JP2010229431A - イオン透過性隔膜及びその製造方法 - Google Patents

イオン透過性隔膜及びその製造方法 Download PDF

Info

Publication number
JP2010229431A
JP2010229431A JP2009074955A JP2009074955A JP2010229431A JP 2010229431 A JP2010229431 A JP 2010229431A JP 2009074955 A JP2009074955 A JP 2009074955A JP 2009074955 A JP2009074955 A JP 2009074955A JP 2010229431 A JP2010229431 A JP 2010229431A
Authority
JP
Japan
Prior art keywords
ion
hydrophilic inorganic
inorganic material
membrane
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009074955A
Other languages
English (en)
Inventor
Shogo Anzai
奬吾 安財
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2009074955A priority Critical patent/JP2010229431A/ja
Publication of JP2010229431A publication Critical patent/JP2010229431A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】電気抵抗が低く、かつ隔膜を隔てて生成されたガス(水素、酸素等)の分離性能を向上させることのできる、アルカリ水電解装置において使用するためのイオン透過性隔膜及び当該イオン透過性隔膜の製造方法を提供する。
【解決手段】アルカリ水電解に用いられるイオン透過性隔膜1は、親水性無機材料としてのリン酸カルシウム化合物(フルオロアパタイト、ヒドロキシアパタイト等)又はフッ化カルシウムを含有する膜材料1Aを備え、親水性無機材料の平均粒径が、0.7μm以下である。
【選択図】図1

Description

本発明は、アルカリ水電解装置に使用するためのイオン透過性隔膜に関し、特にイオン透過性隔膜を電極間に挟持した構造を有するアルカリ水電解装置に使用するためのイオン透過性隔膜及びその製造方法に関する。
水素は、最近のエネルギー事情を反映し、石油に代わる新しいエネルギー源として多方面から注目されている。このような水素の工業的製造方法としては、コークスや石油のガス化法、水電解法等が挙げられる。
前者の方法は、操作が煩雑であるとともに、非常に大規模な設備が必要となるので、イニシャルコストがかなりかかるという問題点がある。
一方、後者の方法は、原料として入手し易い水を用いるものであり、電解槽内に複数の電極対を設け、これら対となる電極の間にKOH等のアルカリ電解液を流通させるとともにイオン透過性隔膜で区画して、このイオン透過性隔膜の陰極側で水素を発生するとともに陽極側で酸素を発生させるものであるが、電極間にイオン透過性隔膜と被電解液とが存在しているので、電気抵抗が大きく、電解効率が悪いという問題がある。しかしながら、この水電解法は、比較的小規模な設備でも水素の発生が可能であり、実用的であることから、電解効率の向上が望まれている。
ところで、このようなアルカリ水電解装置に代表される電気化学的電解槽に使用する隔膜には、以下の性能が要求される。
(1)膜を通じてイオンのみを通し、ガスの通過や拡散がないこと
(2)電解液中で物理的、化学的に耐久性があること
(3)電気抵抗が低いこと
このような性能を有する電解用隔膜として、実用的には石綿布が広く使われている。しかし、電解液は場合によっては100℃以上になるにもかかわらず、石綿布は、100℃以上の温度では腐食を受け使用できなくなる上に、近年では、石綿による健康被害も多く報告されており、その使用には大きな問題がある。
そこで、上記(1)及び(2)の性能を満たすとともに、(3)電気抵抗が一層低いイオン透過性隔膜として、高分子多孔膜又はイオン交換膜、NiO等の金属酸化物膜を用いたもの(特許文献1参照)及び無機物質と有機高分子との複合材料等を隔膜材料としたイオン透過性隔膜(特許文献2参照)等が提案されている。
特公昭62−50557号公報 特許第2604734号公報
しかしながら、上記各膜材料からなるイオン透過性隔膜のうち、高分子多孔膜は、柔軟であり、機械的損傷に対して抵抗性が強いという利点を有するが、ここで使用される高分子材料は疎水性であるため、多孔性であったとしても電解質の溶媒和したイオンの移動が容易でなく、電気抵抗が大きくなり、電解槽の性能が激しく低下するという問題点がある。また、高分子多孔膜やイオン交換膜では、気体を発生するアルカリ水電解装置においては、気体の泡が膜の表面に付着し電気抵抗が増大するという問題があり、特に気泡が集中して部分的に電気抵抗が大きく増大した場合には、いわゆるホット・スポットと呼ばれる高温部が生じ、隔膜の劣化が起こるという問題点もある。
また、上記特許文献1に記載されているようなNiO等の金属酸化物膜は、焼結により製造されるが、ガスの拡散や透過のない緻密な焼結隔膜は、そのサイズに限界があるため、大型の電解槽への適用には向いていないという問題点がある。
そして、特許文献2に記載されている無機物質と有機高分子との複合材料を隔膜としたイオン透過性隔膜は、無機湿潤性材料として酸化ジルコニウムやポリアンチモン酸を用い、フルオロカーボン重合体やポリスルホン等をバインダーとして製膜することで微細孔を形成したものである。この複合材料を用いたイオン透過性隔膜は、優れた平滑性及び非常に良好なイオン伝導率を示し、アルカリ水電解装置の隔膜としては好適なものである。
しかしながら、特許文献2に記載されているイオン透過性隔膜に用いられる無機湿潤性材料は、湿潤性を有するものの、当該イオン透過性隔膜を隔てて差圧が増加した場合にガスを分離するのが困難となるという問題がある。
本発明は、上記従来の課題を解決し、電気抵抗が低く、かつ隔膜を隔てて生成されたガス(水素、酸素等)の分離性能を向上させることのできる、アルカリ水電解装置に使用するためのイオン透過性隔膜及び当該イオン透過性隔膜の製造方法を提供することを目的とする。
上記課題を解決するために、本発明は、アルカリ水電解に用いられるイオン透過性隔膜であって、親水性無機材料としてのリン酸カルシウム化合物又はフッ化カルシウムを含有する膜材料を備え、前記親水性無機材料の平均粒径が、0.7μm以下であることを特徴とするイオン透過性隔膜を提供する(請求項1)。
上記発明(請求項1)によれば、親水性無機材料の平均粒径が0.7μm以下であることで、緻密な細孔構造が形成されるため、ガスの分離性能を向上させることができ、これにより、イオン透過性隔膜の陰極側で発生する水素に陽極側で発生する酸素等が混入することがなく、水素の純度を高く維持することができる。また、アルカリ水電解におけるイオンが、親水性の高められたイオン透過性隔膜を速やかに通過できるため、膜自体の電気抵抗を低下させることができ、これによりアルカリ水電解装置に用いた場合に消費電力の低減、電界効率の向上を図ることができる。
上記発明(請求項1)においては、前記親水性無機材料としてのリン酸カルシウム化合物が、フルオロアパタイト(FAP)又はヒドロキシアパタイト(HAP)であるのが好ましい(請求項2)。また、上記発明(請求項1〜2)においては、前記膜材料が、前記親水性無機材料と、ポリサルフォン、ポリプロピレン及びフッ化ポリビニリデンからなる群より選択される少なくとも1種の有機結合材料との混合物に有機繊維布を内在させたものであるのが好ましい(請求項3)。さらに、上記発明(請求項3)においては、前記有機繊維布が、ポリプロピレンのメッシュであることが好ましい(請求項4)。
上記発明(請求項2〜4)によれば、膜材料自体が、非常に良好な親水性を有し、優れたイオン伝導性を有するために、アルカリ水電解装置の隔膜として好適なものとすることができる。
上記発明(請求項1〜4)においては、前記膜材料の厚みが、100μm以上であるのが好ましい(請求項5)。膜材料の厚みを増すことで、所望とする膜強度を確保することができる一方、膜の電気抵抗が上昇してしまうおそれがあるが、かかる発明(請求項5)によれば、膜材料が良好な親水性を有し、優れたイオン伝導性を有するため、膜材料の厚みをある程度の厚さにしても膜の電気抵抗が上昇することがなく、所望とする膜強度を確保することができる。
また、本発明は、上記発明(請求項1〜5)に係るイオン透過性隔膜を製造する方法であって、平均粒径を0.7μm以下に調整した前記親水性無機材料と有機結合材料とを含む懸濁液から製造された湿潤シートに、有機繊維布を浸漬させることを特徴とするイオン透過性隔膜の製造方法を提供する(請求項6)。
上記発明(請求項6)によれば、平均粒径が0.7μm以下に調整された親水性無機材料を用いることで、緻密な細孔構造が形成されるため、ガスの分離性能を向上させることができ、イオン透過性隔膜の陰極側で発生する水素に陽極側で発生する酸素等が混入することがなく、水素の純度を高く維持することのできるイオン透過性隔膜を製造することができる。
上記発明(請求項6)においては、有機溶剤に前記有機結合材料を溶解させてなる有機結合材溶液と、親水性無機材料とをビーズミルに投入することで、平均粒径が0.7μm以下に調整された親水性無機材料と有機結合材とを含む懸濁液を調製するのが好ましい(請求項7)。
親水性無機材料を、例えばボールミル等で粉砕すると、粉砕に1週間以上の期間がかかるとともに、粉砕後の親水性無機材料の平均粒径が4μm程度であるため、ガス分離性能が不十分であり、イオン透過性隔膜の陰極側で発生する水素に陽極側で発生する酸素等が混入してしまうおそれがあるが、上記発明(請求項8)によれば、ビーズミルに有機結合材溶液と親水性無機材料とを投入して混合することで、平均粒径が0.7μm以下に調整された親水性無機材料を含み、ガス分離性能を向上させたイオン透過性隔膜を短期間で、かつ容易に製造することができる。
本発明によれば、電気抵抗が低く、かつ隔膜を隔てて生成されたガス(水素、酸素等)の分離性能が向上した、アルカリ水電解装置に使用するためのイオン透過性隔膜及び当該イオン透過性隔膜の製造方法を提供することができる。
本発明の一実施形態に係るイオン透過性隔膜を用いたアルカリ水電解装置の電解ユニットの一単位を示す拡大断面図である。
以下、図面を参照して本発明の実施形態を詳細に説明する。
図1は、本発明の一実施形態に係るイオン透過性隔膜を用いたアルカリ水電解装置の電解ユニットの一単位を示す拡大断面図である。
図1において、イオン透過性隔膜1は、メッシュ状の電極2,3の間に挟みこまれる形で保持されており、このメッシュ状の電極2,3は、電導部材2A,3Aを介して、バイポーラ電極4,5の陽極側4A及び陰極側5Aのそれぞれに接続される。これにより、イオン透過性隔膜1間に電圧がかかるようになっている。なお、本実施形態において、当該イオン透過性隔膜1は、図1に示すように、アルカリ溶液Wとしての水酸化カリウム(KOH)溶液が収容された電解槽6内に、電解槽6内を陽極側と陰極側とに区画するようにして配置されている。
このイオン透過性隔膜1を形成する膜材料1Aとしては、膜を介してイオンのみを通過させ、ガスの通過や拡散がなく、アルカリ溶液W中で物理的、化学的に耐久性のあるものであれば、特に制限されるものではない。
例えば、膜材料1Aとしては、親水性無機材料と、ポリサルフォン、ポリプロピレン及びフッ化ポリビニリデン等からなる群より選択される少なくとも1種の有機結合材料とを含むフィルム形成性混合物中に、伸張させた有機繊維布を内在させたものを用いるのが好ましい。
親水性無機材料としては、フルオロアパタイト(FAP)又はヒドロキシアパタイト(HAP)等のリン酸カルシウム化合物を用いることが好ましく、これらの親水性無機材料は、粒状体を用いることが好ましい。この親水性無機材料の粒状体の平均粒径は、0.7μm以下であり、特に0.5μm以下であるのが好ましい。
また、上記リン酸カルシウム化合物以外の親水性無機材料としては、フッ化カルシウム(CaF)を好適に用いることができる。このフッ化カルシウムも上述のリン酸カルシウム化合物と同様にその平均粒径が0.7μm以下であり、特に0.5μm以下であるのが好ましい。また、このフッ化カルシウムは、工業薬品として市販されているものを利用することができるだけでなく、工業的に回収されるものを利用することができる。例えば、フッ素含有排水の処理工程において、フッ素はCaFとして固定化された上で除去されるので、これを再利用することができる。
また、有機繊維布としては、ポリプロピレンからなるメッシュ、又はエチレンとモノクロロトリフルオロエチレン等の予めハロゲン化されたエチレンとの共重合体からなるメッシュ等を用いることができる。この有機繊維布としては、織布又は不織布を用いることができ、その繊維径は1mm以下であることが好ましく、特に繊維径が0.5mm以下であることが好ましい。また、有機繊維布の織目の寸法は特に制限はないが、4mm以下であることが好ましく、特に1mm以下であることが好ましい。
上述したような親水性無機材料、有機結合材料及び有機繊維布により構成される膜材料1Aは、例えば、以下のようにして製造することができる。
まず、有機溶剤に有機結合材料を溶解させた有機結合材溶液と、親水性無機材料と、媒体メディア(ビーズ)とをビーズミルに投入し、攪拌する。これにより、親水性無機材料の平均粒径を0.7μm以下に調整することができるとともに、当該親水性無機材料と有機結合材料とを含む懸濁液(スラリー)を調製することができる。
有機溶剤としては、例えば、ジメチルフォルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、エチレングリコールのモノ及びジエーテル、又はメチルエチルケトンのようなケトン類等を用いることができる。
親水性無機材料(FAP,HAP,CaF)と有機結合材料との配合割合は、親水性無機材料の配合割合が10〜95質量%であるのが好ましく、40〜90質量%であるのがさらに好ましく、75〜85質量%であるのが特に好ましい。親水性無機材料の配合割合が10質量%未満であると、得られる膜材料1A自体の電気抵抗が大きくなり、これを用いたイオン透過性隔膜1の電気抵抗の点でも好ましくない。また、親水性無機材料の配合割合が95質量%を超えると、膜材料1Aの機械的強度、特に脆性が低くなりすぎて膜としての形態を維持するのが困難となるおそれがある。
なお、親水性無機材料の配合割合が有機結合材料に対して多いほど、膜材料の湿潤性(親水性)が高くなり、膜の電気抵抗が低くなる傾向がある。特に、親水性無機材料としてのヒドロキシアパタイト(HAP)は、その配合割合が高いほど電気抵抗が低くなるが、有機結合材料及び有機溶剤との混合性が悪く、フルオロアパタイト(FAP)と比較して、同質量%におけるスラリーの粘性が高く、分離しやすい性質がある。このため、親水性無機材料としてヒドロキシアパタイト(HAP)を用いる場合には、ヒドロキシアパタイト(HAP)の配合割合を多くとも60〜70質量%程度としてスラリーを調製するのが好ましい。
なお、親水性無機材料としてのフルオロアパタイト(FAP)は、有機結合材料及び有機溶剤との混合性が良好であり、上述した配合割合10〜95質量%でスラリーを調製することができ、上述した最適な配合割合75〜85質量%でスラリーを調製することが好ましい。
したがって、膜材料に用いる親水性無機材料としては、ハンドリングの面からはフルオロアパタイト(FAP)を用いる方が好ましい。
なお、有機溶剤の配合割合は、皮膜形成物質である有機結合材料との合計100質量%中40質量%以上であればよい。また、製造する湿潤シートの厚さは2mm以下であることが好ましく、特に1.5mm以下であることが好ましい。
ビーズミルに投入される媒体メディア(ビーズ)としては、例えば、ジルコニア製ビーズ、アルミナ製ビーズ、ガラス製ビーズ等を用いることができ、ビーズの粒径は、φ1mm以下であればよく、好ましくはφ0.5mm以下であればよい。ビーズの粒径がφ1mmを超えると、親水性無機材料の平均粒径を0.7μm以下に調整するのが困難となるおそれがある。
また、媒体メディア(ビーズ)の配合割合は、特に限定されるものではないが、親水性無機材料に対して2〜4倍量(質量基準)程度であればよい。ビーズの配合割合が上記範囲内であれば、親水性無機材料の平均粒径を0.7μm以下に効率的に調整することができる。
ビーズミルにおいて親水性無機材料と有機結合材溶液とを混合する際、当該ミルの攪拌速度は、平均粒径0.7μm以下の親水性無機材料と有機結合材とを含む懸濁液(スラリー)を調製することができる限り特に限定されるものではなく、例えば、1000〜5000rpm程度に設定すればよく、処理時間は0.5〜3時間程度であればよい。
このようにして得られた懸濁液(スラリー)をガラス板等の不活性材料からなる平滑面上に所定の厚さに均一に塗布し、湿潤シートを製造する。そして、この湿潤シートに有機繊維布を伸張した状態で浸漬し、有機繊維布の伸張を維持したまま、蒸発や水浴中での浸出等により有機溶剤を除去した後、平滑面に残った膜材料1Aを剥離する。
このようにして製造される膜材料1Aの厚さ(t)は、100μm以上、特に300〜600μmであるのが好ましい。膜材料1Aの厚さが100μm未満であると、アルカリ水電解用の膜材料1Aとしての膜強度が十分でないおそれがある。なお、膜材料1Aの厚さが100μm以上であっても、膜材料1Aの電気抵抗が上昇することがなく、優れたイオン電導性を奏することができる。
上述したようなイオン透過性隔膜1は、1mol/LのKOH溶液中、25℃の条件下において、0.20Ωcm以下、特に0.15Ωcm以下の膜抵抗(電気抵抗)を有する。
このようなイオン透過性隔膜1を用いた図1に示す電解ユニットにおいては、バイポーラ電極4,5に電流を流すと、電導部材2A,3Aからメッシュ状の電極2,3間に電圧が生じ、水酸化カリウム溶液Wの電気分解により、イオン透過性隔膜1とメッシュ状の電極2(陽極)との界面において、酸素(O)が発生する。
そして、イオン透過性隔膜1とメッシュ状の電極3(陰極)との界面においては、2倍量の水素(H)が発生する。この電解ユニットにおける電解槽6は、イオン透過性隔膜1により陰極側と陽極側とに区画されているので、陰極側で発生した水素のみを回収することで、高純度の水素ガスを効率よく製造することができる。
このとき、イオン透過性隔膜1には、親水性に優れた無機材料(無機湿潤性物質)が含まれており、この膜材料1Aが多孔質構造を有していることで、水酸化カリウム溶液中のイオンは迅速に移動するため、イオン透過性隔膜1の電気抵抗が低下し、アルカリ水電解を効率よく行うことができる。
しかも、この膜材料1Aにおける親水性無機材料の平均粒径が0.7μm以下に調整されており、イオン透過性隔膜1が緻密な細孔構造を有することで、溶液はイオン透過性隔膜1を通過し得るが、陽極側で発生する酸素ガスの気泡及び陰極側で発生する水素ガスの気泡は通過できないため、これらの気体が相互に混入するおそれがない。したがって、陰極側から得られる水素ガスの純度を極めて高く維持することができる。
以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
以下、実施例及び比較例に基づき、本発明をさらに詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。
〔実施例1〕微粒化したCaF含有膜材料の製造
ポリスルホン(ソルベイアドバンスドポリマーズ社製,P−3500)54gをN−メチル−2−ピロリドン(キシダ化学社製,特級,NMP)546gに真空中(−0.1MPa)で完全に溶解させた。
得られた溶液をビーズミル(アシザワファインテック社製,ミニツェア)のベッセルに移し、ジルコニア製のビーズ(粒径:0.5mm)を485g、親水化材としてCaFを192g加えた。その後、ミルの攪拌を3900rpmで1時間実施した。このときのミルの動力は1.12kWhであった。また、得られたCaFの平均粒径は0.7μmであった。
このようにして得られた懸濁液を、底面から400μmの位置に200メッシュのポリプロピレン繊維布(繊維径:87μm,NBC社製,商品名:ニップ(ポリプロピレン)強力網)を伸張状態で設置した10cm×10cmのガラス製の枠体上に10mL流し込み、表面積100cm、厚さ約500μmの湿潤シートを作製した。
懸濁液を流し込んだ後直ちに枠体をIPA浴中に移し、室温で一昼夜放置し、湿潤シートから溶剤であるN−メチル−2−ピロリドン(NMP)を浸出させた。その後、枠体上に残存したシートを剥離し、水中でさらに5分間保持し、シート状の膜材料を得た。得られたシート状膜材料は、約400μmの厚さを有していた。
〔比較例1〕CaF含有膜材料の製造
ビーズミルの代わりにボールミルを用いて親水化材としてのCaFを粉砕した以外は、実施例1と同様にしてシート状膜材料を製造した。得られたCaFの平均粒径は1.0μmであった。
〔電気抵抗の測定試験〕
上記のようにして得られた実施例1及び比較例1のイオン透過性隔膜を1mol/LのKOH溶液に浸漬し、これらのイオン透過性隔膜について、25℃で1000Hzの交流にて抵抗測定器(日置電機社製,LCRハイテスタ5030)を用いて膜抵抗を測定した。
結果を表1に示す。
〔ガス透過性試験〕
図1に示す電解ユニットに、実施例1及び比較例1のイオン透過性隔膜5を設置して、H側からNガスを導入し、O側にリークが開始する圧力を測定した。
結果を表1にあわせて示す。
Figure 2010229431
表1に示すように、実施例1のイオン透過性隔膜を用いた電解ユニットは、0.2Ω・cm以下の非常に低い膜抵抗を示すとともに、さらにH側からのリーク圧力も非常に高く、ガス透過特性においても非常に優れていることが確認された。
1…イオン透過性隔膜
1A…膜材料
2…電極(陽極)
2A…電導部材
3…電極(陰極)
3A…電導部材
4,5…バイポーラ電極
6…電解槽
W…水酸化カリウム(KOH)溶液(アルカリ溶液)
t…膜材料の厚さ

Claims (7)

  1. アルカリ水電解に用いられるイオン透過性隔膜であって、
    親水性無機材料としてのリン酸カルシウム化合物又はフッ化カルシウムを含有する膜材料を備え、
    前記親水性無機材料の平均粒径が、0.7μm以下であることを特徴とするイオン透過性隔膜。
  2. 前記親水性無機材料としてのリン酸カルシウム化合物が、フルオロアパタイト又はヒドロキシアパタイトであることを特徴とする請求項1に記載のイオン透過性隔膜。
  3. 前記膜材料が、前記親水性無機材料と、ポリサルフォン、ポリプロピレン及びフッ化ポリビニリデンからなる群より選択される少なくとも1種の有機結合材料との混合物に有機繊維布を内在させたものであることを特徴とする請求項1又は2に記載のイオン透過性隔膜。
  4. 前記有機繊維布が、ポリプロピレンのメッシュであることを特徴とする請求項3に記載のイオン透過性隔膜。
  5. 前記膜材料の厚みが、100μm以上であることを特徴とする請求項1〜4のいずれかに記載のイオン透過性隔膜。
  6. 請求項1〜5のいずれかに記載のイオン透過性隔膜を製造する方法であって、
    平均粒径を0.7μm以下に調整した親水性無機材料と有機結合材料とを含む懸濁液から製造された湿潤シートに、有機繊維布を浸漬させることを特徴とするイオン透過性隔膜の製造方法。
  7. 有機溶剤に前記有機結合材料を溶解させてなる有機結合材溶液と、親水性無機材料とをビーズミルに投入することで、平均粒径が0.7μm以下に調整された親水性無機材料と有機結合材とを含む懸濁液を調製することを特徴とする請求項6に記載のイオン透過性隔膜の製造方法。
JP2009074955A 2009-03-25 2009-03-25 イオン透過性隔膜及びその製造方法 Pending JP2010229431A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009074955A JP2010229431A (ja) 2009-03-25 2009-03-25 イオン透過性隔膜及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009074955A JP2010229431A (ja) 2009-03-25 2009-03-25 イオン透過性隔膜及びその製造方法

Publications (1)

Publication Number Publication Date
JP2010229431A true JP2010229431A (ja) 2010-10-14

Family

ID=43045518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009074955A Pending JP2010229431A (ja) 2009-03-25 2009-03-25 イオン透過性隔膜及びその製造方法

Country Status (1)

Country Link
JP (1) JP2010229431A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015536383A (ja) * 2012-10-16 2015-12-21 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ アルカリ溶液の電解セル
JP2016023345A (ja) * 2014-07-23 2016-02-08 エクセルギー・パワー・システムズ株式会社 水素製造装置および水素製造方法
CN114207189A (zh) * 2019-07-05 2022-03-18 爱克发-格法特公司 用于碱性水电解的分隔器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015536383A (ja) * 2012-10-16 2015-12-21 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ アルカリ溶液の電解セル
JP2016023345A (ja) * 2014-07-23 2016-02-08 エクセルギー・パワー・システムズ株式会社 水素製造装置および水素製造方法
CN114207189A (zh) * 2019-07-05 2022-03-18 爱克发-格法特公司 用于碱性水电解的分隔器

Similar Documents

Publication Publication Date Title
JP6411631B2 (ja) アルカリ水電解用隔膜、アルカリ水電解装置、水素の製造方法及びアルカリ水電解用隔膜の製造方法
JP6284602B2 (ja) ガス拡散電極、その製造方法、それを含む膜電極接合体、およびそれを含む膜電極接合体を製造する方法
KR102112648B1 (ko) 고분자 전해질막
EP3085815A1 (en) Diaphragm for alkaline water electrolysis, method for producing same, and alkaline water electrolysis apparatus
WO2013183584A1 (ja) イオン透過性隔膜
JPH04507112A (ja) 複合成形品、その応用と製法
JP6596289B2 (ja) ポリフェニレン共重合体を含む微多孔膜、及びその製造方法
JP6030952B2 (ja) アルカリ水電解用隔膜及びその製造方法
WO2018182006A1 (ja) 隔膜、電解槽及び水素製造方法
JP2013204146A (ja) アルカリ水電解用隔膜及びその製造方法
CN115677269B (zh) 有机无机复合隔膜及制备其的浆料、碱性水电解装置
JP2010229431A (ja) イオン透過性隔膜及びその製造方法
JP4998713B2 (ja) イオン透過性隔膜
KR102436919B1 (ko) Koh 전해액 환경에서 이온 전도도가 향상된 알칼라인 수전해 셀룰로오스 격막
ES2606356T3 (es) Diafragma de speek para electrolisis alcalina y su uso
JP2009185333A (ja) イオン透過性隔膜の製造方法
JP2008238134A (ja) イオン交換性フィルタおよびその製造方法
US8016984B2 (en) Ion-permeable diaphragm
JP2022176792A (ja) アルカリ水電解用隔膜、及びその製造方法
JP7166118B2 (ja) アルカリ水電解用隔膜
JP2010236044A (ja) イオン透過性隔膜の製造方法
JP2008050631A (ja) イオン透過性隔膜及びその製造方法
CN117305904B (zh) 复合浆料、多孔隔膜及其制备方法和应用
JP2009191343A (ja) イオン透過性隔膜
CN117004990A (zh) 复合隔膜及其制备方法和应用