 밀착되게 고정시킨다.
본 발명의 청구항 20 발명에 따르면, 앤드실드의 베어링 하우징에 구비된 중심 가이드를 다각형으로 형성하고, 전기자의 양측 종단에 설치된 측면 프레임의 중심에 다각형 슬리브 또는 리니어 베어링을 설치하여 전기자가 직선왕복이동 가능하게 지지하는 것을 특징으로 한다.
본 발명의 청구항 21 발명에 따르면, LM 가이드 레일이 장착되는 전기자 프레임의 요홈이 축방향의 배기통로를 형성하게 된다.
본 발명의 청구항 22 발명에 따르면, 복수의 LM 가이드 레일들 사이로 전기자 프레임의 외표면에 축방향으로 연장하는 배기통로가 형성되는 것을 특징으로 한다.
본 발명의 발전기는 자기작용을 조정하기 위한 장치를 채용하고 있어서, 원동기 출력의 변동과 전기부하의 변동이 자기작용의 조정을 통해 전압의 증감으로 보상되고 규정 주파수의 전기를 유도할 수 있으며, 이에 따라 여자시스템이 없는 유도발전기에서 규정 주파수의 전기를 유도할 수 있고, 원동기를 제어하는 제동장치와 원동기의 운전을 효율적으로 관리하는 조속기와 같은 역할을 발전기가 수행할 수 있고, 아울러 전기부하의 변동에 효과적으로 대처하는 역할을 할 수 있다. 따라서 에너지 변환효율성이 높고 원동기와 전기계통의 에너지 효율이 높고 에너지 절감이 좋은 발전기가 제공되고, 구체적으로 다음과 같은 작용효과들이 기대된다.
◎ 회전자와 전기자가 요철 구조로 서로 대응하고 있어 전기자를 2cm ~ 3cm 정도 범위내에서 작게 최소한으로 이동시켜 맞대응 길이를 조정하는 것만으로, 전기자에 인가되는 자속의 세기를 최소에서 최대까지 넓게 조정할 수 있다. 그럼으로 본 발명의 자기작용을 조정하는 장치가 채용된 발전기는 원동력의 용량가변과 전기부하의 가변에 대해 최소에서 최대까지 조정할 수 있음으로 범용성과 경제성이 높고, 특히 발전기를 콤팩트하게 구성할 수 있다.
◎ 컨트롤 패널에서 주파수를 간단하게 재설정하게 되면, 그것에 따라 원동기 및 발전기 구동이 제어되므로 소비자가 사용에 적합한 주파수의 전기를 안정적으로 유도할 수 있다.
◎ 자기철심의 요철구조로 인해 회전자와 전기자 사이에 자연적인 공기순환통로가 마련되어 냉각효과가 좋고 따라서 열로 인한 변환효율의 저하를 막을 수 있고, 특히 회전자와 전기자 간의 자기작용이 최대가 되는 경우 회전자와 전기자에 발생하는 인력이 최대가 되어 발열 역시 최대가 되나 회전자의 요부와 전기자의 요부가 서로 맞대응하는 부분에서 큰 환상의 공극이 형성됨으로 공기순환통로가 확보되어 냉각효과가 우수하다.
◎ 원동기의 초동운전이나 저속운전 시에 전기자와 회전자 사이에 발생하는 강한 인력을 줄이도록발전기가 자기작용범위를 조정하여 역기전력이 최소화됨으로써 원동기가 정상운전으로 신속하게 진입할 수 있고, 반대로 원동기가 과도운전 상태로 진입 시는 자기작용범위를 조정하여 유도기전력을 높임으로써 이에 비례하는 역기전력이 원동기로 전달되어 원동기의 과속 운전이 진정될 수 있으며, 이에 따라 원동기의 과속운전을 제어하는 별도의 제동장치나 조속기의 생략이 가능하여 발전기 제작비용의 저감 및 에너지 낭비 등의 비생산적인 문제를 해결할 수 있다.
◎ 원동기가 정지운전으로 진입 시 낮은 속도의 기계회전에너지로 인해 주파수가 불량한 품질의 전기가 유도되지 않게 발전기축의 회전속도를 일정하게 유지되도록 부하를 조정함으로써 원동기의 운전에 소모되는 동력원을 절감하는 효과가 있다.
◎ 기존의 화력발전소, 원자력발전소, 소수력 발전시설, 풍력발전기, 태양광 발전시설 등의 모든 발전시설들과 송/변전시설, 에너지저장재생시설에 본 발명이 설치됨으로써 에너지생산성 및 변환효율성이 높고 에너지 손실을 크게 낮출 수 있다.
◎ 발전기축의 회전속도가 미세하게 변동되더라도 즉각 자기작용이 정밀하게 조정됨으로 발전기축의 회전속도의 변동이 거의 일어나지 않게 되어, 리액턴스의 증감으로 인해 전압의 변동은 일어나지만 규정된 주파수의 전기를 지속적 및 안정적으로 생산 유지할 수 있다.
◎ 전기자의 이동구간이 매우 짧아 소형 리니어 서보모터에 고감속기어를 채용함으로써 전기자의 이동이 신속하고 원활하게 수행될 수 있다.
◎ 송변전소에 주파수와 전압을 조정하기 위해 설치되는 복잡하고 에너지 효율성이 낮고 비용이 높으며 유지관리가 어려운 정류시설을 본 발명의 자기작용을 조정하는 장치가 채용된 발전기가 대체할 수 있음으로 높은 에너지효율성과 안전성이 보장될 수 있다.
◎ 본 발명은 전자회로를 이용하여 출력부하에 적합한 속도가변 기계회전에너지를 생산할 수 있어, 자동차, 선박 등의 운송기기와 산업용 기기에 사용되는 기계적 트렌스 미션을 간명하고 효율성이 높은 본 발명의 전동기로 대체할 수 있으며, 기타 에어컨, 냉장고, 전기온풍기, 전기히터 등에 본 발명의 자기작용을 조정하는 장치를 전동기에 채용함으로써 높은 에너지 효율성과 에너지 절감 효과를 가질 수 있다.
도 1은 본 발명에 의한 발전기를 나타낸 사시도이다.
도 2는 본 발명에 의한 발전기를 정단면하여 나타낸 도면이다.
도 3은 본 발명에 의한 발전기를 정단면하여 사시도 형태로 나타낸 도면이다.
도 4는 본 발명에 의한 발전기의 A-A 단면도이다.
도 5는 본 발명에 의한 발전기용 회전자의 일부 부품들의 분해 사시도이다.
도 6은 본 발명에 의한 발전기용 회전자 조립체를 일부 절개하여 나타낸 사시도이다.
도 7(a)는 본 발명에 의한 회전자 프레임의 단위 분할몸체이고, 도 7(b)는 본 발명에 의한 단위 분할몸체들을 조립하여 형성한 회전자 프레임을 나타낸 도면이다.
도 8은 본 발명에 의한 사각요철구조를 가지는 U자형 전기자 자기철편을 나타낸 도면이다.
도 9는 회전자용 자기철편에 영구자석을 매설하는 상세 개념도로서, (a)도는 회전자 자극단 부위를 단면하여 나타낸 것이고, (b)도는 회전자 비자극단 부위를 단면하여 나타낸 도면이다.
도 10은 본 발명에 의한 회전자의 비자극단 부위를 단면하여 나타낸 측단면 도면이다.
도 11은 본 발명에 의해 조립 제작이 완성된 회전자의 조립체를 발전기축 상에 설치하여 발전기 케이스 내에 수용한 상태를 보여주는 도면이다.
도 12는 본 발명에 의한 전기자의 외부 형상을 나타낸 사시도이다.
도 13은 본 발명에 의한 전기자의 외부 형상을 나타낸 정면도이다.
도 14는 본 발명에 의한 전기자를 구성하는 전기자 프레임을 나타낸 사시도이다.
도 15는 본 발명에 의한 전기자를 구성하는 전기자 프레임을 나타낸 측면도이다.
도 16은 본 발명에 의한 전기자의 정단면 사시도이다.
도 17은 본 발명의 전기자용 자기철편의 사시도이다
도 18은 본 발명의 전기자용 자기철편에 보빈을 끼우고 보빈외주에 코일을 감아 완성한 전기자용 자기철편을 나타낸 도면이다.
도 19(a),(b)는 본 발명의 전기자 프레임의 내면에 전기자용 자기철편을 설치하는 과정을 보여주는 도면이다.
도 20은 본 발명의 전기자 프레임의 내면에 전기자용 자기철편을 설치 완료한 상태를 보여주는 전기자의 단면사시도로서, 일측의 측면 프레임을 제거하고 내부 구조를 보여주는 도면이다,
도 21은 본 발명의 발전 시스템 및 제어 블록도이다.
도 22(a)(b)(c)는 본 발명 발전기의 작동과정을 설명하는 도면으로서, (a)는 전기자가 제1위치(최소 부하 위치)에 있는 도면이고, (b)는 전기자가 제2위치(설계 부하 위치)에 있는 도면이며, (c)는 전기자가 제3위치(최대 부하 위치)에 있는 도면을 나타낸다.
도 23은 발전기의 운전상태에 따른 회전자 자극단과 전기자 자극단의 맞대응관계를 나타낸 개념도로서, (a)는 최저부하(무부하) 운전시이고, (b)는 중간부하 운전시이며, (c)는 최대부하 운전시 회전자 자극부(25)과 전기자 자극부(43a)의 대응관계를 나타낸다.
이하에 본 발명의 구성을 첨부한 도면을 참조하여 설명한다.
도 1은 본 발명에 의한 발전기를 나타낸 사시도이며, 도 2는 본 발명의 발전기를 정단면하여 나타낸 도면이며, 도 3은 본 발명의 발전기를 정단면하여 사시도 형태로 나타낸 도면이고, 도 4는 본 발명의 발전기의 A-A 단면도이다.
본 발명의 발전기(10)는 부품들이 장착되고 보호하기 위한 중공의 원통형인 발전기 케이스(11)를 구비하고 있으며, 상기 발전기 케이스(11)는 외부 측면에 냉각을 위한 주름이 형성되고, 케이스(11)의 일부를 형성하도록 그의 양측을 덮어 보호하는 덮개(11a,11b)가 볼트 등의 체결수단을 사용하여 케이스 본체에 체결되어 있다.
그리고 상기 케이스(11)의 내부에 회전자(12)와 전기자(13)가 설치되며, 상기 회전자(12)의 중심에는 발전기축(14)을 구비하고 있고, 이 회전자(12)는 상기 발전기축(14)에 대해 키로 결합되어 발전기축(14)에 의해 회전하도록 되어 있으며, 덮개(11a)를 관통하여 외부로 연장된 발전기축(14)은 동력원인 원동기(15)의 축(15a)에 클러치(15b)를 개재하여 연결되어 있어, 원동기(15)의 회전구동력을 축(15a)과 발전기축(14)을 통해 전달받아 전기 에너지로 변화하도록 되어 있다.
상기 발전기축(14)은 내부에 베어링(16)(16a)을 구비한 베어링 하우징(17)(17a)에 의해 회전 가능하게 지지되고 있으며, 상기 베어링 하우징(17a)을 보호하는 덮개(11a,11b)는 상기 발전기 케이스(11)의 개구된 일측에 대해 볼트로 계합되고, 상기 발전기 케이스(11)의 원주 내면에는 상기 회전자(12)의 외주를 감싸도록 전기자(13)를 설치하되, 상기 발전기 케이스(11)는 내부에 설치된 전기자(13)가 축방향으로 소정 거리(L1) 범위 내에서 직선 왕복 이동이 가능하게 소정의 여유공간(18)(전기자의 이동허용 공간 L1)을 가지는 크기로 형성되고 있다.
그리고 상기 발전기 케이스(11)의 원주내면과 상기 전기자(13)의 외주면에는 상기 전기자(13)의 축방향 이동을 가이드하기 위한 직선운동베어링, 즉 LM 가이드 기구(19: 19a,19b)가 발전기축(14)과 평행하는 방향으로 복수열이 형성되어 있어 상기 전기자(13)가 발전기 케이스(11) 내부의 소정의 여유공간(18)(L1) 범위 내에서 축방향을 따라 원활하게 왕복 직선 이동을 하는 것을 상기 LM 가이드 기구(19)가 돕게 되며, 이에 따라 상기 전기자(13)는 원주 방향으로의 회전에 대해서는 고정되고, 축 방향으로는 소정의 여유공간(18)(L1) 범위 내에서 이동이 허용되어 상기 회전자(12)와의 상대적 위치가 변화될 수 있게 구성되어 있다.
복잡함을 피하기 위해 도면에 도시하지 않았으나, 상기 베어링(16)의 윤활과 냉각을 위해 상기 덮개(11a,11b)의 일측에 급유장치가 구비되어 있으며, 상기 발전기케이스(11)의 일 측에 냉각을 위해 내부 온도 상승 시 가열된 공기를 외부로 배출하기 위한 배기구가 형성되며, 상기 발전기 케이스(11)의 하단부에 지지부재(20)를 설치하되, 상기 지지부재(20)로는 방진과 수평을 조정할 수 있도록 가능하면 레벨러로 형성하는 것이 바람직하다. 또 선택적으로 상기 발전기 케이스(11)의 외부이자 상기 커플링(15b)과의 사이에 상기 회전자(12)에 관성력을 부여하기 위한 플라이휠과, 플라이휠에 접하여 발전기로부터 발산되는 열을 냉각시키기 위해 팬을 장착할 수 있다.
도 5 내지 도 7은 본 발명의 회전자 구조 및 회전자 프레임을 나타낸 도면으로, 회전자(12)는 상기 발전기축(14)에 고정 장착되는 회전자프레임(21)을 구비하고 있다. 상기 회전자프레임(21)은 비자성체로 형성되며, 단일 몸체로 형성할 수도 있으나, 도 7(a)에 도시한 것처럼 복수의 단위 분할몸체(21a,21b,21c,,,21r : 전체를 지칭하는 대표 부호로 21을 사용하기로 한다)들로 분할 형성하여 발전기축(14)에 끼워 조립한다. 그리고 회전자프레임(21)의 양측면은 보호덮개판(22)을 덧대고 볼트를 사용하여 고정시키되, 회전자프레임(21)은 발전기축(14)에 확고히 고정시켜 회전 방향으로 슬립을 일으키지 않고 전체가 함께 회전하도록 구성되어 있다. 이를 위해 회전자프레임(21)의 단위 분할몸체(21a,21b,21c,,,21r)들은 각기 발전기축(14)에 키 결합되거나 또는 위치 결정의 정확성을 보장하기 위하여 서로의 밀착면에 대응되는 암수 형상의 요철결합부(56)를 두고 있다. 상기 요철결합부(56)는 도 6 및 도 7에 도시하는 것처럼, 원형 돌출부와 원형 요홈의 결합 형태도 가능하나 바람직하기는 다각형상의 요철 결합을 통하여 상대적 슬립을 방지토록 결합시킨 후 양측 단부에 보호덮개판(22)을 장착하여 볼트 체결하면 조립체 전체가 일체로 발전기축 상에 고정되어 슬립없이 함께 회전하게 된다.
도 10은 회전자의 측단면도 형상으로서, 회전자(12)를 형성하는 회전자프레임(21)의 원주외면에는 회전자용 자기철편(23)을 설치하기 위해 축과 평행하는 방향으로, 일정한 간격(t1)을 두고 원주둘레에 걸쳐 대략 반원홈의 형상을 가지는 복수의 제1홈(24)들이 음각되게 형성되어 있다. 상기 제1요홈(24) 내에는 상기 자기철편(23)의 U자형 몸체의 하단 일부가 수용되어 볼트(도시 생략)에 의해 회전자 프레임(21)에 고정되며, 회전자용 자기철편(23)의 상단부는 제1요홈(24)의 표면으로부터 방사상 방향으로 돌출되어 서로 인접한 자기철편(23)들 사이에는 소정의 간격(t1)이 유지되고 있다.
도 8은 본 발명에 따른 회전자 자기철편을 나타낸 도면으로, 상기 회전자 프레임(21)의 복수의 제1홈(24) 내에 설치되는 강철소재의 회전자용 자기철편(23)은 측단면 형상이 U자형으로 그 가운데에 움푹 파인 부분이 제1슬롯(27)을 형성하고 있다. 상기 회전자용 자기철편(23)은 길이 방향을 따라 제1슬롯(27)의 양측에 위치하게 되는 철(凸)부인 회전자 자극부(25)에 의해 마치 말굽자석과 같은 단면 형상을 가지고 있으며, 상기 회전자 자극부(25)의 상단에는 마치 화살촉 모양으로 벽면의 양측으로 턱이 돌출되게 마련된 자극 집중부(헤드부)(28)가 구비되어 있다.
이와 같이 상기 발전기축과 수직되는 반지름 방향으로 연장하고 있는 상기 회전자 자기철편(23)의 제1슬롯(27)의 양측 상단에 사각 요철(凹凸)구조의 형상으로, 철부인 회전자 자극부(25)와 요부인 회전자 비자극부(26)가 축방향을 따라 교대로 반복하여 형성되어 있으며, 상기 회전자 비자극부(26)는 철편의 상부를 소정 간격을 두고 프레스 펀칭에 의해 재료를 따내어 제거함으로써 형성하게 된다. 그리고 회전자용 자기철편(23)의 가운데 제1슬롯(27)에는 도 5에 도시하는 제1영구자석(29)이 매설되며, 회전자 프레임(21)의 제1홈(24) 내에 배열된 회전자용 자기철편(23)들의 서로 이웃한 사이에 형성된 공간부인 제2슬롯(30)에는 제2영구자석(31: 31a,31b)이 매설되어 있다. 여기서 요부의 길이(폭)를 철부의 길이(폭)보다 길게 형성하면 자기작용이 최대에서 최소까지 실행될 수 있게 만드는 데 더욱 유리하다.
도 9는 회전자용 자기철편에 영구자석을 매설하는 상세 개념도로서, (a)도는 회전자 자극단 부위를 단면하여 나타낸 것이고, (b)도는 회전자 비자극단 부위를 단면하여 나타낸 도면이다.
회전자용 자기철편(23)의 제1슬롯(27)에 매설되는 대략 직육면체에 가까운 형상(그러나 자석의 형상이나 크기 및 높이는 제1슬롯의 내부면 형상에 의존하도록 제작된다)의 제1영구자석들(29)(이하 철부인 회전자 자극부에 설치한 자석은 부호 29a, 요부인 회전자 비자극부에 설치한 자석은 부호 29b로 구분하며, 자석 전체를 지칭하는 대표부호로는 29를 사용하기로 한다)은 같은 극이 같은 방향을 향하게 배열한다. 예를 들면 상기 철부인 회전자 자극부(25)에는 헤드부(28)까지의 높이에 맞추어 제1영구자석(29a)을 설치하고, 상기 요부인 회전자 비자극부(26)에는 그 벽면(26a,26b) 상단 높이에 맞추어 제1영구자석(29b)을 설치하여 상기 회전자 자기철편(23)의 내측면과 긴밀하게 매설되도록 하되, 도면에 도시한 것처럼 모든 제1영구자석(29a,29b)들이 자기철편(23)의 일측 벽면(25a)(26a)에 N극을 향하도록 배치하면, 그에 마주 대향되는 타측 벽면(25b)(26b)은 S극이 되도록 배열시키는 것이다.
한편, 원주방향으로 서로 소정 간격(t1)을 두고 연이어 설치함으로서 서로 이웃하게 된 회전자용 자기철편(23)들 사이에 형성된 상기 제2슬롯(30)에는 상기 제1영구자석(29)과 동일한 형태와 크기 및 배열 방법을 가지고 제2영구자석(31)(이하 제2슬롯에 철부인 회전자 자극부에 접하여 높게 세워 설치한 자석은 부호 31a, 요부인 회전자 비자극부에 접하여 낮게 가로로 뉘어서 설치한 자석은 부호 31b로 구분하고, 자석 전체를 지칭하는 대표부호로는 31을 사용하기로 하며, 크기나 형태는 제2슬롯의 형상에 의존한다)들을 매설한다. 상기 제1슬롯(27)에 매설된 상기 제1영구자석(29)과 상기 상기 제2슬롯(30)에 매설되는 제2영구자석(31)은 상기 회전자 자기철편(23)의 벽면을 사이에 두고 서로 같은 극성, 예를 들면 자기철편의 일측 벽면(25b,26b)에 접한 제1영구자석(29:29a,29b)의 극성이 S극이면, 그 일측 벽면(25b,26b)에 접하는 제2영구자석(31: 31a,31b)의 극성은 S극, 만일 N극이면 N극이 접하여 대응하도록 배치하고 있다. 그리고 상기 제1영구자석(29)은 상기 회전자 자극부(25)에는 세로로 설치하고, 상기 제2영구자석(31)은 상기 회전자 비자극부(26)에 가로로 설치한 후 금속접착제를 사용하여 견고하게 밀착 고정시킨다. 또한 제1슬롯과 제2슬롯에 각각 제1영구자석과 제2영구자석을 매설 고정한 후, 산화와 습기와 이물질의 접촉을 방지하고, 마찰 및 발열로 인한 손실을 방지하기 위해 비전도성으로 내식성과 내마모성을 가진 금속 또는 합성수지재 물질로 코팅처리하는 것이 바람직하다.
이 같은 방법으로 영구자석을 배열 설치하면, N극과 N극의 같은 극성끼리 접한 철편의 벽면의 상단부, 특히 집중력을 높이는 기능이 있는 헤드부(28a)를 통해 강력한 S극성의 자기장이 집중되어 분출되며, S극과 S극의 같은 극성끼리 접한 철편의 벽면 상단부, 특히 집중력을 높이는 기능이 있는 헤드부(28b)를 통해 N극성의 강력한 자기장이 집중 분출되어져, 종래 단일 극성만이 분출되는 경우와 비교하여 각각의 헤드부(28a,28b)를 통해 거의 2배로 큰 자기장이 분출된다. 이로써 회전자 자기철편(23)과 제1 및 제2영구자석(29)(31)의 배열 구조상 S극과 N극의 양쪽을 모두 사용 가능하여 자석 활용도가 높고, 구조상 별도 차폐 구조를 요하지 않아도 되므로, 회전자(12)의 볼륨을 크게 줄일 수 있다.
이에 따라 상기 회전자 자기철편(23)과 제1슬롯(27), 제2슬롯(30) 및 영구자석(29)(31)들이 회전자 요크를 형성하게 되는데, 철부인 복수의 회전자 자극부(25)들의 원주방향의 링상 집합체들은 회전자 자극단(32)을 형성하며, 요부인 회전자 비자극부(26)들의 원주방향의 링상 집합체들은 회전자 비자극단(33)을 형성하게 되어, 회전자 자극단(32)과 회전자 비자극단(33)이 축방향을 따라 외경에 있어 차이를 가진 링형상으로 교대로 나타나게 된다. 그런데 여기서 영구자석이 아닌 전자석 회전자를 채용하는 경우 철부인 복수의 회전자 자극부(25)들에 계자권선을 감아 형성할 수도 있다.
도 11은 본 발명에 의해 조립 제작이 완성된 회전자(12)의 조립체를 발전기축(14) 상에 설치하여 발전기 케이스(11) 내에 수용한 상태를 보여주는 도면으로, 발전기축(14)은 베어링(16,16a) 구조물에 의해 회전 가능하게 지지되고 있으며, 이 회전자(12)의 외주에는 추후 설명될 전기자(13)가 공극을 두고 감싸는 형태로 발전기 케이스(11) 내에 조립되어지게 된다.
도 12는 본 발명에 의한 전기자의 외부 형상을 나타낸 사시도이고, 도 13은 본 발명에 의한 전기자의 외부 형상을 나타낸 정면도이며, 도 14는 본 발명에 의한 전기자를 구성하는 전기자 프레임을 나타낸 사시도이며, 도 15는 본 발명에 의한 전기자를 구성하는 전기자 프레임을 나타낸 측면도이다. 그리고 도 16은 본 발명에 의한 전기자의 정단면 사시도이다.
전기자 프레임(34)은 비자성체로 중공의 원통형으로 제작되고, 상기 발전기케이스(11)의 원주내면에 수용되어 상기 회전자(12)의 원주외면을 감싸도록 설치된다. 전기자 프레임(34)은 중공의 단일 원통 몸체로 형성할 수 있으나, 바람직하기는 도면에 도시한 것처럼 복수개의 분할된 링상몸체(34a~34j,,,대표부호는 34로 표기)들로 제작하여 조립하므로써 하나의 원통 몸체를 형성하는 것이 가공의 편의상 좋다. 이처럼 전기자 프레임(34)을 분할된 링상몸체(34a~34j)들로 만들어 조립하는 경우, 전기자(13) 내부에서 발생되는 열을 외부로 방출하는 공기순환통로를 서로의 접촉 경계면상에 형성하거나 또는 복잡한 굴곡을 가진 내부 구성을 분할된 링상몸체에 구현하는 것이 용이하여 제작이 쉬운 장점이 있다.
상기 전기자 프레임(34)의 원주외면에 복수열, 예를 들면 도 15에 도시한 단면도상에 나타난 것과 90°위상각을 가지고 4개의 LM 가이드 레일(19a)이 구비되어 있으며, 상기 LM 가이드 레일(19a)은 상기 발전기케이스(11)의 원주내면에 설치된 LM 가이드 베어링(19b)과 결합됨으로써, 상기 LM 가이드 베어링(19b)에 의해 상기 전기자(13)의 축방향으로의 직선 왕복 이동을 가이드하게 구성되어 있으며, 이들 복수의 LM 가이드 레일(19a)은 복수의 링상몸체(34a~34g)들의 각각과 고정수단, 예를 들면 볼트 등에 의해 체결되어 하나의 원통몸체 조립체(전기자 프레임 34)를 형성하도록 하는 고정결속수단으로서의 기능도 수행한다.
발전기가 가동되면 회전자의 고속회전에 의한 공기와의 마찰과, 회전자 계자권선의 전류 발생과 이에 대응하는 전기자 권선의 쇄교 등으로 인해 열이 발생함으로, 냉각을 위해 발전기 케이스의 원주내면에 LM 가이드 레일(19a)이 구비되는 양측에 축과 평행되는 방향으로 배기통로(37a)를 성형하여 발전기 케이스 측면에 마련된 배기구에 통하도록 하여 방열한다. 또 LM 가이드 레일(19a)이 안착되는 요홈부분에 여유공간이 있어 그 여유공간이 축방향의 배기통로(37b)를 형성하게 되어 방열 기능이 우사하다.
도 15에서와 같이 상기 전기자 프레임(34)의 원통 내면에는 원주둘레에 걸쳐 소정 간격(t2)을 두고 축 방향을 따라 연장하는 대략 반원 형상의 복수의 제2홈(35)이 음각으로 성형되어 있고, 전기자 프레임(34) 원통의 개방된 양측에는 다수의 지지리브들을 가진 원판 형태로 구성되는 측면 프레임(36)이 볼트에 의해 체결 장착되어 있어 측면 프레임(36)에 의해 개방부가 차단되도록 구성되며, 그 측면 프레임(36)의 지지리브들의 중심에는 관통하여 지나는 회전자축(14)을 베어링 지지하기 위한 슬리브(17, 베어링 하우징)가 구비되어 있다(도 16 참조). 그리고 전기자(13)는 상기 슬리브(17)를 통해 발전기축(14)을 따라 소정 구간범위(L1) 내에서 축방향으로의 이동이 가능하며, 상기 슬리브(17)는 안정적인 가이드 기능과 함께 회전자(12)의 원주외면과 전기자(13)의 내주면 사이에 공극이 일정하게 유지되게 하는 작용을 한다.
도 17은 본 발명의 전기자용 자기철편의 사시도이고, 도 18은 본 발명의 전기자용 자기철편에 보빈을 끼우고 보빈외주에 코일을 감아 완성한 전기자용 자기철편을 나타낸 도면이며, 도 19(a),(b)는 본 발명의 전기자 프레임의 내면에 전기자용 자기철편을 설치하는 과정을 보여주는 도면이다. 그리고 도 20은 본 발명의 전기자 프레임의 내면에 전기자용 자기철편을 설치 완료한 상태를 보여주는 전기자의 단면사시도로서, 일측의 측면 프레임을 제거하고 내부 구조를 보여주는 도면이다,
도 17 내지 도 20은 본 발명의 전기자 프레임에 설치되는 전기자용 자기철편(38) 및 그 설치구조를 나타낸 도면으로서, 상기 전기자용 자기철편(38)은 그의 U자 형상 몸체의 하단이 전기자 프레임(34)의 원통 내면에 형성한 제2홈(35) 내에 설치된다. 상기 전기자용 자기철편(38)은 상기 회전자용 자기철편(23)과는 요철 형상 및 요철 폭(길이)의 크기가 동일한 것으로서, 단면이 U자형상을 가지도록 규소철판소재를 사용하여 제작되며, 양측에 축과 직각 방향으로 연장하여 측벽부재를 형성하는 2개의 전기자 자기철심(39)(부호 39는 측벽면 전체를 지칭한다)을 구비하고 있다. 그리고 그 양측의 측벽부재를 형성하는 전기자 자기철심(39) 사이의 공간, 즉 U자형 내부는 제1슬롯(40)을 형성하고 있으며, 소정의 간격(t2)을 두고 이웃하여 배열되는 상기 전기자용 자기철편(38)들 사이마다에는 제2슬롯(41)(간격 t2)이 형성되어 있다.
도 17과 도 18에 도시한 상기 전기자용 자기철편(38)에 있어, 측벽을 형성하는 양측의 전기자 자기철심(39)에는 자계와의 상대 운동에 의하여 교류전압을 발생하는 코일인 전기자 권선(42)이 감겨져 형성되어 있으며, 이때 코일의 피복 및 감김상태를 보호하기 위해 전기자 자기철심(39)에 실패 형상의 보빈(48)을 끼워 장착한 후 그 보빈(48) 외주에 코일을 감아 전기자 권선(42)을 형성하고 있다. 그리고 상기 양측의 전기자 자기철심(39)(부호 39는 측벽면 전체를 지칭한다)의 상단에는 길이 방향으로 사각요철구조가 일정한 간격으로 반복 성형되어, 철(凸)부는 전기자 자극부(43a)를 형성하며, 요(凹)부는 전기자 비자극부(44a)를 형성하고 있다. 이에 따라 상기 제1슬롯(40)과 상기 제2슬롯(41) 및 코일이 권회된 상기 전기자 자기철심(39)에 의해 전기자 요크를 형성하게 된다.
도 16 내지 도 20에 도시한 전기자용 자기철편 및 전기자의 단면도 형상에 있어, 전기자 프레임(34)의 원통 내면에 전기자 권선(42)을 구비한 전기자용 자기철편(38)들이 장착된 상태에서, 링상을 이루도록 배열된 전기자 자극부(43a)들의 원주상 집합체는 전기자 자극단(43)을 형성하며, 역시 링상을 이루도록 배열된 전기자 비자극부(44b)들의 원주상 잡합체는 전기자 비자극단(44)을 형성하여, 전기자 자극단(43)과 전기자 비자극단(44)이 상기 전기자(13)의 원통 내면에 소정의 폭(철부 및 요부의 폭)을 가지고 교대로 링상으로 반복하여 배열 형성되어 있다.
이 같이 전기자 프레임의 원주내면에 전기자용 자기철편 n개가 배열되면, n개의 자기철편 각각의 양쪽에 있는 n*2개의 자기철심에 전기자 권선이 구비됨으로, 전기자에는 n*2개의 다극다상이 구성되고, 이를 중권, 파권, 개로권, 폐로권, 환상권, 고상권 등으로 결선하여 출력단자로 유도하고 있다.
또한 전기자(13)의 직선왕복이동에 의한 전기자 권선(42)의 절단이나 손상을 방지하기 위해 전기자 권선의 끝부분에 용수철 형태로 여분의 권선을 마련하는 것이 바람직하다.
도 19와 도 20에서 보여지고 있는 것 같이, 전기자 권선(42)이 감긴 전기자용 자기철편(38)들이 모든 제2홈(35)들 내에 볼트에 의해 고정 장착되며, 전기자용 자기철편(38)들 사이에 형성되는 이격공간(45)(t2 내에 형성)에는 인접한 전기자 권선(42)이 서로 접촉하여 쇼트되는 것을 방지토록 절연물질을 충진하는 것이 바람직하다.
도 2에 나타나 있는바와 같이, 발전기(10)의 케이스(11)의 일부를 형성하는 덮개(11b)의 측면에는 적어도 1개, 본 발명의 실시예에서는 상하 또는 좌우로 2개의 리니어 모터(46)가 장착되며, 이 리니어 모터(46)로는 스텝핑 모터 또는 서보 모터가 사용된다. 그리고 상기 리니어 모터(46)는 모터의 회전운동을 직선변위운동으로 변환하는 감속기구, 예를 들면 신장되거나 몰입되는 축을 가진 볼스크류 동력전달기구(47)를 게재하여 전기자의 측면 프레임(36)에 접속되어 있어, 상기 리니어 모터(46)의 회전 구동방향 및 공급 펄스량 제어에 따라 볼스크류 동력전달기구(47)의 축이 몰입 또는 신장되면서 상기 전기자(13)를 소정 거리만큼 잡아 당기거나 또는 밀어내어 발전기축(14)을 따라 이동공간(18)(L1) 범위 내에서 축방향으로 매우 정밀하게 슬라이드 이동할 수 있게 구성되어 있다. 본 발명의 가장 큰 특징 중 하나는 추후 자세히 설명될 것이지만 종래기술과는 달리 고속 회전체인 회전자(12)가 아닌 회전하지 않는 전기자(13)를 축방향으로 이동하도록 구성하되, 반복되는 요철 형태의 구조중 철부분의 링상 집합체(도 5의 부호 32 및 도 20의 부호43 참조)를 1피치 구간 범위, 즉 도 2에 도시한 L1 이동길이만큼의 작은 범위 내에서의 이동을 통해 무부하로부터 최대부하까지 자기작용의 조정을 행할 수 있다는 점이다. 이는 회전자의 원주외면에 돌출된 자극단에서는 자기장이 집중적으로 발생되는데 반해, 침강된 비자극단에서는 자기장이 거의 발생하지 않는 현상을 적절히 조합한 결과이다.
도 21은 본 발명의 발전 시스템 및 제어 블록도로서, 본 발명은 상기 발전기 케이스(11)의 일측 덮개(11b)에 상기 발전기축(14)의 실시간 회전 속도를 감지하기 위한 속도센서(48)를 구비하고 있고, 또 상기 속도센서(48)가 실시간 검출하는 발전기축의 회전수 정보를 기 설정된 정격 회전수와 비교 분석하는 제어부(49)가 마련되어 있으며, 상기 제어부(49)는 발전기 케이스(11)의 일측에 설치하여도 좋으나, 별도의 장소에 설치하는 것도 가능하다.
상기 발전기축(14)이 회전해야 할 속도를 설정하고, 상기 전기자(13)에서 유도될 주파수를 설정하며, 원동기와 부하조정시스템과의 정보를 공유하기 위해 상기 제어부(49)는 컨트롤 패널(도시 생략)을 구비하고 있으며, 상기 속도센서(48)와, 상기 제어부(49) 및 상기 리니어 모터(46)에 직류전원을 공급하고, 한편 로렌츠 힘의 크기를 증감하는 부하장치로 활용될 수 있도록 축전지(50)가 상기 발전기 케이스(11)에 장착 또는 발전기 가까이에 마련되어 있으며, 그리고 상기 축전지(50)에 전기를 저장하기 위해 상기 발전기(10)에서 유도되는 교류 전기를 직류로 변환하기 위한 인버터(51)가 구비되어 있다.
본 발명의 발전기를 구비한 발전 시스템에 의하면, 발전기축(14)은 클러치 커플링(15b)을 통해 원동기(15)의 축(15a)에 접속하여 원동기(15)로부터 회전 동력을 얻게 되며, 회전자(12)의 회전에 의해 전기자(13)의 전기자 권선(42)에서 유도되어 발생되는 교류전기는 발전기 케이스(11)에 마련된 출력단자를 통해 출력되고, 이 같이 출력되는 전기는 자동전압조정기(52)를 통해 전압을 일정하게 조정한 후 수요처에 공급하게 된다. 또 이때 상기 원동기(15)로부터 상기 발전기축(14)에 공급하는 동력이 과도하거나, 상기 발전기(10)에서 변환되는 전기에너지를 사용하는 전기기기의 부하가 급감하는 경우 로렌츠 힘이 증감될 수 있도록 하기 위해 발전기 시스템에 별도의 부하기기를 구비할 수 있으며, 또 상기 발전기(10)와 공조운전을 실시하기 위해 상기 제어부(49)로부터 정보를 제공받는 계통연계나 전기수요처의 부하를 조정하는 부하조정시스템을 포함하고 있다.
이하 본 발명 발전기(10)의 작동과정을 도 22(a)(b)(c)를 참조하여 상술한다.
도 22(a)는 발전기의 시동 초기 최저부하(무부하) 상태에서의 전기자의 위치를 나타낸 도면이며, 도 22(b)는 발전기의 일반적 운전 상태에서의 전기자의 위치를 나타낸 도면이며, 도 22(c)는 발전기의 최대 출력 운전 상태에서의 전기자의 위치를 나타낸 도면이고, 도 23은 발전기의 운전상태에 따른 회전자 자극단과 전기자 자극단의 대응관계를 나타낸 개념도로서, (a)는 최저부하(무부하) 운전시이고, (b)는 중간부하 운전시이며, (c)는 최대부하 운전시 회전자 자극부(25)과 전기자 자극부(43a)의 대응관계를 나타낸다.
발전을 시작하게 되면, 먼저 원동기축(15a)과 발전기축(14)에 구비되는 커플링(31)을 서로 체결한 상태에서 원동기(15)(이 원동기는 엔진이거나 풍력발전부 또는 기타 수력발전부등이 될 수 있다)를 구동하게 되며, 원동기(15)가 구동됨으로 인해 회전동력을 전달받은 발전기축(14)이 회전하게 된다.
그런데 원동기(15)가 구동을 시작하는 발전 초기에는 정지 관성력에 의해 발전기(10)의 정상 작동까지 시간이 필요하고 발전 초기에는 과도한 힘이 작용하여 원동기와 발전기 시스템에 무리가 가게 된다. 발전 시작 시초 단계에서는 발전기축(14)의 회전수가 낮음으로, 제어부(49)는 미리 리니어 모터(46)를 구동 제어하여 전기자(13)를 축방향으로 이동시켜 도 19(a)에 도시한 위치, 즉 최소 부하 위치(일종의 무부하 상태로, 이를 '제1위치' 상태라 하며, 이때 좌측의 베어링(16)이 회전축상에서 도22(a)의 단턱부(57)에 걸려 있게 된다)로 이동시키게 되며, 이 '제1위치'상태에서는 도 23(a)에 도시한 개념도에서처럼 전기자(13)의 전기자 자극단(43)(전기자 자극부 43a의 링상 집합체)이 회전자(12)의 회전자 비자극단(33)(회전자 비자극부 16의 링상 집합체)에 대응하도록 위치되고, 전기자(13)의 전기자 비자극단(44)(전기자 비자극부 44a의 링상 집합체)은 회전자(12)의 회전자 자극단(32)(회전자 자극부 25의 링상 집합체)에 대응하도록 위치되게 된다. 다시말해 전기자 자극단(43)과 회전자 자극단(32), 즉 1쌍의 철편을 기준하면 전기자 자극부(43a)와 회전자 자극부 25가 서로 최대한 어긋나 있도록 위치된다.
이 같이 전기자의 자극단과 회전자의 비자극단(마찬가지로 전기자의 비자극단과 회전자의 자극단)이 서로 마주 대향하여 위치하게 되는 경우 양자 사이에 상호 작용하는 전자기 작용이 최소화되기 때문에, 원동기(15)가 구동되면 발전기 부하가 최소, 즉 거의 무부하에 가까운 구동상태로 운전을 시작하게 된다. 이에 따라 시동초기 원동기(15)에 무리한 과부하가 걸리지 않게 되어 회전속도가 빠르게 높아지면서 정격회전수에 도달하게 된다. 원동기(15)의 회전속도가 점차 높아지게 되면 이에 비례하여 제어부(49)가 점차 전기자의 자극단(43)과 회전자의 자극단(32)의 겹침량이 증가하는 방향으로 전기자(13)를 이동시켜 나가도록 제어함으로써(도 22(a) 상태에서 도 22(b) 상태로 전기자가 이동) 원동기(15)의 회전수에 알맞은 부하상태로 발전기(10)가 구동되어 전기를 출력하게 되는 것이다. 이 같이 하여 원동기(15)가 정상화되는 과정의 수준에 맞추어 발전기(10)의 부하가 최소 상태에서 점차 증가하도록 자동 조정됨으로써 시동 초기 갑작스런 부하작용에 의해 원동기에 가해지는 충격이나 무리 없이 워밍업 과정을 통해 원동기 및 발전기가 정격 운전 상태로 스무스하게 진입하여 도달하게 되는 것이다.
이처럼 발전기축(14)의 회전속도가 규정 속도보다 낮으면 전기자(13)가 이동되어 자기작용범위가 축소됨으로 원동기(15)의 운전에 가해지는 부하가 작아지게 된다. 그럼으로 원동기(15)의 운전상태가 규정 속도로 신속하고 원활하게 진입할 수 있게 되는 것이다. 발전기와 연결된 원동기의 초동운전 시 속도센서(48)의 검출정보에 따른 제어부(49)의 명령에 따라 발전기(10)의 전기자(13)는 자동으로 자기작용범위가 최소인 제1위치로 이동되어져(도 22(a) 참조) 원동기(15)가 거의 무부하 상태에서 운전하도록 조정하기 때문에, 원동기(15)의 시동이 용이하고 또 급격한 부하 인가에 따른 충격 발생이 없이 정상운전 상태로 신속히 진입할 수 있으며, 원동기(15)의 비정상 상태하에서 발전기(10)가 불량한 전기를 생산해 내는 비효율성 문제를 해결할 수 있다. 또한 원동기(15)의 운전을 정지 시에도 전기자(13)가 자기작용이 최소화된 제1위치로 이동하도록 하고 있기 때문에 원동기에 반발력으로 인한 충격이 없을 뿐만 아니라 발전기(10)의 회전자와 전기자에 진동이 발생하지 않으며, 제공되는 기계적회전에너지의 마지막까지 규정 주파수의 전기를 유도할 수 있다.
이 같이 하여 원동기(15)와 발전기(10)가 정상화된 일반 운전 조건 시에는 도 22(b)에 도시한것과 같이 전기자(13)가 제2위치에 이동하여 발전을 하게 된다. 그런데 만일 원동기(15)의 구동력이 그보다 증가하여 최대 출력 운전상태에 도달하면, 회전자(12)의 자극단(32)과 전기자(13)의 자극단(43)간의 맞대응 범위는 최대가 된 상태, 즉 전기자(13)가 제3위치(최대 부하 위치) 상태로 이동되어 발전기가 구동되며(도 22(c)의 좌측 베어링 16 위치 참조), 이 상태가 발전기의 최대 출력 운전 상태이다. 여기서 원동기(15)와 발전기(10)의 구동 조건 상태의 설정에 따라서는 회전자(12)의 자극단(32)과 전기자(13)의 자극단(43)간의 맞대응 범위가 도 22(b)와 같이 일부는 겹치고 일부는 어긋난 제2위치 상태(제1위치와 제3위치 사이의 적절히 설정된 임의 위치)를 최적 운전 조건으로 설정하여 운전이 진행될 수 있으며, 아니면 제3위치 상태(최대 부하 위치인 도 22(c) 상태)를 최적 운전 조건으로 설정하여 운전을 제어할 수 있다.
도 22(b) 및 도 22(c)와 같은 상태에서 회전자(12)가 회전하게 되면 회전자(12)의 외부를 감싸고 있는 전기자(13)의 전기자 권선(42)에 유도 기전력을 발생시키게 되며, 이에 따라 원동기(15)의 역학적 에너지가 전기 에너지로 변환되어 출력하게 되는 것인데, 이때 속도센서(48)로부터 검출된 발전기축(14)의 회전수가 감소된 것으로 나타나면, 제어부(49)는 리니어 모터(46)를 구동하여 전기자(13)를 자기작용범위가 축소되는 방향, 즉 전기자 자극단(43)과 회전자 자극단(32)의 맞대응 길이가 축소되는 방향으로 이동 제어하여(즉, 제3위치에서 제2 위치 방향으로 또는 제2위치에서 제1위치 방향으로 전기자의 이동량을 적절히 제어) 원동기의 운전에 가해지는 부하를 감소시킨다.
이와 반대로 검출된 회전수가 증가하면 제어부(49)는 리니어 모터(46)를 구동하여 전기자(13)를 자기작용범위가 증가되는 방향, 즉 전기자 자극단(43)과 회전자 자극단(32)의 맞대응 길이가 증대되는 방향으로 이동 제어하여(즉, 제1위치 또는 제2 위치에서 제3위치 방향으로 이동 하도록 제어), 원동기 및 발전기의 운전에 가해지는 부하를 증가시켜 보다 큰 전기를 출력할 수 있게 한다.
이 같은 본 발명의 제어에 따르면, 발전기축이 일정 속도로 회전해야만 회전자와 전기자 간의 쇄교가 일정하게 이루어져 발전기에서 일정한 주파수의 전기가 유도될 수 있는데, 예를 들면 풍력발전기와 같이 풍력의 변동이 심하더라도 그에 맞추어 발전기의 부하 조절을 통하여 발전기축의 회전속도를 일정하게 유지되도록 하므로써 안정적으로 무리없이 일정한 주파수의 전력 생산이 가능하다.
본 발명에 있어 특기할 점은 회전자(12)의 철(凸)부인 회전자 자극부(25)와 요(凹)부인 회전자 비자극부(26)가 축방향으로 따라 교대로 반복하여 배열되고 있고, 이에 대응하여 전기자(13)의 전기자 자극부(43a)와 전기자 비자극부(44a) 역시 철(凸)부와 요(凹)부가 교대로 반복 형성하고 있기 때문에 전기자(13)의 이동량 범위를 철(凸)부의 폭(L1 길이에 해당)만큼 작게 하여 원동력의 심한 변화 범위 및 넓은 주파수 변동을 카바할 수 있다는 점이다. 이에 따라 발전기 크기가 그리 커지지 않아도 되는 장점이 있다.
또한 U자형 자기철편의 가운데에 형성되는 공간인 제1슬롯과, 그 자기철편과 이웃하여 배치되는 자기철편들 사이에 형성되는 공간인 제2슬롯에 영구자석이 매설됨으로 회전자의 원주외면에는 별도로 이격된 공간이나, 극성을 차단하기 위한 차폐물이 없기 때문에 교호가 급격하게 이루어지지 않아 회전자 자극부와 전기자 자극부가 교우하는 자기작용과정이 원만하게 이루어지고, 회전자의 다극 구성이 용이하다.
또한 회전자 프레임의 원주외면에 축과 평행하는 방향으로 구비되는 n개의 제1홈에 회전자용 자기철편이 n개 배열 설치됨으로 n개의 제1슬롯이 마련되고, 서로 이웃하여 배열되는 회전자용 자기철편과의 사이에 n개의 제2슬롯이 형성되기 때문에, 결국 2*n개의 회전자 자기철심이 돌출되고, 2*n개의 제1슬롯과 제2슬롯이 침강되어 요크가 형성됨으로 2*n개의 다극 회전자가 구성되는 효과가 있다.
또 다른 장점으로 자기철편의 U자형 구조에서는 잔류자기가 반대편 자기철심으로 상호교차 이동되기 때문에 전하로 변환되지 못한 잔류자기에 의한 히스테리시스가 발생하지 않게 된다.
한편, 발전기(10)로부터 유도되는 전기를 사용하는 부하가 증감함에 따라 로렌츠 힘의 크기도 그 만큼 증감하게 되고, 그 힘이 발전기(10)에 작용하여 전기자(13)에 슬립주파수가 발생하게 됨으로 인해 전기자에서 유도되는 전기의 주파수는 회전자(12)의 교번주파수에 차이를 가져오게 된다. 그럼으로 발전기축(14)의 회전속도를 감지하는 속도센서(48)는 원동기(15)와 발전기(10)간의 운전상태를 점검하기 위한 정보로 활용하는 것이 바람직하고, 속도센서(48) 외에 발전기에서 변환되는 전기에너지의 주파수와 전압을 실시간 측정하기 위한 전력측정기(55), 예를 들면 출력단자에서 유도되는 전기의 주파수 또는 전압의 변동을 실시간 감지하는 센서 등을 추가하는 경우, 그 센서의 검출정보는 속도센서(48)의 검출정보와 함께 원동력의 변동이나 부하양의 변동에 대해 출력단자에서 규정 주파수의 전기를 유도하도록 제어하는 데 실효성이 높다. 특히 전기자와 회전자 사이에 요부에 의해 형성된 링상 공극이 자연적으로 열발산의 통로 역할을 하여 고속 고효율의 발전기가 가능하다. 그리고 제어부의 컨트롤 패널에서 주파수를 간단하게 재설정함으로써 소비자가 사용에 적합한 주파수의 전기를 유도할 수 있다.
또한, 축전지(50)나 별도 부하기기(53)가 가동되도록 함으로써 발전기(10)의 운전뿐만 아니라 원동기(15)의 운전과 별도 부하기기의 운전이 안정화될 수 있으며, 나아가 원동력의 출력이 증감되도록 원동기의 운전제어시스템에 정보를 제공하여 공조하고, 부하 단락이나 부하 분담이 실행되도록 부하조정시스템(54)에 정보를 제공함으로써 유기적인 안전운전과 에너지 효율성이 이루어질 수 있도록 되어 있다.
다른 한편, 해당 발전기(10)가 유도하는 전기를 사용하는 부하의 크기에 비례하는 로렌츠 힘은 해당 발전기(10)의 전기자(13)에 작용하여 전기자 슬립주파수가 발생하게 된다. 그러므로 전기자 슬립주파수까지를 감안하여 출력단자에서 전력측정기(55,예를 들면 출력전압 또는 주파수 측정센서 및 속도센서 등)가 검출하는 정보를 기준으로 하여 제어부(49)가 전기자(13)를 정확한 위치로 이동시키도록 제어함으로써 전기자 슬립주파수 문제가 해결되어 정밀한 규정 주파수의 전기에너지가 유도될 수 있다.
따라서, 제어부(49)는 발전기축(14)의 회전수를 검출하는 속도센서(48) 외에 발전기(10)에서 출력되는 전기의 주파수 및 전압 정보를 전력측정기(55)가 검출하고 이들 각각의 정보 또는 통합된 정보에 기초하여 전기자(13)의 이동을 제어할 수 있음을 물론이다.
한편, 구체적으로 도시하지는 않지만, 본 발명의 다른 실시예 구성에 의하면, 발전기가 소형인 경우 발전기케이스의 원주내면과 전기자프레임의 원주외면에 리니어 베어링과 가이드 레일을 구비할 필요 없이, 앤드실드의 베어링 하우징에 구비된 중심 가이드를 다각형으로 하고 전기자의 양측 종단에 설치된 측면 프레임의 중심에 다각형 슬리브 또는 리니어 베어링을 설치하여 전기자가 직선 왕복이동을 가능하게 지지토록 구성할 수 있다.
상기에서 본 발명의 바람직한 구체적 실시예에 대하여 설명하였으나, 이들 실시 예는 예시적인 목적일 뿐 본 발명이 이에 한정되는 것은 아니며, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그럼으로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
{부호의 설명}
10 : 발전기 11 : 발전기 케이스
11a,11b : 케이스의 좌우 덮개 12 : 회전자
13 : 전기자 14 : 발전기축
15 : 원동기 16,16a : 베어링
17,17a : 베어링하우징 18 : 여유공간(이동공간 L1)
19 : LM 가이드기구 19a : LM 가이드 레일
19b : LM 가이드 베어링 20 : 지지부재
21 : 회전자 프레임 22 : 보호덮개판
23 : 자기철편 24 : 제1홈
25 : 회전자 자극부 26 : 회전자 비자극부
27 : 제1슬롯 28 : 자극집중부(헤드부)
29 : 제1영구자석 30 : 제2슬롯
31 : 제2영구자석 32 : 회전자 자극단
33 : 회전자 비자극단 34 : 전기자 프레임
35 : 제2홈 36 : 측면 프레임
37a : 배기통로 37b : 배기통로
38 : 전자기용 자기철편 39 : 전자기용 자기철심(측벽)
40 : 제1슬롯 41 : 제2슬롯
42 : 전기자 권선 43 : 전기자 자극단
44 : 전기자 비자극단 43a : 전기자 자극부
44a : 전기자 비자극부 45 : 이격공간
46 : 리니어 모터 47 : 동력전달기구
48 : 속도센서 49 : 제어부
50 : 축전지 51 : 인버터
52 : 자동전압조정기 53 : 별도 부하기기
54 : 부하조정 시스템 55 : 전기측정 센서 56 : 요철결합부 57 : 단턱부
t1,t2 : 간격(공간)

Claims (22)

  1. 발전기의 회전자에 사용하는 자기철편에 있어서, 상기 회전자용 자기철편은 U자형 단면의 몸체를 가지고 길이방향으로 연장하고 있으며, 서로 마주 대향하는 양측벽의 상단이 사각형의 요철 형상으로 되어 있으며, 상기 요철 형상중 철부가 회전자 자극부를 형성하고, 상기 요부는 회전자 비자극부를 형성하여, 회전자 자극부와 회전자 비자극부가 교대로 반복하여 형성된 것을 특징으로 하는 발전기의 회전자용 자기철편.
  2. 제1항에 있어서, 상기 자기철편의 U자형 내부에 오목하게 형성되는 제1슬롯에는 제1영구자석을 삽입하되, 상기 회전자 자극부 및 회전자 비자극부에는 각기 그 높이에 상당하는 크기를 가진 제1영구자석을 수용토록 설치하며, 상기 제1영구자석의 N,S 극이 자기철편의 양측의 내벽면에 각기 접하여 발현되도록 배열하며, 또한 모든 극성이 같은 방향을 향하도록 배치되는 것을 특징으로 하는 발전기의 회전자용 자기철편.
  3. 제 1항에 있어서, 상기 철부인 회전자 자극부의 상단에는 철편의 벽두께보다 더 돌출하는 턱을 가진 자극집중부(헤드부)를 구비하며, 상기 회전자 자극부에 배치되는 제1영구자석은 상기 자극집중부의 턱에 걸려 지지되도록 설치되는 것을 특징으로 하는 발전기의 회전자용 자기철편.
  4. 발전기축에 장착되는 회전자에 있어서, 발전기축과 함께 회전하도록 상기 발전기축에 고정 설치되는 회전자 프레임과, 상기 회전자 프레임의 원주둘레에 걸쳐 일정한 간격을 두고 형성되고 축방향으로 연장하는 복수의 제1요홈들과, 상기 제1요홈들에 U자형 몸체 하단일부가 삽입 수용되어 고정장착되는 청구항 2항에 정의된 것과 같은 회전자용 자기철편을 포함하며, 상기 회전자용 자기철편들 사이의 간격은 제2슬롯을 형성하며, 상기 제2슬롯에 제1영구자석과 같은 크기와 방식으로 제2영구자석을 삽입하되, 상기 제2영구자석들은 상기 회전자용 자기철편의 벽면을 사이에 두고 상기 제1영구자석의 극성과 같은 극성을 가지도록 배치된 것을 특징으로 하는 발전기용 회전자.
  5. 제 4항에 있어서, 상기 회전자 프레임은 분할된 복수의 단위 분할몸체들의 조립체로 형성되며, 상기 조립체의 양측면에 보호덮개판이 볼트 체결되는 것을 특징으로 하는 발전기용 회전자.
  6. 제5항에 있어서, 상기 분할된 복수의 단위 분할몸체들은 서로의 밀착면에 각기 암수로 대응되는 원형 또는 다각형상의 요철결합부를 통해 결합된 것을 특징으로 하는 발전기용 회전자.
  7. 발전기의 전기자에 사용하는 자기철편에 있어서, 상기 전기자용 자기철편은 U자형 단면의 몸체를 가지고 길이방향으로 연장하고 있으며, 서로 마주 대향하는 양측벽의 상단이 사각형의 요철 형상으로 되어 있으며, 상기 요철 형상중 철부가 전기자 자극부를 형성하고, 상기 요부는 전기자 비자극부를 형성하여, 전기자 자극부와 전기자 비자극부가 교대로 반복하여 형성되며, 상기 U자형 단면을 형성하는 양측벽에 각각 보빈을 끼운 후 그 보빈에 코일을 감아 전기자 권선을 형성한 것을 특징으로 하는 발전기의 전기자용 자기철편.
  8. 발전기축에 장착되는 회전자의 외주를 감싸도록 공극을 두고 설치되는 전기자에 있어서, 비자성체의 중공의 원통형으로 제작되어 회전자의 원주외면을 감싸도록 설치되는 전기자 프레임과, 상기 전기자 프레임의 원통 내면으로 원주둘레에 걸쳐 일정한 간격을 두고 형성되고 축방향으로 연장하는 복수의 제2요홈들과, 상기 제2요홈들에 U자형 몸체 하단일부가 삽입 수용되어 고정장착되는 제7항에 정의된 것과 같은 전기자용 자기철편을 포함하는 것을 특징으로 하는 발전기용 전기자.
  9. 제8항에 있어서, 상기 전기자 프레임은 단일의 원통체 또는 복수개의 분할된 링상몸체의 조립체로 형성하며, 전기자 프레임의 원주 외면에 축방향으로 소정의 위상각을 가지도록 복수개소에 LM 가이드 레일을 설치하며, 상기 LM 가이드 레일은 발전기 케이스 내면에 마련된 LM 가이드 베어링의 안내를 따라 축방향으로의 직선 이동을 가이드함과 동시에 전기자 프레임의 원주방향으로의 회전을 차단하며, 또한 상기 LM 가이드 레일은 복수개의 분할된 링상몸체들의 고정결속수단으로 사용되는 것을 특징으로 하는 발전기용 전기자.
  10. 제8항에 있어서, 상기 전기자용 자기철편들의 전기자 권선들 사이의 공간은 절연 처리되는 것을 특징으로 하는 발전기용 전기자.
  11. 제10항에 있어서, 상기 전기자 프레임 원통의 개방된 양측은 측면 프레임 부재가 볼트에 의해 체결 장착되며, 상기 측면 프레임 부재의 중심에는 발전기축을 베어링 지지하기 위한 슬리브가 구비되어 있어 상기 슬리브가 상기 발전기축을 따라 소정 거리 범위 내에서 미끄럼 이동이 가능하게 구성되는 것을 특징으로 하는 발전기용 전기자.
  12. 동력원의 회전축에 클러치 접속되는 발전기축과;
    상기 발전기축에 함께 회전 가능하도록 장착되는 청구항 4 내지 6 중 어느 한 항에 정의된 것과 같은 발전기용 회전자와;
    상기 발전기 회전자의 외주를 감싸도록 소정의 공극을 두고 동심으로 설치되고, 발전기축 방향으로 소정의 간격 범위 내에서 이동이 허용되도록 설치되며, 상기 회전자의 요철과 대응되는 동일 길이의 요철을 가진 청구항 8 내지 10 중 어느 한 항에 정의된 것과 같은 발전기용 전기자와;
    상기 발전기용 전기자의 외주를 감싸 보호하는 발전기 케이스와;
    축방향으로 신축이 가능한 기구를 통해 상기 회전자를 이동시키는 리니어 모터와;
    상기 발전기축의 회전수를 검출하는 속도센서 또는 발전기의 출력전압과 주파수를 측정하는 전력측정기와;
    상기 속도센서 또는 상기 전력 측정기로부터 검출된 정보에 기초하여 상기 리니어 모터를 구동 제어하는 제어부;를 포함하여 구성되며,
    상기 제어부는 발전기의 구동 초기나 원동기 구동속도의 저하시, 상기 전기자의 자극단과 상기 회전자의 자극단의 맞대응 길이가 작아지는 제1위치 방향쪽으로 상기 전기자의 위치가 이동되도록 상기 리니어 모터를 제어하며, 반대로 원동기의 구동속도의 증가시에는 상기 전기자의 자극단과 상기 회전자의 자극단의 맞대응 길이가 길어지는 제3위치 방향쪽으로 상기 전기자의 위치가 이동되도록 상기 리니어 모터를 제어하는 것을 특징으로 하는 발전기.
  13. 제12항에 있어서, 상기 전기자의 전기자 프레임 원통의 개방된 양측은 측면 프레임 부재가 볼트에 의해 체결 장착되며, 상기 측면 프레임 부재의 중심에는 발전기축을 베어링 지지하기 위한 슬리브(베어링 하우징)가 구비되어 있어 상기 슬리브가 상기 발전기축을 따라 소정 거리 범위 내에서 미끄럼 이동이 가능하게 구성되는 것을 특징으로 하는 발전기.
  14. 제13항에 있어서, 상기 전기자의 축방향 이동거리는 상기 전기자용 자기철편의 철부의 폭 또는 요부의 폭에 상당하는 것을 특징으로 하는 발전기.
  15. 제14항에 있어서, 상기 제어부는 상기 속도센서에 의해 검출한 회전수 정보 또는 전기측정기에 의해 검출한 발전기의 출력전압 및 주파수 정보에 의해 상기 전기자의 축방향 이동을 제어하는 것을 특징으로 하는 발전기
  16. 제 12항에 있어서, 상기 회전자 자기철편의 철(凸)부인 회전자 자극부의 상단에는 철편의 벽두께보다 더 돌출하는 턱을 가진 자극집중부(헤드부)를 구비하며, 상기 회전자 자극부에 접하여 제1슬롯과 제2슬롯에 각각 배치되는 제1영구자석 및 제2영구자석은 상기 자극집중부의 턱에 걸려 지지되도록 설치되는 것을 특징으로 하는 발전기의 회전자용 자기철편.
  17. 제12항에 있어서, 전기자 및 회전자는 비자극부를 형성하는 요부의 길이가 자극부를 형성하는 철부의 길이보다 길게 형성되는 것을 특징으로 하는 발전기,
  18. 제12항에 있어서, 상기 발전기를 구동하는 동력원은 풍력에너지, 수력에너지, 화력에너지, 엔진의 구동력, 증기에너지인 것을 특징으로 하는 발전기,
  19. 제17항에 있어서, 상기 회전자 자기철편의 제1슬롯에 매설되는 제1영구자석은 철부 구간에는 세로로, 요부 구간에는 가로로 뉘어 설치하고, 양측의 벽부재를 형성하는 자기철심 상부에 형성된 사각요철구조의 철부와 요부에 일치되도록 하되, 같은 극이 자기철심을 향하도록 연접시켜 금속접착제로 밀착되게 고정시키는 것을 특징으로 하는 발전기.
  20. 제12항에 있어서, 앤드실드의 베어링 하우징에 구비된 중심 가이드를 다각형으로 형성하고, 전기자의 양측 종단에 설치된 측면 프레임의 중심에 다각형 슬리브 또는 리니어 베어링을 설치하여 전기자가 직선왕복이동 가능하게 지지하는 것을 특징으로 하는 발전기.
  21. 제12항에 있어서, 상기 LM 가이드 레일이 장착되는 전기자 프레임의 요홈이 축방향의 배기통로를 형성하게 되는 것을 특징으로 하는 발전기.
  22. 제12항에 있어서, 상기 복수의 LM 가이드 레일들 사이로 전기자 프레임의 외표면에 축방향으로 연장하는 배기통로가 형성되는 것을 특징으로 하는 발전기.
PCT/KR2019/014112 2018-10-31 2019-10-25 자기작용을 조정할 수 있는 장치와 이를 채용한 발전기 장치 및 그를 위한 부품 WO2020091313A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/288,209 US20210408881A1 (en) 2018-10-31 2019-10-25 Device capable of controlling magnetic action, electric generator using same, and part for same
EP19879197.2A EP3876393A4 (en) 2018-10-31 2019-10-25 DEVICE CAPABLE OF CONTROLLING MAGNETIC ACTION, ELECTRIC GENERATOR USING THE SAME, AND PART THEREOF
CN201980072477.1A CN112956112A (zh) 2018-10-31 2019-10-25 能够控制磁作用的装置、使用该装置的发电机及用于该装置的部件
JP2021522475A JP2022505805A (ja) 2018-10-31 2019-10-25 磁気作用を調整することができる装置、これを採用した発電機装置及びそのための部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180132504A KR102629514B1 (ko) 2018-10-31 2018-10-31 자기작용을 조정할 수 있는 장치와 이를 채용한 발전기 장치 및 그를 위한 부품
KR10-2018-0132504 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020091313A1 true WO2020091313A1 (ko) 2020-05-07

Family

ID=70463121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014112 WO2020091313A1 (ko) 2018-10-31 2019-10-25 자기작용을 조정할 수 있는 장치와 이를 채용한 발전기 장치 및 그를 위한 부품

Country Status (6)

Country Link
US (1) US20210408881A1 (ko)
EP (1) EP3876393A4 (ko)
JP (1) JP2022505805A (ko)
KR (1) KR102629514B1 (ko)
CN (1) CN112956112A (ko)
WO (1) WO2020091313A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137336A (zh) * 2021-11-16 2022-03-04 江西伟德智能电气有限公司 一种配电柜的安全性能检测装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424653B2 (en) * 2018-12-13 2022-08-23 Chun-Jong Chang DC motor-dynamo for bidirectional energy conversion between mechanical and electrical energy
TWI815142B (zh) * 2021-07-05 2023-09-11 李天德 發電機及其轉子結構
CN114094767A (zh) * 2021-12-02 2022-02-25 向雨 一种直流发电机
KR102507109B1 (ko) * 2022-07-22 2023-03-06 김길영 다층 교류 발전기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774521B2 (en) * 2001-05-16 2004-08-10 Koyo Seiko Co., Ltd. Brushless DC motor
KR100990160B1 (ko) * 2010-03-15 2010-10-29 도태환 기전력 안정화 영구자석 발전기
KR101136817B1 (ko) 2010-10-11 2012-04-13 김선수 이동식 회전자가 구비된 영구자석 발전기
KR20150018119A (ko) * 2013-08-09 2015-02-23 주식회사 에이디에스 자속 가변형 발전기

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB859176A (en) * 1956-10-19 1961-01-18 Philips Electrical Ind Ltd Improvements in or relating to rotary magnetic devices
GB904441A (en) * 1957-10-22 1962-08-29 Philips Electrical Ind Ltd Improvements in a magnetic rotor having a plurality of permanent magnets arranged onits periphery
DE59404836D1 (de) * 1994-09-23 1998-01-29 Siemens Ag Vorrichtung zur Einstellung des Axialspiels zwischen Rotor und Stator eines Motors
KR19990073260A (ko) * 1999-06-26 1999-10-05 김원덕 영구자석매입형3단전기자직류전동기
KR100743475B1 (ko) * 2005-11-25 2007-07-30 유병수 풍력발전기의 가변형 전기발생장치
JP2007270896A (ja) * 2006-03-30 2007-10-18 Nsk Ltd 直線案内装置の組み立て方法
KR100947518B1 (ko) * 2006-05-29 2010-03-12 박계정 다단 회전자를 구비한 코어리스 모터 및 그 모터를 사용한구동장치
WO2009004633A2 (en) * 2007-07-05 2009-01-08 Dror Nadam Variable speed generator with voltage regulation system based on the stator and/or rotor winding length
KR100915964B1 (ko) * 2007-11-02 2009-09-10 윤상기 관통홀이 형성된 고정자 및 레귤레이터를 가지는영구자석식 교류 발전기
KR20090076530A (ko) * 2008-01-09 2009-07-13 신덕호 영구자석의 자기력과 자기 극성을 이용한 동력 획득 엔진
CA2763451A1 (en) * 2009-06-15 2010-12-23 Maxime R. Dubois System for decoupling a rotor from a stator of a permanent magnet motor and flywheel storage system using the same
US8860272B2 (en) * 2010-04-30 2014-10-14 Alstom Hydro France Synchronous generator, especially for wind turbines
DK2577849T3 (da) * 2010-05-28 2021-03-08 Seabased Ab Statorramme til en lineær undervandsgenerator
CN102655363B (zh) * 2011-03-02 2014-11-26 株式会社丰田自动织机 旋转电机
CN103501098B (zh) * 2013-08-05 2017-12-01 张贻强 定子铁心线圈轴向可调式无刷永磁电机及其控制系统
JP5906360B2 (ja) * 2013-08-09 2016-04-20 株式会社 成田 磁力回転装置、電動機、および電動発電機
KR101597965B1 (ko) * 2014-07-02 2016-02-29 전자부품연구원 복합 자속을 이용한 모터
NO341230B1 (en) * 2015-11-06 2017-09-18 Ateltech As Scalable electric motor disc stack with multipole stator
JP2018113785A (ja) * 2017-01-11 2018-07-19 株式会社東芝 回転電機、回転電機システム、および機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774521B2 (en) * 2001-05-16 2004-08-10 Koyo Seiko Co., Ltd. Brushless DC motor
KR100990160B1 (ko) * 2010-03-15 2010-10-29 도태환 기전력 안정화 영구자석 발전기
KR101136817B1 (ko) 2010-10-11 2012-04-13 김선수 이동식 회전자가 구비된 영구자석 발전기
KR20150018119A (ko) * 2013-08-09 2015-02-23 주식회사 에이디에스 자속 가변형 발전기

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE, SEONG-YONG: "Finally, the era of abundant clean energy opens wide. Intelligent generator that induces variable capacity constant frequency electricity", KOREAN PATENT NEWS, no. 148-149, 2 November 2017 (2017-11-02), Korea, pages 13 - 17, XP009529429, ISSN: 2288-1913, Retrieved from the Internet <URL:http://e-patentnews.com/4575> *
See also references of EP3876393A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137336A (zh) * 2021-11-16 2022-03-04 江西伟德智能电气有限公司 一种配电柜的安全性能检测装置

Also Published As

Publication number Publication date
EP3876393A4 (en) 2022-08-10
KR102629514B1 (ko) 2024-01-26
EP3876393A1 (en) 2021-09-08
US20210408881A1 (en) 2021-12-30
CN112956112A (zh) 2021-06-11
JP2022505805A (ja) 2022-01-14
KR20200049343A (ko) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2020091313A1 (ko) 자기작용을 조정할 수 있는 장치와 이를 채용한 발전기 장치 및 그를 위한 부품
US4095150A (en) Two-phase asynchronous motor
US9425673B2 (en) Mechanically and electrically integrated module
KR20090074186A (ko) 발전기
KR101091436B1 (ko) 영구자석 모터
WO2013085231A1 (ko) 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
CN112671193A (zh) 一种混合励磁型电机
KR20200029495A (ko) 전기 기계
CN102891577A (zh) 一种开关磁阻电机
CN1551463A (zh) 电驱动装置
US4079278A (en) Hybrid field permanent magnet motor
WO2023146056A1 (ko) 비접촉식 회전 변압기 및 이를 포함하는 모터
WO2016171439A1 (en) Laundry treatment apparatus and magnetic gear device
KR102233200B1 (ko) 구동모듈 내장형 회전자를 갖는 발전시스템
CN112671137A (zh) 一种无刷电机
WO2018128487A1 (ko) 모터와 알터네이터를 융합한 구동기계
CN113437850A (zh) 一种双定子单转子轴向磁通混合励磁电机
CN202798413U (zh) 一种开关磁阻电机
KR20220108062A (ko) 회전 전기 기계용 브래킷
KR20210074696A (ko) 다단의 회전자를 구비한 고속 전동기
CA1140975A (en) Permanent magnet alternator with claw type rotor and means to adjust the excitation module
CN218473009U (zh) 一种具有励磁绕组机构的同步无磁电动机
WO2017122968A1 (ko) 고속 발전장치
KR102233201B1 (ko) 구동모듈 회전축에 회전자가 연결되는 발전시스템
WO2021010635A1 (ko) 4상 스위치드 릴럭턴스 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522475

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019879197

Country of ref document: EP

Effective date: 20210531