WO2022250218A1 - 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기 - Google Patents

영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기 Download PDF

Info

Publication number
WO2022250218A1
WO2022250218A1 PCT/KR2021/016099 KR2021016099W WO2022250218A1 WO 2022250218 A1 WO2022250218 A1 WO 2022250218A1 KR 2021016099 W KR2021016099 W KR 2021016099W WO 2022250218 A1 WO2022250218 A1 WO 2022250218A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnetic flux
permanent magnets
permanent
clustering
Prior art date
Application number
PCT/KR2021/016099
Other languages
English (en)
French (fr)
Inventor
추찬호
이승권
Original Assignee
추찬호
이승권
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 추찬호, 이승권 filed Critical 추찬호
Publication of WO2022250218A1 publication Critical patent/WO2022250218A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof

Definitions

  • the present invention relates to a high-efficiency motor capable of controlling effective magnetic flux through clustering of permanent magnets, and more specifically, to a high-efficiency motor capable of reducing cogging and noise, as well as controlling effective magnetic flux
  • efficient lot management of magnets is possible so that the characteristics of the motor are stable, and the characteristics and residual magnetic flux density of magnets that can cause deviations depending on the lot, which is a factor that destabilizes the characteristics of the motor
  • a high-efficiency motor capable of controlling the effective magnetic flux through clustering of permanent magnets which can easily control the change of (Br) and can predict and manage a constant effective magnetic flux, thereby significantly increasing the efficiency of the motor. will be.
  • Total flux refers to the total sum of the magnetic lines of force that pass through the coil wound in the corresponding slot of the armature and return to the opposite pole among many magnetic lines of force from one pole of the magnet.
  • 1 a method of increasing the thickness of the magnet
  • 2 a method of changing the material of the magnet to a material with a higher residual magnetic flux density (Br) than the current material
  • 3 a method of increasing the length and width of the magnet method has been used.
  • 1 is a typical structural diagram of an electric motor.
  • stator a fixed part
  • rotor a rotating part
  • field 10 is a stator
  • armature 20 is a rotor
  • armature 20 As the main parts of the motor, there are a field 10, an armature 20, a commutator 30, a brush 40, and the like, as shown in FIG.
  • the field 10 is also referred to as a field magnet and is responsible for generating a main magnetic flux.
  • the field 10 interacts with the armature 20 to form a magnetic circuit, and the armature 20 receives the magnetic flux created by the field 10 to obtain rotational force.
  • the field 10 since the field 10 only needs to generate the required magnetic flux, relatively less current flows than the armature 20, and a permanent magnet or an electromagnet is used to generate the magnetic flux. 1 is an example using a permanent magnet.
  • the armature 20 is also called an armature and generates torque through Fleming's left-hand rule by cutting off the magnetic flux created by the field 10.
  • the commutator 30 is also referred to as a commutator, and supplies power to the rotating part by converting direct current coming from the outside into alternating current.
  • the AC current thus changed is supplied to the armature 20 . Since the commutator 30 is connected to the armature 20, when the armature 20 rotates, it also rotates.
  • the rotating commutator 30 contacts the brush 40 in a stationary state.
  • the brush 40 is a part that contacts the commutator 30 and connects the internal circuit and the external circuit of the motor.
  • Types of the brush 40 include a carbon brush, a graphite brush, an electric graphite brush, a metal graphite brush, and the like.
  • the amount of magnetic flux formed in the motor as shown in FIG. 1 means the sum of the amount of effective magnetic flux and the amount of leakage flux. It can perform the role of the field 10 by the amount of effective magnetic flux.
  • the effective magnetic flux refers to the total sum of the magnetic lines of force that pass through the coil wound around the corresponding slot of the armature 20 and return to the opposite pole among many magnetic lines of force from one pole of the magnet.
  • the design in order to maximize the design efficiency of the motor, basically, when designing the motor, the design should be made in consideration of the leakage prevention as well as the precise calculation of the effective magnetic flux.
  • An object of the present invention is to reduce cogging and noise, as well as to efficiently manage a lot of magnets so that the characteristics of a motor can be stabilized through effective magnetic flux control, , It is possible to easily adjust the change of magnet characteristics and residual magnetic flux density (Br), which may cause deviation depending on the lot, which is a factor that destabilizes the characteristics of the motor, and predictive management of a certain amount of effective magnetic flux.
  • An object of the present invention is to provide a high-efficiency motor capable of controlling effective magnetic flux through clustering of permanent magnets, which can significantly increase the efficiency of the motor compared to the prior art.
  • the above object is to include a permanent magnet disposed outside the armature in the radial direction and made of an annular sector plate; and a permanent magnet support module supporting the permanent magnet and performing predictive management by measuring effective magnetic flux.
  • the permanent magnet support module includes: an arc-shaped module body formed in a semicircular curved shape; and a plurality of permanent magnet insertion holes formed in the arc-shaped module body to cluster the permanent magnets so that the permanent magnets can be inserted in the form of slots. This is achieved by a controllable high-efficiency electric motor.
  • the permanent magnet insertion holes may be arranged on the arc-shaped module body at equal intervals, and the cross-sectional area of the permanent magnet insertion holes may be gradually reduced along a direction in which the permanent magnets are inserted.
  • the permanent magnet the outer surface curved portion; an inner curved portion disposed radially inside the outer curved portion and having a smaller area than the outer curved portion; a pair of side connecting portions connecting the outer curved portion and the inner curved portion from both side surfaces; and a pair of inclined end connection portions that obliquely connect the outer curved portion and the inner curved portion at both ends.
  • the permanent magnet may be selected from at least one of a ferrite magnet, a Sm-Co magnet, a Nd-Fe-B magnet, and a Sm2Fe17Nx magnet.
  • the permanent magnet insertion hole is made of an annular sector plate that is easy to insert the permanent magnet in the form of a slot, and the permanent magnet insertion hole has a structure capable of clustering the permanent magnet and preventing it from being separated. can be formed as
  • the permanent magnet support module may be manufactured in a bipolar or multipole type.
  • the permanent magnet support module may be manufactured to face the surface facing the central axis at an offset angle within a range of 0.1 to 10 degrees.
  • the present invention it is possible to reduce cogging and noise phenomena, as well as to efficiently manage a lot of magnets so that the characteristics of a motor are stabilized through effective magnetic flux control, Magnet characteristics and changes in residual magnetic flux density (Br), which can cause deviations depending on the lot, which are factors that destabilize the characteristics of the motor, can be easily adjusted, and a constant effective magnetic flux can be predicted and managed. There is an effect that can significantly increase the efficiency of the conventional.
  • 1 is a typical structural diagram of an electric motor.
  • FIG. 2 is a structural diagram of a main part of a high-efficiency electric motor capable of controlling an effective magnetic flux through clustering of permanent magnets according to an embodiment of the present invention.
  • FIG 3 is a view for explaining a permanent magnet and a permanent magnet support module.
  • 6 is data obtained by dividing the inner surface of a magnet into parts and measuring surface magnetic flux using a gauss meter.
  • FIG. 7 shows the measurement of the surface magnetic flux at nine points (a, b, c, d, e, f, g, h, i) of the N pole and the S pole, respectively, using two magnets as samples.
  • FIG. 9 is a layout view of a permanent magnet support module according to an embodiment of the present invention.
  • 10A to 15 are diagrams illustrating various modified examples of the present invention.
  • 16 to 20 are various modifications of permanent magnets, permanent magnet support modules, and permanent magnet insertion holes.
  • the invention relates to a high-efficiency electric motor capable of controlling effective magnetic flux through clustering of permanent magnets.
  • the high-efficiency electric motor capable of controlling the effective magnetic flux through the clustering of the permanent magnets of the present invention includes permanent magnets disposed outside the armature in the radial direction and made of an annular sector plate; and a permanent magnet support module supporting the permanent magnet and performing predictive management by measuring effective magnetic flux.
  • the permanent magnet support module includes: an arc-shaped module body formed in a semicircular curved shape; and a plurality of permanent magnet insertion holes formed in the arc-shaped module body to cluster the permanent magnets in a slot form.
  • FIG. 2 is a structural diagram of the main parts of a high-efficiency electric motor capable of controlling effective magnetic flux through clustering of permanent magnets according to an embodiment of the present invention
  • Figure 3 is a view for explaining a permanent magnet and a permanent magnet support module
  • Figure 4 is An enlarged view of the permanent magnet
  • Figure 5 is an enlarged view of the main part of the permanent magnet support module
  • Figure 6 is data obtained by measuring the surface magnetic flux by dividing the inner surface of the magnet by part and using a gauss meter
  • Figure 7 is two magnets Measuring the surface magnetic flux at nine points (a, b, c, d, e, f, g, h, i) of the N pole and S pole, respectively, as a sample
  • Figure 8 calculates the permeance coefficient A B-H curve and a measurement area for doing
  • FIG. 9 is a layout view of a permanent magnet support module according to an embodiment of the present invention.
  • the electric motor of this embodiment includes a permanent magnet 100 disposed outside the armature 20 in the radial direction and made of an annular sector plate, and a permanent magnet 100.
  • a plurality of permanent magnet insertion holes 200 manufactured to cluster so that they can be inserted in a slot form and a plurality of permanent magnet insertion holes 200 are integrally configured to support the permanent magnets 100 and measure the effective magnetic flux It may include a permanent magnet support module 300 that performs a function capable of predictive management by.
  • the permanent magnet 100 may be made of an annular sector plate.
  • the permeance coefficient of the permanent magnet 100 is high at the edge portion and the permeance coefficient is relatively low at the center portion, so that the effective magnetic flux can be secured.
  • the permanent magnet 100 includes an outer curved portion 111, an inner curved portion 112 disposed radially inside the outer curved portion 111 and having a smaller area than the outer curved portion 111, and an outer curved portion 111. ) and a pair of side connection parts 113 connecting the inner curved part 112 at both sides, and a pair of inclined end connection parts 114 connecting the outer curved part 111 and the inner curved part 112 at an angle at both ends. ) may be included.
  • the permanent magnet 100 may be selected from ferrite magnets, Sm-Co magnets, Nd-Fe-B magnets, and Sm2Fe17Nx magnets.
  • the permanent magnet 100 can be manufactured using
  • the permeance coefficient has a meaning similar to the amount of magnetic flux, and means that the amount of magnetic flux at the periphery of the magnet is higher than that at the center.
  • Conventional methods for increasing the permeance coefficient include reducing the air gap in the motor as much as possible, using a material with low magnetic resistance as much as possible for the material of the armature and housing of the motor, or using the thickness of the housing (yoke) It is a method of eliminating leakage flux by increasing , or increasing the laminated length of the armature up to 80% of the magnet length.
  • the permanent magnet support module 300 supports the permanent magnet 100 .
  • the permanent magnet support module 300 may be formed in a cylindrical shape like a conventional stator or rotor.
  • the permanent magnet support module 300 includes an arc-shaped module body 310 formed in a semicircular curved shape, and clustering formed on the arc-shaped module body 310 so that the permanent magnet 100 can be inserted in a slot shape. It includes a plurality of permanent magnet insertion holes 200 manufactured to do so.
  • the permanent magnet insertion holes 200 are arranged on the arc-shaped module body 310 at regular intervals.
  • the permanent magnet insertion hole 200 is provided so that its cross-sectional area is gradually reduced along the direction in which the permanent magnet 100 is inserted. Therefore, structurally stable bonding of the permanent magnet 100 can be drawn out, and random separation of the permanent magnet 100 can be prevented.
  • the permanent magnet support module 300 is made of a material close to pure iron with low magnetic resistance or a non-magnetic material so that leakage flux does not occur outside the permanent magnet support module 300 in order to prevent leakage flux of the permanent magnet 100. It may be manufactured or manufactured in such a way as to adjust its own thickness.
  • a plurality of permanent magnet insertion holes 200 are formed in the permanent magnet support module 300 .
  • the permanent magnet 100 is inserted into the permanent magnet insertion hole 200 .
  • the permanent magnet insertion hole 200 is made of an annular sector plate that is easy to insert the permanent magnet 100 in the form of a slot.
  • the permanent magnet insertion hole 200 may be formed in a structure capable of clustering the plurality of permanent magnets 100 and preventing them from being separated.
  • the permanent magnet insertion hole 200 may be formed in a structure in which the permanent magnet 100 does not fall out in the direction in which it is inserted.
  • the permanent magnet support module 300 into which the plurality of permanent magnets 100 are inserted can perform a predictive management function by measuring the effective magnetic flux.
  • the permanent magnet support module 300 may be manufactured in a bipolar or multipole type.
  • the electric motor of this embodiment includes a permanent magnet 100 made of an annular sector plate and a plurality of permanent magnets made for clustering so that the permanent magnets 100 can be inserted in a slot form. It may include a permanent magnet support module 300 constituting the hole 200 and the plurality of permanent magnet insertion holes 200 integrally.
  • Prediction management by measuring effective magnetic flux is a very convenient method for both magnet users and magnet suppliers. This is because efficient lot management of magnets becomes possible when the characteristics of the motor are stable.
  • the characteristics of the magnet may vary depending on the lot, and in the case of the residual magnetic flux density (Br), there may be a characteristic change of ⁇ 3 to 4%.
  • the effective magnetic flux When managed tightly, the deviation of the effective magnetic flux is very large, and as a result, it acts as a factor that destabilizes the characteristics of the motor.
  • the permanent magnet support module 300 into which the plurality of permanent magnets 100 are inserted can be usefully utilized through a flux meter during repair or maintenance from the time of motor design.
  • the magnetic flux tolerance is tightly managed, such as ⁇ 0.10, the management of the motor performance by the effective magnetic flux is no different from giving up. This is because it is not easy for magnet suppliers to change the thickness (permeance coefficient due to air gap) to match the effective magnetic flux within such a tight tolerance range.
  • This phenomenon appears higher as the shortest distance from the measurement site to the opposite pole is shorter.
  • the permeance coefficient is a value determined by the material, shape, size, and direction of the magnetic field of the magnet. Even with the same magnet, the surface gauss is not constant depending on the position of the magnet surface. This is caused by the difference in the shortest distance from the opposite pole.
  • a larger amount of magnetic flux is produced in a region with a large permeance coefficient, and the permeance coefficient is larger as the shortest distance from the measured region to the opposite pole is short.
  • the plurality of permanent magnets 100 according to the present invention are made of an annular sector plate and can perform a function of maximizing the permeance coefficient.
  • the permeance coefficient refers to a value obtained by dividing the magnetic flux density B by the coercive force Hc.
  • the permeance coefficient is a very important factor, and is a value determined according to the material, shape, size, and magnetic field direction of the magnet.
  • This value calculates the operating point, obtains the operating point magnetic flux density (Bd), and calculates the magnetic flux amount ( ⁇ : Maxwell).
  • S is the total surface area
  • Am is the cross-sectional area of the magnet orthogonal to the magnetization direction
  • Lm is the length of the magnetization direction
  • ⁇ r is the reversible magnetic permeability. That is, the higher the permeance coefficient, the higher the total magnetic flux.
  • the permeance coefficient (magnetic flux density B / coercive force Hc) of point A becomes B/Hc of point A where the B-H curve intersects 1,200 gauss in (B).
  • the permeance (B/Hc) PA and PB of point A and point B at this time appear to be the same, and the value is 2,500 G / 1,450 oe, which is 1.72.
  • the surface gauss is not constant depending on the position of the magnet surface, which is caused by the difference in the shortest distance from the opposite pole. In other words, in order to raise the permeance coefficient, it is possible to simply reduce the air gap with the opposite pole.
  • the permanent magnet 100 made of the annular sector plate of the present invention is a structure for increasing the permeance coefficient, and clusters a plurality of permanent magnets 100 without using a method such as stacking to generate an electric motor
  • the permeance coefficient can be increased without affecting the volume or structure of
  • the permanent magnet support module 300 may be manufactured to face the surface facing the central axis at an offset angle within a range of 0.1 degrees to 10 degrees.
  • the shape of the permanent magnet support module 300 of FIGS. 2 and 3 is shown differently from that of FIG. 9, but the shape of the permanent magnet support module 300 of FIGS. 2 and 3 is considered to be the same as that of FIG. do.
  • the cogging phenomenon is a non-uniform torque inside the motor.
  • it refers to a phenomenon in which the armature cannot rotate smoothly due to the attractive force of the magnet due to the tangential force moving to the position where the magnetic energy is minimum, and rotates as if it is stuck.
  • Noise phenomena can be classified into mechanical noise and electrical noise.
  • Mechanical noise refers to noise directly transmitted through the human ear among the noise generated by the motor, and the measurement unit is often dB (decibels).
  • Causes of mechanical noise include vibration of the motor, resonance and resonance of the air gap between the magnet and the armature, bending of the armature shaft or unbalanced balance, and wear or cracking of the bearing. etc. can be cited as an example.
  • the characteristic of electrical noise is that people cannot directly hear it through their ears without an intermediate medium, and it refers to noise that only generates noise in a certain frequency band or is detected only through an oscilloscope that can see the waveform of electromagnetic waves.
  • Causes of electrical noise include a cogging phenomenon, an imbalance between a magnet angle and an armature slot angle, and current sparks caused by a defective brush.
  • Means for reducing the conventional cogging phenomenon and noise phenomenon by a simple process of manufacturing the surface facing the central axis of the permanent magnet support module 300 according to the present invention at an opposite angle in the range of 0.1 to 10 degrees can act as
  • the present embodiment which operates based on the structure described above, cogging and noise can be reduced, and the characteristics of the motor can be stabilized through effective magnetic flux control. Efficient lot management of magnets is possible, and changes in magnet characteristics and residual magnetic flux density (Br), which can cause deviations depending on the lot, which is a factor that destabilizes the characteristics of motors, can be easily adjusted. , it is possible to predict and manage a certain amount of effective magnetic flux, so the efficiency of the motor can be greatly increased than before.
  • 10A to 15 are diagrams illustrating various modified examples of the present invention.
  • the permanent magnet 500 is inserted into the permanent magnet insertion hole 700 of the permanent magnet support module 600 so that the characteristics of the motor are improved. It plays a stabilizing role.
  • the structure, function, and role of the permanent magnet 500 may be the same as those of the above-described embodiment.
  • the permanent magnet 500 is formed with a slot 510 for preventing separation.
  • a protrusion 710 for preventing separation is formed on the inner wall of the permanent magnet insertion hole 700 corresponding to the slot 510 for preventing separation of the permanent magnet 500 .
  • the slot 510 for preventing separation of the permanent magnet 500 is inserted into the projection 710 for preventing separation formed on the inner wall of the permanent magnet insertion hole 700. It can be customized, and due to its action, it is possible to prevent the permanent magnet 500 from being arbitrarily separated.
  • the permanent magnet 500a is inserted into the permanent magnet insertion hole 700a of the permanent magnet support module 600a, so that the characteristics of the motor are improved. It plays a stabilizing role.
  • a protrusion 510a for preventing separation is formed on the permanent magnet 500a.
  • the separation prevention protrusion 510a has an inclined surface 511 so that the permanent magnet 500a can easily enter the permanent magnet insertion hole 700a.
  • a separation preventing slot 710a is formed on the inner wall of the permanent magnet insertion hole 700a corresponding to the separation preventing protrusion 510a of the permanent magnet 500a.
  • the cross-sectional shape of the separation preventing slot 710a may be the same as that of the separation preventing protrusion 510a.
  • the protrusion 510a for preventing separation of the permanent magnet 500a is inserted into the slot 710a for preventing separation formed on the inner wall of the permanent magnet insertion hole 700a. It can be customized, and it is possible to prevent the permanent magnet (500a) from being arbitrarily separated due to its action.
  • the permanent magnet 500b is inserted into the permanent magnet insertion hole 700b of the permanent magnet support module 600b so that the characteristics of the motor are improved. It plays a stabilizing role.
  • the permanent magnet (500b) is formed with a slot (510b) for preventing departure. Also, a protrusion 710b for preventing separation is formed on an inner wall of the permanent magnet insertion hole 700b corresponding to the slot 510b for preventing separation of the permanent magnet 500b.
  • the permanent magnet 500b having the separation prevention slot 510b has a shape in which the width gradually decreases from the rear end 520 to the front end 530 .
  • the area of the front end 530 is smaller than the area of the rear end 520 . Therefore, assembly of the permanent magnet 500b becomes very easy.
  • the slot 510b for preventing separation of the permanent magnet 500b is inserted into the projection 710b for preventing separation formed on the inner wall of the permanent magnet insertion hole 700b. It can be customized, and it is possible to prevent the permanent magnet (500b) from being arbitrarily separated due to its action.
  • the permanent magnet 500c is inserted into the permanent magnet insertion hole 700c of the permanent magnet support module 600c so that the characteristics of the motor are improved. It plays a stabilizing role.
  • the permanent magnet 500c has a shape in which the width gradually decreases from the rear end 520c to the front end 530c.
  • the area of the front end portion 530c is smaller than the area of the rear end portion 520c. Therefore, assembly of the permanent magnet 500c becomes very easy.
  • a permanent magnet insertion hole 700c is processed to correspond to the permanent magnet 500c, and a stopper 620 is formed at an end of the permanent magnet support module 600c where the permanent magnet insertion hole 700c is located. Therefore, the front end 530c of the permanent magnet 500c can be inserted only up to the stopper 620 .
  • a separate magnet separation prevention cover 640 is additionally coupled to the permanent magnet support module 600c to prevent the permanent magnet 500c inserted into the permanent magnet insertion hole 700c from being separated from the rear end.
  • the permanent magnets 500 and 500d are inserted into the permanent magnet insertion holes 700d of the permanent magnet support module 600d, so that the characteristics of the motor It plays a role in stabilizing it.
  • the width (L) of the permanent magnet insertion hole (700d) is larger than the above-mentioned embodiments. That is, the permanent magnet insertion hole 700d provided in this embodiment may have the same width as the above-described embodiments, and may have a large width L as in the present embodiment.
  • the slot 510 for preventing separation is formed in one of the first and second permanent magnets 500 and 500d, and a slot protrusion 515 inserted therein is formed in the other one, the slot 510 for preventing separation In a state in which the first and second permanent magnets 500 and 500d are connected as one body by using the and slot protrusions 515, they can be inserted and combined into the permanent magnet insertion hole 700d.
  • a protrusion 710 for preventing separation is formed on the inner wall of the permanent magnet insertion hole 700d to correspond to the slot 510 for preventing separation.
  • the slot 510 for preventing separation of the first and second permanent magnets 500 and 500d forms a permanent magnet insertion hole 700d. It can be fitted into the separation preventing protrusion 710 formed on the inner wall of, and it is possible to prevent the first and second permanent magnets 500 and 500d from being arbitrarily separated by its action.
  • 16 to 20 are various modifications of permanent magnets, permanent magnet support modules, and permanent magnet insertion holes.
  • most of the permanent magnet 100 has a rectangular cross-sectional structure.
  • the permanent magnets 900a to 900e may be variously deformed such as a rhombus, a triangle, a pentagon, a hexagon, or an octagon, and correspondingly, the permanent magnet support modules 800a to 800e
  • the permanent magnet insertion holes 700a to 700e of may also be variously deformed, such as a rhombus, a triangle, a pentagon, a hexagon, or an octagon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기에 관한 발명이다. 본 발명의 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기는, 전기자의 반경 방향 외측에 배치되되 환형 섹터 플레이트(Annular sector plate)로 제작된 영구자석; 및 상기 영구자석을 지지하되 유효자속량 측정에 의한 예측 관리가 가능한 기능을 수행하는 영구자석 지지모듈을 포함하며, 상기 영구자석 지지모듈은, 반원의 곡면 형태로 형성되는 아크형 모듈 바디; 및 상기 아크형 모듈 바디에 형성되되 상기 영구자석을 슬롯 형태로 삽입할 수 있도록 클러스팅하기 위해 제작된 복수의 영구자석 삽입홀을 포함하는 것을 특징으로 한다.

Description

영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
본 발명은, 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기에 관한 것으로서, 더욱 구체적으로는, 코깅(Cogging) 현상과 노이즈(Noise) 현상을 줄일 수 있음은 물론, 유효자속량 제어를 통해 전동기(motor)의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트(lot)에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있는, 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기에 관한 것이다.
유효자속량(Total flux)이란 자석의 한 극에서 나온 많은 자력선 중에서 전기자의 해당 슬롯에 감겨 있는 코일을 통과해 반대 극으로 돌아가는 자력선의 총합계를 의미한다.
자석에서 방출되는 자속량이 아무리 많아도 전기자의 해당 슬롯 내의 코일을 통과해 반대 극으로 돌아가는 유효자속량이 적으면 나머지 자속량은 손실된다.
따라서, 되도록 자석이 방출하는 모든 자속량을 유효자속량화 하는 것이 모터, 즉 전동기 내에서의 자석을 경제적이며 효율적으로 사용하는 것이다.
한편, 전동기(motor)에 있어서 유효자속량이 미달상태가 되면 무부하 시 전동기 회전수(rpm)가 상승하고 전동기의 회전력(torque)이 떨어지며 전류치(ampere)가 상승하고 전동기의 코일에서 열 발생이 심해진다.
이를 해결하기 위해 종래의 방법으로서 ①자석의 두께를 크게 하는 방법, ②자석의 재질을 현재의 재질보다 잔류자속밀도(Br)를 한 단계 높은 재질로 변경시키는 방법, ③자석의 길이와 폭을 크게 하는 방법을 사용한 바 있다.
하지만, 이들 방법은 금형 비용 등이 추가로 발생한다는 점에서 비경제적인 대안일 수밖에 없다.
이를 해결하기 위한 또 다른 방법으로 외면 착자를 시키거나 포화(Full) 착자를 시킬 수도 있지만, 내면 착자에서 일어날 수 있는 퍼미언스 계수의 일시 하락으로 인한 감자 문제와 착자 전원 및 착자기의 업그레이드(upgrade) 문제가 있어 좋은 대안이 될 수 없다는 점에서 이에 대한 기술 개발이 요구된다.
그뿐만 아니라 통상의 전동기기는 여러 면에서 관리되어야 할 부분이 상당하다. 이에 대해 도 1을 참조하여 설명한다.
도 1은 전동기의 통상적인 구조도이다.
이를 참조하면, 통상의 전동기에서 고정되는 부분을 고정자(Stator)라고 부르고 회전하는 부분을 회전자(Rotor)라고 한다. 계자(10)가 고정자이고 전기자(20)가 회전자인 것이 일반적이다.
전동기의 주요 부분으로서 도 1에 도면 참조부로로 나타낸 것처럼 계자(10), 전기자(20), 정류자(30), 브러시(40, Brush) 등이 있다.
계자(10)는 필드 마그넷(Field Magnet)이라고도 하며, 주 자속의 생성을 담당한다.
계자(10)는 전기자(20)와 상호작용하여 자기회로를 구성하는데 계자(10)가 만들어준 자속을 전기자(20)가 받아 회전력을 얻는다.
계자(10)는 필요한 자속만 생성해주기만 하면 되기에 전기자(20)보다는 전류가 비교적 적게 흐르며 자속을 만들기 위해 영구자석을 이용하거나 전자석을 이용한다. 도 1은 영구자석을 이용한 예이다.
이때, 도 1처럼 영구자석으로 계자(10)를 적용하면 별도의 권선없이 자속을 만들어 낼 수 있는 이점이 있다. 하지만, 자속을 제어하지 못하여 속도 조절이 어렵다는 문제점도 내포한다.
전기자(20)는 아마츄어(Armature)라고도 하며 계자(10)가 만들어낸 자속을 끊어내어 플레밍의 왼손 법칙을 통해 토크를 생성한다.
전동기에 전원을 공급해주면 전동기가 회전하는데 이때 전원의 전류가 흐르는 곳이 바로 이 전기자(20)인 것이다.
전기자(20)는 공급하는 전류가 직접 흐르는 곳이기 때문에 대용량일수록 선이 굵고 복잡하게 설계된다.
정류자(30)는 코뮤테이터(Commutator)라고도 하며, 외부로부터 들어오는 직류전류를 교류전류로 바꾸어 회전부에 전원을 공급한다.
직류전류를 교류전류로 바꾸어주는 이유는 전동기는 전류의 방향이 수시로 바뀌면서 플레밍의 왼손 법칙에 의한 힘도 수시로 바뀌어야 회전하기 때문이다.
이렇게 바뀐 교류전류를 전기자(20)에 공급한다. 정류자(30)는 전기자(20)와 연결되어 있으므로 전기자(20)가 회전하면 같이 회전한다.
회전하는 정류자(30)는 정지된 상태의 브러시(40)와 접촉한다. 브러시(40)는 정류자(30)와 접촉하여 전동기 내부회로와 외부회로를 연결하는 부분이다.
브러시(40)의 종류에는 탄소 브러시, 흑연 브러시, 전기 흑연 브러시, 금속 흑연 브러시 등이 있다.
한편, 도 1과 같은 전동기에 형성되는 자속량은 유효자속량과 누설자속량을 합한 양을 의미한다. 유효자속량에 의해 계자(10)의 역할을 수행할 수 있다.
앞서 기술한 것처럼 유효자속량은 자석의 한 극에서 나온 많은 자력선 중에서 전기자(20)의 해당 슬롯에 감겨 있는 코일을 통과해 반대 극으로 돌아가는 자력선의 총합계를 의미한다.
계자(10)인 영구자석에서 방출되는 자속량이 아무리 많아도 전기자(20)의 해당 슬롯 내의 코일을 통과해 반대 극으로 돌아가는 유효자속량이 적으면 나머지 자속량은 손실되는데, 되도록 자석이 방출하는 모든 자속량을 유효자속량화 하는 것이 전동기 내에서의 자석을 경제적이며 효율적으로 사용하는 것일 수 있다.
다시 말해, 전동기의 설계효율을 극대화하기 위해서는 기본적으로 전동기 설계 시 유효자속량에 대한 치밀한 계산과 더불어 누설방지를 고려하여 설계가 이루어져야 한다.
특히, 전동기에서 회전력(Torque)이나 회전수(RPM) 또는 전류(Ampere)의 관리가 매우 중요하다.
이러한 각 특성의 관리를 위해서는 자석의 특성 중 잔류자속밀도(Br), 보자력(iHc, bHc), 최대에너지적(B??max) 등을 자세히 검토하고 관리하여야 하는데, 현존 기술로는 이에 부합하기 어렵다.
특히, 기존 기술 정도로는 그 구조적인 한계로 인해 전동기의 코깅(Cogging) 현상과 노이즈(Noise) 현상을 줄이기 어렵다는 점을 고려해볼 때, 이를 해결하기 위한 기술 개발이 필요한 실정이다.
본 발명의 목적은, 코깅(Cogging) 현상과 노이즈(Noise) 현상을 줄일 수 있음은 물론, 유효자속량 제어를 통해 전동기(motor)의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트(lot)에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있는, 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기를 제공하는 것이다.
상기 목적은, 전기자의 반경 방향 외측에 배치되되 환형 섹터 플레이트(Annular sector plate)로 제작된 영구자석; 및 상기 영구자석을 지지하되 유효자속량 측정에 의한 예측 관리가 가능한 기능을 수행하는 영구자석 지지모듈을 포함하며, 상기 영구자석 지지모듈은, 반원의 곡면 형태로 형성되는 아크형 모듈 바디; 및 상기 아크형 모듈 바디에 형성되되 상기 영구자석을 슬롯 형태로 삽입할 수 있도록 클러스팅하기 위해 제작된 복수의 영구자석 삽입홀을 포함하는 것을 특징으로 하는, 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기에 의해 달성된다.
상기 영구자석 삽입홀들은 등간격으로 상기 아크형 모듈 바디 상에 배열되며, 상기 영구자석 삽입홀은 상기 영구자석이 삽입되는 방향을 따라 단면적이 점진적으로 축소되게 마련될 수 있다.
상기 영구자석은, 외면 곡면부; 상기 외면 곡면부의 반경 방향 내측에 배치되되 상기 외면 곡면부보다 면적이 작은 내면 곡면부; 상기 외면 곡면부와 상기 내면 곡면부를 양측면에서 연결하는 한 쌍의 측면 연결부; 및 상기 외면 곡면부와 상기 내면 곡면부를 양단부에서 경사지게 연결하는 한 쌍의 경사 단부 연결부를 포함할 수 있다.
상기 영구자석이 페라이트 자석, Sm-Co계 자석, Nd-Fe-B계 자석 및 Sm2Fe17Nx계 자석 중 적어도 하나에서 선택될 수 있다.
상기 영구자석 삽입홀은 상기 영구자석을 슬롯 형태로 삽입하기 용이한 환형 섹터 플레이트(Annular sector plate)로 제작되며, 상기 영구자석 삽입홀은 상기 영구자석을 클러스팅하고 이탈되는 것을 방지할 수 있는 구조로 형성될 수 있다.
상기 영구자석 지지모듈이 2극형 이상의 다극형으로 제작될 수 있다.
전동기의 코깅(Cogging) 현상과 노이즈(Noise) 현상을 줄이기 위해 상기 영구자석 지지모듈이 중심축을 중심으로 대향하는 면과 0.1도 내지 10도 이내의 범위에서 엇각으로 대향하게 제작될 수 있다.
본 발명에 따르면, 코깅(Cogging) 현상과 노이즈(Noise) 현상을 줄일 수 있음은 물론, 유효자속량 제어를 통해 전동기(motor)의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트(lot)에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있는 효과가 있다.
도 1은 전동기의 통상적인 구조도이다.
도 2는 본 발명의 일 실시예에 따른 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기의 요부 구조도이다.
도 3은 영구자석과 영구자석 지지모듈의 설명을 위한 도면이다.
도 4는 영구자석의 확대도이다.
도 5는 영구자석 지지모듈의 요부 확대도이다.
도 6은 자석의 내면을 부위별로 나누어 가우스 메타(gauss meter)로써 표면자속량을 측정한 데이터이다.
도 7은 2개의 자석을 시료로 하여 각각 N극과 S극의 9개 지점(a,b,c,d,e,f,g,h,i)의 표면자속량을 측정한 것이다.
도 8은 퍼미언스 계수를 산출하기 위한 B-H 곡선과 측정 부위이다.
도 9는 본 발명의 일 실시예에 따른 영구자석 지지모듈의 배치도이다.
도 10a 내지 도 15는 본 발명의 다양한 변형예를 도시한 도면들이다.
도 16 내지 도 20은 영구자석, 영구자석 지지모듈 및 영구자석 삽입홀의 다양한 변형예들이다.
영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기에 관한 발명이다. 본 발명의 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기는, 전기자의 반경 방향 외측에 배치되되 환형 섹터 플레이트(Annular sector plate)로 제작된 영구자석; 및 상기 영구자석을 지지하되 유효자속량 측정에 의한 예측 관리가 가능한 기능을 수행하는 영구자석 지지모듈을 포함하며, 상기 영구자석 지지모듈은, 반원의 곡면 형태로 형성되는 아크형 모듈 바디; 및 상기 아크형 모듈 바디에 형성되되 상기 영구자석을 슬롯 형태로 삽입할 수 있도록 클러스팅하기 위해 제작된 복수의 영구자석 삽입홀을 포함하는 것을 특징으로 한다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 쉽게 실시할 수 있도록 상세히 설명한다.
그러나 본 발명에 관한 설명은 구조적이나 기능적 설명을 위한 실시예에 불과하므로 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다.
예컨대, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있어서 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다.
또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
본 명세서에서, 본 실시예는 본 발명의 개시가 완전하여지도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 그리고 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
따라서 몇몇 실시예에서, 잘 알려진 구성 요소, 잘 알려진 동작 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하려고 구체적으로 설명되지 않는다.
한편, 본 발명에서 서술되는 용어의 의미는 사전적 의미에 제한되지 않으며, 다음과 같이 이해되어야 할 것이다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접 연결될 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성 요소 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
여기서 사용되는 모든 용어는 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 같은 의미가 있다.
일반적으로 사용되는 사전에 정의된 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.
이하, 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 실시예의 설명 중 같은 구성에 대해서는 같은 참조부호를 부여하도록 하며, 때에 따라 같은 참조부호에 대한 설명은 생략하도록 한다.
(일 실시예)
도 2는 본 발명의 일 실시예에 따른 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기의 요부 구조도, 도 3은 영구자석과 영구자석 지지모듈의 설명을 위한 도면, 도 4는 영구자석의 확대도, 도 5는 영구자석 지지모듈의 요부 확대도, 도 6은 자석의 내면을 부위별로 나누어 가우스 메타(gauss meter)로써 표면자속량을 측정한 데이터, 도 7은 2개의 자석을 시료로 하여 각각 N극과 S극의 9개 지점(a,b,c,d,e,f,g,h,i)의 표면자속량을 측정한 것, 도 8은 퍼미언스 계수를 산출하기 위한 B-H 곡선과 측정 부위, 도 9는 본 발명의 일 실시예에 따른 영구자석 지지모듈의 배치도이다.
이들 도면을 참조하면, 본 실시예에 따르면, 코깅(Cogging) 현상과 노이즈(Noise) 현상을 줄일 수 있음은 물론, 유효자속량 제어를 통해 전동기(motor)의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트(lot)에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있다.
도 2 내지 도 5를 먼저 참조하면, 본 실시예의 전동기는 전기자(20)의 반경 방향 외측에 배치되되 환형 섹터 플레이트(Annular sector plate)로 제작된 영구자석(100)과, 영구자석(100)을 슬롯 형태로 삽입할 수 있도록 클러스팅하기 위해 제작된 복수의 영구자석 삽입홀(200)과, 복수의 영구자석 삽입홀(200)을 일체형으로 구성하면서 영구자석(100)을 지지하되 유효자속량 측정에 의한 예측 관리가 가능한 기능을 수행하는 영구자석 지지모듈(300)을 포함할 수 있다.
도 2에서 전기자(20), 정류자(30) 및 브러시(40)의 구성, 설명은 도 1의 설명으로 대체한다.
이러한 구성을 갖는 본 실시예의 전동기에서 영구자석(100)은 환형 섹터 플레이트(Annular sector plate)로 제작될 수 있다.
즉 본 실시예에서 영구자석(100)은 테두리 부분의 퍼미언스 계수는 높고 중앙부위는 상대적으로 퍼미언스 계수가 낮은 구조라서 유효자속량을 확보할 수 있는 구조의 환형 섹터 플레이트(Annular sector plate)로 제작된다.
영구자석(100)은 외면 곡면부(111)와, 외면 곡면부(111)의 반경 방향 내측에 배치되되 외면 곡면부(111)보다 면적이 작은 내면 곡면부(112)와, 외면 곡면부(111)와 내면 곡면부(112)를 양측면에서 연결하는 한 쌍의 측면 연결부(113)와, 외면 곡면부(111)와 내면 곡면부(112)를 양단부에서 경사지게 연결하는 한 쌍의 경사 단부 연결부(114)를 포함할 수 있다.
본 실시예에서 영구자석(100)은 페라이트 자석, Sm-Co계 자석, Nd-Fe-B계 자석, Sm2Fe17Nx계 자석 등에서 선택될 수 있는데, 잔류자속 밀도가 높은 Nd-Fe-B계 자석 등을 사용하여 영구자석(100)을 제작할 수 있다.
여기서, 퍼미언스 계수는 자속량과 유사한 의미로서, 자석의 중앙보다 주변 측의 자속량이 높다는 것을 의미한다.
이러한 퍼미언스 계수를 높이기 위한 종래의 방법으로는 전동기 내의 에어 갭(air gap)을 최대한 줄이거나, 전동기의 전기자 및 하우징의 재질을 되도록 자기저항이 적은 재질을 사용하거나, 하우징(yoke)의 두께를 증가시켜 누설자속을 없애거나, 자석 길이의 80%까지 전기자의 적층 길이를 늘이는 방법이다.
영구자석 지지모듈(300)은 영구자석(100)을 지지한다. 이러한 영구자석 지지모듈(300)은 통상의 고정자 혹은 회전자와 같은 원통 형상으로 형성될 수 있다.
영구자석 지지모듈(300)은, 반원의 곡면 형태로 형성되는 아크형 모듈 바디(310)와, 아크형 모듈 바디(310)에 형성되되 영구자석(100)을 슬롯 형태로 삽입할 수 있도록 클러스팅하기 위해 제작된 복수의 영구자석 삽입홀(200)을 포함한다.
이때, 영구자석 삽입홀(200)들은 등간격으로 아크형 모듈 바디(310) 상에 배열된다.
그리고, 영구자석 삽입홀(200)은 영구자석(100)이 삽입되는 방향을 따라 단면적이 점진적으로 축소되게 마련된다. 따라서, 영구자석(100)의 구조적인 안정 결합을 끌어낼 수 있고, 영구자석(100)의 임의 이탈을 방지할 수 있다.
영구자석 지지모듈(300)은 영구자석(100)의 누설자속을 막기 위해 영구자석 지지모듈(300) 밖으로 누설자속이 발생하지 않도록 자기저항이 적은 순철(純鐵)에 가까운 재질 또는 비자성 재질로 제작되거나 자체 두께를 조절하는 방식으로 제작될 수 있다.
영구자석 지지모듈(300)에 복수 개의 영구자석 삽입홀(200)이 형성된다. 영구자석 삽입홀(200)에 영구자석(100)이 삽입된다.
영구자석 삽입홀(200)은 영구자석(100)을 슬롯 형태로 삽입하기 용이한 환형 섹터 플레이트(Annular sector plate)로 제작된다.
그뿐만 아니라 영구자석 삽입홀(200)은 복수의 영구자석(100)을 클러스팅하고 이탈되는 것을 방지할 수 있는 구조로 형성될 수 있다. 예컨대, 영구자석(100)이 삽입되는 방향으로 빠지지 않는 구조로 영구자석 삽입홀(200)이 형성될 수 있다.
복수의 영구자석(100)이 삽입된 영구자석 지지모듈(300)은 유효자속량 측정에 의한 예측 관리가 가능한 기능을 수행할 수 있다. 영구자석 지지모듈(300)이 2극형 이상의 다극형으로 제작될 수 있다.
다시 요약하면, 본 실시예의 전동기는 환형 섹터 플레이트(Annular sector plate)로 제작된 영구자석(100), 영구자석(100)을 슬롯 형태로 삽입할 수 있도록 클러스팅하기 위해 제작된 복수의 영구자석 삽입홀(200), 복수의 영구자석 삽입홀(200)을 일체형으로 구성하는 영구자석 지지모듈(300)을 포함할 수 있다.
유효자속량 측정에 의한 예측 관리는 자석 사용자나 자석 공급자에게 모두 매우 편리한 방법이다. 전동기의 특성이 안정되면 자석의 효율적인 로트(lot) 관리가 가능해지기 때문이다.
참고로, 자석의 특성은 로트(lot)에 따라 편차가 발생할 수 있으며, 잔류자속밀도(Br)의 경우 ㅁ3∼4% 정도의 특성 변화가 있을 수 있는데 수축률의 변화까지 생각하면 유효자속량을 타이트하게 관리할 때 유효자속량의 편차는 매우 크므로 결과적으로 전동기의 특성을 불안정하게 하는 요인으로 작용한다.
이러한 상황에서 전동기의 제반 특성을 안정적으로 관리하려면 항상 일정한 유효자속량이 나올 수 있도록 관리하여야 하는데 자속량과 전기자(20)와의 간섭을 일으키지 않는 범위 내에서 될 수 있으면 여유 있게 규정해야만 유효자속량의 예측 관리가 가능하게 된다.
따라서, 복수의 영구자석(100)이 삽입된 영구자석 지지모듈(300)은 전동기 설계시부터 수리 또는 유지 시 플러스 메타(flux meter)를 통해 유용하게 활용될 수 있다.
일례로 만일 자속량 공차를 ㅁ0.10과 같이 타이트하게 관리하면 유효자속량에 의한 전동기 성능 관리는 포기하는 것이나 다름없다. 이렇게 타이트한 공차 범위 안에서 자석 공급업체가 두께(에어 갭(air gap)에 의한 퍼미언스 계수)를 변화시켜 유효자속량을 맞추기란 쉽지 않기 때문이다.
도 6 및 도 7을 참조하면, 자석의 중앙보다 주변 측의 자속량이 더 높게 나오는 것을 볼 수 있다.
이러한 현상은 측정 부위에서 반대 극까지의 최단거리가 짧을수록 높게 나타나는 것이다.
이것은 퍼미언스 계수의 차이에서 오는 현상으로 퍼미언스 계수가 큰 부위에서는 더 많은 자속량이 나오게 되며, 퍼미언스 계수는 측정 부위에서 반대 극까지의 최단거리가 짧을수록 크다는 것을 알 수 있다.
퍼미언스 계수는 자석의 재질, 형상, 크기, 자장 방향에 따라서 결정되는 값으로 같은 자석이라도 자석 표면의 위치에 따라 표면가우스는 일정하지 않은데 이것은 반대 극과의 최단거리의 차 때문에 발생한다.
퍼미언스 계수가 큰 부위에서는 더 많은 자속량이 나오게 되며, 퍼미언스 계수는 측정 부위에서 반대극까지의 최단거리가 짧을수록 크다.
본 발명에 따른 복수의 영구자석(100)은 환형 섹터 플레이트(Annular sector plate)로 제작되어 퍼미언스 계수를 극대화할 수 있는 기능을 수행할 수 있다.
한편, 퍼미언스 계수는 자속밀도 B를 보자력 Hc로 나눈 값을 말한다. 퍼미언스 계수는 매우 중요한 팩터(Factor)로, 자석의 재질, 형상, 크기, 자장 방향에 따라서 결정되는 값이다.
이 수치는 동작점을 산출해서 동작점 자속밀도(Bd)를 구하고, 자속량(Φ : Maxwell)을 산출한다.
동작점(퍼미언스 계수)은 Pc = √π . √S/2 x Lm/Am로 그 값을 구하며, 동작점 표면자속밀도는 Bd = Br x Pc/ ( Pc + μr ) (Gauss)로 그 값을 구한다. 총자속량은 Φo = Bd x Am(Maxwell)로 그 값을 구한다.
여기서, S는 전 표면적을, Am은 자화방향에 직교한 자석단면적을, Lm은 자화 방향의 길이를, μr 은 가역 투자율을 말한다. 즉, 퍼미언스 계수가 높을수록 총 자속량은 증가한다.
도 8을 참조하면, (가)의 a처럼 착자된 자석에서 가우스 메타(gauss meter)를 이용하여 측정한 결과, 점 A에서는 1,200gauss, 점 B에서는 1300gauss였다고 가정하면, 실제로 점 B에서 나온 자력선이 점 A에서 나온 자력선보다 반대편 S극으로 돌아가는 에어 갭(air gap)의 최단거리가 L1만큼 짧기 때문에 당연히 가우스 측정치는 반대 극이 가까운 점 B가 점 A보다 크게 나온다.
이때, 점 A의 퍼미언스 계수(자속밀도 B / 보자력 Hc)는 (나)에서 B-H곡선이 1,200gauss와 만나는 점 A의 B/Hc가 된다.
원점과 A점을 연결한 직선이 자석 점 A에서의 퍼미언스선이 되며, A점에서 수직으로 내려 만난 Hc값이 2750oe였다면, 이때의 퍼미언스 계수는 B/Hc이므로 1,200 gauss / 2,750 oe=0.436이 된다. 동일한 방법으로 자석 점 B에서의 퍼미언스 계수도 계산해보면 1,300gauss / 2,600oe=0.50이 된다.
도 6의 b와 같이 서로 면이 평행하게 마주 보도록 아주 가깝게 하면 점 A나 점 B에서 반대 극까지의 거리(air gap)가 동일하게 된다(L3).
그뿐만 아니라 아주 짧기 때문에 점 A나 점 B의 표면가우스는 동일하면서도 크게 나타나게 된다.
두 점에서의 측정치가 모두 2,500G로 되었다고 하면 이때의 점 A 및 점 B의 퍼미언스(B/Hc) PA와 PB는 같게 나타나며, 그 값은 2,500 G / 1,450 oe로 1.72가 된다.
같은 자석이라도 자석 표면의 위치에 따라 표면가우스는 일정하지 않은데 이것은 반대 극과의 최단거리의 차 때문에 발생한다. 바꾸어 말하면 퍼미언스 계수를 끌어올리기 위해서는 단순히 반대 극과의 극간거리(air gap)를 줄이는 것으로도 가능하게 되는 것이다.
본 발명의 환형 섹터 플레이트(Annular sector plate)로 제작되는 영구자석(100)은 퍼미언스 계수를 높이기 위한 구조로써, 복수의 영구자석(100)을 적층 등의 방법을 사용하지 않고 클러스팅 하여 전동기의 부피 또는 구조 등에 영향을 미치지 않고서도 퍼미언스 계수를 높일 수 있다.
한편, 도 9을 참조하면, 본 실시예에서 영구자석 지지모듈(300)은 중심축을 중심으로 대향하는 면과 0.1도 내지 10도 이내의 범위에서 엇각으로 대향하게 제작될 수 있다. 참고로, 도 2 및 도 3의 영구자석 지지모듈(300)의 형태가 도 9과는 상이하게 도시되었는데, 도 2 및 도 3의 영구자석 지지모듈(300)의 형태가 도 9과 같은 것으로 간주한다.
본 실시예와 같을 경우, 전동기의 코깅(Cogging) 현상과 전동기의 노이즈(Noise) 현상을 줄이는 기능을 수행할 수 있다.
여기서, 코깅(Cogging) 현상은 전동기 내부의 비균일 토크이다. 즉 자기에너지가 최소인 위치로 이동하는 접선 방향의 힘으로 전기자가 자석의 끌리는 힘으로 부드럽게 돌지 못하고 턱턱 걸리는 듯 돌아가는 현상을 말한다.
이러한 코깅 현상으로 인하여 기계적인 소음과 진동이 발생하게 되는데, 고품질 전동기에서는 반드시 이 코깅 현상을 없애야만 정숙한 회전으로 소음을 줄일 수 있다.
코깅 현상을 줄이기 위해 종래기술에서는 전기자의 슬롯(Slot)을 비틀리게 설계하거나, 석을 동심이 아니 편심으로 설계하는 방법을 사용하여 왔다. 하지만, 이는 구조적으로 비용 발생을 초래하게 된다.
노이즈(Noise) 현상은 기계적 노이즈와, 전기적 노이즈로 분류할 수 있다.
기계적 노이즈는 전동기에서 발생하는 노이즈 중에서 직접 사람의 귀를 통하여 전달되는 소음을 말하며, 측정단위는 흔히 dB(데시벨)을 사용한다.
기계적 노이즈의 원인으로는 전동기의 진동에 의한 것, 자석과 전기자 사이의 에어 갭(air gap)의 공진 및 공명에 의한 것, 전기자 축의 휨 또는 밸런스의 불균형에 의한 것, 베어링의 마모나 깨짐에 의한 것 등을 예로 들 수 있다.
전기적 노이즈의 특징은 중간 매개물 없이는 사람이 직접 귀를 통해 들을 수 없다는 것에 있으며, 어느 일정한 주파수대에서만 소음을 발생시킨다든지 전자파의 파형을 볼 수 있는 오실로스코프 등을 통해서만 감지되는 소음을 말한다.
전기적 노이즈의 원인으로는 코깅(Cogging) 현상에 의한 것, 자석의 각도와 전기자의 슬롯 각도와의 불균형에 의한 것, 브러시 불량에 의한 전류의 스파크에 의한 것 등을 들 수 있다.
본 발명에 의한 영구자석 지지모듈(300)의 중심축을 중심으로 대향하는 면과 0.1도 내지 10도 이내의 범위에서 엇각으로 대향하게 제작하는 단순한 공정으로 종래의 코깅현상 및 노이즈 현상을 줄일 수 있는 수단으로 작용할 수 있다.
이상 설명한 바와 같은 구조를 기반으로 작용을 하는 본 실시예에 따르면, 코깅(Cogging) 현상과 노이즈(Noise) 현상을 줄일 수 있음은 물론, 유효자속량 제어를 통해 전동기(motor)의 특성이 안정되도록 자석의 효율적인 로트(lot) 관리가 가능하고, 전동기의 특성을 불안정하게 하는 요인인 로트(lot)에 따라 편차가 발생할 수 있는 자석의 특성 및 잔류자속밀도(Br)의 변화를 용이하게 조절할 수 있으며, 일정한 유효자속량을 예측 관리할 수 있어 전동기의 효율성을 종래보다 월등히 높일 수 있다.
(변형예)
도 10a 내지 도 15는 본 발명의 다양한 변형예를 도시한 도면들이다.
우선, 도 10a 및 도 10b의 실시예를 참조하면, 본 실시예의 경우에도 영구자석 지지모듈(600)의 영구자석 삽입홀(700)에 영구자석(500)이 삽입되어 전동기(motor)의 특성이 안정되도록 하는 역할을 수행한다.
영구자석(500)의 구조와 기능, 역할은 전술한 실시예와 동일할 수 있다.
다만, 본 실시예에서 영구자석(500)에는 이탈 방지용 슬롯(510)이 형성된다. 그리고, 영구자석(500)의 이탈 방지용 슬롯(510)에 대응하게 영구자석 삽입홀(700)의 내벽에 이탈 방지용 돌기(710)가 형성된다.
이에, 도면처럼 영구자석(500)을 해당 위치에 끼우면서 삽입하면 영구자석(500)의 이탈 방지용 슬롯(510)이 영구자석 삽입홀(700)의 내벽에 형성되는 이탈 방지용 돌기(710)에 끼워 맞춤될 수 있고, 이의 작용으로 영구자석(500)이 임의로 이탈되는 것을 방지할 수 있다.
다음, 도 11a 및 도 11b의 실시예를 참조하면, 본 실시예의 경우에도 영구자석 지지모듈(600a)의 영구자석 삽입홀(700a)에 영구자석(500a)이 삽입되어 전동기(motor)의 특성이 안정되도록 하는 역할을 수행한다.
한편, 본 실시예의 경우, 영구자석(500a)에 이탈 방지용 돌기(510a)가 형성된다. 이때, 이탈 방지용 돌기(510a)는 경사진 경사면(511)을 구비함으로써, 영구자석(500a)이 영구자석 삽입홀(700a) 쪽으로 잘 들어갈 수 있게끔 한다.
그리고, 영구자석(500a)의 이탈 방지용 돌기(510a)에 대응하게 영구자석 삽입홀(700a)의 내벽에 이탈 방지용 슬롯(710a)이 형성된다. 이탈 방지용 슬롯(710a)의 단면 형상이 이탈 방지용 돌기(510a)의 단면 형상과 동일할 수 있다.
이에, 도면처럼 영구자석(500a)을 해당 위치에 끼우면서 삽입하면 영구자석(500a)의 이탈 방지용 돌기(510a)가 영구자석 삽입홀(700a)의 내벽에 형성되는 이탈 방지용 슬롯(710a)에 끼워 맞춤될 수 있고, 이의 작용으로 영구자석(500a)이 임의로 이탈되는 것을 방지할 수 있다.
다음, 도 12a 및 도 12b의 실시예를 참조하면, 본 실시예의 경우에도 영구자석 지지모듈(600b)의 영구자석 삽입홀(700b)에 영구자석(500b)이 삽입되어 전동기(motor)의 특성이 안정되도록 하는 역할을 수행한다.
한편, 본 실시예의 경우, 영구자석(500b)에는 이탈 방지용 슬롯(510b)이 형성된다. 그리고, 영구자석(500b)의 이탈 방지용 슬롯(510b)에 대응하게 영구자석 삽입홀(700b)의 내벽에 이탈 방지용 돌기(710b)가 형성된다.
이때, 이탈 방지용 슬롯(510b)을 구비하는 영구자석(500b)은 후단부(520)에서 전단부(530)로 갈수록 폭이 점진적으로 좁아지는 형태를 취한다. 다시 말해, 후단부(520)의 면적보다 전단부(530)의 면적이 좁다. 따라서, 영구자석(500b)의 조립이 매우 수월해진다.
이에, 도면처럼 영구자석(500b)을 해당 위치에 끼우면서 삽입하면 영구자석(500b)의 이탈 방지용 슬롯(510b)이 영구자석 삽입홀(700b)의 내벽에 형성되는 이탈 방지용 돌기(710b)에 끼워 맞춤될 수 있고, 이의 작용으로 영구자석(500b)이 임의로 이탈되는 것을 방지할 수 있다.
다음, 도 13a 내지 도 13c의 실시예를 참조하면, 본 실시예의 경우에도 영구자석 지지모듈(600c)의 영구자석 삽입홀(700c)에 영구자석(500c)이 삽입되어 전동기(motor)의 특성이 안정되도록 하는 역할을 수행한다.
한편, 본 실시예에서 영구자석(500c)은 후단부(520c)에서 전단부(530c)로 갈수록 폭이 점진적으로 좁아지는 형태를 취한다. 다시 말해, 후단부(520c)의 면적보다 전단부(530c)의 면적이 좁다. 따라서, 영구자석(500c)의 조립이 매우 수월해진다.
이러한 영구자석(500c)에 맞대응할 수 있도록 영구자석 삽입홀(700c)이 가공되는데, 영구자석 삽입홀(700c)이 위치하는 영구자석 지지모듈(600c)의 단부에 스토퍼(620)가 형성된다. 따라서, 영구자석(500c)의 전단부(530c)는 스토퍼(620)까지만 삽입될 수 있다.
그리고, 영구자석 삽입홀(700c)에 삽입된 영구자석(500c)의 후단 이탈을 방지하기 위해 별도의 자석 이탈 방지커버(640)가 영구자석 지지모듈(600c)에 추가로 결합한다.
이에, 도면처럼 영구자석(500c)을 해당 위치에 끼우면서 삽입하면 영구자석(500c)의 전단부(530c)가 스토퍼(620)에 접하여 정지되며, 이후에 자석 이탈 방지커버(640)를 영구자석 지지모듈(600c)에 결합함으으로써 영구자석(500c)의 고정작업을 마무리할 수 있다.
다음, 도 14 및 도 15의 실시예를 참조하면, 본 실시예의 경우에도 영구자석 지지모듈(600d)의 영구자석 삽입홀(700d)에 영구자석(500,500d)이 삽입되어 전동기(motor)의 특성이 안정되도록 하는 역할을 수행한다.
이때, 본 실시예의 경우, 영구자석 삽입홀(700d)의 폭(L)이 전술한 실시예들보다 크다. 즉 본 실시예에 마련되는 영구자석 삽입홀(700d)은 전술한 실시예들과 같은 폭을 갖는 것도 있고, 본 실시예처럼 큰 폭(L)을 갖는 것도 존재한다.
이처럼 영구자석 삽입홀(700d)의 폭(L)이 크면 전술한 실시예들처럼 영구자석 삽입홀(700d)에 1개가 아닌 여러 개, 예컨대, 2개의 제1 및 제2 영구자석(500,500d)를 조립 연결해서 삽입하면 된다.
이때, 제1 및 제2 영구자석(500,500d) 중 하나에는 적어도 하나의 이탈 방지용 슬롯(510)이 형성되고 다른 하나에는 이곳에 끼워지는 슬롯 돌기부(515)가 형성되기 때문에 이탈 방지용 슬롯(510)과 슬롯 돌기부(515)를 이용해서 제1 및 제2 영구자석(500,500d)을 한 몸체로 연결해 둔 상태에서 이들을 영구자석 삽입홀(700d)에 삽입 결합하면 된다. 영구자석 삽입홀(700d)의 내벽에는 이탈 방지용 슬롯(510)에 대응하게 이탈 방지용 돌기(710)가 형성된다.
이에, 도면처럼 제1 및 제2 영구자석(500,500d)을 조립해서 한 몸체로 만든 후에, 제1 및 제2 영구자석(500,500d)의 이탈 방지용 슬롯(510)이 영구자석 삽입홀(700d)의 내벽에 형성되는 이탈 방지용 돌기(710)에 끼워 맞춤될 수 있고, 이의 작용으로 제1 및 제2 영구자석(500,500d)이 임의로 이탈되는 것을 방지할 수 있다.
도 16 내지 도 20은 영구자석, 영구자석 지지모듈 및 영구자석 삽입홀의 다양한 변형예들이다.
전술한 실시예의 경우, 영구자석(100)은 그 대부분이 사각형의 단면 구조로 제작되었다.
하지만, 도 16 내지 도 20에 도시된 바와 같이, 영구자석(900a~900e)은 마름모, 삼각, 오각, 육각 또는 팔각 등 다양하게 변형될 수 있으며, 이에 대응하게 영구자석 지지모듈(800a~800e)의 영구자석 삽입홀(700a~700e) 역시, 마름모, 삼각, 오각, 육각 또는 팔각 등 다양하게 변형될 수 있다.
물론, 도시되지 않은 다양한 다각 형상으로 제작될 수도 있는데, 이러한 사항 모두가 본 발명의 권리범위에 속하다고 하여야 할 것이다.
이처럼 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정예 또는 변형예들은 본 발명의 청구범위에 속한다고 하여야 할 것이다.
전동기의 효율을 종래보다 월등히 높일 수 있는 바, 전기 모터 시장, 특히 전기 자동차 시장에서의 파급 효과가 클 것으로 기대된다.

Claims (7)

  1. 전기자의 반경 방향 외측에 배치되되 환형 섹터 플레이트(Annular sector plate)로 제작된 영구자석; 및
    상기 영구자석을 지지하되 유효자속량 측정에 의한 예측 관리가 가능한 기능을 수행하는 영구자석 지지모듈을 포함하며,
    상기 영구자석 지지모듈은,
    반원의 곡면 형태로 형성되는 아크형 모듈 바디; 및
    상기 아크형 모듈 바디에 형성되되 상기 영구자석을 슬롯 형태로 삽입할 수 있도록 클러스팅하기 위해 제작된 복수의 영구자석 삽입홀을 포함하는 것을 특징으로 하는, 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기.
  2. 제1항에 있어서,
    상기 영구자석 삽입홀들은 등간격으로 상기 아크형 모듈 바디 상에 배열되며,
    상기 영구자석 삽입홀은 상기 영구자석이 삽입되는 방향을 따라 단면적이 점진적으로 축소되게 마련되는 것을 특징으로 하는, 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기.
  3. 제1항에 있어서,
    상기 영구자석은,
    외면 곡면부;
    상기 외면 곡면부의 반경 방향 내측에 배치되되 상기 외면 곡면부보다 면적이 작은 내면 곡면부;
    상기 외면 곡면부와 상기 내면 곡면부를 양측면에서 연결하는 한 쌍의 측면 연결부; 및
    상기 외면 곡면부와 상기 내면 곡면부를 양단부에서 경사지게 연결하는 한 쌍의 경사 단부 연결부를 포함하는 것을 특징으로 하는, 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기.
  4. 제1항에 있어서,
    상기 영구자석이 페라이트 자석, Sm-Co계 자석, Nd-Fe-B계 자석 및 Sm2Fe17Nx계 자석 중 적어도 하나에서 선택되는 것을 특징으로 하는, 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기.
  5. 제1항에 있어서,
    상기 영구자석 삽입홀은 상기 영구자석을 슬롯 형태로 삽입하기 용이한 환형 섹터 플레이트(Annular sector plate)로 제작되며,
    상기 영구자석 삽입홀은 상기 영구자석을 클러스팅하고 이탈되는 것을 방지할 수 있는 구조로 형성되는 것을 특징으로 하는, 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기.
  6. 제1항에 있어서,
    상기 영구자석 지지모듈이 2극형 이상의 다극형으로 제작되는 것을 특징으로 하는, 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기.
  7. 제1항에 있어서,
    전동기의 코깅(Cogging) 현상과 노이즈(Noise) 현상을 줄이기 위해 상기 영구자석 지지모듈이 중심축을 중심으로 대향하는 면과 0.1도 내지 10도 이내의 범위에서 엇각으로 대향하게 제작되는 것을 특징으로 하는, 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기.
PCT/KR2021/016099 2021-05-26 2021-11-08 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기 WO2022250218A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0067921 2021-05-26
KR1020210067921A KR102416033B1 (ko) 2021-05-26 2021-05-26 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기

Publications (1)

Publication Number Publication Date
WO2022250218A1 true WO2022250218A1 (ko) 2022-12-01

Family

ID=82396245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016099 WO2022250218A1 (ko) 2021-05-26 2021-11-08 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기

Country Status (2)

Country Link
KR (1) KR102416033B1 (ko)
WO (1) WO2022250218A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278364A (ja) * 2004-03-26 2005-10-06 Aisin Seiki Co Ltd 直流電動機
US20170040853A1 (en) * 2011-12-31 2017-02-09 Philip Totaro Low axial force permanent magnet machine and magnet assembly for permanent magnet machine
US20170163103A1 (en) * 2015-12-07 2017-06-08 Wassim Amer Magnet assembly
KR20180052167A (ko) * 2016-11-09 2018-05-18 주식회사 만도 직류 모터
KR102112643B1 (ko) * 2019-12-27 2020-05-19 이우종 영구자석이 결착된 고정자를 포함하는 모터

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544130B2 (ja) 2009-09-01 2014-07-09 富士フイルム株式会社 感活性光線性または感放射線性樹脂組成物及びそれを用いたパターン形成方法
JP6503590B2 (ja) * 2016-05-18 2019-04-24 北田回転機関合同会社 電気回転機及びバルク着磁方法
KR101872257B1 (ko) * 2016-06-29 2018-06-28 박남철 마그넷 발전기
KR102099891B1 (ko) * 2018-11-30 2020-04-13 김희근 마그넷 발전기
KR102143808B1 (ko) * 2018-11-30 2020-08-12 김희근 마그넷 발전기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278364A (ja) * 2004-03-26 2005-10-06 Aisin Seiki Co Ltd 直流電動機
US20170040853A1 (en) * 2011-12-31 2017-02-09 Philip Totaro Low axial force permanent magnet machine and magnet assembly for permanent magnet machine
US20170163103A1 (en) * 2015-12-07 2017-06-08 Wassim Amer Magnet assembly
KR20180052167A (ko) * 2016-11-09 2018-05-18 주식회사 만도 직류 모터
KR102112643B1 (ko) * 2019-12-27 2020-05-19 이우종 영구자석이 결착된 고정자를 포함하는 모터

Also Published As

Publication number Publication date
KR102416033B1 (ko) 2022-07-11

Similar Documents

Publication Publication Date Title
KR100870738B1 (ko) 에이에프피엠 코어리스형 멀티 발전기 및 모터
WO2010098425A1 (ja) 永久磁石回転機用回転盤及び永久磁石回転機の製造方法
WO2017078431A1 (en) Motor
WO2011158993A1 (ko) 슬롯리스 고정자를 갖는 브러시리스 직류 모터
CN109347229B (zh) 电机转子结构及永磁电机
JP2004015906A (ja) 永久磁石形モータ
WO2013085231A1 (ko) 두께가 다른 영구자석을 갖는 회전자 및 그를 포함하는 모터
WO2019077983A1 (ja) アキシャルギャップ型回転電機
WO2023146056A1 (ko) 비접촉식 회전 변압기 및 이를 포함하는 모터
JP2006518180A (ja) モータ/ジェネレータのための拡張コア
WO2014061908A1 (ko) 이중 공극형 발전기
WO2013032122A1 (ko) 종축자속형 영구자석 동기발전기 및 모터
KR20090038113A (ko) 전동기
WO2022250218A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2022250215A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2022250216A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
WO2022250217A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
Yu et al. Development of a radial-flux slotted limited-angle torque motor with asymmetrical teeth for torque performance improvement
JP2013046508A (ja) クローポール型ロータ
WO2022250214A1 (ko) 영구자석의 클러스팅을 통한 유효자속량 제어가 가능한 고효율 전동기
JP2002238194A (ja) 永久磁石電動機の回転子構造
WO2022260460A1 (ko) 고효율 전동기
WO2016171500A1 (ko) 발전기
WO2022260461A1 (ko) 고효율 전동기
JP2003274618A (ja) 永久磁石回転子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943205

Country of ref document: EP

Kind code of ref document: A1