WO2019077983A1 - アキシャルギャップ型回転電機 - Google Patents

アキシャルギャップ型回転電機 Download PDF

Info

Publication number
WO2019077983A1
WO2019077983A1 PCT/JP2018/036674 JP2018036674W WO2019077983A1 WO 2019077983 A1 WO2019077983 A1 WO 2019077983A1 JP 2018036674 W JP2018036674 W JP 2018036674W WO 2019077983 A1 WO2019077983 A1 WO 2019077983A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial gap
gap type
electric machine
magnetic body
core
Prior art date
Application number
PCT/JP2018/036674
Other languages
English (en)
French (fr)
Inventor
博洋 床井
榎本 裕治
三上 浩幸
憲一 相馬
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2019077983A1 publication Critical patent/WO2019077983A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure

Definitions

  • the present invention relates to an axial gap type rotating electrical machine, and more particularly to a structure of a stator of an axial gap type rotating electrical machine.
  • the trapezoidal columnar core described above is disposed such that the winding wound around the core is opposed to the rotor.
  • Such a structure is called an open slot structure.
  • increasing the cross-sectional area of the core reduces the space for storing the windings, so the cross-sectional area of the core is relatively small. For this reason, it may not be possible to effectively utilize the magnet flux on the rotor side (hereinafter referred to as the reduction of the effective flux).
  • Patent Document 1 a structure disclosed in Patent Document 1 is known as a countermeasure against the reduction of the effective magnetic flux and the increase of the eddy current loss due to the open slot shape.
  • a thin plate of a magnetic body called a plate-like formed body is disposed at a rotor facing portion of a space (slot) having a core called an annular formed body and having a winding formed in the core.
  • the magnetic material used is a magnetic crucible formed by mixing iron with resin.
  • the core cross section is equivalently enlarged, and the effective magnetic flux can be increased.
  • spatial harmonic components are also reduced, and the eddy current loss of the rotor side conductor is reduced.
  • An object of the present invention is to provide an axial gap type rotating electric machine which can eliminate the short circuit magnetic flux between the cores and utilize the characteristics of the magnetic material disposed between the cores to achieve high efficiency and miniaturization.
  • a rotor fixed to a rotating shaft, And a stator disposed opposite to the rotor along an axial direction of the rotation axis,
  • the stator includes a plurality of cores disposed in the circumferential direction of the rotation shaft, a bobbin covering the cores, and a winding provided around the bobbin.
  • the bobbin has a cylindrical portion for holding the core, and a flange portion provided at an end of the cylindrical portion. It is an axial gap type rotary electric machine in which an insulating magnetic body is disposed in a surface of the flange portion facing the rotor.
  • the present invention it is possible to eliminate the short circuit magnetic flux between the cores and to make the axial gap type rotating electric machine highly efficient and compact by utilizing the characteristics of the magnetic body disposed between the cores.
  • FIG. 1 is a perspective view showing a stator of an axial gap type rotary electric machine according to a first embodiment; It is a figure explaining the evaluation in simulation about the reduction effect of the motor loss by stator structure.
  • A) is explanatory drawing of the mold stator of Example 1
  • (b) is an enlarged view of a part of (a).
  • FIG. 7 is a perspective view of a core member and a magnetic body showing a modification of the first embodiment.
  • FIG. 8 is a perspective view showing a schematic configuration of an axial gap type rotating electric machine of Example 2; It is a perspective view which shows the core member and magnetic body structure of Example 3.
  • FIG. FIG. 16 is a perspective view showing a core member and a magnetic body structure of Example 4; It is a perspective view which shows the core member and magnetic body of Example 5.
  • FIG. It is a figure explaining the structure of the bobbin of the modification of Example 5, and a magnetic body.
  • FIG. 18 is a view for explaining a core member and a magnetic body structure of a modification of the fifth embodiment.
  • FIG. 21 is a perspective view showing a core member and a magnetic body structure of Example 6;
  • FIG. 21 is a perspective view showing a core member and a magnetic body structure of a modification of the sixth embodiment.
  • FIG. 18 is a view showing a stator structure of an axial gap type rotating electrical machine of a seventh embodiment.
  • FIG. 1 shows a perspective view of a double rotor type axial gap type rotating electric machine 1000 (hereinafter sometimes simply referred to as “rotating electric machine”) of the first embodiment.
  • FIG. 2A is a perspective view of the stator 100.
  • FIG. FIG. 2 (b) shows the configuration of the core member and the magnetic body.
  • the core member is a combination of a core, a bobbin and a winding.
  • FIG.2 (c) is the figure which remove
  • FIG. 4A is a perspective view when the mold stator is cut.
  • FIG.4 (b) is the figure which expanded a part of Fig.4 (a).
  • a stator 100 having an annular donut shape is fixed to the inner periphery of a housing (not shown) having an inner diameter of a substantially cylindrical shape.
  • the rotor 200 has a disk shape consisting of permanent magnets 210 and yokes 220.
  • the permanent magnets 210 are magnetized in the rotational axis direction, and a plurality of permanent magnets 210 are circumferentially arranged so that the magnetic poles of adjacent magnets are opposite to each other.
  • Permanent magnet 210 is coupled to yoke 220.
  • the rotor 200 is disposed such that the magnetized surface sandwiches the stator 100 from the output shaft side and the non-output shaft side, and faces the end surfaces of the stator 100 in the rotational axis direction via a predetermined gap. There is. Although not shown, the rotor 200 is connected to rotate with the shaft. Although not shown, the outer side in the rotational axis direction of the shaft is connected to the end bracket via a bearing. The end bracket is fixed to both ends of the housing 300 shown in FIG. 4A and rotatably supports the rotor.
  • the stator 100 arranges a core member consisting of a core 110, a bobbin 130 covering the outer periphery of the core 110, and a winding 120 wound around the bobbin 130 in a ring.
  • a resin mold (not shown) is integrally fixed to the housing.
  • the bobbin 130 includes a cylindrical portion 131 for holding the core 110 and a collar portion 132 for ensuring insulation between the end of the winding 120 and the core 110.
  • the core 110 annularly arranged may be integrally resin-molded and then fixed to the housing with a bolt or the like.
  • a rectangular parallelepiped magnetic body 150 is formed on the flange portion 132 of the bobbin so as to be adjacent to the core 110. Is placed.
  • the magnetic body 150 is an insulating material that does not easily conduct electricity.
  • the ridge portion 132 to the protrusion 133 are provided on the circumferential side surface and the radial direction side surface of the magnetic body 150.
  • the axial gap type rotating electric machine configured as described above operates as follows.
  • An alternating current flowing through the winding 120 via an inverter or the like generates a rotating magnetic field.
  • a torque is generated by attracting and repelling the DC magnetic field of the rotor formed by the permanent magnet and the rotating magnetic field of the coil.
  • the torque of the permanent magnet motor is generated in proportion to the product of the effective magnetic flux depending on the shape of the magnet and the core 110, the number of turns, and the current.
  • iron loss occurs in the core 110 and the yoke 220 due to the time change of the magnetic flux.
  • the magnetic flux in the yoke 220 is mainly a direct current component by the permanent magnet 210.
  • a change in magnetic resistance due to the presence or absence of the core 110 on the stator 100 side causes a magnetic flux fluctuation to generate a loss.
  • Joule loss occurs by supplying current to the winding 120 as well.
  • the magnetic body 150 disposed adjacent to the core 110 equivalently enlarges the surface area of the core 110 facing the rotor 200. Thereby, more magnet flux can be used effectively. That is, the effective magnetic flux is increased. In addition, since the magnetoresistive distribution in the rotational direction is smooth, the spatial harmonic component is reduced, and the loss of the rotor 200 associated therewith is reduced.
  • FIGS. 3 (a) to 3 (c) show the shapes of the stator portion of the simulation.
  • FIG. 3A shows a stator having no magnetic body.
  • FIG. 3 (b) shows the structure of a comparative example in which the magnetic material is disposed between the cores.
  • FIG. 3C shows the structure of the first embodiment in which independent magnetic bodies are arranged for each core 110.
  • the insulating magnetic body 150 is disposed in the surface of the buttocks facing the rotor. Furthermore, a plurality of magnetic bodies 150 are arranged in the circumferential direction, and a gap is provided between the adjacent magnetic bodies 150 so that the magnetic flux does not short between the cores 110.
  • the motor loss of each structure is compared and shown in FIG.3 (d).
  • the motor loss is reduced by 12% in the countermeasure of the comparative example and by 20% in the configuration of the first embodiment as compared with the structure without the magnetic body.
  • a magnetic crucible is generally used which is prepared by mixing iron powder with resin.
  • the configuration of the first embodiment since the magnetic material is divided, the magnetic flux does not short between the cores. For this reason, a powder magnetic core having a very high permeability to the magnetic flux is used for the calculation.
  • a magnetic crucible may be used. Therefore, in the first embodiment, it is possible to more effectively utilize the magnetic substance, and it is possible to realize low loss of the motor, that is, high efficiency and miniaturization.
  • the magnetic members are arranged after arranging the core members all around, dispersion occurs in the space for arranging the magnetic members depending on the dimensional accuracy of the parts and the assembly. Thereby, the workability of assembly is bad.
  • the magnetic body is disposed for each bobbin, the workability of assembly can be improved.
  • FIG. 4 (a) is an explanatory view of a stator in which a core member and a magnetic body are integrally molded with a housing 300
  • FIG. 4 (b) is an enlarged view of a part of FIG. 4 (a).
  • transfer molding in which high-pressure mold resin 180 is injected in a short time is effective. However, since large pressure is applied from mold resin 180 to each part, it is necessary to hold firmly. .
  • the magnetic body 150 is held in the circumferential direction and in the radial direction by the projections 133 provided on the core 110 and the flange portion 132 of the bobbin, so the magnetic body is not displaced by the mold resin 180.
  • the flow path of the mold resin 180 is secured. As a result, the resin can be uniformly and densely filled, and the reliability of the strength of the stator 100 can be enhanced.
  • the core 110 according to the first embodiment may be a magnetic material having high insulating properties, and may be a magnetic steel sheet, an amorphous metal, a nano-crystalline material, or the like stacked in the radial direction, or a pressure core.
  • the magnetic body 150 of Example 1 may be a magnetic body having high insulating properties, and it is laminated in the same direction as the core, magnetic steel sheets laminated in the same direction as the core, and the magnetic core or dust core. It may be an amorphous metal, a nanocrystal material laminated in the same direction as the core, or the like.
  • the magnetic body 150 may be a soft magnetic body.
  • the rectangular parallelepiped magnetic body was shown in Example 1, at least it should be arrange
  • FIG. The conductive magnetic material is not used because it causes eddy current loss.
  • the yoke 220 of Embodiment 1 may be a magnetic body, and may be a magnetic steel sheet, an amorphous metal, a laminate of nanocrystal materials, bulk iron, stainless steel or the like. Since the bulk material has a large eddy current loss and needs to account for the total loss of the motor, the loss reduction effect according to the first embodiment is increased.
  • the magnetic body 150 may be held on the side surface of the groove by forming a groove in the flange portion 132 for housing the magnetic body 150. That is, the ridge portion 132 may be provided with a convex portion or a concave portion to hold the magnetic body 150 in the circumferential direction and the radial direction.
  • FIG. 5 the structure of the modification of Example 1 for fixing with the protrusion 133 provided in the collar part 132 of the bobbin with the magnetic body 150 is shown.
  • two openings 151 are provided in the magnetic body 150, and the corresponding projections 133 are provided in the collar portion 132 of the bobbin.
  • the magnetic body 150 is being fixed to the bobbin by fitting both.
  • a double rotor type axial gap type rotating electrical machine is described, but an open slot shape is sufficient, and an axial gap of 1 rotor, 1 stator type or 1 rotor, 2 stator type may be used. It may be a mold-type electric rotating machine.
  • FIGS. 6 (a), 6 (b) and 6 (c) show an axial gap type rotary electric machine 1000 in the second embodiment.
  • 6 (a) is a perspective view of the core member and the magnetic body 150
  • FIG. 6 (b) is a perspective view of the bobbin 130 and the magnetic body 150
  • FIG. 6 (c) is the inside of the bobbin 130 of FIG. FIG.
  • the magnetic body 150 is embedded in the flange of the bobbin 130 by integrally molding the magnetic body 150 and the bobbin 130. Thereby, the magnetic body 150 is fixed in the circumferential direction, the radial direction and the axial direction.
  • FIG. 7 is a perspective view of the core member and the magnetic body 150 of the axial gap type rotary electric machine 1000 in the third embodiment.
  • the magnetic body 150 has a trapezoidal ring shape covering the entire circumference of the core 110.
  • the magnetic body 150 is fixed in the circumferential direction and the radial direction using the side surface of the core 110.
  • the magnetic flux on the inner diameter side and the outer diameter side of the core 110 can be collected, so the effective magnetic flux increases and the efficiency is improved.
  • the effect is large when the inside and outside of the magnet are smaller than the core 110 and the outside diameter of the magnet overhangs more than the core 110.
  • FIG. 8A and 8 (b) are perspective views of the core member and the magnetic body of the axial gap type rotary electric machine 1000 in the fourth embodiment.
  • asperities 153 are provided on the side surfaces of the magnetic body 150 adjacent to the core 110, and the mold resin is filled between the core 110 and the magnetic body 150.
  • a projection 144 is provided on the flange portion 132 of the bobbin between the core 110 and the magnetic body 150 so that the mold resin is filled between the core and the magnetic body.
  • the bonding surface with the mold resin can be reliably provided on the side surface of the core, the bonding area of the core and the mold resin is expanded, and the retention of the core is improved. Similarly, since the adhesion surface between the magnetic body and the mold resin is also expanded, the retention of the magnetic body is also improved. This can prevent the core and the magnetic body from being detached when the motor is driven.
  • FIG. 9 and FIG. 11A are perspective views of the core member and the magnetic body of the axial gap type rotary electric machine 1000 in the fifth embodiment.
  • the end surface of the magnetic body 150 opposed to the rotor is lowered than the end surface of the core 110 to provide the step 152 so that mold resin (not shown) is filled on the rotor side end surface of the magnetic body 150.
  • FIG. 10 is a view for explaining the configuration of the bobbin having the magnetic body 150, the cylindrical portion 131 and the collar portion 132.
  • a groove 145 is provided on the surface of the collar portion 132 of the bobbin facing the magnetic body 150 so that the mold resin is filled.
  • FIG. 11A is a perspective view of the magnetic body 150 and the bobbin.
  • FIG.11 (b) is explanatory drawing of the structure which cut out the magnetic body 150 and the bobbin of Fig.11 (a).
  • two openings 151 are provided in the magnetic body, and the mold resin is filled therein.
  • the bonding area between the magnetic body 150 and the mold resin can be expanded, the holding strength of the magnetic body 150 can be increased, and the magnetic body can be prevented from falling off when the motor is driven.
  • FIG. 12 is a perspective view of the core member and the magnetic body.
  • asperities 153 are provided on the surface of the magnetic body facing the rotor.
  • FIG. 13 is a perspective view of the core member and the magnetic body.
  • a cross-shaped groove 154 is provided on the surface of the magnetic body facing the rotor.
  • the end face of the magnetic body coincides with the end face of the core
  • the end face of the magnetic body is designed to be more negative than the end face of the core when the rotor side is positive from the viewpoint of manufacturing tolerances. Therefore, a thin mold resin layer is easily formed on the surface of the magnetic body.
  • the resin layer may be peeled off when the motor is driven.
  • the surface of the magnetic body is provided with the concavities and convexities 153 and the grooves 154 in the shape of a cross to positively fill the surface of the magnetic body with the mold resin and simultaneously expand the bonding area between the magnetic body and the mold resin. Thus, it is possible to prevent the mold resin layer on the surface of the magnetic body from falling off.
  • FIG. 14 (a), FIG. 14 (b) and FIG. 14 (c) show the stator structure of the axial gap type rotary electric machine 1000 of the seventh embodiment.
  • FIG. 14 (a) is a perspective view of the stator in which the housing and mold resin are omitted.
  • FIG. 14B shows one core member (core 110, bobbin 130, winding 120, magnetic body 150, cooling plate 170), and is a perspective view in which one pole of the stator has been cut out.
  • FIG. 14C is a view for explaining the configuration of the bobbin, the magnetic body 150, and the conductor portion.
  • a thin conductor 160 is disposed on the surface of the flange portion 132 of the bobbin facing the rotor. Further, on the outer diameter side of the core 110, a cooling plate 170 thicker than the conductor 160 is disposed. As shown in FIG. 14A, twelve cooling plates 170 are disposed, and adjacent cooling plates 170 are fastened by rivets 171. The conductor 160 and the cooling plate 170 are electrically connected to a housing (not shown), and the housing is grounded. A rectangular parallelepiped magnetic body 150 is disposed on the rotor side of the conductor 160.
  • the conductor 160 and the cooling plate 170 disposed in the flange portion 132 suppress electrostatic coupling between the winding and the rotor (electrostatic shielding). Thereby, it is possible to suppress that the common mode component of the output voltage of the inverter is coupled to the rotor side and an excessive voltage (shaft voltage) is generated in the bearing. Furthermore, bearing corrosion due to the shaft voltage can be prevented, and the bearing life can be extended.
  • the magnetic body 150 can reduce the loss of the axial gap type rotary electric machine 1000 by the increase of the effective magnetic flux and the reduction of the harmonic component as described above. That is, it contributes to the high efficiency and miniaturization of the axial gap type rotary electric machine 1000, and reduces the leakage flux linked to the conductor 160. Thereby, the generation of the eddy current loss in the conductor 160 can be suppressed, and the efficiency can be further improved.
  • the cooling plate 170 plays a role of reducing the average thermal resistance between the winding and the housing, and improves the heat dissipation from the winding which is the main heat source. This contributes to downsizing and high efficiency of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

アキシャルギャップ型回転電機は、回転軸に固定されたロータと、回転軸の軸方向に沿って、ロータに対向して配置されたステータとを有し、 ステータは、回転軸の周方向に配置された複数のコアと、コアを覆うボビンと、ボビンの周囲に設けた巻線とを有し、 ボビンは、前記コアを保持する筒部と、筒部の端部に設けた鍔部とを有し、 鍔部の前記ロータに対向する面内に、絶縁性の磁性体を配置したものである。

Description

アキシャルギャップ型回転電機
 本発明は、アキシャルギャップ型回転電機に係り、特に、アキシャルギャップ型回転電機のステータの構造に関する。
 回転軸径方向に所定のギャップを介してステータと、ロータとが面対向するアキシャルギャップ型回転電機が知られている。構造が薄型(扁平)になるという利点に加え、体格あたりのステータとロータの対向面積を大きくとることが可能であるため、高出力密度化や高効率化に好適な構造であるといえる。従来のラジアルギャップ構造のモータの場合、コア形状が複雑となるため、アモルファス金属を加工しようとすると、プレス打ち抜きの金型の磨耗や打ち抜いたコアの欠けが課題であった。アキシャルギャップ構造の場合、コアを台形柱状の単純形状とすることができるため、箔帯のアモルファス金属を短冊状に切断し積層することで比較的容易にコアを製造することが可能である。
 上記した台形柱状のコアは、その周囲に巻回される巻線がロータと対向するように配置される。このような構造をオープンスロット構造と呼ぶ。オープンスロット構造では、コアの断面積を大きくすると巻線を格納する空間が減少するため、コアの断面積が比較的小さい。このため、ロータ側の磁石磁束を有効に活用しきれない場合がある(以下、有効磁束の減少という)。また、コアがある場所とない場所で周方向に大きな磁気抵抗の分布があるため、空間高調波成分が増加し、ロータ側の導電体、即ち、鉄製のヨークや導電性のあるネオジム焼結磁石などに渦電流損失が発生する。
 従来、オープンスロット形状に起因する有効磁束の減少や渦電流損失の増加に対する対策として、特許文献1が開示する構造が知られている。特許文献1では、環状成形体と称するコアを有し、コアに形成された巻線を施すための空間(スロット)のロータ対向部に、板状成形体と称する磁性体の薄板を配置している。磁性体には、樹脂に鉄分をまぜて成型した磁性楔を用いている。本構造により、等価的にコア断面が拡大するため有効磁束を増加することができる。また、空間高調波成分も減少しロータ側導体の渦電流損が低減する。
特開昭61-150628号公報
 特許文献1が開示するような磁性体構造では、樹脂材料に鉄粉を混入した比透磁率が極めて小さい磁性体、以下磁性楔を用いている。これは、磁性体の比透磁率が高すぎるとコア間の短絡磁束が増加し、有効磁束がかえって減少してしまうためである。発明者らもシミュレーションにより、この現象を確認している。本来、比透磁率が高い磁性体のほうが、磁束を流しやすいことを考えると、特許文献1の技術では、スロットのロータ対向部に配置した磁性体の薄板の特性を、十分に活かしきれていないと考えられる。
 本発明は、コア間の短絡磁束をなくし、コア間に配置する磁性体の特性を活かし、高効率化や小型化を可能にしたアキシャルギャップ型回転電機を提供することにある。
 本発明の好ましい一例は、回転軸に固定されたロータと、
前記回転軸の軸方向に沿って、前記ロータに対向して配置されたステータとを有し、
前記ステータは、前記回転軸の周方向に配置された複数のコアと、前記コアを覆うボビンと、前記ボビンの周囲に設けた巻線とを有し、
前記ボビンは、前記コアを保持する筒部と、前記筒部の端部に設けた鍔部とを有し、
前記鍔部の前記ロータに対向する面内に、絶縁性の磁性体を配置したアキシャルギャップ型回転電機である。
 本発明によれば、コア間の短絡磁束をなくし、コア間に配置する磁性体の特性を活かし、アキシャルギャップ型回転電機の高効率化、小型化が可能になる。
実施例に係るアキシャルギャップ型回転電機の概要構成を示す斜視図である。 実施例1であるアキシャルギャップ型回転電機のステータを示す斜視図である。 ステータ構造によるモータ損失の低減効果についてシミュレーションでの評価を説明する図である。 (a)は、実施例1のモールドステータの説明図であり、(b)は、(a)の一部の拡大図である。 実施例1の変形例を示すコアメンバおよび磁性体の斜視図である。 実施例2のアキシャルギャップ型回転電機の概要構成を示す斜視図である。 実施例3のコアメンバおよび磁性体構造を示す斜視図である。 実施例4のコアメンバおよび磁性体構造を示す斜視図である。 実施例5のコアメンバおよび磁性体を示す斜視図である。 実施例5の変形例のボビンおよび磁性体の構成を説明する図である。 実施例5の変形例のコアメンバおよび磁性体構造を説明する図である。 実施例6のコアメンバおよび磁性体構造を示す斜視図である。 実施例6の変形例のコアメンバおよび磁性体構造を示す斜視図である。 実施例7のアキシャルギャップ型回転電機のステータ構造を示す図である。
 以下に、各実施例を、図面を用いて、詳細に説明する。
 図1、図2(a)から図2(c)、図3(a)から図3(d)、図4(a)から図4(b)を用いて、実施例1を説明する。図1は、実施例1のダブルロータ型のアキシャルギャップ型回転電機1000(以下、単に「回転電機」という場合がある。)の斜視図を示す。図2(a)は、ステータ100の斜視図である。図2(b)は、コアメンバおよび磁性体の構成を示す。コアメンバとは、コアとボビンと巻線とを組み合わせた構成である。図2(c)は、図2(b)から巻線を除いた図である。図4(a)は、モールドステータを切断した場合の斜視図である。図4(b)は、図4(a)の一部を拡大した図である。
 図1に示すように、アキシャルギャップ型回転電機1000は、概略円筒形状の内径を有する図示しないハウジングの内周に、環状のドーナツ形状を有するステータ100が固定される。ロータ200は、永久磁石210と、ヨーク220とからなるディスク形状を有する。永久磁石210は、回転軸方向に着磁されており、隣接する磁石の磁極向きが反対になるように周方向に複数配置されている。永久磁石210は、ヨーク220に結合されている。
 ロータ200は、着磁面がステータ100を出力軸側及び反出力軸側から挟むように配置され、ステータ100の回転軸方向の両端部平面と所定のギャップを介して面対向するようになっている。図示しないが、ロータ200は、シャフトと共に回転するように接続される。シャフトの回転軸方向外側は、図は省略したが、軸受を介してエンドブラケットと接続される。エンドブラケットは、図4(a)に示したハウジング300の両端部に固定され、ロータを回転可能に支持するようになっている。
 図1(a)および図1(b)に示す様に、ステータ100は、コア110とコア110の外周を覆うボビン130およびボビン130に巻回された巻線120からなるコアメンバを環状に配列し、ハウジングと一体的に樹脂モールド(不図示)されて固定されるようになっている。ボビン130は、コア110を保持する筒部131と巻線120の端部とコア110との絶縁を確保するための鍔部132からなる。なお、環状に配列したコア110を一体的に樹脂モールドした後に、ハウジングにボルト等で固定するようにしてもよい。
 実施例1の回転電機では、図2(a)、図2(b)、図2(c)に示すように、ボビンの鍔部132上にコア110に隣接するように直方体状の磁性体150を配置している。磁性体150は、電気を流しにくい絶縁性の材料である。また、磁性体150の周方向側面および径方向側面には、鍔部132から突起133が設けられている。
 このように構成されたアキシャルギャップ型回転電機は、以下のように動作する。インバータ等を介して巻線120に流れる交流電流が、回転磁界を発生させる。永久磁石により形成されたロータの直流磁界と、コイルの回転磁界とを吸引・反発させることでトルクが発生する。永久磁石モータのトルクは、磁石とコア110の形状に依存する有効磁束と、巻数と電流の積に比例して発生する。また、コア110やヨーク220には、磁束の時間変化に伴う鉄損が発生する。ヨーク220内の磁束は永久磁石210による直流成分が主であるが、ステータ100側のコア110の有無に伴う磁気抵抗の変化により磁束変動が生じ、損失を発生する。また、巻線120にも電流を通電することでジュール損失が発生する。
 次いで、実施例1の効果を説明する。コア110に隣接した配置された磁性体150は、ロータ200に対向するコア110の表面積を等価的に拡大する。これにより、より多くの磁石磁束を有効に活用することができる。即ち、有効磁束が増大する。また、回転方向の磁気抵抗分布が滑らかになるため空間高調波成分が低減し、これに伴うロータ200の損失が減少する。
 次に、ステータ構造によるモータ損失の低減効果についてシミュレーションの評価について、図3(a)、図3(b)、図3(c)、図3(d)を用いて説明する。図3(a)~図3(c)は、シミュレーションのステータ部の形状である。計算時には、ロータやハウジングもモデル化しているが、図示は省略する。ロータ、ハウジング、コアは、いずれの計算でも同じ形状である。図3(a)は、磁性体がないステータである。図3(b)は、コア間に磁性体を配置した比較例の構造である。図3(c)は、コア110ごとに独立した磁性体を配置した実施例1の構造である。つまり、鍔部のロータに対向する面内で、絶縁性の磁性体150を配置している。さらに述べると、磁性体150は、周方向に複数配置され、隣り合う磁性体150の間には、間隙を設けることで、コア110間で磁束が短絡しないようにしている。図3(d)には、各構造のモータ損失を比較して示す。
 図3(d)に示すように、磁性体がない構造に対し、比較例の対策では12%、実施例1の構成では、20%モータ損失が、低減することがわかる。これは、比較例の対策構造では、磁性体の比透磁率を高めると隣接するコア間で磁束が短絡してしまう。このため、通常、樹脂に鉄粉を混ぜて成型した磁性楔を用いる。一方、実施例1の構成は、磁性体が分割されているため、コア間で磁束が短絡することがない。このため、計算には磁性楔に対し透磁率が極めて大きい圧粉磁心を用いている。もちろん、磁性楔を用いても良い。したがって、実施例1は、より磁性体を有効に活用することが可能であり、モータの低損失化、即ち高効率化や小型化が実現できる。
 また、比較例の対策構造では、コアメンバを全周配置してから磁性体を配置することになるため、部品や組み立ての寸法精度により、磁性体を配置するスペースにばらつきが発生する。これにより、組み立ての作業性が悪い。一方、実施例1は、ボビンごとに磁性体を配置するため組み立ての作業性を向上できる。
 図4(a)は、コアメンバと磁性体をハウジング300とを一体でモールドしたステータの説明図であり、図4(b)は、図4(a)の一部を拡大した図である。モールドの量産性を確保するには、高圧のモールド樹脂180を短時間で注入するトランスファーモールドが有効であるが、各部品にはモールド樹脂180から大きな圧力がかかるため、しっかりと保持する必要がある。実施例1の構成では、コア110およびボビンの鍔部132に設けた突起133により磁性体150が周方向、径方向に保持されるため、磁性体がモールド樹脂180によりずれることがない。これにより、モールドの歩留まり向上やモータの特性ばらつきの低減を図ることができる。また、隣接する磁性体150の間に空隙があるため、モールド樹脂180の流路が確保される。これにより、均一かつ高密度に樹脂を充填することができるため、ステータ100の強度の信頼性を高めることができる。
 実施例1のコア110は、絶縁性の高い磁性体であれば良く、電磁鋼板やアモルファス金属、ナノ結晶材などを径方向に積層したもの、または、圧分磁心などであってよい。特に、軟加工性のアモルファス金属やナノ結晶材は、高い量産性を確保し、かつ複雑な形状を製作することが困難なため、オープンスロット形状にすることが望ましく、実施例1を適用した場合の効果が大きい。
 また、実施例1の磁性体150は、絶縁性の高い磁性体であれば良く、磁性楔や圧粉磁心、さらには、コアと同方向に積層した電磁鋼板や、コアと同方向に積層したアモルファス金属、コアと同方向に積層したナノ結晶材などであっても良い。磁性体150は、軟磁性体であっても良い。また、実施例1では直方体状の磁性体を示したが、少なくともコア間に配置されていれば良く、形状は、実施例1に限定されない。導電性の磁性体は、渦電流損失が生じるので用いない。
 実施例1のヨーク220は、磁性体であれば良く、電磁鋼板やアモルファス金属、ナノ結晶材の積層体、もしくは、バルクの鉄やステンレスなどでも良い。バルク材の方が、大きな渦電流損失が発生しモータの総損失に占める必要が大きくなるため、実施例1による損失の低減効果が大きくなる。
 突起133により磁性体150を保持するのではなく、鍔部132に磁性体150を収容する溝を形成することで、溝の側面で磁性体150を保持するようにしてもよい。つまり、鍔部132に凸部もしくは凹部を設けて磁性体150を周方向、および径方向に保持するようにしてよい。
 図5には、磁性体150をボビンの鍔部132に設けた突起133により固定するための実施例1の変形例の構造を示す。図5では、磁性体150に、2つの開孔151を設け、これに対応する突起133を、ボビンの鍔部132に設けている。これにより、両者を嵌合することで、磁性体150をボビンに固定している。
 本構成は、磁性体150の形状を変更する際にも、ボビンの突起133の形状を変更する必要がないため、設計変更に対応しやすい。実施例1および実施例1の変形例では、ダブルロータ型のアキシャルギャップ型回転電機を記載したが、オープンスロット形状であればよく、1ロータ、1ステータ型や1ロータ、2ステータ型のアキシャルギャップ型回転電機であってもよい。
 以下に、実施例2を説明する。なお、各実施例の説明では、実施例1と重複する記載は省略する。図6(a)、図6(b)、図6(c)に、実施例2におけるアキシャルギャップ型回転電機1000を示す。図6(a)は、コアメンバと磁性体150の斜視図、図6(b)はボビン130と磁性体150の斜視図、図6(c)は、図6(b)のボビン130の内部を示す図である。実施例2では、磁性体150とボビン130を一体成型することで、磁性体150をボビン130の鍔部に埋め込んでいる。これにより、磁性体150を周方向、径方向および軸方向に固定している。
 本構成により、磁性体150を、ボビン130に組み込む必要がなくなり作業性や組み立て性が向上する。また、磁性体150の保持力も高まるため、モールド時の位置づれを抑制でき、歩留まりの向上、モータ特性のばらつき抑制に寄与する。
 以下に、実施例3を説明する。図7は、実施例3におけるアキシャルギャップ型回転電機1000のコアメンバと磁性体150の斜視図である。実施例3では、磁性体150をコア110の全周を覆う台形リング形状としている。コア110の側面を利用し、磁性体150を周方向、径方向に固定している。
 本構成により、コア110の内径側、外形側の磁束を集めることができるため、有効磁束が増加し、高効率化する。特に、磁石の内外をコア110よりも小さく、磁石の外径をコア110よりも大きくオーバーハングした場合に、効果が大きい。
 以下に、実施例4を説明する。図8(a)、図8(b)は、実施例4におけるアキシャルギャップ型回転電機1000のコアメンバと磁性体の斜視図である。図8(a)では、コア110に隣接する磁性体150の側面に凹凸153を設け、コア110と磁性体150の間にモールド樹脂が充填するようにしている。図8(b)では、コア110と磁性体150の間のボビンの鍔部132に、突起144を設け、コアと磁性体の間にモールド樹脂が充填するようにしている。
 本構成により、コアの側面にモールド樹脂との接着面を確実に設けることができるため、コアとモールド樹脂の接着面積が拡大し、コアの保持力が向上する。同様に、磁性体とモールド樹脂との接着面も拡大するため磁性体の保持力も向上する。これにより、モータ駆動時にコアおよび磁性体が脱離することを防止できる。
 以下に、実施例5を説明する。図9、図11(a)は、実施例5におけるアキシャルギャップ型回転電機1000のコアメンバと磁性体の斜視図である。ここでは、ロータに対向する磁性体150の端面を、コア110の端面よりも下げ、段差152を設けることで、磁性体150のロータ側端面の上に図示しないモールド樹脂が充填するようにしている。図10は、磁性体150と、筒部131と鍔部132を有するボビンの構成を説明する図である。ここでは、磁性体150と対向するボビンの鍔部132の表面に、溝145を設け、モールド樹脂が充填するようにしている。
 図11(a)は、磁性体150とボビンの斜視図である。図11(b)は、図11(a)の磁性体150とボビンを切り出した構成の説明図である。ここでは、磁性体に2つの開孔151を設け、ここにモールド樹脂が充填するようになっている。これにより、磁性体150とモールド樹脂の接着面積を拡大し、磁性体150の保持強度を高め、モータ駆動時に磁性体が脱落することを防止できる。
 以下に、実施例6を説明する。図12、図13に、実施例6のアキシャルギャップ型回転電機1000を示す。図12は、コアメンバと磁性体の斜視図である。ここでは、ロータに対向する磁性体表面に凹凸153を設けている。図13は、コアメンバと磁性体の斜視図である。ここでは、ロータに対向する磁性体表面に十字形状の溝154を設けている。
 磁性体の端面とコアの端面が一致している場合、製造上の公差の観点から、ロータ側をプラスとした場合、磁性体の端面がコアの端面よりもマイナスとなるように設計する。このため、磁性体の表面には、薄いモールド樹脂層が形成されやすい。この樹脂層は、モータ駆動時に剥離する懸念がある。実施例6の構造では、磁性体表面に凹凸153や十字形状の溝154を設けることで、積極的に磁性体表面にモールド樹脂を充填し、同時に磁性体とモールド樹脂の接着面積を拡大することで、磁性体表面のモールド樹脂層が脱落することを防止できる。
 以下に、実施例7を説明する。図14(a)、図14(b)、図14(c)に、実施例7のアキシャルギャップ型回転電機1000のステータ構造を示す。図14(a)は、ハウジングやモールド樹脂を省略したステータの斜視図である。図14(b)は、1つのコアメンバ(コア110、ボビン130、巻線120、磁性体150、冷却板170)を示し、ステータの1極分を切り出してきた斜視図である。図14(c)は、ボビン、磁性体150、導電体部の構成を説明する図である。以下、実施例1との構造的差分のみ説明する。
 ロータに対向するボビンの鍔部132表面には、薄い導電体160が配置されている。また、コア110の外径側には、導電体160よりも厚い冷却板170が配置されている。図14(a)に示すように、12個の冷却板170を配置し、隣接する冷却板170同士は、リベット171により締結されている。導電体160、冷却板170は、図示しないハウジングと電気的に接続されており、ハウジングは接地されている。導電体160のロータ側には直方体状の磁性体150が、配置されている。
 実施例7によれば、鍔部132に配置された導電体160と冷却板170は、巻線とロータが静電結合することを抑制する(静電遮蔽)。これにより、インバータの出力電圧のコモンモード成分がロータ側に結合し、軸受けに過大な電圧(軸電圧)を発生することを抑制できる。さらに、軸電圧に伴う軸受け電食を防止し、軸受けの長寿命化を図れる。
 また、磁性体150は、前述のような有効磁束の増加や高調波成分の低減により、アキシャルギャップ型回転電機1000の損失を低減することができる。即ち、アキシャルギャップ型回転電機1000の高効率化、小型化に寄与するとともに、導電体160に鎖交する漏れ磁束を低減する。これにより、導電体160での渦電流損失の発生を抑制しさらなる高効率化が図れる。また、冷却板170は、巻線とハウジング間の平均的な熱抵抗を低減する役割を果たし、主要熱源である巻線からの放熱性を向上する。これにより、モータの小型化、高効率化に貢献する。
1000 アキシャルギャップ型回転電機、100 ステータ、110 コア、120 巻線、130 ボビン、150 磁性体、180 モールド樹脂、200 ロータ

Claims (15)

  1. 回転軸に固定されたロータと、
    前記回転軸の軸方向に沿って、前記ロータに対向して配置されたステータとを有し、
    前記ステータは、前記回転軸の周方向に配置された複数のコアと、前記コアを覆うボビンと、前記ボビンの周囲に設けた巻線とを有し、
    前記ボビンは、前記コアを保持する筒部と、前記筒部の端部に設けた鍔部とを有し、
    前記鍔部の前記ロータに対向する面内に、絶縁性の磁性体を配置したことを特徴とするアキシャルギャップ型回転電機。
  2. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記ステータは、前記コアと前記ボビンと前記巻線との組み合わせであるコアメンバを、前記回転軸を中心に環状に複数配列した構成であり、
    前記磁性体は、周方向に複数配置され、隣り合う前記磁性体の間には、間隙を設けたことを特徴とするアキシャルギャップ型回転電機。
  3. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記鍔部には、前記磁性体の周方向側面および径方向側面を保持する、凸部もしくは凹部の保持部を配置したことを特徴とするアキシャルギャップ型回転電機。
  4. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記鍔部には、突起を設け、前記磁性体には、前記突起と嵌合する開孔を設けたことを特徴とするアキシャルギャップ型回転電機。
  5. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記鍔部に前記磁性体が一体となった構成であることを特徴とするアキシャルギャップ型回転電機。
  6. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記磁性体は、前記コアの外周形状と略一致した内周形状を有し、前記コアの側面で前記磁性体を保持したことを特徴とするアキシャルギャップ型回転電機。
  7. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記磁性体の前記コアに対向する面に凹凸を設け、前記磁性体とコア間にモールド樹脂が充填されたことを特徴とするアキシャルギャップ型回転電機。
  8. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記磁性体と前記コアの間に前記鍔部の突起を設け、前記磁性体とコア間にモールド樹脂が充填されたことを特徴とするアキシャルギャップ型回転電機。
  9. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記コアの端面を前記磁性体の端面より、ロータ側に突出させ、前記磁性体がモールド樹脂で覆われたことを特徴とするアキシャルギャップ型回転電機。
  10. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記磁性体と対向する前記鍔部の表面に溝が形成されており、前記溝にモールド樹脂が充填されたことを特徴とするアキシャルギャップ型回転電機。
  11. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記磁性体に開孔部を設け、前記開孔部にモールド樹脂が充填されたことを特徴とするアキシャルギャップ型回転電機。
  12. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記磁性体の前記ロータと対向する端面に凹凸を設けたことを特徴とするアキシャルギャップ型回転電機。
  13. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記磁性体の前記ロータに対向する面に、十字形状の溝を設けたことを特徴とするアキシャルギャップ型回転電機。
  14. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記鍔部に電気的に接地された導電体を配置し、前記磁性体は、前記導電体よりもロータ側に配置したことを特徴とするアキシャルギャップ型回転電機。
  15. 請求項1に記載のアキシャルギャップ型回転電機において、
    前記磁性体は、樹脂と鉄粉を混合した磁性楔、圧分磁心、積層した電磁鋼板、または、積層したアモルファス金属で構成したことを特徴とするアキシャルギャップ型回転電機。
PCT/JP2018/036674 2017-10-19 2018-10-01 アキシャルギャップ型回転電機 WO2019077983A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-202558 2017-10-19
JP2017202558A JP7007150B2 (ja) 2017-10-19 2017-10-19 アキシャルギャップ型回転電機

Publications (1)

Publication Number Publication Date
WO2019077983A1 true WO2019077983A1 (ja) 2019-04-25

Family

ID=66174403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036674 WO2019077983A1 (ja) 2017-10-19 2018-10-01 アキシャルギャップ型回転電機

Country Status (2)

Country Link
JP (1) JP7007150B2 (ja)
WO (1) WO2019077983A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002138A1 (ja) * 2019-07-03 2021-01-07 株式会社日立産機システム 回転電機
JPWO2021145135A1 (ja) * 2020-01-14 2021-07-22
CN113991957A (zh) * 2021-11-17 2022-01-28 长沙理工大学 一种单相双磁路永磁电机及驱动方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10818427B2 (en) * 2018-01-12 2020-10-27 Regal Beloit America, Inc. Stator assembly including a bobbin having an extension tab and a retention rib
CN112737255B (zh) * 2020-12-25 2022-04-05 中国科学院宁波材料技术与工程研究所 盘式双转子对转电机及航行器
DE102021132325A1 (de) * 2021-12-08 2023-06-15 Schaeffler Technologies AG & Co. KG Stator für eine axialflussmaschine
CN116260302B (zh) * 2023-05-15 2023-08-29 湖南大学 一种轴向-横向混合磁通的永磁同步电机

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152245A (ja) * 1984-01-19 1985-08-10 Nippon Denso Co Ltd 磁石発電機の固定子
JPS62203543A (ja) * 1986-03-04 1987-09-08 Tokyo Electric Co Ltd ブラシレスモ−タ
JPH07194080A (ja) * 1993-12-27 1995-07-28 Nippon Densan Corp モータ
JPH08298737A (ja) * 1995-04-26 1996-11-12 Minebea Co Ltd 回転電機の固定子構造
JPH1169749A (ja) * 1997-08-20 1999-03-09 Minebea Co Ltd モータ構造及びその製造方法
JP2003079120A (ja) * 2001-09-03 2003-03-14 Asmo Co Ltd モータ用コア及び直流モータ
JP2006311702A (ja) * 2005-04-28 2006-11-09 Nissan Motor Co Ltd 回転電機のステータ構造
JP2007236057A (ja) * 2006-02-28 2007-09-13 Jtekt Corp モータのステータ
JP2009118628A (ja) * 2007-11-06 2009-05-28 Panasonic Corp モールドモータ
JP2013537797A (ja) * 2010-08-19 2013-10-03 オックスフォード ワイエーエスエー モータース リミテッド 電気機械のオーバーモールドによる構築
JP2014017915A (ja) * 2012-07-06 2014-01-30 Hitachi Ltd アキシャルギャップ型回転電機
WO2014123003A1 (ja) * 2013-02-08 2014-08-14 株式会社日立製作所 回転電機
WO2015075813A1 (ja) * 2013-11-22 2015-05-28 株式会社日立製作所 アキシャルギャップ型回転電機
WO2015155879A1 (ja) * 2014-04-11 2015-10-15 株式会社日立産機システム アキシャルエアギャップ型回転電機

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152245A (ja) * 1984-01-19 1985-08-10 Nippon Denso Co Ltd 磁石発電機の固定子
JPS62203543A (ja) * 1986-03-04 1987-09-08 Tokyo Electric Co Ltd ブラシレスモ−タ
JPH07194080A (ja) * 1993-12-27 1995-07-28 Nippon Densan Corp モータ
JPH08298737A (ja) * 1995-04-26 1996-11-12 Minebea Co Ltd 回転電機の固定子構造
JPH1169749A (ja) * 1997-08-20 1999-03-09 Minebea Co Ltd モータ構造及びその製造方法
JP2003079120A (ja) * 2001-09-03 2003-03-14 Asmo Co Ltd モータ用コア及び直流モータ
JP2006311702A (ja) * 2005-04-28 2006-11-09 Nissan Motor Co Ltd 回転電機のステータ構造
JP2007236057A (ja) * 2006-02-28 2007-09-13 Jtekt Corp モータのステータ
JP2009118628A (ja) * 2007-11-06 2009-05-28 Panasonic Corp モールドモータ
JP2013537797A (ja) * 2010-08-19 2013-10-03 オックスフォード ワイエーエスエー モータース リミテッド 電気機械のオーバーモールドによる構築
JP2014017915A (ja) * 2012-07-06 2014-01-30 Hitachi Ltd アキシャルギャップ型回転電機
WO2014123003A1 (ja) * 2013-02-08 2014-08-14 株式会社日立製作所 回転電機
WO2015075813A1 (ja) * 2013-11-22 2015-05-28 株式会社日立製作所 アキシャルギャップ型回転電機
WO2015155879A1 (ja) * 2014-04-11 2015-10-15 株式会社日立産機システム アキシャルエアギャップ型回転電機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002138A1 (ja) * 2019-07-03 2021-01-07 株式会社日立産機システム 回転電機
JP2021010275A (ja) * 2019-07-03 2021-01-28 株式会社日立産機システム 回転電機
TWI761871B (zh) * 2019-07-03 2022-04-21 日商日立產機系統股份有限公司 旋轉電機
JPWO2021145135A1 (ja) * 2020-01-14 2021-07-22
WO2021145135A1 (ja) * 2020-01-14 2021-07-22 ヤマハ発動機株式会社 アキシャルギャップ型回転電機
JP7318012B2 (ja) 2020-01-14 2023-07-31 ヤマハ発動機株式会社 アキシャルギャップ型回転電機
CN113991957A (zh) * 2021-11-17 2022-01-28 长沙理工大学 一种单相双磁路永磁电机及驱动方法

Also Published As

Publication number Publication date
JP7007150B2 (ja) 2022-01-24
JP2019075952A (ja) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2019077983A1 (ja) アキシャルギャップ型回転電機
CN109661760B (zh) 表面磁体型马达
JP5877777B2 (ja) 回転電機、磁極ピース製造方法
US6064132A (en) Armature structure of a radial rib winding type rotating electric machine
JP6055725B2 (ja) 回転子および回転子を用いたアキシャル型回転電機
US20070138894A1 (en) Rotor assembly for use in line start permanent magnet synchronous motor
JP2007074776A (ja) 回転電機
JP2013135541A (ja) アキシャルギャップ回転電機
US20130241367A1 (en) Exciter of a rotary electric machine
TW201541809A (zh) 軸向氣隙型旋轉電機
JP2006050853A (ja) モータ
JP6591084B2 (ja) 回転子および回転電機
WO2018016026A1 (ja) モータ及び空気調和機
CN111566915B (zh) 轴向间隙型旋转电机
WO2018207897A1 (ja) 多相クローポールモータと該多相クローポールモータを構成する固定子
WO2019008930A1 (ja) ステータおよびモータ
JP6462714B2 (ja) アキシャルギャップ型回転電機及び絶縁部材
JP2013223370A (ja) 同期回転機
WO2020255435A1 (ja) アキシャルギャップ型回転電機
JP5404230B2 (ja) アキシャルギャップ型モータ
JP4771278B2 (ja) 永久磁石形電動機およびその製造方法
JP2008022593A (ja) 電動モータ
WO2017175461A1 (ja) アキシャルギャップ型回転電機
JP2017204959A (ja) 回転電機
WO2021166976A1 (ja) ステータ分割体、ステータ及びモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868133

Country of ref document: EP

Kind code of ref document: A1