WO2024090504A1 - 冷凍機油組成物及び冷凍機用混合組成物 - Google Patents

冷凍機油組成物及び冷凍機用混合組成物 Download PDF

Info

Publication number
WO2024090504A1
WO2024090504A1 PCT/JP2023/038629 JP2023038629W WO2024090504A1 WO 2024090504 A1 WO2024090504 A1 WO 2024090504A1 JP 2023038629 W JP2023038629 W JP 2023038629W WO 2024090504 A1 WO2024090504 A1 WO 2024090504A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
acid
mass
oil composition
refrigerant
Prior art date
Application number
PCT/JP2023/038629
Other languages
English (en)
French (fr)
Inventor
明雄 小島
忠 氣仙
康平 吉田
聡 中島
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2024090504A1 publication Critical patent/WO2024090504A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds

Definitions

  • the present invention relates to a refrigerating machine oil composition and a mixed composition for a refrigerating machine.
  • the term "mixture composition for a refrigerating machine” refers to a composition obtained by mixing a "refrigerating machine oil composition” with a “refrigerant”.
  • Refrigeration machines such as compression type refrigerators, generally include at least a compressor, a condenser, an expansion mechanism (e.g., an expansion valve), and an evaporator, and have a structure in which the mixture composition for the refrigerator circulates within a sealed system.
  • fluorohydrocarbon compounds that have a low environmental impact are being used in place of the hydrochlorofluorocarbons (HCFCs) that have been widely used in the past.
  • fluorohydrocarbon compounds include saturated fluorohydrocarbon compounds (hydro-fluoro-carbons; hereinafter also referred to as "HFCs") such as 1,1,1,2-tetrafluoroethane (R134a), difluoromethane (R32), 1,1-difluoroethane (R152a), and a mixture of difluoromethane and pentafluoroethane (R410A).
  • HFOs unsaturated fluorinated hydrocarbon compounds
  • R1234ze 1,3,3,3-tetrafluoropropene
  • R1234yf 2,3,3,3-tetrafluoropropene
  • GWP global warming potential
  • Patent Document 1 discusses a refrigeration oil composition that contains an ether compound as a base oil, it does not discuss at all a refrigeration oil composition that contains a polyol ester as a base oil.
  • the hydrocarbon refrigerant is highly flammable. From the viewpoint of easily ensuring safety, it is desirable to reduce the amount of the hydrocarbon refrigerant used. Therefore, it is desirable for the refrigerating machine oil composition used when using the hydrocarbon refrigerant to reduce the amount of the hydrocarbon refrigerant dissolved therein and to suppress excessive dissolution of the hydrocarbon refrigerant. Therefore, it is desirable for the refrigerating machine oil composition used when using the hydrocarbon refrigerant to have a low solubility of the hydrocarbon refrigerant. In addition, a refrigerator oil composition is also required to have excellent low-temperature fluidity. However, Patent Document 1 does not make any consideration regarding the performance of a refrigerating machine oil composition containing a polyol ester as a base oil.
  • the present invention aims to provide a refrigeration oil composition that contains a polyol ester, has low solubility for hydrocarbon refrigerants, and has excellent low-temperature fluidity, and a mixed composition for refrigeration that contains the refrigeration oil composition.
  • a refrigerating machine oil composition for use with a refrigerant containing a hydrocarbon refrigerant comprises a polyol ester (P) of dipentaerythritol and one or more fatty acids (A) selected from fatty acids having 2 to 23 carbon atoms,
  • the polyol ester (P) satisfies the following requirements ( ⁇ ) and ( ⁇ ): Requirement ( ⁇ ):
  • the fatty acid (A) satisfies the following formula ( ⁇ 1). ⁇ (Xc ⁇ WXc) + 0.259 ⁇ ⁇ (Yc ⁇ WYc) ⁇ 6,000 ...
  • Xc the number of carbon atoms of the linear saturated fatty acid in the fatty acid (A); WXc: the mass of the linear saturated fatty acid having the carbon number Xc; ⁇ (Xc ⁇ WXc): when the linear saturated fatty acid in the fatty acid (A) is one type, this is Xc ⁇ WXc; when the linear saturated fatty acid in the fatty acid (A) is two or more types, this is the sum of Xc ⁇ WXc of each linear saturated fatty acid.
  • Yc the number of carbon atoms of the linear unsaturated fatty acid in the fatty acid (A); WYc: the mass of the linear unsaturated fatty acid having the carbon number Yc; ⁇ (Yc ⁇ WYc): when there is one type of linear unsaturated fatty acid in the fatty acid (A), this is Yc ⁇ WYc; when there are two or more types of linear unsaturated fatty acids in the fatty acid (A), this is the sum of Yc ⁇ WYc of each linear unsaturated fatty acid.
  • a mixed composition for a refrigerator comprising the refrigerator oil composition according to the above [1] and a refrigerant containing a hydrocarbon refrigerant.
  • a method for producing a refrigerating machine oil composition for use with a refrigerant containing a hydrocarbon refrigerant comprising: The method includes a step of blending a polyol ester (P) of dipentaerythritol and one or more fatty acids (A) selected from fatty acids having 2 to 23 carbon atoms, The polyol ester (P) satisfies the following requirements ( ⁇ ) and ( ⁇ ): Requirement ( ⁇ ): The fatty acid (A) satisfies the following formula ( ⁇ 1).
  • Xc the number of carbon atoms of the linear saturated fatty acid in the fatty acid (A); WXc: the mass of the linear saturated fatty acid having the carbon number Xc; ⁇ (Xc ⁇ WXc): when the linear saturated fatty acid in the fatty acid (A) is one type, this is Xc ⁇ WXc; when the linear saturated fatty acid in the fatty acid (A) is two or more types, this is the sum of Xc ⁇ WXc of each linear saturated fatty acid.
  • Yc the number of carbon atoms of the linear unsaturated fatty acid in the fatty acid (A); WYc: the mass of the linear unsaturated fatty acid having the carbon number Yc; ⁇ (Yc ⁇ WYc): when there is one type of linear unsaturated fatty acid in the fatty acid (A), this is Yc ⁇ WYc; when there are two or more types of linear unsaturated fatty acids in the fatty acid (A), this is the sum of Yc ⁇ WYc of each linear unsaturated fatty acid.
  • the present invention makes it possible to provide a refrigeration oil composition that contains a polyol ester, has low solubility for hydrocarbon refrigerants, and has excellent low-temperature fluidity, and a mixed composition for refrigeration that contains the refrigeration oil composition.
  • FIG. 2 is a cross-sectional view showing a viscosity measuring device used for measuring the solution viscosity in the examples.
  • FIG. 2 is an enlarged cross-sectional view showing a main part of a viscosity measuring device used for measuring the solution viscosity in the examples.
  • FIG. 2 is a cross-sectional view showing a part of a measurement procedure using a viscosity measuring device used for measuring the solution viscosity in the Examples.
  • the "solubility of a hydrocarbon refrigerant” means the solubility of a hydrocarbon refrigerant in a refrigerating machine oil composition containing the polyol ester (P) or in the polyol ester (P).
  • dissolved viscosity means the viscosity of a refrigerating machine oil composition containing the polyol ester (P) or a mixed composition for a refrigerating machine when a hydrocarbon refrigerant is dissolved in the polyol ester (P).
  • the refrigerating machine oil composition of the present embodiment is a refrigerating machine oil composition for use with a refrigerant containing a hydrocarbon refrigerant, and contains a polyol ester (P) of dipentaerythritol and one or more fatty acids (A) selected from fatty acids having 2 to 23 carbon atoms.
  • the polyol ester (P) satisfies the following requirements ( ⁇ ) and ( ⁇ ).
  • the fatty acid (A) satisfies the following formula ( ⁇ 1). ⁇ (Xc ⁇ WXc) + 0.259 ⁇ ⁇ (Yc ⁇ WYc) ⁇ 6,000 ...
  • Xc the number of carbon atoms of the linear saturated fatty acid in the fatty acid (A); WXc: the mass of the linear saturated fatty acid having the carbon number Xc; ⁇ (Xc ⁇ WXc): when the linear saturated fatty acid in the fatty acid (A) is one type, this is Xc ⁇ WXc; when the linear saturated fatty acid in the fatty acid (A) is two or more types, this is the sum of Xc ⁇ WXc of each linear saturated fatty acid.
  • Yc the number of carbon atoms of the linear unsaturated fatty acid in the fatty acid (A); WYc: the mass of the linear unsaturated fatty acid having the carbon number Yc; ⁇ (Yc ⁇ WYc): when there is one type of linear unsaturated fatty acid in the fatty acid (A), this is Yc ⁇ WYc; when there are two or more types of linear unsaturated fatty acids in the fatty acid (A), this is the sum of Yc ⁇ WYc of each linear unsaturated fatty acid.
  • the present inventors have conducted extensive research to solve the above problems, and have found that, for a polyol ester (P) of dipentaerythritol and a fatty acid (A), by controlling the constitution (structure and number of carbon atoms) of the fatty acid (A), it is possible to reduce the solubility of a hydrocarbon refrigerant and ensure the low-temperature fluidity of the polyol ester (P). Therefore, the inventors have conducted investigations from various perspectives based on the relationship between "the structure of the fatty acid (A)” and “the solubility of the hydrocarbon refrigerant”, and the relationship between "the structure of the fatty acid (A)” and “the low-temperature fluidity of the polyol ester (P)". As a result, they have created parameters relating to these relationships, and have completed the present invention.
  • composition of the refrigeration oil composition of this embodiment is described in detail below.
  • the polyol ester (P) is an ester of dipentaerythritol and one or more fatty acids (A) selected from fatty acids having 2 to 23 carbon atoms.
  • the polyol ester (P) functions as a base oil.
  • the refrigerating machine oil composition of the present embodiment may be composed only of the polyol ester (P), but may also contain components other than the polyol ester (P) within a range that does not impair the effects of the present invention.
  • the content of the polyol ester (P) is preferably 20 mass% or more, more preferably 40 mass% or more, even more preferably 60 mass% or more, still more preferably 80 mass% or more, even more preferably 90 mass% or more, and even more preferably 100 mass% based on the total amount (100 mass%) of the refrigerator oil composition.
  • the content of the polyol ester (P) may be 100 mass% or less based on the total amount (100 mass%) of the refrigerator oil composition.
  • the polyol ester (P) may be a partial ester or a complete ester, but preferably contains a complete ester from the viewpoint of improving the stability of the polyol ester (P) and the like.
  • the content of complete esters in the polyol ester (P) is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, even more preferably 70% by mass to 100% by mass, still more preferably 80% by mass to 100% by mass, even more preferably 90% by mass to 100% by mass, and even more preferably 95% by mass to 100% by mass.
  • dipentaerythritol is an alcohol component constituting the polyol ester (P) and is a compound represented by the following structural formula (1).
  • the fatty acid (A) is an acid component that constitutes the polyol ester (P).
  • the fatty acid (A) is one or more selected from fatty acids having 2 to 23 carbon atoms.
  • the carbon number of the fatty acid is within the above range, the effects of the present invention are easily achieved, and the fatty acid is easily available. From the above viewpoint, the number of carbon atoms in the fatty acid is preferably 2 to 22, more preferably 2 to 20, and even more preferably 3 to 18.
  • the fatty acid (A) may be a linear saturated fatty acid, a linear unsaturated fatty acid, a branched saturated fatty acid, or a branched unsaturated fatty acid.
  • the fatty acid (A) may be used alone or in combination of two or more kinds.
  • ⁇ Requirement ( ⁇ )> In the refrigerating machine oil composition of the present embodiment, the polyol ester (P) satisfies the requirement ( ⁇ ).
  • Xc the number of carbon atoms of the linear saturated fatty acid in the fatty acid (A); WXc: the mass of the linear saturated fatty acid having the carbon number Xc; ⁇ (Xc ⁇ WXc): when the linear saturated fatty acid in the fatty acid (A) is one type, this is Xc ⁇ WXc; when the linear saturated fatty acid in the fatty acid (A) is two or more types, this is the sum of Xc ⁇ WXc of each linear saturated fatty acid.
  • Yc the number of carbon atoms of the linear unsaturated fatty acid in the fatty acid (A); WYc: the mass of the linear unsaturated fatty acid having the carbon number Yc; ⁇ (Yc ⁇ WYc): when there is one type of linear unsaturated fatty acid in the fatty acid (A), this is Yc ⁇ WYc; when there are two or more types of linear unsaturated fatty acids in the fatty acid (A), this is the sum of Yc ⁇ WYc of each linear unsaturated fatty acid.
  • the value of the left side of the formula ( ⁇ 1) is calculated with the maximum number of moles of fatty acid (A) bonded to 1 mole of dipentaerythritol. Therefore, when the polyol ester (P) is a complete ester, the value of the left side of the formula ( ⁇ 1) is calculated for 6 moles of fatty acid (A).
  • the requirement ( ⁇ ) is a parameter that serves as an index of the low-temperature fluidity of the polyol ester (P).
  • the present inventors have found that the main factors governing the low-temperature fluidity of polyol ester (P) are the number and amount of carbon atoms of linear saturated fatty acids and the number and amount of carbon atoms of linear unsaturated fatty acids in fatty acid (A). In addition, the present inventors have found that, among these, the weight of the number and amount of carbon atoms of linear unsaturated fatty acids is smaller than that of the carbon number and amount of linear saturated fatty acids. Using these matters as a starting point, the present inventors have conducted various studies and have come up with requirement ( ⁇ ).
  • the pour point of the polyol ester (P) when the polyol ester (P) satisfies the requirement ( ⁇ ), the pour point of the polyol ester (P) can be lowered, and the low-temperature fluidity of the refrigerating machine oil composition can be sufficiently ensured.
  • the value of the right side of the above formula ( ⁇ 1) is preferably 5,800, more preferably 5,600, even more preferably 5,400, and still more preferably 5,200.
  • the value of the equation “ ⁇ (Xc ⁇ WXc)+0.259 ⁇ (Yc ⁇ WYc)” on the left side of the above formula ( ⁇ 1) is preferably as small as possible from the viewpoint of lowering the pour point of the polyol ester (P).
  • the lower limit value is not particularly limited, but the lower limit value is, for example, 2,000.
  • Requirement ( ⁇ ) can be adjusted to the desired range by adjusting the number and amount of carbon atoms of the linear saturated fatty acids and the number and amount of carbon atoms of the linear unsaturated fatty acids constituting the fatty acid (A), and by adjusting the amount of the branched fatty acids.
  • the requirement ( ⁇ ) is a parameter that is an indicator of the solubility of the hydrocarbon refrigerant.
  • the present inventors have discovered that the main factor governing the solubility of a hydrocarbon refrigerant is the amount of branched fatty acid in the fatty acid (A). Using this as a starting point, the present inventors have conducted various studies and have come up with requirement ( ⁇ ).
  • the content of branched fatty acids in the fatty acid (A) is preferably 75 mass% or less, more preferably 70 mass% or less, even more preferably 65 mass% or less, and still more preferably 60 mass% or less, based on the total amount of the fatty acid (A).
  • the solubility of the hydrocarbon refrigerant can be suppressed to a lower level as the content of the branched fatty acid in the fatty acid (A) is reduced. Therefore, the content of the branched fatty acid in the fatty acid (A) may be 0 mass% based on the total amount of the fatty acid (A).
  • the requirement ( ⁇ ) can be adjusted to the desired range by adjusting the amount of branched fatty acids that make up the fatty acid (A).
  • Zc the number of carbon atoms of the straight-chain fatty acid in the fatty acid (A); WZc: the mass of the straight-chain fatty acid having the carbon number Zc; ⁇ (Zc ⁇ WZc): when there is one type of straight-chain fatty acid in the fatty acid (A), this is Zc ⁇ WZc; when there are two or more types of straight-chain fatty acids in the fatty acid (A), this is the sum of Zc ⁇ WZc of each straight-chain fatty acid.
  • the value of the left side of the above formula ( ⁇ 1) is a value calculated by taking the number of moles of fatty acid (A) to be bonded to 1 mole of dipentaerythritol as the maximum value. Therefore, when the polyol ester (P) is a complete ester, the value of the left side of the above formula ( ⁇ 1) is a value calculated for 6 moles of fatty acid (A).
  • hydrocarbon refrigerants tend to reduce the viscosity (solution viscosity) of a refrigeration mixture composition in which the refrigerant is dissolved in a refrigeration oil composition.
  • a decrease in solution viscosity deteriorates the lubricity of sliding parts such as the compressor of a refrigeration machine, and causes wear to progress. Therefore, refrigeration oil compositions used when using hydrocarbon refrigerants are required to have an appropriate solution viscosity so that good lubrication is exhibited even when the hydrocarbon refrigerant is dissolved.
  • the requirement ( ⁇ ) is a parameter that serves as an index of the solution viscosity, and when the polyol ester (P) satisfies the requirement ( ⁇ ), it becomes possible to easily suppress a decrease in the solution viscosity.
  • the present inventors have found that the main factor governing the dissolution viscosity is the amount of straight-chain fatty acid in the fatty acid (A). Using this as a starting point, the present inventors have conducted various studies and have come up with the requirement ( ⁇ ).
  • the value of the right side of the above formula ( ⁇ 1) is preferably 2,700, more preferably 2,900, and even more preferably 3,000.
  • the value of the left side of the above formula ( ⁇ 1), “ ⁇ (Zc ⁇ WZc)”, is preferably as large as possible from the viewpoint of more easily suppressing a decrease in the solution viscosity.
  • the value is preferably 20,000 or less.
  • the requirement ( ⁇ ) can be adjusted to the desired range by adjusting the number of carbon atoms and the amount of the straight-chain fatty acids constituting the fatty acid (A), and further by adjusting the amount of the branched fatty acids.
  • ⁇ Preferred embodiment of fatty acid (A)> The fatty acid (A) is appropriately adjusted to satisfy the requirements ( ⁇ ) and ( ⁇ ). Alternatively, the fatty acid (A) is appropriately adjusted to satisfy the requirements ( ⁇ ), ( ⁇ ), and further the requirement ( ⁇ ).
  • requirements ( ⁇ ) and ( ⁇ ) can be satisfied by adjusting the number of carbon atoms and the amount of straight-chain saturated fatty acids and the number of carbon atoms and the amount of straight-chain unsaturated fatty acids so as to satisfy requirement ( ⁇ ), while adjusting the amount of branched fatty acids so as to satisfy requirement ( ⁇ ).
  • requirements ( ⁇ ), ( ⁇ ), and ( ⁇ ) can be satisfied by adjusting the number of carbon atoms and the amount of straight-chain saturated fatty acids and the number of carbon atoms and the amount of straight-chain unsaturated fatty acids so as to satisfy requirement ( ⁇ ), while adjusting the amount of branched fatty acids so as to satisfy requirement ( ⁇ ), and further adjusting the number of carbon atoms and the amount of straight-chain fatty acids so as to satisfy requirement ( ⁇ ).
  • the fatty acid (A) may be a linear saturated fatty acid, a linear unsaturated fatty acid, a branched saturated fatty acid, or a branched unsaturated fatty acid.
  • the fatty acid (A) may be one or more selected from linear saturated fatty acids, linear unsaturated fatty acids, branched saturated fatty acids, and branched unsaturated fatty acids.
  • the fatty acid (A) may be one or more selected from the group consisting of the following (1), (2), (3), and (4): (1) One or more types selected from linear saturated fatty acids; (2) One or more types selected from linear unsaturated fatty acids; (3) One or more types selected from branched saturated fatty acids; (4) One or more types selected from branched unsaturated fatty acids. From the viewpoint of availability, etc., it is preferable that the fatty acid (A) is one or more types selected from linear saturated fatty acids, linear unsaturated fatty acids, and branched saturated fatty acids.
  • the fatty acid (A) is preferably one or more selected from the group consisting of the following (1), (2), and (3): (1) One or more types selected from linear saturated fatty acids; (2) One or more types selected from linear unsaturated fatty acids; (3) One or more types selected from branched saturated fatty acids.
  • straight-chain saturated fatty acids include acetic acid, propanoic acid, n-butanoic acid, n-pentanoic acid, n-hexanoic acid, n-heptanoic acid, n-octanoic acid, n-nonanoic acid, n-decanoic acid, n-undecanoic acid, n-dodecanoic acid, n-tridecanoic acid, n-tetradecanoic acid, n-pentadecanoic acid, n-hexadecanoic acid, n-heptadecanoic acid, n-octadecanoic acid, n-nonadecanoic acid, n-icosanoic acid, n-henicosanoic acid, n-docosanoic acid, and n-tricosanoic acid. These may be used alone or in combination of two or more.
  • straight-chain unsaturated fatty acids include hexadecenoic acid, octadecenoic acid (oleic acid), octadecadienoic acid, octadecanetrienoic acid, eicosadienoic acid, eicosatrienoic acid, erucic acid (docosenoic acid), and eicosatetraenoic acid. These may be used alone or in combination of two or more.
  • the number of unsaturated bonds in the linear unsaturated fatty acid may be 1 or 2 or more. From the viewpoint of availability, the number of unsaturated bonds is preferably 1.
  • branched saturated fatty acids include 2-methylpropanoic acid, 3-methylbutanoic acid, pivalic acid, isoheptanoic acid, 4-ethylpentanoic acid, isooctanoic acid, 2-ethylhexanoic acid, 4,5-dimethylhexanoic acid, 4-propylpentanoic acid, isononanoic acid, 2-ethylheptanoic acid, 3,5,5-trimethylhexanoic acid, isodecanoic acid, isododecanoic acid, 2-methyldecanoic acid, 3-methyldecanoic acid, 4-methyldecanoic acid, 5-methyldecanoic acid, 6-methyldecanoic acid, 7-methyldecanoic acid, 9-methyldecanoic acid, 6-ethylnonanoic acid, 5-propyloctanoic acid, isolauric acid, 3-methylhendecanoic acid, 6-propylnonanoic
  • the fatty acid (A) satisfies, for example, the following requirements.
  • the fatty acid (A) contains a straight-chain short-chain fatty acid (A1) having 2 to 12 carbon atoms.
  • the content of the straight-chain short-chain fatty acid (A1) is 15 mol % or more based on the total amount of the fatty acid (A).
  • the content of the branched fatty acid (A2) is 60 mol % or less based on the total amount of the fatty acid (A).
  • the straight-chain short-chain fatty acid (A1) contains a straight-chain short-chain fatty acid (A11) having 2 to 8 carbon atoms, and the content of the straight-chain short-chain fatty acid (A11) is more than 50 mol % based on the total amount of the fatty acid (A).
  • the fatty acid (A) may exclude the following embodiments. ⁇ Fatty acid consisting of 55 mol% propionic acid and 45 mol% oleic acid ⁇ Fatty acid consisting of 55 mol% n-hexanoic acid and 45 mol% oleic acid
  • the refrigerating machine oil composition comprises: A refrigerating machine oil composition for use with a refrigerant containing a hydrocarbon refrigerant,
  • the present invention comprises a polyol ester (P) of dipentaerythritol and one or more fatty acids (A) selected from fatty acids having 2 to 23 carbon atoms,
  • the polyol ester (P) is a refrigerating machine oil composition that satisfies the following requirement ( ⁇ ).
  • the refrigerating machine oil composition comprises: A refrigerating machine oil composition for use with a refrigerant containing a hydrocarbon refrigerant,
  • the present invention comprises a polyol ester (P) of dipentaerythritol and one or more fatty acids (A) selected from fatty acids having 2 to 23 carbon atoms,
  • the polyol ester (P) is a refrigerating machine oil composition that satisfies the following requirements ( ⁇ ) and ( ⁇ ).
  • The fatty acid (A) satisfies the following formula ( ⁇ 1). ⁇ (Zc ⁇ WZc)>2,500 ... ( ⁇ 1)
  • Zc the number of carbon atoms of the straight-chain fatty acid in the fatty acid (A);
  • WZc the mass of the straight-chain fatty acid having the carbon number Zc;
  • ⁇ (Zc ⁇ WZc) when there is one type of straight-chain fatty acid in the fatty acid (A), this is Zc ⁇ WZc; when there are two or more types of straight-chain fatty acids in the fatty acid (A), this is the sum of Zc ⁇ WZc of each straight-chain fatty acid.
  • the requirement ( ⁇ ) is a parameter that serves as an index of the solution viscosity, and when the polyol ester (P) satisfies the requirement ( ⁇ ), it becomes possible to easily suppress a decrease in the solution viscosity.
  • Preferred aspects of the polyol ester (P) and the fatty acid (A) in the other embodiment (2) are as described above.
  • the refrigerating machine oil composition of the present embodiment may or may not further contain a base oil other than the polyol ester (P).
  • the base oil other than the polyol ester (P) may be one or more selected from the group consisting of mineral oils and synthetic oils other than the polyol ester (P).
  • mineral oils examples include atmospheric residual oils obtained by atmospheric distillation of crude oils such as paraffinic crude oil, intermediate base crude oil, and naphthenic crude oil; distillate oils obtained by vacuum distillation of these atmospheric residual oils; mineral oils obtained by subjecting the distillate oils to one or more treatments such as solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, and hydrorefining; and wax isomerized mineral oils.
  • the mineral oils may be used alone or in combination of two or more.
  • Examples of synthetic oils not corresponding to the polyol ester (P) include polyvinyl ethers; polyalkylene glycols; copolymers of polyalkylene glycol or its monoether and polyvinyl ether; polyol esters not corresponding to the polyol ester (P); polyesters; polycarbonates; hydrogenated ⁇ -olefin oligomers; alicyclic hydrocarbon compounds; alkylated aromatic hydrocarbon compounds; GTL base oils produced by isomerizing GTL WAX (gas-to-liquid wax) produced by the Fischer-Tropsch process or the like; and the like.
  • the synthetic oils may be used alone or in combination of two or more.
  • the content of the mineral oil is preferably small.
  • the content of the mineral oil is preferably less than 10 parts by mass, more preferably less than 1 part by mass, even more preferably less than 0.1 part by mass, and even more preferably no mineral oil, relative to 100 parts by mass of the polyol ester (P).
  • the content of synthetic oil not corresponding to polyol ester (P) is preferably small.
  • the content of synthetic oil not corresponding to polyol ester (P) is preferably less than 400 parts by mass, more preferably less than 200 parts by mass, even more preferably less than 100 parts by mass, still more preferably less than 50 parts by mass, even more preferably less than 10 parts by mass, and even more preferably does not contain synthetic oil not corresponding to polyol ester (P) with respect to 100 parts by mass of polyol ester (P).
  • the 40° C. kinematic viscosity of the polyol ester (P) is preferably 20 mm 2 /s or more, more preferably 30 mm 2 /s or more, and even more preferably 40 mm 2 /s or more. From the viewpoint of oil return, it is preferably 350 mm 2 /s or less, more preferably 320 mm 2 /s or less, and even more preferably 300 mm 2 /s or less. The upper and lower limits of these numerical ranges can be arbitrarily combined.
  • the range is preferably 20 mm 2 /s to 350 mm 2 /s, more preferably 30 mm 2 /s to 320 mm 2 /s, and even more preferably 40 mm 2 /s to 300 mm 2 /s.
  • the 100°C kinematic viscosity of the polyol ester (P) is preferably 4 mm2 /s or more, more preferably 6 mm2 /s or more, and even more preferably 8 mm2 /s or more from the viewpoint of suppressing wear in sliding parts of a refrigerator compressor, etc. Also, from the viewpoint of oil return, it is preferably 70 mm2/s or less, more preferably 60 mm2 /s or less, and even more preferably 50 mm2/s or less. The upper and lower limits of these numerical ranges can be arbitrarily combined.
  • the range is preferably 4 mm 2 /s to 70 mm 2 /s, more preferably 6 mm 2 /s to 60 mm 2 /s, and even more preferably 8 mm 2 /s to 50 mm 2 /s.
  • the kinetic viscosity of the refrigeration oil composition refers to the value measured in accordance with JIS K2283:2000.
  • the solubility of the hydrocarbon refrigerant in the polyol ester (P), measured by the method described in the Examples below, is preferably less than 17.0% by mass, more preferably 16.5% by mass or less, and even more preferably 16.0% by mass or less, from the viewpoint of reducing the amount of the hydrocarbon refrigerant used and making it easier to ensure safety. Also, it is preferably 1% by mass or more.
  • the pour point of the polyol ester (P) is preferably ⁇ 20° C. or lower, more preferably ⁇ 30° C. or lower, even more preferably ⁇ 40° C. or lower, and still more preferably ⁇ 50° C. or lower, from the viewpoint of providing excellent low-temperature fluidity of the refrigerating machine oil composition.
  • the solution viscosity of the polyol ester (P) having a dissolved hydrocarbon refrigerant, measured by the method described in the Examples below, is preferably 2.500 mm 2 /s or more, more preferably 2.700 mm 2 /s or more, even more preferably 2.800 mm 2 /s or more, still more preferably 2.900 mm 2 /s or more, and even more preferably 3.000 mm 2 /s or more, from the viewpoint of suppressing wear in sliding parts of a refrigerator compressor and the like, and is preferably 50.00 mm 2 / s or less.
  • the refrigerator oil composition of the present embodiment may or may not further contain additives within the range that does not impair the effects of the present invention.
  • the additives include additives that can be generally blended in refrigerator oil compositions.
  • examples of such additives include one or more selected from the group consisting of antioxidants, oxygen scavengers, acid scavengers, extreme pressure agents, oiliness agents, metal deactivators, and antifoaming agents.
  • the total content of these additives is preferably 0 mass% to 10 mass%, more preferably 0.01 mass% to 5 mass%, and even more preferably 0.1 mass% to 3 mass%, based on the total amount (100 mass%) of the refrigerating machine oil composition.
  • antioxidants examples include phenol-based antioxidants such as 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and 2,2'-methylenebis(4-methyl-6-tert-butylphenol), and amine-based antioxidants such as phenyl- ⁇ -naphthylamine and N,N'-diphenyl-p-phenylenediamine.
  • the antioxidants may be used alone or in combination of two or more.
  • oxygen scavengers examples include aliphatic unsaturated compounds and terpenes having a double bond.
  • the aliphatic unsaturated compound is preferably an unsaturated hydrocarbon, and specific examples thereof include olefins and polyenes such as dienes and trienes.
  • olefin from the viewpoint of reactivity with oxygen, ⁇ -olefins such as 1-tetradecene, 1-hexadecene, and 1-octadecene are preferred.
  • an unsaturated aliphatic alcohol having a conjugated double bond such as vitamin A ((2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-yl)nona-2,4,6,8-tetraen-1-ol) represented by the molecular formula C20H30O , is preferred.
  • a terpene-based hydrocarbon having a double bond is preferred, and from the viewpoint of reactivity with oxygen, ⁇ -farnesene (C 15 H 24 : 3,7,11-trimethyldodeca-1,3,6,10-tetraene) and ⁇ -farnesene (C 15 H 24 : 7,11-dimethyl-3-methylidene-dodeca-1,6,10-triene) are more preferred.
  • the oxygen scavengers may be used alone or in combination of two or more.
  • the acid scavenger examples include epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil.
  • epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil.
  • at least one selected from glycidyl esters, glycidyl ethers, and ⁇ -olefin oxides is preferably used as the acid scavenger.
  • glycidyl ethers examples include glycidyl ethers derived from linear, branched or cyclic saturated or unsaturated aliphatic mono- or polyhydric alcohols or aromatic compounds containing one or more hydroxyl groups, each having a carbon number of usually 3 to 30, preferably 4 to 24, and more preferably 6 to 16.
  • aliphatic polyhydric alcohols or aromatic compounds containing two or more hydroxyl groups it is preferred that all of the hydroxyl groups are glycidyl etherified from the viewpoint of suppressing an increase in the hydroxyl value for the stability of the lubricating oil composition.
  • glycidyl ethers derived from linear, branched or cyclic saturated aliphatic monoalcohols having 6 to 16 carbon atoms are particularly preferred.
  • examples of such glycidyl ethers include 2-ethylhexyl glycidyl ether, isononyl glycidyl ether, caprinoyl glycidyl ether, lauryl glycidyl ether, and myristyl glycidyl ether.
  • the ⁇ -olefin oxide to be used generally has 4 to 50 carbon atoms, preferably 4 to 24 carbon atoms, and more preferably 6 to 16 carbon atoms.
  • the acid scavenger may be used alone or in combination of two or more kinds.
  • Examples of the extreme pressure agent include phosphorus-based extreme pressure agents such as phosphate esters, acid phosphate esters, phosphites, acid phosphites, and amine salts thereof.
  • phosphorus-based extreme pressure agents such as phosphate esters, acid phosphate esters, phosphites, acid phosphites, and amine salts thereof.
  • these phosphorus-based extreme pressure agents include tricresyl phosphate, trithiophenyl phosphate, tri(nonylphenyl) phosphite, dioleylhydrogen phosphite, 2-ethylhexyldiphenyl phosphite and the like are particularly preferred in terms of extreme pressure properties and friction characteristics.
  • Examples of the extreme pressure agent include metal salts of carboxylic acids.
  • the metal salts of carboxylic acids referred to here are preferably metal salts of carboxylic acids having 3 to 60 carbon atoms, more preferably metal salts of carboxylic acids having 3 to 30 carbon atoms, and particularly preferably metal salts of fatty acids having 12 to 30 carbon atoms.
  • metal salts of the above fatty acid dimer acids and trimer acids, and dicarboxylic acids having 3 to 30 carbon atoms can also be mentioned. Of these, metal salts of fatty acids having 12 to 30 carbon atoms and dicarboxylic acids having 3 to 30 carbon atoms are particularly preferred.
  • the metal constituting the metal salt is preferably an alkali metal or an alkaline earth metal, and in particular, an alkali metal is most preferable.
  • examples of the extreme pressure agent other than those mentioned above include sulfur-based extreme pressure agents such as sulfurized oils and fats, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dihydrocarbyl polysulfides, thiocarbamates, thioterpenes, and dialkylthiodipropionates.
  • the extreme pressure agents may be used alone or in combination of two or more.
  • oily agents include aliphatic saturated and unsaturated monocarboxylic acids such as stearic acid and oleic acid, polymerized fatty acids such as dimer acid and hydrogenated dimer acid, hydroxy fatty acids such as ricinoleic acid and 12-hydroxystearic acid, aliphatic saturated and unsaturated monoalcohols such as lauryl alcohol and oleyl alcohol, aliphatic saturated and unsaturated monoamines such as stearylamine and oleylamine, aliphatic saturated and unsaturated monocarboxylic acid amides such as lauric acid amide and oleic acid amide, partial esters of polyhydric alcohols such as glycerin and sorbitol with aliphatic saturated or unsaturated monocarboxylic acids, and the like.
  • the oily agents may be used alone or in combination of two or more.
  • metal deactivators examples include copper deactivators such as N-[N,N'-dialkyl (alkyl group having 3 to 12 carbon atoms) aminomethyl]triazole.
  • the metal deactivators may be used alone or in combination of two or more.
  • the antifoaming agent may, for example, be silicone oil or fluorinated silicone oil.
  • the defoaming agent may be used alone or in combination of two or more kinds.
  • the method for producing the refrigerator oil composition of the present embodiment is not particularly limited.
  • the method for producing a refrigerating machine oil composition of the present embodiment is a method for producing a refrigerating machine oil composition used for a refrigerant containing a hydrocarbon refrigerant, and includes a step of blending a polyol ester (P) of dipentaerythritol and one or more fatty acids (A) selected from fatty acids having 2 to 23 carbon atoms.
  • the ester satisfies the following requirements ( ⁇ ) and ( ⁇ ).
  • Xc the number of carbon atoms of the linear saturated fatty acid in the fatty acid (A); WXc: the mass of the linear saturated fatty acid having the carbon number Xc; ⁇ (Xc ⁇ WXc): when the linear saturated fatty acid in the fatty acid (A) is one type, this is Xc ⁇ WXc; when the linear saturated fatty acid in the fatty acid (A) is two or more types, this is the sum of Xc ⁇ WXc of each linear saturated fatty acid.
  • Yc the number of carbon atoms of the linear unsaturated fatty acid in the fatty acid (A); WYc: the mass of the linear unsaturated fatty acid having the carbon number Yc; ⁇ (Yc ⁇ WYc): when there is one type of linear unsaturated fatty acid in the fatty acid (A), this is Yc ⁇ WYc; when there are two or more types of linear unsaturated fatty acids in the fatty acid (A), this is the sum of Yc ⁇ WYc of each linear unsaturated fatty acid.
  • the method for producing a refrigerating machine oil composition of the present embodiment may or may not further include a step of mixing the polyol ester (P) with a base oil other than the polyol ester (P) and a step of mixing the additives.
  • the additives When the additives are mixed with the polyol ester (P), the additives may be mixed in the form of a solution (dispersion) by adding a diluent oil or the like.
  • the preferred embodiments of the fatty acid (A) are as described above.
  • the preferred aspects of the requirements ( ⁇ ) and ( ⁇ ) are also as described above.
  • the refrigerating machine oil composition may be produced so as to further satisfy the requirement ( ⁇ ).
  • the 40° C. kinematic viscosity of the refrigerating machine oil composition is preferably 20 mm 2 /s or more, more preferably 30 mm 2 /s or more, and even more preferably 40 mm 2 /s or more. From the viewpoint of oil return, the kinematic viscosity is preferably 350 mm 2 /s or less, more preferably 320 mm 2 /s or less, and even more preferably 300 mm 2 /s or less. The upper and lower limits of these numerical ranges can be arbitrarily combined.
  • the range is preferably 20 mm 2 /s to 350 mm 2 /s, more preferably 30 mm 2 /s to 320 mm 2 /s, and even more preferably 40 mm 2 /s to 300 mm 2 /s.
  • the 100°C kinematic viscosity of the refrigerating machine oil composition is preferably 4 mm2 /s or more, more preferably 6 mm2 /s or more, and even more preferably 8 mm2 /s or more from the viewpoint of suppressing wear in sliding parts of a refrigerating machine compressor, etc. Also, from the viewpoint of oil return, it is preferably 70 mm2/s or less, more preferably 60 mm2 /s or less, and even more preferably 50 mm2/s or less. The upper and lower limits of these numerical ranges can be arbitrarily combined.
  • the range is preferably 4 mm 2 /s to 70 mm 2 /s, more preferably 6 mm 2 /s to 60 mm 2 /s, and even more preferably 8 mm 2 /s to 50 mm 2 /s.
  • the kinetic viscosity of the refrigeration oil composition refers to the value measured in accordance with JIS K2283:2000.
  • the solubility of the hydrocarbon refrigerant in the refrigerating machine oil composition is preferably less than 17.0 mass%, more preferably 16.5 mass% or less, and even more preferably 16.0 mass% or less, from the viewpoint of reducing the amount of the hydrocarbon refrigerant used and making it easier to ensure safety. Also, it is preferably 1 mass% or more.
  • the pour point of the refrigerating machine oil composition is, from the viewpoint of providing excellent low-temperature fluidity of the refrigerating machine oil composition, preferably ⁇ 20° C. or lower, more preferably ⁇ 30° C. or lower, even more preferably ⁇ 40° C. or lower, and still more preferably ⁇ 50° C. or lower.
  • the solution viscosity of a refrigerating machine oil composition (mixed composition for refrigerating machines) having a dissolved hydrocarbon refrigerant, measured by the method described in the Examples below, is preferably 2.500 mm 2 /s or more, more preferably 2.700 mm 2 /s or more, even more preferably 2.800 mm 2 /s or more, still more preferably 2.900 mm 2 /s or more, and even more preferably 3.000 mm 2 /s or more, from the viewpoint of suppressing wear in sliding parts of a compressor of a refrigerating machine, and is preferably 50.00 mm 2 / s or less.
  • the above-mentioned refrigerating machine oil composition is mixed with a refrigerant and used as a mixed composition for a refrigerating machine. That is, the mixed composition for a refrigerator contains the above-mentioned refrigerating machine oil composition and a refrigerant containing a hydrocarbon refrigerant.
  • the refrigerant will be described below.
  • the refrigerant used in this embodiment is a refrigerant containing a hydrocarbon refrigerant.
  • the hydrocarbon refrigerant is preferably a hydrocarbon having 1 to 8 carbon atoms, more preferably a hydrocarbon having 1 to 5 carbon atoms, and even more preferably a hydrocarbon having 3 to 5 carbon atoms. If the carbon number is 8 or less, the boiling point of the refrigerant does not become too high, which is preferable as a refrigerant.
  • the hydrocarbon refrigerant may be one or more selected from the group consisting of methane, ethane, ethylene, propane (R290), cyclopropane, propylene, n-butane, isobutane (R600a), 2-methylbutane, n-pentane, neopentane, cyclopentane, and normal hexane.
  • the hydrocarbon refrigerant may be used alone or in combination of two or more kinds.
  • the refrigerant may be a mixed refrigerant containing, in addition to a hydrocarbon refrigerant, other refrigerants as necessary.
  • the other refrigerant may be, for example, one or more selected from a saturated fluorohydrocarbon refrigerant, an unsaturated fluorohydrocarbon refrigerant, carbon dioxide, and ammonia.
  • the saturated fluorohydrocarbon refrigerant and the unsaturated fluorohydrocarbon refrigerant will be described below.
  • the saturated fluorohydrocarbon refrigerant is preferably a fluoride of an alkane having 1 to 4 carbon atoms, more preferably a fluoride of an alkane having 1 to 3 carbon atoms, and even more preferably a fluoride of an alkane (methane or ethane) having 1 or 2 carbon atoms.
  • fluoride of methane or ethane examples include trifluoromethane (R23), difluoromethane (R32), 1,1-difluoroethane (R152a), 1,1,1-trifluoroethane (R143a), 1,1,2-trifluoroethane (R143), 1,1,1,2-tetrafluoroethane (R134a), 1,1,2,2-tetrafluoroethane (R134), 1,1,1,2,2-pentafluoroethane (R125), and the like. These may be used alone or in combination of two or more.
  • the unsaturated fluorohydrocarbon refrigerant may be a compound represented by the following general formula (3).
  • C x F y H z ... (3) [In the general formula (3), x is an integer of 2 to 6, y is an integer of 1 to 11, and z is an integer of 1 to 11, and the molecule has one or more carbon-carbon unsaturated bonds.]
  • the above general formula (3) represents the type and number of elements in the molecule, specifically, an unsaturated fluorohydrocarbon compound having 2 to 6 carbon atoms C.
  • An unsaturated fluorohydrocarbon compound having 2 to 6 carbon atoms C has physical and chemical properties, such as boiling point, freezing point, and latent heat of vaporization, required as a refrigerant.
  • the bonding form of the x number of carbon atoms represented by Cx includes unsaturated bonds such as a carbon-carbon single bond and a carbon-carbon double bond.
  • the carbon-carbon unsaturated bond is preferably a carbon-carbon double bond
  • the unsaturated fluorohydrocarbon compound has one or more unsaturated bonds such as a carbon-carbon double bond in the molecule, and the number of such bonds is preferably 1.
  • the unsaturated fluorinated hydrocarbon compound include fluorides of linear or branched chain olefins having 2 to 6 carbon atoms and cyclic olefins having 4 to 6 carbon atoms.
  • Specific examples of the fluorine fluoride include ethylene fluoride having 1 to 3 fluorine atoms introduced, propene fluoride having 1 to 5 fluorine atoms introduced, butene fluoride having 1 to 7 fluorine atoms introduced, pentene fluoride having 1 to 9 fluorine atoms introduced, hexene fluoride having 1 to 11 fluorine atoms introduced, cyclobutene fluoride having 1 to 5 fluorine atoms introduced, cyclopentene fluoride having 1 to 7 fluorine atoms introduced, and cyclohexene fluoride having 1 to 9 fluorine atoms introduced.
  • propene fluorides are preferred, and propene having 3 to 5 fluorine atoms introduced is more preferred.
  • one or more selected from 1,3,3,3-tetrafluoropropene (R1234ze), 2,3,3,3-tetrafluoropropene (R1234yf), and 1,2,3,3-tetrafluoropropene (R1234ye) are preferred, and 2,3,3,3-tetrafluoropropene (R1234yf) is more preferred.
  • the unsaturated fluorohydrocarbon refrigerants may be used alone or in combination of two or more.
  • the refrigerant includes a hydrocarbon refrigerant.
  • the content of the hydrocarbon refrigerant is preferably 20% by mass to 100% by mass, more preferably 30% by mass to 100% by mass, even more preferably 40% by mass to 100% by mass, still more preferably 50% by mass to 100% by mass, even more preferably 60% by mass to 100% by mass, still more preferably 70% by mass to 100% by mass, even more preferably 80% by mass to 100% by mass, and even more preferably 90% by mass to 100% by mass, based on the total amount of the refrigerant.
  • the amounts of the refrigerant and the refrigerator oil composition used are, in terms of the mass ratio of the refrigerator oil composition to the refrigerant [(refrigerant oil composition)/(refrigerant)], preferably 30/70 to 90/10.
  • the mass ratio of the refrigerator oil composition to the refrigerant is within this range, lubricity and suitable refrigeration capacity in the refrigerator can be obtained.
  • the refrigerating machine oil composition and the mixed composition for refrigerating machine of the present embodiment are preferably used in, for example, a refrigeration system, a hot water supply system, or a heating system.
  • Specific examples of the refrigerating machine oil composition and the mixed composition for refrigerating machine include air conditioners, refrigerators, freezers, vending machines, and showcases.
  • the air conditioners include car air conditioners such as open-type car air conditioners and electric car air conditioners; gas heat pump (GHP) air conditioners; and the like.
  • a refrigerating machine oil composition for use with a refrigerant containing a hydrocarbon refrigerant comprises a polyol ester (P) of dipentaerythritol and one or more fatty acids (A) selected from fatty acids having 2 to 23 carbon atoms,
  • the polyol ester (P) satisfies the following requirements ( ⁇ ) and ( ⁇ ): Requirement ( ⁇ ):
  • the fatty acid (A) satisfies the following formula ( ⁇ 1).
  • Xc the number of carbon atoms of the linear saturated fatty acid in the fatty acid (A); WXc: the mass of the linear saturated fatty acid having the carbon number Xc; ⁇ (Xc ⁇ WXc): when the linear saturated fatty acid in the fatty acid (A) is one type, this is Xc ⁇ WXc; when the linear saturated fatty acid in the fatty acid (A) is two or more types, this is the sum of Xc ⁇ WXc of each linear saturated fatty acid.
  • Yc the number of carbon atoms of the linear unsaturated fatty acid in the fatty acid (A); WYc: the mass of the linear unsaturated fatty acid having the carbon number Yc; ⁇ (Yc ⁇ WYc): when there is one type of linear unsaturated fatty acid in the fatty acid (A), this is Yc ⁇ WYc; when there are two or more types of linear unsaturated fatty acids in the fatty acid (A), this is the sum of Yc ⁇ WYc of each linear unsaturated fatty acid.
  • the content of the polyol ester (P) is 20 mass% or more based on the total amount of the refrigerating machine oil composition.
  • a mixed composition for a refrigerator comprising the refrigerator oil composition according to any one of the above [1] to [6] and a refrigerant containing a hydrocarbon refrigerant.
  • a method for producing a refrigerating machine oil composition for use with a refrigerant containing a hydrocarbon refrigerant comprising: The method includes a step of blending a polyol ester (P) of dipentaerythritol and one or more fatty acids (A) selected from fatty acids having 2 to 23 carbon atoms, The polyol ester (P) satisfies the following requirements ( ⁇ ) and ( ⁇ ): Requirement ( ⁇ ): The fatty acid (A) satisfies the following formula ( ⁇ 1).
  • Xc the number of carbon atoms of the linear saturated fatty acid in the fatty acid (A); WXc: the mass of the linear saturated fatty acid having the carbon number Xc; ⁇ (Xc ⁇ WXc): when the linear saturated fatty acid in the fatty acid (A) is one type, this is Xc ⁇ WXc; when the linear saturated fatty acid in the fatty acid (A) is two or more types, this is the sum of Xc ⁇ WXc of each linear saturated fatty acid.
  • Yc the number of carbon atoms of the linear unsaturated fatty acid in the fatty acid (A); WYc: the mass of the linear unsaturated fatty acid having the carbon number Yc; ⁇ (Yc ⁇ WYc): when there is one type of linear unsaturated fatty acid in the fatty acid (A), this is Yc ⁇ WYc; when there are two or more types of linear unsaturated fatty acids in the fatty acid (A), this is the sum of Yc ⁇ WYc of each linear unsaturated fatty acid.
  • Examples A1 to A7, Comparative Examples A1 to A2 In Examples A1 to A7 and Comparative Examples A1 to A2, the following compounds were used as refrigerating machine oil compositions and subjected to the measurements described below. In addition, the fatty acids constituting the following compounds were examined for their sufficiency in meeting the requirements ( ⁇ ) and ( ⁇ ).
  • Example A1 POE (P1) obtained in Production Example 1
  • Example A2 POE (P2) obtained in Production Example 2
  • Example A3 POE (P3) obtained in Production Example 3
  • a refrigerating machine oil composition and a predetermined amount of R290 as a refrigerant were charged into a pressure-resistant container made of sapphire glass, and the temperature of the pressure-resistant container was raised from room temperature (23°C) to 80°C.
  • a temperature/pressure/solubility curve was created by calculation from the volume of the refrigerating machine oil composition in which R290 was dissolved and the pressure at that time. From the created solubility curve, the solubility (mass%) of R290 in the refrigerating machine oil composition at 80°C and 2.0 MPa was calculated.
  • Example B1 to B7 Comparative Examples B1 to B2
  • the same compounds as those in Examples A1 to A7 and Comparative Examples A1 to A2 were used as refrigerating machine oil compositions and subjected to the measurements described below.
  • the fatty acids constituting the following compounds were examined for their sufficiency in satisfying the requirement ( ⁇ ).
  • the solution viscosity of a refrigerating machine oil composition in which a refrigerant was dissolved was measured using the viscosity measuring device 1 shown in FIGS.
  • a predetermined amount of the refrigerating machine oil composition 2 and a capillary viscometer 20 were placed in a container 10 made of a sapphire glass tube, and then the lid 11 was closed.
  • a safety valve 26 and a needle valve 25 were attached to a T-joint 24, and then the container 10 was immersed in a thermostatic bath 3 containing a heat transfer medium 4.
  • the temperature of the heat transfer medium 4 was maintained at 80° C. by a temperature control means 5.
  • the needle valve 25 and the refrigerant sampling line were connected via a pressure hose 27, and a vacuum pump (not shown) was operated to degas the inside of the container 10 and the refrigerant sampling line to about 13.3 Pa.
  • the vacuum pump was stopped, the main valve of the refrigerant container was opened, and the refrigerant (R290) was introduced into the container 10.
  • the refrigerant was introduced so that the pressure in the container 10 became 2.0 MPa.
  • the needle valve 25 was closed, the valve of the refrigerant container was closed, and the pressure hose 27 was disconnected.
  • the sealed container 10 was placed at a predetermined position in the thermostatic bath 3 in which the permanent magnet 14 had been lowered to position A.
  • the driving means for moving the permanent magnet 14 was started to move the permanent magnet 14, and the capillary viscometer 20 was raised to position B.
  • the refrigerant oil composition 2 in which the refrigerant was dissolved dropped from the capillary viscometer 20, and the liquid level of the refrigerant oil composition 2 in which the refrigerant was dissolved dropped.
  • the optical fiber 15 (15A, 15B, 15C, 15D) was made to detect that the liquid level of the refrigerant oil composition 2 in which the refrigerant was dissolved had passed the marked line 21B and the marked line 21A, and the viscosity calculator was made to automatically measure the time required for the refrigerant oil composition 2 in which the refrigerant was dissolved to pass through the inside of the capillary tube portion 22, and the viscosity was also automatically measured, thereby measuring the dissolution viscosity.
  • the measurement of the solution viscosity was carried out after confirming that the refrigerant and the refrigerating machine oil composition were not separated. 1 to 3, reference numeral 6 denotes the gas filling the container 10.
  • Reference numeral 14A denotes an arm that holds the permanent magnet 14.
  • Reference numeral 21 denotes a liquid reservoir.
  • Reference numeral 23 denotes a band-shaped outer ring portion made of a magnetic material that is fixed to the outer circumferential surface of the side wall of the thin tube portion 22.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Abstract

炭化水素冷媒を含む冷媒に用いられる冷凍機油組成物であって、ジペンタエリスリトールと、炭素数2~23の脂肪酸から選択される1種以上の脂肪酸(A)とのポリオールエステル(P)を含有し、前記ポリオールエステル(P)は、下記要件(α)及び(β)を満たす、冷凍機油組成物とした。 ・要件(α):前記脂肪酸(A)が、特定の式(α1)を満たす。 ・要件(β):前記脂肪酸(A)中の分岐脂肪酸の含有量が、前記脂肪酸(A)の全量基準で、80質量%未満である。

Description

冷凍機油組成物及び冷凍機用混合組成物
 本発明は、冷凍機油組成物及び冷凍機用混合組成物に関する。
 なお、本明細書において、「冷凍機用混合組成物」とは、「冷凍機油組成物」と「冷媒」とを混合した組成物を指す。
 例えば圧縮型冷凍機等の冷凍機は、一般に、少なくとも圧縮機、凝縮器、膨張機構(例えば膨張弁等)、及び蒸発器を含み、密閉された系内を、冷凍機用混合組成物が循環する構造を有する。
 圧縮型冷凍機等の冷凍機に用いられる冷媒としては、従来多く使用されていたハイドロクロロフルオロカーボン(HCFC)に代わり、環境負荷の低いフッ化炭化水素化合物が使用されつつある。フッ化炭化水素化合物としては、1,1,1,2-テトラフルオロエタン(R134a)、ジフルオロメタン(R32)、1,1-ジフルオロエタン(R152a)、及びジフルオロメタンとペンタフルオロエタンの混合物(R410A)等の飽和フッ化炭化水素化合物(Hydro-Fluoro-Carbon;以下、「HFC」ともいう)が挙げられる。
 また、地球温暖化係数(GWP)が低い、1,3,3,3-テトラフルオロプロペン(R1234ze)、2,3,3,3-テトラフルオロプロペン(R1234yf)、及び1,2,3,3-テトラフルオロプロペン(R1234ye)等の不飽和フッ化炭化水素化合物(Hydro-Fluoro-Olefin;以下、「HFO」ともいう)の使用も検討されている。
 近年では、地球温暖化係数(GWP)のさらなる低減の観点から、プロパン(R290)等の炭化水素冷媒の適用も検討されつつある(例えば、特許文献1を参照)。
特開2004-043611号公報
 しかしながら、特許文献1では、エーテル化合物を基油として含有する冷凍機油組成物について検討されているものの、ポリオールエステルを基油として含有する冷凍機油組成物については何ら検討されていない。
 また、炭化水素冷媒は、強燃性である。安全性を確保しやすくする観点から、炭化水素冷媒の使用量を少なくすることが望ましい。そのため、炭化水素冷媒を使用する際に用いられる冷凍機油組成物は、炭化水素冷媒の溶解量を少なくして、炭化水素冷媒の過剰な溶解を抑えることが望ましい。したがって、炭化水素冷媒を使用する際に用いられる冷凍機油組成物は、炭化水素冷媒の溶解度が低いことが望ましい。
 また、冷凍機油組成物は、低温流動性に優れることも要求される。
 しかしながら、特許文献1では、ポリオールエステルを基油として含有する冷凍機油組成物について、これらの性能に関する検討は何らなされていない。
 本発明は、ポリオールエステルを含み、炭化水素冷媒の溶解度が低く、かつ低温流動性に優れる冷凍機油組成物、及び当該冷凍機油組成物を含む冷凍機用混合組成物を提供することを課題とする。
 本発明によれば、下記[1]~[3]が提供される。
[1] 炭化水素冷媒を含む冷媒に用いられる冷凍機油組成物であって、
 ジペンタエリスリトールと、炭素数2~23の脂肪酸から選択される1種以上の脂肪酸(A)とのポリオールエステル(P)を含有し、
 前記ポリオールエステル(P)は、下記要件(α)及び(β)を満たす、冷凍機油組成物。
・要件(α):前記脂肪酸(A)が、下記式(α1)を満たす。
 Σ(Xc×WXc)+0.259×Σ(Yc×WYc)<6,000・・・(α1)
 Xc:前記脂肪酸(A)中の直鎖飽和脂肪酸の炭素数
 WXc:炭素数Xcである直鎖飽和脂肪酸の質量
 Σ(Xc×WXc):前記脂肪酸(A)中の直鎖飽和脂肪酸が1種類である場合にはXc×WXcであり、前記脂肪酸(A)中の直鎖飽和脂肪酸が2種類以上である場合には各々の直鎖飽和脂肪酸のXc×WXcの総和である。
 Yc:前記脂肪酸(A)中の直鎖不飽和脂肪酸の炭素数
 WYc:炭素数Ycである直鎖不飽和脂肪酸の質量
 Σ(Yc×WYc):前記脂肪酸(A)中の直鎖不飽和脂肪酸が1種類である場合にはYc×WYcであり、前記脂肪酸(A)中の直鎖不飽和脂肪酸が2種類以上である場合には各々の直鎖不飽和脂肪酸のYc×WYcの総和である。
・要件(β):前記脂肪酸(A)中の分岐脂肪酸の含有量が、前記脂肪酸(A)の全量基準で、80質量%未満である。
[2] 上記[1]に記載の冷凍機油組成物と、炭化水素冷媒を含む冷媒とを含有する、冷凍機用混合組成物。
[3] 炭化水素冷媒を含む冷媒に用いられる冷凍機油組成物の製造方法であって、
 ジペンタエリスリトールと、炭素数2~23の脂肪酸から選択される1種以上の脂肪酸(A)とのポリオールエステル(P)を配合する工程を含み、
 前記ポリオールエステル(P)は、下記要件(α)及び(β)を満たす、冷凍機油組成物の製造方法。
・要件(α):前記脂肪酸(A)が、下記式(α1)を満たす。
 Σ(Xc×WXc)+0.259×Σ(Yc×WYc)<6,000・・・(α1)
 Xc:前記脂肪酸(A)中の直鎖飽和脂肪酸の炭素数
 WXc:炭素数Xcである直鎖飽和脂肪酸の質量
 Σ(Xc×WXc):前記脂肪酸(A)中の直鎖飽和脂肪酸が1種類である場合にはXc×WXcであり、前記脂肪酸(A)中の直鎖飽和脂肪酸が2種類以上である場合には各々の直鎖飽和脂肪酸のXc×WXcの総和である。
 Yc:前記脂肪酸(A)中の直鎖不飽和脂肪酸の炭素数
 WYc:炭素数Ycである直鎖不飽和脂肪酸の質量
 Σ(Yc×WYc):前記脂肪酸(A)中の直鎖不飽和脂肪酸が1種類である場合にはYc×WYcであり、前記脂肪酸(A)中の直鎖不飽和脂肪酸が2種類以上である場合には各々の直鎖不飽和脂肪酸のYc×WYcの総和である。
・要件(β):前記脂肪酸(A)中の分岐脂肪酸の含有量が、前記脂肪酸(A)の全量基準で、80質量%未満である。
 本発明によれば、ポリオールエステルを含み、炭化水素冷媒の溶解度が低く、かつ低温流動性に優れる冷凍機油組成物、及び当該冷凍機油組成物を含む冷凍機用混合組成物を提供することが可能となる。
実施例において、溶解粘度の測定に用いた粘度測定装置を示す断面図である。 実施例において、溶解粘度の測定に用いた粘度測定装置の要部を示す拡大断面図である。 実施例において、溶解粘度の測定に用いた粘度測定装置による測定手順の一部を示す断面図である。
 本明細書に記載された数値範囲の上限値及び下限値は任意に組み合わせることができる。例えば、数値範囲として「A~B」及び「C~D」が記載されている場合、「A~D」及び「C~B」の数値範囲も、本発明の範囲に含まれる。
 また、本明細書に記載された数値範囲「下限値~上限値」は、特に断りのない限り、下限値以上、上限値以下であることを意味する。
 また、本明細書において、実施例の数値は、上限値又は下限値として用いられ得る数値である。
 なお、以降の説明において、「炭化水素冷媒の溶解度」とは、ポリオールエステル(P)を含む冷凍機油組成物又はポリオールエステル(P)への炭化水素冷媒の溶解度を意味する。
 また、以降の説明において、「溶解粘度」とは、特に断りのない限り、ポリオールエステル(P)を含む冷凍機油組成物又はポリオールエステル(P)に炭化水素冷媒が溶解した際の、冷凍機用混合組成物の粘度を意味する。
[本実施形態の冷凍機油組成物の態様]
 本実施形態の冷凍機油組成物は、炭化水素冷媒を含む冷媒に用いられる冷凍機油組成物であって、ジペンタエリスリトールと、炭素数2~23の脂肪酸から選択される1種以上の脂肪酸(A)とのポリオールエステル(P)を含有する。
 そして、ポリオールエステル(P)は、下記要件(α)及び(β)を満たす。
・要件(α):前記脂肪酸(A)が、下記式(α1)を満たす。
 Σ(Xc×WXc)+0.259×Σ(Yc×WYc)<6,000・・・(α1)
 Xc:前記脂肪酸(A)中の直鎖飽和脂肪酸の炭素数
 WXc:炭素数Xcである直鎖飽和脂肪酸の質量
 Σ(Xc×WXc):前記脂肪酸(A)中の直鎖飽和脂肪酸が1種類である場合にはXc×WXcであり、前記脂肪酸(A)中の直鎖飽和脂肪酸が2種類以上である場合には各々の直鎖飽和脂肪酸のXc×WXcの総和である。
 Yc:前記脂肪酸(A)中の直鎖不飽和脂肪酸の炭素数
 WYc:炭素数Ycである直鎖不飽和脂肪酸の質量
 Σ(Yc×WYc):前記脂肪酸(A)中の直鎖不飽和脂肪酸が1種類である場合にはYc×WYcであり、前記脂肪酸(A)中の直鎖不飽和脂肪酸が2種類以上である場合には各々の直鎖不飽和脂肪酸のYc×WYcの総和である。
・要件(β):前記脂肪酸(A)中の分岐脂肪酸の含有量が、前記脂肪酸(A)の全量基準で、80質量%未満である。
 本発明者らは、上記課題を解決すべく、鋭意検討を行った。その結果、ジペンタエリスリトールと脂肪酸(A)とのポリオールエステル(P)について、脂肪酸(A)の構成(構造及び炭素数)を制御することで、炭化水素冷媒の溶解度を下げるとともに、ポリオールエステル(P)の低温流動性も確保し得ることを見出した。
 そこで、本発明者らは、「脂肪酸(A)の構成」と「炭化水素冷媒の溶解度」との関係、及び「脂肪酸(A)の構成」と「ポリオールエステル(P)の低温流動性」との関係に基づいて、種々の観点から検討を進めた結果、これらの関係性に関するパラメータを創出するに至り、本発明の完成に至った。
 以下、本実施形態の冷凍機油組成物の構成について、詳細に説明する。
<ポリオールエステル(P)>
 本実施形態において、ポリオールエステル(P)は、ジペンタエリスリトールと、炭素数2~23の脂肪酸から選択される1種以上の脂肪酸(A)とのエステルである。
 本実施形態の冷凍機油組成物において、ポリオールエステル(P)は基油として機能する。
 ここで、本実施形態の冷凍機油組成物は、ポリオールエステル(P)のみから構成されていてもよいが、本発明の効果を損なわない範囲で、ポリオールエステル(P)以外の他の成分を含有していてもよい。
 本実施形態の冷凍機油組成物において、ポリオールエステル(P)の含有量は、冷凍機油組成物の全量(100質量%)基準で、好ましくは20質量%以上、より好ましくは40質量%以上、更に好ましくは60質量%以上、より更に好ましくは80質量%以上、更になお好ましくは90質量%以上、一層好ましくは100質量%である。なお、ポリオールエステル(P)の含有量は、冷凍機油組成物の全量(100質量%)基準で、100質量%以下であってもよい。
 また、ポリオールエステル(P)は、部分エステルであってもよく、完全エステルであってもよいが、ポリオールエステル(P)の安定性向上の観点等から、完全エステルを含むことが好ましい。
 本実施形態において、ポリオールエステル(P)中の完全エステルの含有量は、好ましくは50質量%~100質量%、より好ましくは60質量%~100質量%、更に好ましくは70質量%~100質量%、より更に好ましくは80質量%~100質量%、更になお好ましくは90質量%~100質量%、一層好ましくは95質量%~100質量%である。
(ジペンタエリスリトール)
 本実施形態において、ジペンタエリスリトールは、ポリオールエステル(P)を構成するアルコール成分であり、下記構造式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
(脂肪酸(A))
 本実施形態において、脂肪酸(A)は、ポリオールエステル(P)を構成する酸成分である。
 脂肪酸(A)は、炭素数2~23の脂肪酸から選択される1種以上である。
 当該脂肪酸の炭素数が上記範囲であると、本発明の効果が発揮されやすくなる。また、当該脂肪酸を入手しやすくなる。
 ここで、当該脂肪酸の炭素数は、上記観点から、好ましくは2~22、より好ましくは2~20、更に好ましくは3~18である。
 脂肪酸(A)は、直鎖飽和脂肪酸であってもよく、直鎖不飽和脂肪酸であってもよく、分岐飽和脂肪酸であってもよく、分岐不飽和脂肪酸であってもよい。
 脂肪酸(A)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<要件(α)>
 本実施形態の冷凍機油組成物において、ポリオールエステル(P)は、要件(α)を満たす。
・要件(α):前記脂肪酸(A)が、下記式(α1)を満たす。
 Σ(Xc×WXc)+0.259×Σ(Yc×WYc)<6,000・・・(α1)
 Xc:前記脂肪酸(A)中の直鎖飽和脂肪酸の炭素数
 WXc:炭素数Xcである直鎖飽和脂肪酸の質量
 Σ(Xc×WXc):前記脂肪酸(A)中の直鎖飽和脂肪酸が1種類である場合にはXc×WXcであり、前記脂肪酸(A)中の直鎖飽和脂肪酸が2種類以上である場合には各々の直鎖飽和脂肪酸のXc×WXcの総和である。
 Yc:前記脂肪酸(A)中の直鎖不飽和脂肪酸の炭素数
 WYc:炭素数Ycである直鎖不飽和脂肪酸の質量
 Σ(Yc×WYc):前記脂肪酸(A)中の直鎖不飽和脂肪酸が1種類である場合にはYc×WYcであり、前記脂肪酸(A)中の直鎖不飽和脂肪酸が2種類以上である場合には各々の直鎖不飽和脂肪酸のYc×WYcの総和である。
 なお、上記式(α1)の左辺の値は、ジペンタエリスリトール1モルに対して結合させる脂肪酸(A)のモル数を最大値として算出される値である。したがって、ポリオールエステル(P)が完全エステルである場合、上記式(α1)の左辺の値は6モルの脂肪酸(A)について算出される値である。
 要件(α)は、ポリオールエステル(P)の低温流動性の指標となるパラメータである。
 本発明者らは、ポリオールエステル(P)の低温流動性を支配する主要因が、脂肪酸(A)中の直鎖飽和脂肪酸の炭素数及び量と直鎖不飽和脂肪酸の炭素数及び量とであることを突き止めるに至った。加えて、本発明者らは、これらのうち、直鎖不飽和脂肪酸の炭素数及び量の重みが、直鎖飽和脂肪酸の炭素数及び量の重みに比べて小さいことを突き止めるに至った。本発明者らは、これらの事項を足掛かりとして種々検討を行い、要件(α)の創出に至った。
 ここで、ポリオールエステル(P)が、要件(α)を満たすことで、ポリオールエステル(P)の流動点を低下させることができ、冷凍機油組成物の低温流動性を十分に確保することができる。
 ここで、ポリオールエステル(P)の流動点を低下させて、冷凍機油組成物の低温流動性をより優れたものとしやすくする観点から、上記式(α1)の右辺の値は、好ましくは5,800、より好ましくは5,600、更に好ましくは5,400、より更に好ましくは5,200である。
 なお、上記式(α1)の左辺の式「Σ(Xc×WXc)+0.259×Σ(Yc×WYc)」の値は、ポリオールエステル(P)の流動点を低下させる観点からは小さければ小さいほどよく、下限値は特に限定されないが、下限値は例えば2,000である。
 要件(α)は、脂肪酸(A)を構成する直鎖飽和脂肪酸の炭素数及び量並びに直鎖不飽和脂肪酸の炭素数及び量を調整することにより、さらには分岐脂肪酸の量を調整することにより、所望の範囲に調整し得る。
<要件(β)>
 本実施形態の冷凍機油組成物において、ポリオールエステル(P)は、要件(β)を満たす。
・要件(β):前記脂肪酸(A)中の分岐脂肪酸の含有量が、前記脂肪酸(A)の全量基準で、80質量%未満である。
 要件(β)は、炭化水素冷媒の溶解度の指標となるパラメータである。
 本発明者らは、炭化水素冷媒の溶解度を支配する主要因が、脂肪酸(A)中の分岐脂肪酸の多寡であることを突き止めるに至った。本発明者らは、この事項を足掛かりとして種々検討を行い、要件(β)の創出に至った。
 ここで、ポリオールエステル(P)が要件(β)を満たすことで、炭化水素冷媒の溶解度を低く抑えることが可能になる。
 ここで、炭化水素冷媒の溶解度をより低く抑えやすくする観点から、脂肪酸(A)中の分岐脂肪酸の含有量は、脂肪酸(A)の全量基準で、好ましくは75質量%以下、より好ましくは70質量%以下、更に好ましくは65質量%以下、より更に好ましくは60質量%以下である。
 なお、脂肪酸(A)中の分岐脂肪酸の含有量を低下させるほど、炭化水素冷媒の溶解度をより低く抑えることができる。したがって、脂肪酸(A)中の分岐脂肪酸の含有量は、脂肪酸(A)の全量基準で、0質量%であってもよい。
 要件(β)は、脂肪酸(A)を構成する分岐脂肪酸の量を調整することにより、所望の範囲に調整し得る。
<要件(γ)>
 本実施形態の冷凍機油組成物において、ポリオールエステル(P)は、さらに要件(γ)を満たすことが好ましい。
・要件(γ):前記脂肪酸(A)が、下記式(γ1)を満たす。
 Σ(Zc×WZc)>2,500 ・・・(γ1)
 Zc:前記脂肪酸(A)中の直鎖脂肪酸の炭素数
 WZc:炭素数Zcである直鎖脂肪酸の質量
 Σ(Zc×WZc):前記脂肪酸(A)中の直鎖脂肪酸が1種類である場合にはZc×WZcであり、前記脂肪酸(A)中の直鎖脂肪酸が2種類以上である場合には各々の直鎖脂肪酸のZc×WZcの総和である。
 なお、上記式(γ1)の左辺の値は、ジペンタエリスリトール1モルに対して結合させる脂肪酸(A)のモル数を最大値として算出される値である。したがって、ポリオールエステル(P)が完全エステルである場合、上記式(γ1)の左辺の値は6モルの脂肪酸(A)について算出される値である。
 炭化水素冷媒は、HFC冷媒やHFO冷媒と比較して、冷凍機油組成物に冷媒が溶解した冷凍機用混合組成物の粘度(溶解粘度)を低下させやすい。溶解粘度の低下は、冷凍機の圧縮機等の摺動部において、潤滑性を悪化させ、摩耗の進行の要因となる。したがって、炭化水素冷媒を使用する際に用いられる冷凍機油組成物には、炭化水素冷媒が溶解した際にも良好な潤滑性が発揮されるように、適切な溶解粘度を有することが求められる。
 要件(γ)は、溶解粘度の指標となるパラメータであり、ポリオールエステル(P)が要件(γ)を満たすことで、溶解粘度の低下を抑えやすくすることができる。
 本発明者らは、溶解粘度を支配する主要因が、脂肪酸(A)中の直鎖脂肪酸の多寡であることを突き止めるに至った。本発明者らは、この事項を足掛かりとして種々検討を行い、要件(γ)の創出に至った。
 なお、ポリオールエステル化合物の流動点を低下させて低温流動性を良好なものにすることと、溶解粘度の低下を抑えることとは、トレードオフの関係にあり、両立が困難である。この点、本実施形態によれば、要件(β)と要件(γ)とを満たすことで、これらの性能をバランスよく両立させることが可能になる。加えて、要件(α)と要件(β)と要件(γ)とを満たすことで、これらの性能をバランスよく両立させながらも、炭化水素冷媒の溶解度を低く抑えることもできる。
 ここで、溶解粘度の低下をより抑えやすくする観点から、上記式(γ1)の右辺の値は、好ましくは2,700、より好ましくは2,900、更に好ましくは3,000である。
 なお、上記式(γ1)の左辺「Σ(Zc×WZc)」の値は、溶解粘度の低下をより抑えやすくする観点からは、大きければ大きいほどよいが、ポリオールエステル(P)の流動点の上昇を抑制する観点から、好ましくは20,000以下である。
 要件(γ)は、脂肪酸(A)を構成する直鎖脂肪酸の炭素数及び量を調整することにより、さらには分岐脂肪酸の量を調整することにより、所望の範囲に調整し得る。
<脂肪酸(A)の好ましい態様>
 脂肪酸(A)は、要件(α)及び要件(β)を満たすべく、適宜調整される。
 あるいは、脂肪酸(A)は、要件(α)及び要件(β)、さらには要件(γ)を満たすべく、適宜調整される。
 具体的には、要件(α)及び要件(β)については、要件(α)を満たすように直鎖飽和脂肪酸の炭素数及び量並びに直鎖不飽和脂肪酸の炭素数及び量を調整しつつ、要件(β)を満たすように分岐脂肪酸の量を調整することによって、満たすことができる。
 また、要件(α)、要件(β)、及び要件(γ)については、要件(α)を満たすように直鎖飽和脂肪酸の炭素数及び量並びに直鎖不飽和脂肪酸の炭素数及び量を調整しつつ、要件(β)を満たすように分岐脂肪酸の量を調整し、さらに要件(γ)を満たすように直鎖脂肪酸の炭素数及び量を調整することによって、満たすことができる。
 なお、脂肪酸(A)は、直鎖飽和脂肪酸であってもよく、直鎖不飽和脂肪酸であってもよく、分岐飽和脂肪酸であっても、及び分岐不飽和脂肪酸であってもよい。したがって、脂肪酸(A)は、直鎖飽和脂肪酸、直鎖不飽和脂肪酸、分岐飽和脂肪酸、及び分岐不飽和脂肪酸から選択される1種以上であってもよい。
 詳細には、脂肪酸(A)は、下記(1)、(2)、(3)、及び(4)からなる群から選択される1種以上であってもよい。
(1)直鎖飽和脂肪酸から選択される1種以上
(2)直鎖不飽和脂肪酸から選択される1種以上
(3)分岐飽和脂肪酸から選択される1種以上
(4)分岐不飽和脂肪酸から選択される1種以上
 ここで、入手容易性等の観点から、脂肪酸(A)は、直鎖飽和脂肪酸、直鎖不飽和脂肪酸、及び分岐飽和脂肪酸から選択される1種以上であることが好ましい。
 詳細には、脂肪酸(A)は、下記(1)、(2)、及び(3)からなる群から選択される1種以上であることが好ましい。
(1)直鎖飽和脂肪酸から選択される1種以上
(2)直鎖不飽和脂肪酸から選択される1種以上
(3)分岐飽和脂肪酸から選択される1種以上
 直鎖飽和脂肪酸の具体例としては、酢酸、プロパン酸、n-ブタン酸、n-ペンタン酸、n-ヘキサン酸、n-ヘプタン酸、n-オクタン酸、n-ノナン酸、n-デカン酸、n-ウンデカン酸、n-ドデカン酸、n-トリデカン酸、n-テトラデカン酸、n-ペンタデカン酸、n-ヘキサデカン酸、n-ヘプタデカン酸、n-オクタデカン酸、n-ノナデカン酸、n-イコサン酸、n-ヘンイコサン酸、n-ドコサン酸、n-トリコサン酸等が挙げられる。
 これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 直鎖不飽和脂肪酸の具体例としては、ヘキサデセン酸、オクタデセン酸(オレイン酸)、オクタデカジエン酸、オクタデカントリエン酸、エイコサジエン酸、エイコサトリエン酸、エルカ酸(ドコセン酸)、及びエイコサテトラエン酸等が挙げられる。
 これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、直鎖不飽和脂肪酸の不飽和結合数は1であってもよく、2以上であってもよいが、入手容易性の観点などから、不飽和結合数は1であることが好ましい。
 分岐飽和脂肪酸の具体例としては、2-メチルプロパン酸、3-メチルブタン酸、ピバリン酸、イソヘプタン酸、4-エチルペンタン酸、イソオクチル酸、2-エチルヘキサン酸、4,5-ジメチルヘキサン酸、4-プロピルペンタン酸、イソノナン酸、2-エチルヘプタン酸、3,5,5-トリメチルヘキサン酸、イソデカン酸、イソドデカン酸、2-メチルデカン酸、3-メチルデカン酸、4-メチルデカン酸、5-メチルデカン酸、6-メチルデカン酸、7-メチルデカン酸、9-メチルデカン酸、6-エチルノナン酸、5-プロピルオクタン酸、イソラウリン酸、3-メチルヘンデカン酸、6-プロピルノナン酸、イソトリデカン酸、2-メチルドデカン酸、3-メチルドデカン酸、4-メチルドデカン酸、5-メチルドデカン酸、11-メチルドデカン酸、7-プロピルデカン酸、イソミリスチン酸、2-メチルトリデカン酸、12-メチルトリデカン酸、イソパルミチン酸、2-ヘキシルデカン酸、14-メチルペンタデカン酸、2-エチルテトラデカン酸、イソステアリン酸、メチル分岐型イソステアリン酸、2-へプチルウンデカン酸、2-イソへプチルイソウンデカン酸、2-エチルヘキサデカン酸、14-エチルヘキサデカン酸、14-メチルヘプタデカン酸、15-メチルヘプタデカン酸、16-メチルヘプタデカン酸、2-ブチルテトラデカン酸、イソアラキン酸、3-メチルノナデカン酸、及び2-エチルオクタデカン酸等が挙げられる。
 本実施形態において、要件(α)及び要件(β)を満たしやすくする観点、さらには要件(α)要件(β)、及び要件(γ)を満たしやすくする観点から、脂肪酸(A)は、例えば、下記要件を満たすことが好ましい。
(要件1)脂肪酸(A)が、炭素数2~12である直鎖短鎖脂肪酸(A1)を含む。
(要件2)直鎖短鎖脂肪酸(A1)の含有量が、脂肪酸(A)の全量基準で、15モル%以上である。
(要件3)分岐脂肪酸(A2)の含有量が、脂肪酸(A)の全量基準で、60モル%以下である。
(要件4)分岐脂肪酸(A2)の含有量が少ない場合(例えば、脂肪酸(A)の全量基準で、10モル%以下である場合)、直鎖短鎖脂肪酸(A1)は、炭素数2~8である直鎖短鎖脂肪酸(A11)を含み、直鎖短鎖脂肪酸(A11)の含有量は、脂肪酸(A)の全量基準で、50モル%超である。
 なお、脂肪酸(A)からは、下記態様が除かれてもよい。
 ・プロピオン酸55モル%とオレイン酸45モル%からなる脂肪酸
 ・n-ヘキサン酸55モル%とオレイン酸45モル%からなる脂肪酸
 また、本発明の別の実施形態(1)では、冷凍機油組成物は、
 炭化水素冷媒を含む冷媒に用いられる冷凍機油組成物であって、
 ジペンタエリスリトールと、炭素数2~23の脂肪酸から選択される1種以上の脂肪酸(A)とのポリオールエステル(P)を含有し、
 前記ポリオールエステル(P)は、下記要件(β)を満たす、冷凍機油組成物である。
・要件(β):前記脂肪酸(A)中の分岐脂肪酸の含有量が、前記脂肪酸(A)の全量基準で、80質量%未満である。
 前述の通り、ポリオールエステル(P)が要件(β)を満たすことで、炭化水素冷媒の溶解度を低く抑えることが可能になる。
 前記別の実施形態(1)におけるポリオールエステル(P)及び脂肪酸(A)の好ましい態様は、上述の通りである。
 また、本発明の別の実施形態(2)では、冷凍機油組成物は、
 炭化水素冷媒を含む冷媒に用いられる冷凍機油組成物であって、
 ジペンタエリスリトールと、炭素数2~23の脂肪酸から選択される1種以上の脂肪酸(A)とのポリオールエステル(P)を含有し、
 前記ポリオールエステル(P)は、下記要件(β)及び要件(γ)を満たす冷凍機油組成物である。
・要件(β):前記脂肪酸(A)中の分岐脂肪酸の含有量が、前記脂肪酸(A)の全量基準で、80質量%未満である。
・要件(γ):前記脂肪酸(A)が、下記式(γ1)を満たす。
 Σ(Zc×WZc)>2,500 ・・・(γ1)
 Zc:前記脂肪酸(A)中の直鎖脂肪酸の炭素数
 WZc:炭素数Zcである直鎖脂肪酸の質量
 Σ(Zc×WZc):前記脂肪酸(A)中の直鎖脂肪酸が1種類である場合にはZc×WZcであり、前記脂肪酸(A)中の直鎖脂肪酸が2種類以上である場合には各々の直鎖脂肪酸のZc×WZcの総和である。
 前述の通り、要件(γ)は、溶解粘度の指標となるパラメータであり、ポリオールエステル(P)が要件(γ)を満たすことで、溶解粘度の低下を抑えやすくすることができる。
 前記別の実施形態(2)におけるポリオールエステル(P)及び脂肪酸(A)の好ましい態様は、上述の通りである。
<ポリオールエステル(P)以外の他の基油>
 本実施形態の冷凍機油組成物は、ポリオールエステル(P)以外の他の基油をさらに含有してもよく、含有していなくてもよい。
 ポリオールエステル(P)以外の他の基油としては、鉱油及びポリオールエステル(P)には該当しない合成油からなる群から選択される1種以上が挙げられる。
 鉱油としては、例えば、パラフィン系原油、中間基系原油、ナフテン系原油等の原油を常圧蒸留して得られる常圧残油;これらの常圧残油を減圧蒸留して得られる留出油;当該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等の処理を1つ以上施して得られる鉱油;ワックス異性化鉱油等が挙げられる。
 なお、鉱油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ポリオールエステル(P)には該当しない合成油としては、ポリビニルエーテル類;ポリアルキレングリコール類;ポリアルキレングリコール又はそのモノエーテルとポリビニルエーテルとの共重合体;ポリオールエステル(P)には該当しないポリオールエステル類;ポリエステル類;ポリカーボネート類;α-オレフィンオリゴマーの水素化物;脂環式炭化水素化合物;アルキル化芳香族炭化水素化合物;フィシャートロプシュプロセス等により製造されるGTL WAX(ガストゥリキッド ワックス)を異性化することによって製造されるGTL基油;等が挙げられる。
 なお、合成油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、本発明の効果をより発揮させやすくする観点から、鉱油の含有量は、少ないことが好ましい。具体的には、鉱油の含有量は、ポリオールエステル(P)100質量部に対して、好ましくは10質量部未満、より好ましくは1質量部未満、更に好ましくは0.1質量部未満、より更に好ましくは鉱油を含まないことである。
 また、同様の観点から、ポリオールエステル(P)には該当しない合成油の含有量は、少ないことが好ましい。具体的には、ポリオールエステル(P)には該当しない合成油の含有量は、ポリオールエステル(P)100質量部に対して、好ましくは400質量部未満、より好ましくは200質量部未満、更に好ましくは100質量部未満、より更に好ましくは50質量部未満、更になお好ましくは10質量部未満、一層好ましくはポリオールエステル(P)には該当しない合成油を含まないことである。
<ポリオールエステル(P)の物性>
(ポリオールエステル(P)の動粘度)
 ポリオールエステル(P)の40℃動粘度は、好ましくは20mm/s以上、より好ましくは30mm/s以上、更に好ましくは40mm/s以上である。また、油戻りの観点から、好ましくは350mm/s以下、より好ましくは320mm/s以下、更に好ましくは300mm/s以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは20mm/s~350mm/s、より好ましくは30mm/s~320mm/s、更に好ましくは40mm/s~300mm/sである。
 ポリオールエステル(P)の100℃動粘度は、冷凍機の圧縮機等の摺動部における摩耗を抑制する観点から、好ましくは4mm/s以上、より好ましくは6mm/s以上、更に好ましくは8mm/s以上である。また、油戻りの観点から、好ましくは70mm/s以下、より好ましくは60mm/s以下、更に好ましくは50mm/s以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは4mm/s~70mm/s、より好ましくは6mm/s~60mm/s、更に好ましくは8mm/s~50mm/sである。
 なお、本明細書において、冷凍機油組成物の動粘度は、JIS K2283:2000に準拠して測定される値を意味する。
(炭化水素冷媒の溶解度)
 後述する実施例に記載の方法で測定される、ポリオールエステル(P)への炭化水素冷媒の溶解度は、炭化水素冷媒の使用量を抑えて、安全性を確保しやすくする観点から、好ましくは17.0質量%未満、より好ましくは16.5質量%以下、更に好ましくは16.0質量%以下である。また、好ましくは1質量%以上である。
(ポリオールエステル(P)の流動点)
 後述する実施例に記載の方法で測定される、ポリオールエステル(P)の流動点は、冷凍機油組成物の低温流動性を優れたものとする観点から、好ましくは-20℃以下、より好ましくは-30℃以下、更に好ましくは-40℃以下、より更に好ましくは-50℃以下である。
(溶解粘度)
 後述する実施例に記載の方法で測定される、炭化水素冷媒が溶解したポリオールエステル(P)の溶解粘度は、冷凍機の圧縮機等の摺動部における摩耗を抑制する観点から、好ましくは2.500mm/s以上、より好ましくは2.700mm/s以上、更に好ましくは2.800mm/s以上、より更に好ましくは2.900mm/s以上、更になお好ましくは3.000mm/s以上である。また、好ましくは50.00mm/s以下である。
<添加剤>
 本実施形態の冷凍機油組成物は、本発明の効果を損なわない範囲内で、添加剤を更に含有してもよく、含有していなくてもよい。
 添加剤としては、例えば冷凍機油組成物に一般的に配合され得る添加剤が挙げられる。
 このような添加剤としては、例えば、酸化防止剤、酸素捕捉剤、酸捕捉剤、極圧剤、油性剤、金属不活性化剤、及び消泡剤からなる群から選択される1種以上が挙げられる。
 これらの添加剤の合計含有量は、冷凍機油組成物の全量(100質量%)基準で、好ましくは0質量%~10質量%、より好ましくは0.01質量%~5質量%、更に好ましくは0.1質量%~3質量%である。
(酸化防止剤)
 酸化防止剤としては、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)等のフェノール系酸化防止剤、フェニル-α-ナフチルアミン、N.N’-ジフェニル-p-フェニレンジアミン等のアミン系の酸化防止剤が挙げられる。
 なお、酸化防止剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(酸素捕捉剤)
 酸素捕捉剤としては、例えば、脂肪族不飽和化合物、二重結合を有するテルペン類等が挙げられる。
 上記脂肪族不飽和化合物としては、不飽和炭化水素が好ましく、具体的には、オレフィン;ジエン、トリエン等のポリエン等が挙げられる。オレフィンとしては、酸素との反応性の観点から、1-テトラデセン、1-ヘキサデセン、1-オクタデセン等のα-オレフィンが好ましい。
 上記以外の脂肪族不飽和化合物としては、酸素との反応性の観点から、分子式C2030Oで表されるビタミンA((2E,4E,6E,8E)-3,7-ジメチル-9-(2,6,6-トリメチルシクロヘキセ-1-イル)ノナ-2,4,6,8-テトラエン-1-オール)等の共役二重結合を有する不飽和脂肪族アルコールが好ましい。
 二重結合を有するテルペン類としては、二重結合を有するテルペン系炭化水素が好ましく、酸素との反応性の観点から、α-ファルネセン(C1524:3,7,11-トリメチルドデカ-1,3,6,10-テトラエン)及びβ-ファルネセン(C1524:7,11-ジメチル-3-メチリデンドデカ-1,6,10-トリエン)がより好ましい。
 酸素捕捉剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(酸捕捉剤)
 酸捕捉剤としては、例えば、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシド、エポキシ化大豆油などのエポキシ化合物を挙げることができるが、酸捕捉剤としては、特にグリシジルエステル、グリシジルエーテル及びα-オレフィンオキシドの中から選ばれる少なくとも1種が好適に用いられる。
 グリシジルエーテルとしては、炭素数が、通常3~30、好ましくは4~24、より好ましくは6~16の直鎖状、分岐状、環状の飽和若しくは不飽和の脂肪族モノ又は多価アルコール、あるいは水酸基1個以上含有する芳香族化合物由来のグリシジルエーテルが挙げられる。脂肪族多価アルコールや水酸基2個以上含有する芳香族化合物の場合、潤滑油組成物の安定性のために、水酸基価の上昇を抑える観点から、水酸基の全てがグリシジルエーテル化されていることが好ましい。
 これらの中でも、特に炭素数6~16の直鎖状、分岐状、環状の飽和脂肪族モノアルコール由来のグリシジルエーテルが好ましい。このようなグリシジルエーテルとしては、例えば2-エチルヘキシルグリシジルエーテル、イソノニルグリシジルエーテル、カプリノイルグリシジルエーテル、ラウリルグリシジルエーテル、ミリスチルグリシジルエーテルなどが挙げられる。
 一方、α-オレフィンオキシドとしては、炭素数が一般に4~50、好ましくは4~24、より好ましくは6~16のものが用いられる。
 酸捕捉剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(極圧剤)
 極圧剤としては、例えば、リン酸エステル、酸性リン酸エステル、亜リン酸エステル、酸性亜リン酸エステル及びこれらのアミン塩などのリン系極圧剤を挙げることができる。
 これらのリン系極圧剤の中でも、極圧性、摩擦特性などの点からトリクレジルホスフェート、トリチオフェニルホスフェート、トリ(ノニルフェニル)ホスファイト、ジオレイルハイドロゲンホスファイト、2-エチルヘキシルジフェニルホスファイトなどが特に好ましい。
 また、極圧剤としては、例えば、カルボン酸の金属塩が挙げられる。ここでいうカルボン酸の金属塩は、好ましくは炭素数3~60のカルボン酸、さらには炭素数3~30のカルボン酸、特に好ましくは12~30の脂肪酸の金属塩である。また、前記脂肪酸のダイマー酸やトリマー酸並びに炭素数3~30のジカルボン酸の金属塩を挙げることができる。これらのうち炭素数12~30の脂肪酸及び炭素数3~30のジカルボン酸の金属塩が特に好ましい。
 一方、金属塩を構成する金属としてはアルカリ金属又はアルカリ土類金属が好ましく、特に、アルカリ金属が最適である。
 また、極圧剤としては、さらに、上記以外の極圧剤として、例えば、硫化油脂、硫化脂肪酸、硫化エステル、硫化オレフィン、ジヒドロカルビルポリサルファイド、チオカーバメート類、チオテルペン類、ジアルキルチオジプロピオネート類などの硫黄系極圧剤を挙げることができる。
 極圧剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(油性剤)
 油性剤としては、例えば、ステアリン酸、オレイン酸などの脂肪族飽和及び不飽和モノカルボン酸、ダイマー酸、水添ダイマー酸などの重合脂肪酸、リシノレイン酸、12-ヒドロキシステアリン酸などのヒドロキシ脂肪酸、ラウリルアルコール、オレイルアルコールなどの脂肪族飽和及び不飽和モノアルコール、ステアリルアミン、オレイルアミンなどの脂肪族飽和及び不飽和モノアミン、ラウリン酸アミド、オレイン酸アミドなどの脂肪族飽和及び不飽和モノカルボン酸アミド、グリセリン、ソルビトールなどの多価アルコールと脂肪族飽和又は不飽和モノカルボン酸との部分エステル等が挙げられる。
 油性剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(金属不活性化剤)
 金属不活性化剤としては、例えば、N-[N,N’-ジアルキル(炭素数3~12のアルキル基)アミノメチル]トリアゾ-ルなどの銅不活性化剤等が挙げられる。
 金属不活性化剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(消泡剤)
 消泡剤としては、例えば、シリコ-ン油やフッ素化シリコ-ン油等が挙げられる。
 消泡剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[冷凍機油組成物の製造方法]
 本実施形態の冷凍機油組成物を製造する方法は、特に制限されない。
 例えば、本実施形態の冷凍機油組成物の製造方法は、炭化水素冷媒を含む冷媒に用いられる冷凍機油組成物の製造方法であって、ジペンタエリスリトールと、炭素数2~23の脂肪酸から選択される1種以上の脂肪酸(A)とのポリオールエステル(P)を配合する工程を含む。
 そして、前記エステルは、下記要件(α)及び(β)を満たす。
・要件(α):前記脂肪酸(A)が、下記式(α1)を満たす。
 Σ(Xc×WXc)+0.259×Σ(Yc×WYc)<6,000・・・(α1)
 Xc:前記脂肪酸(A)中の直鎖飽和脂肪酸の炭素数
 WXc:炭素数Xcである直鎖飽和脂肪酸の質量
 Σ(Xc×WXc):前記脂肪酸(A)中の直鎖飽和脂肪酸が1種類である場合にはXc×WXcであり、前記脂肪酸(A)中の直鎖飽和脂肪酸が2種類以上である場合には各々の直鎖飽和脂肪酸のXc×WXcの総和である。
 Yc:前記脂肪酸(A)中の直鎖不飽和脂肪酸の炭素数
 WYc:炭素数Ycである直鎖不飽和脂肪酸の質量
 Σ(Yc×WYc):前記脂肪酸(A)中の直鎖不飽和脂肪酸が1種類である場合にはYc×WYcであり、前記脂肪酸(A)中の直鎖不飽和脂肪酸が2種類以上である場合には各々の直鎖不飽和脂肪酸のYc×WYcの総和である。
・要件(β):前記脂肪酸(A)中の分岐脂肪酸の含有量が、前記脂肪酸(A)の全量基準で、80質量%未満である。
 本実施形態の冷凍機油組成物の製造方法は、さらに、ポリオールエステル(P)を、ポリオールエステル(P)以外の他の基油と混合する工程、さらには上記添加剤を混合する工程を有していてもよく、有していなくてもよい。
 なお、上記添加剤をポリオールエステル(P)に配合する場合、上記添加剤は、希釈油等を加えて溶液(分散体)の形態とした上で配合してもよい。
 なお、脂肪酸(A)の好ましい態様は、上述したとおりである。
 また、要件(α)及び要件(β)の好ましい態様も、上述したとおりである。
 なお、本実施形態の冷凍機油組成物の製造方法においては、さらに要件(γ)も満たすように、冷凍機油組成物を製造するようにしても勿論よい。
[冷凍機油組成物の物性]
<冷凍機油組成物の動粘度>
 冷凍機油組成物の40℃動粘度は、好ましくは20mm/s以上、より好ましくは30mm/s以上、更に好ましくは40mm/s以上である。また、油戻りの観点から、好ましくは350mm/s以下、より好ましくは320mm/s以下、更に好ましくは300mm/s以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは20mm/s~350mm/s、より好ましくは30mm/s~320mm/s、更に好ましくは40mm/s~300mm/sである。
 冷凍機油組成物の100℃動粘度は、冷凍機の圧縮機等の摺動部における摩耗を抑制する観点から、好ましくは4mm/s以上、より好ましくは6mm/s以上、更に好ましくは8mm/s以上である。また、油戻りの観点から、好ましくは70mm/s以下、より好ましくは60mm/s以下、更に好ましくは50mm/s以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは4mm/s~70mm/s、より好ましくは6mm/s~60mm/s、更に好ましくは8mm/s~50mm/sである。
 なお、本明細書において、冷凍機油組成物の動粘度は、JIS K2283:2000に準拠して測定される値を意味する。
<炭化水素冷媒の溶解度>
 後述する実施例に記載の方法で測定される、冷凍機油組成物への炭化水素冷媒の溶解度は、炭化水素冷媒の使用量を抑えて、安全性を確保しやすくする観点から、好ましくは17.0質量%未満、より好ましくは16.5質量%以下、更に好ましくは16.0質量%以下である。また、好ましくは1質量%以上である。
<冷凍機油組成物の流動点>
 後述する実施例に記載の方法で測定される、冷凍機油組成物の流動点は、冷凍機油組成物の低温流動性を優れたものとする観点から、好ましくは-20℃以下、より好ましくは-30℃以下、更に好ましくは-40℃以下、より更に好ましくは-50℃以下である。
<溶解粘度>
 後述する実施例に記載の方法で測定される、炭化水素冷媒が溶解した冷凍機油組成物(冷凍機用混合組成物)の溶解粘度は、冷凍機の圧縮機等の摺動部における摩耗を抑制する観点から、好ましくは2.500mm/s以上、より好ましくは2.700mm/s以上、更に好ましくは2.800mm/s以上、より更に好ましくは2.900mm/s以上、更になお好ましくは3.000mm/s以上である。また、好ましくは50.00mm/s以下である。
[冷凍機用混合組成物]
 上記の冷凍機油組成物は、冷媒と混合し、冷凍機用混合組成物として使用される。
 すなわち、冷凍機用混合組成物は、上記の冷凍機油組成物と、炭化水素冷媒を含む冷媒とを含有する。
 以下、冷媒について説明する。
<冷媒>
(炭化水素冷媒)
 本実施形態において用いられる冷媒は、炭化水素冷媒を含む冷媒である。
 炭化水素冷媒としては、好ましくは炭素数1以上8以下の炭化水素、より好ましくは炭素数1以上5以下の炭化水素、更に好ましくは炭素数3以上5以下の炭化水素である。炭素数が8以下であると、冷媒の沸点が高くなり過ぎず冷媒として好ましい。該炭化水素冷媒としては、メタン、エタン、エチレン、プロパン(R290)、シクロプロパン、プロピレン、n-ブタン、イソブタン(R600a)、2-メチルブタン、n-ペンタン、ネオペンタン、シクロペンタン、及びノルマルヘキサンからなる群より選ばれる1種以上が挙げられる。
 炭化水素冷媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(他の冷媒)
 本実施形態において、冷媒は、炭化水素冷媒に加え、他の冷媒を必要に応じて含む混合冷媒であってもよい。
 他の冷媒としては、例えば、飽和フッ化炭化水素冷媒、不飽和フッ化炭化水素冷媒、二酸化炭素、及びアンモニアから選択される1種以上が挙げられる。
 以下、飽和フッ化炭化水素冷媒及び不飽和フッ化炭化水素冷媒について説明する。
-飽和フッ化炭化水素冷媒-
 飽和フッ化炭化水素冷媒としては、好ましくは炭素数1~4のアルカンのフッ化物、より好ましくは炭素数1~3のアルカンのフッ化物、更に好ましくは炭素数1又は2のアルカン(メタン又はエタン)のフッ化物である。該メタン又はエタンのフッ化物としては、トリフルオロメタン(R23)、ジフルオロメタン(R32)、1,1-ジフルオロエタン(R152a)、1,1,1-トリフルオロエタン(R143a)、1,1,2-トリフルオロエタン(R143)、1,1,1,2-テトラフルオロエタン(R134a)、1,1,2,2-テトラフルオロエタン(R134)、1,1,1,2,2-ペンタフルオロエタン(R125)等が挙げられる。
 これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-不飽和フッ化炭化水素冷媒-
 不飽和フッ化炭化水素冷媒としては、下記一般式(3)で表される化合物が挙げられる。
 C・・・(3)
[前記一般式(3)中、xは2~6、yは1~11、zは1~11の整数であり、分子中に炭素-炭素不飽和結合を1以上有する。]
 上記一般式(3)は、分子中の元素の種類と数を表しており、具体的には炭素原子Cの数が2~6の不飽和フッ化炭化水素化合物を表している。炭素数が2~6の不飽和フッ化炭化水素化合物は、冷媒として要求される沸点、凝固点、蒸発潜熱などの物理的、化学的性質を有する。
 上記一般式(3)において、Cで表されるx個の炭素原子の結合形態は、炭素-炭素単結合、炭素-炭素二重結合等の不飽和結合などがある。炭素-炭素の不飽和結合は、安定性の点から、炭素-炭素二重結合であることが好ましく、不飽和フッ化炭化水素化合物は、分子中に炭素-炭素二重結合等の不飽和結合を1以上有し、その数は1であるものが好ましい。すなわち、Cで表されるx個の炭素原子の結合形態の少なくとも1つは、炭素-炭素二重結合であることがより好ましい。
 上記の不飽和フッ化炭化水素化合物として好ましくは、例えば、炭素数2~6の直鎖状又は分岐状の鎖状オレフィンや炭素数4~6の環状オレフィンのフッ化物を挙げることができる。
 具体的には、1~3個のフッ素原子が導入されたエチレンのフッ化物、1~5個のフッ素原子が導入されたプロペンのフッ化物、1~7個のフッ素原子が導入されたブテンのフッ化物、1~9個のフッ素原子が導入されたペンテンのフッ化物、1~11個のフッ素原子が導入されたヘキセンのフッ化物、1~5個のフッ素原子が導入されたシクロブテンのフッ化物、1~7個のフッ素原子が導入されたシクロペンテンのフッ化物、1~9個のフッ素原子が導入されたシクロヘキセンのフッ化物などが挙げられる。
 これらの中でも、プロペンのフッ化物が好ましく、フッ素原子が3~5個導入されたプロペンがより好ましい。具体的には、1,3,3,3-テトラフルオロプロペン(R1234ze)、2,3,3,3-テトラフルオロプロペン(R1234yf)、及び1,2,3,3-テトラフルオロプロペン(R1234ye)から選択される1種以上が好ましく、2,3,3,3-テトラフルオロプロペン(R1234yf)がより好ましい。
 不飽和フッ化炭化水素冷媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(冷媒中の炭化水素冷媒の含有量)
 本実施形態において、冷媒は、炭化水素冷媒を含む。
 炭化水素冷媒の含有量は、冷媒の全量基準で、好ましくは20質量%~100質量%、より好ましくは30質量%~100質量%、更に好ましくは40質量%~100質量%、より更に好ましくは50質量%~100質量%、更になお好ましくは60質量%~100質量%、一層好ましくは70質量%~100質量%、より一層好ましくは80質量%~100質量%、更に一層好ましくは90質量%~100質量%である。
(冷媒及び冷凍機油組成物の使用量)
 本実施形態の冷凍機用混合組成物において、冷媒及び冷凍機油組成物の使用量は、冷凍機油組成物と冷媒との質量比[(冷凍機油組成物)/(冷媒)]で、好ましくは30/70~90/10である。冷凍機油組成物と冷媒との質量比を該範囲内とすると、潤滑性及び冷凍機における好適な冷凍能力を得ることができる。
[冷凍機油組成物及び冷凍機用混合組成物の用途]
 本実施形態の冷凍機油組成物及び冷凍機用混合組成物は、例えば、冷凍システム、給湯システム、又は暖房システムに用いることが好ましい。具体的には、空調機、冷蔵庫、冷凍庫、自動販売機、及びショーケース等が挙げられる。空調機としては、開放型カーエアコン、電動カーエアコン等のカーエアコン;ガスヒートポンプ(GHP)エアコン;等が挙げられる。
[提供される本発明の一態様]
 本発明の一態様では、下記[1]~[8]が提供される。
[1] 炭化水素冷媒を含む冷媒に用いられる冷凍機油組成物であって、
 ジペンタエリスリトールと、炭素数2~23の脂肪酸から選択される1種以上の脂肪酸(A)とのポリオールエステル(P)を含有し、
 前記ポリオールエステル(P)は、下記要件(α)及び(β)を満たす、冷凍機油組成物。
・要件(α):前記脂肪酸(A)が、下記式(α1)を満たす。
 Σ(Xc×WXc)+0.259×Σ(Yc×WYc)<6,000・・・(α1)
 Xc:前記脂肪酸(A)中の直鎖飽和脂肪酸の炭素数
 WXc:炭素数Xcである直鎖飽和脂肪酸の質量
 Σ(Xc×WXc):前記脂肪酸(A)中の直鎖飽和脂肪酸が1種類である場合にはXc×WXcであり、前記脂肪酸(A)中の直鎖飽和脂肪酸が2種類以上である場合には各々の直鎖飽和脂肪酸のXc×WXcの総和である。
 Yc:前記脂肪酸(A)中の直鎖不飽和脂肪酸の炭素数
 WYc:炭素数Ycである直鎖不飽和脂肪酸の質量
 Σ(Yc×WYc):前記脂肪酸(A)中の直鎖不飽和脂肪酸が1種類である場合にはYc×WYcであり、前記脂肪酸(A)中の直鎖不飽和脂肪酸が2種類以上である場合には各々の直鎖不飽和脂肪酸のYc×WYcの総和である。
・要件(β):前記脂肪酸(A)中の分岐脂肪酸の含有量が、前記脂肪酸(A)の全量基準で、80質量%未満である。
[2] 前記脂肪酸(A)が、さらに下記要件(γ)を満たす、上記[1]に記載の冷凍機油組成物。
・要件(γ):前記脂肪酸(A)が、下記式(γ1)を満たす。
 Σ(Zc×WZc)>2,500 ・・・(γ1)
 Zc:前記脂肪酸(A)中の直鎖脂肪酸の炭素数
 WZc:炭素数Zcである直鎖脂肪酸の質量
 Σ(Zc×WZc):前記脂肪酸(A)中の直鎖脂肪酸が1種類である場合にはZc×WZcであり、前記脂肪酸(A)中の直鎖脂肪酸が2種類以上である場合には各々の直鎖脂肪酸のZc×WZcの総和である。
[3] 流動点が-20℃以下である、上記[1]又は[2]に記載の冷凍機油組成物。
[4] 前記ポリオールエステル(P)の含有量が、前記冷凍機油組成物の全量基準で、20質量%以上である、上記[1]~[3]のいずれか1つに記載の冷凍機油組成物。
[5] 前記ポリオールエステル(P)が、完全エステルを含む、上記[1]~[4]のいずれか1つに記載の冷凍機油組成物。
[6] 前記炭化水素冷媒が、炭素数1~8の炭化水素である、上記[1]~[5]のいずれか1つに記載の冷凍機油組成物。
[7] 上記[1]~[6]のいずれか1つに記載の冷凍機油組成物と、炭化水素冷媒を含む冷媒とを含有する、冷凍機用混合組成物。
[8] 炭化水素冷媒を含む冷媒に用いられる冷凍機油組成物の製造方法であって、
 ジペンタエリスリトールと、炭素数2~23の脂肪酸から選択される1種以上の脂肪酸(A)とのポリオールエステル(P)を配合する工程を含み、
 前記ポリオールエステル(P)は、下記要件(α)及び(β)を満たす、冷凍機油組成物の製造方法。
・要件(α):前記脂肪酸(A)が、下記式(α1)を満たす。
 Σ(Xc×WXc)+0.259×Σ(Yc×WYc)<6,000・・・(α1)
 Xc:前記脂肪酸(A)中の直鎖飽和脂肪酸の炭素数
 WXc:炭素数Xcである直鎖飽和脂肪酸の質量
 Σ(Xc×WXc):前記脂肪酸(A)中の直鎖飽和脂肪酸が1種類である場合にはXc×WXcであり、前記脂肪酸(A)中の直鎖飽和脂肪酸が2種類以上である場合には各々の直鎖飽和脂肪酸のXc×WXcの総和である。
 Yc:前記脂肪酸(A)中の直鎖不飽和脂肪酸の炭素数
 WYc:炭素数Ycである直鎖不飽和脂肪酸の質量
 Σ(Yc×WYc):前記脂肪酸(A)中の直鎖不飽和脂肪酸が1種類である場合にはYc×WYcであり、前記脂肪酸(A)中の直鎖不飽和脂肪酸が2種類以上である場合には各々の直鎖不飽和脂肪酸のYc×WYcの総和である。
・要件(β):前記脂肪酸(A)中の分岐脂肪酸の含有量が、前記脂肪酸(A)の全量基準で、80質量%未満である。
 本発明について、以下の実施例により具体的に説明する。但し、本発明は、以下の実施例に限定されるものではない。
 なお、本実施例では、各成分を以下のように略記する。
 ポリオールエステル:「POE」
 ジペンタエリスリトール:「DPE」
 プロピオン酸:「C3」
 n-ヘキサン酸:「C6」
 n-オクタン酸:「C8」
 n-ノナン酸:「C9」
 n-デカン酸:「C10」
 ラウリン酸:「C12」
 オレイン酸:「C18=」
 3-メチルブタン酸:「iC5」
 2-エチルヘキサン酸:「iC8」
 2-ヘキシルデカン酸:「iC16」
[各種物性値の測定方法]
 各実施例及び各比較例で用いた各原料並びに各実施例及び各比較例の冷凍機油組成物の各性状の測定は、以下に示す要領に従って行ったものである。
(1)動粘度
 40℃動粘度、80℃動粘度、及び100℃動粘度は、JIS K2283:2000に準拠して測定した。
(2)粘度指数
 粘度指数は、動粘度の測定結果に基づき、JIS K2283:2000に準拠して算出した。
[製造例1~7、比較製造例1~2]
 下記製造例1~7及び下記比較製造例1~2により、各種POE化合物を合成した。
<製造例1:POE(P1)の合成>
 ディーンスタークを備えたフラスコに、「DPE」を127.1g(0.5mol)、「C3」を177.8g(2.4mol)、「C10」を206.7g(1.2mol)、トルエンを50g、p-トルエンスルホン酸を5g加え、180℃~230℃で反応させた。所定量の水が生成した時点で反応を終了し、3%NaOH水溶液でアルカリ洗浄後、蒸留水で中性になるまで洗浄した。得られた油層のトルエンを留去し、POE(P1)を得た。
 「C3」と「C10」との仕込比は、モル比で、4:2である。
<製造例2:POE(P2)の合成>
 製造例1において、「C3」及び「C10」に代えて、「C8」259.6g(1.8mol)及び「iC8」259.6g(1.8mol)を用い、他は同様の条件として、POE(P2)を得た。
 「C8」と「iC8」との仕込比は、モル比で、3:3である。
<製造例3:POE(P3)の合成>
 製造例1において、「C3」及び「C10」に代えて、「C18=」339.0g(1.2mol)、「C12」120.2g(0.6mol)、及び「iC8」259.6g(1.8mol)を用い、他は同様の条件として、POE(P3)を得た。
 「C18=」と「C12」と「iC8」との仕込比は、モル比で、2:1:3である。
<製造例4:POE(P4)の合成>
 製造例1において、「C3」及び「C10」に代えて、「iC16」153.9g(0.6mol)、「C8」259.6g(1.8mol)、及び「iC8」173.1g(1.2mol)を用い、他は同様の条件として、POE(P4)を得た。
 「iC16」と「C8」と「iC8」との仕込比は、モル比で、1:3:2である。
<製造例5:POE(P5)の合成>
 製造例1において、「C3」及び「C10」に代えて、「C8」346.1g(2.4mol)及び「iC5」122.6g(1.2mol)を用い、他は同様の条件として、POE(P5)を得た。
 「C8」と「iC5」との仕込比は、モル比で、4:2である。
<製造例6:POE(P6)の合成>
 製造例1において、「C3」及び「C10」に代えて、「C18=」169.5g(0.6mol)、「C8」173.1g(1.2mol)、及び「iC8」259.6g(1.8mol)を用い、他は同様の条件として、POE(P6)を得た。
 「C18=」と「C8」と「iC8」との仕込比は、モル比で、1:2:3である。
<製造例7:POE(P7)の合成>
 製造例1において、「C3」及び「C10」に代えて、「C18=」169.5g(0.6mol)及び「C6」348.4g(3mol)を用い、他は同様の条件として、POE(P7)を得た。
 「C18=」と「C6」との仕込比は、モル比で、1:5である。
<比較製造例1:POE(P’1)の合成>
 製造例1において、「C3」及び「C10」に代えて、「C6」209.0g(1.8mol)及び「C9」284.8g(1.8mol)を用い、他は同様の条件として、POE(P’1)を得た。
 「C6」と「C9」との仕込比は、モル比で、3:3である。
<比較製造例2:POE(P’2)の合成>
 製造例1において、「C3」及び「C10」に代えて、「iC8」519.2g(3.6mol)を用い、他は同様の条件として、POE(P’2)を得た。
[実施例A1~A7、比較例A1~A2]
 実施例A1~A7、比較例A1~A2では、以下の化合物を冷凍機油組成物とし、後述する測定に供した。また、以下の化合物を構成する脂肪酸について、要件(α)及び要件(β)の充足性について検討した。
・実施例A1:製造例1で得られたPOE(P1)
・実施例A2:製造例2で得られたPOE(P2)
・実施例A3:製造例3で得られたPOE(P3)
・実施例A4:製造例4で得られたPOE(P4)
・実施例A5:製造例5で得られたPOE(P5)
・実施例A6:製造例6で得られたPOE(P6)
・実施例A7:製造例7で得られたPOE(P7)
・比較例A1:比較製造例1で得られたPOE(P’1)
・比較例A2:比較製造例2で得られたPOE(P’2)
<溶解度の測定>
 サファイアガラス製の耐圧容器に、冷凍機油組成物及び冷媒としてR290を所定量封入し、耐圧容器の温度を室温(23℃)から80℃まで昇温した。R290を溶解した冷凍機油組成物の体積及びその時の圧力から、計算により温度/圧力/溶解度曲線を作成した。作成した溶解度曲線から、80℃、2.0MPaでの冷凍機油組成物のR290の溶解度(質量%)を算出した。
<流動点の測定>
 JIS K2269:1987に準拠して流動点を測定した。
 結果を表1に示す。
 なお、表1中、要件(α)及び要件(β)の充足性について、充足するものを「S」と表記し、充足しないものを「N」と表記した。
Figure JPOXMLDOC01-appb-T000002
 表1より、以下のことがわかる。
 要件(α)及び要件(β)の双方を充足する実施例A1~A7は、炭化水素冷媒の溶解度に優れ、流動点も低いことがわかる。
 これに対し、要件(α)を充足しない比較例A1では、流動点が高く、低温流動性が十分に確保できていないことがわかる。
 また、要件(β)を充足しない比較例A2では、炭化水素冷媒の溶解度が高く、炭化水素冷媒の溶解度を低く抑えることができていないことがわかる。
[実施例B1~B7、比較例B1~B2]
 実施例B1~B7、比較例B1~B2では、実施例A1~A7、比較例A1~A2と同様の化合物を冷凍機油組成物とし、後述する測定に供した。また、以下の化合物を構成する脂肪酸について、要件(γ)の充足性について検討した。
<溶解粘度の測定>
 図1~3に示す粘度測定装置1を用いて、冷媒が溶解した冷凍機油組成物の溶解粘度を測定した。
 まず、所定量の冷凍機油組成物2及び毛細管粘度計20を、サファイアガラス管からなる容器10の中に入れた後、蓋11を閉じた。次いで、T字型ジョイント24に安全弁26及びニードル弁25を装着した後、容器10を熱媒体4の入った恒温槽3に浸した。なお、温度調節手段5により熱媒体4の温度は80℃に保持した。
 次に、ニードル弁25と冷媒採取ライン(図示せず)を、耐圧ホース27を介して接続し、真空ポンプ(図示せず)を作動して容器10及び冷媒採取ライン内を約13.3Paまで脱気した。脱気後、真空ポンプを止め、冷媒容器の元弁を開き容器10に冷媒(R290)を導入した。冷媒は、容器10の圧力が2.0MPaとなるように導入した。
 冷媒導入後、ニードル弁25を閉じ、冷媒容器の弁を閉じ、耐圧ホース27を切り離した後、永久磁石14を位置Aに降下させておいた恒温槽3内の所定位置に、密閉した容器10を設置した。容器10全体が熱的に平衡状態になったら、永久磁石14を移動させる駆動手段を起動して、永久磁石14を移動させ、毛細管粘度計20を位置Bまで上昇させた。これにより、図3に示されるように、冷媒が溶解した冷凍機油組成物2が毛細管粘度計20から滴下し、冷媒が溶解した冷凍機油組成物2の液面が降下していく。そして、冷媒が溶解した冷凍機油組成物2の液面が標線21B及び標線21Aを通過したことを、光ファイバ15(15A、15B、15C、15D)に検知させ、冷媒が溶解した冷凍機油組成物2が細管部22の内部を通過するのに要する時間を粘度計算機に自動計測させるとともに粘度を自動測定させることで、溶解粘度を測定した。溶解粘度の測定は、冷媒と冷凍機油組成物とが分離していないことを確認した上で実施した。
 なお、図1~3中、符号6は、容器10内に充満するガスを指す。符号14Aは、永久磁石14を保持するアームである。符号21は、液溜め部である。符号23は、細管部22の側壁の外周面に固定されている、磁性体からなる帯状外環部である。
 結果を表2に示す。
 なお、表2中、要件(γ)の充足性について、充足するものを「S」と表記し、充足しないものを「N」と表記した。
Figure JPOXMLDOC01-appb-T000003
 表2より、以下のことがわかる。
 要件(γ)を充足する実施例B1~B7は、溶解粘度が高く、炭化水素冷媒の溶解による粘度低下が抑えられていることがわかる。
 これに対し、要件(γ)を充足しない比較例B2では、溶解粘度が低く、炭化水素冷媒の溶解による粘度低下が抑えられていないことがわかる。

 

Claims (8)

  1.  炭化水素冷媒を含む冷媒に用いられる冷凍機油組成物であって、
     ジペンタエリスリトールと、炭素数2~23の脂肪酸から選択される1種以上の脂肪酸(A)とのポリオールエステル(P)を含有し、
     前記ポリオールエステル(P)は、下記要件(α)及び(β)を満たす、冷凍機油組成物。
    ・要件(α):前記脂肪酸(A)が、下記式(α1)を満たす。
     Σ(Xc×WXc)+0.259×Σ(Yc×WYc)<6,000・・・(α1)
     Xc:前記脂肪酸(A)中の直鎖飽和脂肪酸の炭素数
     WXc:炭素数Xcである直鎖飽和脂肪酸の質量
     Σ(Xc×WXc):前記脂肪酸(A)中の直鎖飽和脂肪酸が1種類である場合にはXc×WXcであり、前記脂肪酸(A)中の直鎖飽和脂肪酸が2種類以上である場合には各々の直鎖飽和脂肪酸のXc×WXcの総和である。
     Yc:前記脂肪酸(A)中の直鎖不飽和脂肪酸の炭素数
     WYc:炭素数Ycである直鎖不飽和脂肪酸の質量
     Σ(Yc×WYc):前記脂肪酸(A)中の直鎖不飽和脂肪酸が1種類である場合にはYc×WYcであり、前記脂肪酸(A)中の直鎖不飽和脂肪酸が2種類以上である場合には各々の直鎖不飽和脂肪酸のYc×WYcの総和である。
    ・要件(β):前記脂肪酸(A)中の分岐脂肪酸の含有量が、前記脂肪酸(A)の全量基準で、80質量%未満である。
  2.  前記脂肪酸(A)が、さらに下記要件(γ)を満たす、請求項1に記載の冷凍機油組成物。
    ・要件(γ):前記脂肪酸(A)が、下記式(γ1)を満たす。
     Σ(Zc×WZc)>2,500 ・・・(γ1)
     Zc:前記脂肪酸(A)中の直鎖脂肪酸の炭素数
     WZc:炭素数Zcである直鎖脂肪酸の質量
     Σ(Zc×WZc):前記脂肪酸(A)中の直鎖脂肪酸が1種類である場合にはZc×WZcであり、前記脂肪酸(A)中の直鎖脂肪酸が2種類以上である場合には各々の直鎖脂肪酸のZc×WZcの総和である。
  3.  流動点が-20℃以下である、請求項1又は2に記載の冷凍機油組成物。
  4.  前記ポリオールエステル(P)の含有量が、前記冷凍機油組成物の全量基準で、20質量%以上である、請求項1~3のいずれか1項に記載の冷凍機油組成物。
  5.  前記ポリオールエステル(P)が、完全エステルを含む、請求項1~4のいずれか1項に記載の冷凍機油組成物。
  6.  前記炭化水素冷媒が、炭素数1~8の炭化水素である、請求項1~5のいずれか1項に記載の冷凍機油組成物。
  7.  請求項1~6のいずれか1項に記載の冷凍機油組成物と、炭化水素冷媒を含む冷媒とを含有する、冷凍機用混合組成物。
  8.  炭化水素冷媒を含む冷媒に用いられる冷凍機油組成物の製造方法であって、
     ジペンタエリスリトールと、炭素数2~23の脂肪酸から選択される1種以上の脂肪酸(A)とのポリオールエステル(P)を配合する工程を含み、
     前記ポリオールエステル(P)は、下記要件(α)及び(β)を満たす、冷凍機油組成物の製造方法。
    ・要件(α):前記脂肪酸(A)が、下記式(α1)を満たす。
     Σ(Xc×WXc)+0.259×Σ(Yc×WYc)<6,000・・・(α1)
     Xc:前記脂肪酸(A)中の直鎖飽和脂肪酸の炭素数
     WXc:炭素数Xcである直鎖飽和脂肪酸の質量
     Σ(Xc×WXc):前記脂肪酸(A)中の直鎖飽和脂肪酸が1種類である場合にはXc×WXcであり、前記脂肪酸(A)中の直鎖飽和脂肪酸が2種類以上である場合には各々の直鎖飽和脂肪酸のXc×WXcの総和である。
     Yc:前記脂肪酸(A)中の直鎖不飽和脂肪酸の炭素数
     WYc:炭素数Ycである直鎖不飽和脂肪酸の質量
     Σ(Yc×WYc):前記脂肪酸(A)中の直鎖不飽和脂肪酸が1種類である場合にはYc×WYcであり、前記脂肪酸(A)中の直鎖不飽和脂肪酸が2種類以上である場合には各々の直鎖不飽和脂肪酸のYc×WYcの総和である。
    ・要件(β):前記脂肪酸(A)中の分岐脂肪酸の含有量が、前記脂肪酸(A)の全量基準で、80質量%未満である。

     
PCT/JP2023/038629 2022-10-28 2023-10-26 冷凍機油組成物及び冷凍機用混合組成物 WO2024090504A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022173755 2022-10-28
JP2022-173755 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024090504A1 true WO2024090504A1 (ja) 2024-05-02

Family

ID=90830826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038629 WO2024090504A1 (ja) 2022-10-28 2023-10-26 冷凍機油組成物及び冷凍機用混合組成物

Country Status (1)

Country Link
WO (1) WO2024090504A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168436A (ja) * 2009-01-21 2010-08-05 Hitachi Appliances Inc 冷媒圧縮機及びこれを備えた冷凍装置
TW201333183A (zh) * 2012-02-09 2013-08-16 Jx Nippon Oil & Energy Corp 冷凍機油及冷凍機用作動流體組合物
WO2014017596A1 (ja) * 2012-07-26 2014-01-30 Jx日鉱日石エネルギー株式会社 潤滑油基油、冷凍機油及び冷凍機用作動流体組成物
JP2014114396A (ja) * 2012-12-11 2014-06-26 Japan Sun Oil Co Ltd 冷凍機油組成物
CN104725222A (zh) * 2015-01-28 2015-06-24 黄小平 一种冷冻机油基础油、制备方法、用该基础油制备的冷冻机油组合物及其制备方法
WO2016002523A1 (ja) * 2014-07-04 2016-01-07 Jx日鉱日石エネルギー株式会社 耐摩耗添加剤、冷凍機油及び冷凍機用作動流体組成物
CN115851353A (zh) * 2022-12-14 2023-03-28 广东孚延盛科技有限公司 一种r290冷媒用冷冻机油

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168436A (ja) * 2009-01-21 2010-08-05 Hitachi Appliances Inc 冷媒圧縮機及びこれを備えた冷凍装置
TW201333183A (zh) * 2012-02-09 2013-08-16 Jx Nippon Oil & Energy Corp 冷凍機油及冷凍機用作動流體組合物
WO2014017596A1 (ja) * 2012-07-26 2014-01-30 Jx日鉱日石エネルギー株式会社 潤滑油基油、冷凍機油及び冷凍機用作動流体組成物
JP2014114396A (ja) * 2012-12-11 2014-06-26 Japan Sun Oil Co Ltd 冷凍機油組成物
WO2016002523A1 (ja) * 2014-07-04 2016-01-07 Jx日鉱日石エネルギー株式会社 耐摩耗添加剤、冷凍機油及び冷凍機用作動流体組成物
CN104725222A (zh) * 2015-01-28 2015-06-24 黄小平 一种冷冻机油基础油、制备方法、用该基础油制备的冷冻机油组合物及其制备方法
CN115851353A (zh) * 2022-12-14 2023-03-28 广东孚延盛科技有限公司 一种r290冷媒用冷冻机油

Similar Documents

Publication Publication Date Title
US8480919B2 (en) Lubricating oil composition for refrigerators
US8703662B2 (en) Lubricating oil composition for refrigerators and compressors with the composition
US8460571B2 (en) Lubricant composition for refrigerator and compressor using the same
US9328306B2 (en) Mixed ester
JP6115565B2 (ja) 混合エステル
JP2017071690A (ja) 冷凍機油、冷凍機用組成物、冷凍機及び冷凍機油の選定方法
JP2023101564A (ja) 冷凍機、冷凍機油及び冷凍機用作動流体組成物
JP2016190892A (ja) 冷凍機潤滑油及び冷凍機用混合組成物
JP7060287B2 (ja) 冷凍機油組成物
WO2017047621A1 (ja) 冷凍機油、冷凍機用組成物及び圧縮型冷凍機
WO2024090504A1 (ja) 冷凍機油組成物及び冷凍機用混合組成物
WO2023106333A1 (ja) 冷凍機油組成物及び冷凍機用混合組成物
WO2023090285A1 (ja) 冷凍機油組成物及び冷凍機用混合組成物
WO2023100935A1 (ja) 冷凍機油組成物及び冷凍機用混合組成物
WO2017065134A1 (ja) 冷凍機油、冷凍機用組成物、及び冷凍機
JP2023039750A (ja) 冷凍機油組成物及び冷凍機用混合組成物
CN118251482A (en) Refrigerator oil composition and refrigerator mixed composition
JP6849746B2 (ja) 冷凍機潤滑油及び冷凍機用混合組成物
JP7470648B2 (ja) 冷凍機油及び冷凍機油の製造方法
WO2024048658A1 (ja) 冷凍機油、作動流体組成物、及び冷媒溶解粘度改良剤
JP2017125216A (ja) 冷凍機油、冷凍機用組成物、冷凍機及び冷凍機油の選定方法
CN115052957A (zh) 冷冻机油组合物和冷冻机用混合组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882708

Country of ref document: EP

Kind code of ref document: A1