WO2024087363A1 - 一种改性四元前驱体及其制备方法和应用 - Google Patents

一种改性四元前驱体及其制备方法和应用 Download PDF

Info

Publication number
WO2024087363A1
WO2024087363A1 PCT/CN2022/140476 CN2022140476W WO2024087363A1 WO 2024087363 A1 WO2024087363 A1 WO 2024087363A1 CN 2022140476 W CN2022140476 W CN 2022140476W WO 2024087363 A1 WO2024087363 A1 WO 2024087363A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
source
optionally
precursor
cerium
Prior art date
Application number
PCT/CN2022/140476
Other languages
English (en)
French (fr)
Inventor
张坤
贾冬鸣
李聪
许开华
薛晓斐
李雪倩
Original Assignee
荆门市格林美新材料有限公司
格林美股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荆门市格林美新材料有限公司, 格林美股份有限公司 filed Critical 荆门市格林美新材料有限公司
Publication of WO2024087363A1 publication Critical patent/WO2024087363A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of lithium-ion batteries and relates to a modified quaternary precursor and a preparation method and application thereof.
  • ternary layered oxide positive electrodes are the representatives of high-endurance materials, but the capacity of ternary materials is still far from the theoretical capacity. Increasing the working voltage is a way to effectively increase the capacity.
  • cathode materials usually exhibit poor surface stability at high operating voltages, resulting in decreased electrochemical performance.
  • CN113363438A discloses a method for preparing a NCMA quaternary precursor co-doped with La and Ce, comprising: 1) configuring soluble nickel salt, cobalt salt and manganese salt into a solution A with a total metal ion concentration of 1.5 mol/L-2.0 mol/L; 2) adding lanthanum salt and cerium salt solution to the mixed solution A and mixing evenly to obtain solution B; 3) adding sodium aluminate solution to sodium hydroxide solution at a preset rate to obtain solution C; 4) adding solution B, sodium hydroxide solution and ammonia solution to a reactor for coprecipitation reaction; 5) when the crystal particle size D50 grows to 6 ⁇ m, introducing solution C into the reactor to continue the reaction; 6) stopping the reaction after the particle size D50 of the overflow product grows to 10 ⁇ 1 ⁇ m, aging, washing, drying and deironing the overflow slurry to obtain a nickel-cobalt-manganese-aluminum precursor.
  • CN109755539A discloses a method for preparing an aluminum-doped nickel-cobalt-manganese ternary precursor using ternary lithium-ion battery positive electrode waste.
  • the method comprises the following steps: crushing and roasting the lithium battery positive electrode waste to obtain a ternary positive electrode material and aluminum foil, adding an acid and a reducing agent to react and leach, using tributyl phosphate to selectively extract and separate lithium from the leachate to obtain a nickel-cobalt-manganese-aluminum solution; adding corresponding nickel source, cobalt source, and manganese source, adjusting the ratio of nickel, cobalt, manganese, and aluminum to obtain a prepared MS solution; mixing the MS solution with ammonia water and an alkali metal hydroxide to obtain an aluminum-doped ternary precursor after reaction.
  • the precursor prepared by the above scheme has the problems of poor stability and uneven distribution of elements inside the particles, which affects its electrochemical performance.
  • the purpose of the present application is to provide a modified quaternary precursor and its preparation method and application.
  • the present application coats the surface of the quaternary precursor with cerium hydroxide to stabilize the material and improve the conductivity of the material.
  • cerium hydroxide can generate CeO 2 in situ and reduce the number of sintering times.
  • the present application provides a method for preparing a modified quaternary precursor, wherein the preparation method comprises the following steps:
  • the present application uniformly coats a layer of cerium hydroxide on the surface of the precursor.
  • the Ce ions in the cerium hydroxide can stabilize the surface structure of the layered oxide positive electrode.
  • the CeO2 obtained by sintering the cerium hydroxide is also an ion conductor, which is more conducive to the release of capacity of the layered oxide positive electrode under high voltage.
  • the nickel source in step (1) includes any one of nickel nitrate, nickel sulfate, and nickel chloride, or a combination of at least two of them.
  • the cobalt source includes any one of cobalt nitrate, cobalt sulfate, and cobalt chloride, or a combination of at least two of them.
  • the manganese source includes any one of manganese nitrate, manganese sulfate, and manganese chloride, or a combination of at least two of them.
  • the aluminum source includes aluminum nitrate and/or aluminum sulfate.
  • the molar ratio of the nickel source, cobalt source, manganese source and aluminum source is x:y:z:(1-x-y-z), wherein x is 0.80 to 0.99, y is 0.01 to 0.20, and z is 0.01 to 0.20.
  • the molar concentration of the alkali solution in step (1) is 1.5 to 3 mol/L, for example: 1.5 mol/L, 1.8 mol/L, 2 mol/L, 2.5 mol/L or 3 mol/L.
  • the alkali solution comprises sodium hydroxide solution.
  • the molar concentration of the ammonia water is 1.5 to 3 mol/L, for example, 1.5 mol/L, 1.8 mol/L, 2 mol/L, 2.5 mol/L or 3 mol/L.
  • the pH of the one-step reaction in step (1) is 9 to 11.8, for example: 9, 9.5, 10, 11 or 11.8, etc.
  • the one-step reaction time is 50 to 100 h, for example, 50 h, 60 h, 70 h, 80 h, 90 h or 100 h.
  • the temperature of the one-step reaction is 40-60°C, for example, 40°C, 45°C, 50°C, 55°C or 60°C.
  • stirring is performed during the one-step reaction.
  • the stirring speed is 200-400 rpm, for example, 200 rpm, 250 rpm, 300 rpm, 350 rpm or 400 rpm.
  • the solute of the cerium source solution in step (2) includes cerium nitrate and/or cerium sulfate.
  • the molar concentration of the cerium source is 0.05-0.15 mol/L, for example, 0.05 mol/L, 0.08 mol/L, 0.1 mol/L, 0.12 mol/L or 0.15 mol/L.
  • the pH of the two-step reaction in step (2) is 9.5 to 10.5, for example, 9.5, 9.8, 10, 10.2 or 0.5.
  • the two-step reaction time is 1 to 3 h, for example, 1 h, 1.5 h, 2 h, 2.5 h or 3 h.
  • the present application provides a modified quaternary precursor, which is prepared by the method described in the first aspect, and includes a core and a cerium hydroxide coating layer arranged on the surface of the core, and the chemical formula of the core is Ni x Co y Mn z Al (1-xyz) (OH) 2 , wherein x is 0.80 to 0.99, y is 0.01 to 0.20, and z is 0.01 to 0.20.
  • the mass ratio of the inner core to the cerium hydroxide coating layer is 100:(0.5-3.2), for example: 100:0.5, 100:0.8, 100:1, 100:2 or 100:3.2, etc.
  • the present application provides a modified quaternary positive electrode material, wherein the modified quaternary positive electrode material is obtained by mixing and sintering the modified quaternary precursor as described in the second aspect with a lithium source.
  • the sintering includes one-step sintering and two-step sintering.
  • the one-step sintering temperature is 300-500°C, for example, 300°C, 350°C, 400°C, 450°C or 500°C.
  • the one-step sintering time is 3 to 5 hours, for example, 3 hours, 3.5 hours, 4 hours, 4.5 hours or 5 hours.
  • the temperature of the two-step sintering is 700-900°C, for example, 700°C, 750°C, 800°C, 850°C or 900°C.
  • the two-step sintering time is 10 to 20 hours, for example, 10 hours, 12 hours, 15 hours, 18 hours or 20 hours.
  • the present application provides a positive electrode plate, wherein the positive electrode plate comprises the modified quaternary positive electrode material as described in the third aspect.
  • the present application provides a lithium-ion battery, wherein the lithium-ion battery comprises the positive electrode sheet as described in the fourth aspect.
  • coating the surface of the quaternary precursor with cerium hydroxide during the precursor synthesis stage can stabilize the material and improve the conductivity of the material.
  • cerium hydroxide can generate CeO 2 in situ and reduce the number of sintering times.
  • the battery made of the modified quaternary positive electrode material described in the present application has a discharge capacity of more than 206.36 mAh/g at 2.8-4.4 V and 0.1 C, and a capacity retention rate of more than 90.89% after 50 cycles at 1C, indicating that the modified quaternary positive electrode obtained in the present application has good discharge capacity and good cycle stability.
  • This embodiment provides a modified quaternary precursor, and the preparation method of the modified quaternary precursor is as follows:
  • the pH value of the reaction system is adjusted to 10, and cerium nitrate solution and sodium hydroxide solution are added into the reactor in parallel and stirred continuously, and the pH value of the reaction system is maintained at 10.
  • the reaction is carried out for 3 hours to obtain a modified quaternary precursor of Ni 0.86 Co 0.06 Mn 0.06 Al 0.02 (OH) 2 coated with Ce(OH) 4 ; wherein the concentration of the sodium hydroxide solution is 2 mol/L; the concentration of the cerium nitrate solution is 0.1 mol/L; the mass ratio of Ce(OH) 4 to Ni 0.86 Co 0.06 Mn 0.06 Al 0.02 (OH) 2 is 0.53:100; and the stirring speed is 220 rpm.
  • This embodiment provides a modified quaternary precursor, and the preparation method of the modified quaternary precursor is as follows:
  • the pH value of the reaction system is adjusted to 9.8, and cerium nitrate solution and sodium hydroxide solution are added into the reactor in parallel and continuously stirred, and the pH value of the reaction system is maintained at 9.8.
  • the reaction is carried out for 3 hours to obtain a modified quaternary precursor of Ni 0.8 Co 0.08 Mn 0.08 Al 0.04 (OH) 2 coated with Ce(OH) 4 ; wherein the concentration of the sodium hydroxide solution is 2 mol/L; the concentration of the cerium nitrate solution is 0.12 mol/L; the mass ratio of Ce(OH) 4 to Ni 0.8 Co 0.08 Mn 0.08 Al 0.04 (OH) 2 is 0.64:100; and the stirring speed is 220 rpm.
  • This comparative example adopts conventional solid phase mixing to prepare the modified quaternary precursor.
  • Example 1 The only difference between this comparative example and Example 1 is that no cerium source is added, and other conditions and parameters are exactly the same as those in Example 1.
  • the modified quaternary precursors obtained in Examples 1-8 and Comparative Examples 1-2 were washed, dried, sieved, and iron removed, and then mixed with lithium hydroxide at a molar ratio of 1:1.2 and kept at 400°C for 4 hours, and then heated to 800°C for 15 hours to obtain CeO2 -coated nickel-cobalt-manganese-aluminum quaternary positive electrode materials.
  • the positive electrode material, polyvinylidene fluoride, and acetylene black were mixed at a mass ratio of 80:10:10, NMP (N-methylpyrrolidone) was added, stirred to form a slurry, coated on an aluminum foil, and dried to make a positive electrode.
  • the lithium sheet was used as the negative electrode to assemble a CR2025 button battery, and the electrochemical performance was tested at 2.8-4.4V.
  • Table 1 The test results are shown in Table 1:
  • Example 1 208.23 91.23
  • Example 2 206.36 92.41
  • Example 3 207.56 90.89
  • Example 4 198.48 81.59
  • Example 5 199.69 85.63
  • Example 6 204.53 88.66
  • Example 7 199.32 82.44
  • Example 8 199.21 90.69 Comparative Example 1 197.87 78.65 Comparative Example 2 197.43 54.36
  • the battery made of the modified quaternary positive electrode material described in the present application can reach a discharge specific capacity of more than 206.36 mAh/g at 2.8-4.4 V and 0.1 C, and the capacity retention rate can reach more than 90.89% after 50 cycles at 1C.
  • Example 1 By comparing Example 1 with Examples 3-4, it can be seen that in the preparation process of the modified quaternary precursor described in the present application, the pH after adding the cerium source will affect the performance of the obtained precursor.
  • the pH When the pH is controlled at 9.5-10.5, the performance of the obtained precursor is better. If the pH is too high, the reaction speed will be too fast and uniform precipitation cannot be achieved. If the pH is too low, the reaction speed will be too slow, which will prolong the reaction time and reduce the efficiency.
  • Example 1 By comparing Example 1 with Examples 5-6, it can be seen that in the preparation process of the modified quaternary precursor described in the present application, the molar concentration of the added cerium source will affect the performance of the obtained precursor.
  • the molar concentration of the cerium source When the molar concentration of the cerium source is controlled at 0.05-0.15 mol/L, the performance of the obtained precursor is better. If the molar concentration of the cerium source is too high, it is easy for cerium hydroxide to not nucleate and coat on the precursor; if the molar concentration of the cerium source is too low, it is easy for the reaction rate to be too slow or the cerium hydroxide coating to be incomplete.
  • Example 1 By comparing Example 1 with Examples 7-8, it can be seen that the mass ratio of the core and cerium hydroxide in the modified quaternary precursor described in the present application will affect its performance.
  • the mass ratio of the core and cerium hydroxide is controlled at 100:(0.5 ⁇ 3.2), the performance of the modified quaternary precursor is better. If the mass proportion of cerium hydroxide is too large, the electrochemical performance will be reduced. If the mass proportion of cerium hydroxide is too small, the coating effect will be poor.
  • Example 1 From the comparison between Example 1 and Comparative Example 1, it can be seen that the modified quaternary precursor prepared in the present application is coated evenly and can significantly improve its cycle performance and has high stability.
  • Example 1 shows that coating cerium hydroxide on the surface of the quaternary precursor during the precursor synthesis stage can stabilize the material while improving the conductivity of the material.
  • cerium hydroxide can generate CeO 2 in situ and reduce the number of sintering times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本申请提供了一种改性四元前驱体及其制备方法和应用,所述制备方法包括以下步骤:(1)将镍源、钴源、锰源和铝源与溶剂混合得到四元溶液,将所述四元溶液与碱液和氨水并流加入底液进行一步反应,得到半步前驱体溶液;(2)将铈源溶液和碱液并流加入步骤(1)制得的半步前驱体溶液,进行二步反应,得到所述改性四元前驱体,本申请在前驱体合成阶段在四元前驱体表面包覆氢氧化铈可以稳定材料的同时提高材料的导电性,在烧结制备正极材料的过程中,氢氧化铈能够使其原位生成CeO2,并减少烧结次数。

Description

一种改性四元前驱体及其制备方法和应用 技术领域
本申请属于锂离子电池技术领域,涉及一种改性四元前驱体及其制备方法和应用。
背景技术
目前,在动力电池领域,三元层状氧化物正极是高续航材料的代表,但是三元材料的容量距离理论容量还有较大差距,而提高工作电压就是一种能够有效提高容量的办法。
但是,正极材料在高的工作电压下通常表现出较差表面稳定性,从而导致电化学性能下降。
CN113363438A公开一种含有La、Ce共掺杂的NCMA四元前驱体制备方法,包括:1)将可溶性镍盐、钴盐、锰盐配置成总的金属离子浓度为1.5mol/L-2.0mol/L的溶液A;2)向混合液A中加入镧盐和铈盐溶液混合均匀,得到溶液B;3)将偏铝酸钠溶液以预设速率加入到氢氧化钠溶液,得到溶液C;4)将溶液B、氢氧化钠溶液、氨水溶液加入反应釜进行共沉淀反应;5)结晶颗粒大小D50长至6μm时,向反应釜中通入溶液C继续反应;6)待溢出产物的粒度D50长至10±1μm后停止反应,将溢流浆料进行陈化、洗涤、干燥、除铁得到镍钴锰铝前驱体。
CN109755539A公开了一种利用三元锂离子电池正极废料制作铝掺杂镍钴锰三元前驱体的方法,该方法包括如下步骤:将锂电池正极片废料破碎、焙烧,得到三元正极材料和铝箔,加入酸和还原剂反应浸出,使用磷酸三丁酯对浸出液进行选择性萃取分离锂,得到镍钴锰铝溶液;配入相应的镍源、钴源、锰源, 调整镍钴锰铝的配比,得到配合MS溶液;将MS溶液与氨水、碱金属氢氧化物混合,反应后得到铝掺杂三元前驱体。
上述方案制得前驱体存在有稳定性差,且颗粒内部元素分布不均一的问题,影响其电化学性能。
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
发明内容
本申请的目的在于提供一种改性四元前驱体及其制备方法和应用,本申请在前驱体合成阶段在四元前驱体表面包覆氢氧化铈可以稳定材料的同时提高材料的导电性,在烧结制备正极材料的过程中,氢氧化铈能够使其原位生成CeO 2,并减少烧结次数。
为达到此申请目的,本申请采用以下技术方案:
第一方面,本申请提供了一种改性四元前驱体的制备方法,其中,所述制备方法包括以下步骤:
(1)将镍源、钴源、锰源和铝源与溶剂混合得到四元溶液,将所述四元溶液与碱液和氨水并流加入底液进行一步反应,得到半步前驱体溶液;
(2)将铈源溶液和碱液并流加入步骤(1)制得的半步前驱体溶液,进行二步反应,得到所述改性四元前驱体。
本申请在前驱体合成阶段在前驱体表面均匀包覆一层氢氧化铈,氢氧化铈中的Ce离子能够稳定层状氧化物正极的表层结构,在制备正极材料的过程中,氢氧化铈烧结得到的CeO 2也是一种离子导体,更有利于层状氧化物正极在高电压下释放容量。
可选地,步骤(1)所述镍源包括硝酸镍、硫酸镍、氯化镍中的任意一种或 至少两种的组合。
可选地,所述钴源包括硝酸钴、硫酸钴、氯化钴中的任意一种或至少两种的组合。
可选地,所述锰源包括硝酸锰、硫酸锰、氯化锰中的任意一种或至少两种的组合。
可选地,所述铝源包括硝酸铝和/或硫酸铝。
可选地,所述镍源、钴源、锰源和铝源的摩尔比为x:y:z:(1-x-y-z),其中,x为0.80~0.99,y为0.01~0.20,z为0.01~0.20。
可选地,步骤(1)所述碱液的摩尔浓度为1.5~3mol/L,例如:1.5mol/L、1.8mol/L、2mol/L、2.5mol/L或3mol/L。
可选地,所述碱液包括氢氧化钠溶液。
可选地,所述氨水的摩尔浓度为1.5~3mol/L,例如:1.5mol/L、1.8mol/L、2mol/L、2.5mol/L或3mol/L。
可选地,步骤(1)所述一步反应的pH为9~11.8,例如:9、9.5、10、11或11.8等。
可选地,所述一步反应的时间为50~100h,例如:50h、60h、70h、80h、90h或100h等。
可选地,所述一步反应的温度为40~60℃,例如:40℃、45℃、50℃、55℃或60℃等。
可选地,所述一步反应的同时进行搅拌。
可选地,所述搅拌的速度为200~400rpm,例如:200rpm、250rpm、300rpm、350rpm或400rpm等。
可选地,步骤(2)所述铈源溶液的溶质包括硝酸铈和/或硫酸铈。
可选地,所述铈源的摩尔浓度为0.05~0.15mol/L,例如:0.05mol/L、0.08mol/L、0.1mol/L、0.12mol/L或0.15mol/L等。
可选地,步骤(2)所述二步反应的pH为9.5~10.5,例如:9.5、9.8、10、10.2或0.5等。
可选地,所述二步反应的时间为1~3h,例如:1h、1.5h、2h、2.5h或3h等。
第二方面,本申请提供了一种改性四元前驱体,所述改性四元前驱体通过如第一方面所述方法制得,所述改性四元前驱体包括内核和设置于所述内核表面的氢氧化铈包覆层,所述内核的化学式为Ni xCo yMn zAl (1-x-y-z)(OH) 2,其中,x为0.80~0.99,y为0.01~0.20,z为0.01~0.20。
可选地,所述内核和氢氧化铈包覆层的质量比为100:(0.5~3.2),例如:100:0.5、100:0.8、100:1、100:2或100:3.2等。
第三方面,本申请提供了一种改性四元正极材料,所述改性四元正极材料由如第二方面所述的改性四元前驱体与锂源混合烧结得到。
可选地,所述烧结包括一步烧结和二步烧结。
可选地,所述一步烧结的温度为300~500℃,例如:300℃、350℃、400℃、450℃或500℃等。
可选地,所述一步烧结的时间为3~5h,例如:3h、3.5h、4h、4.5h或5h等。
可选地,所述二步烧结的温度为700~900℃,例如:700℃、750℃、800℃、850℃或900℃等。
可选地,所述二步烧结的时间为10~20h,例如:10h、12h、15h、18h或20h等。
第四方面,本申请提供了一种正极极片,所述正极极片包含如第三方面所述的改性四元正极材料。
第五方面,本申请提供了一种锂离子电池,所述锂离子电池包含如第四方面所述的正极极片。
相对于现有技术,本申请具有以下有益效果:
(1)本申请在前驱体合成阶段在四元前驱体表面包覆氢氧化铈可以稳定材料的同时提高材料的导电性,在烧结制备正极材料的过程中,氢氧化铈能够使其原位生成CeO 2,并减少烧结次数。
(2)本申请所述改性四元正极材料制得的电池,在2.8-4.4V、0.1C下放电比容量可达206.36mAh/g以上,1C循环50圈后容量保持率可达90.89%以上,说明本申请获得的改性四元正极具有较好的放电比容量和较好的循环稳定性。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供了一种改性四元前驱体,所述改性四元前驱体的制备方法如下:
(1)按化学计量比Ni:Co:Mn:Al=0.86:0.06:0.06:0.02称取硫酸镍、硫酸钴、硫酸锰、硫酸铝,配置成四元溶液,反应釜中加入底液通入N 2,升温至50℃,将四元溶液、氢氧化钠溶液、氨水溶液并流加入反应釜中并持续搅拌,维持反应体系pH为10.5,反应80h,得到结构式为Ni 0.86Co 0.06Mn 0.06Al 0.02(OH) 2 的类球形半步前驱体,其中所述氢氧化钠溶液、氨水溶液浓度均为2mol/L;所述搅拌转速为250rpm;
(2)调节反应体系pH为10,将硝酸铈溶液、氢氧化钠溶液并流加入反应釜中并持续搅拌,维持反应体系pH为10,反应3h得到Ce(OH) 4包覆的Ni 0.86Co 0.06Mn 0.06Al 0.02(OH) 2的改性四元前驱体;其中所述氢氧化钠溶液浓度为2mol/L;所述硝酸铈溶液的浓度为0.1mol/L;所述Ce(OH) 4与Ni 0.86Co 0.06Mn 0.06Al 0.02(OH) 2的质量比为0.53:100;所述搅拌转速为220rpm。
实施例2
本实施例提供了一种改性四元前驱体,所述改性四元前驱体的制备方法如下:
(1)按化学计量比Ni:Co:Mn:Al=0.8:0.08:0.08:0.04称取硫酸镍、硫酸钴、硫酸锰、硫酸铝,配置成四元溶液,反应釜中加入底液通入N 2,升温至50℃,将四元溶液、氢氧化钠溶液、氨水溶液并流加入反应釜中并持续搅拌,维持反应体系pH为10.6,反应90h,得到结构式为Ni 0.8Co 0.08Mn 0.08Al 0.04(OH) 2的类球形半步前驱体,其中所述氢氧化钠溶液、氨水溶液浓度均为2.2mol/L;所述搅拌转速为250rpm;
(2)调节反应体系pH为9.8,将硝酸铈溶液、氢氧化钠溶液并流加入反应釜中并持续搅拌,维持反应体系pH为9.8,反应3h得到Ce(OH) 4包覆的Ni 0.8Co 0.08Mn 0.08Al 0.04(OH) 2的改性四元前驱体;其中所述氢氧化钠溶液浓度为2mol/L;所述硝酸铈溶液的浓度为0.12mol/L;所述Ce(OH) 4与Ni 0.8Co 0.08Mn 0.08Al 0.04(OH) 2的质量比为0.64:100;所述搅拌转速为220rpm。
实施例3
本实施例与实施例1区别仅在于,步骤(2)二步反应的pH为9,其他条件与参数与实施例1完全相同。
实施例4
本实施例与实施例1区别仅在于,步骤(2)二步反应的pH为11,其他条件与参数与实施例1完全相同。
实施例5
本实施例与实施例1区别仅在于,步骤(2)所述硝酸铈的摩尔浓度为0.03mol/L,其他条件与参数与实施例1完全相同。
实施例6
本实施例与实施例1区别仅在于,步骤(2)所述硝酸铈的摩尔浓度为0.2mol/L,其他条件与参数与实施例1完全相同。
实施例7
本实施例与实施例1区别仅在于,调整硝酸铈的摩尔浓度和反应时间,制得前驱体中Ce(OH) 4与Ni 0.86Co 0.06Mn 0.06Al 0.02(OH) 2的质量比为0.4:100,其他条件与参数与实施例1完全相同。
实施例8
本实施例与实施例1区别仅在于,调整硝酸铈的摩尔浓度和反应时间,制得前驱体中Ce(OH) 4与Ni 0.86Co 0.06Mn 0.06Al 0.02(OH) 2的质量比为3.5:100,其他条件与参数与实施例1完全相同。
对比例1
本对比例采用常规的固相混合制备改性四元前驱体。
对比例2
本对比例与实施例1区别仅在于,不加入铈源,其他条件与参数与实施例1完全相同。
性能测试:
取实施例1-8和对比例1-2得到的改性四元前驱体经洗涤、干燥、过筛、除铁后,与氢氧化锂按照摩尔比为1:1.2混合后在400℃保温4h后,升温至800℃保温15h,获得CeO 2包覆的镍钴锰铝四元正极材料,将正极材料、聚偏氟乙烯、乙炔黑按照质量比80:10:10混合,加入NMP(N-甲基吡咯烷酮),搅拌制成浆料涂布于铝箔上,烘干后做成正极,以锂片为负极,组装成CR2025扣式电池,并在2.8-4.4V对其进行电化学性能检测,测试结果如表1所示:
表1
  0.1C下放电比容量(mAh/g) 1C循环50圈后容量保持率(%)
实施例1 208.23 91.23
实施例2 206.36 92.41
实施例3 207.56 90.89
实施例4 198.48 81.59
实施例5 199.69 85.63
实施例6 204.53 88.66
实施例7 199.32 82.44
实施例8 199.21 90.69
对比例1 197.87 78.65
对比例2 197.43 54.36
由表1可以看出,由实施例1-2可得,本申请本申请所述改性四元正极材料制得的电池,在2.8-4.4V、0.1C下放电比容量可达206.36mAh/g以上,1C循环50圈后容量保持率可达90.89%以上。
由实施例1和实施例3-4对比可得,本申请所述改性四元前驱体的制备过程中,加入铈源后的pH会影响制得前驱体的性能,将pH控制在9.5~10.5,制得前驱体的性能较好,若pH过大,易使反应速度过快,不能均匀沉淀;若pH过小,反应速度过慢,会延长反应时间,降低效率。
由实施例1和实施例5-6对比可得,本申请所述改性四元前驱体的制备过程中,加入铈源的摩尔浓度会影响制得前驱体的性能,将铈源的摩尔浓度控制在0.05~0.15mol/L,制得前驱体的性能较好,若铈源的摩尔浓度过高,易使氢氧化铈不在前驱体上形核包覆;若铈源的摩尔浓度过低,易使反应速度过慢或氢氧化铈包覆不全。
由实施例1和实施例7-8对比可得,本申请所述改性四元前驱体中内核和氢氧化铈的质量比会影响其性能,将内核和氢氧化铈的质量比的质量比控制在100:(0.5~3.2),所述改性四元前驱体的性能较好,若氢氧化铈的质量占比过大,会使电化学性能降低,若氢氧化铈的质量占比过小,会使包覆效果不佳。
由实施例1和对比例1对比可得,本申请制得改性四元前驱体包覆均匀且明显可以提高其循环性能,稳定性较高。
由实施例1和对比例2对比可得,本申请在前驱体合成阶段在四元前驱体表面包覆氢氧化铈可以稳定材料的同时提高材料的导电性,在烧结制备正极材料的过程中,氢氧化铈能够使其原位生成CeO 2,并减少烧结次数。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围 并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (11)

  1. 一种改性四元前驱体的制备方法,其中,所述制备方法包括以下步骤:
    (1)将镍源、钴源、锰源和铝源与溶剂混合得到四元溶液,将所述四元溶液与碱液和氨水并流加入底液进行一步反应,得到半步前驱体溶液;
    (2)将铈源溶液和碱液并流加入步骤(1)制得的半步前驱体溶液,进行二步反应,得到所述改性四元前驱体。
  2. 如权利要求1所述的制备方法,其中,步骤(1)所述镍源包括硝酸镍、硫酸镍、氯化镍中的任意一种或至少两种的组合;
    所述钴源包括硝酸钴、硫酸钴、氯化钴中的任意一种或至少两种的组合;
    所述锰源包括硝酸锰、硫酸锰、氯化锰中的任意一种或至少两种的组合;
    所述铝源包括硝酸铝和/或硫酸铝。
  3. 如权利要求2所述的制备方法,其中,所述镍源、钴源、锰源和铝源的摩尔比为x:y:z:(1-x-y-z),其中,x为0.80~0.99,y为0.01~0.20,z为0.01~0.20。
  4. 如权利要求1或2或3所述的制备方法,其中,步骤(1)所述碱液的摩尔浓度为1.5~3mol/L;
    可选地,所述碱液包括氢氧化钠溶液;
    可选地,所述氨水的摩尔浓度为1.5~3mol/L。
  5. 如权利要求1-4任一项所述的制备方法,其中,步骤(1)所述一步反应的pH为9~11.8;
    可选地,所述一步反应的时间为50~100h;
    可选地,所述一步反应的温度为40~60℃;
    可选地,所述一步反应的同时进行搅拌;
    可选地,所述搅拌的速度为200~400rpm。
  6. 如权利要求1-5任一项所述的制备方法,其中,步骤(2)所述铈源溶液 的溶质包括硝酸铈和/或硫酸铈;
    可选地,所述铈源的摩尔浓度为0.05~0.15mol/L。
  7. 如权利要求1-6任一项所述的制备方法,其中,步骤(2)所述二步反应的pH为9.5~10.5;
    可选地,所述二步反应的时间为1~3h。
  8. 一种改性四元前驱体,其中,所述改性四元前驱体通过如权利要求1-7任一项所述方法制得,所述改性四元前驱体包括内核和设置于所述内核表面的氢氧化铈包覆层,所述内核的化学式为Ni xCo yMn zAl (1-x-y-z)(OH) 2,其中,x为0.80~0.99,y为0.01~0.20,z为0.01~0.20;
    可选地,所述内核和氢氧化铈包覆层的质量比为100:(0.5~3.2)。
  9. 一种改性四元正极材料,其中,所述改性四元正极材料由如权利要求8所述的改性四元前驱体与锂源混合烧结得到;
    可选地,所述烧结包括一步烧结和二步烧结;
    可选地,所述一步烧结的温度为300~500℃;
    可选地,所述一步烧结的时间为3~5h;
    可选地,所述二步烧结的温度为700~900℃;
    可选地,所述二步烧结的时间为10~20h。
  10. 一种正极极片,其中,所述正极极片包含如权利要求9所述的改性四元正极材料。
  11. 一种锂离子电池,其中,所述锂离子电池包含如权利要求10所述的正极极片。
PCT/CN2022/140476 2022-10-26 2022-12-20 一种改性四元前驱体及其制备方法和应用 WO2024087363A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211320246.8A CN115626667B (zh) 2022-10-26 2022-10-26 一种改性四元前驱体及其制备方法和应用
CN202211320246.8 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024087363A1 true WO2024087363A1 (zh) 2024-05-02

Family

ID=84905830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140476 WO2024087363A1 (zh) 2022-10-26 2022-12-20 一种改性四元前驱体及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115626667B (zh)
WO (1) WO2024087363A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932251A (zh) * 2016-06-03 2016-09-07 中南大学 一种金属氧化物包覆锂离子电池正极材料的制备方法及其应用
CN106654237A (zh) * 2017-02-17 2017-05-10 中国科学院过程工程研究所 一种镍钴铝锂离子电池正极材料及其制备方法和应用
CN109599545A (zh) * 2018-12-04 2019-04-09 中国科学院青海盐湖研究所 一种三元正极材料及其制备方法、锂离子电池
CN111564606A (zh) * 2019-02-13 2020-08-21 深圳市贝特瑞纳米科技有限公司 一种锂离子电池用包覆型多元正极材料、其制备方法及用途
CN113363438A (zh) * 2021-05-31 2021-09-07 厦门大学 一种含有La、Ce共掺杂的NCMA四元前驱体制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932251A (zh) * 2016-06-03 2016-09-07 中南大学 一种金属氧化物包覆锂离子电池正极材料的制备方法及其应用
CN106654237A (zh) * 2017-02-17 2017-05-10 中国科学院过程工程研究所 一种镍钴铝锂离子电池正极材料及其制备方法和应用
CN109599545A (zh) * 2018-12-04 2019-04-09 中国科学院青海盐湖研究所 一种三元正极材料及其制备方法、锂离子电池
CN111564606A (zh) * 2019-02-13 2020-08-21 深圳市贝特瑞纳米科技有限公司 一种锂离子电池用包覆型多元正极材料、其制备方法及用途
CN113363438A (zh) * 2021-05-31 2021-09-07 厦门大学 一种含有La、Ce共掺杂的NCMA四元前驱体制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Master’s Thesis", 15 February 2021, HEFEI UNIVERSITY OF TECHNOLOGY, CN, article WANG, TONGZHEN: "Coating Modification and Cycling Performances of Electrode Materials for High Capacity Lithium Ion Batteries", pages: 1 - 64, XP009554734, DOI: 10.27101/d.cnki.ghfgu.2020.001881 *
WANG TONGZHEN: "Synthesis and electrochemical performance of CeO2-LiNi0.8Co0.1Mn0.1O2 cathode material", NEW CHEMICAL MATERIALS, vol. 49, no. 5, 14 May 2021 (2021-05-14), pages 166 - 170, XP093163281 *

Also Published As

Publication number Publication date
CN115626667B (zh) 2024-05-31
CN115626667A (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2021212729A1 (zh) 一种镍锰基正极材料前驱体及其正极材料的合成方法
CN108123115B (zh) O2构型锂电池正极材料及其制备方法
CN111916727B (zh) 一种双离子湿法掺杂的三元高镍正极材料及其制备方法
CN111916687B (zh) 一种正极材料及其制备方法和锂离子电池
CN109244390B (zh) 一种锂离子电池用磷掺杂富锂锰基正极材料及其制备方法
CN108767216B (zh) 具有变斜率全浓度梯度的锂离子电池正极材料及其合成方法
WO2015039490A1 (zh) 富锂正极材料及其制备方法
WO2019113870A1 (zh) 一种富锂锰基材料及其制备和应用
CN114005978B (zh) 一种无钴正极材料及其制备方法和应用
WO2022237102A1 (zh) 镍钴锰正极材料和废旧镍钴锰正极材料的回收方法
CN103972499A (zh) 一种改性的镍钴铝酸锂正极材料及其制备方法
WO2007000075A1 (fr) Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium
CN110867577A (zh) 一种三维纳米线阵列结构的811ncm三元正极材料及其制备方法
CN106252594B (zh) 一种具有纳米级两相共存结构的球形锂离子电池正极材料及其合成方法
CN111362318B (zh) 一种镍钴锰碳酸盐及其制备方法与应用
CN111106343A (zh) 一种镧、氟共掺杂的高镍三元正极材料及其制备方法与应用
CN116053444A (zh) 一种掺杂型层状正极材料及其在钠离子电池中的应用
CN111003733A (zh) 一种微波智能变频二阶烧结制备高镍三元锂电池阳极材料的方法
CN111342008A (zh) 一种氟化钾掺杂富锂锰基材料及其制备方法和应用
CN112952056B (zh) 一种富锂锰基复合正极材料及其制备方法和应用
CN114220959A (zh) 一种组分可控多元素掺杂型高镍三元正极材料的制备方法
WO2023216453A1 (zh) 一种核壳梯度三元前驱体及其制备方法和应用
WO2024108704A1 (zh) 一种改性正极材料及其制备方法和应用
CN108539192B (zh) 一种不同形貌锂离子电池高压正极材料的制备方法
CN105591098A (zh) 一种La掺杂同时锂量变化的富锂正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963341

Country of ref document: EP

Kind code of ref document: A1