WO2024080039A1 - 表示装置、電子機器及び表示装置の製造方法 - Google Patents

表示装置、電子機器及び表示装置の製造方法 Download PDF

Info

Publication number
WO2024080039A1
WO2024080039A1 PCT/JP2023/032313 JP2023032313W WO2024080039A1 WO 2024080039 A1 WO2024080039 A1 WO 2024080039A1 JP 2023032313 W JP2023032313 W JP 2023032313W WO 2024080039 A1 WO2024080039 A1 WO 2024080039A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic layer
display device
electrode
layer
light
Prior art date
Application number
PCT/JP2023/032313
Other languages
English (en)
French (fr)
Inventor
宏史 藤巻
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024080039A1 publication Critical patent/WO2024080039A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • This disclosure relates to a display device, an electronic device, and a method for manufacturing a display device.
  • OLED Organic Light Emitting Diode
  • direct-view displays such as monitors and smartphones
  • ultra-small displays microdisplays
  • OLED devices are being considered for use in applications such as AR (Augmented Reality) and VR (Virtual Reality).
  • AR Augmented Reality
  • VR Virtual Reality
  • high definition and a wide color gamut are required to enjoy images, and highly reliable OLED devices are in demand.
  • Patent Document 1 requires the addition of a new layer structure to prevent water infiltration, which may lead to increased costs and more complicated processes.
  • One of the objectives of this disclosure is to provide a display device, electronic device, and display device manufacturing method that can prevent moisture and other substances from entering the effective pixel area while minimizing increases in cost and process complexity.
  • the present disclosure relates to, for example, A driving substrate having an effective pixel area and a peripheral area between the effective pixel area and an outer edge portion,
  • the effective pixel area has a plurality of pixels,
  • Each pixel includes a first electrode, a second electrode disposed opposite to the first electrode, and a first organic layer provided between the first electrode and the second electrode and including a light-emitting layer;
  • the peripheral region has a second organic layer separated from the first organic layer of the pixel. It is a display device.
  • the present disclosure may also be an electronic device having the above-mentioned display device.
  • the present disclosure relates to, for example, forming a pixel in an effective pixel region of a driving substrate, the pixel having a first electrode, a second electrode disposed opposite to the first electrode, and a first organic layer provided between the first electrode and the second electrode and including a light-emitting layer; forming a second organic layer separated from the first organic layer of the pixel in a peripheral region between the effective pixel region and an outer edge of the driving substrate; A method for manufacturing a display device.
  • FIG. 1 is a schematic diagram for explaining a configuration example of a display device according to a first embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram for explaining a configuration example of a display device according to a first embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram for explaining a configuration example of a display device according to a first embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram for explaining a configuration example of a display device according to a first embodiment of the present disclosure.
  • 1 is a cross-sectional view for explaining a configuration example of a display device according to a first embodiment of the present disclosure.
  • 2 is a partial enlarged view showing the vicinity of a light-emitting element of the display device according to the first embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram for explaining a configuration example of a display device according to a first embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram for explaining a configuration example of a display device according to a first embodiment
  • FIG. 3 is a partial enlarged view of the vicinity of a barrier portion of the display device according to the first embodiment of the present disclosure.
  • FIG. 5A to 5C are diagrams for explaining an example of a manufacturing method for the display device according to the first embodiment of the present disclosure.
  • 5A to 5C are diagrams for explaining an example of a manufacturing method for the display device according to the first embodiment of the present disclosure.
  • 5A to 5C are diagrams for explaining an example of a manufacturing method for the display device according to the first embodiment of the present disclosure.
  • 5A to 5C are diagrams for explaining an example of a manufacturing method for the display device according to the first embodiment of the present disclosure.
  • 5A to 5C are diagrams for explaining an example of a manufacturing method for the display device according to the first embodiment of the present disclosure.
  • FIG. 11 is a partial enlarged view of the vicinity of a barrier portion of a display device according to a second embodiment of the present disclosure.
  • FIG. 11 is a partial enlarged view of the vicinity of a barrier portion of a display device according to a third embodiment of the present disclosure.
  • FIG. 13 is a plan view of a display device according to a fourth embodiment.
  • FIG. 13 is a plan view of a display device according to a fifth embodiment.
  • FIG. 13 is a plan view of a display device according to a sixth embodiment.
  • FIG. 13 is a plan view of a display device according to a sixth embodiment.
  • FIG. 13 is a plan view of a display device according to a seventh embodiment.
  • FIG. 13 is a plan view of a display device according to an eighth embodiment.
  • FIG. 13 is a plan view of a display device according to a fourth embodiment.
  • FIG. 13 is a partial cross-sectional view of a display device according to a ninth embodiment.
  • FIG. 23 is a partial cross-sectional view of a display device according to a tenth embodiment.
  • 13A to 13C are partial cross-sectional views of a display device according to an eleventh embodiment.
  • FIG. 23 is a plan view of a display device according to an eleventh embodiment.
  • 1A is a schematic cross-sectional view for explaining a first example of a resonator structure
  • FIG. 1B is a schematic cross-sectional view for explaining a second example of a resonator structure.
  • 1A is a schematic cross-sectional view for explaining a third example of a resonator structure
  • 1B is a schematic cross-sectional view for explaining a fourth example of a resonator structure.
  • 13A is a schematic cross-sectional view for explaining a fifth example of a resonator structure
  • FIG. 13B is a schematic cross-sectional view for explaining a sixth example of a resonator structure.
  • FIG. 13 is a schematic cross-sectional view for explaining a seventh example of a resonator structure.
  • 1A, 1B, and 1C are conceptual diagrams for explaining the relationship between a normal line LN passing through the center of the light-emitting portion, a normal line LN' passing through the center of the lens member, and a normal line LN" passing through the center of the wavelength selection portion, respectively.
  • FIG. 1 is a conceptual diagram for explaining the relationship between a normal line LN passing through the center of a light-emitting portion, a normal line LN' passing through the center of a lens member, and a normal line LN" passing through the center of a wavelength selection portion.
  • FIG. 1A and 1B are conceptual diagrams for explaining the relationship between a normal line LN passing through the center of the light-emitting portion, a normal line LN' passing through the center of the lens member, and a normal line LN" passing through the center of the wavelength selection portion, respectively.
  • FIG. 1 is a conceptual diagram for explaining the relationship between a normal line LN passing through the center of a light-emitting portion, a normal line LN' passing through the center of a lens member, and a normal line LN" passing through the center of a wavelength selection portion.
  • FIG. 1A is a front view showing an example of the external appearance of a digital still camera
  • FIG. 1 is a perspective view showing an example of the appearance of a head mounted display.
  • FIG. 1 is a perspective view showing an example of the appearance of a television device.
  • 1 is a perspective view showing an example of the appearance of a see-through head mounted display.
  • FIG. 1 is a perspective view showing an example of the appearance of a smartphone.
  • 1A is a diagram showing an example of the interior of a vehicle from the rear to the front of the vehicle
  • FIG. 1B is a diagram showing an example of the interior of a vehicle from the diagonally rear to the diagonally front of the vehicle.
  • the display device 1000 has a drive substrate 11.
  • the drive substrate 11 has, on one main surface thereof, an effective pixel region 110A and a peripheral region 110B provided in the vicinity of the periphery between the effective pixel region 110A and an outer edge portion 110C of the drive substrate 11.
  • the outer edge portion 110C of the drive substrate 11 coincides with, for example, a scribe line when the drive substrate 11 is singulated, but may be in the vicinity of the scribe line without strictly coinciding with the scribe line.
  • the effective pixel area 110A is an area that is defined as an area for emitting light generated by a plurality of light-emitting elements.
  • a plurality of pixels are provided in the effective pixel area 110A.
  • a plurality of sub-pixels 100R, 100G, and 100B are two-dimensionally arranged in a prescribed arrangement pattern, such as a matrix, within the effective pixel area 110A.
  • Subpixel 100R displays red
  • subpixel 100G displays green
  • subpixel 100B displays blue.
  • subpixel 100 A combination of adjacent subpixels 100R, 100G, and 100B constitutes one pixel.
  • FIG. 2 shows an example in which a combination of three subpixels 100R, 100G, and 100B arranged in the row direction (horizontal direction) constitutes one pixel, but the arrangement of subpixels 100R, 100G, and 100B is not limited to this.
  • the peripheral region 110B is provided with a signal line driving circuit 111 and a scanning line driving circuit 112, which are drivers for displaying images. Pads for connecting to these driving circuits may be provided in the peripheral region 110B.
  • the signal line driving circuit 111 supplies a signal voltage of a video signal corresponding to luminance information supplied from a signal supply source (not shown) to the selected sub-pixel 100 via the signal line 111A.
  • the scanning line driving circuit 112 is composed of a shift register that shifts (transfers) a start pulse in sequence in synchronization with an input clock pulse. When writing a video signal to each sub-pixel 100, the scanning line driving circuit 112 scans them row by row and sequentially supplies a scanning signal to each scanning line 112A.
  • the display device 1000 may be a microdisplay.
  • the display device 1000 may be provided in a VR device, an MR (Mixed Reality) device, an AR device, an electronic view finder (EVF), a small projector, or the like.
  • the display device 1000 will be described as an example of a case where the display device 1000 displays using a top emission method.
  • the top emission method refers to a method in which the light-emitting element is arranged closer to the light-emitting surface side than the drive substrate 11. Therefore, in the display device 1000, the drive substrate 11 is located on the back side of the display device 1000, and the direction from the drive substrate 11 toward the light-emitting element described later (+Z direction) is the front side (upper surface) of the display device 1000. In the display device 1000, light generated from the light-emitting element is directed in the +Z direction and emitted to the outside.
  • the surface that is the display surface side in the display area (effective pixel area 110A) of the display device 1000 is referred to as the first surface (upper surface), and the surface that is the back side of the display device 1000 is referred to as the second surface (lower surface). Note that this does not prohibit the display device according to the present disclosure from being a bottom emission type.
  • the display device according to the present disclosure can also be applied to a bottom emission type. In the bottom emission method, the light generated by the light-emitting element is directed in the -Z direction and emitted to the outside.
  • a second organic layer 13B made of an organic material is formed in the peripheral region 110B, specifically, inside the signal line driving circuit 111 and the scanning line driving circuit 112 in the peripheral region 110B.
  • the second organic layer 13B is formed in a frame shape that surrounds the effective pixel region 110A.
  • the second organic layer 13B will be described in detail later, so only a general description will be given here.
  • the second organic layer 13B functions as a barrier surrounding the effective pixel region 110A.
  • the propagation path of the infiltrated moisture is shown by arrows MA.
  • the moisture that has infiltrated from the outer edge 110C reaches the second organic layer 13B as shown by arrows MA.
  • the second organic layer 13B is made of an organic material. Since organic materials have higher water permeability than inorganic materials, the moisture that has infiltrated into the second organic layer 13B does not head toward the effective pixel region 110A, but instead travels through the second organic layer 13B as shown by arrows MA. This makes it possible to prevent moisture from infiltrating into the effective pixel region 110A.
  • Fig. 5 is a diagram showing a cross section of the display device 1000 cut along the cutting line AA-AA in Fig. 3.
  • Fig. 6 is an enlarged view of the vicinity of the light-emitting element (e.g., light-emitting element 20R of sub-pixel 100R) in Fig. 5.
  • Fig. 7 is an enlarged view of the vicinity of the barrier portion (barrier portion 41 described later) in Fig. 5.
  • the display device 1000 includes a plurality of light-emitting elements 20.
  • the plurality of light-emitting elements 20 are configured with a first electrode 12, a first organic layer 13A which is an example of an organic layer including a light-emitting layer, and a second electrode 14 (see FIG. 6).
  • the light-emitting elements 20 are, for example, white light-emitting elements such as white OLEDs or white Micro-OLEDs (MOLEDs).
  • the colorization method used in the display device 1000 is a method that uses white light-emitting elements and color filters (color filters 27 described below).
  • the display device 1000 has a driving substrate 11.
  • the driving substrate 11 is a so-called backplane, and drives a plurality of light-emitting elements 20.
  • the driving substrate 11 has, for example, a base material 11A and an interlayer insulating layer 11B laminated on the base material 11A.
  • the interlayer insulating layer 11B may be formed by being laminated on the base material 11A, or a part of it may be formed directly on the base material 11A by a semiconductor process.
  • the substrate 11A may be a semiconductor substrate such as a silicon substrate, or an insulating substrate such as a glass substrate, quartz, or resin substrate with low moisture and oxygen permeability.
  • Semiconductor substrates include, for example, amorphous silicon, polycrystalline silicon, or single crystal silicon.
  • glass substrates include, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, or quartz glass.
  • resin substrates include, for example, at least one selected from the group consisting of polymethyl methacrylate, polyvinyl alcohol, polyvinyl phenol, polyether sulfone, polyimide, polycarbonate, polyethylene terephthalate, and polyethylene naphthalate.
  • the substrate 11A has, for example, a thin plate shape.
  • the substrate 11A may be flexible.
  • the interlayer insulating layer 11B is made of, for example, an organic material or an inorganic material.
  • the organic material includes, for example, at least one of polyimide and acrylic resin.
  • the inorganic material includes, for example, at least one of silicon oxide, silicon nitride, silicon oxynitride, and aluminum oxide.
  • Various circuits that drive the multiple light-emitting elements 20 are provided within the interlayer insulating layer 11B.
  • Examples of the various circuits include a drive circuit that controls the driving of the light-emitting elements 20 and a power supply circuit that supplies power to the multiple light-emitting elements 20 (neither shown).
  • the various circuits are restricted from exposure to the outside by the interlayer insulating layer 11B.
  • a plurality of light-emitting elements 20 are provided on the first surface of the interlayer insulating layer 11B.
  • the light-emitting elements 20 are, for example, organic electroluminescence elements (organic EL elements).
  • the plurality of light-emitting elements 20 each emit light of a color corresponding to the color type of the sub-pixel 100 from the light-emitting surface.
  • light-emitting elements 20R, 20G, and 20B are formed in the sub-pixels 100R, 100G, and 100B, respectively.
  • the plurality of light-emitting elements 20 are laid out in a manner corresponding to the arrangement of the sub-pixels 100 of the respective color types.
  • the term "light-emitting element 20" is used.
  • the light-emitting element 20 has a laminated structure in which a first electrode 12, a first organic layer 13A, and a second electrode 14 are laminated in this order from the drive substrate 11 side in the direction from the second surface to the first surface (+Z direction).
  • a plurality of first electrodes 12 are provided on the first surface side of the driving substrate 11.
  • the first electrodes 12 are, for example, anode electrodes.
  • the first electrode 12 is composed of at least one of a metal layer and a metal oxide layer.
  • the first electrode 12 may be composed of a single layer of a metal layer or a metal oxide layer, or a laminated layer of a metal layer and a metal oxide layer.
  • the metal layer contains at least one metal element selected from the group consisting of, for example, chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), aluminum (Al), magnesium (Mg), iron (Fe), tungsten (W) and silver (Ag).
  • the metal layer may contain at least one metal element as a constituent element of an alloy.
  • alloys include aluminum alloys and silver alloys.
  • Specific examples of aluminum alloys include, for example, AlNd and AlCu.
  • the metal oxide layer includes, for example, at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), and titanium oxide (TiO).
  • ITO indium oxide and tin oxide
  • IZO indium oxide and zinc oxide
  • TiO titanium oxide
  • the first electrodes 12 are electrically separated for each subpixel 100. That is, a plurality of first electrodes 12 are provided on the first surface side of the drive substrate 11, and each first electrode 12 is provided for each subpixel 100.
  • the first organic layer 13A is an organic light-emitting layer provided between the first electrode 12 and the second electrode 14.
  • the first organic layer 13A is provided separately for each sub-pixel 100.
  • the first organic layer 13A may be configured to be provided in common to the sub-pixels 100.
  • the first organic layer 13A is configured to be capable of emitting white light. However, this does not prohibit the emission color of the first organic layer 13A from being other than white, and colors such as red, blue, and green may be adopted. In other words, the emission color of the first organic layer 13A may be, for example, any one of white, red, blue, and green.
  • the first organic layer 13A has a configuration in which, for example, a hole injection layer, a hole transport layer, a light-emitting layer, and an electron transport layer are stacked in this order from the first electrode 12 toward the second electrode 14.
  • An electron injection layer may be provided between the electron transport layer and the second electrode 14.
  • the electron injection layer is intended to increase the electron injection efficiency. Note that the configuration of the first organic layer 13A is not limited to this, and layers other than the light-emitting layer are provided as necessary.
  • the hole injection layer is intended to increase the efficiency of hole injection into the light-emitting layer, and is also a buffer layer to suppress leakage.
  • the hole transport layer is intended to increase the efficiency of hole transport to the light-emitting layer.
  • the electron transport layer is intended to increase the efficiency of electron transport to the light-emitting layer.
  • the light-emitting layer generates light when an electric field is applied, causing electrons and holes to recombine.
  • the light-emitting layer is an organic compound layer that contains an organic light-emitting material.
  • a second electrode 14 is provided on the upper side of the first organic layer 13A.
  • the second electrode 14 is, for example, a cathode.
  • a portion of the second electrode 14 corresponding to the sub-pixel 100 (a portion corresponding to the light-emitting element 20) is provided so as to face the first electrode 12.
  • the second electrode 14 is provided separately for each of the plurality of sub-pixels 100.
  • the second electrode 14 may be provided as a common electrode for the plurality of sub-pixels 100.
  • the second electrode 14 is preferably a transparent electrode that is transparent to the light generated in the first organic layer 13A.
  • the transparent electrode referred to here includes an electrode formed of a transparent conductive layer and an electrode formed of a laminated structure having a transparent conductive layer and a semi-transmissive reflective layer.
  • the transparent conductive layer is preferably made of a transparent conductive material with good light transmission and a small work function.
  • the transparent conductive layer can be made of, for example, a metal oxide.
  • examples of the material for the transparent conductive layer include a material containing at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), and zinc oxide (ZnO).
  • the semi-transmissive reflective layer can be formed, for example, from a metal layer.
  • the material of the semi-transmissive reflective layer can be, for example, one that contains at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), gold (Au) and copper (Cu).
  • the metal layer may contain at least one of the above metal elements as a constituent element of an alloy. Specific examples of alloys include an MgAg alloy and an AgPdCu alloy.
  • an insulating layer is formed between adjacent first electrodes 12.
  • an interpixel insulating layer 16 is formed between adjacent first electrodes 12.
  • the interpixel insulating layer 16 may be an organic insulating layer, an inorganic insulating layer, or a laminate of these.
  • the organic insulating layer includes at least one selected from the group consisting of, for example, polyimide resin, acrylic resin, novolac resin, etc.
  • the inorganic insulating layer includes at least one selected from the group consisting of, for example, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy), etc.
  • the interpixel insulating layer 16 electrically separates each first electrode 12 for each light-emitting element 20 (i.e., for each subpixel 100). As shown in FIG. 6, the interpixel insulating layer 16 has an opening 16A formed on the first surface side, and the first surface (the surface facing the second electrode 14) of the first electrode 12 is exposed from the opening 16A of the interpixel insulating layer 16, and the portion of the first electrode 12 exposed from the opening 16A faces the first organic layer 13A described below, avoiding the interposition of the interpixel insulating layer 16.
  • the interpixel insulating layer 16 may be formed not only between adjacent first electrodes 12, but also so as to ride on the edge of the first electrode 12.
  • the edge of the first electrode 12 is defined as the portion from the outer periphery of the first electrode 12 to a predetermined position closer to the center of the first electrode 12. Even in this case, the interpixel insulating layer 16 has an opening 16A, and the first surface of the first electrode 12 is exposed from the opening 16A. In this embodiment, the interpixel insulating layer 16 is formed not only in the effective pixel region 110A but also over the peripheral region 110B.
  • cathode contact In addition, an opening 16B is formed in the inter-pixel insulating layer 16 formed in the peripheral region 110B. A cathode contact 17 is exposed through the opening 16B. The cathode contact 17 is formed at a predetermined location on the first surface of the drive substrate 11 in the peripheral region 110B. The cathode contact 17 relays electrical connections between various circuits formed in the inter-layer insulating layer 11B and the second electrode 14.
  • the material of the cathode contact 17 is not particularly limited as long as it is a conductive material, and for example, a metal or the like can be used.
  • the cathode contact 17 is formed in a ring shape so as to surround the periphery of the effective pixel region 110A in a plan view of the drive substrate 11.
  • the layout of the cathode contact 17 is not limited to a ring shape.
  • a protective layer 18 is formed so as to cover the first surface side (the first surface side of the second electrode 14) of the light-emitting element 20.
  • the protective layer 18 makes the first surface of the light-emitting element 20 less likely to be exposed to the outside air, and suppresses the intrusion of moisture from the external environment into the light-emitting element 20.
  • the protective layer 18 is formed of an insulating material.
  • a thermosetting resin can be used as the insulating material.
  • Other insulating materials may be SiO, SiON, AlO, TiO, etc.
  • examples of the protective layer 18 include a CVD film containing SiO, SiON, etc., and an ALD film containing AlO, TiO, SiO, etc.
  • the CVD film refers to a film formed using a chemical vapor deposition method.
  • the ALD film refers to a film formed using an atomic layer deposition method.
  • the protective layer 18 may be formed of a single layer, or may have a structure in which multiple layers are stacked.
  • the protective layer 18 has a stacked structure of a first protective layer 18A and a second protective layer 18B (see FIG. 6).
  • the first protective layer 18A and the second protective layer 18B may each be a layer formed from a predetermined insulating material, or the first protective layer 18A and the second protective layer 18B may each be formed from a CVD film and an ALD film.
  • an isolation protective layer 19 is formed as an inter-element isolation wall so as to cover the side end faces of the light emitting elements 20, the side end faces of the protective layer 18, and the upper end face of the protective layer 18.
  • the isolation protective layer 19 is disposed between adjacent light emitting elements 20, and separates the first electrode 12, the first organic layer 13A, and the second electrode 14 for each sub-pixel 100.
  • the isolation protective layer 19 is made of an insulator.
  • Examples of the isolation protective layer 19 include an inorganic insulating film and an organic insulating film.
  • Examples of the inorganic insulating film include SiO 2 , SiN, and SiON.
  • Examples of the organic insulating film include polyimide.
  • the sidewall protective film 23 (see FIG. 6 ) is interposed between the side end face of the first organic layer 13A, the second electrode 14, and the lower side face of the protective layer 18, and the separation protective layer 19. As shown in FIG. 6 , it is preferable that the sidewall protective film 23 contacts the side end face of the first organic layer 13A and covers the entire side end area of the first organic layer 13A.
  • the sidewall protective film 23 is an insulating film, and is a processing by-product film that contains by-products (deposits) generated by the etching process.
  • the sidewall protective film 23 assists in the formation of the separation protective layer 19 while preventing the first organic layer 13A from being exposed to the external environment.
  • the etching method is preferably a dry etching method.
  • the second electrode 14 is separated for each sub-pixel 100.
  • the display device 1000 has an auxiliary electrode 24.
  • the auxiliary electrode 24 electrically connects adjacent second electrodes 14 to each other.
  • a groove 18C is formed in the protective layer 18 by etching or the like, and the auxiliary electrode 24 is connected to the second electrode 14 through the groove 18C.
  • the auxiliary electrode 24 connected to each second electrode 14 is connected to the cathode contact 17 in the peripheral region 110B. That is, each second electrode 14 is connected to the cathode contact 17 through the auxiliary electrode 24.
  • the auxiliary electrode 24 is a transparent electrode that is transparent to light generated in the first organic layer 13A.
  • the transparent electrode also includes a semi-transparent reflective layer.
  • the auxiliary electrode 24 can be made of the same material as the second electrode 14.
  • auxiliary electrode protection layer 25 is formed on a first surface of the auxiliary electrode 24.
  • the auxiliary electrode protection layer 25 protects the auxiliary electrode 24.
  • the auxiliary electrode protection layer 25 may be made of the same material as the protection layer 18.
  • the auxiliary electrode protection layer 25 is formed not only in the effective pixel region 110A but also over a part of the peripheral region 110B.
  • a planarization layer 26 is formed so as to cover the top (first surface) of the auxiliary electrode protection layer 25.
  • the planarization layer 26 may be a layer formed of an inorganic material or an organic material. Examples of the inorganic material include the same material as the protection layer 18. Examples of the organic material include a resin material.
  • the planarization layer 26 can improve the planarization of the surface for forming the color filter 27 described later.
  • the planarization layer 26, together with the protection layer 18, can make the first surface of the light-emitting element 20 less likely to be exposed to the outside air, and can suppress the intrusion of moisture from the external environment into the light-emitting element 20.
  • the planarization layer 26 is formed not only in the effective pixel region 110A but also over a part of the peripheral region 110B.
  • a color filter 27 is provided on the first surface side (upper side, +Z direction side) of the planarization layer 26.
  • An example of the color filter 27 is an on-chip color filter (OCCF).
  • a first color filter 28 and a second color filter 29 are provided as the color filter 27.
  • An example of the material of the color filter 27 is an organic material.
  • the first color filter 28 is preferably formed generally within the effective pixel region 110A.
  • the first color filter 28 is provided according to the color type of the sub-pixel 100.
  • the first color filter 28 may include a red color filter (red filter 28R), a green color filter (green filter 28G), and a blue color filter (blue filter 28B).
  • the red filter 28R, the green filter 28G, and the blue filter 28B are provided in the sub-pixels 100R, 100G, and 100B, respectively.
  • the second color filter 29 is formed on the outside of the first color filter 28 (in this example, the blue filter 28B) that is provided on the outermost side. In the example shown in FIG. 5, the second color filter 29 is formed in approximately the peripheral region 110B. The second color filter 29 is formed so as to cover the upper side (+Z direction side) of the auxiliary electrode protection layer 25. The second color filter 29 functions as a layer having light blocking properties.
  • the second color filter 29 has a structure in which a red color filter (red filter 29R) and a blue color filter (blue filter 29B) are stacked.
  • the red filter 29R may be formed simultaneously using the same material as the red filter 28R.
  • the blue filter 29B may be formed simultaneously and integrally using the same material as the blue filter 28B.
  • the red filter 29R can be, for example, a filter that easily transmits light in the red wavelength band of visible light and easily absorbs light in other wavelength bands.
  • the blue filter 29B can be, for example, a filter that easily transmits light in the blue wavelength band of visible light and easily absorbs light in other wavelength bands. With such a structure in which the red filter 29R and the blue filter 29B are stacked, it is possible to block light in a wide range of wavelength bands. Therefore, the second color filter 29 suppresses the transmission of light generated by the light-emitting element 20 in the effective pixel area 110A that heads diagonally from the peripheral area 110B to the outside. In this way, the second color filter 29 exerts an effect of suppressing light leakage. The light that heads from the outside of the display device 1000 toward the drive substrate 11 is blocked by the second color filter 29, suppressing the intrusion of external light.
  • the second color filter 29 has light-blocking properties when the red filter 29R and the blue filter 29B are stacked together, and the stacked structure of the red filter 29R and the blue filter 29B functions as a light-blocking filter.
  • a seal layer 31 is formed on the second color filter 29 (first surface).
  • the seal layer 31 is formed in the peripheral region 110B with the thickness direction of the drive substrate 11 as the line of sight, and is formed in a region that covers at least a part (all of the second color filter 29 in this embodiment).
  • the material of the seal layer 31 is not particularly limited, but for example, a resin material with high moisture resistance may be used. A hygroscopic material may be added to the seal layer 31.
  • a lens 32 is formed on the first color filter 28 (on the first surface).
  • the lens 32 is provided in a layout corresponding to each sub-pixel 100.
  • the lens 32 is preferably an on-chip lens (OCL).
  • the shape of the lens 32 is not particularly limited.
  • An example of the lens 32 is a lens formed in a convex shape having a curved surface that is convexly curved on the first surface side (a so-called convex lens).
  • a filling layer 33 is provided so as to cover the first surface side of the lens 32.
  • the filling layer 33 is preferably a layer having a function as a transparent adhesive layer, similar to the above-mentioned sealing layer 31.
  • a resin material may be used, similar to the above-mentioned sealing layer 31.
  • the filling layer 33 is separate from the sealing layer 31 described above, but this is merely an example and is not limiting.
  • the filling layer 33 may be formed integrally with the sealing layer 31.
  • the sealing substrate 35 is provided so as to cover the filling layer 33.
  • the material of the sealing substrate 35 may be the material of the base material 11A.
  • a glass substrate may be used as the sealing substrate 35.
  • the material of the glass substrate is not particularly limited, and it may be formed of a material that transmits the light emitted from the light emitting element 20. Examples of the material of the glass substrate include various glass substrates such as high strain point glass, soda glass, borosilicate glass, and lead glass, and quartz substrates.
  • the sealing substrate 35 is not limited to a glass substrate, and may be a plastic substrate or a film.
  • a structure such as a moth eye may be formed on the opposing surface of the sealing substrate 35.
  • the filling layer 33 has sufficient strength, the sealing substrate 35 may not be necessary.
  • a seal portion 38 is provided between the sealing substrate 35 and the surface of the sealing substrate 35 facing the drive substrate 11 near the outer edge of the peripheral region 110B.
  • the seal portion 38 bonds the peripheral portion of the facing surface of the sealing substrate 35 to the peripheral portion of the facing surface of the drive substrate 11 (more specifically, the seal layer 31 laminated on the peripheral portion).
  • a thermosetting resin can be used as the seal portion 38.
  • the seal portion 38 may have the same configuration as the seal layer 31 and the filling layer 33.
  • connection terminal 39 is formed near the outer edge of the peripheral region 110B.
  • the connection terminal 39 is formed, for example, outside the end face of the seal portion 38.
  • the connection terminal 39 functions as a terminal for electrically connecting various circuits provided on the drive substrate 11 to an external device such as another control circuit substrate.
  • the connection terminal 39 is formed, for example, on the first surface of the base material 11A.
  • the connection terminal 39 is preferably a pad portion formed of a conductive material such as metal.
  • An interlayer insulating layer 11B is formed around the connection terminal 39.
  • a barrier portion 41 is formed at a predetermined location in the peripheral region 110B, for example, in the vicinity of the boundary between the effective pixel region 110A and the peripheral region 110B in the peripheral region 110B.
  • Fig. 7 is an enlarged view showing the vicinity of the barrier portion 41 according to this embodiment.
  • the barrier section 41 has at least the second organic layer 13B.
  • the second organic layer 13B is separated from the first organic layer 13A.
  • the second organic layer 13B is formed on the first surface of the interpixel insulating layer 16 formed in the peripheral region 110B.
  • the other configurations are substantially the same as the peripheral configuration of the light-emitting element 20. That is, the second electrode 14 is formed on the first surface of the second organic layer 13B, and the protective layer 18 (first protective layer 18A and second protective layer 18B) is formed on the first surface of the second electrode 14.
  • the barrier section 41 is formed by the interpixel insulating layer 16, the second organic layer 13B, the second electrode 14, the protective layer 18, and the sidewall protective film 23.
  • the second organic layer 13B prevents moisture and the like from entering the effective pixel region 110A. In other words, there is no need to make the second organic layer 13B emit light. Therefore, the protective layer 18 constituting the barrier portion 41 does not have the groove portion 18C. Since the groove portion 18C is not formed, the second electrode 14 of the barrier portion 41 is not connected to the auxiliary electrode 24.
  • Each layer configuration constituting the barrier section 41 is preferably formed in the same process as the corresponding layer configuration in the effective pixel region 110A.
  • the second organic layer 13B is preferably formed in the same process as the first organic layer 13A. This makes it possible to provide a highly reliable display device 1000 that can prevent the intrusion of moisture and the like without the need to add a new configuration or a process for forming that configuration.
  • the configuration of the display device 1000 described above is an example, and the display device according to the present disclosure is not limited to the exemplified configuration. Some of the exemplified components may be omitted, and other components may be added.
  • an interpixel insulating layer 16 is formed on the first surface of the drive substrate 11 so as to cover the multiple first electrodes 12 by, for example, a CVD (Chemical Vapor Deposition) method.
  • an opening 16A is formed in the portion of the interpixel insulating layer 16 located on the first surface of each first electrode 12 by, for example, a photolithography technique and a dry etching technique.
  • An opening 16B is formed in the cathode contact 17 in the same manner.
  • the organic layer 13 is formed on the first surface of the first electrode 12 and on the first surface of the inter-pixel insulating layer 16, for example, by vapor deposition. Note that up to this point, the organic layer 13 is simply referred to as the organic layer 13, since it has not yet been separated into the first organic layer 13A and the second organic layer 13B.
  • the second electrode 14 is formed on the first surface of the organic layer 13, for example, by vapor deposition or sputtering. The second electrode 14 is formed so that its end is in contact with the first surface of the cathode contact 17.
  • the protective layer 18 (first protective layer 18A and second protective layer 18B) is formed over the entire first surface side of the drive substrate 11, for example, by CVD or vapor deposition. Next, as shown in FIG. 9, the second protective layer 18B formed near the end is partially removed by dry etching or the like.
  • an etching process is performed to remove unnecessary protective layer 18.
  • the etching process is performed so as to leave protective layer 18 on the first surface of light-emitting element 20 and near the end of peripheral region 110B (near the first surface of connection terminal 39).
  • etching is performed so as to partially leave interpixel insulating layer 16, organic layer 13 on the first surface of interpixel insulating layer 16, second electrode 14 on the first surface of organic layer 13, and protective layer 18 on the first surface of second electrode 14 in peripheral region 110B.
  • This process separates organic layer 13 into first organic layer 13A and second organic layer 13B.
  • sidewall protective film 23 is formed by the etching process in this process.
  • an isolation protective layer 19 is formed over the entire surface by vapor deposition or sputtering. Then, as shown in FIG. 12, unnecessary portions of the isolation protective layer 19 are removed by etching, and then a groove portion 18C is formed in the protective layer 18 in the effective pixel region 110A. Then, an auxiliary electrode 24 is formed over the cathode contact 17, thereby connecting the second electrode 14 and the cathode contact 17. Then, an auxiliary electrode protective layer 25 is formed over the entire surface of the drive substrate 11.
  • the planarization layer 26, color filter 27, sealing layer 31, lens 32, filling layer 33, and sealing portion 38 are formed, and the sealing substrate 35 is placed.
  • the display device 1000 is then sealed by thermally curing the sealing portion 38, for example. These steps may be carried out using typical manufacturing processes for display devices. In this way, the display device 1000 as shown in FIG. 5 can be manufactured.
  • the manufacturing method shown here is an example, and the manufacturing method for the display device 1000 is not limited to this.
  • the following effects can be obtained.
  • a barrier section including a second organic layer in the light-emitting region in the peripheral region around the effective pixel region when moisture that has infiltrated from outside the display device reaches the partition, it is possible to transport (propagate) the moisture along the second organic layer of the partition. This makes it possible to prevent moisture from infiltrating into the effective pixel region. This makes it possible to suppress the occurrence of light emission defects and provide a highly reliable display device.
  • the second organic layer of the partition wall simultaneously with the first organic layer of the light-emitting element, it is not necessary to add a step of forming the second organic layer.
  • it is not necessary to add the second organic layer as a new component it is possible to improve the yield of the panel and the reliability of the display device without increasing costs.
  • FIG. 13 is an enlarged view showing the vicinity of a barrier portion (barrier portion 41B) of a display device (display device 1000B) according to the second embodiment.
  • the second organic layer 13B is laminated on the first surface of the interpixel insulating layer 16, but in the second embodiment, the second organic layer 13B is formed on the first surface of the electrode layer.
  • the electrode layer is, for example, the same layer as the first electrode 12, that is, a layer formed in the same process as the first electrode 12.
  • the electrode layer may be formed in a process separate from the first electrode 12, but by forming it in the same process as the first electrode 12, the process can be simplified.
  • a configuration similar to that of the sub-pixel 100 may be formed as a dummy pixel in the peripheral region 110B.
  • the organic layer in such a dummy pixel may be used as the second organic layer 13B.
  • the configuration of the display device 1000 according to the first embodiment can be applied.
  • This embodiment also provides the same effects as the first embodiment.
  • Fig. 14 is an enlarged view showing the vicinity of the barrier portion (barrier portion 41C) of the display device (display device 1000C) according to the second embodiment.
  • This embodiment is an example in which the interpixel insulating layer 16 is not formed in the peripheral region 110B.
  • the second organic layer 13B is formed on the first surface of the interlayer insulating layer 11B.
  • the configuration of the display device 1000 according to the first embodiment can be applied.
  • This embodiment also provides the same effects as the first embodiment.
  • the above first to third embodiments can be summarized as follows.
  • the number of layers interposed between the first organic layer 13A and the base material 11A is the number of layers M
  • the number of layers interposed between the second organic layer 13B and the base material 11A is the number of layers N
  • the difference between the number of layers M and the number of layers N is within a range of 0 to 3.
  • the number of layers can be identified based on a boundary that appears in a TEM (Transmission Electron Microscope) image, for example.
  • At least an interlayer insulating layer 11B is formed between the second organic layer 13B and the base material 11A.
  • the number M of layers interposed between the first organic layer 13A and the base material 11A is two.
  • the number of layers N interposed between the second organic layer 13B and the base material 11A is 2. That is, the difference between the number of layers M and the number of layers N is 0.
  • the second embodiment see FIG.
  • the number of layers N interposed between the second organic layer 13B and the base material 11A is 2. That is, the difference between the number of layers M and the number of layers N is 0.
  • the number of layers N interposed between the second organic layer 13B and the base material 11A is 1. That is, the difference between the number of layers M and the number of layers N is 1.
  • the first electrode 12 may have a structure in which multiple layers made of different materials are laminated, rather than a single layer.
  • the first electrode 12 may have a three-layer structure made of different materials.
  • the number of layers M between the first organic layer 13A and the base material 11A is 4 (a total of four layers, including the three layers of the first electrode 12 and the interlayer insulating layer 11B).
  • the number of layers N between the second organic layer 13B and the base material 11A is 1. That is, the difference between the number of layers M and the number of layers N is 3. From the above, the difference between the number of layers M and the number of layers N is within the range of 0 to 3.
  • Fig. 15 is a plan view of a display device (display device 1000D) according to the fourth embodiment.
  • the number of second organic layers arranged on the outer periphery of the effective pixel region 110A was one, but there may be more than one.
  • two second organic layers (second organic layer 13Ba and second organic layer 13Bb) may be formed to surround the outer periphery of the effective pixel region 110A.
  • the water ingress prevention function of the second organic layer 13Ba formed on the outside may fail, and the moisture may penetrate further inward.
  • the second organic layer 13Bb is also formed on the inside, so that even if moisture infiltrates to the inside, the moisture can be propagated into the second organic layer 13Bb.
  • the configuration of the display device 1000 according to the first embodiment can be applied. This embodiment also provides the same effects as the first embodiment, in addition to the effects described above.
  • Fig. 16 is a plan view of a display device (a display device 1000E) according to the fifth embodiment.
  • the fifth embodiment is an example in which the width of the second organic layer 13B (the length in the X direction or Y direction in FIG. 16) is larger than that of the first embodiment.
  • the width of the second organic layer 13B can be changed as appropriate.
  • the width of the second organic layer 13B may be the same as or different from the width of the first organic layer 13A.
  • it is preferable that the width of the second organic layer 13B is larger than the width of the first organic layer 13A.
  • the configuration of the display device 1000 according to the first embodiment can be applied.
  • This embodiment also provides the same effects as the first embodiment.
  • Fig. 17 is a plan view of a display device (display device 1000F) according to the sixth embodiment.
  • the second organic layer 13B is arranged to form a straight frame shape, but the second organic layer 13B may be arranged to be bent in a planar view as shown in FIG. 17. Also, the second organic layer 13B may be arranged to form a shape in which a part (for example, near a corner) is curved as shown in FIG. 18.
  • the configuration of the display device 1000 according to the first embodiment can be applied.
  • This embodiment also provides the same effects as the first embodiment.
  • Fig. 19 is a plan view of a display device (display device 1000G) according to the seventh embodiment.
  • the second organic layer 13B is formed closer to the outer edge 110C of the drive substrate 11 than in the first embodiment. By forming the second organic layer 13B closer to the outer edge 110C, the size of the effective pixel area 110A can be increased.
  • the configuration of the display device 1000 according to the first embodiment can be applied.
  • This embodiment also provides the same effects as the first embodiment.
  • FIG. 20 is a plan view of a display device (display device 1000H) according to the eighth embodiment.
  • the second organic layer 13B is formed continuously around the effective pixel region 110A, but a portion of the second organic layer may be partially separated.
  • the example shown in FIG. 20 is an example in which the second organic layer is formed by the second organic layer 13Bc, the second organic layer 13Bd, the second organic layer 13Be, and the second organic layer 13Bf, which are separated from one another. From the viewpoint of preventing moisture intrusion, it is preferable that the second organic layer is continuous so as to surround the effective pixel region 110A, but this does not exclude a shape of the second organic layer in which a portion is separated due to constraints or errors in the manufacturing process.
  • Fig. 21 is an enlarged cross-sectional view showing the vicinity of the second organic layer 13B of a display device (display device 1000J) according to the ninth embodiment.
  • a groove similar to groove 18C may be formed in the protective layer 18 of the barrier portion 41.
  • An auxiliary electrode 24 may be connected to the second electrode 14 formed on the first surface of the second organic layer 13B.
  • the configuration of the display device 1000 according to the first embodiment can be applied.
  • This embodiment also provides the same effects as the first embodiment.
  • FIG. 22 is a cross-sectional view showing an enlarged view of the second organic layer 13B and its vicinity of the display device (display device 1000K) according to the tenth embodiment.
  • a bank portion 51 is formed in the base layer 55 in the peripheral region 110B.
  • the bank portion 51 has, for example, two convex portions 51A and 51B formed in the base layer 55.
  • the second organic layer 13B is formed in the bank portion 51, specifically, between the convex portion 51A and the convex portion 51B (inside).
  • the second organic layer 13B can be formed, for example, by an inkjet method.
  • the base layer 55 may be the interlayer insulating layer 11B, the interpixel insulating layer 16, or another layer.
  • An electrode layer such as the first electrode 12 may be interposed between the second organic layer 13B and the base layer 55.
  • the second electrode 14 and the protective layer 18 may be formed on the first surface side of the second organic layer 13B.
  • the configuration of the display device 1000 according to the first embodiment can be applied.
  • This embodiment also provides the same effects as the first embodiment.
  • FIG. 23A, FIG. 23B, and FIG. 23C is a cross-sectional view showing an enlarged view of the second organic layer 13B and its vicinity of the display device (display device 1000L) according to the eleventh embodiment.
  • the display device 1000L two recesses 61A are formed on the first surface of the base layer 55.
  • the second organic layer 13B is formed so as to include the first surface of the recesses 61A and the flat portion.
  • the number of recesses 61A is not limited to two, and may be one, or may be three or more.
  • the second organic layer 13B is formed on at least a part of the recesses 61A, and the second organic layer 13B may not be formed on the entire first surface of the recesses 61A.
  • the base layer 55 may be the interlayer insulating layer 11B, the interpixel insulating layer 16, or another layer.
  • the display device 1000L may have a convex portion 61B formed on the first surface of the base layer 55.
  • the display device 1000L may have two convex portions 61B.
  • the second organic layer 13B is formed so as to include the first surface of the convex portions 61B and flat portions.
  • the number of convex portions 61B is not limited to two, and may be one, or three or more. It is sufficient that the second organic layer 13B is formed on at least a portion of the convex portions 61B, and the second organic layer 13B does not have to be formed on the entire first surface of the convex portions 61B.
  • the display device 1000L may have a configuration having a recess 61A and a protrusion 61B formed on the first surface of the base layer 55, as shown in FIG. 23C.
  • the configuration of the display device 1000 according to the first embodiment can be applied.
  • the second electrode 14 and the protective layer 18 may be formed on the first surface side of the second organic layer 13B.
  • This embodiment also provides the same effects as the first embodiment.
  • the width (length in the X direction) of the second organic layer 13B can be increased. This makes it possible to increase the propagation distance of moisture that has penetrated into the second organic layer 13B, thereby effectively preventing the moisture from penetrating into the effective pixel region 110A.
  • FIG. 24 is a plan view of a display device (display device 1000M) according to the twelfth embodiment.
  • the luminous color of the first organic layer 13A may be red, green, blue, or yellow, instead of white light. For example, as shown in FIG.
  • a sub-pixel (an example of a first pixel) having a first organic layer 13A emitting a red (R) color, a sub-pixel (an example of a second pixel) having a first organic layer 13A emitting a green (G) color, and a sub-pixel (a third pixel) having a first organic layer 13A emitting a blue (B) color may be alternately arranged in the effective pixel region 110A.
  • a second organic layer 13B emitting a red color is formed on the inside
  • a second organic layer 13B emitting a green color is formed on the outside.
  • a second organic layer 13B emitting a blue color may be formed in the peripheral region 110B.
  • the configuration of the display device 1000 according to the first embodiment can be applied.
  • This embodiment also provides the same effects as the first embodiment.
  • the pixels used in the display device according to the present disclosure described above may be configured to include a resonator structure that resonates light generated by a light-emitting element.
  • the resonator structure will be described below with reference to the drawings.
  • (Resonator structure: first example) 25A is a schematic cross-sectional view for explaining a first example of the resonator structure.
  • the light-emitting elements 20 provided corresponding to the sub-pixels 100R, 100G, and 100B, respectively may be referred to as light-emitting elements 20R , 20G , and 20B .
  • the portions of the first organic layer 13A corresponding to the sub-pixels 100R, 100G, and 100B, respectively, may be referred to as first organic layers 13AR , 13AG , and 13AB .
  • the first electrode 12 is formed with a common film thickness in each light-emitting element 20.
  • the second electrode 14 is formed with a common film thickness in each light-emitting element 20. The same is true for the second electrode 14.
  • a reflector 70 is disposed under the first electrode 12 of the light-emitting element 20 with an optical adjustment layer 71 sandwiched therebetween.
  • a resonator structure that resonates light generated by the first organic layer 13A is formed between the reflector 70 and the second electrode 14.
  • the optical adjustment layers 71 provided corresponding to the sub-pixels 100R, 100G, and 100B, respectively, may be referred to as optical adjustment layers 71R , 71G , and 71B .
  • the reflector 70 is formed to have a common thickness for each light-emitting element 20.
  • the thickness of the optical adjustment layer 71 varies depending on the color to be displayed by the pixel. By having the optical adjustment layers 71R , 71G , and 71B have different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
  • the upper surfaces of the reflectors 70 in the light-emitting elements 20R , 20G , and 20B are arranged to be aligned.
  • the film thickness of the optical adjustment layer 71 differs depending on the color to be displayed by the pixel, and therefore the position of the upper surface of the second electrode 14 differs depending on the type of the light-emitting element 20R , 20G , and 20B .
  • the reflector 70 can be formed using metals such as aluminum (Al), silver (Ag), copper (Cu), etc., or alloys containing these as main components.
  • the optical adjustment layer 71 can be made of inorganic insulating materials such as silicon nitride (SiN x ), silicon oxide (SiO x ), silicon oxynitride (SiO x N y ), or organic resin materials such as acrylic resins and polyimide resins.
  • the optical adjustment layer 71 may be a single layer or a laminated film of a plurality of these materials. The number of layers may vary depending on the type of the light-emitting element 20.
  • the first electrode 12 can be formed using a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), or zinc oxide (ZnO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • the second electrode 14 must function as a semi-transmissive reflective film.
  • the second electrode 14 can be formed using magnesium (Mg) or silver (Ag), or a magnesium-silver alloy (MgAg) that contains these as its main components, or an alloy that contains an alkali metal or an alkaline earth metal.
  • FIG. 25B is a schematic cross-sectional view for explaining the second example of the resonator structure.
  • the first electrode 12 and the second electrode 14 are also formed with a common film thickness in each light-emitting element 20.
  • a reflector 70 is also disposed under the first electrode 12 of the light-emitting element 20 with an optical adjustment layer 71 sandwiched between them.
  • a resonator structure that resonates the light generated by the first organic layer 13A is formed between the reflector 70 and the second electrode 14.
  • the reflector 70 is formed with a common thickness for each light-emitting element 20, and the thickness of the optical adjustment layer 71 differs depending on the color that the pixel is to display.
  • the upper surfaces of the reflectors 70 in the light-emitting elements 20R , 20G , and 20B are arranged to be aligned, and the position of the upper surface of the second electrode 14 differs depending on the type of the light-emitting element 20R , 20G , and 20B .
  • the upper surfaces of the second electrodes 14 are arranged to be aligned for the light-emitting elements 20R , 20G , and 20B .
  • the upper surfaces of the reflectors 70 in the light-emitting elements 20R , 20G , and 20B are arranged to be different depending on the type of the light-emitting element 20R , 20G , and 20B .
  • the lower surface of the reflector 70 (in other words, the surface of the base 73 indicated by reference numeral 73 in the figure) has a stepped shape depending on the type of the light-emitting element 20.
  • the materials constituting the reflector 70, the optical adjustment layer 71, the first electrode 12, and the second electrode 14 are the same as those described in the first example, so a description thereof will be omitted.
  • FIG. 26A is a schematic cross-sectional view for explaining a third example of the resonator structure.
  • the reflectors 70 provided corresponding to the sub-pixels 100R, 100G, and 100B, respectively, may be referred to as reflectors 70R , 70G , and 70B .
  • the first electrode 12 and the second electrode 14 are also formed with a common film thickness in each light-emitting element 20.
  • a reflector 70 is disposed under the first electrode 12 of the light-emitting element 20 with an optical adjustment layer 71 sandwiched therebetween.
  • a resonator structure that resonates the light generated by the first organic layer 13A is formed between the reflector 70 and the second electrode 14.
  • the film thickness of the optical adjustment layer 71 varies depending on the color to be displayed by the pixel.
  • the upper surface of the second electrode 14 is disposed so as to be aligned with the light-emitting elements 20R , 20G , and 20B .
  • the bottom surface of the reflector 70 has a stepped shape according to the type of light-emitting element 20 in order to align the top surface of the second electrode 14.
  • the film thickness of the reflector 70 is set to be different depending on the types of the light-emitting elements 20R , 20G , and 20B . More specifically, the film thickness is set so that the bottom surfaces of the reflectors 70R , 70G , and 70B are aligned.
  • the materials constituting the reflector 70, the optical adjustment layer 71, the first electrode 12, and the second electrode 14 are the same as those described in the first example, so a description thereof will be omitted.
  • (Resonator structure: fourth example) 26B is a schematic cross-sectional view for explaining a fourth example of the resonator structure.
  • the first electrodes 12 provided corresponding to the sub-pixels 100R, 100G, and 100B, respectively, may be referred to as first electrodes 12R , 12G , and 12B .
  • the first electrodes 12 and second electrodes 14 of each light-emitting element 20 are formed to have the same film thickness.
  • a reflector 70 is disposed under the first electrodes 12 of the light-emitting elements 20 with an optical adjustment layer 71 sandwiched therebetween.
  • the optical adjustment layer 71 is omitted, and the film thickness of the first electrode 12 is set to differ depending on the type of the light emitting elements 20R , 20G , and 20B .
  • the reflector 70 is formed to have a common thickness for each light-emitting element 20.
  • the thickness of the first electrode 12 varies depending on the color to be displayed by the pixel.
  • the materials constituting the reflector 70, the optical adjustment layer 71, the first electrode 12, and the second electrode 14 are the same as those described in the first example, so a description thereof will be omitted.
  • FIG. 27A is a schematic cross-sectional view for explaining a fifth example of the resonator structure.
  • the first electrode 12 and the second electrode 14 are formed to a common thickness in each light-emitting element 20.
  • a reflector 70 is disposed under the first electrode 12 of the light-emitting element 20 with an optical adjustment layer 71 sandwiched therebetween.
  • the optical adjustment layer 71 is omitted, and instead, an oxide film 74 is formed on the surface of the reflector 70.
  • the thickness of the oxide film 74 is set to be different depending on the types of the light-emitting elements 20R , 20G , and 20B .
  • the oxide films 74 provided corresponding to the sub-pixels 100R, 100G, and 100B, respectively, may be referred to as oxide films 74R , 74G , and 74B .
  • the thickness of the oxide film 74 varies depending on the color to be displayed by the pixel.
  • the oxide films 74R , 74G , and 74B have different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
  • the oxide film 74 is a film formed by oxidizing the surface of the reflector 70, and is made of, for example, aluminum oxide, tantalum oxide, titanium oxide, magnesium oxide, zirconium oxide, etc.
  • the oxide film 74 functions as an insulating film for adjusting the optical path length (optical distance) between the reflector 70 and the second electrode 14.
  • the oxide film 74 having a thickness that varies depending on the type of the light emitting elements 20 R , 20 G , and 20 B can be formed, for example, as follows.
  • a positive voltage is then applied to the reflector 70 with the electrode as a reference, and the reflector 70 is anodized.
  • the thickness of the oxide film formed by anodization is proportional to the voltage value to the electrode. Therefore, anodization is performed while a voltage according to the type of light-emitting element 20 is applied to each of the reflectors 70R , 70G , and 70B . This allows oxide films 74 with different thicknesses to be formed all at once.
  • the materials constituting the reflector 70, the first electrode 12, and the second electrode 14 are the same as those described in the first example, so a description thereof will be omitted.
  • FIG. 27B is a schematic cross-sectional view for explaining the sixth example of the resonator structure.
  • the light-emitting element 20 is configured by laminating a first electrode 12, a first organic layer 13A, and a second electrode 14.
  • the first electrode 12 is formed so as to function both as an electrode and a reflector.
  • the first electrode 12 (doubles as a reflector) is formed of a material having an optical constant selected according to the type of the light-emitting elements 20R , 20G , and 20B .
  • By varying the phase shift caused by the first electrode 12 doubles as a reflector, it is possible to set an optical distance that generates an optimal resonance for the wavelength of light according to the color to be displayed.
  • the first electrode 12 can be made of a single metal such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), or an alloy mainly composed of these metals.
  • the first electrode 12R (double-reflector) of the light-emitting element 20R can be made of copper (Cu)
  • the first electrode 12G (double-reflector) of the light-emitting element 20G and the first electrode 12B (double-reflector) of the light-emitting element 20B can be made of aluminum.
  • the materials constituting the second electrode 14 are the same as those described in the first example, so the description will be omitted.
  • FIG. 28 is a schematic cross-sectional view for explaining a seventh example of the resonator structure.
  • the seventh example is basically a configuration in which the sixth example is applied to the light emitting elements 20 R and 20 G , and the first example is applied to the light emitting element 20 B. Even in this configuration, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
  • the first electrodes 12R , 12G (which also serve as reflectors) used in the light-emitting elements 20R , 20G can be made of a single metal such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), or an alloy containing these as its main component.
  • the materials constituting the reflector 70B , the optical adjustment layer 71B and the first electrode 12B used in the light emitting element 20B are similar to those described in the first example, and therefore description thereof will be omitted.
  • the display device described above may have a lens array (not shown) between the protective layer 18 and the color filter 27.
  • the display device may further include a planarization layer (not shown) between the color filter 27 and the lens array.
  • the lens array includes a plurality of lenses.
  • the lenses may be on-chip microlenses.
  • the lenses are two-dimensionally arranged in a specified arrangement pattern on the color filter 27 or the first surface of the planarization layer.
  • One subpixel includes one or two lenses.
  • the lenses focus the light emitted upward in the front direction.
  • the lenses have, for example, a convex curved surface that protrudes in the front direction.
  • the convex curved surface is, for example, dome-shaped.
  • the dome shape includes shapes such as an approximately parabolic shape, an approximately hemispherical shape, and an approximately hemi-elliptical shape.
  • the lens includes, for example, an inorganic material or a polymer resin that is transparent to visible light.
  • the inorganic material includes, for example, silicon oxide (SiO x ).
  • the polymer resin includes, for example, an ultraviolet curing resin.
  • the light-emitting section 81 described below is, for example, the light-emitting element 20 described above.
  • the lens member 83 described below is, for example, the lens of the lens array described above.
  • the wavelength selection section 82 described below is, for example, the color filter 27.
  • the size of the wavelength selection section may be changed as appropriate in response to the light emitted by the light emitting section, or in the case where a light absorbing section (e.g., a black matrix section) is provided between the wavelength selection sections of adjacent light emitting sections, the size of the light absorbing section may be changed as appropriate in response to the light emitted by the light emitting section.
  • the size of the wavelength selection section may be changed as appropriate in response to the distance (offset amount) d 0 between the normal line passing through the center of the light emitting section and the normal line passing through the center of the wavelength selection section.
  • the planar shape of the wavelength selection section may be the same as, similar to, or different from the planar shape of the lens member.
  • the normal line LN passing through the center of the light-emitting section 81 and the normal line LN" passing through the center of the wavelength selection section 82 coincide with each other, but the normal line LN passing through the center of the light-emitting section 81 and the normal line LN" passing through the center of the wavelength selection section 82 may not coincide with the normal line LN' passing through the center of the lens member 83.
  • D 0 >0 and d 0 0 may be satisfied.
  • a configuration may be adopted in which the normal line LN passing through the center of the light-emitting section 81, the normal line LN′′ passing through the center of the wavelength selecting section 82, and the normal line LN′ passing through the center of the lens member 83 do not all coincide. That is, D 0 >0, d 0 >0, and D 0 ⁇ d 0 may be satisfied.
  • the center of the wavelength selecting section 82 (the position indicated by the black square in FIG. 30 ) is located on a straight line LL connecting the center of the light-emitting section 81 and the center of the lens member 83 (the position indicated by the black circle in FIG. 30 ).
  • the thickness direction refers to the thickness direction of the light emitting section 81 , the wavelength selecting section 82 , and the lens member 83 .
  • a configuration may be adopted in which the normal line LN passing through the center of the light-emitting section 81, the normal line LN" passing through the center of the wavelength selecting section 82, and the normal line LN' passing through the center of the lens member 83 do not all coincide.
  • the center of the lens member 83 (the position indicated by a black circle in FIG. 32 ) is located on a straight line LL connecting the center of the light-emitting section 81 and the center of the wavelength selecting section 82 (the position indicated by a black square in FIG. 32 ).
  • the distance in the thickness direction vertical direction in FIG.
  • the thickness direction refers to the thickness direction of the light emitting section 81 , the wavelength selecting section 82 , and the lens member 83 .
  • the display device may be provided in various electronic devices.
  • the display device is particularly suitable for electronic viewfinders of video cameras or single-lens reflex cameras, head-mounted displays, and other devices that require high resolution and are used in a magnified state near the eyes.
  • This digital still camera 310 is a lens-interchangeable single-lens reflex type, and has an interchangeable photographing lens unit (interchangeable lens) 312 approximately in the center of the front of a camera main body (camera body) 311, and a grip part 313 for the photographer to hold on the left side of the front.
  • interchangeable photographing lens unit interchangeable lens
  • a monitor 314 is provided at a position shifted to the left from the center of the back of the camera body 311.
  • An electronic viewfinder (eyepiece window) 315 is provided at the top of the monitor 314. By looking through the electronic viewfinder 315, the photographer can visually confirm the optical image of the subject guided by the photographing lens unit 312 and determine the composition.
  • the electronic viewfinder 315 is equipped with the display device according to the embodiment described above.
  • the head mounted display 320 has, for example, ear hooks 322 for wearing on the user's head on both sides of a glasses-shaped display unit 321.
  • the display unit 321 includes the display device according to the above embodiment.
  • This television device 330 has an image display screen unit 331 including, for example, a front panel 332 and a filter glass 333, and this image display screen unit 331 is equipped with the display device according to the embodiment described above.
  • the see-through head mounted display 340 includes a main body 341, an arm 342, and a lens barrel 343.
  • the main body 341 is connected to the arm 342 and the glasses 350. Specifically, the end of the long side of the main body 341 is connected to the arm 342, and one side of the main body 341 is connected to the glasses 350 via a connecting member. The main body 341 may also be worn directly on the head of the human body.
  • Main body 341 incorporates a control board for controlling the operation of see-through head mounted display 340, and a display unit.
  • Arm 342 connects main body 341 to barrel 343 and supports barrel 343. Specifically, arm 342 is coupled to an end of main body 341 and an end of barrel 343, respectively, and fixes barrel 343.
  • Arm 342 also incorporates a signal line for communicating data related to images provided from main body 341 to barrel 343.
  • the telescope tube 343 projects image light provided from the main body 341 via the arm 342 through the eyepiece 351 toward the eye of the user wearing the see-through head mounted display 340.
  • the display unit of the main body 341 is equipped with the display device according to the embodiment described above.
  • the smartphone 360 includes a display unit 361 that displays various information, and an operation unit 362 that includes buttons and the like that accept operation inputs by a user.
  • the display unit 361 includes the display device according to the embodiment described above.
  • the above-mentioned display device 101 and the like may be provided in a vehicle or in various displays.
  • FIGS. 38A and 38B are diagrams showing an example of the internal configuration of a vehicle 500 equipped with various displays. Specifically, FIG. 38A is a diagram showing an example of the interior of the vehicle 500 from the rear to the front, and FIG. 38B is a diagram showing an example of the interior of the vehicle 500 from diagonally rear to diagonally front.
  • the vehicle 500 includes a center display 501, a console display 502, a head-up display 503, a digital rear mirror 504, a steering wheel display 505, and a rear entertainment display 506. At least one of these displays includes a display device according to the embodiment described above. For example, all of these displays may include a display device according to the embodiment described above.
  • the center display 501 is disposed in a portion of the dashboard facing the driver's seat 508 and the passenger seat 509.
  • Figs. 38A and 38B show an example of a horizontally elongated center display 501 extending from the driver's seat 508 side to the passenger seat 509 side
  • the screen size and location of the center display 501 are arbitrary.
  • the center display 501 can display information detected by various sensors.
  • the center display 501 can display an image captured by an image sensor, an image of the distance to an obstacle in front of or to the side of the vehicle 500 measured by a ToF sensor, and the body temperature of a passenger detected by an infrared sensor.
  • the center display 501 can be used to display, for example, at least one of safety-related information, operation-related information, a life log, health-related information, authentication/identification-related information, and entertainment-related information.
  • the safety-related information includes information such as detection of drowsiness, detection of distraction, detection of mischief by children in the vehicle, whether or not a seat belt is fastened, and detection of an occupant being left behind, and is information detected, for example, by a sensor arranged on the back side of the center display 501.
  • the operation-related information is obtained by detecting gestures related to the operation of the occupant using a sensor.
  • the detected gestures may include operations of various facilities in the vehicle 500. For example, operations of air conditioning equipment, navigation equipment, AV equipment, lighting equipment, etc. are detected.
  • the life log includes the life log of all occupants. For example, the life log includes a record of the actions of each occupant while on board.
  • the health-related information is obtained by detecting the body temperature of the occupant using a sensor such as a temperature sensor, and inferring the health condition of the occupant based on the detected body temperature.
  • a sensor such as a temperature sensor
  • the face of the occupant may be captured using an image sensor, and the health condition of the occupant may be inferred from the facial expression captured in the image.
  • the occupant may be spoken to by an automated voice, and the health condition of the occupant may be inferred based on the content of the occupant's response.
  • Authentication/identification-related information includes a keyless entry function that uses a sensor to perform facial authentication, a function that automatically adjusts the seat height and position using facial recognition, etc.
  • Entertainment-related information includes a function that uses a sensor to detect information about the operation of an AV device by an occupant, and a function that uses a sensor to recognize the occupant's face and provides content appropriate for the occupant via the AV device.
  • the console display 502 can be used, for example, to display life log information.
  • the console display 502 is disposed near the shift lever 511 on the center console 510 between the driver's seat 508 and the passenger seat 509.
  • the console display 502 can also display information detected by various sensors.
  • the console display 502 may also display an image of the surroundings of the vehicle captured by an image sensor, or an image showing the distance to obstacles around the vehicle.
  • the head-up display 503 is virtually displayed behind the windshield 512 in front of the driver's seat 508.
  • the head-up display 503 can be used to display, for example, at least one of safety-related information, operation-related information, a life log, health-related information, authentication/identification-related information, and entertainment-related information. Since the head-up display 503 is often virtually positioned in front of the driver's seat 508, it is suitable for displaying information directly related to the operation of the vehicle 500, such as the speed of the vehicle 500 and the remaining fuel (battery) level.
  • the digital rear-view mirror 504 can not only display the rear of the vehicle 500, but can also display the state of passengers in the back seats, so by placing a sensor on the back side of the digital rear-view mirror 504, it can be used to display life log information, for example.
  • the steering wheel display 505 is disposed near the center of the steering wheel 513 of the vehicle 500.
  • the steering wheel display 505 can be used to display, for example, at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information.
  • the steering wheel display 505 since the steering wheel display 505 is located near the driver's hands, it is suitable for displaying life log information such as the driver's body temperature, and for displaying information regarding the operation of AV equipment, air conditioning equipment, etc.
  • the rear entertainment display 506 is attached to the back side of the driver's seat 508 and passenger seat 509, and is intended for viewing by rear seat passengers.
  • the rear entertainment display 506 can be used to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information, for example.
  • information related to the rear seat passengers is displayed on the rear entertainment display 506.
  • the rear entertainment display 506 may display information related to the operation of AV equipment or air conditioning equipment, or may display the results of measuring the body temperature of the rear seat passengers using a temperature sensor.
  • a sensor may be arranged on the back side of the display device to measure the distance to surrounding objects.
  • Optical distance measurement methods are broadly divided into passive and active types.
  • Passive types measure distance by receiving light from an object without projecting light from the sensor onto the object.
  • Passive types include the lens focusing method, the stereo method, and the monocular vision method.
  • Active types measure distance by projecting light onto an object and receiving the light reflected from the object with a sensor.
  • Active types include the optical radar method, the active stereo method, the photometric stereo method, the moire topography method, and the interference method.
  • the display device 101 and the like described above can be applied to any of these distance measurement methods.
  • the first organic layer 13A may be configured to be shared by the sub-pixels.
  • the second electrode 14 may also be configured to be shared by the sub-pixels, and an end of the second electrode 14 may be connected to the cathode contact 17.
  • the auxiliary electrode 24 may not be required.
  • the second organic layer may emit, for example, white light.
  • the material of the second organic layer is preferably the same as that of the first organic layer, but may be different.
  • the present disclosure may also employ the following configuration.
  • a driving substrate having an effective pixel area and a peripheral area between the effective pixel area and an outer edge portion; the effective pixel area includes a plurality of pixels, The pixel includes a first electrode, a second electrode disposed opposite to the first electrode, and a first organic layer provided between the first electrode and the second electrode and including a light-emitting layer; The peripheral region has a second organic layer separated from the first organic layer of the pixel.
  • Display device (2)
  • the driving substrate has a base material, In a cross-sectional view, a difference between the number of layers interposed between the first organic layer and the base material and the number of layers interposed between the second organic layer and the base material is within a range of 0 to 3.
  • the first electrode and an interlayer insulating layer are formed between the first organic layer and the base material, At least the interlayer insulating layer is formed between the second organic layer and the base material.
  • the display device according to (1) or (2). (4) the interlayer insulating layer, and at least one of an electrode layer and an interpixel insulating layer are formed between the second organic layer and the base material;
  • the display device according to (3). (5) The electrode layer is the same layer as the first electrode.
  • the display device according to (4). (6) the first organic layer and the second organic layer are layers formed in the same process; A display device according to any one of (1) to (5). (7) The first organic layer is separated for each pixel.
  • the pixels include a first pixel, a second pixel, and a third pixel; a first emission color of a first organic layer of the first pixel, a second emission color of a first organic layer of the second pixel, and a third emission color of a first organic layer of the third pixel are different emission colors from each other, the emission color of the second organic layer is any one of the first emission color, the second emission color, and the third emission color; (7) A display device according to (7). (10) The first emission color is red, the second emission color is blue, and the third emission color is green. (9) A display device according to (9).
  • the second organic layer is formed in a frame shape when the driving substrate is viewed in a plan view.
  • (12) The second organic layer formed in the frame shape is partially divided.
  • (13) The second organic layer is formed in a frame shape in plurality.
  • a protrusion is formed in the peripheral region, the second organic layer is formed on at least a part of the surface of the protrusion;
  • a display device according to any one of (1) to (15).
  • a display device according to any one of (1) to (16), (18) forming a pixel in an effective pixel region of a driving substrate, the pixel having a first electrode, a second electrode disposed opposite to the first electrode, and a first organic layer provided between the first electrode and the second electrode and including a light-emitting layer; forming a second organic layer separated from the first organic layer of the pixel in a peripheral region between the effective pixel region and an outer edge of the driving substrate; A method for manufacturing a display device. (19) The first organic layer and the second organic layer are formed in the same process.
  • a method for manufacturing a display device (20) the first organic layer and the second organic layer are formed so that, in a cross-sectional view, a difference between the number of layers interposed between the first organic layer and a base material of the driving substrate and the number of layers interposed between the second organic layer and the base material is within a range of 0 to 3; A method for manufacturing a display device according to (18) or (19). Electronics.
  • Driving substrate 11A Base material 11B: Interlayer insulating layer 12: First electrode 13A: First organic layer 13B: Second organic layer 16: Interpixel insulating layer 100R, 100G, 100B: Subpixel 110A: Effective pixel region 110B: Peripheral region 110C: Outer edge portion 1000: Display device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

例えば、有効画素領域への水分等の侵入を防止できる表示装置、電子機器及び表示装置の製造方法を提供する。 有効画素領域と、有効画素領域と外縁部との間の周辺領域と、を有する駆動基板を有し、有効画素領域は、複数の画素を有し、画素は、第1電極と、第1電極に対して対向して配置される第2電極と、第1電極と第2電極との間に設けられ、発光層を含む第1有機層と、を有し、周辺領域は、画素が有する第1有機層とは分離された第2有機層を有する、表示装置である。

Description

表示装置、電子機器及び表示装置の製造方法
 本開示は、表示装置、電子機器及び表示装置の製造方法に関する。
 近年、モニタ、スマートフォンなどの直視型ディスプレイのみならず、数ミクロンの画素ピッチが要求される超小型ディスプレイ(マイクロディスプレイ)にまでOLED(Organic Light Emitting Diode)デバイスが適用されつつある。さらに、OLEDデバイスは、AR(Augmented Reality)やVR(Virtual Reality)といった用途への適用が検討されている。VR等では映像を楽しむために高精細、高色域化が要望されており、信頼性の高いOLEDデバイスが求められている。
 ところで、OLEDデバイスを構成する有機材料は水分等により劣化するため、パネル外周、ダスト、欠陥部等から水分等の液体が侵入して有効画素まで到達すると、発光不良等が発生してしまう。係る不都合を回避するため、発光素子を分離するための発光素子分離層上に補水層を設けることで有機材料への浸水を防止するようにした技術(下記特許文献1参照)や、OLEDデバイスに乾燥剤や吸湿材を含ませる提案がなされている。
特開2010-205625号公報
 しかしながら、特許文献1等の技術は、浸水を防止するために新たな層構成を追加する必要があるため、コストの増加や工程の複雑化を招来する虞がある。
 本開示は、コストの増加や工程の複雑化を極力抑制しつつ、有効画素領域への水分等の侵入を防止できる表示装置、電子機器及び表示装置の製造方法を提供することを目的の一つとする。
 本開示は、例えば、
 有効画素領域と、有効画素領域と外縁部との間の周辺領域と、を有する駆動基板を有し、
 有効画素領域は、複数の画素を有し、
 画素は、第1電極と、第1電極に対して対向して配置される第2電極と、第1電極と第2電極との間に設けられ、発光層を含む第1有機層と、を有し、
 周辺領域は、画素が有する第1有機層とは分離された第2有機層を有する、
 表示装置である。
 本開示は、上記の表示装置を有する電子機器であってもよい。
 本開示は、例えば、
 駆動基板の有効画素領域に、第1電極と、第1電極に対して対向して配置される第2電極と、第1電極と第2電極との間に設けられ、発光層を含む第1有機層と、を有する画素を形成し、
 有効画素領域と駆動基板の外縁部との間の周辺領域に、画素が有する第1有機層と分離された第2有機層を形成する、
 表示装置の製造方法である。
本開示の第1の実施形態に係る表示装置の構成例を説明するための概略図である。 本開示の第1の実施形態に係る表示装置の構成例を説明するための概略図である。 本開示の第1の実施形態に係る表示装置の構成例を説明するための概略図である。 本開示の第1の実施形態に係る表示装置の構成例を説明するための概略図である。 本開示の第1の実施形態に係る表示装置の構成例を説明するための断面図である。 本開示の第1の実施形態に係る表示装置の発光素子付近を拡大した部分拡大図である。 本開示の第1の実施形態に係る表示装置の障壁部付近を拡大した部分拡大図である。 本開示の第1の実施形態に係る表示装置の製造方法の一例を説明するための図である。 本開示の第1の実施形態に係る表示装置の製造方法の一例を説明するための図である。 本開示の第1の実施形態に係る表示装置の製造方法の一例を説明するための図である。 本開示の第1の実施形態に係る表示装置の製造方法の一例を説明するための図である。 本開示の第1の実施形態に係る表示装置の製造方法の一例を説明するための図である。 本開示の第2の実施形態に係る表示装置の障壁部付近を拡大した部分拡大図である。 本開示の第3の実施形態に係る表示装置の障壁部付近を拡大した部分拡大図である。 第4の実施形態に係る表示装置を平面視した図である。 第5の実施形態に係る表示装置を平面視した図である。 第6の実施形態に係る表示装置を平面視した図である。 第6の実施形態に係る表示装置を平面視した図である。 第7の実施形態に係る表示装置を平面視した図である。 第8の実施形態に係る表示装置を平面視した図である。 第9の実施形態に係る表示装置の部分断面図である。 第10の実施形態に係る表示装置の部分断面図である。 AからCは、第11の実施形態に係る表示装置の部分断面図である。 第11の実施形態に係る表示装置を平面視した図である。 Aは、共振器構造の第1例を説明するための模式的な断面図である。Bは、共振器構造の第2例を説明するための模式的な断面図である。 Aは、共振器構造の第3例を説明するための模式的な断面図である。Bは、共振器構造の第4例を説明するための模式的な断面図である。 Aは、共振器構造の第5例を説明するための模式的な断面図である。Bは、共振器構造の第6例を説明するための模式的な断面図である。 共振器構造の第7例を説明するための模式的な断面図である。 A、B、Cはそれぞれ、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。 発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。 A、Bはそれぞれ、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。 発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。 Aは、デジタルスチルカメラの外観の一例を示す正面図である。Bは、デジタルスチルカメラの外観の一例を示す背面図である。 ヘッドマウントディスプレイの外観の一例を示す斜視図である。 テレビジョン装置の外観の一例を示す斜視図である。 シースルーヘッドマウントディスプレイの外観の一例を示す斜視図である。 スマートフォンの外観の一例を示す斜視図である。 Aは、乗物の後方から前方にかけての乗物の内部の様子の一例を示す図である。Bは、乗物の斜め後方から斜め前方にかけての乗物の内部の様子の一例を示す図である。
 以下、本開示の実施形態等について図面を参照しながら説明する。なお、説明は以下の順序で行う。
<第1の実施形態>
<第2の実施形態>
<第3の実施形態>
<第4の実施形態>
<第5の実施形態>
<第6の実施形態>
<第7の実施形態>
<第8の実施形態>
<第9の実施形態>
<第10の実施形態>
<第11の実施形態>
<第12の実施形態>
<実施形態に適用される共振器構造の例>
<発光部、レンズ部材、波長選択部のそれぞれの中心を通る法線の関係>
<応用例>
<変形例>
 以下に説明する実施形態等は本開示の好適な具体例であり、本開示の内容がこれらの実施形態等に限定されるものではない。なお、以下の説明において、実質的に同一の機能構成を有するものについては同一の符号を付し、重複説明を適宜省略する。また、図示が煩雑になることを防止するために、一部の構成のみに参照符号を付す場合や、図示を簡略化したり、拡大/縮小する場合もある。また、説明の便宜上、左右上下等の方向を規定するが、本開示の内容が係る方向に限定されるものではない。
<第1の実施形態>
[表示装置の構成例]
 図1、図2、図3、及び、図4を参照しつつ、本開示の第1の実施形態に係る表示装置(表示装置1000)の構成例について説明する。図1に概略的に示すように、表示装置1000は、駆動基板11を有している。駆動基板11は、その一主面に、有効画素領域110Aと、有効画素領域110Aと駆動基板11の外縁部110Cとの間の周縁付近に設けられた周辺領域110Bとを有している。駆動基板11の外縁部110Cは、例えば、駆動基板11を個片化した際のスクライブラインと一致しているが、スクライブラインと厳密に一致せずにその近傍であってもよい。
 有効画素領域110Aは、複数の発光素子で生じた光を出射させる領域として定められた領域である。有効画素領域110Aには複数の画素が設けられている。具体的には、図2に示すように、有効画素領域110A内には、複数のサブ画素100R、100G、100Bがマトリクス状等の規定の配置パターンで2次元配置されている。
 サブ画素100Rは赤色を表示し、サブ画素100Gは緑色を表示し、サブ画素100Bは青色を表示する。なお、以下の説明において、サブ画素100R、100G、100Bを特に区別せず総称する場合には、サブ画素100という。隣接するサブ画素100R、100G、100Bの組み合わせが一つの画素(ピクセル)を構成している。図2では、行方向(水平方向)に並ぶ3つのサブ画素100R、100G、100Bの組み合わせが一つの画素を構成している例が示されているが、サブ画素100R、100G、100Bの配列はこれに限定されるものではない。
 図2に示すように、周辺領域110Bには、映像表示用のドライバである信号線駆動回路111及び走査線駆動回路112が設けられている。周辺領域110Bにはこれらの駆動回路と接続するためのパッドが設けられてもよい。信号線駆動回路111は、信号供給源(図示せず)から供給される輝度情報に応じた映像信号の信号電圧を、信号線111Aを介して選択されたサブ画素100に供給するものである。走査線駆動回路112は、入力されるクロックパルスに同期してスタートパルスを順にシフト(転送)するシフトレジスタ等によって構成される。走査線駆動回路112は、各サブ画素100への映像信号の書き込みに際し行単位でそれらを走査し、各走査線112Aに走査信号を順次供給するものである。
 表示装置1000は、マイクロディスプレイであってもよい。表示装置1000は、VR装置、MR(Mixed Reality)装置、AR装置、電子ビューファインダ(Electronic View Finder:EVF)又は小型プロジェクタ等に備えられてもよい。
 本実施形態では、表示装置1000が例えばトップエミッション方式で表示する場合を例として説明する。トップエミッション方式は、駆動基板11よりも発光素子が発光面側に配置される方式を示すものとする。従って、表示装置1000は、駆動基板11が表示装置1000の裏面側に位置し、駆動基板11から後述する発光素子に向かう方向(+Z方向)が表示装置1000の表面側(上面側)方向となっている。表示装置1000では、発光素子から生じた光は、+Z方向に向けられ、外部に出射される。以下の説明において、表示装置1000を構成する各層において、表示装置1000の表示エリア(有効画素領域110A)での表示面側となる面を第1の面(上面)といい、表示装置1000の裏面側となる面を第2の面(下面)という。なお、このことは、本開示に係る表示装置が、ボトムエミッション方式である場合を禁止するものではない。本開示に係る表示装置は、ボトムエミッション方式でも適用可能である。ボトムエミッション方式では、発光素子から生じた光が-Z方向に向けられ外部に出射される。
 図3に示すように、周辺領域110B、具体的には、周辺領域110Bにおける信号線駆動回路111及び走査線駆動回路112よりも内側に、有機材料により構成される第2有機層13Bが形成されている。第2有機層13Bは、駆動基板11を平面視した場合に、有効画素領域110Aを囲うような枠状となるように形成されている。第2有機層13Bの詳細は後述するので、ここでは概略的な説明に留める。
 第2有機層13Bは、有効画素領域110Aを囲う障壁として機能する。例えば、図4に模式的に示すように、駆動基板11の外縁部110Cから水分が侵入したことを想定する。図4では、侵入した水分の伝搬経路が矢印MAで模式的に示されている。外縁部110Cから侵入した水分は、矢印MAに示すように第2有機層13Bに達する。ここで、第2有機層13Bは、有機材料により構成されている。有機材料は無機材料と比較して透水性が高いので、第2有機層13Bに侵入した水分は有効画素領域110Aに向かわず、矢印MAで示すように第2有機層13B内を進むことになる。従って、有効画素領域110Aへの水分の侵入を防ぐことができる。
 次に、図5、図6及び図7を参照しつつ、表示装置1000の構成例について詳細に説明する。図5は、図3における切断線AA-AA線で表示装置1000を切断した場合の断面を示す図である。また、図6は、図5における発光素子(例えば、サブ画素100Rの発光素子20R)付近を拡大して示した図である。また、図7は、図5における障壁部(後述する障壁部41)付近を拡大して示した図である。
 表示装置1000は、複数の発光素子20を備えている。複数の発光素子20は、第1電極12と、発光層を含む有機層の一例である第1有機層13Aと、第2電極14とにより構成されている(図6参照)。発光素子20は、例えば、白色OLEDまたは白色Micro-OLED(MOLED)等の白色発光素子である。表示装置1000におけるカラー化の方式としては、白色発光素子とカラーフィルタ(後述するカラーフィルタ27)とを用いる方式が用いられる。
(駆動基板)
 図5に示すように表示装置1000は、駆動基板11を有する。駆動基板11は、いわゆるバックプレーンであり、複数の発光素子20を駆動する。駆動基板11は、例えば、基材11Aと、基材11A上に積層される層間絶縁層11Bを有する。層間絶縁層11Bは基材11A上に積層されて形成されていてもよいし、半導体プロセスによってその一部が基材11Aに直接形成されていてもよい。
 基材11Aは、シリコン基板等の半導体基板であってもよいし、水分及び酸素の透過性が低いガラス基板や石英、樹脂などの絶縁体基板であってもよい。半導体基板は、例えば、アモルファスシリコン、多結晶シリコンまたは単結晶シリコン等を含む。具体例として、ガラス基板は、例えば、高歪点ガラス、ソーダガラス、ホウケイ酸ガラス、フォルステライト、鉛ガラスまたは石英ガラス等を含む。また、樹脂基板の具体例としては、例えば、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルフェノール、ポリエーテルスルホン、ポリイミド、ポリカーボネート、ポリエチレンテレフタラート及びポリエチレンナフタレート等からなる群より選ばれた少なくとも1種を含む。基材11Aは、例えば、薄板状の形状を有する。基材11Aが可撓性を有していてもよい。
 層間絶縁層11Bは、例えば有機材料または無機材料により構成される。有機材料は、例えば、ポリイミドおよびアクリル樹脂のうちの少なくとも1種を含む。無機材料は、例えば、酸化シリコン、窒化シリコン、酸窒化シリコンおよび酸化アルミニウムのうちの少なくとも1種を含む。
 層間絶縁層11B内には複数の発光素子20を駆動する各種回路が設けられている。各種回路としては、発光素子20の駆動を制御する駆動回路、複数の発光素子20に電力を供給する電源回路(いずれも図示せず)を例示することができる。各種回路は、層間絶縁層11Bにより、外部への露出を規制されている。
(発光素子)
 層間絶縁層11Bの第1の面上に、複数の発光素子20が設けられている。発光素子20は、例えば、有機エレクトロルミネッセンス素子(有機EL素子)である。複数の発光素子20は、それぞれ、サブ画素100の色種に対応する色を発光面からの出射光する。例えば、サブ画素100R、100G、100Bには、それぞれ発光素子20R、20G、20Bが形成されている。また、複数の発光素子20は、それぞれの色種のサブ画素100の配置に対応したレイアウトとなっている。なお、本明細書において、発光素子20R、20G、20Bといった種類が特に区別されない場合、発光素子20という語が使用される。
 発光素子20は、順に、第1電極12と、第1有機層13Aと、第2電極14と積層した積層構造を備える。第1電極12、第1有機層13A及び第2電極14は、駆動基板11側からこの順序で、第2の面から第1の面に向かう方向(+Z方向)に積層されている。
(第1電極)
 第1電極12は、駆動基板11の第1の面側に複数設けられる。第1電極12は、例えば、アノード電極である。
 第1電極12は、金属層および金属酸化物層のうちの少なくとも一層により構成されている。第1電極12は、金属層もしくは金属酸化物層の単層膜、または金属層と金属酸化物層の積層膜により構成されていてもよい。
 金属層は、例えば、クロム(Cr)、金(Au)、白金(Pt)、ニッケル(Ni)、銅(Cu)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、タングステン(W)および銀(Ag)からなる群より選ばれる少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、アルミニウム合金または銀合金が挙げられる。アルミニウム合金の具体例としては、例えば、AlNdまたはAlCuが挙げられる。
 金属酸化物層は、例えば、インジウム酸化物と錫酸化物の混合体(ITO)、インジウム酸化物と亜鉛酸化物の混合体(IZO)および酸化チタン(TiO)のうちの少なくとも1種を含む。
 第1電極12は、サブ画素100毎に、電気的に分離されている。すなわち、第1電極12は、駆動基板11の第1の面側に複数設けられ、且つ、サブ画素100毎に設けられている。
(第1有機層)
 第1有機層13Aは、第1電極12と第2電極14の間に設けられている有機発光層である。第1有機層13Aは、サブ画素100毎に分離して設けられている。但し、第1有機層13Aがサブ画素100に対して共通して設けられる構成であってもよい。第1有機層13Aは、白色光を発光可能に構成されている。但し、このことは、第1有機層13Aの発光色が白色以外であることを禁止するものではなく、赤色、青色、緑色などの色が採用されてもよい。すなわち、第1有機層13Aの発光色は、例えば白色、赤色、青色及び緑色のいずれか1種類であってよい。
 第1有機層13Aは、例えば、第1電極12から第2電極14に向かって正孔注入層、正孔輸送層、発光層、電子輸送層がこの順序で積層された構成を有する。電子輸送層と第2電極14との間には、電子注入層を設けてもよい。電子注入層は、電子注入効率を高めるためのものである。なお、第1有機層13Aの構成はこれに限定されるものではなく、発光層以外の層は必要に応じて設けられるものである。
 正孔注入層は、発光層への正孔注入効率を高めるためのものであると共に、リークを抑制するためのバッファ層である。正孔輸送層は、発光層への正孔輸送効率を高めるためのものである。電子輸送層は、発光層への電子輸送効率を高めるためのものである。
 発光層は、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものである。発光層は、有機発光材料を含む有機化合物層である。
(第2電極)
 第1有機層13Aの上側には、第2電極14が設けられる。第2電極14は、例えば、カソードである。第2電極14のうち、サブ画素100に対応する部分(発光素子20に対応する部分)では、第1電極12と対向するように設けられている。第2電極14は、複数のサブ画素100毎に分離して設けられている。第2電極14が複数のサブ画素100に共通の電極として設けられる構成でもよい。第2電極14は、第1有機層13Aで発生した光に対して透過性を有する透明電極であることが好適である。ここでいう透明電極は、透明導電層で形成されたもの、及び、透明導電層と半透過反射層とを有する積層構造で形成されたものを含む。
 透明導電層は、光透過性が良好で仕事関数が小さい透明導電材料が好適に用いられる。透明導電層は、例えば、金属酸化物で形成することができる。具体的に、透明導電層の材料としては、インジウム酸化物と錫酸化物の混合体(ITO)、インジウム酸化物と亜鉛酸化物の混合体(IZO)および酸化亜鉛(ZnO)のうちの少なくとも1種を含むものを例示することができる。
 半透過反射層は、例えば金属層で形成することができる。具体的には、半透過反射層の材料は、マグネシウム(Mg)、アルミニウム(Al)、銀(Ag)、金(Au)および銅(Cu)からなる群より選ばれる少なくとも1種の金属元素を含むものを例示することができる。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、MgAg合金、AgPdCu合金等が挙げられる。
(画素間絶縁層)
 隣り合う第1電極12の間には、絶縁性を有する層が形成されていることが好ましい。図5及び図6の例では、画素間絶縁層16が、隣り合う第1電極12の間に形成されている。画素間絶縁層16は、有機絶縁層であってもよいし、無機絶縁層であってもよいし、これらの積層体であってもよい。有機絶縁層は、例えば、ポリイミド系樹脂、アクリル系樹脂及びノボラック系樹脂等からなる群より選ばれた少なくとも1種を含む。無機絶縁層は、例えば、酸化シリコン(SiOx)、窒化シリコン(SiNx)及び酸窒化シリコン(SiOxNy)等からなる群より選ばれた少なくとも1種を含む。
 画素間絶縁層16は、各第1電極12を発光素子20毎(すなわちサブ画素100毎)に電気的に分離する。また、図6に示すように、画素間絶縁層16には、第1の面側に開口部16Aが形成されており、第1電極12の第1の面(第2電極14との対向面)は、画素間絶縁層16の開口部16Aから露出しており、第1電極12のうち開口部16Aから露出した部分が、画素間絶縁層16の介在を避けて後述する第1有機層13Aに対面する。なお、画素間絶縁層16は、隣り合う第1電極12の間のみならず、第1電極12の縁部上に乗り上げるように形成されてもよい。第1電極12の縁部は、第1電極12の外周縁から第1電極12の中央側に寄った所定の位置までの部分で定められる。この場合においても、画素間絶縁層16は、開口部16Aを有しており、開口部16Aから第1電極12の第1の面が露出している。なお、本実施形態では、画素間絶縁層16が有効画素領域110Aだけでなく、周辺領域110Bにわたって形成されている。
(カソードコンタクト)
 また、周辺領域110Bに形成された画素間絶縁層16には、開口部16Bが形成されている。開口部16Bを介して、カソードコンタクト17が露出している。カソードコンタクト17は、周辺領域110Bにおける駆動基板11の第1の面上の所定箇所に形成されている。カソードコンタクト17は、層間絶縁層11Bに形成された各種の回路と第2電極14との電気的接続を中継する。カソードコンタクト17の材質は、導電性材料であれば特に限定されず、例えば金属等を用いることができる。カソードコンタクト17は、駆動基板11の平面視上、有効画素領域110Aの周囲を取り巻くように環状に形成されている。但し、カソードコンタクト17のレイアウトは環状に限定されるものではない。
(保護層)
 表示装置1000では、発光素子20の第1の面側(第2電極14の第1の面側)を覆うように、保護層18が形成されている。保護層18は、発光素子20の第1の面を外気に触れにくくし、外部環境から発光素子20への水分侵入を抑制する。
 保護層18は、絶縁材料で形成される。絶縁材料としては、例えば、熱硬化性樹脂などを用いることができる。そのほかにも、絶縁材料としては、SiO、SiON、AlO、TiO等でもよい。この場合、保護層18として、SiO、SiON等を含むCVD膜や、AlO、TiO、SiO等を含むALD膜等を例示することができる。なお、CVD膜は、化学気相成長法(chemical vapor deposition)を用いて形成された膜を示す。ALD膜は、原子層堆積法(Atomic layer deposition)を用いて形成された膜を示す。保護層18は、単層で形成されてもよいし、複数の層を積層した構造を有してもよい。本実施形態では、保護層18は、第1保護層18Aと第2保護層18Bとの積層構造を有している(図6参照)。第1保護層18A、第2保護層18Bが、それぞれ所定の絶縁材料で形成された層であってもよいし、第1保護層18A、第2保護層18Bが、それぞれCVD膜、ALD膜で形成されてもよい。
(分離保護層)
 表示装置1000には、素子間分離壁として、発光素子20の側端面、保護層18の側端面、及び、保護層18の上端面を覆うように分離保護層19が形成されている。分離保護層19は、隣り合う発光素子20の間に配置されており、第1電極12、第1有機層13A、及び、第2電極14をサブ画素100毎に分離する。
 分離保護層19は、絶縁体で形成されている。分離保護層19としては、無機絶縁膜や有機絶縁膜を挙げることができる。無機絶縁膜としては、例えば、SiO、SiN、SiON等を挙げることができる。有機絶縁膜としては、ポリイミド等を挙げることができる。
(側壁保護膜)
 側壁保護膜23(図6参照)は、第1有機層13Aの側端面、第2電極14、及び、保護層18の下側側面と、分離保護層19との間に介在している。図6に示すように、側壁保護膜23は、第1有機層13Aの側端面に接しつつ、第1有機層13Aの側端全域を被覆していることが好ましい。
 側壁保護膜23は、絶縁性の膜であり、エッチング加工で生じる副生成物(デポ)を含む加工副生成物膜である。側壁保護膜23は、第1有機層13Aを外部環境下に露出することを規制しつつ分離保護層19の形成を行うことを補助する。なお、エッチング加工としては、ドライエッチング法とウェットエッチング法のいずれも実施可能であるが、デポをより確実に実現する観点からは、エッチング加工は、ドライエッチング法であることが好ましい。
(補助電極)
 本実施形態では、サブ画素100毎に、第2電極14が分離されている。係る構成に対応して、表示装置1000は、補助電極24を有している。補助電極24は、隣接する第2電極14間を互いに電気的に繋ぐ。図5及び図6に示すように、保護層18にはエッチング加工等により溝部18Cが形成され、溝部18Cを介して補助電極24が第2電極14と接続される。各第2電極14に接続された補助電極24は、周辺領域110Bにおいてカソードコンタクト17に接続される。すなわち、各第2電極14は、補助電極24を介してカソードコンタクト17に接続される。補助電極24は、第1有機層13Aで発生した光に対して透過性を有する透明電極である。ここで、透明電極には、半透過性反射層も含まれるものとする。補助電極24の材料としては、第2電極14と同様の材料を使用することができる。
(補助電極保護層)
 補助電極24の第1の面には、補助電極保護層25が形成されている。補助電極保護層25は、補助電極24を保護する。補助電極保護層25の材料としては、保護層18と同様の材料を使用することができる。補助電極保護層25は、有効画素領域110Aだけでなく、周辺領域110Bの一部にわたって形成されている。
(平坦化層)
 補助電極保護層25の上(第1の面)を覆うように、平坦化層26が形成されている。平坦化層26は、無機材料で形成された層であってもよいし、有機材料で形成された層であってもよい。無機材料としては、保護層18と同様の材質を例示することができる。有機材料としては、樹脂材料などを例示することができる。平坦化層26は、後述するカラーフィルタ27を形成するための面の平坦性を向上することができる。また、平坦化層26は、保護層18とともに、発光素子20の第1の面を外気に触れにくくし、外部環境から発光素子20への水分侵入を抑制することができる。平坦化層26は、有効画素領域110Aだけでなく、周辺領域110Bの一部にわたって形成されている。
(カラーフィルタ)
 表示装置1000では、平坦化層26の第1の面側(上側、+Z方向側)には、カラーフィルタ27が設けられている。カラーフィルタ27としては、オンチップカラーフィルタ(On Chip Color Filter:OCCF)を例示することができる。カラーフィルタ27として、第1カラーフィルタ28と第2カラーフィルタ29とが設けられている。カラーフィルタ27の材質としては、有機材料を例示することができる。
(第1カラーフィルタ)
 第1カラーフィルタ28は、おおむね有効画素領域110A内に形成されていることが好適である。また、第1カラーフィルタ28は、サブ画素100の色種に応じて設けられる。第1カラーフィルタ28は、例えば、図5に示す例では、赤色のカラーフィルタ(赤色フィルタ28R)、緑色のカラーフィルタ(緑色フィルタ28G)および青色のカラーフィルタ(青色フィルタ28B)を挙げることができる。赤色フィルタ28R、緑色フィルタ28G、青色フィルタ28Bはそれぞれ、サブ画素100R、100G、100Bに設けられる。表示装置1000に第1カラーフィルタ28が設けられていることで、サブ画素100R、100G、100Bの色種に対応した光を効果的に外部に取り出すことができる。
(第2カラーフィルタ)
 第2カラーフィルタ29は、最も外側に設けられた第1カラーフィルタ28(本例では青色フィルタ28B)の外側に形成されている。図5に示す例では、第2カラーフィルタ29は、おおむね周辺領域110Bに形成されている。第2カラーフィルタ29は、補助電極保護層25の上側(+Z方向側)を覆うように形成されている。第2カラーフィルタ29は、遮光性を有する層として機能する。第2カラーフィルタ29は、赤色のカラーフィルタ(赤色フィルタ29R)と青色のカラーフィルタ(青色フィルタ29B)を積層した構造を有している。赤色フィルタ29Rは、赤色フィルタ28Rと同様の素材を用いて、同時に形成されてよい。青色フィルタ29Bは、青色フィルタ28Bと同様の素材を用いて、同時に一体的に形成されてよい。
 赤色フィルタ29Rは、例えば、可視光のうち赤色の波長帯の光を通しやすく、他色の波長帯の光を吸収しやすいフィルタを例示することができる。青色フィルタ29Bは、可視光のうち青色の波長帯の光を通しやすく、他色の波長帯の光を吸収しやすいフィルタを例示することができる。このような赤色フィルタ29Rと青色フィルタ29Bを積層した構造によれば、広範囲の波長帯の光について光の遮断が実現することができる。従って、有効画素領域110Aの発光素子20で生じた光のうち斜め方向に周辺領域110Bから外部に向かう光が、第2カラーフィルタ29で透過を抑制されるようになる。こうして第2カラーフィルタ29による光の漏れ出しの抑制効果が発揮される。表示装置1000の外部から駆動基板11側に向かう光については、第2カラーフィルタ29によって遮断されるようになり、外光の侵入が抑制される。
 このように第2カラーフィルタ29は、赤色フィルタ29Rと青色フィルタ29Bが積層された状態で遮光性を有しており、赤色フィルタ29Rと青色フィルタ29Bの積層構造が、遮光用のフィルタとして機能している。
(シール層)
 第2カラーフィルタ29の上(第1の面)には、シール層31が形成されている。シール層31は、駆動基板11の厚み方向を視線方向として、周辺領域110Bに形成されており、少なくとも第2カラーフィルタ29の一部(本実施形態では全部)を覆うような領域に形成されている。シール層31の材質は、特に限定されないが、例えば、耐湿性が高い樹脂材料が適用され得る。シール層31には、吸湿性材料が添加されていてもよい。
(レンズ)
 第1カラーフィルタ28上に(第1の面上に)は、レンズ32が形成されている。図5に示す例では、レンズ32は、それぞれのサブ画素100に応じたレイアウトで設けられている。レンズ32は、オンチップレンズ(On Chip Lends:OCL)であることが好適である。
 レンズ32の形状は特に限定されない。レンズ32としては、第1の面側に凸型に湾曲した湾曲面を有する凸状形状に形成されたレンズ(いわゆる凸レンズ)を例示することができる。レンズ32が設けられていることで、発光素子20から生じた光を有効画素領域110Aから出射するように調整することが一層容易となり、光の利用効率を向上させることができる。
(充填層)
 図5に示すように、レンズ32の第1の面側を被覆するように、充填層33が設けられている。充填層33が設けられていることで、有効画素領域110Aの第1の面側を平滑化するとともに、レンズ32や発光素子20を外気や水分から保護することができる。充填層33は、上述したシール層31と同様に、透明接着層としての機能を有する層であることが好ましい。充填層33の材質については、上記したシール層31と同様に、樹脂材料が用いられてもよい。
 なお、図5の例では、充填層33は、上記したシール層31と区別されているが、これは一例であり、これに限定されない。充填層33は、シール層31と一体的に形成されてもよい。
(封止基板)
 充填層33を覆うように、封止基板35が設けられる。封止基板35の材質は、基材11Aの材料等を用いることができる。例えば、封止基板35としてガラス基板を用いることができる。ガラス基板の材質は特に限定されず、発光素子20から発光される光を透過させる物質にて形成されていればよい。ガラス基板の材質としては、例えば、高歪点ガラス、ソーダガラス、硼珪酸ガラス、鉛ガラス等の各種ガラス基板、石英基板等を挙げることができる。封止基板35は、ガラス基板に限定されることはなく、プラスチックやフィルムであってもよい。また、封止基板35の対向面にモスアイ等の構造物が形成されてもよい。また、充填層33に十分な強度があれば封止基板35はなくてもよい。
(シール部)
 図5に示すように、周辺領域110Bの外縁付近において、封止基板35と封止基板35に対する駆動基板11対向面側との間に、シール部38が設けられている。シール部38は、封止基板35の対向面の周縁部と、駆動基板11の対向面の周縁部(より具体的には、当該周縁部に積層されるシール層31)との間を貼り合わせる。シール部38としては、例えば、熱硬化型樹脂を適用することができる。なお、シール部38がシール層31や充填層33と同一の構成であってもよい。
(接続端子)
 周辺領域110Bの外縁付近には、接続端子39が形成されている。接続端子39は、例えば、シール部38の端面よりも外側に形成されている。接続端子39は、駆動基板11に設けられた各種の回路を別の制御回路基板などの外部機器に電気的に接続するための端子として機能する。接続端子39は、例えば、基材11Aの第1の面上に形成されている。接続端子39は、金属など導電性を有する部材で形成されるパッド部であることが好適である。接続端子39の周囲には層間絶縁層11Bが形成されている。
(障壁部)
 周辺領域110Bの所定箇所、例えば、周辺領域110Bにおける、有効画素領域110Aと周辺領域110Bとの境界付近には、障壁部41が形成されている。図7は、本実施形態に係る障壁部41付近を拡大して示した図である。
 障壁部41は、少なくとも第2有機層13Bを有する。第2有機層13Bは、第1有機層13Aと分離されている。図7に示すように、第2有機層13Bは、周辺領域110Bに形成された画素間絶縁層16の第1の面上に形成される。その他の構成は、発光素子20の周辺構成と略同じ構成となっている。すなわち、第2有機層13Bの第1の面上には、第2電極14が形成されており、第2電極14の第1の面上には、保護層18(第1保護層18A及び第2保護層18B)が形成されている。本実施形態では、例えば、画素間絶縁層16、第2有機層13B、第2電極14、保護層18、及び、側壁保護膜23によって、障壁部41が構成される。
 上述したように、第2有機層13Bは、有効画素領域110Aへの水分等の侵入を防止する。すなわち、第2有機層13Bを発光させる必要がない。そこで、障壁部41を構成する保護層18は、溝部18Cを有していない。溝部18Cが形成されていないので、障壁部41が有する第2電極14は、補助電極24とは接続されていない。
 障壁部41を構成する各層構成は、有効画素領域110Aにおける対応する層構成と同一の工程で形成されることが好ましい。例えば、第2有機層13Bは、第1有機層13Aと同一の工程で形成されることが好ましい。これにより、新たな構成や当該構成を形成する工程を追加する必要がなく、水分等の侵入を防止できる信頼性の高い表示装置1000を提供できる。
 以上説明した表示装置1000の構成は一例であり、本開示に係る表示装置が例示した構成に限定されるものではない。例示した構成要素の一部が省略されてもよいし、他の構成要素が追加されてもよい。
[表示装置の製造方法]
 次に、第1の実施形態に係る表示装置1000の製造方法の一例について説明する。まず、基材11Aに回路等を搭載した後、層間絶縁層11Bを形成し、接続端子39等を形成する。次に、例えばスパッタリング法により、金属層、金属酸化物層を駆動基板11の第1の面上に順次形成したのち、例えばフォトリソグラフィ技術及びエッチング技術を用いて金属層及び金属酸化物層をパターニングする。これにより、第1電極12及びカソードコンタクト17が形成される。次に、例えばCVD(Chemical Vapor Deposition)法により、複数の第1電極12を覆うように駆動基板11の第1の面上に画素間絶縁層16を形成する。次に、例えばフォトリソグラフィ技術及びドライエッチング技術により、画素間絶縁層16のうち、各第1電極12の第1の面上に位置する部分に開口部16Aをそれぞれ形成する。カソードコンタクト17に対しても同様にして開口部16Bを形成する。
 次に、例えば蒸着法により、第1電極12の第1の面上及び画素間絶縁層16の第1の面上に有機層13を形成する。なお、ここまででは、第1有機層13Aと第2有機層13Bとに分離されていないため、単に有機層13と称する。次に、例えば蒸着法またはスパッタリング法により、第2電極14を有機層13の第1の面上に形成する。第2電極14は、端部がカソードコンタクト17の第1の面上に接するように形成される。次に、例えばCVD法または蒸着法により、保護層18(第1保護層18A及び第2保護層18B)を駆動基板11の第1の面側全体にわたって形成する。次に、図9に示すように、ドライエッチング法等によって、端部付近に形成された第2保護層18Bを部分的に除去する。
 次に、図10に示すように、エッチング処理が行われることで、不要な保護層18が除去される。例えば、発光素子20の第1の面上、及び、周辺領域110Bの端部付近(接続端子39の第1の面上付近)に保護層18を残すように、エッチング処理が行われる。さらに、本工程では、周辺領域110Bにおける、画素間絶縁層16、画素間絶縁層16の第1の面上の有機層13、有機層13の第1の面上の第2電極14、第2電極14の第1の面上の保護層18を部分的に残すようにエッチング処理が行われる。これにより、障壁部41が形成される。本工程によって有機層13が第1有機層13Aと第2有機層13Bとに分離される。また、本工程におけるエッチング処理によって側壁保護膜23が形成される。
 次に、図11に示すように、蒸着法やスパッタリング法によって分離保護層19が全面にわたって形成される。そして、図12に示すように、エッチング処理によって分離保護層19の不要な箇所が除去された後、有効画素領域110Aにおける保護層18に溝部18Cが形成される。そして、補助電極24がカソードコンタクト17にわたって成膜されることで、第2電極14とカソードコンタクト17が接続される。そして、補助電極保護層25が駆動基板11の全面にわたって形成される。
 次に、平坦化層26、カラーフィルタ27、シール層31、レンズ32、充填層33、及び、シール部38を形成し、封止基板35を配置した後、シール部38を熱硬化等させることで表示装置1000が封止される。これらの工程は、一般的な表示装置の製造工程が実施されてよい。これにより、図5に例示するような表示装置1000を製造することができる。ここに示す製造方法は、一例であり、表示装置1000の製造方法はこれに限定されない。
[本実施形態により得られる効果]
 本実施形態に係る表示装置1000によれば、例えば、下記の効果が得られる。
 有効画素領域の外周の周辺領域に発光領域に第2有機層を含む障壁部を設けることで、表示装置の外側から侵入した水分が隔壁部に到達した場合に、水分を隔壁部の第2有機層に沿って輸送する(伝搬させる)ことが可能となる。これにより、有効画素領域への水分の侵入を防止できる。このため、発光不良等の発生を抑制することができ、信頼性の高い表示装置を提供できる。
 また、隔壁部の第2有機層を発光素子の第1有機層と同時に形成することで、第2有機層を形成する工程を追加する必要がなくなる。また、第2有機層を新規な構成要素として追加する必要がないので、コストアップせずにパネルの歩留りや表示装置の信頼性を向上させることができる。
<第2の実施形態>
 次に、第2の実施形態について説明する。なお、第2の実施形態の説明において、上述した第1の実施形態の説明における同一または同質の構成については同一の参照符号を付し、重複した説明を適宜、省略する。また、特に断らない限り、第1の実施形態で説明した事項は第2の実施形態に対して適用することができる。後述する第3の実施形態等についても同様である。
 図13は、第2の実施形態に係る表示装置(表示装置1000B)障壁部(障壁部41B)付近を拡大して示した図である。第1の実施形態では、第2有機層13Bが画素間絶縁層16の第1の面上に積層されていたが、第2の実施形態では、第2有機層13Bが電極層の第1の面上に形成される。係る電極層は、図13に示すように、例えば、第1電極12と同一の層、すなわち、第1電極12と同じ工程で形成される層である。電極層は第1電極12と別の工程で形成されてもよいが、第1電極12と同じ工程で形成されることで工程を簡素化できる。
 表示装置1000Bの製造工程では、例えば、周辺領域110Bにサブ画素100と同様の構成が、ダミー画素として形成される場合もある。本実施形態のように、係るダミー画素における有機層を、第2有機層13Bとして利用してもよい。
 その他の点については第1の実施形態に係る表示装置1000の構成を適用できる。本実施形態によっても第1の実施形態と同様の効果が得られる。
<第3の実施形態>
 次に、第3の実施形態について説明する。図14は、第2の実施形態に係る表示装置(表示装置1000C)障壁部(障壁部41C)付近を拡大して示した図である。本実施形態は、周辺領域110Bには画素間絶縁層16が形成されていない例である。この場合、例えば、図14に示すように、第2有機層13Bが層間絶縁層11Bの第1の面上に形成される。
 その他の点については第1の実施形態に係る表示装置1000の構成を適用できる。本実施形態によっても第1の実施形態と同様の効果が得られる。
 以上の第1から第3の実施形態をまとめると以下のことが言える。
 表示装置1000の断面視において、第1有機層13Aと基材11Aとの間に介在する層数を層数Mとし、第2有機層13Bと基材11Aとの間に介在する層数を層数Nとした場合に、層数Mと層数Nとの差の範囲が0から3以内になる。層数は、例えば、TEM(Transmission Electron Microscope)画像で表れる境界に基づいて識別可能である。第2有機層13Bと基材11Aとの間に、少なくとも層間絶縁層11Bが形成される。
 例えば、第1有機層13Aと基材11Aとの間に、第1電極12と層間絶縁層11Bとが形成される場合は、第1有機層13Aと基材11Aとの間に介在する層数Mは2となる。
 第1の実施形態(図7参照)のように、第2有機層13Bと基材11Aとの間に、画素間絶縁層16及び層間絶縁層11Bが形成される場合は、第2有機層13Bと基材11Aとの間に介在する層数Nは2となる。すなわち、層数Mと層数Nとの差は0になる。
 第2の実施形態(図13参照)のように、第2有機層13Bと基材11Aとの間に、電極層(例えば、第1電極12)及び層間絶縁層11Bが形成される場合は、第2有機層13Bと基材11Aとの間に介在する層数Nは2となる。すなわち、層数Mと層数Nとの差は0になる。
 第3の実施形態(図14参照)のように、第2有機層13Bと基材11Aとの間に、層間絶縁層11Bのみが形成される場合は、第2有機層13Bと基材11Aとの間に介在する層数Nは1となる。すなわち、層数Mと層数Nとの差は1になる。
 なお、第1電極12が、単層ではなく異なる材料から成る複数の層が積層された構成を有する場合もあり得る。例えば、第1電極12が、異なる材料から成る3層構造を有していてもよい。この場合、第1有機層13Aと基材11Aとの間に、第1電極12と層間絶縁層11Bとが形成される場合は、第1有機層13Aと基材11Aとの間に介在する層数Mは4(第1電極12の3層及び層間絶縁層11Bの計4層)となる。第2有機層13Bと基材11Aとの間に、層間絶縁層11Bのみが形成される場合は、第2有機層13Bと基材11Aとの間に介在する層数Nは1となる。すなわち、層数Mと層数Nとの差は3になる。
 以上から、層数Mと層数Nとの差の範囲が0から3以内になる。
<第4の実施形態>
 次に、第4の実施形態について説明する。図15は、第4の実施形態に係る表示装置(表示装置1000D)を平面視した図である。
 第1の実施形態では、有効画素領域110Aの外周に配置される第2有機層の数が1個であったが、複数あってもよい。例えば、図15に示すように、有効画素領域110Aの外周を取り巻くように2個の第2有機層(第2有機層13Ba及び第2有機層13Bb)が形成されてもよい。
 例えば、外部から侵入した水分量が比較的多く、外側に形成される第2有機層13Baの浸水防止機能が破綻し、水分がさらに内側に侵入する虞がある。本実施形態では、内側にも第2有機層13Bbが形成されているので、内側まで水分が侵入した場合でも、第2有機層13Bb内に水分を伝搬させることができる。すなわち、第2有機層13Baの浸水防止機能が破綻した場合であっても、有効画素領域110Aへの水分を防止できる。その他の点については第1の実施形態に係る表示装置1000の構成を適用できる。本実施形態によっても上述した効果の他、第1の実施形態と同様の効果が得られる。
<第5の実施形態>
 次に、第5の実施形態について説明する。図16は、第5の実施形態に係る表示装置(表示装置1000E)を平面視した図である。
 第5の実施形態は、第2有機層13Bの幅の長さ(図16におけるX方向又はY方向の長さ)が第1の実施形態に比べて大きい例である。第2有機層13Bの幅の長さは、適宜、変更し得る。第2有機層13Bの幅は、第1有機層13Aの幅と同じであってもよいし、異なっていてもよい。但し、第2有機層13Bによって有効画素領域110Aへの水分の侵入を防止する観点からは、第2有機層13Bの幅の大きさは第1有機層13Aの幅より大きいことが好ましい。
 その他の点については第1の実施形態に係る表示装置1000の構成を適用できる。本実施形態によっても第1の実施形態と同様の効果が得られる。
<第6の実施形態>
 次に、第6の実施形態について説明する。図17は、第6の実施形態に係る表示装置(表示装置1000F)を平面視した図である。
 第1の実施形態では、第2有機層13Bが、直線の枠状を成すように配置されていたが、第2有機層13Bは、図17に示すように、平面視において屈曲するように配置されてもよい。また、第2有機層13Bは、図18に示すように、一部(例えば、コーナー付近)が湾曲している形状を成すように配置されてもよい。
 その他の点については第1の実施形態に係る表示装置1000の構成を適用できる。本実施形態によっても第1の実施形態と同様の効果が得られる。
<第7の実施形態>
 次に、第7の実施形態について説明する。図19は、第7の実施形態に係る表示装置(表示装置1000G)を平面視した図である。
 本実施形態では、第2有機層13Bが、第1の実施形態に比べて、駆動基板11の外縁部110C寄りに形成される実施形態である。第2有機層13Bが外縁部110C寄りに形成されることで、有効画素領域110Aの大きさを大きくできる。
 その他の点については第1の実施形態に係る表示装置1000の構成を適用できる。本実施形態によっても第1の実施形態と同様の効果が得られる。
<第8の実施形態>
 次に、第8の実施形態について説明する。図20は、第8の実施形態に係る表示装置(表示装置1000H)を平面視した図である。
 第1の実施形態では、第2有機層13Bが、有効画素領域110Aの周囲に連続的に形成されていたが、一部が部分的に分断されていてもよい。図20に示す例は、互いに離隔した、第2有機層13Bc、第2有機層13Bd、第2有機層13Be、及び、第2有機層13Bfによって第2有機層が形成される例である。水分侵入防止の観点からは第2有機層が有効画素領域110Aを囲むように連続していることが好ましいが、製造工程上の制約や誤差によって一部が分断されている第2有機層の形状を排除するものではない。
<第9の実施形態>
 次に、第9の実施形態について説明する。図21は、第9の実施形態に係る表示装置(表示装置1000J)の第2有機層13B付近を拡大して示した断面図である。
 第1の実施形態と同様に、障壁部41が有する保護層18の箇所に溝部18Cと同様の溝部が形成されてもよい。そして、第2有機層13Bの第1の面上に形成された第2電極14に対して、補助電極24が接続される構成でもよい。
 その他の点については第1の実施形態に係る表示装置1000の構成を適用できる。本実施形態によっても第1の実施形態と同様の効果が得られる。
<第10の実施形態>
 次に、第10の実施形態について説明する。図22は、第10の実施形態に係る表示装置(表示装置1000K)の第2有機層13B付近を拡大して示した断面図である。図22に示すように、周辺領域110Bにおける下地層55にバンク部51が形成されている。バンク部51は、例えば、下地層55に形成された2個の凸部51A、51Bを有する。バンク部51、具体的には、凸部51Aと凸部51Bとの間(内側)に、第2有機層13Bが形成される。第2有機層13Bは、例えば、インクジェット法により形成することができる。
 なお、下地層55は、層間絶縁層11Bであってもよいし、画素間絶縁層16であってもよいし、それ以外の層であってもよい。また、第2有機層13Bと下地層55の間に、第1電極12等の電極層が介在してもよい。なお、図22では、第2有機層13Bや下地層55以外の構成の図示を適宜、省略しているが、第2有機層13Bの第1の面側に、第2電極14や保護層18が形成されていてもよい。
 その他の点については第1の実施形態に係る表示装置1000の構成を適用できる。本実施形態によっても第1の実施形態と同様の効果が得られる。
<第11の実施形態>
 次に、第11の実施形態について説明する。図23A、図23B、及び、図23Cのそれぞれは、第11の実施形態に係る表示装置(表示装置1000L)の第2有機層13B付近を拡大して示した断面図である。図23Aに示すように、表示装置1000Lでは、下地層55の第1の面に2個の凹部61Aが形成されている。凹部61Aの第1の面上及び平坦な箇所を含むように、第2有機層13Bが形成される。凹部61Aの数は2個に限定されることはなく、1個でもよいし、3個以上であってもよい。また、凹部61Aの少なくとも一部に第2有機層13Bが形成されていればよく、凹部61Aの第1の面上の全てに第2有機層13Bが形成されていなくてもよい。なお、上述したように、下地層55は、層間絶縁層11Bであってもよいし、画素間絶縁層16であってもよいし、それ以外の層であってもよい。
 表示装置1000Lは、下地層55の第1の面に形成された凸部61Bを有していてもよい。例えば、図23Bに示すように、表示装置1000Lは、2個の凸部61Bを有していてもよい。そして、凸部61Bの第1の面上及び平坦な箇所を含むように第2有機層13Bが形成される。凸部61Bの数は2個に限定されることはなく、1個でもよいし、3個以上であってもよい。凸部61Bの少なくとも一部に第2有機層13Bが形成されていればよく、凸部61Bの第1の面上の全てに第2有機層13Bが形成されていなくてもよい。
 表示装置1000Lは、図23Cに示すように、下地層55の第1の面上に形成された凹部61A及び凸部61Bを有する構成であってもよい。
 その他の点については第1の実施形態に係る表示装置1000の構成を適用できる。例えば、第2有機層13Bの第1の面側に、第2電極14や保護層18が形成されていてもよい。本実施形態によっても第1の実施形態と同様の効果が得られる。さらに、本実施形態では、第2有機層13Bの幅の長さ(X方向の長さ)を大きくできる。これにより、第2有機層13B内に侵入した水分の伝搬距離を長くすることができるので、当該水分が有効画素領域110A内に侵入してしまうことを効果的に防止できる。
<第12の実施形態>
 次に、第12の実施形態について説明する。図24は、第12の実施形態に係る表示装置(表示装置1000M)を平面視した図である。第1有機層13Aの発光色は、白色光でなく、赤色、緑色、青色、又は、黄色であってもよい。例えば、図24に示すように、有効画素領域110Aに、赤色(R)の発光色の第1有機層13Aを有するサブ画素(第1画素の一例)、緑色(G)の発光色の第1有機層13Aを有するサブ画素(第2画素の一例)、及び、青色(B)の第1有機層13Aを有するサブ画素(第3画素)が交互に配置されるようにしてもよい。また、周辺領域110Bには、例えば、赤色の発光色の第2有機層13Bが内側に、緑色の発光色の第2有機層13Bが外側に形成される。もちろん、周辺領域110Bに、青色の発光色の第2有機層13Bが形成されてもよい。
 その他の点については第1の実施形態に係る表示装置1000の構成を適用できる。本実施形態によっても第1の実施形態と同様の効果が得られる。
<実施形態に適用される共振器構造の例>
 上述した本開示に係る表示装置に用いられる画素は、発光素子で発生した光を共振させる共振器構造を備えている構成とすることができる。以下、図を参照して、共振器構造について説明する。
(共振器構造:第1例)
 図25Aは、共振器構造の第1例を説明するための模式的な断面図である。以下の説明において、サブ画素100R、100G、100Bにそれぞれに対応して設けられた発光素子20を、発光素子20、20、20ということがある。また、第1有機層13Aのうちサブ画素100R、100G、100Bにそれぞれに対応する部分を、第1有機層13A、13A、13Aということがある。
 第1例において、第1電極12は各発光素子20において共通の膜厚で形成されている。第2電極14においても同様である。
 発光素子20の第1電極12の下に、光学調整層71を挟んだ状態で、反射板70が配されている。反射板70と第2電極14との間に第1有機層13Aが発生する光を共振させる共振器構造が形成される。以下の説明において、サブ画素100R、100G、100Bにそれぞれに対応して設けられた光学調整層71を、光学調整層71、71、71ということがある。
 反射板70は各発光素子20において共通の膜厚で形成されている。光学調整層71の膜厚は、画素が表示すべき色に応じて異なっている。光学調整層71、71、71が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。
 図に示す例では、発光素子20、20、20における反射板70の上面は揃うように配置されている。上述したように、光学調整層71の膜厚は、画素が表示すべき色に応じて異なっているので、第2電極14の上面の位置は、発光素子20、20、20の種類に応じて相違する。
 反射板70は、例えば、アルミニウム(Al)、銀(Ag)、銅(Cu)等の金属、あるいは、これらを主成分とする合金を用いて形成することができる。
 光学調整層71は、シリコン窒化物(SiN)、シリコン酸化物(SiO)、シリコン酸窒化物(SiO)などの無機絶縁材料や、アクリル系樹脂やポリイミド系樹脂などといった有機樹脂材料を用いてから構成することができる。光学調整層71は単層でも良いし、これら複数の材料の積層膜であってもよい。また、発光素子20の種類に応じて積層数が異なっても良い。
 第1電極12は、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)などの透明導電材料を用いて形成することができる。
 第2電極14は、半透過反射膜として機能する必要がある。第2電極14は、マグネシウム(Mg)や銀(Ag)、またはこれらを主成分とするマグネシウム銀合金(MgAg)、さらには、アルカリ金属やアルカリ土類金属を含んだ合金などを用いて形成することができる。
(共振器構造:第2例)
 図25Bは、共振器構造の第2例を説明するための模式的な断面図である。
 第2例においても、第1電極12や第2電極14は各発光素子20において共通の膜厚で形成されている。
 そして、第2例においても、発光素子20の第1電極12の下に、光学調整層71を挟んだ状態で、反射板70が配される。反射板70と第2電極14との間に第1有機層13Aが発生する光を共振させる共振器構造が形成される。第1例と同様に、反射板70は各発光素子20において共通の膜厚で形成されており、光学調整層71の膜厚は、画素が表示すべき色に応じて異なっている。
 図25Aに示す第1例においては、発光素子20、20、20における反射板70の上面は揃うように配置され、第2電極14の上面の位置は、発光素子20、20、20の種類に応じて相違していた。
 これに対し、図25Bに示す第2例において、第2電極14の上面は、発光素子20、20、20で揃うように配置されている。第2電極14の上面を揃えるために、発光素子20、20、20において反射板70の上面は、発光素子20、20、20の種類に応じて異なるように配置されている。このため、反射板70の下面(換言すれば、図に符号73に示す下地73の面)は、発光素子20の種類に応じた階段形状となる。
 反射板70、光学調整層71、第1電極12及び第2電極14を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。
(共振器構造:第3例)
 図26Aは、共振器構造の第3例を説明するための模式的な断面図である。以下の説明において、サブ画素100R、100G、100Bにそれぞれに対応して設けられた反射板70を、反射板70、70、70ということがある。
 第3例においても、第1電極12や第2電極14は各発光素子20において共通の膜厚で形成されている。
 そして、第3例においても、発光素子20の第1電極12の下に、光学調整層71を挟んだ状態で、反射板70が配される。反射板70と第2電極14との間に、第1有機層13Aが発生する光を共振させる共振器構造が形成される。第1例や第2例と同様に、光学調整層71の膜厚は、画素が表示すべき色に応じて異なっている。そして、第2例と同様に、第2電極14の上面の位置は、発光素子20、20、20で揃うように配置されている。
 図25Bに示す第2例にあっては、第2電極14の上面を揃えるために、反射板70の下面は、発光素子20の種類に応じた階段形状であった。
 これに対し、図26Aに示す第3例において、反射板70の膜厚は、発光素子20、20、20の種類に応じて異なるように設定されている。より具体的には、反射板70、70、70の下面が揃うように膜厚が設定されている。
 反射板70、光学調整層71、第1電極12及び第2電極14を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。
(共振器構造:第4例)
 図26Bは、共振器構造の第4例を説明するための模式的な断面図である。以下の説明において、サブ画素100R、100G、100Bにそれぞれに対応して設けられた第1電極12を、第1電極12、12、12ということがある。
 図25Aに示す第1例において、各発光素子20の第1電極12や第2電極14は、共通の膜厚で形成されている。そして、発光素子20の第1電極12の下に、光学調整層71を挟んだ状態で、反射板70が配されている。
 これに対し、図26Bに示す第4例では、光学調整層71を省略し、第1電極12の膜厚を、発光素子20、20、20の種類に応じて異なるように設定した。
 反射板70は各発光素子20において共通の膜厚で形成されている。第1電極12の膜厚は、画素が表示すべき色に応じて異なっている。第1電極12、12、12が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。
 反射板70、光学調整層71、第1電極12及び第2電極14を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。
(共振器構造:第5例)
 図27Aは、共振器構造の第5例を説明するための模式的な断面図である。
 図25Aに示す第1例において、第1電極12や第2電極14は各発光素子20において共通の膜厚で形成されている。そして、発光素子20の第1電極12の下に、光学調整層71を挟んだ状態で、反射板70が配されている。
 これに対し、図27Aに示す第5例にあっては、光学調整層71を省略し、代わりに、反射板70の表面に酸化膜74を形成した。酸化膜74の膜厚は、発光素子20、20、20の種類に応じて異なるように設定した。以下の説明において、サブ画素100R、100G、100Bにそれぞれに対応して設けられた酸化膜74を、酸化膜74、74、74ということがある。
 酸化膜74の膜厚は、画素が表示すべき色に応じて異なっている。酸化膜74、74、74が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。
 酸化膜74は、反射板70の表面を酸化した膜であって、例えば、アルミニウム酸化物、タンタル酸化物、チタン酸化物、マグネシウム酸化物、ジルコニウム酸化物などから構成される。酸化膜74は、反射板70と第2電極14との間の光路長(光学的距離)を調整するための絶縁膜として機能する。
 発光素子20、20、20の種類に応じて膜厚が異なる酸化膜74は、例えば、以下のようにして形成することができる。
 先ず、容器の中に電解液を充填し、反射板70が形成された基板を電解液の中に浸漬する。また、反射板70と対向するように電極を配置する。
 そして、電極を基準として正電圧を反射板70に印加して、反射板70を陽極酸化する。陽極酸化による酸化膜の膜厚は、電極に対する電圧値に比例する。そこで、反射板70、70、70のそれぞれに発光素子20の種類に応じた電圧を印加した状態で陽極酸化を行う。これによって、膜厚の異なる酸化膜74を一括して形成することができる。
 反射板70、第1電極12及び第2電極14を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。
(共振器構造:第6例)
 図27Bは、共振器構造の第6例を説明するための模式的な断面図である。
 第6例において、発光素子20は、第1電極12と第1有機層13Aと第2電極14とが積層されて構成されている。但し、第6例において、第1電極12は、電極と反射板の機能を兼ねるように形成されている。第1電極12(兼反射板)は、発光素子20、20、20の種類に応じて選択された光学定数を有する材料によって形成されている。第1電極12(兼反射板)による位相シフトが異なることによって、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。
 第1電極12(兼反射板)は、アルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)などの単体金属や、これらを主成分とする合金から構成することができる。例えば、発光素子20の第1電極12(兼反射板)を銅(Cu)で形成し、発光素子20の第1電極12(兼反射板)と発光素子20の第1電極12(兼反射板)とをアルミニウムで形成するといった構成とすることができる。
 第2電極14を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。
(共振器構造:第7例)
 図28は、共振器構造の第7例を説明するための模式的な断面図である。
 第7例は、基本的には、発光素子20、20については第6例を適用し、発光素子20については第1例を適用したといった構成である。この構成においても、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。
 発光素子20、20に用いられる第1電極12、12(兼反射板)は、アルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)などの単体金属や、これらを主成分とする合金から構成することができる。
 発光素子20に用いられる、反射板70、光学調整層71及び第1電極12を構成する材料などについては、第1例において説明した内容と同様であるので、説明を省略する。
<発光部、レンズ部材、波長選択部のそれぞれの中心を通る法線の関係>
 上述した表示装置は、保護層18とカラーフィルタ27との間に、レンズアレイ(不図示)を有していてもよい。表示装置は、カラーフィルタ27とレンズアレイとの間に平坦化層(不図示)をさらに備えていてもよい。
 レンズアレイは、複数のレンズを含む。レンズは、オンチップマイクロレンズであってもよい。複数のレンズは、規定の配置パターンでカラーフィルタ27または平坦化層の第1の面上に2次元配置されている。1つのサブ画素が、1つ又は2つのレンズを含む。レンズは、上方に出射された光を正面方向に集光する。レンズは、例えば、正面方向に突出した凸状湾曲面を有している。凸状湾曲面は、例えば、ドーム状である。ここで、ドーム状は、略放物面状、略半球状及び略半楕円球等の形状を含むものとする。
 レンズは、例えば、可視光に対して透明な無機材料または高分子樹脂を含む。無機材料は、例えば、酸化シリコン(SiO)を含む。高分子樹脂は、例えば、紫外線硬化樹脂を含む。
 以下、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明する。ここで、以下に説明する発光部81は、例えば、上述した発光素子20である。また、以下に説明するレンズ部材83は、例えば、上述したレンズアレイのレンズである。また、以下に説明する波長選択部82は、例えば、カラーフィルタ27である。
 なお、発光部が出射する光に対応して、波長選択部の大きさを、適宜、変えてもよいし、隣接する発光部の波長選択部の間に光吸収部(例えば、ブラックマトリクス部)が設けられている場合、発光部が出射する光に対応して、光吸収部の大きさを、適宜、変えてもよい。また、波長選択部の大きさを、発光部の中心を通る法線と波長選択部の中心を通る法線との間の距離(オフセット量)dに応じて、適宜、変えてもよい。波長選択部の平面形状は、レンズ部材の平面形状と同じであってもよいし、相似であってもよいし、異なっていてもよい。
 以下、図29A、図29B、図29C、図30を参照して、発光部81と、波長選択部82、レンズ部材83が、この順序で配置されている場合の各部の中心を通る法線の関係について説明する。
 図29Aに示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とは、一致していてもよい。すなわち、D=0、d=0であってもよい。但し、Dは、発光部81の中心を通る法線LNとレンズ部材83の中心を通る法線LN’との間の距離(オフセット量)を表し、dは、発光部81の中心を通る法線LNと波長選択部82の中心を通る法線LN”との間の距離(オフセット量)を表す。
 図29Bに示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”とは、一致しているが、発光部81の中心を通る法線LN及び波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とは、一致していない構成としてもよい。すなわち、D>0、d=0であってもよい。
 図29Cに示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”及びレンズ部材83の中心を通る法線LN’とは、一致しておらず、波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とは、一致している構成としてもよい。すなわち、D>0、d>0、D=dであってもよい。
 図30に示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とがいずれも、一致していない構成としてもよい。すなわち、D>0、d>0、D≠dであってもよい。ここで、発光部81の中心とレンズ部材83の中心(図30において黒丸で示される位置)とを結ぶ直線LL上に、波長選択部82の中心(図30において黒四角で示される位置)が位置することが好ましい。具体的には、発光部81の中心と波長選択部82の中心との間の、厚さ方向(図30中、垂直方向)における距離をLL、波長選択部82の中心とレンズ部材83の中心との間の、厚さ方向における距離をLLとしたとき、
  D>d>0
であり、製造上のバラツキを考慮した上で、
  d:D=LL:(LL+LL
を満足することが好ましい。
 ここで、厚さ方向とは、発光部81、波長選択部82、レンズ部材83の厚さ方向を表す。
 以下、図31A、図31B、図32を参照して、発光部81と、レンズ部材83、波長選択部82が、この順序で配置されている場合の各部の中心を通る法線の関係について説明する。
 図31Aに示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とは、一致している構成としてもよい。すなわち、D>0、d=0であってもよい。
 図31Bに示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”及びレンズ部材83の中心を通る法線LN’とは、一致しておらず、波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とは、一致している構成としてもよい。すなわち、D>0、d>0、D=dであってもよい。
 図32に示されるように、発光部81の中心を通る法線LNと、波長選択部82の中心を通る法線LN”と、レンズ部材83の中心を通る法線LN’とがいずれも、一致していない構成としてもよい。ここで、発光部81の中心と波長選択部82の中心(図32において黒四角で示される位置)とを結ぶ直線LL上に、レンズ部材83の中心(図32において黒丸で示される位置)が位置することが好ましい。具体的には、発光部81の中心とレンズ部材83の中心との間の、厚さ方向(図32中、垂直方向)における距離をLL、レンズ部材83の中心と波長選択部82の中心との間の、厚さ方向における距離をLLとしたとき、
  d>D>0
であり、製造上のバラツキを考慮した上で、
  D:d=LL:(LL+LL
を満足することが好ましい。
 ここで、厚さ方向とは、発光部81、波長選択部82、レンズ部材83の厚さ方向を表す。
<応用例>
(電子機器)
 上記の実施形態に係る表示装置は、各種の電子機器に備えられてもよい。表示装置は、特にビデオカメラまたは一眼レフカメラの電子ビューファインダ、もしくはヘッドマウント型ディスプレイ等の高解像度が要求され、目の近くで拡大して使用されるものに適する。
(具体例1)
 図33A、図33Bは、デジタルスチルカメラ310の外観の一例を示す。このデジタルスチルカメラ310は、レンズ交換式一眼レフレックスタイプのものであり、カメラ本体部(カメラボディ)311の正面略中央に交換式の撮影レンズユニット(交換レンズ)312を有し、正面左側に撮影者が把持するためのグリップ部313を有している。
 カメラ本体部311の背面中央から左側にずれた位置には、モニタ314が設けられている。モニタ314の上部には、電子ビューファインダ(接眼窓)315が設けられている。撮影者は、電子ビューファインダ315を覗くことによって、撮影レンズユニット312から導かれた被写体の光像を視認して構図決定を行うことが可能である。電子ビューファインダ315は、上記の実施形態に係る表示装置を備える。
(具体例2)
 図34は、ヘッドマウントディスプレイ320の外観の一例を示す。ヘッドマウントディスプレイ320は、例えば、眼鏡形の表示部321の両側に、使用者の頭部に装着するための耳掛け部322を有している。表示部321は、上記の実施形態に係る表示装置を備える。
(具体例3)
 図35は、テレビジョン装置330の外観の一例を示す。このテレビジョン装置330は、例えば、フロントパネル332及びフィルターガラス333を含む映像表示画面部331を有しており、この映像表示画面部331は、上記の実施形態に係る表示装置を備える。
(具体例4)
 図36は、シースルーヘッドマウントディスプレイ340の外観の一例を示す。シースルーヘッドマウントディスプレイ340は、本体部341と、アーム342と、鏡筒343とを備える。
 本体部341は、アーム342及び眼鏡350と接続される。具体的には、本体部341の長辺方向の端部はアーム342と結合され、本体部341の側面の一側は接続部材を介して眼鏡350と連結される。なお、本体部341は、直接的に人体の頭部に装着されてもよい。
 本体部341は、シースルーヘッドマウントディスプレイ340の動作を制御するための制御基板や、表示部を内蔵する。アーム342は、本体部341と鏡筒343とを接続させ、鏡筒343を支える。具体的には、アーム342は、本体部341の端部及び鏡筒343の端部とそれぞれ結合され、鏡筒343を固定する。また、アーム342は、本体部341から鏡筒343に提供される画像に係るデータを通信するための信号線を内蔵する。
 鏡筒343は、本体部341からアーム342を経由して提供される画像光を、接眼レンズ351を通じて、シースルーヘッドマウントディスプレイ340を装着するユーザの目に向かって投射する。このシースルーヘッドマウントディスプレイ340において、本体部341の表示部は、上記の実施形態に係る表示装置を備える。
(具体例5)
 図37は、スマートフォン360の外観の一例を示す。スマートフォン360は、各種情報を表示する表示部361、及びユーザによる操作入力を受け付けるボタン等から構成される操作部362等を備える。表示部361は、上記の実施形態に係る表示装置を備える。
(具体例6)
 上記の表示装置101等は、乗物に備えられるか各種のディスプレイに備えられてもよい。
 図38A及び図38Bは、各種のディスプレイが備えられた乗物500の内部の構成の一例を示す図である。具体的には、図38Aは、乗物500の後方から前方にかけての乗物500の内部の様子の一例を示す図、図38Bは、乗物500の斜め後方から斜め前方にかけての乗物500の内部の様子の一例を示す図である。
 乗物500は、センターディスプレイ501と、コンソールディスプレイ502と、ヘッドアップディスプレイ503と、デジタルリアミラー504と、ステアリングホイールディスプレイ505と、リアエンタテイメントディスプレイ506とを備える。これらのディスプレイの少なくとも1つが、上記の実施形態に係る表示装置を備える。例えば、これらのディスプレイのすべてが、上記の実施形態に係る表示装置を備えてもよい。
 センターディスプレイ501は、運転席508及び助手席509に対向するダッシュボードの部分に配置されている。図38A及び図38Bでは、運転席508側から助手席509側まで延びる横長形状のセンターディスプレイ501の例を示すが、センターディスプレイ501の画面サイズや配置場所は任意である。センターディスプレイ501には、種々のセンサで検知された情報を表示可能である。具体的な一例として、センターディスプレイ501には、イメージセンサで撮影した撮影画像、ToFセンサで計測された乗物500の前方や側方の障害物までの距離画像、赤外線センサで検出された乗客の体温などを表示可能である。センターディスプレイ501は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。
 安全関連情報は、居眠り検知、よそ見検知、同乗している子供のいたずら検知、シートベルト装着有無、乗員の置き去り検知などの情報であり、例えばセンターディスプレイ501の裏面側に重ねて配置されたセンサにて検知される情報である。操作関連情報は、センサを用いて乗員の操作に関するジェスチャを検知する。検知されるジェスチャは、乗物500内の種々の設備の操作を含んでいてもよい。例えば、空調設備、ナビゲーション装置、AV装置、照明装置等の操作を検知する。ライフログは、乗員全員のライフログを含む。例えば、ライフログは、乗車中の各乗員の行動記録を含む。ライフログを取得及び保存することで、事故時に乗員がどのような状態であったかを確認できる。健康関連情報は、温度センサなどのセンサを用いて乗員の体温を検知し、検知した体温に基づいて乗員の健康状態を推測する。あるいは、イメージセンサを用いて乗員の顔を撮像し、撮像した顔の表情から乗員の健康状態を推測してもよい。さらに、乗員に対して自動音声で会話を行って、乗員の回答内容に基づいて乗員の健康状態を推測してもよい。認証/識別関連情報は、センサを用いて顔認証を行うキーレスエントリ機能や、顔識別でシート高さや位置の自動調整機能などを含む。エンタテイメント関連情報は、センサを用いて乗員によるAV装置の操作情報を検出する機能や、センサで乗員の顔を認識して、乗員に適したコンテンツをAV装置にて提供する機能などを含む。
 コンソールディスプレイ502は、例えば、ライフログ情報の表示に用いることができる。コンソールディスプレイ502は、運転席508と助手席509の間のセンターコンソール510のシフトレバー511の近くに配置されている。コンソールディスプレイ502にも、種々のセンサで検知された情報を表示可能である。また、コンソールディスプレイ502には、イメージセンサで撮像された車両周辺の画像を表示してもよいし、車両周辺の障害物までの距離画像を表示してもよい。
 ヘッドアップディスプレイ503は、運転席508の前方のフロントガラス512の奥に仮想的に表示される。ヘッドアップディスプレイ503は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。ヘッドアップディスプレイ503は、運転席508の正面に仮想的に配置されることが多いため、乗物500の速度や燃料(バッテリ)残量などの乗物500の操作に直接関連する情報を表示するのに適している。
 デジタルリアミラー504は、乗物500の後方を表示できるだけでなく、後部座席の乗員の様子も表示できるため、デジタルリアミラー504の裏面側に重ねてセンサを配置することで、例えばライフログ情報の表示に用いることができる。
 ステアリングホイールディスプレイ505は、乗物500のハンドル513の中心付近に配置されている。ステアリングホイールディスプレイ505は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、ステアリングホイールディスプレイ505は、運転者の手の近くにあるため、運転者の体温等のライフログ情報を表示したり、AV装置や空調設備等の操作に関する情報などを表示するのに適している。
 リアエンタテイメントディスプレイ506は、運転席508や助手席509の背面側に取り付けられており、後部座席の乗員が視聴するためのものである。リアエンタテイメントディスプレイ506は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、及びエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、リアエンタテイメントディスプレイ506は、後部座席の乗員の目の前にあるため、後部座席の乗員に関連する情報が表示される。例えば、AV装置や空調設備の操作に関する情報を表示したり、後部座席の乗員の体温等を温度センサで計測した結果を表示してもよい。
 表示装置の裏面側に重ねてセンサを配置し、周囲に存在する物体までの距離を計測することができる構成としてもよい。光学的な距離計測の手法には、大きく分けて、受動型と能動型がある。受動型は、センサから物体に光を投光せずに、物体からの光を受光して距離計測を行うものである。受動型には、レンズ焦点法、ステレオ法、及び単眼視法などがある。能動型は、物体に光を投光して、物体からの反射光をセンサで受光して距離計測を行うものである。能動型には、光レーダ方式、アクティブステレオ方式、照度差ステレオ法、モアレトポグラフィ法、干渉法などがある。上記の表示装置101等は、これらのどの方式の距離計測にも適用可能である。上記の実施形態に係る表示装置の裏面側に重ねて配置されるセンサを用いることで、上述した受動型又は能動型の距離計測を行うことができる。
<変形例>
 以上、本開示の実施形態について具体的に説明したが、本開示の内容は上述した実施形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。
 例えば、実施形態に係る表示装置において、第1有機層13Aは、サブ画素で共有される構成であってもよい。また、第2電極14は、サブ画素で共有される構成であってもよく、第2電極14の端部がカソードコンタクト17に接続されるようにしてもよい。この場合、補助電極24はなくてもよい。第2有機層が例えば白色光で発光しても良い。第2有機層の材料は、工程を簡素化する観点からは第1有機層と同じが好ましいが異なっていてもよい。
 実施形態及び変形例において挙げた構成、方法、工程、形状、材料及び数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料及び数値等を用いてもよい。また、実施形態及び変形例に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。また、実施形態及び変形例に例示した構成要素は、適宜、組み合わせることができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 また、本開示は以下の構成を採用することもできる。
(1)
 有効画素領域と、前記有効画素領域と外縁部との間の周辺領域と、を有する駆動基板を有し、
 前記有効画素領域は、複数の画素を有し、
 前記画素は、第1電極と、前記第1電極に対して対向して配置される第2電極と、前記第1電極と前記第2電極との間に設けられ、発光層を含む第1有機層と、を有し、
 前記周辺領域は、前記画素が有する前記第1有機層とは分離された第2有機層を有する、
 表示装置。
(2)
 前記駆動基板は、基材を有し、
 断面視において、前記第1有機層と前記基材との間に介在する層数と、前記第2有機層と前記基材との間に介在する層数との差の範囲が0から3以内である、
 (1)に記載の表示装置。
(3)
 前記第1有機層と前記基材との間に、前記第1電極と層間絶縁層とが形成されており、
 前記第2有機層と前記基材との間に、少なくとも前記層間絶縁層が形成されている、
 (1)又は(2)に記載の表示装置。
(4)
 前記第2有機層と前記基材との間に、前記層間絶縁層と、電極層及び画素間絶縁層の少なくとも一方とが形成されている、
 (3)に記載の表示装置。
(5)
 前記電極層は、前記第1電極と同一の層である、
 (4)に記載の表示装置。
(6)
 前記第1有機層と前記第2有機層とが同一の工程で形成された層である、
 (1)から(5)までの何れかに記載の表示装置。
(7)
 前記第1有機層が、画素毎に分離されている、
 (1)から(6)までの何れかに記載の表示装置。
(8)
 前記第1有機層及び前記第2有機層の発光色が白色光である、
 (7)に記載の表示装置。
(9)
 前記画素は、第1画素、第2画素、及び、第3画素を含み、
 前記第1画素が有する第1有機層の第1発光色と、前記第2画素が有する第1有機層の第2発光色と、前記第3画素が有する第1有機層の第3発光色とが、互いに異なる発光色であり、
 前記第2有機層の発光色が、前記第1発光色、前記第2発光色、及び、前記第3発光色の何れかである、
 (7)に記載の表示装置。
(10)
 前記第1の発光色が赤色であり、前記第2の発光色が青色であり、前記第3の発光色が緑色である、
 (9)に記載の表示装置。
(11)
 前記第2有機層は、前記駆動基板を平面視した場合に、枠状に形成されている、
 (1)から(10)までの何れかに記載の表示装置。
(12)
 前記枠状に形成される前記第2有機層が、部分的に分断されている、
 (11)に記載の表示装置。
(13)
 前記枠状に形成される前記第2有機層を、複数、有する、
 (1)から(12)までの何れかに記載の表示装置。
(14)
 バンク部を有し、
 前記バンク部の内側に前記第2有機層が形成されている、
 (1)から(13)までの何れかに記載の表示装置。
(15)
 前記周辺領域に形成される凹部を有し、
 前記凹部の表面の少なくとも一部に前記第2有機層が形成されている、
 (1)から(14)までの何れかに記載の表示装置。
(16)
 前記周辺領域に形成される凸部を有し、
 前記凸部の表面の少なくとも一部に前記第2有機層が形成されている、
 (1)から(15)までの何れかに記載の表示装置。
(17)
 (1)から(16)までの何れかに記載の表示装置を有する、
(18)
 駆動基板の有効画素領域に、第1電極と、前記第1電極に対して対向して配置される第2電極と、前記第1電極と前記第2電極との間に設けられ、発光層を含む第1有機層と、を有する画素を形成し、
 前記有効画素領域と前記駆動基板の外縁部との間の周辺領域に、前記画素が有する前記第1有機層と分離された第2有機層を形成する、
 表示装置の製造方法。
(19)
 前記第1有機層と前記第2有機層とを同一の工程で形成する、
 (18)に記載の表示装置の製造方法。
(20)
 断面視において、前記第1有機層と前記駆動基板が有する基材との間に介在する層数と、前記第2有機層と前記基材との間に介在する層数との差の範囲が0から3以内となるように、前記第1有機層及び前記第2有機層を形成する、
 (18)又は(19)に記載の表示装置の製造方法。
 電子機器。
11・・・駆動基板
11A・・・基材
11B・・・層間絶縁層
12・・・第1電極
13A・・・第1有機層
13B・・・第2有機層
16・・・画素間絶縁層
100R、100G,100B・・・サブ画素
110A・・・有効画素領域
110B・・・周辺領域
110C・・・外縁部
1000・・・表示装置

Claims (20)

  1.  有効画素領域と、前記有効画素領域と外縁部との間の周辺領域と、を有する駆動基板を有し、
     前記有効画素領域は、複数の画素を有し、
     前記画素は、第1電極と、前記第1電極に対して対向して配置される第2電極と、前記第1電極と前記第2電極との間に設けられ、発光層を含む第1有機層と、を有し、
     前記周辺領域は、前記画素が有する前記第1有機層とは分離された第2有機層を有する、
     表示装置。
  2.  前記駆動基板は、基材を有し、
     断面視において、前記第1有機層と前記基材との間に介在する層数と、前記第2有機層と前記基材との間に介在する層数との差の範囲が0から3以内である、
     請求項1に記載の表示装置。
  3.  前記第1有機層と前記基材との間に、前記第1電極と層間絶縁層とが形成されており、
     前記第2有機層と前記基材との間に、少なくとも前記層間絶縁層が形成されている、
     請求項1に記載の表示装置。
  4.  前記第2有機層と前記基材との間に、前記層間絶縁層と、電極層及び画素間絶縁層の少なくとも一方とが形成されている、
     請求項3に記載の表示装置。
  5.  前記電極層は、前記第1電極と同一の層である、
     請求項4に記載の表示装置。
  6.  前記第1有機層と前記第2有機層とが同一の工程で形成された層である、
     請求項1に記載の表示装置。
  7.  前記第1有機層が、画素毎に分離されている、
     請求項1に記載の表示装置。
  8.  前記第1有機層及び前記第2有機層の発光色が白色光である、
     請求項7に記載の表示装置。
  9.  前記画素は、第1画素、第2画素、及び、第3画素を含み、
     前記第1画素が有する第1有機層の第1発光色と、前記第2画素が有する第1有機層の第2発光色と、前記第3画素が有する第1有機層の第3発光色とが、互いに異なる発光色であり、
     前記第2有機層の発光色が、前記第1発光色、前記第2発光色、及び、前記第3発光色の何れかである、
     請求項7に記載の表示装置。
  10.  前記第1の発光色が赤色であり、前記第2の発光色が青色であり、前記第3の発光色が緑色である、
     請求項9に記載の表示装置。
  11.  前記第2有機層は、前記駆動基板を平面視した場合に、枠状に形成されている、
     請求項1に記載の表示装置。
  12.  前記枠状に形成される前記第2有機層が、部分的に分断されている、
     請求項11に記載の表示装置。
  13.  前記枠状に形成される前記第2有機層を、複数、有する、
     請求項1に記載の表示装置。
  14.  バンク部を有し、
     前記バンク部の内側に前記第2有機層が形成されている、
     請求項1に記載の表示装置。
  15.  前記周辺領域に形成される凹部を有し、
     前記凹部の表面の少なくとも一部に前記第2有機層が形成されている、
     請求項1に記載の表示装置。
  16.  前記周辺領域に形成される凸部を有し、
     前記凸部の表面の少なくとも一部に前記第2有機層が形成されている、
     請求項1に記載の表示装置。
  17.  請求項1に記載の表示装置を有する、
     電子機器。
  18.  駆動基板の有効画素領域に、第1電極と、前記第1電極に対して対向して配置される第2電極と、前記第1電極と前記第2電極との間に設けられ、発光層を含む第1有機層と、を有する画素を形成し、
     前記有効画素領域と前記駆動基板の外縁部との間の周辺領域に、前記画素が有する前記第1有機層と分離された第2有機層を形成する、
     表示装置の製造方法。
  19.  前記第1有機層と前記第2有機層とを同一の工程で形成する、
     請求項18に記載の表示装置の製造方法。
  20.  断面視において、前記第1有機層と前記駆動基板が有する基材との間に介在する層数と、前記第2有機層と前記基材との間に介在する層数との差の範囲が0から3以内となるように、前記第1有機層及び前記第2有機層を形成する、
     請求項18に記載の表示装置の製造方法。
PCT/JP2023/032313 2022-10-14 2023-09-05 表示装置、電子機器及び表示装置の製造方法 WO2024080039A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-165301 2022-10-14
JP2022165301 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024080039A1 true WO2024080039A1 (ja) 2024-04-18

Family

ID=90669420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032313 WO2024080039A1 (ja) 2022-10-14 2023-09-05 表示装置、電子機器及び表示装置の製造方法

Country Status (1)

Country Link
WO (1) WO2024080039A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084371A (ja) * 2010-10-12 2012-04-26 Seiko Epson Corp 有機el装置の製造方法、有機el装置、及び電子機器
JP2021044083A (ja) * 2019-09-06 2021-03-18 キヤノン株式会社 発光装置及びその製造方法、プリンタ、表示装置、光電変換装置、電子機器、照明装置並びに移動体
JP2021093525A (ja) * 2019-11-29 2021-06-17 株式会社Joled 自発光素子、及び自発光表示パネル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084371A (ja) * 2010-10-12 2012-04-26 Seiko Epson Corp 有機el装置の製造方法、有機el装置、及び電子機器
JP2021044083A (ja) * 2019-09-06 2021-03-18 キヤノン株式会社 発光装置及びその製造方法、プリンタ、表示装置、光電変換装置、電子機器、照明装置並びに移動体
JP2021093525A (ja) * 2019-11-29 2021-06-17 株式会社Joled 自発光素子、及び自発光表示パネル

Similar Documents

Publication Publication Date Title
CN110832954B (zh) 显示装置和电子设备
CN111354858B (zh) 显示装置
KR20180002471A (ko) 유기발광 표시장치, 그의 제조방법, 및 그를 포함한 헤드 장착형 디스플레이
WO2022124401A1 (ja) 表示装置および電子機器
JP2022063741A (ja) 表示装置
WO2024080039A1 (ja) 表示装置、電子機器及び表示装置の製造方法
US20220130924A1 (en) Apparatus, display apparatus, photoelectric conversion apparatus, electronic equipment, illumination apparatus, and moving object
WO2024014214A1 (ja) 表示装置及び電子機器
KR20220056811A (ko) 발광장치, 표시장치, 촬상장치 및 전자기기, 및 발광장치의 제조방법
WO2024053611A1 (ja) 発光装置および電子機器
WO2024116879A1 (ja) 発光装置およびその製造方法、ならびに電子機器
WO2024135425A1 (ja) 発光装置、表示装置及び電子機器
WO2024117219A1 (ja) 発光装置および電子機器
WO2024009728A1 (ja) 表示装置及び電子機器
WO2024048559A1 (ja) 発光装置および電子機器
WO2024090153A1 (ja) 表示装置、電子機器及び表示装置の製造方法
WO2024117213A1 (ja) 表示装置および電子機器
WO2023219169A1 (ja) 発光装置、電子機器、及び発光装置の製造方法
KR20200072740A (ko) 전계발광 표시장치 및 그를 포함한 개인 몰입형 표시장치
WO2024117193A1 (ja) 表示装置、表示装置の製造方法及び電子機器
WO2024024491A1 (ja) 表示装置及び電子機器
WO2023248768A1 (ja) 表示装置及び電子機器
WO2024048556A1 (ja) 発光装置およびアイウェアデバイス
WO2023176474A1 (ja) 発光装置及び電子機器
WO2023095857A1 (ja) 発光装置及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877046

Country of ref document: EP

Kind code of ref document: A1