WO2018128487A1 - 모터와 알터네이터를 융합한 구동기계 - Google Patents

모터와 알터네이터를 융합한 구동기계 Download PDF

Info

Publication number
WO2018128487A1
WO2018128487A1 PCT/KR2018/000312 KR2018000312W WO2018128487A1 WO 2018128487 A1 WO2018128487 A1 WO 2018128487A1 KR 2018000312 W KR2018000312 W KR 2018000312W WO 2018128487 A1 WO2018128487 A1 WO 2018128487A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
commutator
motor
coupled
Prior art date
Application number
PCT/KR2018/000312
Other languages
English (en)
French (fr)
Inventor
선상규
Original Assignee
선상규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170002675A external-priority patent/KR101938889B1/ko
Application filed by 선상규 filed Critical 선상규
Publication of WO2018128487A1 publication Critical patent/WO2018128487A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a drive machine in which a motor and an alternator are fused, and more particularly, a conventional generator is formed by forming a core of a stator into a magnetic field core, which is a strong magnetic body, and then winding a coil to rotate each other due to a magnetic field between the rotor and the stator. Rotational resistance is generated a lot due to the force to be attached.
  • two rotors are placed so that the first rotor is in charge of the motor stator and the magnetic force generation function, and the second rotor is formed of magnetic material and developed.
  • the present invention relates to a driving machine incorporating a motor and an alternator that can increase the mileage by adding a charging function while driving an electric vehicle and an electric motorcycle that require both driving and charging.
  • the present invention constitutes an armature in the inner space of the wheel on the outside and install the field to the inside of the armature to combine with an insulating case, and a fixed shaft or a rotating shaft in the inside of the field separately
  • the first commutator and the second commutator are installed side by side in parallel, or the first commutator and the slip ring b are installed side by side, or the slip ring a and the two slip rings b are installed in series.
  • the present invention relates to a power generation apparatus capable of producing DC from the armature by forming a field magnetic pole between the field coil and the armature coil.
  • the brush holders equipped with the multiple brushes are provided in pairs to rotate by driving an external wheel.
  • the first commutator and the second commutator or the first commutator configured in series are bypassed to the slip ring b or the slip ring a and the slip ring b to supply the DC current, and again the field and the The second commutator or the slip rings were added to the armature to supply the armature.
  • the principle of the present invention is to improve the conventional synchronous generators need a lot of external power when rotating the heavy rotor and the commutator, and furthermore, to separate the shaft of the rotor and the commutator, which has not been attempted in the existing generator, Free and long connections allow separate installations on the ground and underground, increasing usability and usability.
  • the present invention relates to a driving machine in which a motor and an alternator are fused, and the magnitude of the electromotive force generated in the generator is proportional to the strength of the magnetic field and the length of the conductor and the relative speed of the magnetic field and the conductor.
  • the electromotive force can be increased by increasing the strength of the magnetic field or forming a long conductor, or by increasing the relative speed of the magnetic field and the conductor.
  • the relative speed of the magnetic field and the conductor is increased to increase the electromotive force.
  • the rotational speed of the rotor must be increased. In this case, high-speed rotation is required.
  • a generator capable of obtaining desired electromotive force by using two rotors has been developed.
  • An example of the "generator" of No. 10-1454805 is shown in FIG.
  • FIG. 4 is a structure in which electromotive force is obtained at low rotational speed by rotating the rotor 120 having a magnet and the inner casing 150 which is a magnetic body in the same direction, and the rotor 120 having a magnet as an advantage. And magnetic fields are induced by using coils wound around the core of the stator 130 formed of a compound soft material or a nonmagnetic material between a simultaneous rotating body called an inner casing 150 which is a magnetic material and formed of a compound soft material or a nonmagnetic material.
  • the above-mentioned conventional "generator” only possesses the function of a simple alternator without a motor function, so it is useful for engine power generation, wind power generation and tidal power generation, but the motor function and alternator for use as an electric vehicle or an electric transportation means. There is a need for a drive in which the part is fused.
  • the first commutator and the first commutator and the commutator may be rotated without reverse rotation of the field, armature and commutator used in the conventional generator.
  • the multiple brushes are rotated to repeat the supply and short circuit of the DC current to the field coil. And magnetic forces of opposite polarity to the armature coil are alternately induced.
  • the first commutator and the second commutator take into consideration that the range of the total magnetic flux of the field core 141 is generated up to the field by the number of poles of the field and the armature.
  • the first commutator and the slip ring b are configured in series
  • the slip rings a and the slip ring b are configured in series, and both of them are fixed and the multiple brushes are formed on the left and right sides.
  • Rotating the brush holder can save external power energy by rotating only the brush holder, which is relatively very light, than a conventional generator rotating a very heavy rotor and commutator. It can be configured so that the desired induced electromotive force can be generated.
  • the brush holder is provided with a pair of multiple brushes, and the first commutator and the second commutator or the first commutator and the slip ring b or the slip ring a and the slip are provided.
  • a ring b is provided, and the brush is supported by the brush holder while the first commutator and the second commutator or the first commutator or the first commutator and the slip ring b or the slip ring a and the slip ring b are wrapped in close contact with each other. .
  • the multi-brush is formed by rotating the phase difference by the number of poles of the field and the armature, respectively.
  • the connection and disconnection of the DC current is continuously repeated, so that the magnetic field core causes the N pole and the S pole to be repeatedly generated and disappeared with a phase difference as many as the number of field poles.
  • the S-pole and the N-pole having opposite polarities as the number of poles of the armature are alternately induced in the armature coil corresponding to the field iron core.
  • the present invention has been made to solve the above-mentioned problems of the prior art.
  • the motor and the alternator have not been fused and have been manufactured in their own form and interconnected.
  • An object of the present invention is to study the alternator coupled to the outside of the motor function to produce power when the motor and the alternator function is combined in one fuselage and the motor rotates.
  • the generator stator is molded in the functional part of the existing motor, and the rotor is installed between the generator stator and the motor stator so that the generator stator and the motor stator can obtain magnetism and magnetism in both directions simultaneously. Molding.
  • the motor function and alternator function combined in one fuselage are formed of the first rotor and magnet or conductor formed bidirectionally with magnets to increase the strength of the magnetic field, form a large number of conductors, or increase the relative speed of the magnetic field and the conductor.
  • the stator for power generation between the first rotor and the second rotor with a winding coil wound around the composite flexible material or nonmagnetic core Forming and rotating the first rotor, the second rotor, and the rotor housing which are fixed to the rotating shaft at the same time are very important, and in particular, to increase the relative speed of the first rotor and the second rotor.
  • the first rotor, the power stator and the second rotor By dissipating the original attraction force to attract and stop, the electromotive force of the outer magnet of the first rotor extends to the second rotor, generating a strong electromotive force, and suppressing cogging torque and eddy current.
  • a driving device in which a motor and an alternator are fused to reduce the desired rolling resistance and obtain an electromotive force.
  • the present invention is configured in such a way that the armature, the field and the commutator both use a non-rotating method to fix or rotate an existing shaft.
  • the field magnetic core and the field coil are provided in the inner space of the wheel, and the armature having the armature core and the armature coil outside corresponding to the field It is configured to be coupled together using the insulation case and to be coupled to the bushing to support.
  • the first commutator and the second commutator or the slip rings are formed by forming a central portion in a hollow and fixedly coupled to the outer circumferential surface of the fixed shaft by using a sleeve or a bearing.
  • the field core and the field coil is provided in the inside of the wheel and the armature core corresponding to the field and the armature provided with the armature coil to form a sleeve or bearing Slip to the rotary shaft by using.
  • first commutator and the second commutator or the center of the slip rings are formed in a hollow so as to stop by slidingly coupled to the outer peripheral surface of the rotating shaft and to stop one side or both sides in combination with the bushing.
  • the brush holder provided with the number of poles by the pair of multiple brushes is rotated by the driving of an external wheel.
  • the brush holder support When using the fixed shaft, the brush holder support is installed on the inner side of the bracket L and rotated by the wheel or external power.
  • the wheel is formed between the first commutator and the second commutator or the first commutator and the slip ring b or between the slip ring a and the slip ring b and coupled to an outer circumferential surface of a central portion of the rotary shaft. Or rotate by the external power.
  • the first commutator and the second commutator or the first commutator and the slip ring b or the slip ring a and the slip ring b are combined with a bushing by an insulating case and a coupling mechanism. .
  • the brush holder in which the multi-brush is formed the brush holder support is installed on the inner surface of the bracket L and is rotated by the wheel or external power.
  • the brush holder is provided between the first commutator and the second commutator or the first commutator and the slip ring b or between the slip ring a and the slip ring b and the outer peripheral surface of the rotary shaft Coupled to the wheel or rotated by the external power.
  • the second commutator in which the commutator pieces are formed in the same manner as the first commutator is configured to face each other in series with the brush holder interposed therebetween.
  • the Plus (+) and Minus (-) currents are equally divided by the number of field magnetic poles so that the supply and the short circuit can be repeated with the phase difference of the field magnetic pole number, respectively.
  • the Plus (+) power is connected to the electric coil and the field coil by the number of field magnetic poles, and the Minus (-) power is grounded to the main body.
  • the wheel or the external power is required to rotate the brush holder, and a storage battery for supplying the DC current to the field coil and the armature coil is provided.
  • a DC motor As a method of replacing the wheel required to rotate the brush holder, a DC motor, a pulley, a blade, a rotor wheel, a magnetic power rotor, or the like is used.
  • a drive machine in which the motor and the alternator of the present invention are fused may include a rotating shaft rotating at the center of the frame.
  • the rotary shaft may be supported by the rotary shaft support L and the rotary shaft support R mounted bearings on the left and right.
  • the second rotor is formed of a conductor or a magnetic body, and the left side of the second rotor side plate L
  • the right side may be coupled to be fixed to the rotating shaft using the coupling bearing and the binding body of the second rotor side plate (R).
  • stator for power generation is formed of a composite soft material or a non-magnetic core, the left side of the stator side plate L for the power generation stator side plate L using the coupling bearing and the combination of the outer circumferential surface of the rotary shaft support L (Slip) state
  • the right side may be coupled to the power generating stator side plate R in a slip state on the outer circumferential surface of the rotating shaft using a coupling bearing and a combination of the power generation stator side plate R.
  • the first rotor is formed of a magnetic body
  • the left side of the first rotor side plate L is coupled to the outer peripheral surface of the rotary shaft support L in a slip state by using the coupling bearing and the binding body of the first rotor side plate L
  • the right side may be coupled such that the first rotor side plate R is fixed to the rotating shaft by using a coupling bearing and a binding body of the first rotor side plate R.
  • stator for the motor is formed of a magnetic body or a conductor
  • the left side of the motor stator side plate L is coupled to the outer peripheral surface of the rotary shaft support L in the slip state by using the coupling bearing and the binding body of the motor stator side plate L
  • the stator side plate R for the motor may be coupled to the outer peripheral surface of the rotating shaft in a slip state by using the coupling bearing and the binding body of the motor stator side plate R.
  • the rotor housing is formed of a conductive property
  • the left side side L is coupled to the outer peripheral surface of the rotary shaft base L using a coupling bearing and the coupling body of the side housing L in a slip state
  • the right side side housing R is a side It may be coupled to the fixed shaft (Fixed) by using the coupling bearing and the coupling of the housing R.
  • the first rotor when the first rotor is molded into a magnetic body to increase the strength of a relatively larger magnetic field or to form more electromotive force, it may be molded into a second rotor magnetic body or a conductor.
  • the input wiring for the motor and the output wiring for power generation are winding coils wound on the magnetic core of the stator for the motor and winding coils wound on the composite flexible material or the non-magnetic core of the stator for the motor.
  • the brush holder having the multi-brush is the first commutator and the second commutator or the first commutator and the slip ring b or the slip ring a and the slip ring b
  • the DC current must be supplied to the series configuration method of the circuit, and it must be supplied to the field coil and the armature coil so that the first rectifier, the second commutator, and the slip rings, which are transfer media, are connected in series. Can be combined.
  • the first commutator and the second commutator may be molded into the same shape and commutator pieces.
  • the slip rings may be shaped to have the same shape as the first commutator and the number of field magnetic poles.
  • the second commutator molds the commutator piece of the first commutator as it is, and the brush holder rotates so that Plus (+) and Minus (-) face each other with the phase difference of the field and the armature for each pole.
  • the number of poles of the field and the armature can be divided into equal parts so that the supply and short circuit of the DC current can be repeated.
  • the slip ring b has a plus (+) and a minus (-) facing each other with a phase difference of the field and the armature, respectively, so that the brush current is rotated so that the brush current is rotated for each of the multiple brushes.
  • the number of poles of the field and the armature can be equally shaped so that the supply and the short circuit can be repeated.
  • the brush holder can be installed on the inner surface of the bracket L of the wheel when using the fixed shaft can be rotated by the wheel or external power.
  • the DC current supply line and the output wiring may be led to the outside by using the sleeve and the bushing.
  • the armature and the armature are coupled to the insulating case and installed separately from the fixed shaft or the rotating shaft, and the first commutator and the second commutator or the first commutator and the slip ring b or the slip ring a and the The slip ring b can be combined in series to install separately.
  • the coil connecting line connected to the first commutator and the slip ring a separated from the field coil may be installed at a short distance regardless of distance.
  • the coil connecting line connected to the armature from the second commutator or the slip ring b may also be installed at a short distance regardless of the distance.
  • the driving machine of the motor and the alternator of the present invention when the first rotor, the second rotor, and the rotor housing directly connected to the rotating shaft are simultaneously rotated in the same direction, first, by an external power source supplied to the motor Pressing force is generated between the motor stator and the first rotor to operate the rotation, and generates electromotive force between the second rotor and the power generation stator which are automatically rotated by the motor function.
  • the stator for power generation is left intact, the first rotor is formed of a magnetic body, and the second rotor is formed of a conductor so that a strong magnetic field is generated when the rotor and the rotor housing rotate simultaneously with the power stator in between.
  • Cogging phenomenon between the winding coil of the first rotor and the second rotor and the power generating stator by passing through the molten stator and extinguishing the attraction to stop due to the strong magnetic field between the first rotor and the second rotor Eliminating the excess eddy current, reducing the rotational resistance than the conventional generator, it is possible to increase the rotational speed to obtain the desired electromotive force.
  • the present invention can improve the durability of the winding coil by eliminating eddy currents and suppressing the generation of high heat because the stator for power generation has a core formed of a composite soft material or a non-magnetic material, it is possible to reduce the cogging torque and rotational resistance It does not require much rotational power, which has the advantage of saving power energy.
  • the stator for power generation is left as it is, and when both the first rotor and the second rotor are molded into a magnetic body and the first rotor and the second rotor rotate simultaneously, there are more magnetic bodies than the first type above.
  • the present invention is a coupling bearing of the motor stator side plates L, R equipped with bearings for coupling the motor stator, the rotor, the power generation stator, and the rotor housing to the rotating shaft, and the combined bearing of the first rotor side plate L and
  • a relatively simple wiring through hole is formed in each bearing through a sleeve shape, and the brush and commutator of the motor are formed. Since the structure is simplified, various generators are easy to manufacture regardless of the rated capacity.
  • a conventional generator rotates the field and the commutator at the same time
  • the present invention is to form the multiple brush by the number of poles of the field and the armature without rotating the field and the commutator
  • By rotating the brush holder to repeat the supply and disconnection of the DC current to create a magnetic field stimulation it is possible to generate a desired induced electromotive force in the armature coil, while minimizing the supply of external power energy compared to a conventional power generation device to generate high electromotive force. It is a very useful DC generator that can provide.
  • the armature and the field can be configured in the inner space of the wheel by the insulating case, and can be installed in a detachable form by disconnecting the shaft that was connected between the field and the first commutator.
  • the field and the armature are separately installed in the inner space of the wheel, and the first commutator and the second commutator or the first commutator and the slip ring b or the slip ring a and the slip ring b are Independently configured and configured outside the fixed shaft or the rotating shaft, it is highly useful for various industries.
  • FIG. 1 is a cross-sectional view of a driving machine in which a motor and an alternator are fused according to a preferred embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view taken along the line A-A of FIG.
  • FIG. 3 is a longitudinal sectional view taken along the line B-B of FIG.
  • FIG. 5 is a coupling configuration diagram of a first commutator and a second commutator for use of a fixed shaft of the present invention.
  • Figure 6 is a coupling configuration of the first commutator and the second commutator in use of the rotary shaft of the present invention
  • Figure 7 is a coupling configuration of the first commutator and the slip ring b of the fixed shaft use of the present invention
  • FIG. 8 is a configuration diagram of the coupling of the first commutator and the slip ring b of the rotary shaft of the present invention
  • Figure 9 is a coupling configuration of the slip ring a and the slip ring b of the fixed shaft use of the present invention
  • FIG 11 is a cross-sectional view A, B and C of the first and second commutator of the present invention.
  • Figure 13 is a cross-sectional view of the slip ring a and slip ring b of the present invention A, B, C
  • 16 is a reference diagram of the combination of the slip ring a and slip ring b of the present invention.
  • Figure 17 is a reference diagram of the slip ring of the present invention.
  • the second rotor is wrapped, and is formed of a composite soft material or a nonmagnetic core, and the left side is coupled to the outer circumferential surface of the rotary shaft support L in the form of a slip by using a coupling bearing and a binding member of the stator side plate L for power generation,
  • the right side is a power generation stator having a winding coil wound around the composite flexible material or nonmagnetic core coupled to the outer peripheral surface of the rotary shaft in the form of a slip (Slip) by using the coupling bearing and the binding body of the power stator side plate R;
  • the left side of the power generation stator is coupled to the outer circumferential surface of the rotary shaft support L in a slip form by using a coupling bearing and a binding body of the first rotor side plate L, and the right side is coupled to the first rotor side plate R.
  • the right side is a motor stator having a coil wound around a magnetic core coupled to a slip shape on the outer circumferential surface of the rotating shaft by using a coupling bearing and a binding body of the motor stator side plate R;
  • the left side is coupled to the outer circumferential surface of the rotary shaft support L and the shape of the slip (Slip) by using the coupling bearing and the binding body of the side housing L, the right side using the coupling bearing and the binding body of the side housing R.
  • a non-conductive rotor housing coupled to the fixed shaft by fixing (Fixed);
  • the winding coil wound around the magnetic core of the motor stator and the winding coil wound around the composite flexible material or the nonmagnetic core of the power stator are combined bearings of the stator side plate L for the motor and the first rotor side plate L.
  • Motor input wiring and power generation output wiring which are safely drawn to the outside by forming a wiring through hole by using a bearing, a coupling bearing of the stator side plate L for power generation, a side or a sleeve of the coupling bearing of the side housing L;
  • first rotor, the second rotor, and the rotor housing are fixedly coupled to the rotation shaft to rotate together in the same direction.
  • the drive machine 1, a motor and the alternator in accordance with a preferred embodiment of the present invention is a rotary shaft 10, rotary shaft support L, R (11, 12), rotor housing ( 110), the side housing L, R (111, 112), the coupling bearing 113 of the side housing L, the motor stator 140, the winding coil 140a wound around the magnetic core, stator side plates L, R (141, 142) for the motor , Coupling bearings (143,144) of stator side plates (L, R) for motors, first rotor (130), first rotor side plates (L, R, 131, 132), coupling bearings (133) of first rotor side plates (L), for power generation Stator 120, winding coil 120a wound around composite flexible material or nonmagnetic core, stator side plates L, R (121
  • the rotary shaft 10 is rotated by energy generated by an external power source or an external power generating means, and both ends thereof are rotatably supported by the rotary shaft support L, R (11, 12).
  • the rotary shaft bearing 13 is mounted inside the rotary shaft support L, R (11, 12), it is a means for coupling so as to rotate the rotary shaft (10).
  • the motor stator 120 is formed of a conductor so that the left side of the motor stator side plate L 121 uses the coupling bearing 123 and the binding body 125 of the motor stator side plate L to form an outer circumferential surface of the rotary shaft support L 11. And slip (Slip) is coupled to the right side, the stator side plate R (1242) for the motor slips on the outer circumferential surface of the rotating shaft 10 by using the coupling bearing 124 and the binding body 126 of the stator side plate R for the motor ( It is coupled in the form of a slip) to always remain stopped regardless of the rotational force of the rotary shaft 110.
  • the left side of the first rotor 130 is the first rotor side plate L (131) and the outer peripheral surface of the rotary shaft support L (11) by using the coupling bearing 133 and the binding body 135 of the first rotor side plate L It is coupled in the form of a slip, and the right side is coupled so that the first rotor side plate R 132 is fixed to the rotating shaft 10 using the binding body 136 (Fixed).
  • the left side of the stator 140 for power generation is the outer peripheral surface and slip (Slip) of the rotating shaft support L (11) by using the coupling bearing 143 and the binding body 145 of the stator side plate L for power generation stator L (141) ) Is coupled to the right side, and the stator side plate R 142 for power generation is coupled to the outer peripheral surface of the rotating shaft 10 by using a coupling bearing 144 and the binding body 146 of the stator side plate R for power generation in a slip state.
  • the side housing L 111 is coupled to the outer circumferential surface of the rotary shaft support L 11 and slip form using the coupling bearing 113 and the binding body 115 of the side housing L.
  • the side housing R 112 is fixed to the rotating shaft 10 using the binding body 116 (Fixed).
  • the outer peripheral surface of the rotary shaft support L (11) can be connected in the form of a sleeve (Sleeve) at intervals to facilitate slip.
  • the left side maintains a slip state, and the first rotor 130, the second rotor 160, and the rotor coupled to the right side are fixed to the rotation shaft 10.
  • the housing 110 is rotated in the same direction at the same time.
  • the second rotor 160 is directly fixed to the rotating shaft 10 (Fixed) is directly coupled, the left side of the first rotor 130 and the rotor housing 110 is the coupling bearing 133 of the rotor side plate L
  • the coupling bearing 113 and the side housing L are rotated while maintaining a slip state through engagement with the outer circumferential surface of the rotary shaft support L 11 by using the binding body 135 and the binding body 115, and the right side of the coupling housing 113. Since the rotor 130 and the rotor housing 110 are fixed to the rotating shaft 10 (Fixed) is coupled to the same direction along the rotating shaft to be rotated at the same time.
  • the stator 140 uses the winding coil 140a wound on the core formed of the composite soft material or the nonmagnetic material, the rotational speed is increased without the occurrence of much rolling resistance due to the reduction of cogging torque and eddy current, and thus the desired electromotive force and power energy. To save money.
  • the conventional permanent magnet generator is formed of a magnetic field core which is a strong magnetic body in the core of the stator, and the coil is wound, and thus the rotational resistance is generated a lot due to the magnetic field that is trying to stick between only one rotor and the stator.
  • the present invention using the first coil 130 formed of a magnetic material using the winding coil (140a) wound on the composite flexible material or a non-magnetic core in the power generation stator 140 and
  • the second rotor 160 formed of a conductor or a magnetic body and the rotor housing 110 which is a nonmagnetic material rotate in the same direction, a mutually flexible magnetic material or a nonmagnetic material is induced while mutual magnetic fields are induced between the power generating stators 140.
  • electromotive force in the power generation stator 140 using the winding coil 140a wound on the core natural rotational force is obtained without rotation resistance.
  • the rotor 130 and the second rotor 160 are formed of a magnetic material, and the stator 140 for power generation using the winding coil 140a wound on a composite flexible material or a nonmagnetic core therebetween.
  • the stator 140 for power generation using the winding coil 140a wound on a composite flexible material or a nonmagnetic core therebetween When the first rotor 130, the second rotor 160 and the rotor housing 110 rotate at the same time, a strong magnetic field passes through the stator for power generation 140, the rotor 130 and the second time Relatively larger electromotive force may be obtained by dissipating the attraction to each other due to the strong magnetic field between the electrons 160.
  • the present invention includes the field 240 and the field 240 having the field core 241 wound around the field coil 242 in the inner space of the wheel 20 After combining the armature coil 252 formed to be wrapped in the spaced apart state of the outside using the insulating case 230, one side is the outer peripheral surface and the fixed shaft 200 by using the support member 231 Is coupled to the bushing 202.
  • the first commutator 210a which is provided with a plurality of commutator pieces 211 so as to be connected to the field coil 242 one by one, is separated from the field 240 and the second commutator 210b or the slip ring. It is coupled with b (205b) is coupled to one side of the bushing 202.
  • the brush holder 212 is provided with the brush holder support 219 and the fixed shaft 200 is coupled to the inner surface of the bracket L 21 of the wheel 20 to rotate, the rotating shaft 201 In the case of being coupled to the central portion of the rotary shaft 201 is rotated with the rotary shaft 201 when the wheel 20 is rotated.
  • the DC current 221 is connected to the second commutator 210b or the slip ring b 205b according to polarity.
  • the brush holder 212 is provided with the brush holder support 219 and the fixed shaft 200 is coupled to the inner surface of the bracket L (21) of the wheel 20 to rotate, the rotary shaft ( 201 is coupled to the central portion of the rotation shaft 201 is rotated with the rotation shaft 201 when the wheel 20 is rotated, the first commutator 210a and the second commutator 210b or the A brush connecting line 215 connects each of the multiple brushes 213 in close contact between the first commutator 210a and the slip ring b 205b or between the slip ring a 205a and the slip ring b 205b. do.
  • the first commutator 210a and the second commutator 210b or the slip rings a and b 205a and 205b have a central hollow shape in the center of the fixed shaft 200 or the rotational shaft 201. 203b) are configured in combination.
  • the multiple brush 213 is rotated by the brush holder support 219 while being in close contact with the first commutator 210a and the second commutator 210b or the slip rings a, b (205a, 205b).
  • the bracket L 21 of the wheel 20 allows the bearing a 203a to be inserted into the outer circumferential surface of the fixed shaft 200 to rotate, and the bracket R 22 ) Is a sleeve bearing 204 to the outer circumferential surface of the fixed shaft 200, the bushing 202 is coupled to the outer circumferential surface of the sleeve bearing 204, bearings different in size to the outer circumferential surface of the bushing 202 Combine and rotate 203c.
  • the bracket L 21 of the wheel 20 allows the bearing a 203a to be inserted into the outer circumferential surface of the rotating shaft 201 to rotate, and the bracket R 22 may be rotated.
  • the sleeve bearing 204 is coupled to the outer circumferential surface of the fixed shaft 200
  • the bushing 202 is coupled to the outer circumferential surface of the sleeve bearing 204
  • the bearing c 203c is attached to the outer circumferential surface of the bushing 202.
  • the bushing 202 forms a hollow to supply the DC current 221 to the second commutator 210b or the slip ring b 205b or to derive the output wiring 260 from the armature coil 252. do.
  • the second commutator 210b and the second commutator are formed by the multiple brushes 213 that are formed by rotating the phase difference by the number of poles of the field 240 and the armature 250, respectively.
  • the coupling and disconnection of the DC current 221 is repeated through the slip ring b 205b with the phase difference of the field coil 242 by the number of field magnetic poles, respectively, so that the field core 241 has the number of field magnetic poles.
  • the phase difference of causes the N pole and the S pole to be repeatedly generated and disappeared.
  • the armature coil 252 corresponding to the field core 241 is alternately induced with the S pole and the N pole having opposite polarities sequentially as the number of poles of the armature 250.
  • the winding coil corresponding to the same field also forms the same field of the armature core 251. .
  • the first commutator 210a or the slip ring a 205a connected to the field coil 242 and the coil connection line 243 one to one, respectively, is provided, and the armature 250 and the coil connection line 253 are provided.
  • the first commutator 210a and the second commutator 210b or the first commutator 210a in a state where the second commutator 210b or the slip ring b 205b is connected to each other by a number of electrical stimulations.
  • the number of poles 240 is connected to the number of poles of the armature 250.
  • the brush holder 212 by the wheel 20 while the second commutator 210b or the slip ring b 205b is supplied with the DC current 221.
  • the corresponding field is As the sequential and repetitive alternation of the positive electrode (+) and the negative electrode (-) occurs in the iron core 241, the electromagnet 252 has a phase difference corresponding to the number of poles, and the induced electromotive force is continuously generated. Electromotive force is output through the output line 260 connected to 252.
  • housing side plate R 113 coupling bearing of the housing side plate L
  • Stator side plate L for the motor 142 Stator side plate R for the motor
  • first rotor side plate L 132 first rotor side plate R
  • stator side plate for power generation L 122 stator side plate for power generation R
  • first commutator 210b second commutator 211: commutator
  • insulation case 231 support member
  • field 241 field core 242: field coil 243: coil connection line

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc Machiner (AREA)
  • Motor Or Generator Current Collectors (AREA)

Abstract

본 발명은 모터와 알터네이터를 융합한 구동기계에서 모터 기능과 알터네이터 기능을 한꺼번에 구현함으로서 경제성과 더불어서 구동과 축전(Charge)을 동시에 요구하는 전기차와 전기오토바이 등에서 운행중에 충전기능을 더함으로써 주행거리를 늘릴 수 있는 에너지융합기술에 관한 것이다.

Description

모터와 알터네이터를 융합한 구동기계
본 발명은 모터와 알터네이터를 융합한 구동기계에 관한 것으로, 보다 상세하게는 종래의 발전기는 고정자의 코어를 강력한 자성체인 계자철심으로 성형한 후 코일을 권선을 하여 회전자와 고정자간에 자기장으로 인해서 서로 붙으려고 붙으려는 힘(attraction) 때문에 회전저항이 많이 발생하는데, 본 발명에서는 회전자를 2개 두어서 제1회전자는 모터용고정자와 자기력발생 기능을 담당하고, 제2회전자는 자성체로 성형하고 발전용고정자를 복합연성물질 또는 비자성체로 성형하여 발전용고정자를 사이에 두고 제1회전자와 제2회전자가 동시에 회전할 때 강한 자기장이 발전용고정자를 통과하며, 제1회전자와 발전용고정자 및 제2회전자 사이에 강한 자기장으로 인해서 붙어서 정지하려는 힘(attraction)을 소멸함으로써 제1회전자와 발전용고정자 및 제2회전자 사이의 권선코일 간의 코깅현상과 맴돌이 전류를 억제하고, 회전저항력을 줄이고, 회전속도를 높일 수 있는 것을 특징으로 한다. 이는 구동과 축전(Charge)을 동시에 요구하는 전기차와 전기오토바이 등에서 운행중에 충전기능을 더함으로써 주행거리를 늘릴 수 있는 모터와 알터네이터를 융합한 구동기계에 관한 것이다.
본 발명의 또 다른 실시로써, 본 발명은 외부에 있는 휠의 내부공간에 전기자를 구성하고 상기 전기자의 안쪽에 계자를 설치하여 절연케이스로 결합하며, 이와 별도로 상기 계자의 안쪽에 고정축 또는 회전축을 이용하여 제1정류자와 제2정류자를 직렬로 나란하게 설치하거나 상기 제1정류자와 슬립링b을 직렬로 나란하게 설치하거나 슬립링a과 상기 슬립링b 2개를 직렬로 결합하여 설치하는 것이다.
그리고 다중브러시를 구비한 브러시홀더를 이용하여 상기 제1정류자와 상기 제2정류자 또는 상기 제1정류자와 상기 슬립링b 또는 상기 슬립링a과 상기 슬립링b에 밀착하여 회전하면서 DC전류를 공급하여 상기 계자코일과 상기 전기자코일 사이에 계자극을 형성시켜 상기 전기자로부터 DC를 생산할 수 있는 발전장치에 관한 것이다.
상기 다중브러시를 장착한 상기 브러시홀더는 1쌍씩 구비되어 외부의 휠의 구동에 의해 회전하게 된다. 이때 직렬로 구성된 상기 제1정류자와 상기 제2정류자 또는 상기 제1정류자와 상기 슬립링b 또는 상기 슬립링a과 상기 슬립링b에게로 우회해서 상기 DC전류를 공급하게하고 이를 다시 상기 계자와 상기 전기자에게 공급할 수 있도록 전달매개체인 상기 제2정류자 또는 상기 슬립링들을 추가하였다.
즉, 기존의 회전자로 불리는 상기 계자나 상기 전기자를 정지시키고 반대로 동일한 속도로 회전시키는 상기 다중브러시로 인하여 상기 DC전류를 공급받아 상기 계자와 상기 전기자간에 유도기전력을 발생시켜 원하는 출력을 얻고자 착안하였다.
이러한 발명의 원리는 기존의 동기발전기들이 무거운 로터와 정류자를 회전할 때 많은 외부동력이 필요한데 이를 개선하기 위함이며, 더 나아가서 기존의 발전기에서도 시도하지 않던 상기 로터와 상기 정류자의 축을 분리하여 코일연결선을 자유롭고 길게 연결함으로써 지상과 지하에 분리 설치할 수가 있으므로 이용편리성과 설치의 유용성을 증가시켰다.
본 발명은 모터와 알터네이터를 융합한 구동기계에 관한 것으로, 발전기에서 생성되는 기전력의 크기는 자기장의 세기와 도체의 길이 및 자기장과 도체의 상대속도에 비례한다.
따라서 자기장의 세기를 높이거나 도체를 길게 형성하거나 또는 자기장과 도체의 상대속도를 크게 함으로써 기전력을 높일 수 있다. 통상적으로 자기장과 도체의 상대속도를 크게 하여 기전력을 높이고 있는데 이를 위해서는 회전자의 회전속도를 높여야 하는데 이럴 경우 고속회전을 요하기 때문에 조력, 풍력 및 도로발전과 같이 저속회전력을 인가하는 경우 원하는 기전력을 얻을 수 없었다.
이에 2개의 회전자를 사용하여 원하는 기전력을 얻을 수 있는 발전기가 개발되었으며, 그 일례인 제10-1454805호의 「발전기」가 도4에 도시되어 있다.
도4의 「발전기」는 자석을 갖는 회전자(120)와 자성체인 내부케이싱(150)을 서로 동일한 방향으로 회전시킴으로써 저속회전력에서 기전력을 얻는 구조이고, 장점으로는 자석을 갖는 회전자(120)와 자성체인 내부케이싱(150)이라는 동시 회전체 사이에 복합연성물질 또는 비자성체로 성형된 고정자(130)의 코어에 권선된 권선코일을 사용하여 상호간 자기장이 유도되어 복합연성물질 또는 비자성체로 형성된 코어에 권선된 고정자(130)에게 기전력을 발생시키면서도 서로 붙으려고 붙으려는 힘(attraction)을 제거하고, 코깅현상과 와전류를 억제하며, 발열 억제효과와 회전저항을 크게 줄여 발전효율성을 증가시킬 수 있는 효과가 있다.
그러나 상술한 종래의 「발전기」는 모터의 기능이 결합되지 않은 단순한 알터네이터의 기능만을 소유할 뿐이므로 엔진발전과 풍력발전 및 조력발전 등에 유용하지만 전기자동차나 전기운송수단으로 이용하기위해서는 모터기능과 알터네이터 부분이 융합된 구동장치가 필요하다.
본 발명의 또 다른 실시로써, 본 연구에서는 종래의 발전기에서 사용하던 계자와 전기자 및 정류자(commutator)를 모두 회전시키지 않고, 반대되는 운동구조의 역발상으로써 기존의 상기 정류자를 상기 제1정류자와 상기 제2정류자 또는 상기 제1정류자와 상기 슬립링b 또는 상기 슬립링a과 상기 슬립링b을 직렬로 결합하여 상기 다중브러시를 회전시켜 이 들에게 상기 DC전류의 공급 및 단락을 반복하여 상기 계자코일과 상기 전기자코일에 상호 반대되는 극성의 자력이 교번하여 유도되도록 한다.
즉, 계자철심(141)의 총 계자자속(界磁磁束)의 범위가 상기 계자와 상기 전기자의 극수만큼 필드(field)까지 유도기자력이이 발생하는 점을 착안하여 상기 제1정류자 및 상기 제2정류자를 직렬로 구성하거나, 또는 상기 제1정류자 및 상기 슬립링b을 직렬로 구성하거나, 또는 상기 슬립링a과 상기 슬립링b를 직렬로 구성한 후 이를 모두 고정시켜놓고 상기 다중브러시가 좌우측에 성형된 상기 브러시홀더를 회전시킴으로써 종래의 발전기가 매우 무거운 로터(rotor)와 정류자를 회전시키는 것보다 상대적으로 매우 가벼운 상기 브러시홀더 만을 회전시킴으로써 외부 동력에너지를 절약 할 수가 있으며 상기 계자와 상기 전기자의 극수만큼의 원하는 유도기전력이 발생될 수 있도록 하여 구성할 수 있다.
그리고 본 발명은 도 10 내지 도 19과 같이 상기 브러시홀더에 1쌍씩의 다중브러시를 구비하여 상기 제1정류자와 상기 제2정류자 또는 상기 제1정류자와 상기 슬립링b 또는 상기 슬립링a과 상기 슬립링b를 구비하고, 상기 브러시홀더지지대에 의해 상기 다중브러시가 상기 제1정류자와 상기 제2정류자 또는 상기 제1정류자와 상기 슬립링b 또는 상기 슬립링a과 상기 슬립링b를 밀착하면서 감싸고돈다.
본 발명은 도 10 및 도 22와 같이 각각 상기 계자와 상기 전기자의 극수만큼의 위상 차이로 성형하여 회전하는 상기 다중브러시에 의해 상기 정류자편을 통해서 상기 계자코일에 각각 계자극수 만큼의 위상 차이로 상기 DC전류의 연결 및 단절이 지속적으로 반복하게 하여, 상기 계자철심은 계자극수 만큼의 위상 차이로 N극과 S극이 연속적으로 반복해서 발생 및 소멸되도록 한다.
이때 상기 계자철심과 맞대응하고 있는 상기 전기자코일에도 상기 전기자의 극수만큼 반대 극성인 S극과 N극이 교번하여 유도된다.
따라서 유도되는 상기 계자철심의 총 계자자속(界磁磁束)의 범위가 일정한 필드(field)를 이룰 때, 상기 전기자철심에도 동일한 필드(field)로 대응하는 권선코일을 구성한다.
본 발명은 상술한 종래기술의 문제점을 해결하기 위하여 창안한 것이다. 일반적으로 모터와 알터네이터를 융합하지 못하고 독자적인 형태로 제작되어 상호 연결시켜 사용해왔다.
본 발명의 목적은 모터와 알터네이터의 기능을 하나의 동체 안에 결합시켜서 모터의 회전운동을 진행할 때 모터 기능의 외측에 결합된 알터네이터로 하여금 전력을 생산토록 하는 연구이다.
이를 위해서는 기존의 모터의 기능부분에서 발전용고정자를 안쪽에 성형하고, 회전자는 발전용고정자와 모터용고정자 사이에 설치하여 발전용고정자와 모터용고정자가 동시에 기전력과 기자력을 얻을 수 있도록 쌍방향으로 마그네트를 성형한다.
하나의 동체 안에 결합된 모터 기능과 알터네이터 기능은 자기장의 세기를 높이거나 도체를 많게 형성하거나 또는 자기장과 도체의 상대속도를 크게 하기 위해서 마그네트를 쌍방향으로 성형한 제1회전자와 자성체 또는 전도체로 성형한 제2회전자 및 비도체로 성형한 로터하우징을 동시에 회전시켜주는 고안이며, 제1회전자와 제2회전자의 사이에 있는 발전용고정자를 복합연성물질 또는 비자성체 코어에 권선된 권선코일로 성형하는 것과 회전축과 고정되도록(Fixed) 결합시킨 제1회전자와 제2회전자 및 로터하우징을 동시에 회전하는 구조가 매우 중요하며, 특히 제1회전자와 제2회전자의 상대속도를 크게 하기 위해서 발전용고정자에게 복합연성물질 또는 비자성체 코어에 권선된 권선코일을 성형함으로써 제1회전자와 발전용고정자 및 제2회전자가 끌어당겨 붙어서 정지하려는 힘(attraction)을 원천적으로 소멸함으로써, 제1회전자의 외측 마그네트의 기전력이 제2회전자까지 미치도록 하여 강한 기전력을 생성하고, 이 때 코깅토크와 와전류를 억제하며 고열과 회전저항력을 줄여 줌으로써 원하는 회전저항의 감소와 기전력을 더 얻을 수 있는 모터와 알터네이터를 융합한 구동장치를 제공하는 것이다.
본 발명의 또 다른 실시로써, 본 발명은 상기 전기자와 상기 계자 및 상기 정류자(commutator)가 모두 비회전하는 방식을 이용하여 기존의 축을 고정시키거나 회전시키는 방식으로 구성한다.
먼저, 상기 고정축 방식의 경우, 상기 휠의 내부공간에 상기 계자철심과 상기 계자코일이 구비된 계자를 구성하고, 상기 계자와 대응해서 바깥에는 상기 전기자철심과 상기 전기자코일이 구비된 상기 전기자를 구성하여 상기 절연케이스를 이용하여 함께 결합하고 상기 부싱과 결합하여 지지하도록 한다.
그리고 상기 제1정류자와 상기 제2정류자 또는 상기 슬립링들은 중심부를 중공으로 성형하여 상기 고정축의 외주면에 슬리브나 베어링을 이용하여 나란히 고정되게 결합한다.
그리고 상기 회전축 방식의 경우, 상기 휠 내부에 상기 계자철심과 상기 계자코일이 구비된 상기 계자를 구성하고 상기 계자와 대응하는 상기 전기자철심과 상기 전기자코일이 구비된 상기 전기자를 구성하여 슬리브나 베어링을 이용하여 상기 회전축에 슬립하게 결합한다.
즉, 상기 제1정류자와 상기 제2정류자 또는 상기 슬립링들의 중심부를 중공으로 성형하여 상기 회전축 외주면에 슬립하게 결합하여 정지하도록 하고 일측 또는 양측을 상기 부싱과 결합하여 정지하도록 한다.
상기 다중브러시가 1쌍씩 구비되어 극수만큼 구비한 상기 브러시홀더는 외부의 휠의 구동에 의해 회전하게 되는데
상기 고정축을 사용할 땐, 상기 브러시홀더지지대가 브래킷L의 내측면에 설치되며 상기 휠 또는 외부동력으로 회전시킨다.
상기 회전축을 사용할 때, 상기 제1정류자와 상기 제2정류자 또는 상기 제1정류자와 상기 슬립링b 또는 상기 슬립링a과 상기 슬립링b의 사이에 구성하며 상기 회전축의 중앙부 외주면에 결합시켜 상기 휠 또는 상기 외부동력으로 회전시킨다.
본 연구에서 상기 고정축을 사용할 땐, 상기 제1정류자와 상기 제2정류자 또는 상기 제1정류자와 상기 슬립링b 또는 상기 슬립링a과 상기 슬립링b을 모두 절연케이스와 결합기구로 부싱과 결합시킨다.
이때 상기 다중브러시가 성형된 상기 브러시홀더는 브러시홀더지지대가 브래킷L의 내측면에 설치되며 상기 휠 또는 외부동력으로 회전하게 된다.
또한, 상기 회전축을 사용할 때, 상기 브러시홀더는 상기 제1정류자와 상기 제2정류자 또는 상기 제1정류자와 상기 슬립링b 또는 상기 슬립링a과 상기 슬립링b의 사이에 구비하며 상기 회전축의 외주면에 결합시켜 상기 휠 또는 상기 외부동력으로 회전된다.
또한, 상기 제1정류자와 상기 제2정류자를 직렬방식으로 이용하는 경우, 상기 제1정류자와 동일하게 정류자편을 성형한 상기 제2정류자를 상기 브러시홀더를 사이에 두고 직렬로 마주보도록 구성하고, 상기 브러시홀더가 회전할 때 Plus(+)와 Minus(-) 전류가 각각 계자극수 만큼의 위상차로 공급과 단락을 반복할 수 있도록 상기 계자극수 만큼 등분한다.
상기 Plus(+) 전원을 상기 전기자코일 및 상기 계자코일에게 연결되도록 상기 계자극수 만큼 결선하고 상기 Minus(-) 전원은 본체에 접지한다.
또한, 상기 제1정류자와 상기 슬립링b을 직렬방식으로 이용하는 경우와 상기 슬립링a과 상기 슬립링b의 결합도 위와 동일한 방법으로 실시한다.
따라서 상기 브러시홀더를 회전시키기 위해서는 상기 휠 또는 상기 외부동력이 필요하게 되며, 상기 계자코일과 상기 전기자코일에 상기 DC전류를 공급하기 위한 축전지가 구비된다.
단, 상기 브러시홀더를 회전시키는데 필요한 상기 휠을 대체하는 방법으로는 DC모터, 풀리(Pulley), 블레이드(Blade), 로터 휠(Rotor Wheel), 자력 회전체(magnetic power rotor) 등을 사용한다.
상술한 본 발명의 목적을 달성하기 위하여, 본 발명의 모터와 알터네이터를 융합한 구동기계는 프레임의 중심부에 회전하는 회전축을 설치할 수 있다.
또한, 회전축은 좌우에 내부에 베어링을 장착한 회전축받침대L 및 회전축받침대R에 의해 지지될 수 있다.
또한, 제2회전자는 전도체 또는 자성성체로 성형되어 좌측은 제2회전자측판L
의 결합베어링과 결속체를 이용하여 회전축받침대L의 외주면과 결합되고, 우측은 제2회전자측판R의 결합베어링과 결속체를 이용하여 회전축에 고정되도록(Fixed) 결합될 수 있다.
또한, 발전용고정자는 복합연성물질 또는 비자성체 코어로 성형되어 좌측은 발전용고정자측판L이 발전용고정자측판L의 결합베어링과 결합체를 이용하여 상기 회전축받침대L의 외주면과 슬립(Slip) 상태로 결합되고, 우측은 발전용고정자측판R이 발전용고정자측판R의 결합베어링과 결합체를 이용하여 상기 회전축 외주면에 슬립(Slip) 상태로 결합될 수 있다.
또한, 제1회전자는 자성체로 성형되어 좌측은 제1회전자측판L이 제1회전자측판L의 결합베어링과 결속체를 이용하여 상기 회전축받침대L의 외주면과 슬립(Slip) 상태로 결합되고, 우측은 제1회전자측판R이 제1회전자측판R의 결합베어링과 결속체를 이용하여 상기 회전축에 고정되도록(Fixed) 결합될 수 있다.
또한, 모터용고정자는 자성체 또는 전도체로 성형되어 좌측은 모터용고정자측판L이 모터용고정자측판L의 결합베어링과 결속체를 이용하여 상기 회전축받침대L의 외주면과 슬립(Slip) 상태로 결합되고, 우측은 모터용고정자측판R이 모터용고정자측판R의 결합베어링과 결속체를 이용하여 상기 회전축 외주면에 슬립(Slip) 상태로 결합될 수 있다.
또한, 로터하우징은 전도체성으로 성형되어 좌측은 사이드하우징L이 사이드하우징L의 결합베어링과 결합체를 이용하여 상기 회전축 받침대L의 외주면과 슬립(Slip) 상태로 결합되고, 우측은 사이드하우징R이 사이드하우징R의 결합베어링과 결합체를 이용하여 상기 회전축에 고정되도록(Fixed) 결합될 수 있다.
또한, 상대적으로 더 큰 자기장의 세기를 높이거나 기전력을 많게 형성하기 위해서 제1회전자가 자성체로 성형될 때 제2회전자 자성체 또는 전도체로 성형될 수 있다.
또한, 모터용 입력배선 및 발전용 출력배선은 모터용고정자의 자성체 코어에 권선된 권선코일 및 발전용고정자의 복합연성물질 또는 비자성체 코어에 권선된 권선코일로써 모터용고정자측판L의 결합베어링, 제1회전자측판L의 결합베어링, 발전용고정자측판 L의 결합베어링, 사이드하우징L의 결합베어링의 측면 또는 슬리브(Sleeve)를 통해서 배선관통구를 성형하여 외부로 안전하게 도출될 수 있다.
본 발명의 또 다른 실시로써, 본 발명은 상기 다중브러시를 구비한 상기 브러시홀더가 상기 제1정류자와 상기 제2정류자 또는 상기 제1정류자와 상기 슬립링b 또는 상기 슬립링a과 상기 슬립링b의 직렬 구성방식에게 상기 DC전류를 공급해야 하고 이를 이어받아 상기 계자코일과 상기 전기자코일에게 공급해야하므로 전달매개체인 상기 제1정류자와 상기 제2정류자, 상기 슬립링들을 이용하여 조를 이루어 직렬로 결합할 수 있다.
상기 제1정류자와 상기 제2정류자는 동일한 모양과 정류자편으로 성형할 수 있다.
상기 슬립링들은 상기 제1정류자와 동등한 모양과 계자극 편수로 성형할 수 있다.
상기 제2정류자는 상기 제1정류자의 정류자편을 그대로 성형하고, 각 극마다 Plus(+)와 Minus(-)가 각각 상기 계자와 상기 전기자의 극수만큼의 위상차로 마주하도록 하여 상기 브러시홀더가 회전될 때 각 상기 다중브러시마다 상기 DC전류의 공급과 단락을 반복할 수 있도록 상기 계자와 상기 전기자의 극수만큼을 등분하여 결선할 수 있다.
그리고 상기 슬립링b는 각 극마다 Plus(+)와 Minus(-)가 각각 상기 계자와 상기 전기자의 극수만큼의 위상차로 마주하도록 하여 상기 브러시홀더가 회전될 때 각 상기 다중브러시마다 상기 DC전류의 공급과 단락을 반복할 수 있도록 상기 계자와 상기 전기자의 극수만큼을 등분하여 성형할 수 있다.
상기 브러시홀더는 고정축을 사용할 때 상기 휠의 상기 브래킷L의 내측면에 설치하여 상기 휠 또는 외부동력으로 회전시킬 수 있다.
그리고 상기 회전축을 사용할 때는 상기 회전축 외주면에 결합한 상기 브러시홀더지지대를 이용하여 회전시킬 수 있다.
상기 DC전류 공급선과 출력배선은 슬리브 및 상기 부싱을 이용하여 외부로 도출할 수 있다.
상기 계자와 상기 전기자를 상기 절연케이스로 결합하여 상기 고정축 또는 상기 회전축과 분리하여 설치하고, 상기 제1정류자와 상기 제2정류자 또는 상기 제1정류자와 상기 슬립링b 또는 상기 슬립링a과 상기 슬립링b를 직렬로 결합하여 분리 설치할 수 있다.
그러므로 상기 계자코일로부터 분리된 상기 제1정류자와 상기 슬립링a에게 연결되는 코일연결선은 거리에 관계없이 근거리에 설치할 수 있다.
그리고 상기 제2정류자 또는 상기 슬립링b로부터 상기 전기자에게 연결되는 코일연결선도 거리에 관계없이 근거리에 설치할 수 있다.
본 발명의 모터와 알터네이터를 융합한 구동기계에 따르면, 회전축에 고정되게 직접연결된 제1회전자와 제2회전자 및 로터하우징이 동시에 동일한 방향으로 회전할 때, 먼저 모터로 공급되는 외부 전원에 의해서 모터용고정자와 제1회전자 사이에서 기자력이 발생하여 회전을 가동하게 되고, 모터 기능에 의해서 자동으로 회전하게 되는 제2회전자와 발전용고정자 사이에서는 기전력을 생성하게 된다.
그러므로 모터와 알터네이터를 융합한 구동기계에서 모터 기능과 알터네이터 기능을 한꺼번에 구현함으로서 경제성과 더불어서 구동과 축전(Charge)을 동시에 요구하는 전기차와 전기오토바이 등에서 운행중에 충전기능을 더함으로써 주행거리를 늘릴 수 있는 에너지융합기술 이다.
이는 회전자와 로터하우징에게 자성체 또는 전도체로 성형시킴으로써 동일한 기계적인 구조에서도 2가지 유형의 구조로 다른 실시예의 제품화도 가능하다.
첫 번째 유형으로는, 발전용고정자는 그대로 두고, 제1회전자는 자성체로 성형하고 제2회전자는 전도체로 성형하여 발전용고정자를 사이에 두고 회전자와 로터하우징이 동시에 회전할 때 강한 자기장이 발전용고정자를 통과하며, 제1회전자와 제2회전자 사이에 강한 자기장으로 인해서 붙어서 정지하려는 힘(attraction)을 소멸함으로써 제1회전자와 제2회전자와 발전용고정자의 권선코일 간의 코깅현상과 와전류를 제거하고, 종래의 발전기보다 회전저항력을 줄여주고, 회전속도를 높일 수 있어서 원하는 기전력을 얻을 수 있다.
또한, 본 발명은 발전용고정자가 복합연성물질 또는 비자성체로 성형된 코어를 가지므로 와전류의 해소하고 고열 발생을 억제하여 권선코일의 내구성을 향상시킬 수 있으며, 코깅토크와 회전저항의 감소로 외부의 회전동력이 크게 필요하지 않아 동력에너지를 절약하는 장점이 있다.
두 번째 유형으로는, 발전용고정자는 그대로 두고, 제1회전자와 제2회전자 모두 자성체로 성형하여 제1회전자와 제2회전자가 동시에 회전시킬 때, 위의 첫 번째 유형보다 많은 자성체가 제1회전자와 제2회전자에 많이 성형됨으로 제1회전자와 제2회전자 사이에 있던 발전용고정자에게 상대적으로 더 큰 자기장의 세기와 많은 자기장이 형성해서 붙어서 정지하려는 힘(attraction)을 소멸함으로써 제1회전자와 발전용고정자 및 제2회전자 사이의 코깅현상과 와전류를 제거하고, 종래의 발전기보다 회전저항력을 줄여주고, 회전속도를 높일 수 있어서 원하는 기전력을 얻을 수 있다.
또한, 본 발명은 회전축에 모터용고정자, 회전자, 발전용고정자, 로터하우징을 결합하기 위해 베어링을 장착한 모터용고정자측판L,R의 결합베어링과, 제1회전자측판L의 결합베어링과, 발전용고정자측판L,R의 결합베어링과, 사이드하우징L의 결합베어링 및 결속체를 이용함으로써 각각의 베어링에 슬리브(Sleeve) 형태를 통해서 비교적 간단한 배선관통구를 성형하고, 모터의 브러쉬와 정류자가 생략되므로 구조가 간단해지며 정격용량에 관계없이 다양한 발전기의 제작이 용이하다.
본 발명의 또 다른 실시로써, 종래의 발전기가 상기 계자와 상기 정류자를 동시에 회전시키는데, 본 발명은 상기 계자와 상기 정류자를 회전시키지 않고, 상기 다중브러시를 상기 계자와 상기 전기자의 극수만큼 성형한 상기 브러시홀더를 회전시켜 상기 DC전류의 공급과 단절을 반복하여 계자극을 만들어 줌으로써 종래의 발전장치에 비해서 외부동력에너지 공급을 최소화하면서도 상기 전기자코일에 원하는 유도기전력이 발생될 수 있도록 하여 고효율의 기전력을 제공할 수 있는 매우 유용한 직류발전장치이다.
또한, 상기 전기자와 상기 계자는 상기 절연케이스로 상기 휠의 내부공간에 구성하고, 상기 계자와 상기 제1정류자와의 연결되었던 축을 단절해서 분리형으로 설치할 수 있다.
즉, 분리형은 상기 계자와 상기 전기자는 상기 휠의 내부공간에 별도로 설치하고, 상기 제1정류자와 상기 제2정류자 또는 상기 제1정류자와 상기 슬립링b 또는 상기 슬립링a과 상기 슬립링b는 독립적으로 구성해서 상기 고정축 또는 상기 회전축 외측에 구성하므로 다양한 산업용으로 활용성이 크다.
도 1은 본 발명의 바람직한 실시 예에 따른 모터와 알터네이터를 융합한 구동기계의 횡단면도
도 2는 도 1의 A-A선을 따라 얻어진 종단면도
도 3은 도 1의 B-B선을 따라 얻어진 종단면도
도 4는 종래기술의 「발전기」의 횡단면도
도 5는 본 발명의 고정축사용의 제1정류자와 제2정류자의 결합 구성도
도 6은 본 발명의 회전축사용의 제1정류자와 제2정류자의 결합 구성도
도 7은 본 발명의 고정축사용의 제1정류자와 슬립링b의 결합 구성도
도 8은 본 발명의 회전축사용의 제1정류자와 슬립링b의 결합 구성도
도 9는 본 발명의 고정축사용의 슬립링a와 슬립링b의 결합 구성도
도 10은 본 발명의 회전축사용의 슬립링a와 슬립링b의 결합 구성도
도 11은 본 발명의 제1정류자와 제2정류자의 A, B, C 단면도
도 12는 본 발명의 제1정류자와 슬립링b의 A, B, C 단면도
도 13은 본 발명의 슬립링a와 슬립링b의 A, B, C 단면도
도 14는 본 발명의 제1정류자와 제2정류자의 결합 참고도
도 15는 본 발명의 제1정류자와 슬립링b의 결합 참고도
도 16은 본 발명의 슬립링a와 슬립링b의 결합 참고도
도 17은 본 발명의 슬립링의 참고도
도 18은 본 발명의 계자코일와 전기자코일의 결선도
프레임의 중앙에서 회전하는 회전축;
상기 회전축을 지지하기 위해 내부에 베어링이 장착되는 회전축받침대L 및 회전축받침대R;
상기 회전축의 바깥에서 전도체 또는 자성성체로 성형되어 좌측은 제2회전자측판Μ
의 결합베어링과 결속체를 이용하여 회전축받침대L의 외주면과 결합되고, 우측은 제2회전자측판Σ의 결합베어링과 결속체를 이용하여 상기 회전축에 고정되도록 결합되어 상기 회전축과 함께 동시에 회전하는 제2회전자;
상기 제2회전자를 감싸며, 복합연성물질 또는 비자성체 코어로 성형되어 좌측은 발전용고정자측판L의 결합베어링과 결속체를 이용하여 상기 회전축받침대L의 외주면과 슬립(Slip) 형태로 결합되고, 우측은 발전용고정자측판R의 결합베어링과 결속체를 이용하여 상기 회전축 외주면에 슬립(Slip) 형태로 결합되는 복합연성물질 또는 비자성체 코어에 권선된 권선코일을 가진 발전용고정자;
상기 발전용고정자의 바깥에서 좌측은 제1회전자측판L의 결합베어링과 결속체를 이용하여 상기 회전축 받침대L의 외주면과 슬립(Slip) 형태로 결합되고, 우측은 제1회전자측판R의 결합베어링과 결속체를 이용하여 상기 회전축에 고정되도록(Fixed) 결합되는 양방향 마그네트로 성형된 제1회전자;
상기 제1회전자의 바깥에서 자성체 코어에 권선된 권선코일로 형성되며, 좌측은 모터용고정자측판L의 결합베어링과 결속체를 이용하여 상기 회전축 받침대L의 외주면과 슬립(Slip) 형태로 결합되고, 우측은 모터용고정자측판R의 결합베어링과 결속체를 이용하여 상기 회전축 외주면에 슬립(Slip) 형태로 결합되는 자성체 코어에 코일이 권선된 모터용고정자;
상기 모터용고정자를 감싸며, 좌측은 사이드하우징L의 결합베어링과 결속체를 이용하여 상기 회전축받침대L의 외주면과 슬립(Slip) 형태로 결합되고, 우측은 사이드하우징R의 결합베어링과 결속체를 이용하여 상기 회전축에 고정되도록(Fixed) 결합되는 비도체성의 로터하우징;
상기 모터용고정자의 자성체 코어에 권선된 권선코일 및 상기 발전용고정자의 복합연성물질 또는 비자성체 코어에 권선된 권선코일이 상기 모터용고정자측판L의 결합베어링, 상기 제1회전자측판L의 결합베어링, 상기 발전용고정자측판L의 결합베어링, 사이드하우징L의 결합베어링의 측면 또는 슬리브(Sleeve)를 이용해서 배선관통구를 성형하여 외부로 안전하게 도출되는 모터용 입력배선 및 발전용 출력배선; 및
상기 제1회전자와 상기 제2회전자 및 상기 로터하우징이 상기 회전축에 고정되게 결합되어 함께 동일한 방향으로 회전하는 것을 특징으로 하는 모터와 알터네이터를 융합한 구동기계.
이하, 첨부한 도면을 참조로 본 발명의 바람직한 실시 예에 따른 모터기능과 알터네이터 기능을 융합한 구동기계에 대하여 상세하게 설명한다. 도 1내지 도 3에 도시한 바와 같이, 본 발명의 바람직한 실시 예에 따른 모터와 알터네이터를 융합한 구동기계(1)는 회전축(10), 회전축받침대L,R(11,12), 로터하우징(110), 사이드하우징L,R(111,112), 사이드하우징L의 결합베어링(113), 모터용고정자(140), 자성체 코어에 권선된 권선코일(140a), 모터용고정자측판L,R(141,142), 모터용고정자측판L,R의 결합베어링(143,144), 제1회전자(130), 제1회전자측판L,R(131,132), 제1회전자측판L의 결합베어링(133), 발전용고정자(120), 복합연성물질 또는 비자성체 코어에 권선된 권선코일(120a), 발전용고정자측판L,R(121,122), 발전용고정자측판L,R의 결합베어링(123,124), 제2회전자(160), 제2회전자측판L,R(161,162), 배선관통구(150), 모터용 입력배선(151), 발전용 출력배선(152), 결속체(115,116,125,126,135,136,145,146) 등으로 구성된다.
회전축(10)은 외부전원 또는 외부의 동력발생수단에 의해 발생하는 에너지에 의해 회전하며, 그 양측 단이 회전축받침대L,R(11,12)에 의해 회전가능하게 지지된다.
회전축베어링(13)은 회전축받침대L,R(11,12)의 내부에 장착되며, 회전축(10)의 회전 가능하도록 결합하기 위한 수단이다.
모터용고정자(120)는 전도체로 성형되어 좌측은 모터용고정자측판L(121)이 모터용고정자측판L의 결합베어링(123)과 결속체(125)를 이용하여 회전축받침대L(11)의 외주면과 슬립(Slip) 형태로 결합되고, 우측은 모터용고정자측판R(1242)이 모터용고정자측판R의 결합베어링(124)과 결속체(126)를 이용하여 회전축(10)의 외주면에 슬립(Slip) 형태로 결합되어 회전축(110)의 회전력에 상관없이 항상 정지된 상태를 유지하게 된다.
제1회전자(130)의 좌측은 제1회전자측판L(131)이 제1회전자측판L의 결합베어링(133)과 결속체(135)를 이용하여 회전축받침대L(11)의 외주면과 슬립(Slip) 형태로 결합되고, 우측은 제1회전자측판R(132)이 결속체(136)를 이용하여 회전축(10)에 고정되도록(Fixed) 결합된다.
발전용고정자(140)의 좌측은 발전용고정자측판L(141)이 발전용고정자측판L의 결합베어링(143)과 결속체(145)를 이용하여 회전축받침대L(11)의 외주면과 슬립(Slip) 형태로 결합되고, 우측은 발전용고정자측판R(142)이 발전용고정자측판R의 결합베어링(144)과 결속체(146)를 이용하여 회전축(10) 외주면에 슬립(Slip) 상태로 결합되어 회전축(110)의 회전력에 상관없이 항상 정지된 상태를 유지하게 된다.
로터하우징(110)의 좌측은 사이드하우징L(111)이 사이드하우징L의 결합베어링(113)과 결속체(115)를 이용하여 회전축 받침대L(11)의 외주면과 슬립(Slip) 형태로 결합되고, 우측은 사이드하우징R(112)이 결속체(116)를 이용하여 회전축(10)에 고정되도록(Fixed) 결합된다.
모터용고정자측판L의 결합베어링(123)과, 제1회전자측판L의 결합베어링(133)과, 발전용고정자측판L의 결합베어링(143)과, 사이드하우징L의 결합베어링(113)을 회전축받침대L(11)의 외주면에 슬립(slip)이 용이하도록 간격을 두어 슬리브(Sleeve) 형태로 연결시킬 수 있다.
이하, 상술한 구성을 갖는 본 발명의 모터와 알터네이터를 융합한 구동기계(1)의 작용에 대하여 설명한다.
회전축(10)에 회전동력이 발생하면, 회전축받침대L,R(11,12)에 의해 지지되는 회전축(10)이 회전하게 된다.
회전축(10)이 회전하면, 좌측은 슬립(Slip) 상태를 유지하며, 우측이 회전축(10)에 고정되도록(Fixed) 결합된 제1회전자(130)와 제2회전자(160) 및 로터하우징(110)가 동시에 동일한 방향으로 회전하게 된다.
이때, 제2회전자(160)는 회전축(10)에 고정되도록(Fixed) 직접 결합되고, 제1회전자(130)와 로터하우징(110)의 좌측은 회전자측판L의 결합베어링(133)과 사이드하우징L의 결합베어링(113)을 결속체(135)와 결속체(115)를 이용하여 회전축받침대L(11)의 외주면과 결합을 통해서 슬립(Slip) 상태를 유지하며 회전하게 되고, 우측은 회전자(130)와 로터하우징(110)이 회전축(10)에 고정되도록(Fixed) 결합되어 있기 때문에 회전축을 따라서 동시에 동일한 방향으로 돌려고 한다.
따라서 제1회전자(130)와 제2회전자(160) 및 로터하우징(110)가 함께 동일한 방향으로 동시에 회전하기 때문에 제1회전자(130)와 제2회전자(160) 사이에 있는 발전용고정자(140)가 복합연성물질 또는 비자성체로 형성된 코어에 권선된 권선코일(140a)을 사용하므로 코깅토크와 와전류의 감소로 회전저항이 많이 발생하지 않고 회전속도가 증가되어 원하는 기전력과 동력에너지를 절약하게 된다.
즉, 종래의 영구자석발전기는 고정자의 코어에 강력한 자성체인 계자철심으로 성형한 후 코일을 권선을 하여 하나 뿐인 회전자와 고정자 간에 상호 붙으려고 하는 자기장 때문에 회전저항이 많이 발생하며, 코깅현상과 와전류 및 고열이 발생하여 내구성이 매우 부족한데, 본 발명에서는 발전용고정자(140)에 복합연성물질 또는 비자성체 코어에 권선된 권선코일(140a)을 사용하여 자성체로 성형된 제1회전자(130)와 전도체 또는 자성체로 성형된 제2회전자(160) 및 비자성체인 로터하우징(110)가 동일한 방향으로 회전할 때 발전용고정자(140)를 사이에 두고 상호간 자기장이 유도되면서 복합연성물질 또는 비자성체 코어에 권선된 권선코일(140a)을 사용하는 발전용고정자(140)에 기전력을 발생시키면서도 회전저항이 없이 자연스런 회전력을 얻도록 한다.
다른 실시 예에서, 회전자(130)와 제2회전자(160)를 자성체로 성형하고, 복합연성물질 또는 비자성체 코어에 권선된 권선코일(140a)을 사용한 발전용고정자(140)를 사이에 두고 제1회전자(130)와 제2회전자(160) 및 로터하우징(110)이 동시에 회전시킬 때, 강한 자기장이 발전용고정자(140)를 통과하며, 회전자(130)와 제2회전자(160) 사이에 강한 자기장으로 인해서 서로 붙어서 정지하려는 힘(attraction)을 소멸함으로써 상대적으로 더 큰 기전력을 얻을 수도 있다.
이상, 본 발명의 바람직한 실시 예를 참조로 본 발명의 모터와 알터네이터를 융합한 구동기계(1)에 대하여 설명하였지만, 본 발명의 사상을 벗어나지 않는 범위 내에서 수정, 변경 및 다양한 변형실시예가 가능함은 당업자에게 명백하다.
본 발명의 또 다른 실시로써, 본 발명은 상기 휠(20)의 내부공간에 상기 계자코일(242)이 감겨진 상기 계자철심(241)을 구비하는 상기 계자(240)와, 상기 계자(240)의 외측에 이격된 상태에서 감싸도록 형성된 상기 전기자코일(252)을 상기 절연케이스(230)를 이용하여 함께 결합한 후 일측면은 상기 지지부재(231)를 이용하여 상기 고정축(200) 외주면과 상기 부싱(202)에 결합된다.
상기 계자코일(242)과 각각 일대 일로 연결되도록 다수개의 상기 정류자편(211)으로 구비되는 상기 제1정류자(210a)는 상기 계자(240)와 분리하여 상기 제2정류자(210b) 또는 상기 슬립링b(205b)와 함께 결합되어 일측이 상기 부싱(202)과 결합된다.
상기 브러시홀더(212)는 상기 브러시홀더지지대(219)구비하고 상기 고정축(200)의 경우는 상기 휠(20)의 브래킷L(21)의 내측면에 결합되어서 회전하며, 상기 회전축(201)의 경우는 상기 회전축(201)의 중앙부에 결합되어 상기 휠(20)의 회전할 때 상기 회전축(201)과 함께 회전된다.
상기 제2정류자(210b) 또는 상기 슬립링b(205b)에는 극성에 따라 상기 DC전류(221)를 연결한다.
즉, 상기 브러시홀더(212)는 상기 브러시홀더지지대(219)구비하고 상기 고정축(200)의 경우는 상기 휠(20)의 브래킷L(21)의 내측면에 결합되어서 회전하며, 상기 회전축(201)의 경우는 상기 회전축(201)의 중앙부에 결합되어 상기 휠(20)의 회전시 상기 회전축(201)과 함께 회전되며, 상기 제1정류자(210a)와 상기 제2정류자(210b) 또는 상기 제1정류자(210a)와 상기 슬립링b(205b) 또는 상기 슬립링a(205a)와 상기 슬립링b(205b)사이에 밀착된 각각의 상기 다중브러시(213)를 브러시연결선(215)으로 연결한다.
상기 제1정류자(210a)와 상기 제2정류자(210b) 또는 상기 슬립링a,b(205a,205b)는 중심부가 중공원형으로 상기 고정축(200) 또는 상기 회전축(201) 외곽에 베어링b(203b)를 결합하여 구성한다.
상기 브러시홀더지지대(219)에 의해 상기 다중브러시(213)가 상기 제1정류자(210a) 및 상기 제2정류자(210b) 또는 상기 슬립링a,b(205a,205b)를 밀착하면서 회전하도록 한다.
상기 고정축(200)을 이용할 때, 상기 휠(20)의 상기 브래킷L(21)은 베어링a(203a)을 상기 고정축(200) 외주면에 삽입하여 회전할 수 있도록 하고, 상기 브래킷R(22)은 상기 고정축(200)의 외주면에 슬리브베어링(204)을 결합하고, 상기 슬리브베어링(204) 외주면에 상기 부싱(202)을 결합하고, 상기 부싱(202)의 외주면에 크기가 다른 베어링c(203c)를 결합하여 회전하도록 한다.
상기 회전축(201)을 이용할 때, 상기 휠(20)의 상기 브래킷L(21)은 베어링a(203a)을 상기 회전축(201) 외주면에 삽입하여 회전할 수 있도록 하고, 상기 브래킷R(22)은 상기 고정축(200)의 외주면에 상기 슬리브베어링(204)을 결합하고, 상기 슬리브베어링(204)외주면에 상기 부싱(202)을 결합하고, 상기 부싱(202)의 외주면에 상기 베어링c(203c)를 결합하여 회전하도록 한다.
상기 부싱(202)은 상기 DC전류(221)를 상기 제2정류자(210b) 또는 상기 슬립링b(205b)에게 공급하거나 상기 전기자코일(252)로부터 상기 출력배선(260)을 도출하도록 중공을 성형한다.
본 발명은 도 15 및 도 21와 같이 각각 상기 계자(240)와 상기 전기자(250)의 극수만큼의 위상 차이로 성형하여 회전하는 상기 다중브러시(213)에 의해 상기 제2정류자(210b) 및 상기 슬립링b(205b)를 통해서 상기 계자코일(242)에 각각 계자극수 만큼의 위상 차이로 상기 DC전류(221)의 연결 및 단절이 반복하게 하여, 상기 계자철심(241)은 계자극수 만큼의 위상 차이로 N극과 S극이 연속적으로 반복해서 발생 및 소멸되도록 한다.
이때 상기 계자철심(241)과 맞대응하고 있는 상기 전기자코일(252)에도 상기 전기자(250)의 극수만큼 순차적으로 반대 극성인 S극과 N극이 교번하여 유도된다.
따라서 유도되는 상기 계자철심(241)의 총 계자자속(界磁磁束)의 범위가 일정한 필드(field)를 이룰 때, 상기 전기자철심(251)에도 동일한 필드(field)로 대응하는 권선코일을 구성한다.
즉, 상기 계자코일(242)과 상기 코일연결선(243)으로 각각 일대 일로 연결된 상기 제1정류자(210a) 또는 상기 슬립링a(205a)이 구비되고, 상기 전기자(250)와 상기 코일연결선(253)으로 전기자극 편수만큼 연결된 상기 제2정류자(210b) 또는 상기 슬립링b(205b)가 구비된 상태에서 상기 제1정류자(210a)와 상기 제2정류자(210b) 또는 상기 제1정류자(210a)와 상기 슬립링b(205b) 또는 상기 슬립링a(205a)와 슬립링b(205b)의 직렬결합을 위해 각각 브러시연결선(215)으로 연결한 다음, 상기 DC전류의 Plus(+)를 상기 계자(240)의 극수만큼 상기 전기자(250)의 극수에 맞게 연결시켜주는 것이다.
본 발명에 있어서 작동순서의 순환구조를 살펴보면, 상기 제2정류자(210b) 또는 상기 슬립링b(205b)이 상기 DC전류(221)를 공급받는 동안 상기 휠(20)에 의해 상기 브러시홀더(212)가 회전되면서 상기 제1정류자(210a)와 제2정류자(210b) 또는 상기 제1정류자(210a)와 상기 슬립링b(205b) 또는 상기 슬립링a(205a)와 상기 슬립링b(205b)에게 상기 DC전류(221)가 공급되어지는데, 상기 제2정류자(210b) 및 상기 슬립링b(205b)에 각각 양극(+)와 음극(-)이 순차적이며 지속적으로 교번되면, 상응되는 상기 계자철심(241)에도 양극(+)와 음극(-)의 순차적이며 반복적인 교번이 일어나면서 이에 대응되는 상기 전기자코일(252)에도 극수만큼의 위상차를 가지고 유도기전력이 연속적으로 발생하게 되고 상기 전기자코일(252)에 연결된 상기 출력배선(260)을 통해 기전력이 출력되도록 한다.
이상, 본 발명의 바람직한 실시 예를 참조로 본 발명의 직류공급용 다중회로 브러시의 회전을 이용하는 직류발전장치에 대하여 설명하였지만, 본 발명의 사상을 벗어나지 않는 범위 내에서 수정, 변경 및 다양한 변형실시예가 가능함은 당업자에게 명백하다.
(부호의 설명)
1 : 모터와 알터네이터를 융합한 구동기계
10 : 회전축 11 : 회전축받침대L
12 : 회전축받침대R 13 : 회전축베어링
110 : 로터하우징 111 : 하우징측판L
112 : 하우징측판R 113 : 하우징측판L의 결합베어링
114 : 하우징측판R의 결합베어링 115 : 결합체 116 : 결합체
120 : 모터용고정자
120a : 자성체 코어에 권선된 권선코일
121 : 모터용고정자측판L 142 : 모터용고정자측판R
123 : 모터용고정자측판L의 결합베어링 144 : 모터용고정자측판R의 결합베어링
125 : 결합체 146 : 결합체
130 : 제1회전자
131 : 제1회전자측판L 132 : 제1회전자측판R
133 : 제1회전자측판L의 결합베어링
135 : 결합체 136 : 결합체
140 : 발전용고정자
140a : 복합연성물질 또는 비자성체 코어에 권선된 권선코일
141 : 발전용고정자측판L 122 : 발전용고정자측판R
143 : 발전용고정자측판L의 결합베어링 124 : 발전용고정자측판R의 결합베어링
145 : 결합체 126 : 결합체
150 : 배선관통구
151 : 모터용 입력배선 152 : 발전용 출력배선
160 : 제2회전자
161 : 제2회전자측판L 162 : 제2회전자측판R
20: 휠 21: 브래킷L 22: 브래킷R
200: 고정축 201: 회전축 202: 부싱 203a: 베어링a 203b: 베어링b 203c: 베어링c
204: 슬리브베어링 205a: 슬립링a 205b: 슬립링b
206: 스냅링
210a: 제1정류자 210b: 제2정류자 211: 정류자편
212: 브러시홀더 213: 다중브러시 214: 브러시홀더지지대 215: 브러시연결선
220: 축전지 221: DC전류
230: 절연케이스 231: 지지부재
240: 계자 241: 계자철심 242: 계자코일 243: 코일연결선
250: 전기자 251: 전기자철심 252: 전기자코일 253: 코일연결선 257 : 결합기구
260: 출력배선 261: 배선도출구
전기차와 전기오토바이 등에서 운행중에 충전기능을 더함으로써 주행거리를 늘릴 수 있어 전기차 전기오토바이등에 사용가능하다.

Claims (15)

  1. 프레임의 중앙에서 회전하는 회전축;
    상기 회전축을 지지하기 위해 내부에 베어링이 장착되는 회전축받침대L 및 회전축받침대R;
    상기 회전축의 바깥에서 전도체 또는 자성성체로 성형되어 좌측은 제2회전자측판Μ
    의 결합베어링과 결속체를 이용하여 회전축받침대L의 외주면과 결합되고, 우측은 제2회전자측판Σ의 결합베어링과 결속체를 이용하여 상기 회전축에 고정되도록 결합되어 상기 회전축과 함께 동시에 회전하는 제2회전자;
    상기 제2회전자를 감싸며, 복합연성물질 또는 비자성체 코어로 성형되어 좌측은 발전용고정자측판L의 결합베어링과 결속체를 이용하여 상기 회전축받침대L의 외주면과 슬립(Slip) 형태로 결합되고, 우측은 발전용고정자측판R의 결합베어링과 결속체를 이용하여 상기 회전축 외주면에 슬립(Slip) 형태로 결합되는 복합연성물질 또는 비자성체 코어에 권선된 권선코일을 가진 발전용고정자;
    상기 발전용고정자의 바깥에서 좌측은 제1회전자측판L의 결합베어링과 결속체를 이용하여 상기 회전축 받침대L의 외주면과 슬립(Slip) 형태로 결합되고, 우측은 제1회전자측판R의 결합베어링과 결속체를 이용하여 상기 회전축에 고정되도록(Fixed) 결합되는 양방향 마그네트로 성형된 제1회전자;
    상기 제1회전자의 바깥에서 자성체 코어에 권선된 권선코일로 형성되며, 좌측은 모터용고정자측판L의 결합베어링과 결속체를 이용하여 상기 회전축 받침대L의 외주면과 슬립(Slip) 형태로 결합되고, 우측은 모터용고정자측판R의 결합베어링과 결속체를 이용하여 상기 회전축 외주면에 슬립(Slip) 형태로 결합되는 자성체 코어에 코일이 권선된 모터용고정자;
    상기 모터용고정자를 감싸며, 좌측은 사이드하우징L의 결합베어링과 결속체를 이용하여 상기 회전축받침대L의 외주면과 슬립(Slip) 형태로 결합되고, 우측은 사이드하우징R의 결합베어링과 결속체를 이용하여 상기 회전축에 고정되도록(Fixed) 결합되는 비도체성의 로터하우징;
    상기 모터용고정자의 자성체 코어에 권선된 권선코일 및 상기 발전용고정자의 복합연성물질 또는 비자성체 코어에 권선된 권선코일이 상기 모터용고정자측판L의 결합베어링, 상기 제1회전자측판L의 결합베어링, 상기 발전용고정자측판L의 결합베어링, 사이드하우징L의 결합베어링의 측면 또는 슬리브(Sleeve)를 이용해서 배선관통구를 성형하여 외부로 안전하게 도출되는 모터용 입력배선 및 발전용 출력배선; 및
    상기 제1회전자와 상기 제2회전자 및 상기 로터하우징이 상기 회전축에 고정되게 결합되어 함께 동일한 방향으로 회전하는 것을 특징으로 하는 모터와 알터네이터를 융합한 구동기계.
  2. 제1항에 있어서,
    상기 제1회전자와 상기 제2회전자 및 상기 로터하우징이 상기 모터용고정자와 상기 발전용고정자를 사이에 두고 설치되어, 이들이 동시에 회전할 때 강한 자기장이 상기 모터용고정자와 상기 발전용고정자를 통과하며, 상기 제1회전자와 상기 발전용고정자 및 상기 제2회전자 사이에 강한 자기장으로 인해서 붙어서 정지하려는 힘(attraction)을 소멸함으로써 상기 제1회전자와 상기 제2회전자 및 상기 로터하우징이 동시에 회전할 때 코깅토크 현상과 와전류를 억제하고, 회전저항력을 줄이며, 회전속도를 높일 수 있는 것을 특징으로 하는 모터와 알터네이터를 융합한 구동기계.
  3. 제1항에 있어서 및 제2항에 있어서,
    상기 제1회전자는 쌍방향 마그네트로 성형하고, 상기 제2회전자는 비도체로 성형하며, 상기 로터회전자를 자성체 또는 전도체로 성형하여, 상기 제1회전자와 상기 제2회전자 사이에 상기 모터용고정자가 설치되고, 상기 제1회전자와 상기 로터하우징 사이에 상기 발전용고정자를 설치하며, 상기 제1회전자와 상기 제2회전자 및 상기 로터회전자가 동시에 회전할 때 강한 자기장이 상기 모터용고정자에게 발생하고, 동시에 강한 기전력이 상기 발전용고정자에게 발생하며, 상기 제1회전자와 상기 발전용고정자 및 상기 로터회전자 사이에 강한 자기장으로 인해서 서로 붙어서 정지하려는 힘(attraction)을 소멸함으로써 코깅토크 현상과 와전류를 억제하고, 회전저항력을 줄이며, 회전속도를 높일 수 있는 것을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
  4. 하우징을 형성하는 휠(20)과,
    상기 휠(20)의 좌측면과 결합되고 고정축(200) 외주면 또는 회전축(201) 외주면에 결합되는 브래킷L(22)과,
    상기 휠(20)의 좌측면과 결합되고 고정축(200) 외주면 또는 회전축(201) 외주면에 결합되는 브래킷R(22)과,
    상기 고정축(200) 외주면 또는 상기 회전축(201) 외주면과 결합 및 부싱(202)의 외주면에 결합되는 베어링c(203c)와,
    상기 고정축(200) 외주면 또는 상기 회전축(201) 외주면과 결합되는 슬리브베어링(204)과,
    상기 슬리브베어링(204)의 외주면에 결합되는 상기 부싱(202)과,
    중심부가 중공원형으로 상기 베어링b(203b)의 외주면에 결합되는 제1정류자(210a)와,
    중심부가 중공원형으로 제1정류자(210a)와 동일한 모양과 구조로 성형하여 상기 베어링b(203b)의 외주면에 결합되는 제2정류자(210b)와,
    중심부가 중공원형으로 상기 제1정류자(210a)와 동등한 모양과 계자극 편수로 성형하여 상기 베어링(203)의 외주면에 결합되는 슬립링a(205a)와,
    중심부가 중공원형으로 상기 제1정류자(210a)와 동등한 모양과 계자극 편수로 성형하여 상기 베어링(203)의 외주면에 결합되는 슬립링b(205b)와,
    상기 제1정류자(210a)와 상기 제2정류자(210b) 및 상기 슬립링a, b(205a,205b)의 외주면과 밀착되는 다중브러시(213)와,
    계자극수 만큼 1쌍씩의 상기 다중브러시(213)를 결속하는 브러시홀더(212)와,
    상기 브러시홀더(212)를 지지하는 브러시홀더지지대(214)와,
    상기 다중브러시(213)를 상호 연결하는 브러시연결선(215)과,
    상기 휠(20)의 내부공간에서 절연케이스(230)로 결속되고 전기자철심(251)과 전기자코일(252)을 구비한 전기자(250)와,
    상기 전기자(250) 내측에서 상기 절연케이스(230)로 결속되며 계자철심(141)과 계자코일(142)을 구비한 계자(240)와,
    상기 계자(240)로부터 상기 제1정류자(210a)와 상기 제2정류자(210b) 또는 상기 제1정류자(210a)와 상기 슬립링a(205a)를 연결하는 코일연결선(243)과,
    상기 전기자(250)와 상기 다중브러시(213)를 연결하는 코일연결선(253)과,
    상기 계자(240)와 상기 전기자(250)에게 DC전류(221)을 공급하는 축전지(220) 및:
    상기 DC전류(221)를 상기 제2정류자(210b) 또는 상기 슬립링b(205b)에게 공급 및 상기 전기자코일(252)로부터 출력배선(260)을 도출하도록 상기 부싱(202)에 중공으로 배선도출구(261)가 성형되어짐을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
  5. 제4항에 있어서,
    상기 휠(20)의 내부공간에 상기 계자코일(242)이 감겨진 상기 계자철심(241)을 구비하는 상기 계자(240)와, 상기 계자(240)의 외측에 이격된 상태에서 감싸도록 형성된 상기 전기자코일(252)을 상기 절연케이스(230)를 이용하여 함께 결합한 후 일측면을 지지부재(231)를 이용하여 상기 고정축(200) 외주면 및 상기 부싱(202)에 결합하는 것을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
  6. 제4항에 있어서,
    상기 계자코일(242)과 상기 코일연결선(243)으로 각각 일대 일로 연결된 상기 제1정류자(210a) 또는 상기 슬립링a(205a)이 구비되고, 상기 전기자(250)와 상기 코일연결선(253)으로 전기자극 편수만큼 연결된 상기 제2정류자(210b) 또는 상기 슬립링b(205b)가 구비된 상태에서 상기 제1정류자(210a)와 상기 제2정류자(210b) 또는 상기 제1정류자(210a)와 상기 슬립링b(205b) 또는 상기 슬립링a(205a)와 슬립링b(205b)의 직렬결합을 위해 각각 상기 브러시연결선(215)으로 연결한 다음, 상기 DC전류(221)의 Plus(+)를 상기 계자(240)의 극수만큼 상기 전기자(250)의 극수에 맞게 연결시켜주는 것을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
  7. 제4항에 있어서,
    상기 브러시홀더(212)는 상기 브러시홀더지지대(219)구비하고 상기 고정축(200)의 경우는 상기 휠(20)의 상기 브래킷L(21)의 내측면에 결합되어서 회전하며, 상기 회전축(201)의 경우는 상기 회전축(201)의 중앙부에 결합되어 상기 휠(20)의 회전시 상기 회전축(201)과 함께 회전되며, 상기 제1정류자(210a)와 상기 제2정류자(210b) 또는 상기 제1정류자(210a)와 상기 슬립링b(205b) 또는 상기 슬립링a(205a)와 상기 슬립링b(205b)사이에 밀착된 각각의 상기 다중브러시(213)를 브러시연결선(215)으로 연결하는 것을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
  8. 제4항에 있어서,
    상기 고정축(200)을 이용할 때, 상기 브래킷L(21)은 상기 고정축(200) 외주면에 상기 베어링a(203a)를 삽입하여 회전할 수 있도록 하고, 상기 브래킷R(22)은 상기 고정축(200)의 외주면에 상기 슬리브베어링(204)을 결합하고, 상기 슬리브베어링(204) 외주면에 상기 부싱(202)을 결합하고 상기 부싱(202)의 외주면에 상기 베어링c(203c)를 결합하여 회전하도록 하고,
    상기 회전축(201)을 이용할 때, 상기 브래킷L(21)은 상기 회전축(201) 외주면에 베어링a(203a)를 삽입하여 회전할 수 있도록 하고, 상기 브래킷R(22)은 상기 회전축(201)의 외주면에 슬리브베어링(204)을 결합하고, 상기 슬리브베어링(204) 외주면에 상기 부싱(202)을 결합하고, 상기 부싱(202)의 외주면에 베어링c(203c)를 결합하여 회전하도록 하는 것을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
  9. 제4항에 있어서,
    상기 제2정류자 또는 상기 슬립링(205)이 상기 DC전류(221)를 공급받는 동안 상기 휠(20)에 의해 상기 브러시홀더(212)가 회전되면서 상기 제1정류자(210a)와 상기 제2정류자(210b) 또는 상기 제1정류자(210a)와 상기 슬립링b(205b) 또는 상기 슬립링a(205a)과 슬립링b(205b)에게 상기 다중브러시(213)에 의해 상기 정류자편(211) 및 상기 슬립링b(205b)에 상기 DC전류(221)가 공급되어지는데, 서로 대응되는 상기 정류자편(211) 및 상기 슬립링(205b)에 각각 양극(+)와 음극(-)이 순차적이며 지속적으로 교번되면, 상응되는 상기 계자철심(241)에도 양극(+)와 음극(-)의 순차적이며 반복적인 교번이 일어나면서 이에 대응되는 상기 전기자코일(252)에도 극수만큼의 위상차를 가지고 유도기전력이 연속적으로 발생하게 되고 상기 전기자코일(252)에 연결된 상기 출력배선(260)을 통해 기전력이 출력되는 것을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
  10. 제4항에 있어서,
    상기 제2정류자 또는 상기 슬립링(205)이 상기 DC전류(221)를 공급받는 동안 상기 휠(20)에 의해 상기 브러시홀더(212)가 회전되면서 상기 제1정류자(210a)와 상기 제2정류자(210b) 또는 상기 제1정류자(210a)와 상기 슬립링b(205b) 또는 상기 슬립링a(205a)과 슬립링b(205b)에게 상기 다중브러시(213)에 의해 상기 정류자편(211) 및 상기 슬립링b(205b)에 상기 DC전류(221)가 공급되어지는데, 서로 대응되는 상기 정류자편(211) 및 상기 슬립링(205b)에 각각 양극(+)와 음극(-)이 순차적이며 지속적으로 교번되면, 상응되는 상기 계자철심(241)에도 양극(+)와 음극(-)의 순차적이며 반복적인 교번이 일어나면서 이에 대응되는 상기 전기자코일(252)에도 극수만큼의 위상차를 가지고 유도기전력이 연속적으로 발생하게 되고 상기 전기자코일(252)에 연결된 상기 출력배선(260)을 통해 기전력이 출력되는 것을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
  11. 제4항에 있어서,
    상기 전기자(250)와 상기 계자(240)는 상기 절연케이스(230)로 상기 휠(20)의 내부공간에 독립적으로 설치하고, 상기 제1정류자(210a)와 상기 제2정류자(210b)를 직렬로 결합하여 상기 전기자(250) 및 상기 계자(240)의 내측이나 독립된 별도의 하우징에 설치하여 상기 전기자(250) 및 상기 계자(240)와 분리되어 설치되어짐을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
  12. 제4항에 있어서,
    상기 전기자(250)와 상기 계자(240)는 상기 절연케이스(230)로 결합하여 일반적인 하우징의 내부공간에 독립적으로 설치하고, 상기 제1정류자(210a)와 상기 슬립링b(205b)를 직렬로 결합하여 상기 전기자(250) 및 상기 계자(240)의 내측이나 독립된 별도의 하우징에 설치하여 상기 전기자(250) 및 상기 계자(240)와 분리되어 설치되어짐을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
  13. 제4항에 있어서,
    상기 전기자(250)와 상기 계자(240)는 상기 절연케이스(230)로 결합하여 일반적인 하우징의 내부공간에 독립적으로 설치하고, 상기 슬립링a(205a)와 상기 슬립링b(205b) 2개를 직렬로 결합하여 상기 전기자(250) 및 상기 계자(240)의 내측이나 독립된 별도의 하우징에 설치하여 상기 전기자(250) 및 상기 계자(240)와 분리되어 설치되어짐을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
  14. 제10항과 11항과 12항에 있어서,
    상기 계자코일(242)로부터 분리된 상기 제1정류자(210a) 또는 상기 슬립링a(205a)에게 연결되는 코일연결선(243)은 거리에 관계없이 근거리에 연결할 수 있으며, 상기 제2정류자(210b) 또는 상기 슬립링b(205b)로부터 상기 전기자(250)에게 연결되는 코일연결선(253)은 거리에 관계없이 근거리에 연결할 수 있는 것을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
  15. 제4항에 있어서,
    상기 브러시홀더(212)를 회전시키는데 필요한 상기 휠(20)을 대체하는 방법으로는 DC모터, 풀리(Pulley), 블레이드(Blade), 로터 휠(Rotor Wheel), 자력 회전체(magnetic power rotor) 등을 사용하는 것을 특징으로 상기 모터용고정자와 상기 발전용고정자의 위치를 교환하는 모터와 알터네이터를 융합한 구동기계.
PCT/KR2018/000312 2017-01-07 2018-01-06 모터와 알터네이터를 융합한 구동기계 WO2018128487A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170002653 2017-01-07
KR10-2017-0002653 2017-01-07
KR10-2017-0002675 2017-01-08
KR1020170002675A KR101938889B1 (ko) 2017-01-08 2017-01-08 모터와 알터네이터를 융합한 전동차용 인휠 시스템

Publications (1)

Publication Number Publication Date
WO2018128487A1 true WO2018128487A1 (ko) 2018-07-12

Family

ID=62789494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000312 WO2018128487A1 (ko) 2017-01-07 2018-01-06 모터와 알터네이터를 융합한 구동기계

Country Status (1)

Country Link
WO (1) WO2018128487A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4254773A1 (en) * 2022-04-01 2023-10-04 Lifetrons Switzerland Holdings Limited Parallel control system of energy saving brushless micro kinetic power generation device and mains power supply device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262543A (ja) * 2001-06-22 2002-09-13 Dmw Japan:Kk 自動車の車輪の回転を利用した発電装置
JP2009189120A (ja) * 2008-02-05 2009-08-20 Sumitomo Electric Ind Ltd 車両用発電機構
KR20110075979A (ko) * 2009-12-29 2011-07-06 레드원테크놀러지 주식회사 이동 로봇 2자유도 구동장치
JP2011167044A (ja) * 2010-02-15 2011-08-25 Honda Motor Co Ltd 電動車両
KR101085332B1 (ko) * 2011-07-27 2011-11-23 장석호 롤러에 의한 림 회전방식을 갖는 발전 겸용 전동수단을 갖는 바퀴

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262543A (ja) * 2001-06-22 2002-09-13 Dmw Japan:Kk 自動車の車輪の回転を利用した発電装置
JP2009189120A (ja) * 2008-02-05 2009-08-20 Sumitomo Electric Ind Ltd 車両用発電機構
KR20110075979A (ko) * 2009-12-29 2011-07-06 레드원테크놀러지 주식회사 이동 로봇 2자유도 구동장치
JP2011167044A (ja) * 2010-02-15 2011-08-25 Honda Motor Co Ltd 電動車両
KR101085332B1 (ko) * 2011-07-27 2011-11-23 장석호 롤러에 의한 림 회전방식을 갖는 발전 겸용 전동수단을 갖는 바퀴

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4254773A1 (en) * 2022-04-01 2023-10-04 Lifetrons Switzerland Holdings Limited Parallel control system of energy saving brushless micro kinetic power generation device and mains power supply device

Similar Documents

Publication Publication Date Title
WO2013081225A1 (ko) 전기기계의 고정자 및 이를 구비한 전동기, 전동기를 구비한 전기차량
KR20180081672A (ko) 모터와 알터네이터를 융합한 구동기계
WO2011158993A1 (ko) 슬롯리스 고정자를 갖는 브러시리스 직류 모터
WO2013085231A1 (ko) 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
WO2022164070A1 (ko) 하이브리드 자석을 탑재한 능동 전류 제어형 비접촉식 초전도 여자기용 시험 장치 및 이를 이용한 고온초전도 회전기 시스템
WO2016024777A1 (en) Washing machine
WO2017052075A1 (ko) 영구자석 응용 전동기
WO2009099300A2 (ko) 전기모터
WO2020138583A1 (ko) 자기부상 회전체를 포함하는 축방향 모터
WO2019135583A1 (ko) 다중브러시를 이용한 직류발전장치
WO2020091313A1 (ko) 자기작용을 조정할 수 있는 장치와 이를 채용한 발전기 장치 및 그를 위한 부품
WO2023146056A1 (ko) 비접촉식 회전 변압기 및 이를 포함하는 모터
WO2020004726A1 (ko) Isg 시스템용 계자권선형 모터발전기의 효율 향상을 위한 보조 영구자석을 구비하는 회전자 구조
WO2014061908A1 (ko) 이중 공극형 발전기
WO2017204425A1 (ko) 비균일 자극 길이를 가지는 영구자석 전기기기
WO2018128487A1 (ko) 모터와 알터네이터를 융합한 구동기계
WO2020085877A1 (ko) 다중의 회전자 및 고정자로 구성되는 발전기
WO2013032122A1 (ko) 종축자속형 영구자석 동기발전기 및 모터
WO2024034868A1 (ko) 용량 가변형 전기추진 전동기의 냉각구조 및 이를 채용한 용량 가변형 전기추진 전동기
WO2015190719A1 (en) Brushless motor
WO2023182749A1 (ko) 순차 독립 발전형 발전장치를 이용한 배터리 클러스터링 시스템
WO2022220579A1 (ko) 프로펠러 구동장치 및 이를 이용한 드론
WO2016171439A1 (en) Laundry treatment apparatus and magnetic gear device
WO2020138550A1 (ko) 모터와 알터네이터를 융합한 구동기계
WO2017014338A1 (ko) 일방향 회전 장치가 장착된 발전기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18735891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18735891

Country of ref document: EP

Kind code of ref document: A1