WO2023100935A1 - 冷凍機油組成物及び冷凍機用混合組成物 - Google Patents

冷凍機油組成物及び冷凍機用混合組成物 Download PDF

Info

Publication number
WO2023100935A1
WO2023100935A1 PCT/JP2022/044197 JP2022044197W WO2023100935A1 WO 2023100935 A1 WO2023100935 A1 WO 2023100935A1 JP 2022044197 W JP2022044197 W JP 2022044197W WO 2023100935 A1 WO2023100935 A1 WO 2023100935A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil composition
refrigerant
hydrocarbon
refrigerating machine
pag
Prior art date
Application number
PCT/JP2022/044197
Other languages
English (en)
French (fr)
Inventor
聡 中島
明雄 小島
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2023100935A1 publication Critical patent/WO2023100935A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes

Definitions

  • the present invention relates to a refrigerator oil composition and a mixture composition for refrigerators.
  • the term "refrigerating machine mixed composition” refers to a composition obtained by mixing a "refrigerating machine oil composition” and a “refrigerant”.
  • a refrigerator such as a compression refrigerator generally includes at least a compressor, a condenser, an expansion mechanism (such as an expansion valve), and an evaporator, and a mixed composition for a refrigerator circulates in a closed system. It has a structure that
  • Hydrochlorofluorocarbons which have been widely used in the past, have been replaced by fluorocarbon compounds, which have a low environmental load, as refrigerants used in refrigerators such as compression refrigerators.
  • Fluorinated hydrocarbon compounds include 1,1,1,2-tetrafluoroethane (R134a), difluoromethane (R32), 1,1-difluoroethane (R152a), and a mixture of difluoromethane and pentafluoroethane (R410A). and saturated fluorocarbon compounds (Hydro-Fluoro-Carbon; hereinafter also referred to as "HFC").
  • 1,3,3,3-tetrafluoropropene (R1234ze), 2,3,3,3-tetrafluoropropene (R1234yf), and 1,2,3,3, which have low global warming potential (GWP)
  • GWP global warming potential
  • HFO unsaturated fluorohydrocarbon compounds
  • -tetrafluoropropene (R1234ye)
  • hydrocarbon-based refrigerants tend to have a lower viscosity (hereinafter also referred to as "solution viscosity") of a mixed composition for a refrigerator in which the refrigerant is dissolved in a refrigerator oil composition.
  • solution viscosity a lower viscosity
  • a decrease in melt viscosity is a factor in the progress of wear in sliding parts such as compressors of refrigerators. Therefore, the refrigerating machine oil composition used when using a hydrocarbon refrigerant is required to have an appropriate solution viscosity so that good lubricity can be exhibited even when the hydrocarbon refrigerant is dissolved. be done.
  • hydrocarbon-based refrigerants are highly flammable.
  • the refrigerating machine oil composition used when using a hydrocarbon-based refrigerant should reduce the amount of the hydrocarbon-based refrigerant dissolved to suppress excessive dissolution of the hydrocarbon-based refrigerant. From the viewpoint of achieving such a demand, it is desirable that the refrigerating machine oil composition used when using a hydrocarbon-based refrigerant has a low solubility of the hydrocarbon-based refrigerant. However, the refrigerating machine oil composition of Patent Document 1 is insufficient in all performances.
  • the present invention provides a refrigerating machine oil composition having an appropriate solution viscosity when a hydrocarbon refrigerant is dissolved and having a low solubility of the hydrocarbon refrigerant, and a mixed composition for a refrigerating machine containing the refrigerating machine oil composition.
  • the task is to provide
  • a refrigerating machine oil composition used for a refrigerant containing a hydrocarbon-based refrigerant A refrigerator oil composition containing one or more selected from polyalkylene glycol compounds (A) represented by the following general formula (1) and having a number average molecular weight of 1,100 or more.
  • a refrigerating machine oil composition used for a refrigerant containing a hydrocarbon-based refrigerant
  • a refrigerator oil composition containing one or more selected from polyalkylene glycol compounds (A) represented by the following general formula (1) and having a number average molecular weight of 1,100 or more.
  • one of R 1 and R 2 is a hydrogen atom, and the other is a linear or branched alkyl group having 1 to 16 carbon atoms.
  • E is an ethylene group and P is a propylene group.
  • m and n are numbers of 0 or more. However, m+n is 1 or more and 50 or less.
  • a mixed composition for a refrigerator containing the refrigerator oil composition according to [1] above and a refrigerant containing a hydrocarbon-based refrigerant.
  • a method for producing a refrigerating machine oil composition used for a refrigerant containing a hydrocarbon refrigerant comprising: A method for producing a refrigerating machine oil composition, comprising the step of blending one or more selected from polyalkylene glycol compounds (A) represented by the following general formula (1) and having a number average molecular weight of 1,100 or more.
  • a method for producing a refrigerating machine oil composition comprising the step of blending one or more selected from polyalkylene glycol compounds (A) represented by the following general formula (1) and having a number average molecular weight of 1,100 or more.
  • one of R 1 and R 2 is a hydrogen atom, and the other is a linear or branched alkyl group having 1 to 16 carbon atoms.
  • E is an ethylene group and P is a propylene group.
  • a refrigerating machine oil composition having an appropriate solution viscosity when a hydrocarbon refrigerant is dissolved and having a low solubility of the hydrocarbon refrigerant, and a mixed composition for a refrigerating machine containing the refrigerating machine oil composition. can be provided.
  • FIG. 2 is a cross-sectional view showing a viscosity measuring device used for measuring solution viscosity in Examples.
  • FIG. 2 is an enlarged cross-sectional view showing a main part of a viscosity measuring device used for measuring solution viscosity in Examples.
  • FIG. 3 is a cross-sectional view showing a part of the measurement procedure by a viscosity measuring device used for measuring the solution viscosity in Examples.
  • the refrigerating machine oil composition of the present embodiment is a refrigerating machine oil composition used for a refrigerant containing a hydrocarbon refrigerant, and is represented by the following general formula (1) and has a number average molecular weight of 1,100 or more.
  • Polyalkylene It contains one or more selected from glycol compounds (A).
  • one of R 1 and R 2 is a hydrogen atom, and the other is a linear or branched alkyl group having 1 to 16 carbon atoms.
  • E is an ethylene group and P is a propylene group.
  • m and n are numbers of 0 or more. However, m+n is 1 or more and 50 or less. ]
  • the PAG-based compound (A) represented by the above general formula (1) has an appropriate dissolution viscosity when dissolved in a hydrocarbon-based refrigerant, and that the solubility of the hydrocarbon-based refrigerant is low.
  • the present invention has been completed.
  • the PAG compound (A) functions as a base oil.
  • the refrigerating machine oil composition of the present embodiment may be composed only of the PAG compound (A), but other components other than the PAG compound (A) within a range that does not impair the effects of the present invention may contain.
  • the content of the PAG-based compound (A) is preferably 80% by mass or more, more preferably 85% by mass or more, based on the total amount (100% by mass) of the refrigerating machine oil composition. More preferably 90% by mass or more, still more preferably 95% by mass or more, still more preferably 99% by mass or more, still more preferably 100% by mass.
  • the content of the PAG-based compound (A) may be 100% by mass or less based on the total amount (100% by mass) of the refrigerating machine oil composition.
  • the refrigerator oil composition of this embodiment contains a PAG-based compound (A).
  • the PAG-based compound (A) is one or more selected from compounds represented by the following general formula (1).
  • one of R 1 and R 2 is a hydrogen atom, and the other is a linear or branched alkyl group having 1 to 16 carbon atoms.
  • the viscosity of the PAG compound (A) itself decreases, and the hydrocarbon refrigerant dissolves.
  • both R 1 and R 2 are hydrogen atoms, the polarity of the molecule becomes high and there is a risk of losing compatibility with hydrocarbon refrigerants.
  • the viscosity index is lowered, which may be disadvantageous in maintaining viscosity at high temperatures.
  • the alkyl group that can be selected as one of R 1 and R 2 has 17 or more carbon atoms, the solubility of the hydrocarbon-based refrigerant in the PAG-based compound (A) increases.
  • the number of carbon atoms of the alkyl group that can be selected as one of R 1 and R 2 may be 1 or more as described above, but from the viewpoint of making the viscosity of the PAG compound (A) itself a more appropriate range, the hydrocarbon It is preferably 2 or more, more preferably 3 or more, and still more preferably 4 or more from the viewpoint of making it more difficult for the solution viscosity to decrease when the system refrigerant is dissolved and making it easier to achieve a more appropriate solution viscosity. From the viewpoint of easily lowering the solubility of the hydrocarbon-based refrigerant in the PAG-based compound (A), it is preferably 14 or less, more preferably 12 or less, and even more preferably 10 or less. The upper and lower limits of these numerical ranges can be combined arbitrarily. Specifically, it is preferably 2-14, more preferably 3-12, still more preferably 4-10.
  • the alkyl group that can be selected as one of R 1 and R 2 may be linear or branched, but improves the viscosity index and improves the viscosity characteristics of the PAG compound (A). From the viewpoint of facilitating the formation of a polymer (in other words, from the viewpoint of facilitating adjustment of the viscosity to an appropriate range in a wide temperature range), it is preferably linear.
  • Linear or branched alkyl groups that can be selected as one of R 1 and R 2 include, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group and octyl group. , nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group and the like.
  • the branch position and the number of branches are not particularly limited.
  • E is an ethylene group and P is a propylene group. Accordingly, in the above general formula (1), "EO” means an oxyethylene group and "PO” means an oxypropylene group.
  • m and n are numbers of 0 or more. However, m+n is 1 or more and 50 or less. Therefore, the PAG-based compound (A) represented by the above general formula (1) may contain only an oxyethylene group, or may contain only an oxypropylene group. It may contain both. If m+n exceeds 50, the viscosity of the PAG compound (A) itself becomes too high, making it difficult to adjust the viscosity of the PAG compound (A) itself to an appropriate range.
  • the value of m+n is preferably 4 to 40, more preferably 5 to 30, still more preferably 7 to 24, from the viewpoint of facilitating adjustment of the viscosity of the PAG compound (A) itself to a more appropriate range. Even more preferably 9-24, still more preferably 10-24.
  • the value of m is the average number of EO units (average number of added moles).
  • n is the average number of PO units (average number of moles added).
  • n is preferably 1 or more. That is, the PAG-based compound (A) represented by the general formula (1) preferably contains an oxypropylene group.
  • n is 1 or more, the low-temperature fluidity of the PAG compound (A) can be easily ensured. From the viewpoint of ensuring the low-temperature fluidity of the PAG-based compound (A) more easily, n is preferably 3 or more, more preferably 5 or more, and even more preferably 7 or more.
  • m/n is preferably 1 or less.
  • m/n is preferably less than 1.0, more preferably 0.80 or less, and still more preferably 0.60 or less.
  • m /n is preferably 0.02 or more, more preferably 0.10 or more, still more preferably 0.20 or more, still more preferably 0.30 or more, and even more preferably 0.40 or more.
  • the upper and lower limits of these numerical ranges can be combined arbitrarily. Specifically, preferably 0.02 or more and less than 1.0, more preferably 0.10 to 0.80, still more preferably 0.20 to 0.60, still more preferably 0.30 to 0.60 , more preferably 0.40 to 0.60.
  • the method for producing the PAG-based compound (A) is not particularly limited, but a linear or branched chain having 1 to 16 carbon atoms that can be selected as one of R 1 and R 2 in the general formula (1) Polymerizing propylene oxide alone using an initiator selected from an alcohol consisting of an alkyl group and a hydroxyl group and an alkali metal salt of the alcohol, or polymerizing propylene oxide and ethylene oxide at a predetermined molar ratio. It can be produced by copolymerizing with.
  • Alkali metal salts of alcohols include sodium alkoxides and potassium alkoxides, among which sodium alkoxides are preferred.
  • the number average molecular weight of the PAG-based compound (A) is 1,100 or more.
  • the number average molecular weight of the PAG-based compound (A) is less than 1,100, the viscosity of the PAG-based compound (A) itself becomes low, and the solution viscosity becomes low when the hydrocarbon-based refrigerant is dissolved.
  • the number average molecular weight of the PAG compound (A) is preferably 1,200 or more, more preferably 1,300 or more, and still more preferably 1,300 or more, from the viewpoint of setting the viscosity of the PAG compound (A) itself in an appropriate range.
  • the number average molecular weight of the PAG-based compound (A) means a polystyrene equivalent value measured by the method described in Examples described later.
  • the 40° C. kinematic viscosity of the PAG-based compound (A) is preferably 20 mm 2 /s or more, more preferably 30 mm 2 /s or more, and even more preferably 30 mm 2 /s or more, from the viewpoint of suppressing wear in sliding parts such as compressors of refrigerators. is 40 mm 2 /s or more. From the viewpoint of oil return, it is preferably 350 mm 2 /s or less, more preferably 320 mm 2 /s or less, and even more preferably 300 mm 2 /s or less. The upper and lower limits of these numerical ranges can be combined arbitrarily.
  • it is preferably 20 mm 2 /s to 350 mm 2 /s, more preferably 30 mm 2 /s to 320 mm 2 /s, still more preferably 40 mm 2 / s to 300 mm 2 /s.
  • the 100° C. kinematic viscosity of the PAG-based compound (A) is preferably 4 mm 2 /s or more, more preferably 6 mm 2 /s or more, and even more preferably 6 mm 2 /s or more, from the viewpoint of suppressing wear in sliding parts such as compressors of refrigerators. is 8 mm 2 /s or more, more preferably 9 mm 2 /s or more. From the viewpoint of oil return, it is preferably 70 mm 2 /s or less, more preferably 60 mm 2 /s or less, and even more preferably 50 mm 2 /s or less. The upper and lower limits of these numerical ranges can be combined arbitrarily.
  • it is preferably 4 mm 2 /s to 70 mm 2 /s, more preferably 6 mm 2 /s to 70 mm 2 /s, even more preferably 8 mm 2 /s to 60 mm 2 /s, still more preferably 9 mm 2 / s. s to 50 mm 2 /s.
  • the kinematic viscosity of the PAG-based compound (A) means a value measured according to JIS K2283:2000.
  • the viscosity index of the PAG-based compound (A) is from the viewpoint of facilitating improvement of the viscosity characteristics of the PAG-based compound (A) (in other words, from the viewpoint of facilitating adjustment of the viscosity to an appropriate range in a wide temperature range). It is preferably 120 or more, more preferably 140 or more, even more preferably 160 or more, even more preferably 170 or more, and even more preferably 180 or more. Although the upper limit of the viscosity index of the PAG compound (A) is not particularly limited, it is usually 300 or less. In addition, in this specification, the viscosity index of the PAG-based compound (A) means a value calculated from the measured value of kinematic viscosity according to JIS K2283:2000.
  • the hydroxyl value of the PAG-based compound (A) is preferably 10 mgKOH/g or more, more preferably 20 mgKOH/g or more, still more preferably 30 mgKOH/g or more, and even more preferably, from the viewpoint of making it easier to exhibit the effects of the present invention. is greater than or equal to 40 mg KOH/g, more preferably greater than or equal to 50 mg KOH/g. Moreover, it is preferably 150 mgKOH/g or less.
  • the hydroxyl value of the PAG-based compound (A) means a value measured by a neutralization titration method in accordance with JIS K0070:1992.
  • Base oils other than the PAG compound (A) include one or more selected from the group consisting of mineral oils and synthetic oils that do not correspond to the PAG compound (A).
  • Mineral oils include, for example, atmospheric residual oils obtained by atmospheric distillation of crude oils such as paraffinic crude oils, intermediate crude oils, and naphthenic crude oils; distillates obtained by vacuum distillation of these atmospheric residual oils.
  • mineral oil obtained by subjecting the distillate to one or more treatments such as solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining; wax isomerized mineral oil, etc.
  • mineral oil may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Synthetic oils that do not fall under the PAG-based compound (A) include polyvinyl ethers; polyalkylene glycols that do not fall under the PAG-based compound (A); polyalkylene glycol or a copolymer of its monoether and polyvinyl ether; polyol esters; polyesters; polycarbonates; hydrides of ⁇ -olefin oligomers; alicyclic hydrocarbon compounds; alkylated aromatic hydrocarbon compounds; GTL base oil produced by isomerization; In addition, synthetic oil may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of mineral oil is preferably small.
  • the content of mineral oil is preferably less than 10 parts by mass, more preferably less than 1 part by mass, still more preferably less than 0.1 parts by mass, relative to 100 parts by mass of the PAG compound (A). More preferably, it does not contain mineral oil.
  • the content of the synthetic oil that does not correspond to the PAG compound (A) is small.
  • the content of the synthetic oil that does not correspond to the PAG-based compound (A) is preferably less than 100 parts by mass, more preferably less than 50 parts by mass, relative to 100 parts by mass of the PAG-based compound (A). More preferably less than 30 parts by mass, still more preferably less than 10 parts by mass, still more preferably less than 1 part by mass, still more preferably less than 0.1 parts by mass, still more preferably PAG-based compound (A) Do not contain synthetic oils.
  • the refrigerating machine oil composition of the present embodiment may or may not contain additives as long as the effects of the present invention are not impaired.
  • Additives include, for example, additives that can generally be blended in refrigerator oil compositions. Examples of such additives include one or more selected from the group consisting of antioxidants, oxygen scavengers, acid scavengers, extreme pressure agents, oiliness agents, metal deactivators, and antifoaming agents. mentioned.
  • the total content of these additives is preferably 0% by mass to 10% by mass, more preferably 0.01% by mass to 5% by mass, still more preferably based on the total amount (100% by mass) of the refrigerator oil composition. It is 0.1% by mass to 3% by mass.
  • Antioxidant include 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,2′-methylenebis(4-methyl-6-tert -butylphenol), phenyl- ⁇ -naphthylamine, N.I.
  • Amine-based antioxidants such as N'-diphenyl-p-phenylenediamine are included.
  • antioxidant may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Oxygen scavengers include aliphatic unsaturated compounds, terpenes having double bonds, and the like.
  • the unsaturated aliphatic compound is preferably an unsaturated hydrocarbon, and specific examples thereof include olefins; polyenes such as dienes and trienes.
  • olefins such as 1-tetradecene, 1-hexadecene, and 1-octadecene are preferable from the viewpoint of reactivity with oxygen.
  • vitamin A ((2E,4E,6E,8E)-3,7-dimethyl-9, represented by the molecular formula C 20 H 30 O
  • Unsaturated aliphatic alcohols with conjugated double bonds such as -(2,6,6-trimethylcyclohex-1-yl)non-2,4,6,8-tetraen-1-ol) are preferred.
  • the terpene having a double bond is preferably a terpene hydrocarbon having a double bond, and from the viewpoint of reactivity with oxygen, ⁇ -farnesene (C 15 H 24 : 3,7,11-trimethyldodeca-1 , 3,6,10-tetraene) and ⁇ -farnesene (C 15 H 24 : 7,11-dimethyl-3-methylidendodeca-1,6,10-triene) are more preferred.
  • One oxygen scavenger may be used alone, or two or more may be used in combination.
  • acid scavengers include epoxy compounds such as phenyl glycidyl ether, alkyl glycidyl ether, alkylene glycol glycidyl ether, cyclohexene oxide, ⁇ -olefin oxide, and epoxidized soybean oil. At least one selected from glycidyl esters, glycidyl ethers and ⁇ -olefin oxides is preferably used.
  • the glycidyl ether is a linear, branched, cyclic saturated or unsaturated aliphatic mono- or polyhydric alcohol having usually 3 to 30 carbon atoms, preferably 4 to 24 carbon atoms, more preferably 6 to 16 carbon atoms, or Examples include glycidyl ethers derived from aromatic compounds containing one or more hydroxyl groups. In the case of an aliphatic polyhydric alcohol or an aromatic compound containing two or more hydroxyl groups, all of the hydroxyl groups are glycidyl etherified from the viewpoint of suppressing an increase in the hydroxyl value for the stability of the lubricating oil composition. preferable.
  • glycidyl ethers derived from linear, branched or cyclic saturated aliphatic monoalcohols having 6 to 16 carbon atoms are particularly preferred.
  • examples of such glycidyl ethers include 2-ethylethyl glycidyl ether, isononyl glycidyl ether, caprinoyl glycidyl ether, lauryl glycidyl ether, myristyl glycidyl ether and the like.
  • ⁇ -olefin oxides generally having 4 to 50 carbon atoms, preferably 4 to 24 carbon atoms, more preferably 6 to 16 carbon atoms are used.
  • One acid scavenger may be used alone, or two or more may be used in combination.
  • extreme pressure agent examples include phosphorus-based extreme pressure agents such as phosphates, acid phosphates, phosphites, acid phosphites, and amine salts thereof.
  • phosphorus-based extreme pressure agents such as phosphates, acid phosphates, phosphites, acid phosphites, and amine salts thereof.
  • these phosphorus-based extreme pressure agents include tricresyl phosphate, trithiophenyl phosphate, tri(nonylphenyl) phosphite, dioleylhydrogen phosphite, 2-ethylhexyldiphenyl phosphite, etc., from the viewpoint of extreme pressure properties, friction properties, etc. is particularly preferred.
  • the extreme pressure agent includes a metal salt of carboxylic acid.
  • the metal salt of carboxylic acid referred to herein is preferably a metal salt of a carboxylic acid having 3 to 60 carbon atoms, more preferably a carboxylic acid having 3 to 30 carbon atoms, and particularly preferably a fatty acid having 12 to 30 carbon atoms. Dimer acids and trimer acids of the above fatty acids and metal salts of dicarboxylic acids having 3 to 30 carbon atoms can also be mentioned. Among these, metal salts of fatty acids having 12 to 30 carbon atoms and dicarboxylic acids having 3 to 30 carbon atoms are particularly preferred.
  • the metal constituting the metal salt is preferably an alkali metal or an alkaline earth metal, particularly an alkali metal.
  • extreme pressure agents other than the above include, for example, sulfurized oils and fats, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dihydrocarbyl polysulfides, thiocarbamates, thioterpenes, dialkylthiodipropionates, and the like. sulfur-based extreme pressure agents.
  • the extreme pressure agents may be used singly or in combination of two or more.
  • oiliness agents examples include aliphatic saturated and unsaturated monocarboxylic acids such as stearic acid and oleic acid, polymerized fatty acids such as dimer acid and hydrogenated dimer acid, ricinoleic acid, hydroxy fatty acids such as 12-hydroxystearic acid, and lauryl.
  • Alcohols such as oleyl alcohol, aliphatic saturated and unsaturated monoamines such as stearylamine and oleylamine, aliphatic saturated and unsaturated monocarboxylic acid amides such as lauric amide and oleic amide, glycerin , partial esters of polyhydric alcohols such as sorbitol and aliphatic saturated or unsaturated monocarboxylic acids.
  • Oily agents may be used singly or in combination of two or more.
  • metal deactivators examples include copper deactivators such as N-[N,N'-dialkyl (alkyl group having 3 to 12 carbon atoms)aminomethyl]triazole.
  • the metal deactivators may be used singly or in combination of two or more.
  • Antifoaming agent include, for example, silicone oil and fluorinated silicone oil.
  • An antifoaming agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the method for producing the refrigerating machine oil composition of this embodiment is not particularly limited.
  • the method for producing a refrigerating machine oil composition of the present embodiment is a method for producing a refrigerating machine oil composition used for a refrigerant containing a hydrocarbon refrigerant, It includes a step of blending one or more selected from polyalkylene glycol compounds (A) represented by the following general formula (1) and having a number average molecular weight of 1,100 or more.
  • A polyalkylene glycol compounds represented by the following general formula (1) and having a number average molecular weight of 1,100 or more.
  • one of R 1 and R 2 is a hydrogen atom, and the other is a linear or branched alkyl group having 1 to 16 carbon atoms.
  • E is an ethylene group and P is a propylene group.
  • m and n are numbers of 0 or more. However, m+n is 1 or more and 50 or less.
  • step of blending one or more selected from the PAG-based compound (A) represented by the general formula (1) for example, the PAG-based compound obtained by the above-described method for producing the PAG-based compound (A) Blending one or more selected from (A) can be mentioned.
  • the method for producing a refrigerating machine oil composition of the present embodiment further includes a step of mixing the PAG compound (A) with a base oil other than the PAG compound (A), and a step of mixing the additive. It may or may not have it.
  • the additive When the additive is blended with the PAG-based compound (A), the additive may be blended in the form of a solution (dispersion) by adding diluent oil or the like.
  • the preferred ranges of R 1 , R 2 , m, and n in general formula (1) are as described above for the PAG compound (A).
  • the 40° C. kinematic viscosity of the refrigerator oil composition is preferably 20 mm 2 /s or more, more preferably 30 mm 2 /s or more, still more preferably 40 mm 2 /s or more. From the viewpoint of oil return, it is preferably 350 mm 2 /s or less, more preferably 320 mm 2 /s or less, and even more preferably 300 mm 2 /s or less. The upper and lower limits of these numerical ranges can be combined arbitrarily.
  • it is preferably 20 mm 2 /s to 350 mm 2 /s, more preferably 30 mm 2 /s to 320 mm 2 /s, still more preferably 40 mm 2 / s to 300 mm 2 /s.
  • the 100° C. kinematic viscosity of the refrigerator oil composition is preferably 4 mm 2 /s or more, more preferably 6 mm 2 /s or more, and even more preferably 8 mm, from the viewpoint of suppressing wear in sliding parts such as compressors of refrigerators. 2 /s or more, more preferably 9 mm 2 /s or more. From the viewpoint of oil return, it is preferably 70 mm 2 /s or less, more preferably 60 mm 2 /s or less, and even more preferably 50 mm 2 /s or less. The upper and lower limits of these numerical ranges can be combined arbitrarily.
  • it is preferably 4 mm 2 /s to 70 mm 2 /s, more preferably 6 mm 2 /s to 70 mm 2 /s, even more preferably 8 mm 2 /s to 60 mm 2 /s, still more preferably 9 mm 2 / s. s to 50 mm 2 /s.
  • the kinematic viscosity of the refrigerator oil composition means a value measured according to JIS K2283:2000.
  • the solution viscosity of the refrigerating machine oil composition when the hydrocarbon-based refrigerant is dissolved is preferably from the viewpoint of suppressing wear in sliding parts such as the compressor of the refrigerating machine.
  • the solution viscosity of the refrigerating machine oil composition when the hydrocarbon-based refrigerant is dissolved is preferably from the viewpoint of suppressing wear in sliding parts such as the compressor of the refrigerating machine.
  • it is preferably 50 mm 2 /s or less.
  • the solution viscosity is a value measured with the hydrocarbon-based refrigerant of the refrigerator oil composition dissolved. Therefore, the melt viscosity can also be said to be the viscosity of the mixed composition for refrigerators, which is measured by the method described in Examples described later.
  • solubility of hydrocarbon-based refrigerant in refrigerator oil composition is preferably Less than 18.0% by mass, more preferably 17.0% by mass or less, still more preferably 16.5% by mass or less, even more preferably 16.0% by mass or less, still more preferably 15.5% by mass or less . Moreover, it is preferably 1% by mass or more.
  • the above refrigerator oil composition is mixed with a refrigerant and used as a mixture composition for refrigerators. That is, the mixed composition for a refrigerator contains the above-described refrigerator oil composition and a refrigerant.
  • the refrigerant will be described below.
  • the refrigerant used in this embodiment is a refrigerant containing a hydrocarbon-based refrigerant.
  • Hydrocarbon-based refrigerants are preferably hydrocarbons having 1 to 8 carbon atoms, more preferably hydrocarbons having 1 to 5 carbon atoms, and still more preferably hydrocarbons having 3 to 5 carbon atoms. When the number of carbon atoms is 8 or less, the boiling point of the refrigerant does not become too high, which is preferable as a refrigerant.
  • the hydrocarbon refrigerants include methane, ethane, ethylene, propane (R290), cyclopropane, propylene, n-butane, isobutane (R600a), 2-methylbutane, n-pentane, isopentane, cyclopentaneisobutane, and normal hexane.
  • One or more selected from the group consisting of One of the hydrocarbon-based refrigerants may be used alone, or two or more thereof may be used in combination.
  • the refrigerant may be a mixed refrigerant containing other refrigerants as necessary in addition to the hydrocarbon-based refrigerant.
  • Other refrigerants include, for example, one or more selected from saturated fluorocarbon refrigerants, unsaturated fluorohydrocarbon refrigerants, carbon dioxide, and ammonia. A saturated fluorocarbon refrigerant and an unsaturated fluorohydrocarbon refrigerant will be described below.
  • the saturated fluorohydrocarbon refrigerant is preferably an alkane fluoride having 1 to 4 carbon atoms, more preferably an alkane fluoride having 1 to 3 carbon atoms, more preferably an alkane having 1 or 2 carbon atoms (methane or ethane ).
  • the methane or ethane fluorides include trifluoromethane (R23), difluoromethane (R32), 1,1-difluoroethane (R152a), 1,1,1-trifluoroethane (R143a), 1,1,2- Trifluoroethane (R143), 1,1,1,2-tetrafluoroethane (R134a), 1,1,2,2-tetrafluoroethane (R134), 1,1,1,2,2-pentafluoroethane (R125) and the like. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • unsaturated fluorocarbon refrigerants include compounds represented by the following general formula (3).
  • CxFyHz ( 3 ) [In the general formula (3), x is an integer of 2 to 6, y is an integer of 1 to 11, z is an integer of 1 to 11, and has one or more carbon-carbon unsaturated bonds in the molecule. ]
  • the above general formula (3) represents the type and number of elements in the molecule, and specifically represents an unsaturated fluorohydrocarbon compound having 2 to 6 carbon atoms (C).
  • Unsaturated fluorohydrocarbon compounds having 2 to 6 carbon atoms have physical and chemical properties such as boiling point, freezing point and latent heat of vaporization required as refrigerants.
  • the bonding form of x carbon atoms represented by C x includes unsaturated bonds such as carbon-carbon single bonds and carbon-carbon double bonds.
  • the carbon-carbon unsaturated bond is preferably a carbon-carbon double bond from the viewpoint of stability, and the unsaturated fluorocarbon compound has an unsaturated bond such as a carbon-carbon double bond in the molecule.
  • Preferred examples of the unsaturated fluorohydrocarbon compound include fluorides of linear or branched chain olefins having 2 to 6 carbon atoms and cyclic olefins having 4 to 6 carbon atoms. Specifically, ethylene fluoride into which 1 to 3 fluorine atoms have been introduced, propene fluoride into which 1 to 5 fluorine atoms have been introduced, and butene into which 1 to 7 fluorine atoms have been introduced.
  • Fluorides pentene fluorides introduced with 1 to 9 fluorine atoms, hexene fluorides introduced with 1 to 11 fluorine atoms, and cyclobutene fluorides introduced with 1 to 5 fluorine atoms , cyclopentene fluorides into which 1 to 7 fluorine atoms have been introduced, and cyclohexene fluorides into which 1 to 9 fluorine atoms have been introduced.
  • propene fluorides are preferred, and propene having 3 to 5 fluorine atoms introduced is more preferred.
  • 1,3,3,3-tetrafluoropropene (R1234ze), 2,3,3,3-tetrafluoropropene (R1234yf), and 1,2,3,3-tetrafluoropropene (R1234ye) One or more selected from are preferable, and 2,3,3,3-tetrafluoropropene (R1234yf) is more preferable.
  • the unsaturated fluorocarbon refrigerants may be used singly or in combination of two or more.
  • the refrigerant contains a hydrocarbon-based refrigerant.
  • the content of the hydrocarbon-based refrigerant is preferably 20% by mass to 100% by mass, more preferably 30% by mass to 100% by mass, still more preferably 40% by mass to 100% by mass, and even more preferably, based on the total amount of the refrigerant. is 50% by mass to 100% by mass, more preferably 60% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, even more preferably 80% by mass to 100% by mass, even more preferably 90% by mass % to 100% by mass.
  • the amount of the refrigerant and the refrigerant oil composition used is preferably 30 at a mass ratio of the refrigerant oil composition to the refrigerant [(refrigerant oil composition)/(refrigerant)]. /70 to 90/10.
  • the mass ratio of the refrigerating machine oil composition to the refrigerant is within the above range, lubricity and suitable refrigerating capacity in the refrigerating machine can be obtained.
  • the refrigerating machine oil composition and the refrigerating machine mixture composition of the present embodiment are preferably used in, for example, a refrigerating system, a hot water supply system, or a heating system.
  • Specific examples include air conditioners, refrigerators, freezers, vending machines, and showcases.
  • Air conditioners include car air conditioners such as open type car air conditioners and electric car air conditioners; gas heat pump (GHP) air conditioners; and the like.
  • An aspect of the present invention provides the following [1] to [8].
  • one of R 1 and R 2 is a hydrogen atom, and the other is a linear or branched alkyl group having 1 to 16 carbon atoms.
  • E is an ethylene group and P is a propylene group.
  • m and n are numbers of 0 or more. However, m+n is 1 or more and 50 or less.
  • a method for producing a refrigerating machine oil composition used for a refrigerant containing a hydrocarbon refrigerant comprising: A method for producing a refrigerating machine oil composition, comprising the step of blending one or more selected from polyalkylene glycol compounds (A) represented by the following general formula (1) and having a number average molecular weight of 1,100 or more.
  • a method for producing a refrigerating machine oil composition comprising the step of blending one or more selected from polyalkylene glycol compounds (A) represented by the following general formula (1) and having a number average molecular weight of 1,100 or more.
  • one of R 1 and R 2 is a hydrogen atom, and the other is a linear or branched alkyl group having 1 to 16 carbon atoms.
  • E is an ethylene group and P is a propylene group.
  • m and n are numbers of 0 or more. However, m+n is 1 or more and 50 or less.
  • the number average molecular weight of the PAG compound was measured using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • HLC-8120GPC and SC-8020 manufactured by Tosoh Corporation
  • THF tetrahydrofuran
  • IR detector IR detector
  • the reaction mixture was dissolved in a mixture of 100 ml of water and 200 ml of methanol and passed through a column of 200 ml of cation exchange resin and then 200 ml of anion exchange resin. After distilling off the solvent, the residue was dried at 100° C. for 1 hour under reduced pressure (0.1 mmHg) with a vacuum pump to obtain 42.5 g of PAG compound (A')-1 (dimethyl ether of polyoxypropylene glycol).
  • Example 1 PAG-based compound (A)-1 obtained in Production Example 1
  • Example 2 PAG compound (A)-2 obtained in Production Example 2 -
  • Example 3 PAG compound (A)-3 obtained in Production Example 3 -
  • Example 4 PAG compound (A)-4 obtained in Production Example 4 -
  • Example 5 PAG compound (A)-5 obtained in Production Example 5
  • Comparative Example 1 PAG-based compound (A′)-1 obtained in Comparative Production Example 1
  • Comparative Example 2 PAG-based compound (A′)-2 obtained in Comparative Production Example 1
  • Comparative Example 3 Poly- ⁇ -olefin (PAO)
  • Example 4 Mineral oil
  • the solution viscosity of the refrigerant-dissolved refrigerating machine oil composition was measured.
  • predetermined amounts of the refrigerator oil composition 2 and the capillary viscometer 20 were placed in the container 10 made of a sapphire glass tube, and then the lid 11 was closed.
  • the container 10 was immersed in the constant temperature bath 3 containing the heat medium 4 .
  • the temperature of the heat medium 4 was kept at 80° C. by the temperature control means 5 .
  • the needle valve 25 and the refrigerant collection line are connected via the pressure hose 27, and the vacuum pump (not shown) is operated to reduce the pressure in the container 10 and the refrigerant collection line to approximately 13.3 Pa. Degassed. After degassing, the vacuum pump was stopped, the main valve of the refrigerant container was opened, and the refrigerant (R290) was introduced into the container 10 . The refrigerant was introduced so that the pressure in the container 10 was 2.0 MPa. After introducing the refrigerant, the needle valve 25 is closed, the valve of the refrigerant container is closed, and the pressure hose 27 is disconnected. was installed.
  • the drive means for moving the permanent magnet 14 was activated to move the permanent magnet 14 and raise the capillary viscometer 20 to position B.
  • FIG. 3 As a result, as shown in FIG. 3, the refrigerant-dissolved refrigerator oil composition 2 drips from the capillary viscometer 20, and the liquid level of the refrigerant-dissolved refrigerator oil composition 2 drops.
  • the optical fiber 15 (15A, 15B, 15C, 15D) detects that the liquid surface of the refrigerating machine oil composition 2 in which the refrigerant is dissolved has passed the marked line 21B and the marked line 21A, and the refrigerating machine oil in which the refrigerant is dissolved
  • the solution viscosity was measured by causing the viscosity calculator to automatically measure the time required for the composition 2 to pass through the narrow tube portion 22 and automatically measuring the viscosity.
  • the solution viscosity was measured after confirming that the refrigerant and the refrigerating machine oil composition were not separated.
  • reference numeral 6 indicates the gas that fills the container 10.
  • Reference numeral 14A is an arm that holds the permanent magnet 14.
  • FIG. Reference numeral 21 is a liquid reservoir.
  • Reference numeral 23 is a band-shaped outer ring portion made of a magnetic material and fixed to the outer peripheral surface of the side wall of the narrow tube portion 22 .
  • the evaluation criteria for the melt viscosity were as follows, and evaluations A and B were accepted. ⁇ Evaluation A: more than 3.50 mm 2 /s ⁇ Evaluation B: 2.20 mm 2 /s or more and 3.50 mm 2 /s or less ⁇ Evaluation C: less than 2.20 mm 2 /s The higher the solution viscosity, the more the hydrocarbon refrigerant It can be said that it exhibits good lubricity and has an appropriate melt viscosity even when is dissolved.
  • Evaluation criteria for solubility were as follows, and evaluations A and B were accepted. ⁇ Evaluation A: Less than 15.0% by mass ⁇ Evaluation B: 15.0% by mass or more and less than 18.0% by mass ⁇ Evaluation C: 18.0% by mass or more The lower the solubility, the more the hydrocarbon-based refrigerant is suppressed from dissolving. Cheap.
  • Table 1 shows the following. It can be seen that the PAG-based compounds of Examples 1 to 5 have high dissolution viscosities when dissolved in hydrocarbon-based refrigerants, and low solubility of hydrocarbon-based refrigerants.
  • the PAG-based compound of Comparative Example 1, the PAO of Comparative Example 3, and the mineral oil of Comparative Example 4 have a low melt viscosity when the hydrocarbon refrigerant is dissolved, and the solubility of the hydrocarbon refrigerant is also high. Recognize.
  • the PAG-based compound of Comparative Example 2 has a low melt viscosity when dissolved in a hydrocarbon-based refrigerant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Abstract

炭化水素系冷媒が溶解した際に適切な溶解粘度を有し、炭化水素系冷媒の溶解度が低い冷凍機油組成物、並びに当該冷凍機油組成物を含む冷凍機用混合組成物を提供することを課題とした。 そして、当該課題を、炭化水素系冷媒を含む冷媒に用いられる冷凍機油組成物であって、下記一般式(1)で表され、数平均分子量が1,100以上であるポリアルキレングリコール系化合物(A)から選択される1種以上を含有する、冷凍機油組成物とすることで解決した。[前記一般式(1)中、R1及びR2の一方は水素原子であり、他方は炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基である。Eはエチレン基であり、Pはプロピレン基である。m及びnは0以上の数である。但し、m+nは1以上50以下である。]

Description

冷凍機油組成物及び冷凍機用混合組成物
 本発明は、冷凍機油組成物及び冷凍機用混合組成物に関する。
 なお、本明細書において、「冷凍機用混合組成物」とは、「冷凍機油組成物」と「冷媒」とを混合した組成物を指す。
 例えば圧縮型冷凍機等の冷凍機は、一般に、少なくとも圧縮機、凝縮器、膨張機構(例えば膨張弁等)、及び蒸発器を含み、密閉された系内を、冷凍機用混合組成物が循環する構造を有する。
 圧縮型冷凍機等の冷凍機に用いられる冷媒としては、従来多く使用されていたハイドロクロロフルオロカーボン(HCFC)に代わり、環境負荷の低いフッ化炭化水素化合物が使用されつつある。フッ化炭化水素化合物としては、1,1,1,2-テトラフルオロエタン(R134a)、ジフルオロメタン(R32)、1,1-ジフルオロエタン(R152a)、及びジフルオロメタンとペンタフルオロエタンの混合物(R410A)等の飽和フッ化炭化水素化合物(Hydro-Fluoro-Carbon;以下、「HFC」ともいう)が挙げられる。
 また、地球温暖化係数(GWP)が低い、1,3,3,3-テトラフルオロプロペン(R1234ze)、2,3,3,3-テトラフルオロプロペン(R1234yf)、及び1,2,3,3-テトラフルオロプロペン(R1234ye)等の不飽和フッ化炭化水素化合物(Hydro-Fluoro-Olefin;以下、「HFO」ともいう)の使用も検討されている。
 近年では、地球温暖化係数(GWP)のさらなる低減の観点から、プロパン(R290)等の炭化水素系冷媒の適用も検討されつつある(例えば、特許文献1を参照)。
特開2004-043611号公報
 ところで、炭化水素系冷媒は、HFC冷媒やHFO冷媒と比較して、冷凍機油組成物に冷媒が溶解した冷凍機用混合組成物の粘度(以下、「溶解粘度」ともいう)が低くなりやすい。溶解粘度の低下は、冷凍機の圧縮機等の摺動部において、摩耗の進行の要因となる。したがって、炭化水素系冷媒を使用する際に用いられる冷凍機油組成物には、炭化水素系冷媒が溶解した際にも良好な潤滑性が発揮されるように、適切な溶解粘度を有することが求められる。
 また、炭化水素系冷媒は、強燃性である。そのため、安全性を確保しやすくする観点から、炭化水素系冷媒の使用量を少なくすることが望ましい。したがって、炭化水素系冷媒を使用する際に用いられる冷凍機油組成物は、炭化水素系冷媒の溶解量を少なくして、炭化水素系冷媒の過剰な溶解を抑えることが望ましい。かかる要望を達成する観点から、炭化水素系冷媒を使用する際に用いられる冷凍機油組成物は、炭化水素系冷媒の溶解度が低いことが望ましい。
 しかしながら、特許文献1の冷凍機油組成物は、いずれの性能も不十分である。
 そこで、本発明は、炭化水素系冷媒が溶解した際に適切な溶解粘度を有し、炭化水素系冷媒の溶解度が低い冷凍機油組成物、並びに当該冷凍機油組成物を含む冷凍機用混合組成物を提供することを課題とする。
 本発明によれば、下記[1]~[3]が提供される。
[1] 炭化水素系冷媒を含む冷媒に用いられる冷凍機油組成物であって、
 下記一般式(1)で表され、数平均分子量が1,100以上であるポリアルキレングリコール系化合物(A)から選択される1種以上を含有する、冷凍機油組成物。
Figure JPOXMLDOC01-appb-C000003

[前記一般式(1)中、R及びRの一方は水素原子であり、他方は炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基である。Eはエチレン基であり、Pはプロピレン基である。m及びnは0以上の数である。但し、m+nは1以上50以下である。]
[2] 上記[1]に記載の冷凍機油組成物と、炭化水素系冷媒を含む冷媒とを含有する、冷凍機用混合組成物。
[3] 炭化水素系冷媒を含む冷媒に用いられる冷凍機油組成物の製造方法であって、
 下記一般式(1)で表され、数平均分子量が1,100以上であるポリアルキレングリコール系化合物(A)から選択される1種以上を配合する工程を含む、冷凍機油組成物の製造方法。
Figure JPOXMLDOC01-appb-C000004

[前記一般式(1)中、R及びRの一方は水素原子であり、他方は炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基である。Eはエチレン基であり、Pはプロピレン基である。m及びnは0以上の数である。但し、m+nは1以上50以下である。]
 本発明によれば、炭化水素系冷媒が溶解した際に適切な溶解粘度を有し、炭化水素系冷媒の溶解度が低い冷凍機油組成物、並びに当該冷凍機油組成物を含む冷凍機用混合組成物を提供することが可能となる。
実施例において、溶解粘度の測定に用いた粘度測定装置を示す断面図である。 実施例において、溶解粘度の測定に用いた粘度測定装置の要部を示す拡大断面図である。 実施例において、溶解粘度の測定に用いた粘度測定装置による測定手順の一部を示す断面図である。
 本明細書に記載された数値範囲の上限値および下限値は任意に組み合わせることができる。例えば、数値範囲として「A~B」及び「C~D」が記載されている場合、「A~D」及び「C~B」の数値範囲も、本発明の範囲に含まれる。
 また、本明細書に記載された数値範囲「下限値~上限値」は、特に断りのない限り、下限値以上、上限値以下であることを意味する。
 また、本明細書において、実施例の数値は、上限値又は下限値として用いられ得る数値である。
 なお、以降の説明では、「ポリアルキレングリコール系化合物」を、「PAG系化合物」と略記することもある。
[冷凍機油組成物の態様]
 本実施形態の冷凍機油組成物は、炭化水素系冷媒を含む冷媒に用いられる冷凍機油組成物であって、下記一般式(1)で表され、数平均分子量が1,100以上であるポリアルキレングリコール系化合物(A)から選択される1種以上を含有する。
Figure JPOXMLDOC01-appb-C000005

[前記一般式(1)中、R及びRの一方は水素原子であり、他方は炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基である。Eはエチレン基であり、Pはプロピレン基である。m及びnは0以上の数である。但し、m+nは1以上50以下である。]
 本発明者らは、上記課題を解決すべく、鋭意検討を行った。その結果、上記一般式(1)で表されるPAG系化合物(A)が、炭化水素系冷媒が溶解した際に適切な溶解粘度を有し、炭化水素系冷媒の溶解度が低いことを見出し、本発明を完成するに至った。
 本発明の効果が奏される機構については、明確にはなっていないが、例えば以下のように推察される。すなわち、上記一般式(1)で表され、数平均分子量が1,100以上であるPAG系化合物(A)が、上記課題を達成する上でバランスに優れた分子構造を有していること等に起因しているものと推察される。
 本実施形態の冷凍機油組成物において、PAG系化合物(A)は基油として機能する。
 ここで、本実施形態の冷凍機油組成物は、PAG系化合物(A)のみから構成されていてもよいが、本発明の効果を損なわない範囲で、PAG系化合物(A)以外の他の成分を含有していてもよい。
 本実施形態の冷凍機油組成物において、PAG系化合物(A)の含有量は、冷凍機油組成物の全量(100質量%)基準で、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、より更に好ましくは95質量%以上、更になお好ましくは99質量%以上、一層好ましくは100質量%である。なお、PAG系化合物(A)の含有量は、冷凍機油組成物の全量(100質量%)基準で、100質量%以下であってもよい。
 以下、本実施形態の冷凍機油組成物が含有する成分等について、詳細に説明する。
<PAG系化合物(A)>
 本実施形態の冷凍機油組成物は、PAG系化合物(A)を含有する。
 PAG系化合物(A)は、下記一般式(1)で表される化合物から選択される1種以上である。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(1)中、R及びRの一方は水素原子であり、他方は炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基である。
 R及びRの双方が炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基であると、PAG系化合物(A)自体の粘度が低くなるとともに、炭化水素系冷媒が溶解した際に溶解粘度が低くなってしまう。
 また、R及びRの双方が水素原子であると、分子の極性が高くなって、炭化水素系冷媒との相溶性を喪失する恐れがある。また、粘度指数が低下して、高温での粘度保持において不利になる恐れがある。
 さらに、R及びRの一方として選択し得るアルキル基の炭素数が17以上であると、PAG系化合物(A)への炭化水素系冷媒の溶解度が高くなってしまう。
 R及びRの一方として選択し得るアルキル基の炭素数は、上記のように1以上であればよいが、PAG系化合物(A)自体の粘度をより適切な範囲とする観点、炭化水素系冷媒が溶解した際に溶解粘度をより低下しにくくしてより適切な溶解粘度にしやすくする観点から、好ましくは2以上、より好ましくは3以上、更に好ましくは4以上である。また、PAG系化合物(A)への炭化水素系冷媒の溶解度を低くしやすくする観点から、好ましくは14以下、より好ましくは12以下、更に好ましくは10以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは2~14、より好ましくは3~12、更に好ましくは4~10である。
 R及びRの一方として選択し得るアルキル基は、直鎖状であっても、分岐鎖状であってもよいが、粘度指数を向上させてPAG系化合物(A)の粘度特性を向上させやすくする観点(換言すれば、広範囲の温度領域において粘度を適切な範囲に調整しやすくする観点)から、好ましくは直鎖状である。
 R及びRの一方として選択し得る、直鎖状もしくは分岐鎖状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、及びヘキサデシル基等が挙げられる。
 なお、R及びRの一方として選択し得るアルキル基が分岐鎖状である場合、分岐位置及び分岐数は、特に限定されない。
 また、上記一般式(1)中、Eはエチレン基であり、Pはプロピレン基である。したがって、上記一般式(1)中、「EO」はオキシエチレン基を意味し、「PO」はオキシプロピレン基を意味する。
 上記一般式(1)中、m及びnは0以上の数である。但し、m+nは1以上50以下である。
 したがって、上記一般式(1)で表されるPAG系化合物(A)は、オキシエチレン基のみを含んでいてもよく、オキシプロピレン基のみを含んでいてもよく、オキシエチレン基及びオキシプロピレン基の双方を含んでいてもよい。
 なお、m+nが50超である場合、PAG系化合物(A)自体の粘度が高くなりすぎるため、PAG系化合物(A)自体の粘度を適切な範囲に調整することが困難となる。
 ここで、m+nの値は、PAG系化合物(A)自体の粘度をより適切な範囲に調整しやすくする観点から、好ましくは4~40、より好ましくは5~30、更に好ましくは7~24、より更に好ましくは9~24、更になお好ましくは10~24である。
 なお、本明細書において、mの値は、EO単位の数の平均値(平均付加モル数)である。nの値は、PO単位の数の平均値(平均付加モル数)である。
 ここで、上記一般式(1)中において、nが1以上であることが好ましい。すなわち、上記一般式(1)で表されるPAG系化合物(A)は、オキシプロピレン基を含むことが好ましい。
 nが1以上であることによって、PAG系化合物(A)の低温流動性を確保しやすくできる。
 なお、PAG系化合物(A)の低温流動性をより確保しやすくする観点から、nは、好ましくは3以上、より好ましくは5以上、更に好ましくは7以上である。
 また、上記一般式(1)中において、m/nが1以下であることが好ましい。
 m/nが1以下であることによって、PAG系化合物(A)の低温流動性を確保しやすくできる。
 なお、PAG系化合物(A)の低温流動性をより確保しやすくする観点から、m/nは、好ましくは1.0未満、より好ましくは0.80以下、更に好ましくは0.60以下である。
 また、PAG系化合物(A)に炭化水素系冷媒が溶解した際に溶解粘度を低下しにくくする観点、PAG系化合物(A)への炭化水素系冷媒の溶解度を低下させやすくする観点から、m/nは、好ましくは0.02以上、より好ましくは0.10以上、更に好ましくは0.20以上、より更に好ましくは0.30以上、更になお好ましくは0.40以上である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは0.02以上1.0未満、より好ましくは0.10~0.80、更に好ましくは、0.20~0.60、より更に好ましくは0.30~0.60、更になお好ましくは0.40~0.60である。
<PAG系化合物(A)の製造方法>
 PAG系化合物(A)の製造方法は、特に制限されないが、上記一般式(1)中のR及びRの一方として選択し得る、炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基及び水酸基からなるアルコール並びに当該アルコールのアルカリ金属塩から選択される1種以上を開始剤とし、プロピレンオキサイドを単独で重合すること、あるいは、プロピレンオキサイドとエチレンオキサイドとを所定のモル比で共重合することにより、製造することができる。
 なお、上記アルコールを構成する、炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基の好適な態様は、上記一般式(1)中のR及びRの説明において詳述したとおりである。
 また、上記アルコールのアルカリ金属塩としては、ナトリウムアルコキシド及びカリウムアルコキシド等が挙げられ、これらの中でもナトリウムアルコキシドが好ましい。
<PAG系化合物(A)の数平均分子量>
 PAG系化合物(A)の数平均分子量は、1,100以上である。
 PAG系化合物(A)の数平均分子量が、1,100未満である場合、PAG系化合物(A)自体の粘度が低くなり、炭化水素系冷媒が溶解した際に溶解粘度が低くなってしまう。
 ここで、PAG系化合物(A)の数平均分子量は、PAG系化合物(A)自体の粘度を適切な範囲とする観点から、好ましくは1,200以上、より好ましくは1,300以上、更に好ましくは1,400以上、より更に好ましくは1,500以上、更になお好ましくは1,600以上、一層好ましくは1,700以上である。
 また、油戻りの観点から、好ましくは、10,000以下である。
 なお、本明細書において、PAG系化合物(A)の数平均分子量は、後述する実施例に記載の方法により測定される、ポリスチレン換算値を意味する。
<PAG系化合物(A)の動粘度>
 PAG系化合物(A)の40℃動粘度は、冷凍機の圧縮機等の摺動部における摩耗を抑制する観点から、好ましくは20mm/s以上、より好ましくは30mm/s以上、更に好ましくは40mm/s以上である。また、油戻りの観点から、好ましくは350mm/s以下、より好ましくは320mm/s以下、更に好ましくは300mm/s以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは20mm/s~350mm/s、より好ましくは30mm/s~320mm/s、更に好ましくは40mm/s~300mm/sである。
 PAG系化合物(A)の100℃動粘度は、冷凍機の圧縮機等の摺動部における摩耗を抑制する観点から、好ましくは4mm/s以上、より好ましくは6mm/s以上、更に好ましくは8mm/s以上、より更に好ましくは9mm/s以上である。また、油戻りの観点から、好ましくは70mm/s以下、より好ましくは60mm/s以下、更に好ましくは50mm/s以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは4mm/s~70mm/s、より好ましくは6mm/s~70mm/s、更に好ましくは8mm/s~60mm/s、より更に好ましくは9mm/s~50mm/sである。
 なお、本明細書において、PAG系化合物(A)の動粘度は、JIS K2283:2000に準拠して測定される値を意味する。
<PAG系化合物(A)の粘度指数>
 PAG系化合物(A)の粘度指数は、PAG系化合物(A)の粘度特性を向上させやすくする観点(換言すれば、広範囲の温度領域において粘度を適切な範囲に調整しやすくする観点)から、好ましくは120以上、より好ましくは140以上、更に好ましくは160以上、より更に好ましくは170以上、更になお好ましくは180以上である。なお、PAG系化合物(A)の粘度指数の上限値は特に限定されないが、通常、300以下である。
 なお、本明細書において、PAG系化合物(A)の粘度指数は、JIS K2283:2000に準拠して、動粘度の測定値から算出される値を意味する。
<PAG系化合物(A)の水酸基価>
 PAG系化合物(A)の水酸基価は、本発明の効果をより発揮させやすくする観点から、好ましくは10mgKOH/g以上、より好ましくは20mgKOH/g以上、更に好ましくは30mgKOH/g以上、より更に好ましくは40mgKOH/g以上、更になお好ましくは50mgKOH/g以上である。また、好ましくは150mgKOH/g以下である。
 なお、本明細書において、PAG系化合物(A)の水酸基価は、JIS K0070:1992に準拠して、中和滴定法により測定される値を意味する。
<PAG系化合物(A)以外の他の基油>
 本実施形態の冷凍機油組成物は、PAG系化合物(A)以外の他の基油をさらに含有してもよく、含有していなくてもよい。
 PAG系化合物(A)以外の他の基油としては、鉱油及びPAG系化合物(A)には該当しない合成油からなる群から選択される1種以上が挙げられる。
 鉱油としては、例えば、パラフィン系原油、中間基系原油、ナフテン系原油等の原油を常圧蒸留して得られる常圧残油;これらの常圧残油を減圧蒸留して得られる留出油;当該留出油を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製等の処理を1つ以上施して得られる鉱油;ワックス異性化鉱油等が挙げられる。
 なお、鉱油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 PAG系化合物(A)には該当しない合成油としては、ポリビニルエーテル類;PAG系化合物(A)には該当しないポリアルキレングリコール類;ポリアルキレングリコール又はそのモノエーテルとポリビニルエーテルとの共重合体;ポリオールエステル類;ポリエステル類;ポリカーボネート類;α-オレフィンオリゴマーの水素化物;脂環式炭化水素化合物;アルキル化芳香族炭化水素化合物;フィシャートロプシュプロセス等により製造されるGTL WAX(ガストゥリキッド ワックス)を異性化することによって製造されるGTL基油;等が挙げられる。
 なお、合成油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、本発明の効果をより発揮させやすくする観点から、鉱油の含有量は、少ないことが好ましい。具体的には、鉱油の含有量は、PAG系化合物(A)100質量部に対して、好ましくは10質量部未満、より好ましくは1質量部未満、更に好ましくは0.1質量部未満、より更に好ましくは鉱油を含まないことである。
 また、同様の観点から、PAG系化合物(A)には該当しない合成油の含有量は、少ないことが好ましい。具体的には、PAG系化合物(A)には該当しない合成油の含有量は、PAG系化合物(A)100質量部に対して、好ましくは100質量部未満、より好ましくは50質量部未満、更に好ましくは30質量部未満、より更に好ましくは10質量部未満、更になお好ましくは1質量部未満、一層好ましくいは0.1質量部未満、より一層好ましくはPAG系化合物(A)には該当しない合成油を含まないことである。
<添加剤>
 本実施形態の冷凍機油組成物は、本発明の効果を損なわない範囲内で、添加剤を更に含有してもよく、含有していなくてもよい。
 添加剤としては、例えば冷凍機油組成物に一般的に配合され得る添加剤が挙げられる。
 このような添加剤としては、例えば、酸化防止剤、酸素捕捉剤、酸捕捉剤、極圧剤、油性剤、金属不活性化剤、及び消泡剤からなる群から選択される1種以上が挙げられる。
 これらの添加剤の合計含有量は、冷凍機油組成物の全量(100質量%)基準で、好ましくは0質量%~10質量%、より好ましくは0.01質量%~5質量%、更に好ましくは0.1質量%~3質量%である。
(酸化防止剤)
 酸化防止剤としては、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)等のフェノール系酸化防止剤、フェニル-α-ナフチルアミン、N.N’-ジフェニル-p-フェニレンジアミン等のアミン系の酸化防止剤が挙げられる。
 なお、酸化防止剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(酸素捕捉剤)
 酸素捕捉剤としては、脂肪族不飽和化合物、二重結合を有するテルペン類等が挙げられる。
 上記脂肪族不飽和化合物としては、不飽和炭化水素が好ましく、具体的には、オレフィン;ジエン、トリエン等のポリエン等が挙げられる。オレフィンとしては、酸素との反応性の観点から、1-テトラデセン、1-ヘキサデセン、1-オクタデセン等のα-オレフィンが好ましい。
 上記以外の脂肪族不飽和化合物としては、酸素との反応性の観点から、分子式C2030Oで表されるビタミンA((2E,4E,6E,8E)-3,7-ジメチル-9-(2,6,6-トリメチルシクロヘキセ-1-イル)ノナ-2,4,6,8-テトラエン-1-オール)等の共役二重結合を有する不飽和脂肪族アルコールが好ましい。
 二重結合を有するテルペン類としては、二重結合を有するテルペン系炭化水素が好ましく、酸素との反応性の観点から、α-ファルネセン(C1524:3,7,11-トリメチルドデカ-1,3,6,10-テトラエン)及びβ-ファルネセン(C1524:7,11-ジメチル-3-メチリデンドデカ-1,6,10-トリエン)がより好ましい。
 酸素捕捉剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(酸捕捉剤)
 酸捕捉剤としては、例えばフェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシド、エポキシ化大豆油などのエポキシ化合物を挙げることができるが、酸捕捉剤としては、特にグリシジルエステル、グリシジルエーテル及びα-オレフィンオキシドの中から選ばれる少なくとも1種が好適に用いられる。
 グリシジルエーテルとしては、炭素数が、通常3~30、好ましくは4~24、より好ましくは6~16の直鎖状、分岐状、環状の飽和若しくは不飽和の脂肪族モノ又は多価アルコール、あるいは水酸基1個以上含有する芳香族化合物由来のグリシジルエーテルが挙げられる。脂肪族多価アルコールや水酸基2個以上含有する芳香族化合物の場合、潤滑油組成物の安定性のために、水酸基価の上昇を抑える観点から、水酸基の全てがグリシジルエーテル化されていることが好ましい。
 これらの中でも、特に炭素数6~16の直鎖状、分岐状、環状の飽和脂肪族モノアルコール由来のグリシジルエーテルが好ましい。このようなグリシジルエーテルとしては、例えば2-エチルエチルグリシジルエーテル、イソノニルグリシジルエーテル、カプリノイルグリシジルエーテル、ラウリルグリシジルエーテル、ミリスチルグリシジルエーテルなどが挙げられる。
 一方、α-オレフィンオキシドとしては、炭素数が一般に4~50、好ましくは4~24、より好ましくは6~16のものが用いられる。
 酸捕捉剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(極圧剤)
 極圧剤としては、リン酸エステル、酸性リン酸エステル、亜リン酸エステル、酸性亜リン酸エステル及びこれらのアミン塩などのリン系極圧剤を挙げることができる。
 これらのリン系極圧剤の中でも、極圧性、摩擦特性などの点からトリクレジルホスフェート、トリチオフェニルホスフェート、トリ(ノニルフェニル)ホスファイト、ジオレイルハイドロゲンホスファイト、2-エチルヘキシルジフェニルホスファイトなどが特に好ましい。
 また、極圧剤としては、カルボン酸の金属塩が挙げられる。ここでいうカルボン酸の金属塩は、好ましくは炭素数3~60のカルボン酸、さらには炭素数3~30のカルボン酸、特に好ましくは12~30の脂肪酸の金属塩である。また、前記脂肪酸のダイマー酸やトリマー酸並びに炭素数3~30のジカルボン酸の金属塩を挙げることができる。これらのうち炭素数12~30の脂肪酸及び炭素数3~30のジカルボン酸の金属塩が特に好ましい。
 一方、金属塩を構成する金属としてはアルカリ金属またはアルカリ土類金属が好ましく、特に、アルカリ金属が最適である。
 また、極圧剤としては、さらに、上記以外の極圧剤として、例えば、硫化油脂、硫化脂肪酸、硫化エステル、硫化オレフィン、ジヒドロカルビルポリサルファイド、チオカーバメート類、チオテルペン類、ジアルキルチオジプロピオネート類などの硫黄系極圧剤を挙げることができる。
 極圧剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(油性剤)
 油性剤の例としては、ステアリン酸、オレイン酸などの脂肪族飽和及び不飽和モノカルボン酸、ダイマー酸、水添ダイマー酸などの重合脂肪酸、リシノレイン酸、12-ヒドロキシステアリン酸などのヒドロキシ脂肪酸、ラウリルアルコール、オレイルアルコールなどの脂肪族飽和及び不飽和モノアルコール、ステアリルアミン、オレイルアミンなどの脂肪族飽和および不飽和モノアミン、ラウリン酸アミド、オレイン酸アミドなどの脂肪族飽和及び不飽和モノカルボン酸アミド、グリセリン、ソルビトールなどの多価アルコールと脂肪族飽和または不飽和モノカルボン酸との部分エステル等が挙げられる。
 油性剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(金属不活性化剤)
 金属不活性化剤としては、例えばN-[N,N’-ジアルキル(炭素数3~12のアルキル基)アミノメチル]トリアゾ-ルなどの銅不活性化剤等が挙げられる。
 金属不活性化剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(消泡剤)
 消泡剤としては、例えばシリコ-ン油やフッ素化シリコ-ン油等が挙げられる。
 消泡剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[冷凍機油組成物の製造方法]
 本実施形態の冷凍機油組成物を製造する方法は、特に制限されない。
 例えば、本実施形態の冷凍機油組成物の製造方法は、炭化水素系冷媒を含む冷媒に用いられる冷凍機油組成物の製造方法であって、
 下記一般式(1)で表され、数平均分子量が1,100以上であるポリアルキレングリコール系化合物(A)から選択される1種以上を配合する工程を含む。
Figure JPOXMLDOC01-appb-C000007

[前記一般式(1)中、R及びRの一方は水素原子であり、他方は炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基である。Eはエチレン基であり、Pはプロピレン基である。m及びnは0以上の数である。但し、m+nは1以上50以下である。]
 上記一般式(1)で表されるPAG系化合物(A)から選択される1種以上を配合する工程としては、例えば、上述したPAG系化合物(A)の製造方法により得られたPAG系化合物(A)から選択される1種以上を配合することが挙げられる。
 本実施形態の冷凍機油組成物の製造方法は、さらに、PAG系化合物(A)を、PAG系化合物(A)以外の他の基油と混合する工程、さらには上記添加剤を混合する工程を有していてもよく、有していなくてもよい。
 なお、上記添加剤をPAG系化合物(A)に配合する場合、上記添加剤は、希釈油等を加えて溶液(分散体)の形態とした上で配合してもよい。
 なお、上記一般式(1)中、R、R、m、nの好ましい範囲は、PAG系化合物(A)の説明として上述したとおりである。
[冷凍機油組成物の物性]
<冷凍機油組成物の動粘度>
 冷凍機油組成物の40℃動粘度は、好ましくは20mm/s以上、より好ましくは30mm/s以上、更に好ましくは40mm/s以上である。また、油戻りの観点から、好ましくは350mm/s以下、より好ましくは320mm/s以下、更に好ましくは300mm/s以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは20mm/s~350mm/s、より好ましくは30mm/s~320mm/s、更に好ましくは40mm/s~300mm/sである。
 冷凍機油組成物の100℃動粘度は、冷凍機の圧縮機等の摺動部における摩耗を抑制する観点から、好ましくは4mm/s以上、より好ましくは6mm/s以上、更に好ましくは8mm/s以上、より更に好ましくは9mm/s以上である。また、油戻りの観点から、好ましくは70mm/s以下、より好ましくは60mm/s以下、更に好ましくは50mm/s以下である。
 これらの数値範囲の上限値及び下限値は任意に組み合わせることができる。具体的には、好ましくは4mm/s~70mm/s、より好ましくは6mm/s~70mm/s、更に好ましくは8mm/s~60mm/s、より更に好ましくは9mm/s~50mm/sである。
 なお、本明細書において、冷凍機油組成物の動粘度は、JIS K2283:2000に準拠して測定される値を意味する。
<炭化水素系冷媒が溶解した際の冷凍機油組成物の溶解粘度>
 後述する実施例に記載の方法で測定される、炭化水素系冷媒が溶解した際の冷凍機油組成物の溶解粘度は、冷凍機の圧縮機等の摺動部における摩耗を抑制する観点から、好ましくは2.20mm/s以上、より好ましくは2.50mm/s以上、更に好ましくは3.00mm/s以上、より更に好ましくは3.50mm/s以上、更になお好ましくは3.70mm/s以上である。また、好ましくは50mm/s以下である。
 なお、当該溶解粘度は、冷凍機油組成物の炭化水素系冷媒が溶解した状態で測定される値である。したがって、当該溶解粘度は、後述する実施例に記載の方法で測定される、冷凍機用混合組成物の粘度ともいえる。
<冷凍機油組成物への炭化水素系冷媒の溶解度>
 後述する実施例に記載の方法で測定される、冷凍機油組成物への炭化水素系冷媒の溶解度は、炭化水素系冷媒の使用量を抑えて、安全性を確保しやすくする観点から、好ましくは18.0質量%未満、より好ましくは17.0質量%以下、更に好ましくは16.5質量%以下、より更に好ましくは16.0質量%以下、更になお好ましくは15.5質量%以下である。また、好ましくは1質量%以上である。
[冷凍機用混合組成物]
 上記の冷凍機油組成物は、冷媒と混合し、冷凍機用混合組成物として使用される。
 すなわち、冷凍機用混合組成物は、上記の冷凍機油組成物と、冷媒とを含有する。
 以下、冷媒について説明する。
<冷媒>
(炭化水素系冷媒)
 本実施形態において用いられる冷媒は、炭化水素系冷媒を含む冷媒である。
 炭化水素系冷媒としては、好ましくは炭素数1以上8以下の炭化水素、より好ましくは炭素数1以上5以下の炭化水素、更に好ましくは炭素数3以上5以下の炭化水素である。炭素数が8以下であると、冷媒の沸点が高くなり過ぎず冷媒として好ましい。該炭化水素系冷媒としては、メタン、エタン、エチレン、プロパン(R290)、シクロプロパン、プロピレン、n-ブタン、イソブタン(R600a)、2-メチルブタン、n-ペンタン、イソペンタン、シクロペンタンイソブタン、及びノルマルヘキサンからなる群より選ばれる1種以上が挙げられる。
 炭化水素系冷媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(他の冷媒)
 本実施形態において、冷媒は、炭化水素系冷媒に加え、他の冷媒を必要に応じて含む混合冷媒であってもよい。
 他の冷媒としては、例えば、飽和フッ化炭化水素冷媒、不飽和フッ化炭化水素冷媒、二酸化炭素、及びアンモニアから選択される1種以上が挙げられる。
 以下、飽和フッ化炭化水素冷媒及び不飽和フッ化炭化水素冷媒について説明する。
-飽和フッ化炭化水素冷媒-
 飽和フッ化炭化水素冷媒としては、好ましくは炭素数1~4のアルカンのフッ化物、より好ましくは炭素数1~3のアルカンのフッ化物、更に好ましくは炭素数1又は2のアルカン(メタン又はエタン)のフッ化物である。該メタン又はエタンのフッ化物としては、トリフルオロメタン(R23)、ジフルオロメタン(R32)、1,1-ジフルオロエタン(R152a)、1,1,1-トリフルオロエタン(R143a)、1,1,2-トリフルオロエタン(R143)、1,1,1,2-テトラフルオロエタン(R134a)、1,1,2,2-テトラフルオロエタン(R134)、1,1,1,2,2-ペンタフルオロエタン(R125)等が挙げられる。
 これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-不飽和フッ化炭化水素冷媒-
 不飽和フッ化炭化水素冷媒としては、下記一般式(3)で表される化合物が挙げられる。
 C・・・(3)
[前記一般式(3)中、xは2~6、yは1~11、zは1~11の整数であり、分子中に炭素-炭素不飽和結合を1以上有する。]
 上記一般式(3)は、分子中の元素の種類と数を表しており、具体的には炭素原子Cの数が2~6の不飽和フッ化炭化水素化合物を表している。炭素数が2~6の不飽和フッ化炭化水素化合物は、冷媒として要求される沸点、凝固点、蒸発潜熱などの物理的、化学的性質を有する。
 上記一般式(3)において、Cで表されるx個の炭素原子の結合形態は、炭素-炭素単結合、炭素-炭素二重結合等の不飽和結合などがある。炭素-炭素の不飽和結合は、安定性の点から、炭素-炭素二重結合であることが好ましく、不飽和フッ化炭化水素化合物は、分子中に炭素-炭素二重結合等の不飽和結合を1以上有し、その数は1であるものが好ましい。すなわち、Cで表されるx個の炭素原子の結合形態の少なくとも1つは、炭素-炭素二重結合であることがより好ましい。
 上記の不飽和フッ化炭化水素化合物として好ましくは、例えば、炭素数2~6の直鎖状又は分岐状の鎖状オレフィンや炭素数4~6の環状オレフィンのフッ化物を挙げることができる。
 具体的には、1~3個のフッ素原子が導入されたエチレンのフッ化物、1~5個のフッ素原子が導入されたプロペンのフッ化物、1~7個のフッ素原子が導入されたブテンのフッ化物、1~9個のフッ素原子が導入されたペンテンのフッ化物、1~11個のフッ素原子が導入されたヘキセンのフッ化物、1~5個のフッ素原子が導入されたシクロブテンのフッ化物、1~7個のフッ素原子が導入されたシクロペンテンのフッ化物、1~9個のフッ素原子が導入されたシクロヘキセンのフッ化物などが挙げられる。
 これらの中でも、プロペンのフッ化物が好ましく、フッ素原子が3~5個導入されたプロペンがより好ましい。具体的には、1,3,3,3-テトラフルオロプロペン(R1234ze)、2,3,3,3-テトラフルオロプロペン(R1234yf)、及び1,2,3,3-テトラフルオロプロペン(R1234ye)から選択される1種以上が好ましく、2,3,3,3-テトラフルオロプロペン(R1234yf)がより好ましい。
 不飽和フッ化炭化水素冷媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(冷媒中の炭化水素系冷媒の含有量)
 本実施形態において、冷媒は、炭化水素系冷媒を含む。
 炭化水素系冷媒の含有量は、冷媒の全量基準で、好ましくは20質量%~100質量%、より好ましくは30質量%~100質量%、更に好ましくは40質量%~100質量%、より更に好ましくは50質量%~100質量%、更になお好ましくは60質量%~100質量%、一層好ましくは70質量%~100質量%、より一層好ましくは80質量%~100質量%、更に一層好ましくは90質量%~100質量%である。
(冷媒及び冷凍機油組成物の使用量)
 本実施形態の冷凍機用混合組成物において、冷媒及び冷凍機油組成物の使用量は、冷凍機油組成物と冷媒との質量比[(冷凍機油組成物)/(冷媒)]で、好ましくは30/70~90/10である。冷凍機油組成物と冷媒との質量比を該範囲内とすると、潤滑性及び冷凍機における好適な冷凍能力を得ることができる。
[冷凍機油組成物及び冷凍機用混合組成物の用途]
 本実施形態の冷凍機油組成物及び冷凍機用混合組成物は、例えば、冷凍システム、給湯システム、又は暖房システムに用いることが好ましい。具体的には、空調機、冷蔵庫、冷凍庫、自動販売機、及びショーケース等が挙げられる。空調機としては、開放型カーエアコン、電動カーエアコン等のカーエアコン;ガスヒートポンプ(GHP)エアコン;等が挙げられる。
[提供される本発明の一態様]
 本発明の一態様では、下記[1]~[8]が提供される。
[1] 炭化水素系冷媒を含む冷媒に用いられる冷凍機油組成物であって、
 下記一般式(1)で表され、数平均分子量が1,100以上であるポリアルキレングリコール系化合物(A)から選択される1種以上を含有する、冷凍機油組成物。
Figure JPOXMLDOC01-appb-C000008

[前記一般式(1)中、R及びRの一方は水素原子であり、他方は炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基である。Eはエチレン基であり、Pはプロピレン基である。m及びnは0以上の数である。但し、m+nは1以上50以下である。]
[2] 前記一般式(1)中において、nが1以上である、上記[1]に記載の冷凍機油組成物。
[3] 前記一般式(1)中において、m/nが1以下である、上記[1]又は[2]に記載の冷凍機油組成物。
[4] 前記ポリアルキレングリコール系化合物(A)の含有量が、前記冷凍機油組成物の全量基準で、80質量%以上である、上記[1]~[3]のいずれかに記載の冷凍機油組成物。
[5] 前記ポリアルキレングリコール系化合物(A)の水酸基価が、10mgKOH/g以上である、上記[1]~[4]のいずれかに記載の冷凍機油組成物。
[6] 前記炭化水素系冷媒が、炭素数1以上8以下の炭化水素である、上記[1]~[5]のいずれかに記載の冷凍機油組成物。
[7] 上記[1]~[6]のいずれかに記載の冷凍機油組成物と、炭化水素系冷媒を含む冷媒とを含有する、冷凍機用混合組成物。
[8] 炭化水素系冷媒を含む冷媒に用いられる冷凍機油組成物の製造方法であって、
 下記一般式(1)で表され、数平均分子量が1,100以上であるポリアルキレングリコール系化合物(A)から選択される1種以上を配合する工程を含む、冷凍機油組成物の製造方法。
Figure JPOXMLDOC01-appb-C000009

[前記一般式(1)中、R及びRの一方は水素原子であり、他方は炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基である。Eはエチレン基であり、Pはプロピレン基である。m及びnは0以上の数である。但し、m+nは1以上50以下である。]
 本発明について、以下の実施例により具体的に説明する。但し、本発明は、以下の実施例に限定されるものではない。
[各種物性値の測定方法]
 各実施例及び各比較例で用いた各原料並びに各実施例及び各比較例の冷凍機油組成物の各性状の測定は、以下に示す要領に従って行ったものである。
(1)動粘度
 40℃動粘度、80℃動粘度、及び100℃動粘度は、JIS K2283:2000に準拠して測定した。
(2)粘度指数
 粘度指数は、動粘度の測定結果に基づき、JIS K2283:2000に準拠して算出した。
(3)水酸基価
 水酸基価は、JIS K0070:1992に準拠して、中和滴定法により測定した。
(4)数平均分子量
 PAG化合物の数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した。GPCは、HLC-8120GPC、SC-8020(東ソー株式会社製)を用い、THF(テトラヒドロフラン)を溶離液として、IR検出器を用いて測定を行った。その結果を用いて、ポリスチレン標準試料による検量線から数平均分子量を求めた。
[製造例1~5、比較製造例1~2]
 下記製造例1~5及び下記比較製造例1~2により、各種PAG系化合物を合成した。
<製造例1:PAG系化合物(A)-1の合成>
 攪拌機及び液導入管を取り付けた200ミリリットルステンレス鋼製オートクレーブに、粉末状ナトリウムn-ブトキシド5.4g(0.056モル)を加えて密閉し、105°Cに加熱し、攪拌下にプロピレンオキサイド77g(1.32モル)を液導入管より9時間かけてオートクレーブに圧入した。反応混合物に水100ミリリットル、メタノール200ミリリットルを加えて溶解した後、溶液を陽イオン交換樹脂200ミリリットルのカラムに通し、次いで陰イオン交換樹脂200ミリリットルのカラムに通してナトリウムイオンを除去した。メタノール、水を留去した後、真空ポンプ減圧下(0,4mmHg)、100°Cで1時間乾燥して目的とするポリオキシプロピレングリコールモノn-ブチルエーテル70gを得た。
 製造例1で得られたPAG系化合物(A)-1は、上記一般式(1)中、Rがn-ブチル基であり、Rが水素原子である。また、m=0であり、n=17である。m/n=0である。
<製造例2:PAG系化合物(A)-2の合成>
 プロピレンオキサイド77g(1.32モル)に代えて、プロピレンオキサイド73.5g(1.27モル)とエチレンオキサイド2.4g(0.05モル)とを用い、他は製造例1と同様の方法により、ポリオキシエチレンポリオキシプロピレングリコールモノn-ブチルエーテル(PO/EO=96:4(モル比))69gを得た。
 製造例2で得られたPAG系化合物(A)-2は、上記一般式(1)中、Rがn-ブチル基であり、Rが水素原子である。また、m=0.7であり、n=16.5である。m/n=0.04である。
<製造例3:PAG系化合物(A)-3の合成>
 プロピレンオキサイド77g(1.32モル)に代えて、プロピレンオキサイド67.3g(1.16モル)とエチレンオキサイド7.1g(0.16モル)とを用い、他は製造例1と同様の方法により、ポリオキシエチレンポリオキシプロピレングリコールモノn-ブチルエーテル(PO/EO=88:12(モル比))68gを得た。
 製造例3で得られたPAG系化合物(A)-3は、上記一般式(1)中、Rがn-ブチル基であり、Rが水素原子である。また、m=2.0であり、n=14.4である。m/n=0.14である。
<製造例4:PAG系化合物(A)-4の合成>
 プロピレンオキサイド77g(1.32モル)に代えて、プロピレンオキサイド53.7g(0.92モル)とエチレンオキサイド7.4g(0.40モル)とを用い、他は製造例1と同様の方法により、ポリオキシエチレンポリオキシプロピレングリコールモノn-ブチルエーテル(PO/EO=70:30(モル比))65gを得た。
 製造例4で得られたPAG系化合物(A)-4は、上記一般式(1)中、Rがn-ブチル基であり、Rが水素原子である。また、m=5.0であり、n=11.7である。m/n=0.42である。
<製造例5:PAG系化合物(A)-5の合成>
 粉末状ナトリウムn-ブトキシド5.4g(0.056モル)に代えて、n-ドデカノール10g(0.056モル)を用い、他は製造例1と同様の方法により、ポリオキシプロピレングリコールモノn-ドデシルエーテル72gを得た。
 製造例5で得られたPAG系化合物(A)-5は、上記一般式(1)中、Rがn-ドデシル基であり、Rが水素原子である。また、m=0であり、n=20である。m/n=0である。
<比較製造例1:PAG系化合物(A’)-1の合成>
 攪拌機及び液導入管を取り付けた200ミリリットルステンレス鋼製オートクレーブに、粉末状ナトリウムメトキシド3.0g(0.056モル)、を加えて密閉し、105℃に加熱し、攪拌下にプロピレンオキシド77g(1.32モル)を液導入管より9時間かけてオートクレーブに圧入した。反応混合物に水100ミリリットル、メタノール200ミリリットルを加えて溶解した後、溶液を陽イオン交換樹脂200ミリリットルのカラムに通し、次いで陰イオン交換樹脂200ミリリットルのカラムに通してナトリウムイオンを除去した。メタノール、水を留去した後、真空ポンプ減圧下(0.4mmHg)、100℃、1時間乾燥してポリオキシプロピレングリコールモノメチルエーテル70gを得た。
 次に、攪拌機及び蒸留ヘッドを取り付けたガラス製300ミリリットル三つ口フラスコに、上記手順で得られたポリオキシプロピレングリコールモノメチルエーテル50g、トルエン80ミリリットルを加え、加熱及び攪拌下にトルエン約20ミリリットルを留去して水分を除去した。冷却後、28重量%ナトリウムメトキシドのメタノール溶液25g(0.13モル)を加え、加熱してメタノールおよび約20ミリリットルのトルエンを留去した。
 冷却後、内容物を攪拌機付きステンレス鋼製300ミリリットルオートクレーブに移し、ヨウ化メチル36.8g(0.26モル)を加え、密閉した後、攪拌下に50℃から70℃まで4.5時間かけて昇温し、85℃で12時間反応した。室温まで冷却後、反応混合物を水100ミリリットルとメタノール200ミリリットルとの混合物に溶解し、陽イオン交換樹脂200ミリリットル、次いで陰イオン交換樹脂200ミリリットルのカラムに通した。溶媒を留去後、真空ポンプ減圧下(0.1mmHg)、100℃で1時間乾燥して、PAG系化合物(A’)-1(ポリオキシプロピレングリコールのジメチルエーテル)42.5gを得た。
 比較製造例1で得られたPAG系化合物(A’)-1は、上記一般式(1)中、R及びRがメチル基であり、m=0、n=12である。m/n=0である。
<比較製造例2:PAG系化合物(A’)-2の合成>
 粉末状ナトリウムn-ブトキシド5.4g(0.056モル)に代えてナトリウムメトキシド9.0g(0.167モル)を用い、他は製造例1と同様の方法により、ポリオキシプロピレングリコールモノメチルエーテル73gを得た。
 比較製造例2で得られたPAG系化合物(A’)-2は、上記一般式(1)中、Rがメチル基であり、Rが水素原子である。また、m=0であり、n=5である。m/n=0である。
[実施例1~5、比較例1~4]
 実施例1~5及び比較例1~4では、以下の化合物等を冷凍機油組成物とし、後述する評価に供した。
・実施例1:製造例1で得られたPAG系化合物(A)-1
・実施例2:製造例2で得られたPAG系化合物(A)-2
・実施例3:製造例3で得られたPAG系化合物(A)-3
・実施例4:製造例4で得られたPAG系化合物(A)-4
・実施例5:製造例5で得られたPAG系化合物(A)-5
・比較例1:比較製造例1で得られたPAG系化合物(A’)-1
・比較例2:比較製造例1で得られたPAG系化合物(A’)-2
・比較例3:ポリ-α-オレフィン(PAO)
・比較例4:鉱油
<評価:溶解粘度及び溶解度の評価>
(溶解度の評価)
 サファイアガラス製の耐圧容器に、冷凍機油組成物及び冷媒としてR290を所定量封入し、耐圧容器の温度を室温(23℃)から80℃まで昇温した。R290を溶解した冷凍機油組成物の体積及びその時の圧力から、計算により温度/圧力/溶解度曲線を作成した。作成した溶解度曲線から、80℃、2.0MPaでの冷凍機油組成物のR290の溶解度(質量%)を算出した。
(溶解粘度の評価)
 図1~3に示す粘度測定装置1を用いて、冷媒が溶解した冷凍機油組成物の溶解粘度を測定した。
 まず、所定量の冷凍機油組成物2及び毛細管粘度計20を、サファイアガラス管からなる容器10の中に入れた後、蓋11を閉じた。次いで、T字型ジョイント24に安全弁26及びニードル弁25を装着した後、容器10を熱媒体4の入った恒温槽3に浸した。なお、温度調節手段5により熱媒体4の温度は80℃に保持した。
 次に、ニードル弁25と冷媒採取ライン(図示せず)を、耐圧ホース27を介して接続し、真空ポンプ(図示せず)を作動して容器10及び冷媒採取ライン内を約13.3Paまで脱気した。脱気後、真空ポンプを止め、冷媒容器の元弁を開き容器10に冷媒(R290)を導入した。冷媒は、容器10の圧力が2.0MPaとなるように導入した。
 冷媒導入後、ニードル弁25を閉じ、冷媒容器の弁を閉じ、耐圧ホース27を切り離した後、永久磁石14を位置Aに降下させておいた恒温槽3内の所定位置に、密閉した容器10を設置した。容器10全体が熱的に平衡状態になったら、永久磁石14を移動させる駆動手段を起動して、永久磁石14を移動させ、毛細管粘度計20を位置Bまで上昇させた。これにより、図3に示されるように、冷媒が溶解した冷凍機油組成物2が毛細管粘度計20から滴下し、冷媒が溶解した冷凍機油組成物2の液面が降下していく。そして、冷媒が溶解した冷凍機油組成物2の液面が標線21Bおよび標線21Aを通過したことを、光ファイバ15(15A、15B、15C、15D)に検知させ、冷媒が溶解した冷凍機油組成物2が細管部22の内部を通過するのに要する時間を粘度計算機に自動計測させるとともに粘度を自動測定させることで、溶解粘度を測定した。溶解粘度の測定は、冷媒と冷凍機油組成物とが分離していないことを確認した上で実施した。
 なお、図1~3中、符号6は、容器10内に充満するガスを指す。符号14Aは、永久磁石14を保持するアームである。符号21は、液溜め部である。符号23は、細管部22の側壁の外周面に固定されている、磁性体からなる帯状外環部である。
 溶解粘度の評価基準は以下のとおりとし、評価A及びBを合格とした。
・評価A:3.50mm/s超
・評価B:2.20mm/s以上3.50mm/s以下
・評価C:2.20mm/s未満
 溶解粘度が高い程、炭化水素系冷媒が溶解した際にも、良好な潤滑性を示し、適切な溶解粘度を有しているといえる。
 溶解度の評価基準は以下のとおりとし、評価A及びBを合格とした。
・評価A:15.0質量%未満
・評価B:15.0質量%以上18.0質量%未満
・評価C:18.0質量%以上
 溶解度が低い程、炭化水素系冷媒の溶解を抑制しやすい。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000010
 表1より、以下のことがわかる。
 実施例1~5のPAG系化合物は、炭化水素系冷媒が溶解した際の溶解粘度が高く、炭化水素系冷媒の溶解度も低いことがわかる。
 これに対し、比較例1のPAG系化合物、比較例3のPAO、及び比較例4の鉱油は、炭化水素系冷媒が溶解した際の溶解粘度が低く、炭化水素系冷媒の溶解度も高いことがわかる。
 また、比較例2のPAG系化合物は、炭化水素系冷媒が溶解した際の溶解粘度が低いことがわかる。

Claims (8)

  1.  炭化水素系冷媒を含む冷媒に用いられる冷凍機油組成物であって、
     下記一般式(1)で表され、数平均分子量が1,100以上であるポリアルキレングリコール系化合物(A)から選択される1種以上を含有する、冷凍機油組成物。
    Figure JPOXMLDOC01-appb-C000001

    [前記一般式(1)中、R及びRの一方は水素原子であり、他方は炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基である。Eはエチレン基であり、Pはプロピレン基である。m及びnは0以上の数である。但し、m+nは1以上50以下である。]
  2.  前記一般式(1)中において、nが1以上である、請求項1に記載の冷凍機油組成物。
  3.  前記一般式(1)中において、m/nが1以下である、請求項1又は2に記載の冷凍機油組成物。
  4.  前記ポリアルキレングリコール系化合物(A)の含有量が、前記冷凍機油組成物の全量基準で、80質量%以上である、請求項1~3のいずれか1項に記載の冷凍機油組成物。
  5.  前記ポリアルキレングリコール系化合物(A)の水酸基価が、10mgKOH/g以上である、請求項1~4のいずれか1項に記載の冷凍機油組成物。
  6.  前記炭化水素系冷媒が、炭素数1以上8以下の炭化水素である、請求項1~5のいずれか1項に記載の冷凍機油組成物。
  7.  請求項1~6のいずれか1項に記載の冷凍機油組成物と、炭化水素系冷媒を含む冷媒とを含有する、冷凍機用混合組成物。
  8.  炭化水素系冷媒を含む冷媒に用いられる冷凍機油組成物の製造方法であって、
     下記一般式(1)で表され、数平均分子量が1,100以上であるポリアルキレングリコール系化合物(A)から選択される1種以上を配合する工程を含む、冷凍機油組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    [前記一般式(1)中、R及びRの一方は水素原子であり、他方は炭素数1以上16以下である直鎖状又は分岐鎖状のアルキル基である。Eはエチレン基であり、Pはプロピレン基である。m及びnは0以上の数である。但し、m+nは1以上50以下である。]
PCT/JP2022/044197 2021-12-01 2022-11-30 冷凍機油組成物及び冷凍機用混合組成物 WO2023100935A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021195373A JP2023081569A (ja) 2021-12-01 2021-12-01 冷凍機油組成物及び冷凍機用混合組成物
JP2021-195373 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023100935A1 true WO2023100935A1 (ja) 2023-06-08

Family

ID=86612331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044197 WO2023100935A1 (ja) 2021-12-01 2022-11-30 冷凍機油組成物及び冷凍機用混合組成物

Country Status (2)

Country Link
JP (1) JP2023081569A (ja)
WO (1) WO2023100935A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158671A (ja) * 1996-11-27 1998-06-16 Idemitsu Kosan Co Ltd 冷凍機油組成物及び該組成物を用いた潤滑方法
WO2005095557A1 (ja) * 2004-04-02 2005-10-13 Idemitsu Kosan Co., Ltd. 冷凍機油組成物
WO2007026647A1 (ja) * 2005-08-31 2007-03-08 Idemitsu Kosan Co., Ltd. 冷凍機油組成物
WO2007058082A1 (ja) * 2005-11-15 2007-05-24 Idemitsu Kosan Co., Ltd. 冷凍機油組成物
WO2009072314A1 (ja) * 2007-12-04 2009-06-11 Hitachi Appliances, Inc. 冷媒圧縮機および冷凍サイクル
WO2011162391A1 (ja) * 2010-06-24 2011-12-29 旭硝子株式会社 炭化水素冷媒用の潤滑油基油及びそれを含む潤滑油組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158671A (ja) * 1996-11-27 1998-06-16 Idemitsu Kosan Co Ltd 冷凍機油組成物及び該組成物を用いた潤滑方法
WO2005095557A1 (ja) * 2004-04-02 2005-10-13 Idemitsu Kosan Co., Ltd. 冷凍機油組成物
WO2007026647A1 (ja) * 2005-08-31 2007-03-08 Idemitsu Kosan Co., Ltd. 冷凍機油組成物
WO2007058082A1 (ja) * 2005-11-15 2007-05-24 Idemitsu Kosan Co., Ltd. 冷凍機油組成物
WO2009072314A1 (ja) * 2007-12-04 2009-06-11 Hitachi Appliances, Inc. 冷媒圧縮機および冷凍サイクル
WO2011162391A1 (ja) * 2010-06-24 2011-12-29 旭硝子株式会社 炭化水素冷媒用の潤滑油基油及びそれを含む潤滑油組成物

Also Published As

Publication number Publication date
JP2023081569A (ja) 2023-06-13

Similar Documents

Publication Publication Date Title
US8460571B2 (en) Lubricant composition for refrigerator and compressor using the same
JP5241262B2 (ja) 冷凍機用潤滑油組成物
JP5241261B2 (ja) 冷凍機用潤滑油組成物
US9828567B2 (en) Lubricating oil composition for refrigerating machines
JP5972639B2 (ja) 冷凍機用潤滑油組成物
US20190241827A1 (en) Refrigeration oil and refrigeration oil composition
US20180291247A1 (en) Refrigeration oil, refrigerator composition, and refrigerator
WO2018074584A1 (ja) 冷凍機油及び冷凍機用作動流体組成物
JP7060287B2 (ja) 冷凍機油組成物
WO2023100935A1 (ja) 冷凍機油組成物及び冷凍機用混合組成物
KR102442266B1 (ko) 냉동기유, 및 냉동기용 조성물
WO2023106333A1 (ja) 冷凍機油組成物及び冷凍機用混合組成物
WO2023090285A1 (ja) 冷凍機油組成物及び冷凍機用混合組成物
JP2023039750A (ja) 冷凍機油組成物及び冷凍機用混合組成物
WO2024090504A1 (ja) 冷凍機油組成物及び冷凍機用混合組成物
US11015138B2 (en) Refrigerating machine oil, and composition for refrigerating machine
CN118339261A (zh) 冷冻机油组合物和冷冻机用混合组合物
JP6849746B2 (ja) 冷凍機潤滑油及び冷凍機用混合組成物
KR20240105384A (ko) 냉동기유 조성물 및 냉동기용 혼합 조성물
KR102646480B1 (ko) 냉동기용 윤활유 조성물, 냉동기용 조성물, 윤활 방법 및 냉동기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901367

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024008517

Country of ref document: BR