WO2024087748A1 - 有机无机复合隔膜及制备其的浆料、碱性水电解装置 - Google Patents

有机无机复合隔膜及制备其的浆料、碱性水电解装置 Download PDF

Info

Publication number
WO2024087748A1
WO2024087748A1 PCT/CN2023/107896 CN2023107896W WO2024087748A1 WO 2024087748 A1 WO2024087748 A1 WO 2024087748A1 CN 2023107896 W CN2023107896 W CN 2023107896W WO 2024087748 A1 WO2024087748 A1 WO 2024087748A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
organic
oxide nanoparticles
phase component
inorganic composite
Prior art date
Application number
PCT/CN2023/107896
Other languages
English (en)
French (fr)
Inventor
王海辉
丁力
廖益文
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2024087748A1 publication Critical patent/WO2024087748A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/05Diaphragms; Spacing elements characterised by the material based on inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to the technical field of alkaline water electrolysis, and in particular to an organic-inorganic composite diaphragm and slurry for preparing the same, and an alkaline water electrolysis device.
  • an alkaline water electrolysis device includes an electrolyzer, electrodes and a diaphragm. When powered on, hydrogen is produced on the cathode side and oxygen is produced on the anode side.
  • the diaphragm for alkaline water electrolysis is required to have properties such as ion permeability, mechanical strength, air tightness, and electrical insulation. Specifically, the diaphragm is required to have high ion permeability, which can reduce the surface resistance of the diaphragm, thereby improving the electrolysis efficiency of the alkaline water electrolyzer.
  • the diaphragm is required to have good mechanical strength so that it can withstand the friction between the electrodes and the diaphragm of the electrolyzer.
  • the diaphragm is required to have the ability to block gas, and the gas generated by electrolysis cannot pass through the diaphragm, that is, the diaphragm only allows ions to pass through.
  • the diaphragm is required to be non-conductive and in an insulating state.
  • the present invention provides an organic-inorganic composite diaphragm, a slurry for preparing the same, and an alkaline water electrolysis device.
  • the present invention provides a slurry for an organic-inorganic composite diaphragm, the slurry comprising a liquid phase component and a solid phase component, the solid phase component comprising inorganic oxide nanoparticles, a binder and The pore-forming agent, the mass proportion of the inorganic oxide nanoparticles in the solid phase component is 70-90%, and the mass of the liquid phase component is 1-1.5 times the mass of the inorganic oxide nanoparticles.
  • the inorganic oxide nanoparticles include zirconium dioxide nanoparticles and/or titanium dioxide nanoparticles.
  • the diameter of the inorganic oxide nanoparticles is 10-200 nm.
  • the inorganic oxide nanoparticles are composed of zirconium dioxide and titanium dioxide in a mass ratio of 1:150-200, the diameter of the zirconium dioxide is d1, the diameter of the titanium dioxide is d2, and the following conditions are satisfied:
  • the inorganic oxide nanoparticles are composed of zirconium dioxide and titanium dioxide in a mass ratio of 350-400:1, the diameter of the zirconium dioxide is d1, the diameter of the titanium dioxide is d2, and the following conditions are satisfied:
  • the binder is at least one of polysulfone, polyethersulfone, polyarylsulfone and chitosan, and the mass proportion of the binder in the solid phase component is 9-29%.
  • the pore-forming agent is at least one of polyvinyl pyrrolidone and polyvinyl alcohol, and the mass proportion of the pore-forming agent in the solid phase component is 1%.
  • the liquid phase component is at least one of N-methylpyrrolidone, N,N-dimethylformamide, dimethyl sulfoxide and water.
  • the present invention also provides a method for preparing the slurry for the organic-inorganic composite diaphragm, comprising: mixing a binder and a pore former with a liquid phase component, and then mixing the obtained material with inorganic oxide nanoparticles.
  • the present invention provides an organic-inorganic composite diaphragm prepared from any of the above-mentioned slurries for organic-inorganic composite diaphragms.
  • the present invention provides an alkaline water electrolysis device, comprising the above-mentioned organic-inorganic composite membrane.
  • the present invention provides an organic-inorganic composite diaphragm, a slurry for preparing the same, and an alkaline water electrolysis device.
  • the slurry of the present invention controls the composition and dosage of solid phase components and liquid phase components, so that the organic-inorganic composite diaphragm prepared by using the slurry has the advantages of small surface resistance, high gas barrier properties, good insulation properties, etc., and can be used in the alkaline water electrolysis process to effectively reduce energy consumption and improve the purity of hydrogen production.
  • FIG1 is a flow chart of the preparation of a slurry for an organic-inorganic composite diaphragm in Example 4;
  • FIG2 is the voltammetric curves of water electrolysis at room temperature using the ZIRFON diaphragm of Example 1 and the comparative example, with a membrane area of 1 cm 2 .
  • the present invention provides a slurry for an organic-inorganic composite diaphragm, the slurry comprising a liquid phase component and a solid phase component, the solid phase component comprising inorganic oxide nanoparticles, a binder and a pore former, the inorganic oxide nanoparticles accounting for 70-90% by mass in the solid phase component,
  • the mass of the liquid phase component is 1-1.5 times the mass of the inorganic oxide nanoparticles.
  • the present invention has found that by regulating the composition of the solid phase components and controlling the proportion of the main component inorganic oxide nanoparticles to 70-90%, while regulating the dosage of the liquid phase components, a relatively uniform slurry can be obtained, which can be made into a diaphragm, and the performance of the resulting diaphragm can also meet the requirements of alkaline water electrolysis technology.
  • the inorganic oxide nanoparticles include zirconium dioxide nanoparticles and/or titanium dioxide nanoparticles.
  • the inorganic oxide nanoparticles are zirconium dioxide nanoparticles.
  • the inorganic oxide nanoparticles are titanium dioxide nanoparticles.
  • the inorganic oxide nanoparticles are a mixture of zirconium dioxide nanoparticles and titanium dioxide nanoparticles.
  • the diameter of the inorganic oxide nanoparticles is 10-200 nm.
  • the particle size of the inorganic oxide nanoparticles will affect the porosity, pore size, ion permeability and mechanical strength of the subsequent diaphragm. The present invention has found that it is better to control the particle size within the range of 10-200 nm.
  • the inorganic oxide nanoparticles are composed of zirconium dioxide and titanium dioxide in a mass ratio of 1:150-200, the diameter of the zirconium dioxide is d1, the diameter of the titanium dioxide is d2, and the following conditions are satisfied:
  • the inorganic oxide nanoparticles are composed of zirconium dioxide and titanium dioxide in a mass ratio of 350-400:1, the diameter of the zirconium dioxide is d1, the diameter of the titanium dioxide is d2, and the following conditions are satisfied:
  • inorganic nanoparticles of zirconium dioxide and titanium dioxide can be embedded in the gaps between spherical particles, which can ensure the sufficient mixing of the nanoparticles, make the slurry more uniform, form a denser skin during phase transformation, and improve the performance of the diaphragm.
  • the binder is polysulfone, polyethersulfone, polyarylsulfone, shell At least one of the polysaccharides, the mass proportion of the binder in the solid phase component is 9-29%.
  • polysulfone refers to common bisphenol A type polysulfone (PSF for short), and the present invention preferably uses polysulfone with an average molecular weight of about 80,000.
  • PSF polyphenol A type polysulfone
  • PES polyethersulfone
  • PASF polyarylsulfone
  • the viscosity of chitosan can be low viscosity ( ⁇ 200 mPa ⁇ s), medium viscosity (200-400 mPa ⁇ s), or high viscosity (>400 mPa ⁇ s).
  • the pore former is at least one of polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA), and the mass proportion of the pore former in the solid phase component is 1%.
  • PVP polyvinyl pyrrolidone
  • PVA polyvinyl alcohol
  • the mass proportion of the pore former in the solid phase component is 1%.
  • the mass proportion of the pore former is not high, it cannot be omitted, otherwise the slurry is prone to uneven dispersion and powder will fall off after phase conversion.
  • the pore former can also help form finger-like macropores in the loose porous layer and reduce the surface resistance.
  • the alcoholysis degree of the polyvinyl alcohol used is 87%-89mol%, and the viscosity is 3.2-3.6mPa ⁇ s.
  • the average molecular weight of the polyvinyl pyrrolidone is 40,000.
  • the liquid phase component is at least one of N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and water.
  • NMP N-methylpyrrolidone
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • the inorganic oxide nanoparticles in the slurry are zirconium dioxide nanoparticles and titanium dioxide nanoparticles in a mass ratio of 370:1, polysulfone is used as a binder, PVP is used as a pore-forming agent, and NMP is used as a liquid phase component.
  • polysulfone has good mechanical strength, excellent acid and alkali resistance and heat resistance, but has the disadvantage of being strongly hydrophobic.
  • the diaphragm has good hydrophilicity.
  • the present invention also provides a method for preparing the slurry for the organic-inorganic composite diaphragm, comprising: mixing a binder and a pore former with a liquid phase component, and then mixing the obtained material with inorganic oxide nanoparticles.
  • the binder is mixed with the liquid phase components first, and then the pore former is added.
  • the multiple inorganic oxide nanoparticles are first mixed and then added to the liquid phase component in which the binder and the pore-forming agent are dispersed.
  • the liquid phase components are added in batches for multiple times and mix evenly.
  • the present invention provides an organic-inorganic composite membrane prepared from any one of the above-mentioned slurries for organic-inorganic composite membranes.
  • the method for preparing an organic-inorganic composite membrane from the slurry is as follows: (1) First, the slurry components are fully stirred for 3 hours, and then the support body is completely immersed in the casting liquid. Then, a scraping device is used, and a double-sided scraper is used to control the distance between the support body and the scraper to be about 200 ⁇ m, so as to prepare a wet composite membrane. (2) The wet composite membrane is placed in a phase transformation liquid for phase transformation.
  • the phase transformation temperature is 20°C.
  • the phase transformation liquid is a mixed solution composed of water and NMP.
  • the phase transformation time is 1 hour to ensure that the phase transformation is relatively thorough.
  • the organic polymer resin in the casting liquid solidifies, the solvent dissolves in the water, and the polymer resin and the solvent undergo phase separation, becoming a solid resin to form a porous structure.
  • the membrane is boiled in boiling water for 10 minutes to remove the residual solvent in the membrane, and then stored in deionized water.
  • the organic-inorganic composite diaphragm prepared by the slurry has low surface resistance under preferred conditions. At room temperature, in 30wt% KOH, the surface resistance is 0.12 ⁇ cm2 ; it also has high gas barrier performance of 11.94bar, a breaking strength of up to 26MPa, and is completely non-conductive, which can meet the demand for further reducing energy consumption in alkaline water electrolysis.
  • the present invention provides an alkaline water electrolysis device, comprising the above-mentioned organic-inorganic composite membrane.
  • An alkaline water electrolysis device generally includes an electrolytic cell, electrodes and a diaphragm.
  • the alkaline water electrolysis device of the present invention uses the composite diaphragm that has ion permeability, mechanical strength, air tightness and electrical insulation, so as to improve the electrolysis efficiency of the alkaline water electrolysis device.
  • the diaphragm can also withstand the friction between the electrodes and the diaphragm of the electrolytic cell.
  • the diaphragm has the performance of blocking gas. The gas generated by electrolysis cannot pass through the diaphragm, and the diaphragm cannot conduct electricity and is in an insulating state. In short, it is safe and efficient.
  • the average molecular weight of the polysulfone used is 80,000;
  • the average molecular weight of the polyvinyl pyrrolidone is 40,000.
  • the diameter of the zirconium dioxide particles is denoted by d1, and the diameter of the titanium dioxide particles is denoted by d2.
  • This embodiment provides a slurry for an organic-inorganic composite diaphragm, the composition of which is as follows:
  • Liquid phase component N-methylpyrrolidone, the mass of which is 1.2 times the mass of the inorganic oxide nanoparticles.
  • This embodiment also provides a method for preparing the above slurry, which is as follows:
  • This embodiment provides a slurry for an organic-inorganic composite diaphragm, the composition of which is as follows:
  • Liquid phase component N-methylpyrrolidone, the mass of which is 1.2 times the mass of the inorganic oxide nanoparticles.
  • This embodiment also provides a method for preparing the above slurry, which is as follows:
  • This embodiment provides a slurry for an organic-inorganic composite diaphragm, the composition of which is as follows:
  • Liquid phase component N-methylpyrrolidone, the mass of which is 1.2 times the mass of the inorganic oxide nanoparticles.
  • This embodiment also provides a method for preparing the above slurry, which is as follows:
  • This embodiment provides a slurry for an organic-inorganic composite diaphragm, the composition of which is as follows:
  • Liquid phase component N-methylpyrrolidone, the mass of which is 1.2 times the mass of the inorganic oxide nanoparticles.
  • This embodiment also provides a method for preparing the slurry, the schematic diagram of the process is shown in FIG1 , and the details are as follows:
  • This embodiment provides a slurry for an organic-inorganic composite diaphragm, the composition of which is as follows:
  • Liquid phase component N-methylpyrrolidone, the mass of which is 1.2 times the mass of the inorganic oxide nanoparticles.
  • This embodiment also provides a method for preparing the above slurry, which is as follows:
  • This embodiment provides a slurry for an organic-inorganic composite diaphragm, the composition of which is as follows:
  • Liquid phase component N-methylpyrrolidone, the mass of which is 1.2 times the mass of the inorganic oxide nanoparticles.
  • This embodiment also provides a method for preparing the above slurry, which is as follows:
  • This embodiment provides a slurry for an organic-inorganic composite diaphragm, the composition of which is as follows:
  • Liquid phase component N-methylpyrrolidone, the mass of which is 1.2 of the mass of inorganic oxide nanoparticles times.
  • the preparation method is the same as that of Example 1.
  • This embodiment provides a slurry for an organic-inorganic composite diaphragm, the composition of which is as follows:
  • Liquid phase component N-methylpyrrolidone, the mass of which is twice the mass of the inorganic oxide nanoparticles.
  • the preparation method is the same as that of Example 1.
  • This embodiment provides a slurry for an organic-inorganic composite diaphragm, the composition of which is as follows:
  • Liquid phase component N-methylpyrrolidone, the mass of which is 1.2 times the mass of the inorganic oxide nanoparticles.
  • the preparation method is the same as that of Example 1.
  • the method for preparing the slurry into a diaphragm is as follows: (1) First, fully stir the slurry components for 3 hours, then completely immerse the support body in the casting liquid, and then use a scraping device and a double-sided scraper to control the distance between the support body and the scraper to be about 200 ⁇ m, so as to prepare a wet composite diaphragm. (2) The above-mentioned wet composite diaphragm is placed in a phase transformation liquid for phase transformation.
  • the phase transformation temperature is 20°C.
  • the phase transformation liquid is a mixed solution composed of water and NMP.
  • the phase transformation time is 1 hour to ensure that the phase transformation is relatively thorough.
  • the organic polymer resin in the casting liquid solidifies, the solvent dissolves in the water, and the polymer resin and the solvent undergo phase separation to become a solid resin to form a porous structure.
  • the performance test includes surface resistance, bubble point and other test items.
  • the specific methods are as follows:
  • the test method of surface resistance is as follows:
  • the separator was cut into small pieces and immersed in 30 wt % KOH solution for 1 day, and then the resistance was tested using an electrochemical workstation.
  • the test method for bubble point is as follows:
  • the test method for tensile strength is as follows:
  • test method for insulation performance is as follows:
  • FIG2 is the room temperature water electrolysis voltammetric curves of the ZIRFON membranes of Example 1 and the comparative example, the membrane area is 1 cm 2 , indicating that the water electrolysis performance of the membrane prepared in this example is better than that of the comparative example.
  • the present invention provides an organic-inorganic composite diaphragm and a slurry for preparing the same, and an alkaline water electrolysis device.
  • the slurry includes a liquid phase component and a solid phase component, the solid phase component includes inorganic oxide nanoparticles, a binder and a pore-forming agent, the inorganic oxide nanoparticles account for 70-90% of the mass of the solid phase component, and the mass of the liquid phase component is 1-1.5 times the mass of the inorganic oxide nanoparticles.
  • the organic-inorganic composite diaphragm prepared by the slurry has the advantages of small surface resistance, high gas barrier properties, good insulation properties, etc., can be used in the alkaline water electrolysis process to reduce energy consumption and improve the purity of hydrogen production, and has good economic value and application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种有机无机复合隔膜及制备其的浆料、碱性水电解装置,所述浆料包括液相组分和固相组分,所述固相组分包括无机氧化物纳米颗粒、粘结剂和造孔剂,所述无机氧化物纳米颗粒在所述固相组分中的质量占比为70-90%,所述液相组分的质量为所述无机氧化物纳米颗粒质量的1-1.5倍。用该浆料制备的有机无机复合隔膜具有面电阻小、阻气性高、绝缘性好等优点,用于碱性电解水过程能较好地降低能耗以及提高产氢纯度。

Description

有机无机复合隔膜及制备其的浆料、碱性水电解装置
交叉引用
本申请要求2022年10月25日提交的专利名称为“有机无机复合隔膜及制备其的浆料、碱性水电解装置”的第202211313567.5号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
技术领域
本发明涉及碱性电解水技术领域,尤其涉及一种有机无机复合隔膜及制备其的浆料、碱性水电解装置。
背景技术
清洁型能源氢能作为未来重要的能源载体之一,具有广泛的应用前景。碱性水电解作为一种成熟的绿氢制备技术,能耗有进一步降低的空间。通常,碱性水电解装置包括电解槽、电极和隔膜,通电时在阴极侧产生氢气,阳极侧产生氧气。
对于碱性水电解用隔膜,要求具备离子透过性、机械强度、气密性、电气绝缘性等方面的性能。具体地,要求隔膜具备较高的离子透过性,则可以降低隔膜的面电阻,从而提升碱性水电解槽的电解效率。要求隔膜具备较好的机械强度,则可以经受电解槽的电极与隔膜之间的摩擦。要求隔膜具备阻隔气体的性能,电解生成的气体无法透过隔膜,也就是说隔膜只允许离子透过。要求隔膜不能导电,处于绝缘状态。
现有技术中以PPS为代表的碱性水电解用隔膜很难同时兼顾上述四个方面的性能,因此,需要开发一种新的碱性水电解用隔膜。
发明内容
针对现有技术存在的问题,本发明提供一种有机无机复合隔膜及制备其的浆料、碱性水电解装置。
第一方面,本发明提供一种有机无机复合隔膜用浆料,所述浆料包括液相组分和固相组分,所述固相组分包括无机氧化物纳米颗粒、粘结剂和 造孔剂,所述无机氧化物纳米颗粒在所述固相组分中的质量占比为70-90%,所述液相组分的质量为所述无机氧化物纳米颗粒质量的1-1.5倍。
根据本发明提供的有机无机复合隔膜用浆料,所述无机氧化物纳米颗粒包括二氧化锆纳米颗粒和/或二氧化钛纳米颗粒。
根据本发明提供的有机无机复合隔膜用浆料,所述无机氧化物纳米颗粒的直径为10-200nm。
根据本发明提供的有机无机复合隔膜用浆料,所述无机氧化物纳米颗粒由质量比为1:150-200的二氧化锆和二氧化钛组成,所述二氧化锆的直径为d1,所述二氧化钛的直径为d2,满足:
根据本发明提供的有机无机复合隔膜用浆料,所述无机氧化物纳米颗粒由质量比为350-400:1的二氧化锆和二氧化钛组成,所述二氧化锆的直径为d1,所述二氧化钛的直径为d2,满足:
根据本发明提供的有机无机复合隔膜用浆料,所述粘结剂为聚砜、聚醚砜、聚芳砜、壳聚糖中的至少一种,所述粘结剂在所述固相组分中的质量占比为9-29%。
根据本发明提供的有机无机复合隔膜用浆料,所述造孔剂为聚乙烯吡咯烷酮、聚乙烯醇中的至少一种,所述造孔剂在所述固相组分中的质量占比为1%。
根据本发明提供的有机无机复合隔膜用浆料,所述液相组分为N-甲基吡咯烷酮、N,N-二甲基甲酰胺、二甲基亚砜、水中的至少一种。
第二方面,本发明还提供上述有机无机复合隔膜用浆料的制备方法,包括:将粘结剂和造孔剂与液相组分混合后,再将所得物料与无机氧化物纳米颗粒混合。
第三方面,本发明提供一种有机无机复合隔膜,由上述任一有机无机复合隔膜用浆料制备得到。
第四方面,本发明提供一种碱性水电解装置,包括上述有机无机复合隔膜。
本发明提供了一种有机无机复合隔膜及制备其的浆料、碱性水电解装置,本发明的浆料通过控制固相组分和液相组分的组成和用量,从而使利用该浆料制备的有机无机复合隔膜具有面电阻小、阻气性高、绝缘性好等优点,用于碱性电解水过程能较好地降低能耗以及提高产氢纯度。
附图说明
图1为实施例4中有机无机复合隔膜用浆料的制备流程图;
图2为实施例1和对比例ZIRFON隔膜室温电解水伏安曲线,膜面积为1cm2
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
第一方面,本发明提供一种有机无机复合隔膜用浆料,所述浆料包括液相组分和固相组分,所述固相组分包括无机氧化物纳米颗粒、粘结剂和造孔剂,所述无机氧化物纳米颗粒在所述固相组分中的质量占比为70-90%, 所述液相组分的质量为所述无机氧化物纳米颗粒质量的1-1.5倍。
本发明研究发现,调控固相组分的组成,且主要成分无机氧化物纳米颗粒的占比控制在70-90%,同时调控液相组分的用量,能够得到较为均一的浆料,将其制成隔膜,所得隔膜性能也能满足碱性水电解技术的要求。
根据本发明的一些实施例,所述无机氧化物纳米颗粒包括二氧化锆纳米颗粒和/或二氧化钛纳米颗粒。
也就是说,在本发明的一些实施例中,所述无机氧化物纳米颗粒为二氧化锆纳米颗粒。
在本发明的一些实施例中,所述无机氧化物纳米颗粒为二氧化钛纳米颗粒。
在本发明的一些实施例中,所述无机氧化物纳米颗粒为二氧化锆纳米颗粒和二氧化钛纳米颗粒的混合物。
进一步优选地,所述无机氧化物纳米颗粒的直径为10-200nm。无机氧化物纳米颗粒的粒径会影响后续隔膜的孔隙率、孔径、离子透过性以及机械强度等,本发明研究发现,将其粒径控制在10-200nm范围内较好。
根据本发明的一些实施例,所述无机氧化物纳米颗粒由质量比为1:150-200的二氧化锆和二氧化钛组成,所述二氧化锆的直径为d1,所述二氧化钛的直径为d2,满足:
根据本发明的一些实施例,所述无机氧化物纳米颗粒由质量比为350-400:1的二氧化锆和二氧化钛组成,所述二氧化锆的直径为d1,所述二氧化钛的直径为d2,满足:
在上述条件下,二氧化锆和二氧化钛无机纳米颗粒可以互相嵌在球形颗粒的缝隙之间,能够保证纳米颗粒相互混合的充分性,使得浆料更均一,在相转化时能形成更为致密的皮层,提升隔膜性能。
根据本发明的一些实施例,所述粘结剂为聚砜、聚醚砜、聚芳砜、壳 聚糖中的至少一种,所述粘结剂在所述固相组分中的质量占比为9-29%。
其中,聚砜指普通双酚A型聚砜(简称PSF),本发明优选平均分子量在8万左右的聚砜。聚醚砜(简称PES),聚芳砜(简称PASF)。当所述粘结剂为聚砜、聚醚砜、聚芳砜的混合物时,三者可以以任意比例混合。
壳聚糖的粘度可以为低粘度(<200mPa·s),中粘度(200-400mPa·s),或高粘度(>400mPa·s)。
根据本发明的一些实施例,所述造孔剂为聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)中的至少一种,所述造孔剂在所述固相组分中的质量占比为1%。所述造孔剂的质量占比虽不高,但不容省略,否则浆料易分散不均匀,相转化后会掉粉。而且造孔剂还能有利于形成疏松多孔层的指状大孔,降低面电阻。
所用聚乙烯醇的醇解度为87%-89mol%,粘度为3.2-3.6mPa·s。
所述聚乙烯吡咯烷酮的平均分子量为40000。
根据本发明的一些实施例,所述液相组分为N-甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、水中的至少一种。
在本发明一个优选实施方式中,浆料中无机氧化物纳米颗粒为质量比为370:1的二氧化锆纳米颗粒和二氧化钛纳米颗粒,粘结剂使用聚砜,造孔剂使用PVP,液相组分使用NMP。
上述方案中,聚砜具有良好的机械强度,耐酸碱、耐热性能优异,不足之处是有强烈的疏水性,通过亲水性的无机纳米颗粒掺杂,使得隔膜具有良好的亲水性。
第二方面,本发明还提供上述有机无机复合隔膜用浆料的制备方法,包括:将粘结剂和造孔剂与液相组分混合后,再将所得物料与无机氧化物纳米颗粒混合。
进一步地,优选先将粘结剂与液相组分混合,再加入造孔剂。
当无机氧化物纳米颗粒为多种时,优选先将多种无机氧化物纳米颗粒进行混合,之后再加入已分散有粘结剂和造孔剂的液相组分中。进一步优 选地,分批多次加入液相组分中,混合均匀。
第三方面,本发明提供一种有机无机复合隔膜,由上述任一有机无机复合隔膜用浆料制备得到。
具体地,由所述浆料制备有机无机复合隔膜的方法如下:(1)先将浆料组分充分搅拌3h,再将支撑体完全浸没在铸膜液中,随后采用刮膜装置,采用双面刮刀,控制支撑体距离刮刀距离约为200μm,制备出湿润状态的复合隔膜。(2)将上述湿润状态的复合隔膜放入相转化液中进行相转化,相转化温度为20℃,相转化液为水和NMP组成的混合溶液,相转化时间为1h,保证相转化较为彻底。在此过程中,铸膜液中的有机高分子树脂发生凝固,溶剂溶于水中,高分子树脂和溶剂则会发生相分离,变成固态树脂,形成多孔结构。(3)相转化过程完成后,将隔膜用沸水煮10mins,清除隔膜内残留的溶剂,然后放入无离子水中保存。
本发明采用上述浆料制备的有机无机复合隔膜,优选条件下,具有低的面电阻,常温下,在30wt%的KOH中,面电阻为0.12Ωcm2;而且具有高的阻气性能,11.94bar,断裂强度可以达到26MPa,完全不导电,可以满足碱性水电解进一步降低能耗的需求。
第四方面,本发明提供一种碱性水电解装置,包括上述有机无机复合隔膜。
碱性水电解装置一般包括电解槽、电极和隔膜,通电时在阴极侧产生氢气,阳极侧产生氧气。本发明的碱性水电解装置采用上述同时具备离子透过性、机械强度、气密性、电气绝缘性的复合隔膜,从而可以提高碱性水电解装置的电解效率,隔膜也能够经受电解槽的电极与隔膜之间的摩擦,隔膜具备阻隔气体的性能,电解生成的气体无法透过隔膜,隔膜也不能导电,处于绝缘状态。总而言之,安全又高效。
以下为具体实施例,所用原料若无特别说明,均为通过正规商业渠道获得。
以下实施例中,所用聚砜的平均分子量为8万;
所述聚乙烯吡咯烷酮的平均分子量为40000。
二氧化锆颗粒的直径用d1表示,二氧化钛颗粒的直径用d2表示。
实施例1
本实施例提供一种有机无机复合隔膜用浆料,其组成如下:
固相组分:无机氧化物纳米颗粒(质量比为1:190的二氧化锆和二氧化钛,d1=10nm,d2=70nm)70%,粘结剂(聚砜)29%,造孔剂(聚乙烯吡咯烷酮)1%;
液相组分:N-甲基吡咯烷酮,质量为无机氧化物纳米颗粒质量的1.2倍。
本实施例还提供上述浆料的制备方法,具体如下:
先将聚砜溶于N-甲基吡咯烷酮中,加热搅拌1.5h,直至聚砜全部溶解,再添加聚乙烯吡咯烷酮,搅拌至溶液澄清透明,然后再加入无机氧化物纳米颗粒,搅拌3h至混合均匀,视情况进行脱气处理,得到有机无机复合隔膜用浆料。
实施例2
本实施例提供一种有机无机复合隔膜用浆料,其组成如下:
固相组分:无机氧化物纳米颗粒(质量比为370:1的二氧化锆和二氧化钛,d1=70nm,d2=10nm)70%,粘结剂(聚砜)29%,造孔剂(聚乙烯吡咯烷酮)1%;
液相组分:N-甲基吡咯烷酮,质量为无机氧化物纳米颗粒质量的1.2倍。
本实施例还提供上述浆料的制备方法,具体如下:
先将聚砜溶于N-甲基吡咯烷酮中,加热搅拌1.5h,直至聚砜全部溶解,再添加聚乙烯吡咯烷酮,搅拌至溶液澄清透明,然后再加入无机氧化物纳米颗粒,搅拌3h至混合均匀,视情况进行脱气处理,得到有机无机复合隔膜用浆料。
实施例3
本实施例提供一种有机无机复合隔膜用浆料,其组成如下:
固相组分:无机氧化物纳米颗粒(质量比为1:200的二氧化锆和二氧化钛,d1=10nm,d2=200nm)70%,粘结剂(聚砜)29%,造孔剂(聚乙烯吡咯烷酮)1%;
液相组分:N-甲基吡咯烷酮,质量为无机氧化物纳米颗粒质量的1.2倍。
本实施例还提供上述浆料的制备方法,具体如下:
先将聚砜溶于N-甲基吡咯烷酮中,加热搅拌1.5h,直至聚砜全部溶解,再添加聚乙烯吡咯烷酮,搅拌至溶液澄清透明,然后再加入无机氧化物纳米颗粒,搅拌3h至混合均匀,视情况进行脱气处理,得到有机无机复合隔膜用浆料。
实施例4
本实施例提供一种有机无机复合隔膜用浆料,其组成如下:
固相组分:无机氧化物纳米颗粒(质量比为370:1的二氧化锆和二氧化钛,d1=200nm,d2=10nm)70%,粘结剂(聚醚砜)29%,造孔剂(聚乙烯吡咯烷酮)1%;
液相组分:N-甲基吡咯烷酮,质量为无机氧化物纳米颗粒质量的1.2倍。
本实施例还提供上述浆料的制备方法,流程示意图如图1所示,具体如下:
先将聚醚砜溶于N-甲基吡咯烷酮中,加热搅拌1.5h,直至聚醚砜全部溶解,再添加聚乙烯吡咯烷酮,搅拌至溶液澄清透明,然后再加入无机氧化物纳米颗粒(事先将二氧化锆和二氧化钛颗粒混合),搅拌3h至混合均匀,视情况进行脱气处理,得到有机无机复合隔膜用浆料。
实施例5
本实施例提供一种有机无机复合隔膜用浆料,其组成如下:
固相组分:无机氧化物纳米颗粒(质量比为1:200的二氧化锆和二氧 化钛,d1=10nm,d2=70nm)70%,粘结剂(聚芳砜)29%,造孔剂(聚乙烯吡咯烷酮)1%;
液相组分:N-甲基吡咯烷酮,质量为无机氧化物纳米颗粒质量的1.2倍。
本实施例还提供上述浆料的制备方法,具体如下:
先将聚芳砜溶于N-甲基吡咯烷酮中,加热搅拌1.5h,直至聚芳砜全部溶解,再添加聚乙烯吡咯烷酮,搅拌至溶液澄清透明,然后再加入无机氧化物纳米颗粒,搅拌3h至混合均匀,视情况进行脱气处理,得到有机无机复合隔膜用浆料。
实施例6
本实施例提供一种有机无机复合隔膜用浆料,其组成如下:
固相组分:无机氧化物纳米颗粒(质量比为370:1的二氧化锆和二氧化钛,d1=70nm,d2=10nm)70%,粘结剂(壳聚糖)29%,造孔剂(聚乙烯吡咯烷酮)1%;
液相组分:N-甲基吡咯烷酮,质量为无机氧化物纳米颗粒质量的1.2倍。
本实施例还提供上述浆料的制备方法,具体如下:
先将壳聚糖溶于N-甲基吡咯烷酮中,加热搅拌1.5h,直至壳聚糖全部溶解,再添加聚乙烯吡咯烷酮,搅拌至溶液澄清透明,然后再加入无机氧化物纳米颗粒,搅拌3h至混合均匀,视情况进行脱气处理,得到有机无机复合隔膜用浆料。
实施例7
本实施例提供一种有机无机复合隔膜用浆料,其组成如下:
固相组分:无机氧化物纳米颗粒(质量比为370:1的二氧化锆和二氧化钛,d1=100nm,d2=150nm)70%,粘结剂(聚砜)29%,造孔剂(聚乙烯吡咯烷酮)1%;
液相组分:N-甲基吡咯烷酮,质量为无机氧化物纳米颗粒质量的1.2 倍。
其制备方法同实施例1。
实施例8
本实施例提供一种有机无机复合隔膜用浆料,其组成如下:
固相组分:无机氧化物纳米颗粒(质量比为370:1的二氧化锆和二氧化钛,d1=70nm,d2=10nm)90%,粘结剂(聚砜)9%,造孔剂(聚乙烯吡咯烷酮)1%;
液相组分:N-甲基吡咯烷酮,质量为无机氧化物纳米颗粒质量的2倍。
其制备方法同实施例1。
实施例9
本实施例提供一种有机无机复合隔膜用浆料,其组成如下:
固相组分:无机氧化物纳米颗粒(二氧化锆,d1=100nm)70%,粘结剂(聚砜)29%,造孔剂(聚乙烯吡咯烷酮)1%;
液相组分:N-甲基吡咯烷酮,质量为无机氧化物纳米颗粒质量的1.2倍。
其制备方法同实施例1。
性能测试
将各实施例所得浆料制备成隔膜,与商业化的ZIRFON隔膜(对照例)进行性能测试对比,结果如表1所示。
其中,将浆料制备成隔膜的方法为:(1)先将浆料组分充分搅拌3h,再将支撑体完全浸没在铸膜液中,随后采用刮膜装置,采用双面刮刀,控制支撑体距离刮刀距离约为200μm,制备出湿润状态的复合隔膜。(2)将上述湿润状态的复合隔膜放入相转化液中进行相转化,相转化温度为20℃,相转化液为水和NMP组成的混合溶液,相转化时间为1h,保证相转化较为彻底。在此过程中,铸膜液中的有机高分子树脂发生凝固,溶剂溶于水中,高分子树脂和溶剂则会发生相分离,变成固态树脂,形成多孔结构。(3)相转化过程完成后,将隔膜用沸水煮10mins,清除隔膜内残留的溶 剂,然后放入无离子水中保存。
性能测试包括面电阻、泡点等测试项目,具体方法如下:
面电阻的测试方法如下:
将隔膜切割成小块,在30wt%的KOH溶液下浸泡1天后,用电化学工作站测试电阻。
泡点的测试方法如下:
将隔膜切割成小块,用高纯水浸润,放入泡压法膜孔径分析仪(BSD-PB)测试,在膜的一侧施加气体压强,待膜的另一侧检测到1mL/min的气流时,该压强视作隔膜的泡点。泡点的计算公式如下:
式中,D=孔隙直径,单位μm;γ=液体的表面张力,单位:dny/cm;θ=接触角,单位:度;△P=压差,单位KPa。
拉伸强度的测试方法如下:
剪长方形的小块隔膜,置于拉伸试验机上进行测试。
绝缘性能的测试方法如下:
取5cm宽的方形隔膜,用两块不锈钢板夹住,用电化学工作站测试电阻。
表1
图2为实施例1和对比例ZIRFON隔膜的室温电解水伏安曲线,膜面积为1cm2,说明本实施例制备的隔膜的电解水性能要优于对比例。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对 其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明提供一种有机无机复合隔膜及制备其的浆料、碱性水电解装置,所述浆料包括液相组分和固相组分,所述固相组分包括无机氧化物纳米颗粒、粘结剂和造孔剂,所述无机氧化物纳米颗粒在所述固相组分中的质量占比为70-90%,所述液相组分的质量为所述无机氧化物纳米颗粒质量的1-1.5倍。用该浆料制备的有机无机复合隔膜具有面电阻小、阻气性高、绝缘性好等优点,用于碱性电解水过程能较好地降低能耗以及提高产氢纯度,具有较好的经济价值和应用前景。

Claims (10)

  1. 一种有机无机复合隔膜用浆料,其特征在于,所述浆料包括液相组分和固相组分,所述固相组分包括无机氧化物纳米颗粒、粘结剂和造孔剂,所述无机氧化物纳米颗粒在所述固相组分中的质量占比为70-90%,所述液相组分的质量为所述无机氧化物纳米颗粒质量的1-1.5倍。
  2. 根据权利要求1所述的有机无机复合隔膜用浆料,其特征在于,所述无机氧化物纳米颗粒包括二氧化锆纳米颗粒和/或二氧化钛纳米颗粒。
  3. 根据权利要求2所述的有机无机复合隔膜用浆料,其特征在于,所述无机氧化物纳米颗粒的直径为10-200nm。
  4. 根据权利要求3所述的有机无机复合隔膜用浆料,其特征在于,所述无机氧化物纳米颗粒由质量比为1:150-200的二氧化锆和二氧化钛组成,所述二氧化锆的直径为d1,所述二氧化钛的直径为d2,满足:
  5. 根据权利要求3所述的有机无机复合隔膜用浆料,其特征在于,所述无机氧化物纳米颗粒由质量比为350-400:1的二氧化锆和二氧化钛组成,所述二氧化锆的直径为d1,所述二氧化钛的直径为d2,满足:
  6. 根据权利要求1-5任一项所述的有机无机复合隔膜用浆料,其特征在于,所述粘结剂为聚砜、聚醚砜、聚芳砜、壳聚糖中的至少一种,所述粘结剂在所述固相组分中的质量占比为9-29%;
    和/或,所述造孔剂为聚乙烯吡咯烷酮、聚乙烯醇中的至少一种,所述造孔剂在所述固相组分中的质量占比为1%。
  7. 根据权利要求1-5任一项所述的有机无机复合隔膜用浆料,其特征在于,所述液相组分为N-甲基吡咯烷酮、N,N-二甲基甲酰胺、二甲基亚砜、水中的至少一种。
  8. 权利要求1-7任一项所述的有机无机复合隔膜用浆料的制备方法,其特征在于,包括:
    将粘结剂和造孔剂与液相组分混合后,再将所得物料与无机氧化物纳米颗粒混合。
  9. 一种有机无机复合隔膜,其特征在于,由权利要求1-7任一项所述的有机无机复合隔膜用浆料制备得到。
  10. 一种碱性水电解装置,其特征在于,包括权利要求9所述的有机无机复合隔膜。
PCT/CN2023/107896 2022-10-25 2023-07-18 有机无机复合隔膜及制备其的浆料、碱性水电解装置 WO2024087748A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211313567.5A CN115677269B (zh) 2022-10-25 2022-10-25 有机无机复合隔膜及制备其的浆料、碱性水电解装置
CN202211313567.5 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024087748A1 true WO2024087748A1 (zh) 2024-05-02

Family

ID=85099168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107896 WO2024087748A1 (zh) 2022-10-25 2023-07-18 有机无机复合隔膜及制备其的浆料、碱性水电解装置

Country Status (2)

Country Link
CN (1) CN115677269B (zh)
WO (1) WO2024087748A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677269B (zh) * 2022-10-25 2023-06-27 清华大学 有机无机复合隔膜及制备其的浆料、碱性水电解装置
CN117512692B (zh) * 2023-11-17 2024-05-03 武汉理工大学 涂层式碱性水电解制氢隔膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023542A (zh) * 2017-01-26 2019-07-16 旭化成株式会社 复极式电解槽、碱水电解用复极式电解槽以及氢制造方法
JP2021004411A (ja) * 2019-06-27 2021-01-14 株式会社日本触媒 アルカリ水電解用隔膜ならびに該隔膜の製造方法
EP3859051A1 (en) * 2018-09-26 2021-08-04 Nippon Shokubai Co., Ltd. Diaphragm for electrolysis of alkaline water
CN115677269A (zh) * 2022-10-25 2023-02-03 清华大学 有机无机复合隔膜及制备其的浆料、碱性水电解装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1006659A3 (nl) * 1992-01-29 1994-11-08 Vito Werkwijze ter vervaardiging van een membraan, aldus vervaardigd membraan en elektrochemische cel met zulk membraan.
JP2005285413A (ja) * 2004-03-29 2005-10-13 Konica Minolta Holdings Inc プロトン伝導性膜、プロトン伝導性膜の製造方法、及びプロトン伝導性膜を用いた固体高分子形燃料電池
RU2322460C1 (ru) * 2006-12-07 2008-04-20 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ(ТУ)") Способ изготовления мембраны для электролитического разложения воды
CN104204302B (zh) * 2012-03-28 2016-12-28 贝卡尔特公司 多孔金属性扩散基材和聚合物分隔膜的组件
CN105304847B (zh) * 2014-07-30 2017-12-26 中国科学院大连化学物理研究所 一种耐热型多孔隔膜在锂离子电池中的应用
JP7136580B2 (ja) * 2018-04-17 2022-09-13 旭化成株式会社 隔膜、隔膜の製造方法、電解槽及び水素製造方法
CN109524604A (zh) * 2018-12-07 2019-03-26 银隆新能源股份有限公司 一种锂离子电池隔膜及锂离子电池
CN110752338B (zh) * 2019-10-17 2020-07-28 华南理工大学 一种锂离子电池复合隔膜
CN113871797A (zh) * 2020-06-11 2021-12-31 恒大新能源技术(深圳)有限公司 一种陶瓷隔膜及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023542A (zh) * 2017-01-26 2019-07-16 旭化成株式会社 复极式电解槽、碱水电解用复极式电解槽以及氢制造方法
EP3859051A1 (en) * 2018-09-26 2021-08-04 Nippon Shokubai Co., Ltd. Diaphragm for electrolysis of alkaline water
JP2021004411A (ja) * 2019-06-27 2021-01-14 株式会社日本触媒 アルカリ水電解用隔膜ならびに該隔膜の製造方法
CN115677269A (zh) * 2022-10-25 2023-02-03 清华大学 有机无机复合隔膜及制备其的浆料、碱性水电解装置

Also Published As

Publication number Publication date
CN115677269B (zh) 2023-06-27
CN115677269A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2024087748A1 (zh) 有机无机复合隔膜及制备其的浆料、碱性水电解装置
US10147974B2 (en) Battery separator membrane and battery employing same
Li et al. Poly (vinyl benzyl methylpyrrolidinium) hydroxide derived anion exchange membranes for water electrolysis
JP5384335B2 (ja) イオン伝導性メンブラン
WO2012075810A1 (zh) 多孔隔膜及其复合膜在液流储能电池中的应用
WO2012046777A1 (ja) フッ素系高分子電解質膜
CN112144076B (zh) 一体化膜电极及其制备方法和应用
WO2022236911A1 (zh) 高抗反极能力阳极催化层及其制备与膜电极、燃料电池应用
WO2024087742A1 (zh) 隔膜浆料及其制备方法和碱性水电解用隔膜
CN115287702A (zh) 一种聚砜-ZrO2复合隔膜、制备方法及应用
KR20230074085A (ko) 술폰화된 폴리페닐렌 설파이드 메쉬 지지체를 이용한 수전해 다공성 격막 및 이의 제조방법
CN117107297B (zh) 增强气体阻隔性的碱性电解水制氢用复合隔膜及制备方法
KR102436919B1 (ko) Koh 전해액 환경에서 이온 전도도가 향상된 알칼라인 수전해 셀룰로오스 격막
WO2024087747A1 (zh) 超薄碱性水电解用复合隔膜及其制备方法和碱性水电解装置
CN115895014A (zh) 一种高亲水性的无机掺杂复合型多孔聚合物隔膜、制备方法及应用
CN112928315B (zh) 一种碱性锌基液流电池用复合膜的制备和应用
CN116770362A (zh) 一种复合隔膜及其制备方法和电化学能源器件
CN115991819B (zh) 一种膦酸磺酸复合质子交换膜及其制备方法
CN114649553B (zh) 一种沸石分子筛纳米片负载的多孔膜、制备方法及其在锌基液流电池中的应用
CN112652796B (zh) 一种高耐久性氢燃料电池质子交换膜及其制备方法和应用
JPH06342667A (ja) 高分子型燃料電池
CN114709558A (zh) 一种高耐热聚酰胺酰亚胺复合隔膜及其制备方法
CN117305904B (zh) 复合浆料、多孔隔膜及其制备方法和应用
JP2010229431A (ja) イオン透過性隔膜及びその製造方法
JP2010138325A (ja) プロトン伝導性複合電解質膜、それを用いた膜電極接合体及び燃料電池