WO2024117219A1 - 発光装置および電子機器 - Google Patents

発光装置および電子機器 Download PDF

Info

Publication number
WO2024117219A1
WO2024117219A1 PCT/JP2023/042892 JP2023042892W WO2024117219A1 WO 2024117219 A1 WO2024117219 A1 WO 2024117219A1 JP 2023042892 W JP2023042892 W JP 2023042892W WO 2024117219 A1 WO2024117219 A1 WO 2024117219A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
protective layer
light
electrode
light emitting
Prior art date
Application number
PCT/JP2023/042892
Other languages
English (en)
French (fr)
Inventor
利章 白岩
直也 笠原
大輔 濱下
昌也 小倉
忠之 木村
洋輔 藤井
正治 小林
航平 福島
克尚 釘宮
朋和 大地
雅貴 杉安
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024117219A1 publication Critical patent/WO2024117219A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Definitions

  • This disclosure relates to a light-emitting device and an electronic device.
  • Light-emitting devices that include multiple light-emitting elements arranged two-dimensionally, each of which includes a first electrode, an organic-material-containing layer including an organic light-emitting layer, and a second electrode, in that order, have become widely known in recent years. Display devices of this type have been proposed that have a structure in which the organic-material-containing layer is separated between adjacent light-emitting elements (see, for example, Patent Document 1).
  • a first light emitting device includes: A plurality of light-emitting elements, each of which has a first electrode, an organic-material-containing layer including an organic light-emitting layer, and a second electrode, and which are arranged two-dimensionally; a protective layer provided on each light-emitting element and separated between adjacent light-emitting elements; a side protection layer covering a side surface of each organic substance-containing layer, a side surface of each second electrode, and a side surface of each protection layer, The side surface of the protective layer is located inside the side surface of the second electrode.
  • a second light emitting device includes: A plurality of light-emitting elements, each of which has a first electrode, an organic-material-containing layer including an organic light-emitting layer, and a second electrode, and which are arranged two-dimensionally; and a side protection layer provided on a side surface of each light emitting element, the organic substance-containing layer has a flat portion and an inclined portion on a surface facing the second electrode, the inclined portion being provided adjacent to a side surface of the organic substance-containing layer;
  • the second electrode follows the flat portion and the inclined portion, and the thickness of the second electrode at the inclined portion is greater than the thickness of the second electrode at the flat portion.
  • the electronic device includes the first light-emitting device or the second light-emitting device.
  • FIG. 1 is a plan view of a display device according to a first embodiment.
  • FIG. 2 is an enlarged plan view showing a part of a display area.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. 2 is an enlarged cross-sectional view showing a part of the light-emitting element.
  • FIG. 3A to 3C are diagrams illustrating a manufacturing process of the display device according to the first embodiment.
  • 3A to 3C are diagrams illustrating a manufacturing process of the display device according to the first embodiment.
  • 3A to 3C are diagrams illustrating a manufacturing process of the display device according to the first embodiment.
  • 3A to 3C are diagrams illustrating a manufacturing process of the display device according to the first embodiment.
  • 10A to 10C are diagrams illustrating a manufacturing process of a display device according to a second embodiment.
  • 10A to 10C are diagrams illustrating a manufacturing process of a display device according to a second embodiment.
  • 10A to 10C are diagrams illustrating a manufacturing process of a display device according to a second embodiment.
  • 10A to 10C are diagrams illustrating a manufacturing process of a display device according to a second embodiment.
  • 10A to 10C are diagrams illustrating a manufacturing process of a display device according to a second embodiment.
  • 10A to 10C are diagrams illustrating a manufacturing process of a display device according to a second embodiment.
  • 10A to 10C are diagrams illustrating a manufacturing process of a display device according to a second embodiment.
  • FIG. 1 is a cross-sectional view of a display device according to a reference example.
  • FIG. 2 is an enlarged cross-sectional view of a light-emitting element.
  • FIG. 11 is an enlarged plan view illustrating a part of a display area of a display device according to a third embodiment.
  • 14 is a cross-sectional view taken along line XIV-XIV in FIG. 13.
  • FIG. 2 is an enlarged cross-sectional view of a light-emitting element.
  • 11A to 11C are diagrams illustrating a manufacturing process of a display device according to a third embodiment.
  • 11A to 11C are diagrams illustrating a manufacturing process of a display device according to a third embodiment.
  • 11A to 11C are diagrams illustrating a manufacturing process of a display device according to a third embodiment.
  • 11A to 11C are diagrams illustrating a manufacturing process of a display device according to a third embodiment.
  • 11A to 11C are diagrams illustrating a manufacturing process of a display device according to a third embodiment.
  • 11A to 11C are diagrams illustrating a manufacturing process of a display device according to a third embodiment.
  • 11A to 11C are diagrams illustrating a manufacturing process of a display device according to a third embodiment.
  • 10A to 10C are diagrams illustrating a manufacturing process of a display device according to a third embodiment.
  • FIG. 13 is a cross-sectional view of a display device according to a fourth embodiment.
  • FIG. 13 is a cross-sectional view of a display device according to a fourth embodiment.
  • FIG. 2 is an enlarged cross-sectional view of a light-emitting element.
  • 10A to 10C are diagrams illustrating a manufacturing process of a display device according to a fourth embodiment.
  • 10A to 10C are diagrams illustrating a manufacturing process of a display device according to a fourth embodiment.
  • 10A to 10C are diagrams illustrating a manufacturing process of a display device according to a fourth embodiment.
  • 10A to 10C are diagrams illustrating a manufacturing process of a display device according to a fourth embodiment.
  • FIG. 13 is a cross-sectional view of a display device according to a fifth embodiment.
  • FIG. 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a fifth embodiment.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a fifth embodiment.
  • FIG. 22C is a manufacturing process diagram showing an enlarged portion of FIG. 22B.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a fifth embodiment.
  • FIG. 13 is a cross-sectional view of a display device according to a modified example of the fifth embodiment.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a modified example of the fifth embodiment.
  • FIG. 13 is a cross-sectional view of a display device according to a modified example of the fifth embodiment.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a modified example of the fifth embodiment.
  • FIG. 13 is a cross-sectional view of a display device according to a modified example of the fifth embodiment.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a modified example of the fifth embodiment.
  • FIG. 13 is a cross-sectional view of a display device according to a modified example of the fifth embodiment.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a modified example of the fifth embodiment.
  • FIG. 13 is a cross-sectional view of a display device according to a modified example of the fifth embodiment.
  • FIG. 31B is an enlarged cross-sectional view of a portion of FIG. 31A.
  • FIG. 13 is a cross-sectional view of a display device according to a sixth embodiment. 2 is an enlarged cross-sectional view showing a part of the light-emitting element.
  • FIG. 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a sixth embodiment.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a sixth embodiment.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a sixth embodiment.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a sixth embodiment.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a sixth embodiment.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a sixth embodiment.
  • FIG. 34F is an enlarged view of a manufacturing process.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a sixth embodiment.
  • FIG. 13 is a cross-sectional view of a display device according to a modified example of the sixth embodiment.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a modified example of the sixth embodiment.
  • FIG. 36B is a manufacturing process diagram showing an enlarged portion of FIG. 36A.
  • 13A to 13C are diagrams illustrating a manufacturing process of a display device according to a modified example of the sixth embodiment.
  • FIG. 13 is a cross-sectional view of a display device according to a seventh embodiment. 2 is an enlarged cross-sectional view showing a region between adjacent light-emitting elements.
  • FIG. 13 is an enlarged cross-sectional view of a display device according to a modified example of the sixth embodiment.
  • FIG. 13 is an enlarged cross-sectional view of a display device according to a modified example of the sixth embodiment.
  • FIG. 13 is an enlarged cross-sectional view of a display device according to a modified example of the sixth embodiment.
  • FIG. 13 is an enlarged cross-sectional view of a display device according to a modified example of the sixth embodiment.
  • FIG. 13 is an enlarged cross-sectional view of a display device according to a modified example of the sixth embodiment.
  • FIG. 13 is an enlarged cross-sectional view of a display device according to a modified example of the sixth embodiment.
  • FIG. 13 is an enlarged cross-sectional view of a display device according to a modified example of the sixth embodiment.
  • FIG. 13 is an enlarged plan view illustrating a part of a display area of a display device according to an eighth embodiment.
  • FIG. 45 is an enlarged plan view of a portion of FIG. 44.
  • Fig. 48A is a plan view for explaining a manufacturing process of the display device according to the eighth embodiment
  • Fig. 48B is a cross-sectional view taken along line BB in Fig. 48A
  • FIG. 48C is a cross-sectional view taken along line CC in Fig. 48A.
  • Fig. 49A is a plan view for explaining a manufacturing process of the display device according to the eighth embodiment
  • Fig. 49B is a cross-sectional view taken along line BB in Fig. 49A
  • Fig. 49C is a cross-sectional view taken along line CC in Fig. 49A.
  • Fig. 50A is a plan view for explaining a manufacturing process of the display device according to the eighth embodiment
  • Fig. 50B is a cross-sectional view taken along line BB in Fig. 50A
  • Fig. 50C is a cross-sectional view taken along line CC in Fig. 50A.
  • Fig. 50A is a plan view for explaining a manufacturing process of the display device according to the eighth embodiment
  • Fig. 50B is a cross-sectional view taken along line BB in Fig. 50A
  • Fig. 50C is a cross-sectional view taken along
  • FIG. 51A is a plan view for explaining a manufacturing process of the display device according to the eighth embodiment
  • Fig. 51B is a cross-sectional view taken along line BB in Fig. 51A
  • Fig. 51C is a cross-sectional view taken along line CC in Fig. 51A
  • Fig. 52A is a plan view for explaining a manufacturing process of the display device according to the eighth embodiment
  • Fig. 52B is a cross-sectional view taken along line BB in Fig. 52A
  • Fig. 52C is a cross-sectional view taken along line CC in Fig. 52A
  • FIG. 13 is a cross-sectional view of a display device according to a ninth embodiment.
  • FIG. 13 is a cross-sectional view of a display device according to a ninth embodiment.
  • FIG. 11 is a cross-sectional view of a display device according to a modified example.
  • FIG. 2 is an enlarged cross-sectional view of a light-emitting element.
  • 56A, 56B, and 56C are conceptual diagrams for explaining the relationship between a normal line LN passing through the center of the light-emitting portion, a normal line LN' passing through the center of the lens member, and a normal line LN" passing through the center of the wavelength selection portion, respectively.
  • FIG. 57 is a conceptual diagram for explaining the relationship between a normal line LN passing through the center of the light emitting portion, a normal line LN' passing through the center of the lens member, and a normal line LN" passing through the center of the wavelength selecting portion.
  • FIG. 58A and 58B are conceptual diagrams for explaining the relationship between a normal line LN passing through the center of the light-emitting portion, a normal line LN' passing through the center of the lens member, and a normal line LN" passing through the center of the wavelength selection portion, respectively.
  • FIG. 59 is a conceptual diagram for explaining the relationship between a normal line LN passing through the center of the light emitting portion, a normal line LN' passing through the center of the lens member, and a normal line LN" passing through the center of the wavelength selecting portion.
  • Fig. 60A is a schematic cross-sectional view for explaining a first example of a resonator structure
  • 60B is a schematic cross-sectional view for explaining a second example of a resonator structure.
  • Fig. 61A is a schematic cross-sectional view for explaining a third example of the resonator structure
  • Fig. 61B is a schematic cross-sectional view for explaining a fourth example of the resonator structure.
  • 62A and 62B are schematic cross-sectional views for explaining a fifth example of the resonator structure and a sixth example of the resonator structure, respectively.
  • FIG. 63 is a schematic cross-sectional view for explaining a seventh example of the resonator structure.
  • Fig. 64A is a front view of the digital still camera
  • Fig. 64B is a rear view of the digital still camera.
  • FIG. 65 is a perspective view of a head mounted display.
  • FIG. 66 is a perspective view of a television device.
  • Figure 67 is a perspective view of a see-through head mounted display.
  • FIG. 68 is a perspective view of a smartphone.
  • Fig. 69A is a diagram showing the interior of the vehicle from the rear to the front
  • Fig. 69B is a diagram showing the interior of the vehicle from the diagonally rear to the diagonally front.
  • FIG. 23 is an enlarged plan view showing a part of a display area of a display device according to a tenth embodiment. This is a cross-sectional view taken along line LXXI-LXXI in Figure 71.
  • FIG. 13A to 13C are manufacturing process diagrams of a display device according to a tenth embodiment.
  • 13A to 13C are manufacturing process diagrams of a display device according to a tenth embodiment.
  • 13A to 13C are manufacturing process diagrams of a display device according to a tenth embodiment.
  • 13A to 13C are manufacturing process diagrams of a display device according to a tenth embodiment.
  • 13A to 13C are manufacturing process diagrams of a display device according to a tenth embodiment.
  • 13A to 13C are manufacturing process diagrams of a display device according to a tenth embodiment.
  • 13A to 13C are manufacturing process diagrams of a display device according to a tenth embodiment.
  • FIG. 13A to 13C are manufacturing process diagrams of a display device according to a tenth embodiment.
  • FIG. 23 is an enlarged cross-sectional view of a display device according to a modified example of the tenth embodiment.
  • FIG. 23 is an enlarged cross-sectional view of a display device according to a modified example of the tenth embodiment.
  • FIG. 1 is a plan view of a display device 101 according to a first embodiment.
  • the display device 101 has a display area RE1 and a peripheral area RE2 provided around the display area RE1.
  • FIG. 2 is a plan view showing an enlarged portion of the display region RE1.
  • a plurality of sub-pixels 10R, 10G, 10B are two-dimensionally arranged in a prescribed arrangement pattern within the display region RE1.
  • the prescribed arrangement pattern may be, for example, a stripe arrangement, a delta arrangement, a square arrangement, a mosaic arrangement, or an arrangement other than these.
  • a pad section 101a and a driver (not shown) for displaying images are provided in the peripheral region RE2.
  • a flexible printed circuit (FPC) (not shown) may be connected to the pad section 101a.
  • Sub-pixel 10R can emit red light (first light).
  • Sub-pixel 10G can emit green light (second light).
  • Sub-pixel 10B can emit blue light (third light).
  • sub-pixel 10R, 10G, and 10B when sub-pixels 10R, 10G, and 10B are referred to collectively without any particular distinction, they may be referred to as sub-pixel 10.
  • One pixel may be composed of, for example, multiple sub-pixels 10R, 10G, and 10B adjacent in the in-plane direction of the display surface.
  • the configuration of one pixel is not limited to this example.
  • the shape of the subpixel 10 is not particularly limited, but examples include a quadrilateral shape such as a rectangular shape in a planar view, or a hexagonal shape, but is not limited to these shapes. In this specification, a rectangular shape is also considered to include a square shape.
  • the upper limit of the size of the subpixel 10 is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and even more preferably 5 ⁇ m or less, 4 ⁇ m or less, or 3.5 ⁇ m or less.
  • the lower limit of the size of the subpixel 10 is, for example, 1 ⁇ m or more.
  • the display device 101 is an example of a light-emitting device.
  • the display device 101 may be a top-emission OLED display device.
  • the display device 101 may be a microdisplay.
  • the display device 101 may be provided in a VR (Virtual Reality) device, an MR (Mixed Reality) device, an AR (Augmented Reality) device, an Electronic View Finder (EVF), a small projector, or the like.
  • FIG. 3 is a cross-sectional view taken along line III-III in Figure 2.
  • the display device 101 includes a drive substrate 11, a plurality of light-emitting elements (first light-emitting elements) 12R, a plurality of light-emitting elements (second light-emitting elements) 12G, a plurality of light-emitting elements (third light-emitting elements) 12B, a plurality of protective layers 13, a plurality of side protective layers 14, a plurality of side walls 15R, a plurality of side walls 15G, a plurality of side walls 15B, a protective layer 16, and a common electrode 17.
  • a planar view means a planar view when an object is viewed from a direction perpendicular to the first surface.
  • a cross-sectional view means a cross-sectional view when an object is viewed from a cut surface obtained by cutting the display device 101 with a surface that passes through the geometric center of the light-emitting element 12 and is parallel to the perpendicular line of the first surface.
  • the peripheral portion of the first surface means an area having a predetermined width extending inward from the peripheral portion of the first surface
  • the peripheral portion of the second surface means an area having a predetermined width extending inward from the peripheral portion of the second surface.
  • the light-emitting elements 12R, 12G, and 12B when the light-emitting elements 12R, 12G, and 12B are referred to collectively without any particular distinction, they may be referred to as the light-emitting element 12. Also, when the sidewalls 15R, 15G, and 15B are referred to collectively without any particular distinction, they may be referred to as the sidewall 15.
  • the driving substrate 11 is a so-called backplane, and drives the plurality of light emitting elements 12 R, 12 G, and 12 B.
  • the driving substrate 11 includes, for example, a substrate 111 and an insulating layer 112 in this order.
  • the substrate 111 may be made of, for example, a semiconductor that is easy to form transistors on, or may be made of glass or resin that has low moisture and oxygen permeability.
  • the substrate 111 may be a semiconductor substrate, a glass substrate, a resin substrate, or the like.
  • the semiconductor substrate includes, for example, amorphous silicon, polycrystalline silicon, or single crystal silicon.
  • the glass substrate includes, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, or quartz glass.
  • the resin substrate includes, for example, at least one selected from the group consisting of polymethyl methacrylate, polyvinyl alcohol, polyvinyl phenol, polyether sulfone, polyimide, polycarbonate, polyethylene terephthalate, and polyethylene naphthalate.
  • the insulating layer 112 may be provided on the first surface of the substrate 111, cover the multiple drive circuits and multiple wirings, and flatten the first surface of the drive substrate 11.
  • the insulating layer 112 may provide insulation between the multiple drive circuits and multiple wirings, etc., provided on the first surface of the substrate 111, and the multiple light-emitting elements 12.
  • the insulating layer 112 may be an organic insulating layer, an inorganic insulating layer, or a laminate of these.
  • the organic insulating layer includes at least one selected from the group consisting of polyimide resin, acrylic resin, novolac resin, etc.
  • the inorganic insulating layer includes at least one selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), etc.
  • the colors of the emitted light of the light-emitting element 12R, the light-emitting element 12G, and the light-emitting element 12B are different.
  • the light-emitting element 12R can emit red light based on the control of a drive circuit, etc.
  • the light-emitting element 12G can emit green light based on the control of a drive circuit, etc.
  • the light-emitting element 12B can emit blue light based on the control of a drive circuit, etc.
  • the light-emitting element 12 is an OLED (Organic Light Emitting Diode) element.
  • Light-emitting element 12R is included in sub-pixel 10R.
  • Light-emitting element 12G is included in sub-pixel 10G.
  • Light-emitting element 12B is included in sub-pixel 10B.
  • the multiple light-emitting elements 12 are two-dimensionally arranged in a specified arrangement pattern on the first surface of the drive substrate 11. The specified arrangement pattern is as described above as the specified arrangement pattern of the multiple sub-pixels 10.
  • Light-emitting element 12R has a first electrode 121, an OLED layer 122R, and a second electrode 123, in that order, on the first surface of drive substrate 11.
  • Light-emitting element 12G has a first electrode 121, an OLED layer 122G, and a second electrode 123, in that order, on the first surface of drive substrate 11.
  • Light-emitting element 12B has a first electrode 121, an OLED layer 122B, and a second electrode 123, in that order, on the first surface of drive substrate 11.
  • OLED layers 122R, 122G, 122B The OLED layer 122R can emit red light, the OLED layer 122G can emit green light, and the OLED layer 122B can emit blue light.
  • the OLED layers 122R, 122G, and 122B are examples of organic-containing layers in the claims.
  • the OLED layers 122R, 122G, and 122B are each provided between the first electrode 121 and the second electrode 123.
  • the OLED layer 122R includes an organic light-emitting layer capable of emitting red light (hereinafter referred to as the "red organic light-emitting layer”).
  • the OLED layer 122R includes an organic light-emitting layer capable of emitting green light (hereinafter referred to as the “green organic light-emitting layer”).
  • the OLED layer 122B includes an organic light-emitting layer capable of emitting blue light (hereinafter referred to as the "blue organic light-emitting layer”).
  • the OLED layers 122R, 122G, and 122B are referred to collectively without any particular distinction, they may be simply referred to as the OLED layer 122.
  • the red organic light-emitting layer, the green organic light-emitting layer, and the blue organic light-emitting layer are referred to collectively without any particular distinction, they may be simply referred to as the organic light-emitting layers.
  • the OLED layers 122R, 122G, and 122B may be formed of a laminate including an organic light-emitting layer, in which case some layers of the laminate (e.g., an electron injection layer) may be inorganic layers.
  • the OLED layers 122R, 122G, and 122B may have an organic-containing layer (e.g., an electron transport layer or an electron injection layer) on the surface side that contacts the second electrode 123.
  • an organic-containing layer e.g., an electron transport layer or an electron injection layer
  • OLED layer 122R for example, includes a hole injection layer, a hole transport layer, a red organic light-emitting layer, an electron transport layer, and an electron injection layer, in that order, from first electrode 121 to second electrode 123.
  • OLED layer 122G for example, includes a hole injection layer, a hole transport layer, a green organic light-emitting layer, an electron transport layer, and an electron injection layer, in that order, from first electrode 121 to second electrode 123.
  • OLED layer 122G for example, includes a hole injection layer, a hole transport layer, a blue organic light-emitting layer, an electron transport layer, and an electron injection layer, in that order, from first electrode 121 to second electrode 123.
  • the red organic light-emitting layer can emit red light due to recombination of holes injected from the first electrode 121 and electrons injected from the second electrode 123.
  • the green organic light-emitting layer can emit green light due to a phenomenon similar to that of the red organic light-emitting layer described above.
  • the blue organic light-emitting layer can emit blue light due to a phenomenon similar to that of the red organic light-emitting layer described above.
  • the hole injection layer can increase the efficiency of hole injection into the organic light-emitting layer of each color and suppress leakage.
  • the hole transport layer can increase the efficiency of hole transport into the organic light-emitting layer of each color.
  • the electron injection layer can increase the efficiency of electron injection into the organic light-emitting layer of each color.
  • the electron transport layer can increase the efficiency of electron transport into the organic light-emitting layer of each color.
  • the first electrode 121 is provided on the second surface side of the OLED layer 122.
  • the first electrode 121 is provided separately for the plurality of light emitting elements 12 in the display region RE1. That is, the first electrode 121 is divided between the light emitting elements 12 adjacent in the in-plane direction in the display region RE1.
  • the in-plane direction refers to the in-plane direction of the first surface of the drive substrate 11 unless otherwise specified.
  • the size of the first electrode 121 is larger than the size of the OLED layer 122 and the second electrode 123 in a planar view, and the side surface of the first electrode 121 is located outside the side surfaces of the OLED layer 122 and the second electrode 123.
  • the first electrode 121 is an anode.
  • holes are injected from the first electrode 121 to the OLED layer 122.
  • the first electrode 121 may be composed of, for example, a metal layer, or may be composed of a metal layer and a transparent conductive oxide layer.
  • the transparent conductive oxide layer is provided on the OLED layer 122 side, from the viewpoint of having a layer having a high work function adjacent to the OLED layer 122.
  • the metal layer also functions as a reflective layer that reflects the light emitted by the OLED layer 122.
  • the metal layer contains at least one metal element selected from the group consisting of, for example, chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), aluminum (Al), magnesium (Mg), iron (Fe), tungsten (W) and silver (Ag).
  • the metal layer may contain at least one of the above metal elements as a constituent element of an alloy. Specific examples of the alloy include an aluminum alloy or a silver alloy. Specific examples of the aluminum alloy include, for example, AlNd or AlCu.
  • a base layer may be provided adjacent to the second surface side of the metal layer.
  • the base layer is intended to improve the crystal orientation of the metal layer when the metal layer is formed.
  • the base layer contains at least one metal element selected from the group consisting of titanium (Ti) and tantalum (Ta), for example.
  • the base layer may contain the at least one metal element as a constituent element of an alloy.
  • the transparent conductive oxide layer includes a transparent conductive oxide.
  • the transparent conductive oxide includes at least one type selected from the group consisting of transparent conductive oxides containing indium (hereinafter referred to as "indium-based transparent conductive oxides"), transparent conductive oxides containing tin (hereinafter referred to as “tin-based transparent conductive oxides”), and transparent conductive oxides containing zinc (hereinafter referred to as “zinc-based transparent conductive oxides").
  • Indium-based transparent conductive oxides include, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), indium gallium zinc oxide (IGZO) or fluorine-doped indium oxide (IFO).
  • ITO indium tin oxide
  • ITO indium zinc oxide
  • IGO indium gallium oxide
  • IGZO indium gallium zinc oxide
  • ITO indium tin oxide
  • ITO indium tin oxide
  • ITO has a particularly low work function barrier for hole injection into the OLED layers 122R, 122G, and 122B, and therefore the driving voltage of the display device 101 can be particularly reduced.
  • Tin-based transparent conductive oxides include, for example, tin oxide, antimony-doped tin oxide (ATO) or fluorine-doped tin oxide (FTO).
  • Zinc-based transparent conductive oxides include, for example, zinc oxide, aluminum-doped zinc oxide (AZO), boron-doped zinc oxide, or gallium-doped zinc oxide (GZO).
  • the second electrode 123 is provided on the first surface side of the OLED layer 122.
  • the second electrode 123 is provided separately for the plurality of light emitting elements 12 in the display region RE1. That is, the second electrode 123 is divided between the light emitting elements 12 adjacent in the in-plane direction in the display region RE1.
  • the second electrode 123 has approximately the same size as the OLED layer 122 in a plan view.
  • the side surface of the second electrode 123 and the side surface of the OLED layer 122 are approximately flush with each other.
  • the second electrode 123 is a cathode. When a voltage is applied between the first electrode 121 and the second electrode 123, electrons are injected from the second electrode 123 into the OLED layer 122.
  • the second electrode 123 is translucent to the light emitted from the OLED layers 122R, 122G, and 122B.
  • the second electrode 123 is preferably a transparent electrode that is transparent to visible light. In this specification, visible light refers to light in the wavelength range of 360 nm or more and 830 nm or more.
  • the second electrode 123 is preferably made of a material with as high a light transmittance as possible and a small work function in order to increase the light emission efficiency.
  • the second electrode 123 is made of, for example, at least one layer of a metal layer and a transparent conductive oxide layer. More specifically, the second electrode 123 is made of a single layer film of a metal layer or a transparent conductive oxide layer, or a laminated film of a metal layer and a transparent conductive oxide layer.
  • the metal layer may be provided on the OLED layer 122 side, or the transparent conductive oxide layer may be provided on the OLED layer 122 side. However, from the viewpoint of having a layer with a low work function adjacent to the OLED layer 122, it is preferable that the metal layer is provided on the OLED layer 122 side.
  • the etching rate of the second electrode 123 is preferably smaller than the etching rate of the protective layer 13.
  • the protective layer 13 is more likely to be side-etched.
  • a step 123S is more likely to be formed between the side surface of the protective layer 13 and the side surface of the second electrode 123.
  • the second electrode 123 may be made of a material that is difficult to etch.
  • the metal layer contains at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), calcium (Ca) and sodium (Na).
  • the metal layer may contain at least one of the metal elements as a constituent element of an alloy. Specific examples of the alloy include an MgAg alloy, an MgAl alloy, and an AlLi alloy.
  • the transparent conductive oxide layer contains a transparent conductive oxide. Examples of the transparent conductive oxide include materials similar to the transparent conductive oxide of the first electrode 121 described above.
  • (Protective Layer 13) 4 is a cross-sectional view showing an enlarged portion of the light-emitting element 12R.
  • the protective layer 13 is provided on the first surface of the second electrode 123.
  • the protective layer 13, together with the second electrode 123, is separated between adjacent light-emitting elements 12. It is preferable that the side surface of the protective layer 13 is located inside the side surface of the second electrode 123 in the in-plane direction.
  • the side surface of the protective layer 13 being located inside the side surface of the second electrode 123 in the in-plane direction means that the periphery of the second surface of the protective layer 13 is located inside the periphery of the first surface of the second electrode 123 in the in-plane direction.
  • step 123S is provided between the side surface of protective layer 13 and the side surface of second electrode 123.
  • Step 123S is configured by an exposed portion where the peripheral portion of the first surface of second electrode 123 is exposed and not covered by protective layer 13.
  • the exposed portion may have a closed loop shape that surrounds the entire peripheral portion of the second surface of protective layer 13, or may have a partially interrupted loop shape that partially surrounds the peripheral portion of the second surface of protective layer 13.
  • the step 123S between the side of the protective layer 13 and the side of the second electrode 123, a deposit can be deposited on the step 123S in the processing step of the protective layer 13, the second electrode 123, and the OLED layer 122. Therefore, compared to the case where the step 123S is not provided between the side of the protective layer 13 and the side of the second electrode 123, that is, compared to the case where the side of the protective layer 13 and the side of the second electrode 123 are flush with each other, the amount of deposit deposited near the step 123S can be increased in the processing step of the protective layer 13, the second electrode 123, and the OLED layer 122. In other words, the thickness of the side protective layer 14 near the step 123S can be increased. Therefore, peeling between the OLED layer 122 and the second electrode 123 can be suppressed.
  • the vicinity of the step 123S includes the boundary between the side of the second electrode 123 and the side of the OLED layer 122.
  • the width W of step 123S is preferably 50 nm or more, more preferably 60 nm or more, and even more preferably 70 nm or more, 80 nm or more, 90 nm or more, or 100 nm or more, from the viewpoint of increasing the amount of deposition of deposits near step 123S.
  • the width W of the step 123S is preferably 200 nm or less, more preferably 180 nm or less, and even more preferably 160 nm or less, 140 nm or less, or 120 nm or less, from the viewpoint of suppressing a reduction in the area of the light-emitting region of the light-emitting element 12.
  • the width W of step 123S is determined as follows. First, a cross section (a cross section parallel to the thickness direction of display device 101) is cut out of display device 101 by cryo-FIB (Focused Ion Beam) processing or the like to prepare a thin slice. Next, the prepared thin slice is observed with a TEM (Transmission Electron Microscope) to obtain a cross-sectional TEM image. Next, the width W of step 123S is measured in the obtained cross-sectional TEM image.
  • the sidewall of the protective layer 13 may be perpendicular to the first surface of the second electrode 123 or may be inclined.
  • the sidewall of the protective layer 13 may have a forward taper shape or a reverse taper shape.
  • a forward taper refers to a shape in which the first surface side (upper surface side) of the protective layer 13 is narrower than the second surface side (lower surface side) of the protective layer 13
  • a reverse taper refers to a shape in which the first surface side (upper surface side) of the protective layer 13 is wider than the second surface side (lower surface side).
  • the protective layer 13 can protect the first surface of the light-emitting element 12.
  • the protective layer 13 can prevent moisture from entering the display device 101 from the external environment, and prevent deterioration of the multiple light-emitting elements 12.
  • the protective layer 13 may have a function of preventing oxidation of this metal layer.
  • the protective layer 13 is translucent to the light emitted from the light-emitting elements 12R, 12G, and 12B. It is preferable that the protective layer 13 is transparent to visible light.
  • the protective layer 13 includes, for example, an inorganic material or a polymer resin having low hygroscopicity.
  • the protective layer 13 may have a single-layer structure or a multi-layer structure. When the thickness of the protective layer 13 is increased, it is preferable to use a multi-layer structure. This is to relieve internal stress in the protective layer 13.
  • the inorganic material includes, for example, at least one selected from the group consisting of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), titanium oxide (TiO x ), and aluminum oxide (AlO x ).
  • the polymer resin includes, for example, at least one selected from the group consisting of a thermosetting resin and an ultraviolet-curing resin.
  • the polymer resin includes, for example, at least one selected from the group consisting of an acrylic resin, a polyimide resin, a novolac resin, an epoxy resin, a norbornene resin, and a parylene resin.
  • the side protective layer 14 covers at least the boundary between the side of the OLED layer 122 and the side of the second electrode 123. This can suppress the influence of the film stress of the protective layer 13 on the interface between the OLED layer 122 and the second electrode 123.
  • the side protective layer 14 may cover the range from the side of the OLED layer 122 to the side of the protective layer 13. More specifically, the side protective layer 14 may cover the side of the OLED layer 122, the side of the second electrode 123, the step 123S (the peripheral portion of the second surface of the second electrode 123), and the side of the protective layer 13.
  • the side protective layer 14 may cover the entire side of the protective layer 13, or may cover the side of the protective layer 13 in a range from the peripheral portion of the second surface of the protective layer 13 to a specified height.
  • the side protective layer 14 may have a closed loop shape or a partially disconnected loop shape in a plan view.
  • the side protection layer 14 can protect the side of the light-emitting element 12.
  • the side protection layer 14 may be able to suppress the intrusion of moisture from the external environment into the inside of the light-emitting element 12 and suppress deterioration of the light-emitting element 12.
  • the side protection layer 14 is translucent to the respective lights emitted from the light-emitting elements 12R, 12G, and 12B. It is preferable that the side protection layer 14 is transparent to visible light. It is preferable that the side protection layer 14 is insulating.
  • the side protective layer 14 may include a deposit deposited by etching the protective layer 13, the second electrode 123, and the OLED layer 122, or may include a deposit deposited by etching the protective layer 13, the second electrode 123, the OLED layer 122, and the first electrode 121.
  • the side protective layer 14 may include the constituent material of the protective layer 13, the constituent material of the second electrode 123, and the constituent material of the OLED layer 122, or may include the constituent material of the protective layer 13, the constituent material of the second electrode 123, the constituent material of the OLED layer 122, and the constituent material of the first electrode 121.
  • the constituent material of the protective layer 13 contained in the side protective layer 14 may be a part of, or all of, the constituent material of the protective layer 13.
  • the constituent material of the second electrode 123 contained in the side protective layer 14 may be a part of, or all of, the constituent material of the second electrode 123.
  • the constituent material of the OLED layer 122 contained in the side protective layer 14 may be a part of, or all of, the constituent material of the OLED layer 122.
  • the constituent material of the first electrode 121 contained in the side protective layer 14 may be a part of, or all of, the constituent material of the first electrode 121.
  • the sidewall 15R covers the side surface of the light emitting element 12R and the protective layer 13 on which the side surface protective layer 14 is provided.
  • the sidewall 15R is preferably insulating.
  • the sidewall 15R may be composed of a first sidewall 151.
  • the first sidewall 151 is provided on the peripheral portion of the first surface of the first electrode 121 and covers the side surface protective layer 14.
  • the sidewall 15G covers the side surfaces of the light-emitting element 12G on which the side protective layer 14 is provided and the protective layer 13.
  • the sidewall 15G is preferably insulating.
  • the sidewall 15G may be composed of a first sidewall 151 and a second sidewall 152.
  • the second sidewall 152 is provided on the first surface of the drive substrate 11, and covers the side surface of the first electrode 121 and the side surface of the first sidewall 151.
  • Sidewall 15B covers the side surfaces of light-emitting element 12B and protective layer 13 on which side protective layer 14 is provided. Sidewall 15B is preferably insulating. Sidewall 15G may be composed of first sidewall 151, second sidewall 152, and third sidewall 153. Third sidewall 153 is provided on the first surface of drive substrate 11 and covers the side surface of second sidewall 152.
  • the first sidewall 151, the second sidewall 152, and the third sidewall 153 may be translucent to the light emitted from the light emitting elements 12R, 12G, and 12B. It is preferable that the first sidewall 151, the second sidewall 152, and the third sidewall 153 are transparent to visible light.
  • the first sidewall 151, the second sidewall 152, and the third sidewall 153 contain, for example, an inorganic material with low hygroscopicity.
  • examples of the inorganic material include the same inorganic material as that of the protective layer 13 described above.
  • the materials of the first sidewall 151, the second sidewall 152, and the third sidewall 153 may be the same or different.
  • the protective layer 16 is provided on the first surface of the driving substrate 11 so as to cover the plurality of light-emitting elements 12 each having a sidewall 15.
  • the protective layer 16 can protect the plurality of light-emitting elements 12 and the like.
  • the protective layer 16 can suppress the intrusion of moisture from the external environment into the light-emitting device 101 and suppress deterioration of the plurality of light-emitting elements 12 and the like.
  • the protective layer 16 is translucent to the respective lights emitted from the light-emitting elements 12R, 12G, and 12B. It is preferable that the protective layer 16 is transparent to visible light.
  • the protective layer 16 has a plurality of contact holes 161. Each contact hole 161 extends from the first surface of the protective layer 16 to the second surface of the light-emitting element 12.
  • the contact holes 161 may be provided within the light-emitting region of the light-emitting element 12 in a planar view, or may be provided outside the light-emitting region of the light-emitting element 12 in a planar view.
  • Figures 2 and 3 show an example in which the contact holes 161 are provided within the light-emitting region of the light-emitting element 12 in a planar view.
  • the protective layer 16 contains, for example, an inorganic material or a polymer resin with low moisture absorption.
  • the protective layer 16 may have a single-layer structure or a multi-layer structure. When the thickness of the protective layer 16 is to be increased, a multi-layer structure is preferable. This is to relieve internal stress in the protective layer 16.
  • inorganic materials include the same inorganic materials as those of the protective layer 13 described above.
  • polymer resins include the same polymer resins as those of the protective layer 13 described above.
  • the common electrode 17 is provided on the first surface of the protective layer 16.
  • the common electrode 17 is connected between the light emitting elements 12 adjacent in the in-plane direction in the display region RE1, and is a common electrode for the plurality of light emitting elements 12 provided in the display region RE1.
  • the common electrode 17 is translucent to the respective lights emitted from the light emitting elements 12R, 12G, and 12B. It is preferable that the common electrode 17 is transparent to visible light.
  • the common electrode 17 is extended from the display region RE1 to the peripheral region RE2.
  • the periphery of the common electrode 17 is connected to a contact electrode (not shown).
  • the contact electrode is provided on the periphery of the first surface of the drive substrate 11.
  • the contact electrode is an auxiliary electrode that connects the common electrode 17 to the wiring of the drive substrate 11.
  • the common electrode 17 is connected to each of the second electrodes 123 separated for each subpixel 10.
  • the common electrode 17 has a plurality of contact parts 171, and the plurality of contact parts 171 are each provided in a contact hole 161 of the protective layer 16.
  • the tips of the plurality of contact parts 171 are each connected to the first surface of the second electrode 123 separated for each subpixel 10.
  • the connection form between the contact parts 171 and the second electrode 123 is not limited to this example, and for example, the contact part 171 may be connected to the side of the second electrode 123. In FIG. 2 and FIG. 3, an example in which one contact part 171 is provided for one subpixel 10 is shown, but two or more contact parts 171 may be provided for one subpixel 10.
  • a metal layer (e.g., an aluminum layer with a thickness of about 200 nm) is formed on the first surface of the drive substrate 11, for example, by using a sputtering method, and then the metal layer is patterned, for example, by using photolithography and dry etching. As a result, a plurality of first electrodes 121 are formed on the first surface of the drive substrate 11.
  • a hole injection layer, a hole transport layer, a blue organic light-emitting layer, an electron transport layer, and an electron injection layer are laminated in this order on the first surfaces of the first electrodes 121 and the first surface of the drive substrate 11, for example, by using a vapor deposition method, to form the OLED layer 122B.
  • a second electrode (for example, an IZO layer with a thickness of about 60 nm) 123 is formed on the first surface of the OLED layer 122B, for example, by using a vapor deposition method or a sputtering method.
  • a protective layer e.g., a silicon nitride layer with a thickness of about 1 ⁇ m
  • a CVD Chemical Vapor Deposition
  • the protective layer 13, the second electrode 123, and the OLED layer 122B other than the multiple sub-pixels 10B are removed by using, for example, photolithography and dry etching, to form multiple light-emitting elements 12B on the first surface of the drive substrate 11.
  • a side protective layer 14 is formed from the side of the OLED layer 122B to the side of the protective layer 13.
  • the multiple light-emitting elements 12B and side protection layer 14 are formed as follows. A resist is applied onto the first surface of the protection layer 13 and cured to form a resist layer 81, which is then exposed and developed. As a result, island-shaped resist layers 81 remain in positions corresponding to the multiple sub-pixels 10B.
  • the protective layer 13, the second electrode 123, and the OLED layer 122B are sequentially processed by dry etching to remove the protective layer 13, the second electrode 123, and the OLED layer 122B in portions other than the plurality of subpixels 10B.
  • the protective layer 13 is dry etched, the protective layer 13 is side-etched, and the protective layer 13 located below the peripheral portion of the resist layer 81 is removed, forming a side-etched portion 131.
  • a step 123S can be formed between the side surface of the protective layer 13 and the side surface of the second electrode 123.
  • the constituent materials of the protective layer 13, the second electrode 123, and the OLED layer 122B that are repelled by ions are deposited in the side etching portion 131, and also on the side surfaces of the second electrode 123 and the OLED 122B, forming the side protective layer 14.
  • the resist layer 81 that protrudes like an eaves covers the top of the step 123S, suppressing the incidence of ions on the deposits deposited in the side etching portion 131. This makes it possible to increase the deposits deposited on the step 123S and in the vicinity of the step 123S.
  • the vicinity of the step 123S includes the boundary between the side surface of the second electrode 123 and the side surface of the OLED layer 122B.
  • an insulating layer e.g., a silicon nitride layer having a thickness of about 100 nm
  • the insulating layer is etched back, for example, by using dry etching, to form a plurality of sidewalls 15B, as shown in FIG. 5C.
  • a plurality of light-emitting elements 12R, a plurality of light-emitting elements 12G, a plurality of sidewalls 15R, and a plurality of sidewalls 15G are formed on the first surface of the drive substrate 11, as shown in FIG. 5D.
  • a protective layer e.g., a silicon nitride layer
  • a CVD method so as to cover the plurality of light-emitting elements 12R, 12G, and 12B.
  • the first surface of the protective layer 16 may be polished and flattened by, for example, CMP (Chemical Mechanical Polishing).
  • the protective layer 16 and the protective layer 13 are processed by, for example, photolithography and dry etching, and contact holes 161 are formed on each of the plurality of light-emitting elements 12R, 12G, and 12B.
  • a common electrode 17 (e.g., an IZO layer) is formed on the first surface of the protective layer 16 and in the contact hole 161 by, for example, a vapor deposition method or a sputtering method. In this manner, the display device 101 is obtained.
  • a common electrode 17 e.g., an IZO layer
  • the side surface protection layer 14 covers at least the boundary between the side surface of the OLED layer 122 and the side surface of the second electrode 123. This makes it possible to suppress the effect of film stress of the protection layer 13 on the interface between the OLED layer 122 and the second electrode 123. This makes it possible to suppress peeling between the OLED layer 122 and the second electrode 123. This makes it possible to suppress an increase in the driving voltage of the light-emitting element 12.
  • the side protective layer 14 covers the side of the OLED layer 122, the side of the second electrode 123, and the side of the protective layer 13, it is preferable that the side of the protective layer 13 is located inside the side of the second electrode 123 in the in-plane direction, and a step 123S is formed between the side of the protective layer 13 and the side of the second electrode 123.
  • This allows deposits to be deposited on the step 123S when processing the protective layer 13, the second electrode 123, and the OLED layer 122 by etching. Therefore, compared to when the step 123S does not exist, the amount of deposits deposited near the step 123S can be increased, and the thickness of the side protective layer 14 near the step 123S can be increased. Therefore, peeling between the OLED layer 122 and the second electrode 123 can be suppressed. Therefore, the increase in the driving voltage of the display device 101 can be further suppressed.
  • Fig. 6 is an enlarged plan view showing a part of the display region RE1 of the display device 102 according to the second embodiment.
  • Fig. 7 is a cross-sectional view taken along line VII-VII in Fig. 6.
  • the display device 102 differs from the display device 101 according to the first embodiment in that it further includes a protective layer 18.
  • Protective layer 18 is provided on the first surface of protective layer 13.
  • the protective layer having a laminated structure is composed of protective layer 13 and protective layer 18.
  • protective layer 13 is an example of the first protective layer in the claims
  • protective layer 18 is an example of the second protective layer in the claims.
  • the side surface of protective layer 18 may be located outside the side surface of protective layer 13 in the in-plane direction.
  • the peripheral edge of protective layer 18 may protrude in a brim-like shape relative to the side surface of protective layer 13.
  • the brim-like protruding portion may have a closed loop shape in a plan view.
  • the protective layer 18 can protect the first surface of the light-emitting element 12 together with the protective layer 13. For example, the protective layer 18 can suppress the intrusion of moisture from the external environment into the interior of the multiple light-emitting elements 12.
  • the protective layer 18 is translucent to the lights emitted from the light-emitting elements 12R, 12G, and 12B. It is preferable that the protective layer 18 is transparent to visible light.
  • the protective layer 18 may be configured so as to be usable as a hard mask in the manufacturing process of the display device 102.
  • the protective layer 18 preferably includes a monolayer.
  • the protective layer 18 may be composed of a monolayer deposit. More specifically, the protective layer 18 may be an ALD (Atomic Layer Deposition) layer.
  • ALD Atomic Layer Deposition
  • the protective layer 18 includes a monolayer, the effect of the protective layer 18 in suppressing moisture penetration can be improved.
  • the etching rate of protective layer 18 is preferably smaller than the etching rate of protective layer 13. In this case, protective layer 13 is more likely to be side-etched in the process of processing protective layer 13 by etching using protective layer 18 as a hard mask.
  • Protective layer 18 may be made of a material that is difficult to etch.
  • the protective layer 18 includes, for example, an inorganic material having low hygroscopicity.
  • the inorganic material includes, for example, a metal oxide. More specifically, the inorganic material includes, for example, aluminum oxide (AlO x ) or titanium oxide (TiO x ).
  • the steps from the step of forming the first electrode 121 to the step of forming the protective layer 13 are carried out in the same manner as in the manufacturing method of the display device 101 according to the first embodiment (see FIG. 5A).
  • the protective layer 13 may be, for example, a SiN layer having a thickness of about 200 nm.
  • a protective layer (aluminum oxide layer having a thickness of about 60 nm) 18 is formed on the first surface of the protective layer 13 by using, for example, a CVD method, as shown in FIG. 8A.
  • the protective layer 18 is processed using, for example, photolithography and dry etching. As a result, as shown in FIG. 8B, a plurality of island-shaped protective layers 18 remain at positions corresponding to a plurality of sub-pixels 10B. Next, the resist layer (not shown) on the first surfaces of the plurality of protective layers 18 is removed by, for example, ashing.
  • the protective layer 13, the OLED layer 122B, and the second electrode 123 in the portions other than the subpixels 10B are removed by dry etching using the multiple protective layers 18 as a hard mask.
  • multiple light-emitting elements 12B are formed on the first surface of the drive substrate 11, as shown in FIG. 8C.
  • the side protective layer 14 is formed from the side of the OLED layer 122B to the side of the protective layer 13.
  • the constituent materials of the protective layer 13, the second electrode 123, and the OLED layer 122B are repelled by ions and deposited in the side etching portion 131, as well as on the side surfaces of the second electrode 123 and the side surfaces of the OLED layer 122B, forming the side protective layer 14.
  • the overhanging protective layer (hard mask) 18 covers the step 123S, suppressing the incidence of ions on the deposit deposited in the side etching portion 131. This makes it possible to increase the deposit deposited on the step 123S and in the vicinity of the step 123S.
  • a protective layer e.g., a silicon nitride layer having a thickness of about 100 nm
  • the protective layer is etched back, for example, by using dry etching, to form the first sidewall 151, as shown in FIG. 8D.
  • a plurality of light-emitting elements 12R, a plurality of light-emitting elements 12G, a plurality of sidewalls 15R, and a plurality of sidewalls 15G are formed on the first surface of the drive substrate 11, as shown in FIG. 8E.
  • a protective layer e.g., a silicon nitride layer
  • a CVD method so as to cover the plurality of light-emitting elements 12R, 12G, and 12B.
  • the first surface of the protective layer 16 may be polished and flattened by, for example, CMP (Chemical Mechanical Polishing).
  • the protective layer 16, the protective layer 18, and the protective layer 13 are processed by, for example, photolithography and dry etching, and contact holes 161 are formed on each of the plurality of light-emitting elements 12R, 12G, and 12B.
  • a common electrode 17 (e.g., an IZO layer) is formed on the first surface of the protective layer 16 and in the contact hole 161 by, for example, a vapor deposition method or a sputtering method. In this manner, the display device 102 is obtained.
  • a common electrode 17 e.g., an IZO layer
  • a hard mask e.g., a silicon nitride layer with a thickness of about 800 nm
  • a CVD method is formed on the first surface of the protective layer 18 using, for example, a CVD method.
  • a resist layer 83 is formed on the first surface of the hard mask 82 by, for example, photolithography, and then the hard mask 82 is processed through the resist layer 83 by, for example, dry etching. As a result, as shown in FIG. 9B, a plurality of island-shaped hard masks 82 remain at positions corresponding to a plurality of sub-pixels 10B. Next, as shown in FIG. 9C, the resist layer 83 on the plurality of hard masks 82 is removed by, for example, ashing.
  • the protective layer 18, the protective layer 13, the second electrode 123, and the OLED layer 122B are processed through the multiple hard masks 82, for example, by dry etching.
  • the protective layer 18, the protective layer 13, the second electrode 123, and the OLED layer 122B are removed from the portions other than the multiple subpixels 10B, and multiple light-emitting elements 12B are formed on the first surface of the drive substrate 11.
  • the side protective layer 14 is formed from the side of the OLED layer 122B to the side of the protective layer 13.
  • the mechanism by which the side protective layer 14 is formed by deposits during etching of the protective layer 13, the second electrode 123, and the OLED layer 122B is as described in the first example above.
  • the sidewall 15B is formed in the same manner as in the first example above.
  • a plurality of light-emitting elements 12R, a plurality of light-emitting elements 12G, a plurality of sidewalls 15R and a plurality of sidewalls 15G are formed on the first surface of the drive substrate 11 in a procedure similar to the process of forming the light-emitting elements 12B and sidewalls 15B described above.
  • the processes from the process of forming the protective layer 16 to the process of forming the common electrode 17 are carried out in the same manner as in the first example above. In this manner, the display device 102 is obtained.
  • the steps from the formation of the first electrode 121 to the removal of the resist layer 83 are carried out in the same manner as in the second example above (see Figures 9A to 9C).
  • the protective layer 18 is processed through the hard mask 82, for example, by dry etching, and then the protective layer 13, the second electrode, and the OLED layer 122B are processed using the laminate consisting of the hard mask 82 and the processed protective layer 18 as a hard mask. During this processing, the hard mask 82 is removed, and the first surface of the protective layer 18 is exposed, as shown in Figure 10.
  • the sidewall 15B is formed in the same manner as in the first example above.
  • a plurality of light-emitting elements 12R, a plurality of light-emitting elements 12G, a plurality of sidewalls 15R and a plurality of sidewalls 15G are formed on the first surface of the drive substrate 11 in a procedure similar to the process of forming the light-emitting elements 12B and sidewalls 15B described above.
  • the processes from the process of forming the protective layer 16 to the process of forming the common electrode 17 are carried out in the same manner as in the first example above. In this manner, the display device 102 is obtained.
  • FIG. 11 is a cross-sectional view of a display device 701 of a reference example in which the OLED layer 712W is separated for each light-emitting element 711W.
  • FIG. 12 is a cross-sectional view showing an enlarged light-emitting element 711W.
  • the light-emitting element 711W includes a first electrode 121, an OLED layer 712W, and a second electrode 123, which are arranged in this order on the first surface of the driving substrate 11.
  • the first electrode 121, the OLED layer 712W, and the second electrode 123 are provided separately for a plurality of light-emitting elements 711W.
  • the first electrode 121, the OLED layer 712W, and the second electrode 123 are each separated between adjacent light-emitting elements 711W in the in-plane direction.
  • the periphery of the first surface of the first electrode 121 and the side of the first electrode 121 are covered with an insulating layer 713.
  • the insulating layer 713 is provided to improve the reliability of the light-emitting element 71W.
  • peeling 714 may occur between the peripheral edge of the second electrode 123 and the OLED layer 712W.
  • the driving voltage of the light-emitting element 71W becomes high.
  • the display device 101 according to the first embodiment and the display device 102 according to the second embodiment can also suppress the occurrence of the above-mentioned peeling.
  • Fig. 13 is a plan view showing an enlarged portion of the display region RE1 of the display device 103 according to the third embodiment.
  • Fig. 14 is a cross-sectional view taken along line XIV-XIV in Fig. 13.
  • the display device 103 includes a drive substrate 11, a plurality of light-emitting elements 19W, a first insulating layer 211, a second insulating layer 212, a protective layer 20, a side protective layer 22, a protective layer 16, a common electrode 17, a protective layer 23, and a color filter 24.
  • the same reference numerals are used for the same parts as those in the first embodiment, and the description thereof will be omitted.
  • the display device 103 includes the first insulating layer 211 and the second insulating layer 212, but the display device 103 may include only at least one of the first insulating layer 211 and the second insulating layer 212.
  • the light-emitting element 19W can emit white light.
  • the light-emitting element 19W is a white OLED element, and can emit white light based on the control of a drive circuit or the like.
  • the light-emitting element 19W includes a first electrode 191, an OLED layer 192W, and a second electrode 193, which are arranged in this order on the first surface of the drive substrate 11.
  • the side surface of the OLED layer 192W, the side surface of the second electrode 193, and the side surface of the protective layer 20 are substantially flush with each other.
  • the OLED layer 192W is provided separately for the plurality of light emitting elements 19W in the display region RE1. That is, the OLED layer 192W is divided between the light emitting elements 19W adjacent in the in-plane direction in the display region RE1.
  • the OLED layer 192W may have substantially the same size as the first electrode 121 in a plan view, or may have a size smaller than the first electrode 121 or a size larger than the first electrode 121.
  • the OLED layer 192W can emit white light.
  • the OLED layer 192W may be an OLED layer having a single layer of light-emitting units, an OLED layer having two layers of light-emitting units (tandem structure), or an OLED layer having a structure other than these.
  • the OLED layer having a single layer of light-emitting units has a configuration in which, for example, a hole injection layer, a hole transport layer, a red organic light-emitting layer, a light-emitting separation layer, a blue organic light-emitting layer, a green organic light-emitting layer, an electron transport layer, and an electron injection layer are stacked in this order from the first electrode 121 to the second electrode 193.
  • the OLED layer having two layers of light-emitting units may have a configuration in which, for example, a hole injection layer, a hole transport layer, a blue organic light-emitting layer, an electron transport layer, a charge generation layer, a hole transport layer, a yellow organic light-emitting layer, an electron transport layer, and an electron injection layer are stacked in this order from the first electrode 121 to the second electrode 193.
  • the light-emitting separation layer is a layer for adjusting the injection of carriers into each light-emitting layer, and the light emission balance of each color is adjusted by injecting electrons and holes into each light-emitting layer through the light-emitting separation layer.
  • the charge generation layer can supply electrons and holes to the two light-emitting layers arranged to sandwich the charge generation layer. When an electric field is applied, the holes injected from the charge generation layer recombine with the electrons injected from the second electrode 193 or the charge generation layer, and the yellow organic light-emitting layer can emit yellow light.
  • the layers other than the light-emitting separation layer, the charge generation layer, and the yellow organic light-emitting layer are as described in the first embodiment.
  • the first electrode 191 is similar to the first electrode 21 in the first embodiment.
  • the second electrode 193 has substantially the same size as the first electrode 191 in a plan view. In other respects, the second electrode 193 may be similar to the second electrode 123 in the first embodiment.
  • the protective layer 20 has approximately the same size as the second electrode 193 in a plan view, and the side surface of the protective layer 20 is approximately flush with the side surface of the second electrode 193. In other respects, the protective layer 20 may be similar to the protective layer 13 in the first embodiment.
  • the first insulating layer 211 is provided on the first surface of the driving substrate 11 in a portion between the separated first electrodes 191.
  • the first insulating layer 211 insulates between adjacent first electrodes 191.
  • the first insulating layer 211 has a plurality of openings 211a.
  • the plurality of openings 211a are provided corresponding to the respective light emitting elements 19W.
  • the plurality of first electrodes 191 are provided in the respective openings 211a.
  • the plurality of openings 211a may be provided on the first surface (the surface on the OLED layer 192W side) of each of the first electrodes 191. In this case, the first electrodes 191 and the OLED layer 192W are in contact with each other through the openings 211a.
  • the first insulating layer 211 preferably has high moisture resistance.
  • the first insulating layer 211 includes, for example, a metal oxide.
  • the metal oxide includes, for example, at least one selected from the group consisting of zirconium oxide (ZrO x ), tantalum oxide (TaO x ), aluminum oxide (AlO x ), and the like.
  • the second insulating layer 212 is provided on the peripheral portion of the first surface of the first electrode 191.
  • the second insulating layer 212 may be provided on both the peripheral portion of the first surface of the first electrode 191 and the peripheral portion of the opening in the first surface of the first insulating layer 211.
  • the opening peripheral portion of the first surface refers to a region having a predetermined width extending outward from the peripheral portion of the opening 211a in the first surface.
  • the second insulating layer 212 preferably has high moisture resistance.
  • the second insulating layer 212 includes, for example, a metal oxide and a metal nitride.
  • the metal oxide includes, for example, at least one selected from the group consisting of silicon oxide (SiO x ) and silicon oxynitride (SiO x N y ).
  • the metal nitride includes, for example, silicon nitride (SiN x ).
  • the side protective layer 22 is a sidewall-shaped insulating layer.
  • the side protective layer 22 covers the range from the side of the OLED layer 192W to the side of the protective layer 20. More specifically, the side protective layer 22 covers the side of the OLED layer 192W, the side of the second electrode 193, and the side of the protective layer 20. This makes it possible to suppress the influence of the film stress of the protective layer 20 on the interface between the OLED layer 192W and the second electrode 193.
  • the side protective layer 22 may cover the entire side of the protective layer 20, or may cover the side of the protective layer 20 in a range from the periphery of the second surface of the protective layer 20 to a specified height.
  • the side protective layer 22 may have a closed loop shape or a partially disconnected loop shape in a plan view.
  • the side protection layer 22 can protect the side of the light-emitting element 19W.
  • the side protection layer 22 may be able to suppress the intrusion of moisture from the external environment into the interior of the multiple light-emitting elements 19W and suppress deterioration of the light-emitting elements 19W.
  • the side protection layer 22 is translucent to the white light emitted from the light-emitting element 19W. It is preferable that the side protection layer 22 is transparent to visible light.
  • the side protective layer 22 has a multi-layer structure.
  • the side protective layer 22 includes a first side protective layer 221 and a second side protective layer 222.
  • the first side protective layer 221 is provided on a side of the light emitting element 19W.
  • the first side protective layer 221 may include a deposit deposited by dry etching the second insulating layer 212.
  • the first side protective layer 221 may include the same material as the second insulating layer 212. More specifically, the first side protective layer 221 may include a portion of the constituent material of the second insulating layer 212, or may include all of the constituent material of the second insulating layer 212.
  • the refractive index of the first side protective layer 221 is preferably lower than that of the protective layer 20.
  • the refractive index of the first side protective layer 221 lower than that of the protective layer 20.
  • the refractive index refers to the refractive index for light with a wavelength of 589.3 nm (the D line of sodium).
  • the second side protective layer 222 is provided on the first side protective layer 221.
  • the second side protective layer 222 may include a deposit deposited by dry etching the first insulating layer 211.
  • the second side protective layer 222 may include the same material as the first insulating layer 211. More specifically, the second side protective layer 222 may include a portion of the constituent material of the first insulating layer 211, or may include all of the constituent material of the first insulating layer 211.
  • the protective layer 23 is provided on the first surface of the common electrode 17.
  • the protective layer 23 can fill the unevenness of the first surface of the common electrode 17 and form a flat first surface above the common electrode 17.
  • the protective layer 23 can protect the common electrode 17 and the plurality of light-emitting elements 19W, etc.
  • the protective layer 23 may be capable of suppressing moisture penetration from the external environment into the display device 103 and suppressing deterioration of the common electrode 17 and the plurality of light-emitting elements 19W, etc.
  • the protective layer 23 is translucent to the white light emitted from the light-emitting element 19W. It is preferable that the protective layer 23 is transparent to visible light. Examples of materials contained in the protective layer 23 include inorganic materials similar to those of the protective layer 13 in the first embodiment.
  • the color filter 24 is provided above the plurality of light-emitting elements 19W. More specifically, the color filter 24 is provided on a first surface of the protective layer 23.
  • the color filter 24 includes, for example, a plurality of red filter portions 24FR, a plurality of green filter portions 24FG, and a plurality of blue filter portions 24FB.
  • red filter portions 24FR, the green filter portions 24FG, and the blue filter portions 24FB are collectively referred to without any particular distinction, they may be referred to as filter portions 24F.
  • the multiple filter portions 24F are arranged two-dimensionally in the in-plane direction. Each filter portion 24F is provided above the light-emitting element 19W.
  • the red filter portion 24FR and the light-emitting element 19W form a sub-pixel 10R
  • the green filter portion 24FG and the light-emitting element 19W form a sub-pixel 10G
  • the blue filter portion 24FB and the light-emitting element 19W form a sub-pixel 10B.
  • the red filter section 24FR transmits the red light of the white light emitted from the light-emitting element 19W, but absorbs light other than the red light.
  • the green filter section 24FG transmits the green light of the white light emitted from the light-emitting element 19W, but absorbs light other than the green light.
  • the blue filter section 24FB transmits the blue light of the white light emitted from the light-emitting element 19W, but absorbs light other than the blue light.
  • the red filter portion 24FR includes, for example, a red color resist.
  • the green filter portion 24FG includes, for example, a green color resist.
  • the blue filter portion 24FB includes, for example, a blue color resist.
  • a metal layer is formed on the first surface of the drive substrate 11, for example, by sputtering, and then the metal layer is patterned, for example, by photolithography and dry etching. As a result, a plurality of first electrodes 191 are formed on the first surface of the drive substrate 11, as shown in FIG. 16A.
  • a first insulating layer (e.g., a zirconium oxide layer having a thickness of about 300 nm) 211 is formed on the first surface of the drive substrate 11 so as to cover the first electrodes 191, for example, by using a CVD method.
  • the first insulating layer 211 is polished, for example, by using CMP, to expose the first surface of each of the first electrodes 191.
  • the first insulating layer 211 remains on the first surface of the drive substrate 11 in the portions between the separated first electrodes 191.
  • a second insulating layer 212 (e.g., a silicon oxynitride layer having a thickness of about 30 nm) is formed on the first surfaces of the first electrodes 191 and on the first surface of the first insulating layer, for example, by using a CVD method.
  • a resist layer 84 having a plurality of openings 74a is formed on the first surface of the second insulating layer 212, as shown in FIG. 16C, by using photolithography, for example. At this time, the plurality of openings 74a are formed above each of the first electrodes 191.
  • the second insulating layer 212 is processed through the resist layer 84, for example, by dry etching using CF 4 gas or the like. As a result, a plurality of openings 212a are formed in the second insulating layer 212.
  • the resist layer 84 on the first surface of the second insulating layer 212 is removed, for example, by ashing, as shown in FIG. 16D.
  • the OLED layer 192W is formed on the first surfaces of the plurality of first electrodes 191 and the first surface of the second insulating layer 212, for example, by vapor deposition, and then the second electrode (for example, an IZO layer having a thickness of about 100 nm) 193 is formed on the first surface of the OLED layer 192W, for example, by sputtering.
  • a protective layer for example, a silicon nitride layer having a thickness of about 500 nm
  • PCVD plasma CVD
  • island-shaped resist layers 85 are formed at positions corresponding to each sub-pixel 10B, as shown in FIG. 16E.
  • the protective layer 20, the second electrode 193, and the OLED layer 192W are processed in order through the resist layer 85.
  • a plurality of light-emitting elements 19W are formed on the first surface of the drive substrate 11, as shown in FIG. 16F.
  • the first insulating layer 211 and the second insulating layer 212 are sequentially sputter-etched using, for example, Ar plasma.
  • the second side protective layer 222 and the first side protective layer 221 are sequentially deposited on the side of the OLED layer 192W, the side of the second electrode 193, and the side of the protective layer 13.
  • the sputter etching may be performed until the first surface of the drive substrate 11 is exposed, or may be stopped before the first surface of the drive substrate 11 is exposed.
  • the processing of the protective layer 20, the second electrode 193, and the OLED layer 192W, and the processing of the first insulating layer 211 and the second insulating layer 212 are performed consecutively using the same etching device.
  • a protective layer 16 is formed, for example by PCVD, so as to cover the multiple light-emitting elements 19W on which the side protective layer 22 is provided, as shown in FIG. 16H.
  • the protective layer 16 and the protective layer 20 are processed, for example, by photolithography and dry etching, to form contact holes 161 on each light-emitting element 19W.
  • the common electrode 17 is formed on the first surface of the protective layer 16 and in the contact holes 161, for example, by vapor deposition or sputtering.
  • the protective layer 23 is formed on the first surface of the common electrode 17, for example, by PCVD.
  • a coloring composition for forming a green filter portion is applied onto the first surface of the protective layer 23, and then the coloring composition is irradiated with ultraviolet light through a photomask and pattern-exposed, followed by development to form a plurality of green filter portions 24FG.
  • a coloring composition for forming a red filter portion is applied onto the first surface of the protective layer 23, and then the coloring composition is irradiated with ultraviolet light through a photomask and pattern-exposed, followed by development to form a plurality of red filter portions 24FR.
  • a coloring composition for forming a blue filter portion is applied onto the first surface of the protective layer 23, and then the coloring composition is irradiated with ultraviolet light through a photomask and pattern-exposed, followed by development to form a plurality of blue filter portions 24FB. This forms a color filter 24 on the first surface of the protective layer 23. In this manner, the display device 103 is obtained.
  • the light-emitting elements 25R, 25G, 25B) 18 is a cross-sectional view showing an enlarged light-emitting element 25R.
  • the light-emitting element 25R includes a first electrode 251, an OLED layer 252R, and a second electrode 253, in that order, on the first surface of the driving substrate 11.
  • the light-emitting element 25G includes a first electrode 251, an OLED layer 252G, and a second electrode 253, in that order, on the first surface of the driving substrate 11.
  • the light-emitting element 25B includes a first electrode 251, an OLED layer 252B, and a second electrode 253, in that order, on the first surface of the driving substrate 11.
  • the insulating layer 26 is provided in a portion between the separated first electrodes 251 on the first surface of the drive substrate 11.
  • the insulating layer 26 insulates between adjacent first electrodes 251.
  • the insulating layer 26 has a plurality of openings 26a.
  • the plurality of openings 26a are provided corresponding to the light-emitting elements 12W, respectively. More specifically, the plurality of openings 26a are provided on the first surface (the surface on the OLED layer 252 side) of the first electrode 251.
  • the first electrode 251 and the OLED layer 252 come into contact with each other through the openings 26a.
  • the protective layer 27 has approximately the same size as the OLED layer 252 and the second electrode 253 in a plan view, and the side surfaces of the OLED layer 252, the side surfaces of the second electrode 253, and the side surfaces of the protective layer 27 are approximately flush with each other. In other respects, the protective layer 27 may be similar to the protective layer 13 in the first embodiment.
  • the side protective layer 28 covers at least the boundary between the side of the OLED layer 252 and the side of the second electrode 253. This can suppress the influence of the film stress of the protective layer 27 on the interface between the OLED layer 252 and the second electrode 253.
  • the side protective layer 28 may cover the range from the side of the OLED layer 252 to the side of the protective layer 27. More specifically, the side protective layer 28 may cover the side of the OLED layer 252, the side of the second electrode 253, and the side of the protective layer 27.
  • the side protective layer 28 may cover the entire side of the protective layer 27, or may cover the side of the protective layer 27 in a range from the periphery of the second surface of the protective layer 27 to a specified height.
  • the side protective layer 28 may have a closed loop shape or a partially disconnected loop shape in a plan view.
  • the side protective layer 28 includes a monomolecular layer.
  • the barrier properties of the side protective layer 28 can be improved. Since the monomolecular layer has high adhesion, the monomolecular layer is highly effective in suppressing the influence of the film stress of the protective layer 27 on the interface between the OLED layer 252 and the second electrode 253. Therefore, the monomolecular layer is highly effective in suppressing peeling between the OLED layer 252 and the second electrode 253. Therefore, the monomolecular layer is highly effective in suppressing an increase in the driving voltage of the light-emitting element 25.
  • the side protective layer 28 may be composed of a monomolecular layer deposit.
  • the side protective layer 28 may be an ALD (Atomic Layer Deposition) layer.
  • the side protective layer 28 includes, for example, a metal oxide, such as aluminum oxide (AlO x ) or titanium oxide (TiO x ).
  • a metal oxide such as aluminum oxide (AlO x ) or titanium oxide (TiO x ).
  • a metal layer is formed on the first surface of the drive substrate 11, for example, by sputtering, and then the metal layer is patterned, for example, by photolithography and dry etching. As a result, a plurality of first electrodes 251 are formed on the first surface of the drive substrate 11.
  • an insulating layer 26 is formed on the first surface of the drive substrate 11 so as to cover the first electrodes 251, for example, by using a CVD method.
  • a plurality of openings 26a are formed in the insulating layer 26, for example, by using photolithography and dry etching. This causes the first surface of each of the first electrodes 251 to be exposed through the openings 26a.
  • island-shaped resist layers 86 are formed at positions corresponding to each sub-pixel 10B, as shown in FIG. 19A.
  • the protective layer 27, the second electrode 253, and the OLED layer 252B are processed in order through the resist layer 86.
  • a plurality of light-emitting elements 25B are formed on the first surface of the drive substrate 11.
  • a plurality of light-emitting elements 25R and a plurality of light-emitting elements 25G are formed on the first surface of the drive substrate 11, as shown in FIG. 19C.
  • a protective layer 281 is formed on the first surface of the drive substrate 11 so as to cover the multiple light-emitting elements 25R, the multiple light-emitting elements 25G, and the multiple light-emitting elements 25B, as shown in FIG. 19D.
  • etch-back dry etching
  • the protective layer 281 on the first surface of the protective layer 27 and on the first surface of the drive substrate 11 is removed, as shown in FIG. 19E, leaving the protective layer 281 on the side of the OLED layer 252, the side of the second electrode 253, and the side of the protective layer 27.
  • the steps from the step of forming the protective layer 16 to the step of forming the common electrode 17 are carried out in the same manner as in the manufacturing method of the display device 101 according to the first embodiment. In this manner, the display device 104 is obtained.
  • the side surface protection layer 28 covers at least the boundary between the side surface of the OLED layer 252 and the side surface of the second electrode 253. Therefore, it is possible to obtain the same effect as the display device 101 according to the first embodiment.
  • the display device 105 includes a drive substrate 11, a plurality of light-emitting elements 31R, a plurality of light-emitting elements 31G, a plurality of light-emitting elements 31B, a plurality of metal layers 32, a plurality of protective layers 33, a plurality of side protective layers 34, a protective layer 16, and a common electrode 17.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the light-emitting elements 31R, 31G, 31B 21 is a cross-sectional view showing an enlarged portion of the light-emitting element 31B.
  • the light-emitting element 31R includes a first electrode 311, an OLED layer 312R, a second electrode 313, and an insulating layer 314.
  • the light-emitting element 31G includes a first electrode 311, an OLED layer 312G, a second electrode 313, and an insulating layer 314.
  • the light-emitting element 31B includes a first electrode 311, an OLED layer 312B, a second electrode 313, and an insulating layer 314.
  • the light-emitting elements 31R, 31G, and 31B when collectively referred to without any particular distinction, they may be simply referred to as the light-emitting element 31. Also, when the OLED layers 312R, 312G, and 312B are collectively referred to without any particular distinction, they may be simply referred to as the OLED layer 312.
  • the sizes of the first electrode 311, the OLED layer 312, and the second electrode 313 are approximately the same in a planar view, and the side surfaces of the first electrode 311, the OLED layer 312, and the second electrode 313 may be approximately flush.
  • the first electrode 311, the OLED layer 312, and the second electrode 313 are similar to the first electrode 121, the OLED layer 122, and the second electrode 123 in the first embodiment.
  • the insulating layer 314 is provided on the periphery of the first surface of the first electrode 311.
  • the first surface and the inner side surface of the insulating layer 314 are covered by the OLED layer 312. It is preferable that the insulating layer 314 has a closed loop shape in a plan view.
  • the insulating layer 314 includes, for example, a metal oxide and a metal nitride.
  • the metal oxide includes, for example, at least one selected from the group consisting of silicon oxide (SiO x ) and silicon oxynitride (SiO x N y ).
  • the metal nitride includes, for example, silicon nitride (SiN x ).
  • Metal layer 32 The metal layer 32 is provided between the first surface of the insulating layer 112 and the second surface of the light-emitting element 31.
  • the size of the metal layer 32 is approximately the same as the size of the first electrode 311 in a plan view, and the side surface of the metal layer 32 and the side surface of the first electrode 311 may be approximately flush with each other.
  • the metal layer may function as a reflective layer that reflects light emitted from the OLED layer 312.
  • the metal layer contains at least one metal element selected from the group consisting of, for example, chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), aluminum (Al), magnesium (Mg), iron (Fe), tungsten (W) and silver (Ag).
  • the metal layer may contain at least one metal element as an alloy component. Specific examples of the alloy include an aluminum alloy or a silver alloy. Specific examples of the aluminum alloy include, for example, AlNd or AlCu.
  • the side surface protective layer 34 covers the side surfaces of the metal layer 32, the light emitting element 31, and the protective layer 33. More specifically, the side surface protective layer 34 covers the side surfaces of the metal layer 32, the first electrode 311, the OLED layer 312, the second electrode 313, and the protective layer 33.
  • the side protective layer 34 covers the side surfaces of the metal layer 32, the first electrode 311, the OLED layer 312, the second electrode 313, and the protective layer 33, but the side protective layer 34 may cover the first electrode 311, the side surfaces of the OLED layer 312, the side surfaces of the second electrode 313, and the side surfaces of the protective layer 33, or may cover the side surfaces of the OLED layer 312, the side surfaces of the second electrode 313, and the side surfaces of the protective layer 33.
  • the side protective layer 34 can protect the side of the light-emitting element 31.
  • the side protective layer 34 can suppress the effect of film stress of the protective layer 33 on the interface between the OLED layer 312 and the second electrode 313.
  • the side protective layer 34 may be capable of suppressing the intrusion of moisture from the external environment into the inside of the light-emitting element 31 and suppressing deterioration of the light-emitting element 31.
  • the side protective layer 34 can reflect light emitted from the light-emitting element 31. It is preferable that the side protective layer 34 includes at least one reflective layer capable of reflecting light emitted from the light-emitting element 31.
  • the side protective layer 34 may include a deposit deposited by sequentially dry etching the protective layer 33, the second electrode 313, the OLED layer 312, the insulating layer 314, the first electrode 311, and the metal layer 32.
  • the side protective layer 34 may include some or all of the constituent materials of the protective layer 33, some or all of the constituent materials of the second electrode 313, some or all of the constituent materials of the insulating layer 314, some or all of the constituent materials of the first electrode 311, and some or all of the constituent materials of the metal layer 32.
  • the side protective layer 34 may include, in order, a first side protective layer 341, a second side protective layer 342, a third side protective layer 343, a fourth side protective layer 344, and a fifth side protective layer 345.
  • the first side protective layer 341 may cover the side of the second electrode 313 and the side of the protective layer 33. The bottom of the first side protective layer 341 may be connected to the side of the second electrode 313.
  • the first side protective layer 341 may have electrical conductivity.
  • the first side protective layer 341 may be a reflective layer capable of reflecting light emitted from the light emitting element 31, or may be a light transmitting layer capable of transmitting light emitted from the light emitting element 31.
  • the first side protective layer 341 may include a deposit deposited by dry etching the second electrode 313 or the like.
  • the first side protective layer 341 may include a part of the constituent material of the second electrode 313, or may include the entire constituent material of the second electrode 313.
  • the second side protective layer 342 may cover the side of the insulating layer 314, the side of the OLED layer 312, and the main surface of the first side protective layer 341.
  • the bottom of the second side protective layer 342 may be connected to the side of the insulating layer 314.
  • the second side protective layer 342 may have insulating properties.
  • the second side protective layer 342 may be capable of insulating between the first side protective layer 341 and the third side protective layer 343.
  • the second side protective layer 342 may be capable of transmitting light emitted from the light emitting element 31.
  • the second side protective layer 342 may include a deposit deposited by dry etching the insulating layer 314 or the like.
  • the second side protective layer 342 may include a part of the constituent material of the insulating layer 314, or may include the entirety of the constituent material of the insulating layer 314.
  • the second side protective layer 342 may further include a part of the constituent material of the OLED layer 312.
  • the third side protective layer 343 may cover the side of the first electrode 311 and the main surface of the second side protective layer 342. The bottom of the third side protective layer 343 may be connected to the side of the first electrode 311.
  • the third side protective layer 343 may be conductive. From the viewpoint of improving the light extraction efficiency of the display device 105, the third side protective layer 343 is preferably a reflective layer that can reflect light emitted in an oblique direction from the light emitting element 31.
  • the third side protective layer 343 may include a deposit deposited by dry etching the first electrode 311 or the like.
  • the third side protective layer 343 may include a part of the constituent material of the first electrode 311, or may include the entire constituent material of the first electrode 311.
  • the fourth side protective layer 344 may cover the side of the metal layer 32 and the main surface of the third side protective layer 343. The bottom of the fourth side protective layer 344 may be connected to the side of the metal layer 32.
  • the fourth side protective layer 344 may be conductive. From the viewpoint of improving the light extraction efficiency of the display device 105, the fourth side protective layer 344 is preferably a reflective layer capable of reflecting light emitted in an oblique direction from the light emitting element 31. From the viewpoint of improving the light extraction efficiency of the display device 105, it is particularly preferable that both the third side protective layer 343 and the fourth side protective layer 344 are reflective layers capable of reflecting light emitted in an oblique direction from the light emitting element 31.
  • the fourth side protective layer 344 may include a deposit deposited by dry etching the metal layer 32 or the like.
  • the fourth side protective layer 344 may include a part of the constituent material of the metal layer 32, or may include all of the constituent material of the metal layer 32.
  • the fifth side protective layer 345 may cover the main surface of the fourth side protective layer 344.
  • the fifth side protective layer 345 may have insulating properties.
  • the fifth side protective layer 345 may include a deposit deposited by dry etching the insulating layer 112 or the like.
  • the fifth side protective layer 345 may include a part of the constituent material of the insulating layer 112, or may include the entirety of the constituent material of the insulating layer 112.
  • the protective layer 33 may have the same size as the second electrode 313 in a plan view, and the side surface of the protective layer 33 and the side surface of the second electrode 313 may be substantially flush with each other. In other respects, the protective layer 33 may be similar to the protective layer 13 in the first embodiment.
  • the metal layer 32, the first electrode 311, the insulating layer 314, the OLED layer 312B, the second electrode 313, and the protective layer 33 are sequentially laminated on the first surface of the drive substrate 11 using, for example, sputtering, vapor deposition, and CVD.
  • the insulating layer 314 is patterned using, for example, photolithography and dry etching to form a plurality of openings 314a at positions corresponding to the plurality of sub-pixels 10B.
  • the insulating layer 112, the metal layer 32, the first electrode 311, the insulating layer 314, and the second electrode 313 function as a deposit generating layer for generating deposits on the side surface of the light-emitting element 31.
  • island-shaped resist layers 87 are formed at positions corresponding to each sub-pixel 10B, for example, by photolithography.
  • the protective layer 33, the second electrode 313, the OLED layer 312B, the insulating layer 314, the first electrode 311, the metal layer 32, and the insulating layer 112 are processed in sequence through the resist layer 85, for example, by dry etching, and deposits are deposited on the side of the protective layer 33, the side of the light-emitting element 31B, and the side of the metal layer 32.
  • a plurality of light-emitting elements 31B are formed on the first surface of the drive substrate 11 with the metal layer 32 sandwiched therebetween.
  • first side protective layer 341, the second side protective layer 342, the third side protective layer 343, the fourth side protective layer 344, and the fifth side protective layer 345 are formed in sequence on the side of the metal layer 32, the side of the light-emitting element 31B, and the side of the protective layer 33.
  • a plurality of light-emitting elements 31R and a plurality of light-emitting elements 31G are formed on the first surface of the drive substrate 11 with the metal layer 32 sandwiched between them.
  • the steps from the step of forming the protective layer 16 to the step of forming the common electrode 17 are carried out in the same manner as in the manufacturing method of the display device 101 according to the first embodiment. In this manner, the display device 105 is obtained.
  • the side surface protection layer 34 covers the side surfaces of the light emitting element 31 and the side surfaces of the protection layer 33, and can reflect light emitted in an oblique direction from the light emitting element 31. Therefore, peeling between the OLED layer 312 and the second electrode 123 can be suppressed, and the light extraction efficiency of the display device 105 can be improved.
  • the insulating second side protective layer 342 is provided between the first side protective layer 341 and the third side protective layer 343, so that carrier leakage between the first electrode 311 and the second electrode 313 due to contact between the first side protective layer 341 and the third side protective layer 343 can be suppressed.
  • the display device 105 includes the metal layer 32 between the insulating layer 112 and the light emitting element 31, and includes the fourth side surface protective layer 344 between the third side surface protective layer 343 and the fifth side surface protective layer 345.
  • the configuration of the display device 105 is not limited to this example, and for example, as shown in FIG. 23 , the display device 105 does not need to include the metal layer 32 and the fourth side surface protective layer 344.
  • the display device 105 having the above configuration is manufactured in the same manner as the display device 105 according to the fifth embodiment, except that the first electrode 311, the insulating layer 314, the OLED layer 312, the second electrode 313, and the protective layer 33 are sequentially stacked on the first surface of the drive substrate 11, as shown in FIG. 24.
  • the display device 105 includes the metal layer 32 between the insulating layer 112 and the light-emitting element 31.
  • the configuration of the display device 105 is not limited to this example, and for example, as shown in FIG. 25 , the display device 105 does not need to include the metal layer 32.
  • the display device 105 having the above configuration is manufactured in the same manner as the display device 105 according to the fifth embodiment, except that, between the process of forming the metal layer 32 and the process of forming the first electrode 311, a plurality of openings 32a are formed in the metal layer 32 by, for example, photolithography and dry etching, as shown in FIG. 26.
  • the openings 32a are formed in the metal layer 32 at positions corresponding to each light-emitting element 31.
  • the metal layer 32 is provided entirely beneath the light-emitting element 31 (see FIG. 21 ).
  • the metal layer 32 may have an opening 32 a beneath the light-emitting element 31.
  • the display device 105 having the above-mentioned metal layer 32 is manufactured in the same manner as the display device 105 according to the third modification, except that the periphery of the opening 32a of the metal layer 32 is positioned inside the periphery of the region in which the light-emitting element 31 is formed, as shown in FIG. 28.
  • the light emitting element 31 includes one insulating layer 314 (see FIG. 21 ) has been described, but the configuration of the light emitting element 31 is not limited to this.
  • the light emitting element 31 may include two insulating layers 314 and 315.
  • the side surface protection layer 34 may further include a sixth side surface protection layer 346.
  • Insulating layer 315 is provided on insulating layer 314, and insulating layer 314 and insulating layer 315 form a laminate.
  • the laminate may be provided on the periphery of the first surface of first electrode 311.
  • the first surface and the inner side surface of the laminate may be covered by OLED layer 312. It is preferable that the laminate has a closed loop shape in a plan view.
  • Examples of the material of insulating layer 315 include the same material as insulating layer 314.
  • the materials of insulating layer 314 and insulating layer 315 may be different or the same.
  • “the materials of insulating layer 314 and insulating layer 315 are different” may mean that the components of the materials constituting insulating layer 314 and insulating layer 315 are different, or that the components of the materials constituting insulating layer 314 and insulating layer 315 are the same but the content of each component is different.
  • the sixth side protective layer 346 is provided between the first side protective layer 341 and the second side protective layer 342.
  • the bottom of the sixth side protective layer 346 may be connected to the side of the insulating layer 315.
  • the sixth side protective layer 346 may have insulating properties.
  • the sixth side protective layer 346 may be capable of transmitting light emitted from the light emitting element 31.
  • the sixth side protective layer 346 may include a deposit deposited by dry etching the insulating layer 315 or the like.
  • the sixth side protective layer 346 may include a part of the constituent material of the insulating layer 315, or may include all of the constituent material of the insulating layer 315.
  • the sixth side protective layer 346 may further include a part of the constituent material of the OLED layer 312.
  • the display device 105 having the above configuration is manufactured in the same manner as the display device 105 according to the fifth embodiment, except that the metal layer 32, the first electrode 311, the insulating layer 314, the insulating layer 315, the OLED layer 312, the second electrode 313, and the protective layer 33 are sequentially laminated on the first surface of the drive substrate 11 as shown in FIG. 30 by using, for example, a sputtering method, a vapor deposition method, a CVD method, or the like.
  • the insulating layer 314 and the insulating layer 315 are patterned by, for example, photolithography and dry etching, to form a plurality of openings 314a, 315a at positions corresponding to a plurality of sub-pixels 10.
  • the light-emitting element 31 has a laminated body made up of two insulating layers 314 and 315, but the light-emitting element 31 may have a laminated body made up of three or more insulating layers.
  • the protective layer 16 has a flat surface in the region between adjacent light-emitting elements 31, but the configuration of the protective layer 16 is not limited to this.
  • the protective layer 16 may have a recess 162 in the region between adjacent light-emitting elements 31.
  • the common electrode 17 may be provided so as to follow the recess 162.
  • the protective layer 16a may be provided on the first surface of the common electrode 17 so as to fill the recess 162.
  • the refractive index of protective layer 16a is lower than the refractive index of protective layer 16.
  • the refractive index of protective layer 16 is, for example, greater than 1.4 and equal to or less than 1.8.
  • the refractive index of protective layer 16a is, for example, equal to or less than 1.4.
  • the refractive index of the protective layer 16a is lower than that of the protective layer 16, so that the light 31La emitted from the light emitting element 31 at a wide angle (oblique direction) can be reflected at the interface between the protective layer 16 and the protective layer 16a. Furthermore, the light 31Lb emitted from the light emitting element 31 at a wider angle can be reflected by the side protective layer 34. Therefore, the light extraction efficiency of the display device 105 can be improved.
  • FIG. 32 is a cross-sectional view of a display device 106 according to a sixth embodiment.
  • the display device 106 includes a drive substrate 11, a plurality of light-emitting elements 36W, a plurality of insulating layers 37, a plurality of protective layers 33, a plurality of side protective layers 38, a protective layer 16, a common electrode 17, a protective layer 23, and a color filter 24.
  • the same reference numerals are used for the same parts as those in the first or third embodiment, and the description thereof will be omitted.
  • the light-emitting element 36W is an enlarged cross-sectional view of the light-emitting element 36W.
  • the light-emitting element 36W can emit white light.
  • the light-emitting element 36W is a white OLED element, and can emit white light based on the control of a drive circuit, etc.
  • the light-emitting element 36W includes a first electrode 361, an OLED layer 362W, a second electrode 363, and an insulating layer 364.
  • the light-emitting element 31 is provided on the first surface of the metal layer 32, but in the sixth embodiment, the light-emitting element 36W is provided on the first surface of the drive substrate.
  • the size of the first electrode 361 is smaller than the size of the OLED layer 362W and the second electrode 363 in a planar view.
  • the side surface of the first electrode 361 is located inside the side surface of the OLED layer 362W and the side surface of the second electrode 363 in the in-plane direction.
  • the first electrode 361, the OLED layer 362W, and the second electrode 363 may be similar to the first electrode 191, the OLED layer 192W, and the second electrode 193 in the third embodiment.
  • the insulating layer 364 is provided on the first surface of the insulating layer 37.
  • the insulating layer 364 may have a closed loop shape in a planar view.
  • the insulating layer 364 is covered by the OLED layer 362W such that the outer side surface of the insulating layer 364 is exposed from the side surface of the OLED layer 362W.
  • Examples of materials for the insulating layer 364 include inorganic materials similar to those for the insulating layer 26 in the fourth embodiment.
  • Each insulating layer 37 is provided on the first surface of the drive substrate 11 in a portion between the side surface of the first electrode 361 and the inner surface of the side protective layer 38.
  • the insulating layer 37 insulates between the first electrode 361 and the side protective layer 38.
  • the insulating layer 37 may have a closed loop shape in a plan view. Examples of materials for the insulating layer 37 include inorganic materials similar to those for the insulating layer 26 in the fourth embodiment.
  • the side protective layer 38 includes a first side protective layer 341, a second side protective layer 342, a fourth side protective layer 344, and a fifth side protective layer 345 in this order.
  • the bottom of the fourth side protective layer 344 may be in contact with the side of the insulating layer 37.
  • the fourth side protective layer 344 may include a deposit deposited by dry etching the metal layer 32 (see Figures 34G and 34H) provided between the first electrodes 361 adjacent in the in-plane direction in the manufacturing process of the display device 106.
  • the side protective layer 38 may be similar to the side protective layer 34 in the fifth embodiment in other respects.
  • a metal layer is formed on the first surface of the drive substrate 11, for example, by sputtering, and then the metal layer is patterned, for example, by photolithography and dry etching. As a result, a plurality of first electrodes 311 are formed on the first surface of the drive substrate 11.
  • a metal layer 32 is formed on the first surface of the drive substrate 11 by, for example, sputtering so as to cover the first electrodes 311 as shown in FIG. 34A.
  • the first surfaces of the first electrodes 311 are exposed as shown in FIG. 34B by, for example, etching back the metal layer 32 by dry etching, or by, for example, polishing the first surface of the metal layer 32 by CMP.
  • the metal layer 32 is patterned using, for example, photolithography and dry etching to form a closed-loop-shaped opening 32a surrounding each first electrode 361 in a plan view, as shown in FIG. 34C.
  • an insulating layer 37 is formed on the first surfaces of the first electrodes 361 and on the first surface of the metal layer 32, for example, using a CVD method, so as to fill the openings 32a, as shown in FIG. 34D.
  • the insulating layer 37 is etched back using, for example, dry etching, or the first surface of the insulating layer 37 is polished by, for example, CMP, to expose the first electrodes 311 and the first surface of the metal layer 32, as shown in FIG. 34E.
  • an insulating layer 364 is formed on the first surfaces of the first electrodes 361, the first surface of the metal layer 32, and the first surfaces of the insulating layers 37, and then, for example, by using photolithography and dry etching to pattern the insulating layer 364, a plurality of openings 364a are formed at positions corresponding to the sub-pixels 10, as shown in FIG. 34F.
  • an OLED layer 362W is formed on the first surface of the insulating layer 37 and the first surface of the first electrode 311 so as to fill the plurality of openings 364a, as shown in FIG. 34F.
  • a second electrode 363 is formed on the first surface of the OLED layer 362W, as shown in FIG. 34F.
  • a protective layer 33 is formed on the first surface of the second electrode 363, as shown in FIG. 34F.
  • an island-shaped resist layer 87 is formed at a position corresponding to each sub-pixel 10, for example, by photolithography.
  • the protective layer 33, the second electrode 363, the OLED layer 362W, the insulating layer 364, the metal layer 32, and the insulating layer 112 are processed in order through the resist layer 85, for example, by dry etching, and deposits are deposited on the side of the protective layer 33, the side of the second electrode 363, the side of the OLED layer 362W, the side of the insulating layer 364, and the side of the insulating layer 37.
  • deposits are deposited on the side of the protective layer 33, the side of the second electrode 363, the side of the OLED layer 362W, the side of the insulating layer 364, and the side of the insulating layer 37.
  • a plurality of light-emitting elements 36W are formed on the first surface of the drive substrate 11.
  • the first side protective layer 341, the second side protective layer 342, the fourth side protective layer 344, and the fifth side protective layer 345 are formed in order on the side of the light-emitting element 36W.
  • the steps from the step of forming the protective layer 16 to the step of forming the color filter 24 are carried out in the same manner as in the manufacturing method of the display device 103 according to the third embodiment. In this manner, the display device 106 is obtained.
  • the side surface protection layer 38 covers the side surface of the light emitting element 36W and the side surface of the protection layer 33, and can reflect light emitted obliquely from the light emitting element 36W. Therefore, in the display device 106 according to the sixth embodiment, the same effects as those of the display device 105 according to the fifth embodiment can be obtained.
  • the light emitting element 36W includes the insulating layer 364 (see FIG. 33 ) has been described, but as shown in FIG. 35 , the light emitting element 36W does not need to include the insulating layer 364.
  • the bottom of the second side surface protection layer 342 may be connected to the side surface of the insulating layer 37.
  • the display device 106 having the above configuration may be manufactured, for example, as follows. As shown in Fig. 36A and Fig. 36B, the metal layer 32 and the insulating layer 39 are sequentially formed in the region between the adjacent light emitting elements 36W on the first surface of the driving substrate 11. At this time, the metal layer 32 and the insulating layer 39 may be formed so that the height of the insulating layer 39 is approximately the same as the height of the first electrode 361.
  • the insulating layer 39 may contain, for example, aluminum oxide (AlO x ).
  • AlO x aluminum oxide
  • the OLED layer 362W, the second electrode 363, and the protective layer 33 are sequentially laminated on the first surfaces of the plurality of first electrodes 311, the first surface of the insulating layer 39, and the first surfaces of the plurality of insulating layers 37, and then an island-shaped resist layer 87 is formed at a position corresponding to each sub-pixel 10.
  • the protective layer 33, the second electrode 363, the OLED layer 362W, the insulating layer 39, and the metal layer 32 are processed in order through the resist layer 87, and deposits are deposited on the side surfaces of the protective layer 33, the side surfaces of the second electrode 363, the side surfaces of the OLED layer 362W, and the side surfaces of the insulating layer 37.
  • a plurality of light-emitting elements 36W are formed on the first surface of the driving substrate 11.
  • a first side surface protective layer 341, a second side surface protective layer 342, a fourth side surface protective layer 344, and a fifth side surface protective layer 345 are formed in order on the side surfaces of the light-emitting elements 36W.
  • the insulating layer 37 and the insulating layer 39 are formed between adjacent first electrodes 361, but the insulating layer 37 and the insulating layer 39 may be composed of a single insulating layer.
  • FIG. 37 is a cross-sectional view of a display device 107 according to the seventh embodiment.
  • the display device 107 includes a drive substrate 11, a plurality of light-emitting elements 41R, a plurality of light-emitting elements 41G, a plurality of light-emitting elements 41B, a plurality of protective layers 42, and a protective layer 43.
  • the same parts as those in the fifth embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the light emitting element 41R includes, in order, a first electrode 411, an OLED layer 312R, and a second electrode 313.
  • the light emitting element 41G includes, in order, a first electrode 411, an OLED layer 312G, and a second electrode 313.
  • the light emitting element 31B includes, in order, a first electrode 411, an OLED layer 312B, and a second electrode 313.
  • the light emitting elements 41R, 41G, and 41B are referred to collectively without being particularly distinguished from one another, they may be simply referred to as the light emitting element 41.
  • FIG. 38 is a cross-sectional view showing an enlarged area between adjacent light-emitting elements 41.
  • the first electrode 411 is connected between adjacent light-emitting elements 41 in the display region RE1 and is shared by multiple light-emitting elements 41 in the display region RE1.
  • the second electrode 413 is an anode.
  • the first electrode 411 has at least one step 411a in the peripheral region of each OLED layer 312.
  • FIG. 38 shows an example in which the first electrode 411 has two steps 411a in the peripheral region of each OLED layer 312.
  • the adhesion between the first electrode 411 and the protective layer 43 can be improved. From the viewpoint of improving the adhesion between the first electrode 411 and the protective layer 43, it is preferable that the number of steps 411a is two or more.
  • the steps 411a may be formed by changing the thickness of the first electrode 411.
  • the steps 411a descend as they move away from the geometric center of the light-emitting element 41.
  • the steps 411a may have a closed loop shape surrounding the light-emitting element 12.
  • the recesses 411b may be formed by the steps 411a of adjacent light-emitting elements 12.
  • the step 411a has a first surface 411c and a second surface 411d.
  • the first surface 411c is a surface that is approximately perpendicular to the thickness direction of the first electrode 411.
  • the second surface 411d extends downward from the outer periphery of the first surface 411c.
  • downward refers to the direction from the first surface 411c of the first electrode 411 to the second surface 411d in the thickness direction of the first electrode 411.
  • the second surface 411d may be approximately perpendicular to the first surface 411c, or may be inclined with respect to the first surface 411c.
  • the second surface of the OLED layer 312 and the first surface 411c of the step 411a closest to the second surface of the OLED layer 312 may be located at the same height.
  • the side surface 312S of the OLED layer 312 and the second surface 411d of the step 411a closest to the side surface 312S of the OLED layer 312 may be located at a position shifted in the in-plan
  • the first electrode 411 may be similar to the first electrode 311 in the fifth embodiment in all other respects.
  • the protective layer 42 may be similar to the protective layer 33 in the fifth embodiment, except that it does not have the contact hole 161.
  • the second electrode 313 may be connected to wiring or the like of the drive substrate 11 via a connecting member (not shown).
  • the protective layer 43 may be similar to the protective layer 16 in the fifth embodiment, except that it does not have the multiple contact holes 161.
  • the protective layer 43 is provided to cover the multiple protective layers 42 and the multiple light-emitting elements 41 so as to fill in the gaps between the adjacent light-emitting elements 41.
  • the first electrode 411 has at least one step 411a in the peripheral region of the OLED layer 312. This increases the contact area between the first electrode 411 and the protective layer 43, thereby improving the adhesion between the first electrode 411 and the protective layer 43. Therefore, peeling between the OLED layer 312R and the second electrode 313 can be suppressed.
  • the height of the second surface of the OLED layer 312 (i.e., the interface between the first electrode 411 and the OLED layer 312) may be higher than the height of the first surface 411c of the step 411a closest to the second surface of the OLED layer 312. That is, the side surface 312S of the OLED layer 312 and the side surface of the recess 411b may be connected to be approximately flush with each other. In this case, the adhesion between the first electrode 411 and the protective layer 43 can be further improved.
  • step 411a may be provided across the first electrode 411 and the insulating layer 112.
  • an opening 411e may be formed between adjacent light-emitting elements 41.
  • the opening 411e may have a closed loop shape surrounding the entire periphery of the light-emitting element 41, or may have a partially disconnected loop shape that partially surrounds the periphery of the second surface of the protective layer 13.
  • step 411a is provided on the first surface of the first electrode 411
  • the position at which the step 411a is provided is not limited to the first electrode 411.
  • at least one step 411a may be provided on a side surface of the OLED layer 312.
  • at least one step 411a may be provided on the first surface of the first electrode 411, and at least one step 411a may be provided on a side surface of the OLED layer 312.
  • the configuration of the step 411a is not limited to this example.
  • the first surface of the insulating layer 112 may have at least one step 112a in the peripheral region of each light-emitting element 41, and the first electrode 411 may be provided so as to follow the step 112a, thereby providing at least one step 411a on the first surface of the first electrode 411.
  • the insulating layer 112 is an example of a base layer provided under the multiple light-emitting elements 41.
  • the side surface 312S of the OLED layer 312 and the side surface of the recess 411b do not have to be flush with each other, or as shown in FIG. 43, the side surface 312S of the OLED layer 312 and the side surface of the recess 411b may be flush with each other. From the viewpoint of improving the adhesion between the first electrode 411 and the protective layer 43, it is preferable that the side surface 312S of the OLED layer 312 and the side surface of the recess 411b are flush with each other.
  • the height of the second surface of the OLED layer 312 may be the same height as the first surface 411c of the step 411a that is closest to the second surface of the OLED layer 312.
  • the height of the second surface of the OLED layer 312 i.e., the interface between the first electrode 411 and the OLED layer 312 may be higher than the height of the first surface 411c of the step 411a that is closest to the second surface of the OLED layer 312.
  • the present inventors have considered the following manufacturing method for a display device. First, a plurality of first electrodes are formed on a first surface of a drive substrate, and then an OLED layer, a second electrode, and a protective layer are laminated in this order to cover the plurality of first electrodes, forming a laminate. Next, a plurality of light-emitting elements are formed on the first surface of the drive substrate by separating the laminate using, for example, photolithography and dry etching.
  • the separation process when separating the laminate, the separation process is performed in multiple steps so that the laminate is not completely separated, thereby making it possible to suppress peeling between the OLED layer and the second electrode due to film stress.
  • FIG. 44 is a plan view showing an enlarged portion of the display region RE1 of the display device 108 according to the eighth embodiment.
  • FIG. 45 is a plan view showing an enlarged portion of FIG. 44.
  • FIG. 46 is a cross-sectional view taken along line B-B in FIG. 44.
  • FIG. 47 is a cross-sectional view taken along line C-C in FIG. 44.
  • the display device 108 includes a driving substrate 44, a plurality of light-emitting elements 19W, a plurality of protective layers (first protective layer) 20, a protective layer (second protective layer) 45, a protective layer (third protective layer) 46, a protective layer (fourth protective layer) 16, a common electrode 17, a protective layer (fifth protective layer) 23, and a color filter 24.
  • first protective layer 20
  • second protective layer 45
  • third protective layer fourth protective layer
  • a protective layer (fourth protective layer) 16 a common electrode 17, a protective layer (fifth protective layer) 23, and a color filter 24.
  • the same reference numerals are attached to the same parts as those in the third embodiment, and the description thereof will be omitted.
  • first direction one of two orthogonal directions on the display surface of display device 108
  • second direction the direction between the first and second directions
  • third direction the direction between the first and second directions
  • the first and second directions may be the horizontal and vertical directions on the display surface of display device 108, respectively.
  • the region between the first electrodes 191 in the first direction i.e., the region between the light-emitting elements 19W in the first direction
  • the first region 19RE1 The region between the first electrodes 191 in the second direction, i.e., the region between the light-emitting elements 19W in the second direction, is referred to as the second region 19RE2.
  • the region between the first electrodes 191 in the third direction i.e., the region between the light-emitting elements 19W in the first direction, is referred to as the third region 19RE3.
  • the first region 19RE1 has an elongated shape extending in the second direction.
  • the second region 19RE2 has an elongated shape extending in the first direction.
  • the multiple light-emitting elements 19W are arranged in a first direction and a second direction.
  • the multiple light-emitting elements 19W may be arranged two-dimensionally in a stripe arrangement or the like.
  • the first region 19RE1 and the third region 19RE3 are arranged alternately in the second direction.
  • the second region 19RE2 and the third region 19RE3 are arranged alternately in the first direction.
  • the groove 19a1 is provided in the first region 19RE1. That is, the groove 19a1 is provided between the light-emitting elements 19W adjacent in the first direction.
  • the groove 19a1 extends in the second direction.
  • the groove 19a2 is provided in the second region 19RE2. That is, the groove 19a2 is provided between the light-emitting elements 19W adjacent in the second direction.
  • the groove 19a2 extends in the second direction.
  • the grooves 19a1 and 19a2 intersect in the third region 19RE3.
  • the light emitting elements 19W adjacent to each other in the first direction are separated by two or more separation widths by the groove 19a1. More specifically, for example, the light emitting elements 19W adjacent to each other in the first direction are separated by at least a first separation width W11 and a second separation width W12 .
  • the second separation width W12 may be the separation width at both ends of the first region 19RE1
  • the first separation width W11 may be the separation width between both ends of the first region 19RE1.
  • the width W12 of the groove 19a1 may be wider than the width W11 of the groove 19a1, or may be narrower than the width W11 of the groove 19a1.
  • Figures 44 and 45 show the former example.
  • the protective layer 20 provided on the light emitting element 19W is also separated by two or more separation widths by the groove 19a1, similar to the light emitting element 19W.
  • the light emitting elements 19W adjacent to each other in the second direction are separated by two or more separation widths by the grooves 19a2. More specifically, for example, the light emitting elements 19W adjacent to each other in the second direction are separated by at least a third separation width W21 and a fourth separation width W22 .
  • the third separation width W21 may be the separation width at both ends of the second region 19RE2
  • the fourth separation width W22 may be the separation width between both ends of the second region 19RE2.
  • the width W22 of the groove 19a2 may be wider than the width W21 of the groove 19a2, or may be narrower than the width W21 of the groove 19a1.
  • Figures 44 and 45 show the former example.
  • the protective layer 20 provided on the light emitting element 19W is also separated by two or more separation widths by the grooves 19a2, similar to the light emitting element 19W.
  • the driving substrate 44 has a plurality of steps 44St in the third region 19RE3 of the first surface of the driving substrate 44.
  • the driving substrate 44 includes a substrate 441 and an insulating layer 442.
  • the insulating layer 442 as a base layer is provided under the plurality of light-emitting elements 19W.
  • the insulating layer 442 has the above-mentioned plurality of steps 44St on the first surface on which the plurality of light-emitting elements 19W are provided.
  • the plurality of steps 44St may be provided at both ends of the first region 19RE1 and both ends of the second region 19RE2.
  • the steps 44St may be formed by performing two etching processes in an overlapping manner.
  • the driving substrate 44, the substrate 441, and the insulating layer 442 may be similar to the driving substrate 11, the substrate 111, and the insulating layer 112 in the first embodiment in other respects.
  • the protective layer 45 is provided on the first surface of the plurality of protective layers 20.
  • the protective layers 45 on each protective layer 20 are connected in a specified direction. More specifically, the protective layers 45 on each protective layer 20 are connected between the light-emitting elements 19W in a third direction between the first direction and the second direction. On the other hand, the protective layers 45 on each protective layer 20 are separated between the light-emitting elements 19W in the first direction and are separated between the light-emitting elements 19W in the second direction.
  • the protective layer 45 is provided to follow each intersection of the groove 19a1 and the groove 19a2, and covers a part of the side surface of each light-emitting element 19W and a part of the side surface of each protective layer 20.
  • Protective layer 45 may have the same characteristics as protective layer 13 in the first embodiment. Examples of materials contained in protective layer 45 include inorganic materials similar to those of protective layer 13 in the first embodiment.
  • the protective layer 46 covers the plurality of light-emitting elements 19W on which the protective layer 45 is provided.
  • the protective layer 46 is provided so as to follow the grooves 19a1 and 19a2.
  • the protective layer 46 connects the light-emitting elements 19W in the first direction, the light-emitting elements 19W in the second direction, and the light-emitting elements 19W in the third direction.
  • the protective layer 46 may have the same characteristics as the protective layer 13 in the first embodiment. Examples of materials contained in the protective layer 46 include inorganic materials similar to those of the protective layer 13 in the first embodiment.
  • the materials of protective layer 45 and protective layer 46 may be different or the same.
  • “the materials of protective layer 45 and protective layer 46 are different” may mean that the components of the materials constituting protective layer 45 and protective layer 46 are different, or that the components of the materials constituting protective layer 45 and protective layer 46 are the same but the content of each component is different.
  • an example in which protective layer 45 and protective layer 46 are provided will be described, but protective layer 45 and protective layer 46 may be integrated to form a single layer.
  • the protective layer 48 may be composed of the protective layer 20, the protective layer 45, and the protective layer 46.
  • the thickness of the protective layer 48 located between the light-emitting elements 19W in the first direction and the thickness of the protective layer 48 located between the light-emitting elements 19W in the second direction may be different from the thickness of the protective layer 48 between the light-emitting elements 19W in the third direction.
  • the number of layers of protective layer 48 located between light emitting elements 19W in the first direction and the number of layers of protective layer 48 located between light emitting elements 19W in the second direction may be different from the number of layers of protective layer 48 between light emitting elements 19W in the third direction.
  • an example in which protective layer 20, protective layer 45, and protective layer 46 are provided will be described, but protective layer 20, protective layer 45, and protective layer 46 may be integrated to form a single layer.
  • a metal layer is formed on the first surface of the drive substrate 44, for example, by sputtering, and then the metal layer is patterned, for example, by photolithography and dry etching. As a result, a plurality of first electrodes 311 are formed on the first surface of the drive substrate 44.
  • an OLED layer 192W, a second electrode 193, and a protective layer 20 are sequentially laminated on the first surface of the plurality of first electrodes 191 so as to cover the plurality of first electrodes 191, for example, by sputtering, vapor deposition, CVD, or the like.
  • laminate 47 the laminate consisting of the OLED layer 192W, the second electrode 193, and the protective layer 20 will be referred to as laminate 47.
  • each third region 19RE3 of the laminate 47 is processed until the first surface of the drive substrate 44 is exposed, as shown in Figures 49A, 49B, and 49C.
  • recesses 19a3 are formed in each third region 19RE3 of the laminate 47.
  • the gray-colored regions in Figure 49A represent the regions where the first surface of the drive substrate 44 is exposed in this process.
  • the processing of the laminate 47 in this process will be referred to as the first processing of the laminate 47.
  • a protective layer 45 is formed on the first surface of the protective layer 20 and within the recesses 19a3, as shown in Figures 50A, 50B, and 50C, so as to imitate the recesses 19a3.
  • the first region 19RE1 and the second region 19RE2 of the laminate 47 on which the protective layer 45 is formed are processed using, for example, photolithography and dry etching until the first surface of the drive substrate 44 is exposed.
  • a groove 19a1 is formed in the first region 19RE1 of the laminate 47
  • a groove 19a2 is formed in the second region 19RE2 of the laminate 47.
  • the laminate 47 is separated for each subpixel 10, and a plurality of light-emitting elements 19W are formed on the first surface of the drive substrate 44.
  • the processing of the laminate 47 in this process is referred to as the second processing of the laminate 47.
  • the areas colored gray in Figure 51A represent the areas where the first surface of the drive substrate 44 is exposed in this process.
  • the protective layer 45 formed on the first surface of the laminate 47 is separated in the first region 19RE1 and the second region 19RE2, but is maintained in a connected state in the third region 19RE3. Also, in the third region 19RE3 of the first surface of the drive substrate 44, there is a portion that is processed twice, in the first processing of the laminate 47 and the second processing of the laminate 47. In this portion, a step 44St is formed, as shown in FIG. 51B.
  • protective layer 46 is formed on the first surface of protective layer 45, in grooves 19a1 and 19a2, so as to imitate grooves 19a1 and 19a2, as shown in Figures 52A, 52B, and 52C.
  • the steps from the step of forming the protective layer 16 to the step of forming the color filter 24 are carried out in the same manner as in the manufacturing method of the display device 103 according to the third embodiment. In this manner, the display device 108 is obtained.
  • a protective layer 45 is provided on the first surface of a plurality of protective layers 20, and the protective layer 45 on each protective layer 20 is connected between the light-emitting elements 19W in a third direction between the first direction and the second direction.
  • the protective layer 45 partially covers the side surface of each light-emitting element 19W at each intersection of the groove 19a1 and the groove 19a2. Therefore, it is possible to suppress the occurrence of peeling between the OLED layer 192W and the peripheral portion of the second electrode 193. Therefore, it is possible to suppress the drive voltage of the light-emitting element 19W from becoming high. In addition, it is possible to improve the light-emitting efficiency.
  • Protective layer 46 covers the multiple light-emitting elements 19W on which protective layer 45 is provided, following the grooves 19a1 and 19a2. This can further suppress peeling between the OLED layer 192W and the peripheral portion of the second electrode 193.
  • peeling between the OLED layer 192W and the peripheral portions of the second electrode 193, etc. can be suppressed, and therefore the options for the film types of the OLED layer 192W and the second electrode 193, etc. can be expanded.
  • the separation process is performed in multiple steps so that the laminate 47 is not completely separated, thereby making it possible to suppress peeling between the OLED layer 192W and the second electrode 193 due to film stress. Furthermore, by forming the protective layer 45 that covers the side surfaces of each light emitting element 19W and the side surfaces of each protective layer 20, it is possible to suppress the occurrence of film peeling when the light emitting elements 19W are finally separated.
  • the third region 19RE3 of the laminate 47 is processed to form the recess 19a3.
  • the laminate 47 is separated in the third region 19RE3, but since the first region 19RE1 and the second region 19RE2 are connected, the laminate 47 is not completely separated. Therefore, in the first processing step of the laminate 47, the effect of the film stress of the protective layer 20 on the interface between the OLED layer 192W and the second electrode 193 can be suppressed. Therefore, in the first processing step of the laminate 47, peeling is unlikely to occur between the OLED layer 192W and the second electrode 193.
  • the protective layer 45 covers the first surface of the laminate 47 and the side surface of the recess 19a3, etc. With this, it is possible to take measures against peeling between the OLED layer 192W and the second electrode 193.
  • the grooves 19a1 and 19a2 are formed by processing between the first region 19RE1 and the second region 19RE2.
  • the protective layer 45 is separated in the first region 19RE1 and the second region 19RE2 together with the laminate 47, but since it is connected in the third region 19RE3, the laminate 47 on which the protective layer 45 is formed is not completely separated.
  • the side of the recess 19a3 in the third region 19RE3 is covered with the protective layer 45. Therefore, even in the second processing step of the laminate 47, the effect of the film stress of the protective layer 20 on the interface between the OLED layer 192W and the second electrode 193 can be suppressed. Therefore, even in the second processing step of the laminate 47, peeling is unlikely to occur between the OLED layer 192W and the second electrode 193.
  • the first surface of the laminate 47 and the side surfaces of the grooves 19a1 and 19a2 are covered with a protective layer 46. This makes it possible to prevent peeling between the OLED layer 192W and the second electrode 193.
  • Fig. 53 is a cross-sectional view of a display device 109 according to the ninth embodiment.
  • the display device 109 differs from the display device 103 according to the third embodiment (see Fig. 14) in that the display device 109 further includes a planarization layer 54 and a lens array 55.
  • the display device 109 may further include a protection layer 56 and a cover layer 57, as necessary.
  • the planarization layer 54 covers the color filter 24 and forms a flat surface above the first surface of the color filter 24.
  • the planarization layer 54 includes, for example, an inorganic material or a polymer resin.
  • the inorganic material include the same inorganic material as the protective layer 13 in the first embodiment.
  • the polymer resin include the same polymer resin as the protective layer 13 in the first embodiment.
  • the lens array 55 is provided on the first surface of the planarization layer 54.
  • the lens array 55 includes a plurality of lenses 551.
  • the lenses 551 can condense light emitted upward from the light-emitting element 19W in a front direction.
  • the plurality of lenses 551 are so-called on-chip microlenses (OCL), and are two-dimensionally arranged on the first surface of the planarization layer 54 in a specified arrangement pattern.
  • One lens 551 may be provided above one light-emitting element 19W, or two or more lenses 551 may be provided above one light-emitting element 19W.
  • FIG. 53 shows an example in which one lens 551 is provided above one light-emitting element 19W.
  • the lens 551 may have a curved surface on the surface that emits light incident from the light-emitting element 19W.
  • the curved surface may be a convex curved surface that protrudes in a direction away from the light-emitting element 19W, or a concave curved surface that is recessed in a direction toward the light-emitting element 19W. Examples of the curved surface include a substantially parabolic shape, a substantially hemispherical shape, and a substantially semi-ellipsoidal shape, but are not limited to these shapes.
  • the lens 551 includes, for example, an inorganic material or a polymer resin that is transparent to visible light.
  • the inorganic material includes, for example, silicon oxide (SiO x ).
  • the polymer resin includes, for example, an ultraviolet curing resin.
  • the protective layer 56 covers the lens array 55.
  • the refractive index of the protective layer 56 is different from that of the lens array 55.
  • the refractive index of the protective layer 56 may be higher or lower than that of the lens array 55.
  • the refractive index of the protective layer 56 is preferably lower than that of the lens array 55 from the viewpoint of improving the front brightness.
  • the refractive index of the protective layer 56 is preferably higher than that of the lens array 55 from the viewpoint of improving the front brightness.
  • the cover layer 57 is provided on the first surface of the protective layer 56.
  • the cover layer 57 seals each component such as the multiple light-emitting elements 12W provided on the first surface of the drive substrate 11.
  • the cover layer 57 is translucent to light emitted from the light-emitting elements 19W.
  • the cover layer 57 is preferably transparent to visible light.
  • the cover layer 57 is, for example, a glass substrate.
  • the lens array 55 is provided above the plurality of light-emitting elements 19W. This allows the light emitted upward from the light-emitting elements 19W to be condensed in the front direction by the lens array 55. This allows the front brightness of the display device 109 to be improved.
  • the display device 103 according to the third embodiment is further provided with the planarization layer 54 and the lens array 55, but the display devices 101, 102, and 104 to 108 according to the first, second, and fourth to eighth embodiments may further include the planarization layer 54 and the lens array 55.
  • the display device 109A according to a tenth embodiment described later may further include the planarization layer 54 and the lens array 55.
  • a protective layer 56 and a cover layer 57 may be further provided.
  • a color filter 24 may be further provided for the display devices 101, 102, 104 to 108 according to the first, second, and fourth to eighth embodiments that do not include a color filter 24.
  • Fig. 70 is a plan view showing an enlarged portion of the display region RE1 of a display device 109A according to the tenth embodiment.
  • Fig. 71 is a cross-sectional view taken along line LXXI-LXXI in Fig. 70.
  • Fig. 72 is a cross-sectional view showing an enlarged portion of a light-emitting element 19W.
  • the display device 109A includes a drive substrate 11, a plurality of light-emitting elements 19W, an insulating layer 91, a side protection layer 92, a protection layer 16, a common electrode 17, a protection layer 23, and a color filter 24. Note that in the tenth embodiment, the same reference numerals are used for parts that are the same as or correspond to those in the third embodiment.
  • the insulating layer 91 covers the periphery of the first surface of the first electrode 191, the side surface (end surface) of the first electrode 191, and the periphery of the first electrode 191.
  • the insulating layer 91 is provided separately for the plurality of light-emitting elements 12 in the display region RE1. That is, the insulating layer 91 is divided between the light-emitting elements 19W adjacent in the in-plane direction in the display region RE1.
  • the insulating layer 91 has a plurality of openings 91a. The plurality of openings 91a are provided corresponding to the light-emitting elements 19W, respectively.
  • the plurality of openings 91a are provided on the first surface (the surface on the OLED layer 192W side) of the first electrode 191.
  • the first electrode 191 and the OLED layer 192W are in contact with each other through the openings 91a.
  • the light-emitting element 19W more specifically, the second electrode 193, has a flat portion 193a and a convex portion 193b on the first surface, as shown in FIG. 72.
  • the convex portion 193b protrudes from the flat portion 193a.
  • the convex portion 193b is provided along the outer periphery of the flat portion 193a, and has a closed loop shape surrounding the flat portion 193a in a plan view.
  • the convex portion 193b has an inclined portion 193c along the periphery of the first surface of the light-emitting element 19W.
  • the inclined portion 193c is provided adjacent to the side surface of the light-emitting element 19W.
  • the inclined portion 193c descends from the inside to the outside of the periphery of the first surface of the light-emitting element 19W.
  • the light-emitting element 19W has a eaves-like overhang 194 that uniformly overhangs the upper end of the side surface (the end of the side surface on the first surface side (upper surface side)). More specifically, the light-emitting element 19W has a recess 195 on the side surface of the OLED layer 192W, and the recess 195 is a side etching portion that is provided along the entire circumference of the side surface of the light-emitting element 19W.
  • the light-emitting element 19W has the overhang 194, in the process of dividing the OLED layer 192W and the second electrode 193 by etching, the deposits deposited in the recess 195 by etching are in the shadow of the overhang 194, so that the incidence of ions on the deposits is suppressed and the deposits are less likely to be etched. Therefore, the thickness of the side protection layer 92 can be increased, and peeling between the OLED layer 192W and the second electrode 193 can be suppressed.
  • the thickness t2 of the second electrode 193 at the inclined portion 193c is thicker than the thickness t1 of the second electrode 193 at the flat portion 193a. This suppresses recession of the peripheral portion of the second electrode 193 in the process of dividing the OLED layer 192W and the second electrode 193 by etching, and the side surface of the light emitting element 19W is easily side-etched, so that the protruding portion 194 is easily formed on the side surface of the light emitting element 19W.
  • the thicknesses t1 and t2 of the second electrode 193 both represent the thickness in the direction perpendicular to the flat portion 193a.
  • the OLED layer 192W has a flat portion 192a and a convex portion 192b on its first surface.
  • the flat portion 192a is provided above the first electrode 191 and is surrounded by the convex portion 192b in a plan view.
  • the flat portion 192a is parallel to the first surface of the first electrode 191.
  • the flat portion 192a is formed corresponding to the first surface of the first electrode 191 exposed from the opening 91a of the insulating layer 91.
  • the convex portion 192b protrudes from the flat portion 192a.
  • the convex portion 192b is provided along the outer periphery of the flat portion 193a, and has a closed loop shape surrounding the flat portion 192a in a plan view.
  • the convex portion 192b is formed to correspond to the step formed by the side of the opening 91a of the insulating layer 91 and the step formed by the side of the first electrode 191.
  • the convex portion 192b may be formed to follow both of the steps.
  • the convex portion 192b has an inclined portion 192c along the periphery of the first surface of the OLED layer 192W.
  • the inclined portion 192c is provided adjacent to the side surface of the OLED layer 192W.
  • the inclined portion 192c descends in a direction from the inside to the outside of the periphery of the first surface of the OLED layer 192W.
  • the cross-sectional shape of the inclined portion 192c may be, for example, a convex curved line shape or a substantially straight line shape, but is not limited to these shapes.
  • the cross-sectional shape of the inclined portion 192c refers to the cross-sectional shape of the inclined portion 192c obtained by cutting the display device 109A so as to include the central axis of the light-emitting element 19W.
  • the inclined portion 192c is formed in correspondence with the step formed by the side surface of the first electrode 191.
  • the inclined portion 192c may be formed to follow the step.
  • the second electrode 193 follows the shape of the first surface of the OLED layer 192W, i.e., the flat portion 192a and the convex portion 192b on the first surface of the OLED layer 192W.
  • the flat portion 193a and the convex portion 193b are formed on the first surface of the second electrode 193 (i.e., the first surface of the light-emitting element 19W). Since the flat portion 193a and the convex portion 193b of the second electrode 193 are formed following the flat portion 192a and the convex portion 192b of the OLED layer 192W, the shape and positional relationship, etc.
  • the flat portion 193a and the convex portion 193b are similar to the shape and positional relationship, etc. of the flat portion 192a and the convex portion 192b. Therefore, a description of the shape and positional relationship, etc. of the flat portion 193a and the convex portion 193b will be omitted.
  • the second electrode 193 is preferably made of a material that is difficult to etch. Specifically, the etching rate (etching speed) of the second electrode 193 is preferably lower than the etching rate of the OLED layer 192W. This makes it easier for the OLED layer 192W to be side-etched in the process of dividing the OLED layer 192W and the second electrode 193 by etching, and therefore makes it easier for the protrusion 194 to be formed on the side surface of the light-emitting element 19W.
  • the side protection layer 92 covers at least the boundary between the side surface of the OLED layer 192W and the side surface of the second electrode 193. This makes it possible to suppress the influence of the film stress of the protection layer 13 on the interface between the OLED layer 192W and the second electrode 193. More specifically, the side protection layer 92 covers the side surface of the second electrode 193, the side surface of the OLED layer 192W, and the side surface of the insulating layer 91. In the tenth embodiment, an example in which the side protection layer 92 covers the side surface of the insulating layer 91 will be described, but the side surface of the insulating layer 91 does not have to be covered.
  • the side protection layer 92 may have a closed loop shape in a plan view, or may have a partially disconnected loop shape.
  • the lower end of the side protection layer 92 (one end on the drive substrate 11 side) is lower than the second surface of the first electrode 191 and is located on the first surface of the insulating layer 91.
  • the position of the lower end of the side protection layer 92 is not limited to this example.
  • the lower end of the side protection layer 92 may be at approximately the same height as the second surface of the first electrode 191 and located on the first surface of the insulating layer 91, or may be higher than the second surface of the first electrode 191 and located on the first surface of the insulating layer 91.
  • the upper end of the side protection layer 92 (the other end opposite the drive substrate 11) is located at a position substantially the same as the periphery of the first surface of the light-emitting element 19W, or at a position lower than the periphery of the first surface of the light-emitting element 19W.
  • the side protection layer 92 can protect the side of the light-emitting element 19W.
  • the side protection layer 92 may be able to suppress the intrusion of moisture from the external environment into the light-emitting element 19W and suppress deterioration of the light-emitting element 19W.
  • the side protection layer 92 is translucent to the white light emitted from the light-emitting element 19W. It is preferable that the side protection layer 92 is transparent to visible light. It is preferable that the side protection layer 92 is insulating.
  • the side protection layer 92 includes, for example, a deposit deposited on the side of the light-emitting element 19W by etching the second electrode 193, the OLED layer 192W, and the insulating layer 91. More specifically, the side protection layer 92 includes, for example, the constituent material of the second electrode 193, the constituent material of the OLED layer 192W, and the constituent material of the insulating layer 91.
  • the side protection layer 92 may include deposits deposited on the side of the light-emitting element 19W by etching the second electrode 193, the OLED layer 192W, the insulating layer 91, and the insulating layer 112. More specifically, the side protection layer 92 may include, for example, the constituent material of the second electrode 193, the constituent material of the OLED layer 192W, the constituent material of the insulating layer 91, and the constituent material of the insulating layer 112.
  • the side protection layer 92 may include, for example, a deposit deposited on the side of the light-emitting element 19W by etching the second electrode 193 and the OLED layer 192W. More specifically, the side protection layer 92 may include, for example, the constituent material of the second electrode 193 and the constituent material of the OLED layer 192W.
  • the constituent material of the second electrode 193 included in the side protective layer 92 may be a part of, or all of, the constituent material of the second electrode 193.
  • the constituent material of the OLED layer 192W included in the side protective layer 92 may be a part of, or all of, the constituent material of the OLED layer 192W.
  • the constituent material of the insulating layer 91 included in the side protective layer 92 may be a part of, or all of, the constituent material of the insulating layer 91.
  • the constituent material of the insulating layer 112 included in the side protective layer 92 may be a part of, or all of, the constituent material of the insulating layer 112.
  • a metal layer (e.g., an aluminum layer with a thickness of about 200 nm) is formed on the first surface of the drive substrate 11, for example, by sputtering, and then the metal layer is patterned, for example, by photolithography and dry etching. As a result, a plurality of first electrodes 191 are formed on the first surface of the drive substrate 11.
  • an insulating layer 91 (e.g., a silicon oxide layer having a thickness of about 200 nm) is formed on the first surface of the drive substrate 11 so as to cover the first electrodes 191, for example, by using a CVD method.
  • a plurality of openings 91a are formed in the insulating layer 91, for example, by using photolithography and dry etching. This causes the first surface of each first electrode 191 to be exposed through the opening 91a.
  • the OLED layer 192W is formed on the first surfaces of the plurality of first electrodes 191 and the first surface of the insulating layer 91, for example, by using a vapor deposition method.
  • the flat portion 192a of the first surface of the OLED layer 192W is formed corresponding to the first surface of the first electrode 191 exposed by the opening 91a of the insulating layer 91
  • the convex portion 192b of the first surface of the OLED layer 192W is formed corresponding to the step formed by the side of the opening 91a of the insulating layer 91 and the step formed by the side of the first electrode 191.
  • the second electrode 193 (for example, an IZO layer having a thickness of about 60 nm) is formed on the first surface of the OLED layer 192W by, for example, a sputtering method.
  • the second electrode 193 is formed so as to follow the shape of the first surface of the OLED layer 192W, i.e., the flat portion 192a and the convex portion 192b on the first surface of the OLED layer 192W.
  • the flat portion 193a and the convex portion 193b are formed on the first surface of the second electrode 193.
  • the thickness t2 of the second electrode 193 at the inclined portion 193c is thicker than the thickness t1 of the second electrode 193 at the flat portion 193a.
  • a first protective layer 163 (e.g., a silicon nitride layer with a thickness of about 1 ⁇ m) is formed on the first surface of the second electrode 193, for example, using a PCVD (plasma enhanced CVD) method.
  • island-shaped resist layers 93 are formed as a mask at positions corresponding to each sub-pixel 10, as shown in FIG. 73A, using photolithography, for example. At this time, the formation positions of the island-shaped resist layers 93 are adjusted so that the edges of the island-shaped resist layer 93 are located above the inclined portions 193c, as shown in FIG. 73B.
  • the first protective layer 163, the second electrode 193, the OLED layer 192W, and the insulating layer 91 are processed in order through the resist layer 93, for example, using dry etching.
  • a plurality of light-emitting elements 19W are formed on the first surface of the drive substrate 11. During the etching, as shown in FIG.
  • the side surface of the light-emitting element 19W is side-etched, forming a recess (side-etched portion) 195 on the side surface of the light-emitting element 19W, and the constituent materials of the second electrode 193, the OLED layer 192W, and the insulating layer 91 that have been repelled by ions are deposited on the side surface of the light-emitting element 19W so as to fill the recess 195.
  • a eaves-like protrusion 194 is formed at the upper end of the side of the light-emitting element 19W, so that the deposits accumulated on the side of the light-emitting element 19W are in the shadow of the protrusion 194, which suppresses the incidence of ions on the deposits and makes the deposits less likely to be etched. Therefore, the thickness of the side protection layer 92 can be increased, which suppresses peeling between the OLED layer 192W and the second electrode 193.
  • the formation position of the island-shaped resist layer 93 is adjusted so that the edge of the island-shaped resist layer 93 is located above the inclined portion 193c (see FIG. 73B), so that the second electrode 193 can be divided by etching at the inclined portion 193c. Since the thickness t2 of the second electrode 193 at the inclined portion 193c is thicker than the thickness t1 of the second electrode 193 at the flat portion 193a (see FIG. 73D), the recession of the peripheral portion of the second electrode 193 is suppressed, and the side surface of the light-emitting element 19W is easily side-etched. Therefore, the recess 195 is easily formed on the side surface of the light-emitting element 19W. That is, the eaves-shaped protruding portion 194 is easily formed uniformly at the upper end of the side surface of the light-emitting element 19W.
  • the resist layer 93 serving as a mask is removed from the first surface of the first protective layer 163, for example, by ashing.
  • a second protective layer 164 e.g., a silicon nitride layer
  • PCVD a second protective layer 164
  • the protective layer 16 consisting of the first protective layer 163 and the second protective layer 164.
  • the first surface of the protective layer 16 may be polished and planarized, for example, by CMP.
  • the protective layer 16 is processed, for example, by photolithography and dry etching, to form contact holes 161 on each light-emitting element 19W.
  • a common electrode 17 e.g., an IZO layer
  • a protective layer 23 is formed on the first surface of the common electrode 17, for example, by PCVD.
  • a plurality of green filter portions 24FG, a plurality of red filter portions 24FR, and a plurality of blue filter portions 24FB are formed on the first surface of the protective layer 23, for example, by photolithography. This forms a color filter 24 on the first surface of the protective layer 23. In this manner, the display device 109A is obtained.
  • the steps from the step of forming the first electrode 191 to the step of forming the resist layer 93 are carried out in the same manner as the first example of the manufacturing method for the display device 109A according to the third embodiment.
  • the first protective layer 163 is processed through the resist layer 93, for example, by dry etching, and then the resist layer 93 serving as a mask is removed from the first surface of the first protective layer 163, for example, by ashing.
  • the resist layer 93 serving as a mask is removed from the first surface of the first protective layer 163, for example, by ashing.
  • island-shaped first protective layer 163 is formed at positions corresponding to each sub-pixel 10.
  • the formation positions of the island-shaped resist layer 93 are adjusted so that the edges of the island-shaped first protective layer 163 are formed on the inclined portions 193c by etching.
  • the second electrode 193, the OLED layer 192W, and the insulating layer 91 are processed in sequence using the island-shaped first protective layer 163 as a mask, for example, by dry etching. As a result, a plurality of light-emitting elements 19W are formed on the first surface of the drive substrate 11, as shown in FIG. 74B.
  • the steps from the step of forming the second protective layer 164 to the step of forming the color filter 24 are carried out in the same manner as the first example of the manufacturing method for the display device 109A according to the third embodiment. In this manner, the display device 109A is obtained.
  • the OLED layer 192W has an inclined portion 192c at the peripheral portion of the first surface on the second electrode 193 side, and the thickness t2 of the second electrode 193 at the inclined portion 192c is thicker than the thickness t1 of the second electrode 193 at the flat portion 192a.
  • recession of the peripheral portion of the second electrode 193 is suppressed, and the side surface of the light-emitting element 19W is easily side-etched, so that the protruding portion 194 is easily formed on the side surface of the light-emitting element 19W.
  • the protruding portion 194 is formed on the side surface of the light-emitting element 19W, in the process of dividing the OLED layer 192W and the second electrode 193 by etching, the deposit deposited on the side surface of the light-emitting element 19W by etching is in the shadow of the protruding portion 194, so that the incidence of ions on the deposit is suppressed, and the deposit is less likely to be etched. Therefore, the thickness of the side protection layer 92 can be increased, which can suppress peeling between the OLED layer 192W and the second electrode 193. Therefore, it is possible to suppress an increase in the driving voltage of the light emitting element 19W.
  • the second electrode 193 is not divided at the position of the flat portion 193a or the flat portion 193d (see FIG. 73B), but is divided at the position of the inclined portion 193c.
  • the thickness t2 of the second electrode 193 at the inclined portion 193c is thicker than the thickness t1 of the second electrode 193 at the flat portion 193a and the flat portion 193d.
  • the recession of the peripheral portion of the second electrode 193 is suppressed, and the side surface of the light-emitting element 19W is more likely to be side-etched than when the second electrode 193 is divided at the position of the flat portion 193a or the flat portion 193d. That is, the recession in the in-plane direction of the OLED layer 192W is larger than that of the second electrode 193, and the amount of side etching is increased. As a result, the eaves-shaped protrusion 194 is more likely to be formed at the upper end of the side surface of the light-emitting element 19W.
  • the side protection layer 92 is easily formed thick on the side surface of the light emitting element 19W, and the effect of the film stress of the protection layer 13 on the interface between the OLED layer 192W and the second electrode 193 can be suppressed. Therefore, peeling between the OLED layer 192W and the second electrode 193 can be suppressed. Therefore, an increase in the driving voltage of the light emitting element 19W can be suppressed.
  • the display device 109A includes an insulating layer 91 that covers the periphery of the first surface of the first electrode 191, the side surface of the first electrode 191, and the periphery of the first electrode 191 (see FIG. 72).
  • the insulating layer 91 is not an essential component, and the display device 109A may not include the insulating layer 91 as shown in FIG. 75.
  • the OLED layer 192W may have a flat portion 192a and an inclined portion 192c on the first surface
  • the second electrode 193 may have a flat portion 193a and an inclined portion 193c that respectively follow the flat portion 192a and the inclined portion 192c on the first surface.
  • the shapes of the first surface of the OLED layer 192W and the first surface of the second electrode 193 are not limited to this example, and as in the tenth embodiment, the OLED layer 192W may have a flat portion 192a and a convex portion 192b on its first surface, and the second electrode 193 may have a flat portion 193a and a convex portion 193b on its first surface that respectively follow the flat portion 192a and the convex portion 192b.
  • the upper end of the side protection layer 92 is provided at a position substantially the same as the periphery of the first surface of the light emitting element 19W or at a position lower than the periphery of the first surface of the light emitting element 19W.
  • the position of the upper end of the side protection layer 92 is not limited to this example, and may be provided at a position higher than the periphery of the first surface of the light emitting element 19W, for example, as shown in Fig. 76.
  • the upper end portion of the side protection layer 92 may cover the lower end portion of the side of the first protection layer 163 provided on the first surface of the light emitting element 19W.
  • the display device 109A includes a plurality of light-emitting elements 19W capable of emitting white light and a color filter 24, and a combination of these elements is used to display a color image, but the colorization method of the display device 109A is not limited to this.
  • the display device 109A may include a plurality of light-emitting elements capable of emitting red light, a plurality of light-emitting elements capable of emitting green light, and a plurality of light-emitting elements capable of emitting blue light, instead of the plurality of light-emitting elements 19W.
  • the color filter 24 may or may not be included.
  • the above-mentioned light-emitting element capable of emitting light of each color is, for example, (1) a light-emitting element including a light-emitting layer capable of emitting light of a predetermined color (red light, green light, or blue light), (2) a light-emitting element including a light-emitting layer capable of emitting white light and capable of emphasizing light of a predetermined wavelength (red light, green light, or blue light) contained in the white light emitted by the light-emitting layer by resonating it using a resonator structure, or (3) a light-emitting element including a light-emitting layer capable of emitting light of a predetermined color (red light, green light, or blue light) and capable of emphasizing light of a predetermined wavelength contained in the light of a predetermined color emitted by the light-emitting layer by resonating it using a resonator structure.
  • FIG. 18 In the third embodiment, an example (see FIG. 18) has been described in which a laminate consisting of an OLED layer 252, a second electrode 253, and a protective layer 27 is provided on a first electrode 251.
  • the laminate may be divided into two regions in the in-plane direction by a groove 25a, as shown in FIGS. 54 and 55.
  • the groove 25a has a closed loop shape in a plan view. A portion of the first surface of the second electrode 123 located inside the groove 25a is connected to the contact portion 171 of the common electrode 17. That is, the portion located inside the groove 25a becomes a light-emitting portion, and the portion located outside the groove 25a becomes a non-light-emitting portion.
  • the side protection layer 28 may be provided on the side of the groove 25a instead of on the side of the light-emitting element 25, or on both the side of the light-emitting element 25 and the side of the groove 25a.
  • the side protection layer 28 may be provided on both the inner side and the outer side of the groove 25a, as shown in Figs. 54 and 55, or may be provided only on the inner side of the groove 25a.
  • the inner side of the groove 25a refers to the side of the pair of side surfaces that constitute the groove 25a that is farther from the side of the light-emitting element 25, and the outer side of the groove 25a refers to the side of the pair of side surfaces that constitute the groove 25a that is closer to the side of the light-emitting element 25.
  • a groove 25a is provided in the laminate in the third embodiment, but a groove may be provided in the laminate in the first, second, fourth to ninth embodiments.
  • a side protective layer may be provided on the side of the groove.
  • the inner side of the groove may have a configuration similar to the side of the laminate in the first or second embodiment. That is, on the inner side of the groove, the side of the protective layer 13 may be located inside the side of the second electrode 123 in the in-plane direction.
  • the display device 107 may include a plurality of side protection layers, each of which covers a side surface of the light emitting element 41G.
  • the side protection layer may be any of the side protection layers in the first to sixth and eighth embodiments. In this case, the effect of suppressing peeling between the OLED layer 312R and the second electrode 313 can be further improved.
  • the configurations, methods, steps, shapes, materials, values, etc. given in the first to ninth embodiments, the tenth embodiment, and their modified examples are merely examples, and different configurations, methods, steps, shapes, materials, values, etc. may be used as necessary.
  • the present disclosure may also employ the following configurations (1-1) to (1-20).
  • the following configurations (1-1) to (1-20) correspond to the first to eighth embodiments.
  • (1) A plurality of light-emitting elements, each of which has a first electrode, an organic-material-containing layer including an organic light-emitting layer, and a second electrode, and which are arranged two-dimensionally; a protective layer provided on each of the light emitting elements and separated between adjacent light emitting elements; a side protection layer covering a side surface of each of the organic substance-containing layers, a side surface of each of the second electrodes, and a side surface of each of the protection layers, A side surface of the protective layer is located inside a side surface of the second electrode.
  • Light emitting device each of which has a first electrode, an organic-material-containing layer including an organic light-emitting layer, and a second electrode, and which are arranged two-dimensionally; a protective layer provided on each of the light emitting elements and separated between adjacent light emitting elements; a side protection
  • the protective layer comprises silicon nitride.
  • the protective layer includes a first protective layer and a second protective layer in this order; an etching rate of the second protective layer is smaller than an etching rate of the first protective layer; A light emitting device according to (1).
  • the protective layer includes a first protective layer and a second protective layer in this order; the second protective layer comprises a monolayer; A light emitting device according to (1).
  • the protective layer includes a first protective layer including silicon nitride and a second protective layer including aluminum oxide, in that order. A light emitting device according to (1).
  • the protective layer includes a first protective layer and a second protective layer in this order; A side surface of the second protective layer is located outside a side surface of the first protective layer.
  • the side protective layer has a first side protective layer and a second side protective layer.
  • the second side protective layer contains at least one selected from the group consisting of zirconium oxide, tantalum oxide, and aluminum oxide.
  • the refractive index of the first side protective layer is lower than the refractive index of the protective layer.
  • the first side surface protection layer includes the same material as the second insulating layer;
  • the second side surface protection layer includes the same material as the first insulating layer.
  • the side protective layer includes a monolayer.
  • the side surface protection layer can reflect light emitted from the light emitting element.
  • the side protective layer is The insulating film has a first side protective layer having electrical conductivity, a second side protective layer having insulation, and a third side protective layer having electrical conductivity, in that order.
  • the light emitting device further includes a base layer provided under the light emitting device, the underlayer has at least one second step around each of the light-emitting elements; The first electrode is provided so as to conform to each of the second steps.
  • a light-emitting device according to (16). (18) a laminated body including the light-emitting element and the protective layer; Adjacent laminates are separated by two or more separation widths, the protective layer includes a first protective layer and a second protective layer provided on the first protective layer, the first protective layer is separated between adjacent stacks, The second protective layer is connected between adjacent laminates in a specified direction.
  • a light emitting device according to (1) A light emitting device according to (1).
  • the present disclosure may also employ the following configurations (3-1) to (3-7). Note that the following configurations (3-1) to (3-7) correspond to the third embodiment.
  • (3-1) A plurality of light-emitting elements, each of which includes a first electrode, an organic-material-containing layer including an organic light-emitting layer, and a second electrode, are arranged two-dimensionally; a protective layer provided on each of the light emitting elements and separated between adjacent light emitting elements; a side protection layer covering a side surface of each of the organic substance-containing layers, a side surface of each of the second electrodes, and a side surface of each of the protection layers,
  • the side protective layer includes a first side protective layer and a second side protective layer. Light emitting device.
  • the second electrode includes a transparent conductive oxide.
  • the second side protective layer contains at least one selected from the group consisting of zirconium oxide, tantalum oxide, and aluminum oxide.
  • the refractive index of the first side protective layer is lower than the refractive index of the protective layer.
  • the light emitting device according to any one of (3-1) to (3-3). a first insulating layer provided between adjacent first electrodes; and a second insulating layer provided on a peripheral portion of a surface of the first electrode on the organic substance-containing layer side.
  • the first side surface protection layer contains a part or all of a constituent material of the second insulating layer
  • the second side surface protective layer contains a part or all of a constituent material of the first insulating layer
  • the light emitting device according to (3-5). (3-7) forming a plurality of first electrodes arranged two-dimensionally on a driving substrate; laminating a first insulating layer and a second insulating layer in a region between adjacent first electrodes; laminating an organic-containing layer including an organic light-emitting layer, a second electrode, and a protective layer on the first electrode and the second insulating layer; removing the protective layer, the second electrode, and the organic-containing layer in regions between adjacent first electrodes; and forming a first side protection layer and a second side protection layer sequentially on a side of the organic-material-containing layer, a side of the second electrode, and a side of the protection layer by sequentially sputter-etching the second insulating layer and the first insulating layer in a region between
  • the present disclosure may also employ the following configurations (4-1) and (4-2).
  • the following configurations (4-1) and (4-2) correspond to the fourth embodiment.
  • (4-1) A plurality of light-emitting elements, each of which includes a first electrode, an organic-material-containing layer including an organic light-emitting layer, and a second electrode, are arranged two-dimensionally; a protective layer provided on the plurality of light emitting elements and separated between the light emitting elements; a side protection layer that covers a side surface of the organic substance-containing layer of each of the light-emitting elements, a side surface of the second electrode, and a side surface of the protection layer,
  • the side protective layer includes a monolayer.
  • the monolayer comprises an ALD layer.
  • the present disclosure may also employ the following configurations (5-1) to (5-6).
  • the following configurations (5-1) to (5-6) correspond to the fifth and sixth embodiments.
  • (5-1) A plurality of light-emitting elements, each of which includes a first electrode, an organic-material-containing layer including an organic light-emitting layer, and a second electrode, are arranged two-dimensionally; a protective layer provided on each of the light emitting elements and separated between adjacent light emitting elements; a side protection layer covering a side surface of each of the organic substance-containing layers, a side surface of each of the second electrodes, and a side surface of each of the protection layers, The side protection layer can reflect light emitted from the light emitting element. Light emitting device.
  • the side protective layer includes at least one reflective layer.
  • Each of the light emitting elements further includes an insulating layer, the insulating layer is provided on a peripheral portion of a surface of the first electrode facing the organic substance-containing layer;
  • the side protective layer is a first side protective layer having electrical conductivity, a second side protective layer having insulation, and a third side protective layer having electrical conductivity, in that order; the first side surface protection layer is connected to the second electrode;
  • the third side surface protection layer is connected to the first electrode.
  • (5-5) Further comprising a metal layer provided under each of the light emitting elements.
  • the side protection layer includes, in order, the first side protection layer having electrical conductivity, a second side protection layer having an insulating property, a third side protection layer capable of reflecting light emitted from the light-emitting element, and a fourth side protection layer capable of reflecting light emitted from the light-emitting element;
  • the present disclosure may also employ the following configurations (7-1) to (7-7).
  • the following configurations (7-1) to (7-7) correspond to the seventh embodiment.
  • (7-1) A plurality of light emitting elements arranged two-dimensionally; a protective layer filling a gap between adjacent light emitting elements; At least one first step is provided around each of the light emitting elements;
  • the light-emitting element includes a first electrode, an organic-containing layer including an organic light-emitting layer, and a second electrode in this order.
  • Each of the first steps is provided on the first electrode.
  • (7-4) The first electrode is connected between adjacent light emitting elements.
  • the light emitting device further includes a base layer provided under the light emitting device, Each of the first steps is provided on the first electrode and the underlayer.
  • the light emitting device further includes a base layer provided under the light emitting device, the underlayer has at least one second step around each of the light-emitting elements; The first electrode is provided so as to conform to each of the second steps.
  • the present disclosure may also employ the following configurations (8-1) to (8-13). Note that the following configurations (8-1) to (8-13) correspond to the eighth embodiment.
  • (8-1) A plurality of laminates arranged two-dimensionally, The laminate comprises: A light-emitting element; a protective layer provided on the light-emitting element; The light emitting element includes a first electrode, an OLED layer, and a second electrode; Adjacent laminates are separated by two or more separation widths.
  • Light emitting device. (8-2) the protective layer includes a first protective layer and a second protective layer provided on the first protective layer, the first protective layer is separated between adjacent stacks, The second protective layer is connected between adjacent laminates in a specified direction.
  • the laminate includes a first protective layer and a second protective layer provided on the first protective layer, The plurality of laminates are arranged in a first direction and a second direction, the second protective layer is separated between the stacks in the first direction and is separated between the stacks in the second direction; The second protective layer is connected between the laminates in a third direction between the first direction and the second direction.
  • the stacks adjacent to each other in the first direction are separated by at least a first separation width and a second separation width, the second separation width is a separation width at both ends of a region between the stacks adjacent to each other in the first direction, the first separation width is a separation width between the two ends;
  • the stacks adjacent to each other in the second direction are separated by at least a third separation width and a fourth separation width, the fourth separation width is a separation width at both ends of a region between the stacks adjacent to each other in the second direction,
  • the third separation width is a separation width between the two ends.
  • the second protective layer covers a part of a side surface of the laminate.
  • the light emitting device according to any one of (8-2) to (8-4).
  • (8-6) A groove is provided between adjacent laminates, The second protective layer is provided so as to conform to the groove.
  • (8-7) Further comprising a third protective layer covering the plurality of laminates; The third protective layer is provided so as to conform to the groove.
  • (8-8) the third protective layer connects the stacks in the first direction, the stacks in the second direction, and the stacks in the third direction;
  • the second protective layer and the third protective layer are made of different materials.
  • the plurality of laminates are arranged in a first direction and a second direction, a thickness of the protective layer located between the laminates in the first direction and a thickness of the protective layer located between the laminates in the second direction are different from a thickness of the protective layer located between the laminates in a third direction between the first direction and the second direction;
  • the plurality of laminates are arranged in a first direction and a second direction, the number of protective layers located between the laminates in the first direction and the number of protective layers located between the laminates in the second direction are different from the number of protective layers located between the laminates in a third direction between the first direction and the second direction;
  • (8-12) Further comprising a base layer provided under the plurality of stacked bodies, The plurality of laminates are arranged in a first direction and a second direction, the underlayer has a step on a surface on which the plurality of laminates are provided, the step being provided at both ends of a region between adjacent laminates;
  • (8-13) forming a plurality of first electrodes arranged two-dimensionally in a first direction and a second direction; forming a laminate by sequentially forming an OLED layer, a second electrode, and a first protective layer so as to cover the first electrode; forming a plurality of recesses in the laminate by processing a plurality of third regions of the laminate; forming a second protective layer covering the laminate having the plurality of recesses formed therein; and dividing the laminate by processing the plurality of first regions and the plurality of second regions of the laminate, the first region is a region between the first electrodes in the first direction, the second region is a region between the first electrodes in the second direction, The third region is a region between the first electrodes in a third direction between the first direction and the second direction.
  • a method for manufacturing a light emitting device is forming a plurality of first electrodes arranged two-dimensionally in a first direction and a second direction; forming a laminate by sequentially forming an OLED layer, a second
  • the present disclosure may also employ the following configurations (9-1) to (9-4).
  • the following configurations (9-1) to (9-4) correspond to the tenth embodiment.
  • (9-1) A plurality of light-emitting elements, each of which has a first electrode, an organic-material-containing layer including an organic light-emitting layer, and a second electrode, and which are arranged two-dimensionally; a side protection layer provided on a side surface of each of the light emitting elements, the organic substance-containing layer has a flat portion and an inclined portion on a surface on the second electrode side, the inclined portion being provided adjacent to a side surface of the organic substance-containing layer, the second electrode follows the flat portion and the inclined portion, and a thickness of the second electrode at the inclined portion is greater than a thickness of the second electrode at the flat portion; Light emitting device.
  • the light emitting element has a protruding portion at an upper end of a side surface of the light emitting element.
  • the light emitting device according to (9-1). (9-3) the side protection layer covers the boundary between the organic substance-containing layer and the second electrode;
  • the light emitting device according to (9-1) or (9-2). (9-4)
  • a protective layer is provided on the plurality of light emitting elements and is separated between adjacent light emitting elements,
  • the side surface protection layer covers the side surfaces of the protection layer as well as the side surfaces of the light emitting elements.
  • the light-emitting unit is, for example, the light-emitting element 18W in the ninth embodiment.
  • the lens member is, for example, the lens 551 of the lens array 55 in the ninth embodiment.
  • the wavelength selection unit is, for example, the filter unit 24F in the ninth embodiment.
  • the size of the wavelength selection section may be changed as appropriate in response to the light emitted by the light emitting section, or in the case where a light absorbing section (e.g., a black matrix section) is provided between the wavelength selection sections of adjacent light emitting sections, the size of the light absorbing section may be changed as appropriate in response to the light emitted by the light emitting section.
  • the size of the wavelength selection section may be changed as appropriate in response to the distance (offset amount) d 0 between the normal line passing through the center of the light emitting section and the normal line passing through the center of the wavelength selection section.
  • the planar shape of the wavelength selection section may be the same as, similar to, or different from the planar shape of the lens member.
  • the normal line LN passing through the center of the light-emitting section 51 and the normal line LN" passing through the center of the wavelength selection section 52 coincide with each other, but the normal line LN passing through the center of the light-emitting section 51 and the normal line LN" passing through the center of the wavelength selection section 52 may not coincide with the normal line LN' passing through the center of the lens member 53.
  • a configuration may be adopted in which the normal line LN passing through the center of the light-emitting section 51, the normal line LN" passing through the center of the wavelength selecting section 52, and the normal line LN' passing through the center of the lens member 53 do not all coincide. That is, D 0 > 0, d 0 > 0, and D 0 ⁇ d 0 may be satisfied.
  • the center of the wavelength selecting section 52 (the position indicated by the black square in FIG. 57 ) is located on a straight line LL connecting the center of the light-emitting section 51 and the center of the lens member 53 (the position indicated by the black circle in FIG. 57 ).
  • the thickness direction refers to the thickness direction of the light emitting section 51 , the wavelength selecting section 52 , and the lens member 53 .
  • a configuration may be adopted in which the normal line LN passing through the center of the light-emitting section 51, the normal line LN" passing through the center of the wavelength selecting section 52, and the normal line LN' passing through the center of the lens member 53 do not all coincide.
  • the center of the lens member 53 (the position shown by a black circle in FIG. 59 ) is located on a straight line LL connecting the center of the light-emitting section 51 and the center of the wavelength selecting section 52 (the position shown by a black square in FIG. 59 ).
  • the distance in the thickness direction vertical direction in FIG.
  • the thickness direction refers to the thickness direction of the light emitting section 51 , the wavelength selecting section 52 , and the lens member 53 .
  • the pixels used in the display device according to the present disclosure described above may be configured to include a resonator structure that resonates light generated by a light-emitting element.
  • the resonator structure will be described below with reference to the drawings.
  • the first surface of each layer may be referred to as the upper surface.
  • (Resonator structure: first example) 60A is a schematic cross-sectional view for explaining a first example of the resonator structure.
  • the light-emitting elements provided corresponding to the sub-pixels 10R, 10G, and 10B are collectively referred to without any particular distinction, they may be referred to as light-emitting elements 12.
  • the light-emitting elements provided corresponding to the sub-pixels 10R, 10G, and 10B are distinguished, they may be referred to as light-emitting elements 12R , 12G , and 12B .
  • Parts of the OLED layer 122 corresponding to the sub-pixels 10R, 10G, and 10B may be referred to as OLED layer 122R , OLED layer 122G , and OLED layer 122B .
  • the light-emitting elements may be any of the light-emitting elements in the first to ninth embodiments and the tenth embodiment.
  • the first electrode 121 is formed with a common film thickness in each light-emitting element 12. The same is true for the second electrode 123.
  • a reflector 71 is disposed under the first electrode 121 of the light-emitting element 12 with an optical adjustment layer 72 sandwiched therebetween.
  • a resonator structure that resonates light generated by the OLED layer 122 is formed between the reflector 71 and the second electrode 123.
  • the optical adjustment layers 72 provided corresponding to the sub-pixels 10R, 10G, and 10B, respectively, may be referred to as optical adjustment layers 72R , 72G , and 72B .
  • the reflector 71 is formed to have a common thickness for each light-emitting element 12.
  • the thickness of the optical adjustment layer 72 varies depending on the color to be displayed by the pixel. By having the optical adjustment layers 72R , 72G , and 72B have different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
  • the upper surfaces of the reflectors 71 in the light-emitting elements 12R , 12G , and 12B are arranged so as to be aligned.
  • the film thickness of the optical adjustment layer 72 differs depending on the color to be displayed by the pixel, and therefore the position of the upper surface of the second electrode 123 differs depending on the type of the light-emitting element 12R , 12G , and 12B .
  • the reflector 71 can be formed using metals such as aluminum (Al), silver (Ag), copper (Cu), etc., or alloys containing these as main components.
  • the optical adjustment layer 72 can be made of inorganic insulating materials such as silicon nitride (SiN x ), silicon oxide (SiO x ), silicon oxynitride (SiO x N y ), or organic resin materials such as acrylic resins and polyimide resins.
  • the optical adjustment layer 72 may be a single layer or a laminated film of a plurality of these materials. The number of layers may vary depending on the type of the light emitting element 12.
  • the first electrode 121 can be formed using a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), or zinc oxide (ZnO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • the second electrode 123 must function as a semi-transmissive reflective film.
  • the second electrode 123 can be formed using magnesium (Mg) or silver (Ag), or a magnesium-silver alloy (MgAg) containing these as the main components, or an alloy containing an alkali metal or an alkaline earth metal.
  • FIG. 60B is a schematic cross-sectional view for explaining the second example of the resonator structure.
  • the first electrode 121 and the second electrode 123 are also formed with a common film thickness in each light-emitting element 12.
  • a reflector 71 is also disposed under the first electrode 121 of the light-emitting element 12, with the optical adjustment layer 72 sandwiched between them.
  • a resonator structure that resonates the light generated by the OLED layer 122 is formed between the reflector 71 and the second electrode 123.
  • the reflector 71 is formed with a common thickness for each light-emitting element 12, and the thickness of the optical adjustment layer 72 differs depending on the color that the pixel is to display.
  • the upper surfaces of the reflectors 71 in the light-emitting elements 12 R , 12 G , and 12 B are arranged so as to be aligned, and the position of the upper surface of the second electrode 123 differs depending on the type of the light-emitting element 12 R , 12 G , and 12 B.
  • the upper surfaces of the second electrodes 123 are arranged to be aligned for the light-emitting elements 12R , 12G , and 12B .
  • the upper surfaces of the reflectors 71 for the light-emitting elements 12R , 12G , and 12B are arranged to be different depending on the type of the light-emitting element 12R , 12G , and 12B .
  • the lower surface of the reflector 71 (in other words, the upper surface of the base layer (insulating layer) 73) has a stepped shape depending on the type of the light-emitting element 12.
  • the materials constituting the reflector 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so a description thereof will be omitted.
  • (Resonator structure: third example) 61A is a schematic cross-sectional view for explaining a third example of the resonator structure.
  • the reflectors 71 provided corresponding to the sub-pixels 10R, 10G, and 10B, respectively, may be referred to as reflectors 71R , 71G , and 71B .
  • the first electrode 121 and the second electrode 123 are also formed with a common film thickness in each light-emitting element 12.
  • a reflector 71 is disposed under the first electrode 121 of the light-emitting element 12 with an optical adjustment layer 72 sandwiched therebetween.
  • a resonator structure that resonates the light generated by the OLED layer 122 is formed between the reflector 71 and the second electrode 123.
  • the film thickness of the optical adjustment layer 72 varies depending on the color to be displayed by the pixel.
  • the upper surface of the second electrode 123 is disposed so as to be aligned with the light-emitting elements 12R , 12G , and 12B .
  • the bottom surface of the reflector 71 has a stepped shape according to the type of light-emitting element 12 in order to align the top surface of the second electrode 123.
  • the film thickness of the reflector 71 is set to be different depending on the types of the light-emitting elements 12R , 12G , and 12B . More specifically, the film thickness is set so that the bottom surfaces of the reflectors 71R , 71G , and 71B are aligned.
  • the materials constituting the reflector 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so the description will be omitted.
  • (Resonator structure: fourth example) 61B is a schematic cross-sectional view for explaining a fourth example of the resonator structure.
  • the first electrodes 121 provided corresponding to the sub-pixels 10R, 10G, and 10B, respectively, may be referred to as first electrodes 121R , 121G , and 121B .
  • the first electrodes 121 and second electrodes 123 of each light-emitting element 12 are formed to have the same film thickness.
  • a reflector 71 is disposed under the first electrodes 121 of the light-emitting elements 12 with an optical adjustment layer 72 sandwiched therebetween.
  • the optical adjustment layer 72 is omitted, and the film thickness of the first electrode 121 is set to differ depending on the type of the light emitting elements 12R , 12G , and 12B .
  • the reflector 71 is formed to have a common thickness for each light-emitting element 12.
  • the thickness of the first electrode 121 varies depending on the color to be displayed by the pixel.
  • the materials constituting the reflector 71, the optical adjustment layer 72, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so the description will be omitted.
  • FIG. 62A is a schematic cross-sectional view for explaining a fifth example of the resonator structure.
  • the first electrode 121 and the second electrode 123 are formed to a common thickness in each light-emitting element 12.
  • a reflector 71 is disposed under the first electrode 121 of the light-emitting element 12 with an optical adjustment layer 72 sandwiched therebetween.
  • the optical adjustment layer 72 is omitted, and instead, an oxide film 74 is formed on the surface of the reflector 71.
  • the thickness of the oxide film 74 is set to be different depending on the type of the light-emitting elements 12R , 12G , and 12B .
  • the oxide films 74 provided corresponding to the sub-pixels 10R, 10G, and 10B, respectively, may be referred to as oxide films 74R , 74G , and 74B .
  • the thickness of the oxide film 74 varies depending on the color to be displayed by the pixel.
  • the oxide films 74R , 74G , and 74B have different thicknesses, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
  • the oxide film 74 is a film formed by oxidizing the surface of the reflector 71, and is made of, for example, aluminum oxide, tantalum oxide, titanium oxide, magnesium oxide, zirconium oxide, etc.
  • the oxide film 74 functions as an insulating film for adjusting the optical path length (optical distance) between the reflector 71 and the second electrode 123.
  • the oxide film 74 having a thickness that varies depending on the type of the light emitting elements 12 R , 12 G , and 12 B can be formed, for example, as follows.
  • a positive voltage is applied to the reflector 71 with the electrode as a reference, and the reflector 71 is anodized.
  • the thickness of the oxide film formed by anodization is proportional to the voltage value to the electrode. Therefore, anodization is performed while a voltage according to the type of light-emitting element 12 is applied to each of the reflectors 71R , 71G , and 71B . This makes it possible to form oxide films 74 with different thicknesses all at once.
  • the materials constituting the reflector 71, the first electrode 121, and the second electrode 123 are the same as those described in the first example, so a description thereof will be omitted.
  • FIG. 62B is a schematic cross-sectional view for explaining the sixth example of the resonator structure.
  • the light-emitting element 12 is configured by laminating a first electrode 121, an OLED layer 122, and a second electrode 123.
  • the first electrode 121 is formed so as to function both as an electrode and a reflector.
  • the first electrode (doubles as a reflector) 121 is formed of a material having an optical constant selected according to the type of the light-emitting elements 12R , 12G , and 12B . By varying the phase shift caused by the first electrode (doubles as a reflector) 121, it is possible to set an optical distance that generates an optimal resonance for the wavelength of light according to the color to be displayed.
  • the first electrode (doubles as a reflector) 121 can be made of a single metal such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), or an alloy mainly made of these metals.
  • the first electrode (doubles as a reflector) 121R of the light-emitting element 12R can be made of copper (Cu)
  • the first electrode (doubles as a reflector) 121G of the light-emitting element 12G and the first electrode (doubles as a reflector) 121B of the light-emitting element 12B can be made of aluminum.
  • the materials constituting the second electrode 123 are the same as those described in the first example, so the description will be omitted.
  • FIG. 63 is a schematic cross-sectional view for explaining a seventh example of the resonator structure.
  • the seventh example is basically a configuration in which the sixth example is applied to the light emitting elements 12 R and 12 G , and the first example is applied to the light emitting element 12 B. Even in this configuration, it is possible to set an optical distance that produces optimal resonance for the wavelength of light corresponding to the color to be displayed.
  • the first electrodes (which also serve as reflectors) 121R , 121G used in the light-emitting elements 12R , 12G can be made of a single metal such as aluminum (Al), silver (Ag), gold (Au), copper (Cu), or an alloy containing these as its main component.
  • the materials constituting the reflector 71B , the optical adjustment layer 72B and the first electrode 121B used in the light emitting element 12B are similar to those described in the first example, and therefore description thereof will be omitted.
  • the display devices 101 to 109, 109A according to the first to ninth embodiments, the tenth embodiment, and their modified examples may be provided in various electronic devices.
  • the display device 101, etc. is particularly suitable for eyewear devices such as head-mounted displays, or electronic viewfinders for video cameras or single-lens reflex cameras that require high resolution and are used in a magnified state near the eyes.
  • 64A and 64B show an example of the external appearance of a digital still camera 610.
  • This digital still camera 610 is a lens-interchangeable single-lens reflex type, and has an interchangeable photographing lens unit (interchangeable lens) 612 approximately in the center of the front of a camera main body (camera body) 611, and a grip part 613 for the photographer to hold on the left side of the front.
  • interchangeable photographing lens unit interchangeable lens
  • a monitor 614 is provided at a position shifted to the left from the center on the back of the camera body 611.
  • An electronic viewfinder (eyepiece window) 615 is provided at the top of the monitor 614. By looking through the electronic viewfinder 615, the photographer can visually confirm the optical image of the subject guided by the photographing lens unit 612 and determine the composition.
  • the electronic viewfinder 615 is equipped with any of the display devices 101 described above.
  • Fig. 65 shows an example of the appearance of a head mounted display 620.
  • the head mounted display 620 is an example of an eyewear device.
  • the head mounted display 620 has, for example, ear hooks 622 for wearing on the user's head on both sides of a glasses-shaped display unit 621.
  • the display unit 621 includes any one of the above-mentioned display devices 101, etc.
  • This television device 630 has, for example, an image display screen unit 631 including a front panel 632 and a filter glass 633, and this image display screen unit 631 is equipped with any one of the above-mentioned display devices 101, etc.
  • the see-through head mounted display 640 is an example of an eyewear device.
  • the see-through head mounted display 640 includes a main body 641, an arm 642, and a lens barrel 643.
  • Main body 641 is connected to arm 642 and glasses 650. Specifically, the end of the long side of main body 641 is connected to arm 642, and one side of main body 641 is connected to glasses 650 via a connecting member. Note that main body 641 may also be worn directly on the head of the human body.
  • Main body 641 incorporates a control board for controlling the operation of see-through head mounted display 640, and a display unit.
  • Arm 642 connects main body 641 to barrel 643 and supports barrel 643. Specifically, arm 642 is coupled to an end of main body 641 and an end of barrel 643, respectively, and fixes barrel 643.
  • Arm 642 also incorporates a signal line for communicating data related to images provided from main body 641 to barrel 643.
  • the telescope tube 643 projects image light provided from the main body 641 via the arm 642 through the eyepiece 651 toward the eye of the user wearing the see-through head mounted display 640.
  • the display unit of the main body 641 includes any one of the display devices 101 described above.
  • the smartphone 660 includes a display unit 661 that displays various information, and an operation unit 662 that includes buttons and the like that accept operation inputs by a user.
  • the display unit 661 includes any one of the display devices 101 described above.
  • the above-mentioned display device 101 and the like may be provided in a vehicle or in various displays.
  • FIGS. 69A and 69B are diagrams showing an example of the internal configuration of a vehicle 500 equipped with various displays. Specifically, FIG. 69A is a diagram showing an example of the interior of the vehicle 500 from the rear to the front, and FIG. 69B is a diagram showing an example of the interior of the vehicle 500 from diagonally rear to diagonally front.
  • the vehicle 500 includes a center display 501, a console display 502, a head-up display 503, a digital rear mirror 504, a steering wheel display 505, and a rear entertainment display 506. At least one of these displays includes any of the display devices 101, etc. described above. For example, all of these displays may include any of the display devices 101, etc. described above.
  • the center display 501 is disposed in a portion of the dashboard facing the driver's seat 508 and the passenger seat 509.
  • Fig. 69A and Fig. 69B show an example of a horizontally elongated center display 501 extending from the driver's seat 508 side to the passenger seat 509 side
  • the screen size and location of the center display 501 are arbitrary.
  • the center display 501 can display information detected by various sensors.
  • the center display 501 can display an image captured by an image sensor, an image of the distance to an obstacle in front of or beside the vehicle 500 measured by a ToF sensor, the body temperature of a passenger detected by an infrared sensor, and the like.
  • the center display 501 can be used to display, for example, at least one of safety-related information, operation-related information, a life log, health-related information, authentication/identification-related information, and entertainment-related information.
  • the safety-related information includes information such as detection of dozing, looking away, mischief by children in the vehicle, whether or not a seat belt is fastened, and detection of an occupant being left behind, and is information detected, for example, by a sensor arranged on the back side of the center display 501.
  • the operation-related information is obtained by detecting gestures related to the operation of the occupant using a sensor.
  • the detected gestures may include operations of various facilities in the vehicle 500. For example, operations of air conditioning equipment, navigation equipment, AV equipment, lighting equipment, etc. are detected.
  • the life log includes the life log of all occupants. For example, the life log includes a record of the actions of each occupant while on board.
  • the health-related information is obtained by detecting the body temperature of the occupant using a sensor such as a temperature sensor, and inferring the health condition of the occupant based on the detected body temperature.
  • a sensor such as a temperature sensor
  • the face of the occupant may be captured using an image sensor, and the health condition of the occupant may be inferred from the facial expression captured in the image.
  • the occupant may be spoken to by an automated voice, and the health condition of the occupant may be inferred based on the content of the occupant's response.
  • Authentication/identification-related information includes a keyless entry function that uses a sensor to perform facial authentication, a function that automatically adjusts the seat height and position using facial recognition, etc.
  • Entertainment-related information includes a function that uses a sensor to detect information about the operation of an AV device by an occupant, a function that recognizes the occupant's face with a sensor and provides content suitable for the occupant via the AV device, etc.
  • the console display 502 can be used, for example, to display life log information.
  • the console display 502 is disposed near the shift lever 511 on the center console 510 between the driver's seat 508 and the passenger seat 509.
  • the console display 502 can also display information detected by various sensors.
  • the console display 502 may also display an image of the surroundings of the vehicle captured by an image sensor, or an image showing the distance to obstacles around the vehicle.
  • the head-up display 503 is virtually displayed behind the windshield 512 in front of the driver's seat 508.
  • the head-up display 503 can be used to display, for example, at least one of safety-related information, operation-related information, a life log, health-related information, authentication/identification-related information, and entertainment-related information. Since the head-up display 503 is often virtually positioned in front of the driver's seat 508, it is suitable for displaying information directly related to the operation of the vehicle 500, such as the speed of the vehicle 500 and the remaining fuel (battery) level.
  • the digital rear-view mirror 504 can not only display the rear of the vehicle 500, but can also display the state of passengers in the back seats, so by placing a sensor on the back side of the digital rear-view mirror 504, it can be used to display life log information, for example.
  • the steering wheel display 505 is disposed near the center of the steering wheel 513 of the vehicle 500.
  • the steering wheel display 505 can be used to display, for example, at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information.
  • the steering wheel display 505 since the steering wheel display 505 is located near the driver's hands, it is suitable for displaying life log information such as the driver's body temperature, and for displaying information related to the operation of AV equipment, air conditioning equipment, etc.
  • the rear entertainment display 506 is attached to the back side of the driver's seat 508 and passenger seat 509, and is intended for viewing by rear seat passengers.
  • the rear entertainment display 506 can be used to display at least one of safety-related information, operation-related information, life log, health-related information, authentication/identification-related information, and entertainment-related information, for example.
  • information related to the rear seat passengers is displayed on the rear entertainment display 506.
  • the rear entertainment display 506 may display information related to the operation of AV equipment or air conditioning equipment, or may display the results of measuring the body temperature of the rear seat passengers using a temperature sensor.
  • a sensor may be arranged on the back side of the display device 101, etc., so that the distance to an object in the vicinity can be measured.
  • Optical distance measurement methods are broadly divided into passive and active types. Passive types measure distance by receiving light from an object without projecting light from the sensor onto the object. Passive types include the lens focusing method, the stereo method, and the monocular vision method. Active types measure distance by projecting light onto an object and receiving the reflected light from the object with a sensor. Active types include the optical radar method, the active stereo method, the photometric stereo method, the moire topography method, and the interference method.
  • the display device 101, etc. described above can be applied to any of these distance measurement methods. By using a sensor arranged on the back side of the display device 101, etc. described above, the passive or active distance measurement described above can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

有機物含有層と第1電極の間における剥がれの発生を抑制することができる発光装置を提供する。 発光装置は、第1電極と、有機発光層を含む有機物含有層と、第2電極とを有し、2次元配置された複数の発光素子と、各発光素子上に設けられ、隣接する発光素子の間で分離された保護層と、各有機物含有層の側面、各第2電極の側面および各保護層の側面を覆う側面保護層とを備える。保護層の側面は、第2電極の側面の内側に位置している。

Description

発光装置および電子機器
 本開示は、発光装置および電子機器に関する。
 2次元配置された複数の発光素子を備え、当該発光素子が、第1電極と、有機発光層を含む有機物含有層と、第2電極とを順に備える発光装置は、近年広く知られている。この種の表示装置として、隣接する発光素子の間において有機物含有層が分断された構造を有するものが提案されている(例えば特許文献1参照)。
特開2004-127637号公報
 しかしながら、隣接する発光素子の間において有機物含有層が分断された表示装置では、有機物含有層と第2電極の間で剥がれが発生することがある。このような剥がれが発生すると、発光素子の駆動電圧が高電圧化する虞がある。
 本開示の目的は、有機物含有層と第1電極の間における剥がれの発生を抑制することができる発光装置および電子機器を提供することにある。
 上述の課題を解決するために、本開示に係る第1の発光装置は、
 第1電極と、有機発光層を含む有機物含有層と、第2電極とを有し、2次元配置された複数の発光素子と、
 各発光素子上に設けられ、隣接する発光素子の間で分離された保護層と、
 各有機物含有層の側面、各第2電極の側面および各保護層の側面を覆う側面保護層と
 を備え、
 保護層の側面は、第2電極の側面の内側に位置している。
 本開示に係る第2の発光装置は、
 第1電極と、有機発光層を含む有機物含有層と、第2電極とを有し、2次元配置された複数の発光素子と、
 各発光素子の側面に設けられた側面保護層と
 を備え、
 有機物含有層は、第2電極側の面に平坦部と傾斜部とを有し、傾斜部は、有機物含有層の側面に隣接して設けられ、
 第2電極は、平坦部と傾斜部に追随しており、傾斜部における第2電極の厚みは、平坦部における第2電極の厚みに比べて厚い。
 本開示に係る電子機器は、上記第1の発光装置または上記第2の発光装置を備える。
第1の実施形態に係る表示装置の平面図である。 表示領域の一部を拡大して表す平面図である。 図2のIII-III線に沿った断面図である。 発光素子の一部を拡大して表す断面図である。 第1の実施形態に係る表示装置の製造工程図である。 第1の実施形態に係る表示装置の製造工程図である。 第1の実施形態に係る表示装置の製造工程図である。 第1の実施形態に係る表示装置の製造工程図である。 第1の実施形態に係る表示装置の製造工程図である。 第2の実施形態に係る表示装置の表示領域の一部を拡大して表す平面図である。 図6のVII-VII線に沿った断面図である。 第2の実施形態に係る表示装置の製造工程図である。 第2の実施形態に係る表示装置の製造工程図である。 第2の実施形態に係る表示装置の製造工程図である。 第2の実施形態に係る表示装置の製造工程図である。 第2の実施形態に係る表示装置の製造工程図である。 第2の実施形態に係る表示装置の製造工程図である。 第2の実施形態に係る表示装置の製造工程図である。 第2の実施形態に係る表示装置の製造工程図である。 第2の実施形態に係る表示装置の製造工程図である。 第2の実施形態に係る表示装置の製造工程図である。 第2の実施形態に係る表示装置の製造工程図である。 参考例に係る表示装置の断面図である。 発光素子を拡大して表す断面図である。 第3の実施形態に係る表示装置の表示領域の一部を拡大して表す平面図である。 図13のXIV-XIV線に沿った断面図である。 発光素子を拡大して表す断面図である。 第3の実施形態に係る表示装置の製造工程図である。 第3の実施形態に係る表示装置の製造工程図である。 第3の実施形態に係る表示装置の製造工程図である。 第3の実施形態に係る表示装置の製造工程図である。 第3の実施形態に係る表示装置の製造工程図である。 第3の実施形態に係る表示装置の製造工程図である。 第3の実施形態に係る表示装置の製造工程図である。 第3の実施形態に係る表示装置の製造工程図である。 第4の実施形態に係る表示装置の断面図である。 発光素子を拡大して表す断面図である。 第4の実施形態に係る表示装置の製造工程図である。 第4の実施形態に係る表示装置の製造工程図である。 第4の実施形態に係る表示装置の製造工程図である。 第4の実施形態に係る表示装置の製造工程図である。 第4の実施形態に係る表示装置の製造工程図である。 第5の実施形態に係る表示装置の断面図である。 発光素子の一部を拡大して表す断面図である。 第5の実施形態に係る表示装置の製造工程図である。 第5の実施形態に係る表示装置の製造工程図である。 図22Bの一部を拡大して表す製造工程図である。 第5の実施形態に係る表示装置の製造工程図である。 第5の実施形態の変形例に係る表示装置の断面図である。 第5の実施形態の変形例に係る表示装置の製造工程図である。 第5の実施形態の変形例に係る表示装置の断面図である。 第5の実施形態の変形例に係る表示装置の製造工程図である。 第5の実施形態の変形例に係る表示装置の断面図である。 第5の実施形態の変形例に係る表示装置の製造工程図である。 第5の実施形態の変形例に係る表示装置の断面図である。 第5の実施形態の変形例に係る表示装置の製造工程図である。 第5の実施形態の変形例に係る表示装置の断面図である。 図31Aの一部を拡大して表す断面図である。 第6の実施形態に係る表示装置の断面図である。 発光素子の一部を拡大して表す断面図である。 第6の実施形態に係る表示装置の製造工程図である。 第6の実施形態に係る表示装置の製造工程図である。 第6の実施形態に係る表示装置の製造工程図である。 第6の実施形態に係る表示装置の製造工程図である。 第6の実施形態に係る表示装置の製造工程図である。 第6の実施形態に係る表示装置の製造工程図である。 図34Fの一部を拡大して表す製造工程図である。 第6の実施形態に係る表示装置の製造工程図である。 第6の実施形態の変形例に係る表示装置の断面図である。 第6の実施形態の変形例に係る表示装置の製造工程図である。 図36Aの一部を拡大して表す製造工程図である。 第6の実施形態の変形例に係る表示装置の製造工程図である。 第7の実施形態に係る表示装置の断面図である。 隣接する発光素子間の領域を拡大して表す断面図である。 第6の実施形態の変形例に係る表示装置の拡大断面図である。 第6の実施形態の変形例に係る表示装置の拡大断面図である。 第6の実施形態の変形例に係る表示装置の拡大断面図である。 第6の実施形態の変形例に係る表示装置の拡大断面図である。 第6の実施形態の変形例に係る表示装置の拡大断面図である。 第8の実施形態に係る表示装置の表示領域の一部を拡大して表す平面図である。 図44の一部を拡大して表す平面図である。 図44のB-B線に沿った断面図である。 図44のC-C線に沿った断面図である。 図48Aは、第8の実施形態に係る表示装置の製造工程を説明するための平面図である。図48Bは、図48AのB-B線に沿った断面図である。図48Cは、図48AのC-C線に沿った断面図である。 図49Aは、第8の実施形態に係る表示装置の製造工程を説明するための平面図である。図49Bは、図49AのB-B線に沿った断面図である。図49Cは、図49AのC-C線に沿った断面図である。 図50Aは、第8の実施形態に係る表示装置の製造工程を説明するための平面図である。図50Bは、図50AのB-B線に沿った断面図である。図50Cは、図50AのC-C線に沿った断面図である。 図51Aは、第8の実施形態に係る表示装置の製造工程を説明するための平面図である。図51Bは、図51AのB-B線に沿った断面図である。図51Cは、図51AのC-C線に沿った断面図である。 図52Aは、第8の実施形態に係る表示装置の製造工程を説明するための平面図である。図52Bは、図52AのB-B線に沿った断面図である。図52Cは、図52AのC-C線に沿った断面図である。 第9の実施形態に係る表示装置の断面図である。 変形例に係る表示装置の断面図である。 発光素子を拡大して表す断面図である。 図56A、図56B、図56Cはそれぞれ、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。 図57は、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。 図58A、図58Bはそれぞれ、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。 図59は、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明するための概念図である。 図60Aは、共振器構造の第1例を説明するための模式的な断面図である。図60Bは、共振器構造の第2例を説明するための模式的な断面図である。 図61Aは、共振器構造の第3例を説明するための模式的な断面図である。図61Bは、共振器構造の第4例を説明するための模式的な断面図である。 図62Aは、共振器構造の第5例を説明するための模式的な断面図である。図62Bは、共振器構造の第6例を説明するための模式的な断面図である。 図63は、共振器構造の第7例を説明するための模式的な断面図である 図64Aは、デジタルスチルカメラの正面図である。図64Bは、デジタルスチルカメラの背面図である。 図65は、ヘッドマウントディスプレイの斜視図である。 図66は、テレビジョン装置の斜視図である。 図67は、シースルーヘッドマウントディスプレイの斜視図である。 図68は、スマートフォンの斜視図である。 図69Aは、乗物の後方から前方にかけての乗物の内部の様子を示す図である。図69Bは、乗物の斜め後方から斜め前方にかけての乗物の内部の様子を示す図である。 第10の実施形態に係る表示装置の表示領域の一部を拡大して表す平面図である。 図71のLXXI-LXXI線に沿った断面図である。 発光素子の一部を拡大して表す断面図である。 第10の実施形態に係る表示装置の製造工程図である。 第10の実施形態に係る表示装置の製造工程図である。 第10の実施形態に係る表示装置の製造工程図である。 第10の実施形態に係る表示装置の製造工程図である。 第10の実施形態に係る表示装置の製造工程図である。 第10の実施形態に係る表示装置の製造工程図である。 第10の実施形態に係る表示装置の製造工程図である。 第10の実施形態の変形例に係る表示装置の拡大断面図である。 第10の実施形態の変形例に係る表示装置の拡大断面図である。
 本開示の実施形態について図面を参照しながら以下の順序で説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。
 1 第1の実施形態(表示装置の例)
 2 第2の実施形態(表示装置の例)
 3 第3の実施形態(表示装置の例)
 4 第4の実施形態(表示装置の例)
 5 第5の実施形態(表示装置の例)
 6 第6の実施形態(表示装置の例)
 7 第7の実施形態(表示装置の例)
 8 第8の実施形態(表示装置の例)
 9 第9の実施形態(表示装置の例)
 10  第10の実施形態(表示装置の例)
 11 変形例
 12 発光部、レンズ部材、波長選択部のそれぞれの中心を通る法線の関係
 13 共振器構造の例
 14 応用例(電子機器の例)
<1 第1の実施形態>
[表示装置の構成]
 図1は、第1の実施形態に係る表示装置101の平面図である。表示装置101は、表示領域RE1と、表示領域RE1の周辺に設けられた周辺領域RE2とを有する。
 図2は、表示領域RE1の一部を拡大して表す平面図である。複数の副画素10R、10G、10Bが、表示領域RE1内に規定の配置パターンで2次元配置されている。規定の配置パターンは、例えば、ストライプ配列、デルタ配列、正方配列、モザイク配列またはこれら以外の配列であってもよい。パッド部101aおよび映像表示用のドライバ(図示せず)等が、周辺領域RE2に設けられている。図示しないフレキシブルプリント配線基板(Flexible Printed Circuit:FPC)が、パッド部101aに接続されてもよい。
 副画素10Rは、赤色光(第1光)を発光することができる。副画素10Gは、緑色光(第2光)を発光することができる。副画素10Bは、青色光(第3光)を発光することができる。以下の説明において、副画素10R、10G、10Bを特に区別せず総称する場合には、副画素10ということがある。1画素(1ピクセル)は、例えば、表示面の面内方向に隣接する複数の副画素10R、10G、10Bにより構成されてもよい。但し、1画素の構成は、この例に限定されるものではない。
 副画素10の形状は特に限定されるものではないが、例示するならば、平面視において長方形状等の四角形状または六角形状等が挙げられるが、これらの形状に限定されるものではない。本明細書において、長方形状には、正方形状も含まれるものとする。副画素10のサイズの上限値は、好ましくは10μm以下、より好ましくは8μm以下、さらにより好ましくは5μm以下、4μm以下または3.5μm以下である。副画素10のサイズの下限値は、例えば1μm以上である。
 表示装置101は、発光装置の一例である。表示装置101は、トップエミッション方式のOLED表示装置であってもよい。表示装置101は、マイクロディスプレイであってもよい。表示装置101は、VR(Virtual Reality)装置、MR(Mixed Reality)装置、AR(Augmented Reality)装置、電子ビューファインダ(Electronic View Finder:EVF)または小型プロジェクタ等に備えられてもよい。
 図3は、図2のIII-III線に沿った断面図である。表示装置101は、駆動基板11と、複数の発光素子(第1発光素子)12Rと、複数の発光素子(第2発光素子)12Gと、複数の発光素子(第3発光素子)12Bと、複数の保護層13と、複数の側面保護層14と、複数のサイドウォール15Rと、複数のサイドウォール15Gと、複数のサイドウォール15Bと、保護層16と、共通電極17を備える。
 本明細書において、表示装置101を構成する各層の両面のうち、表示装置101のトップ側(表示面側)となる面を第1面といい、表示装置101のボトム側(表示面とは反対側)となる面を第2面ということがある。本明細書において、平面視とは、第1面に対して垂直な方向から対象物が見られたときの平面視を意味する。本明細書において、断面視とは、発光素子12の幾何中心を通り、かつ、第1面の垂線に平行な面で表示装置101を切断することにより得られる切断面から、対象物が見られたときの断面視を意味する。本明細書において、第1面の周縁部とは、第1面の周縁から内側に向かって、所定の幅を有する領域をいい、第2面の周縁部とは、第2面の周縁から内側に向かって、所定の幅を有する領域をいう。
 以下の説明において、発光素子12R、12G、12Bを特に区別せず総称する場合には、発光素子12ということがある。また、サイドウォール15R、15G、15Bを特に区別せず総称する場合には、サイドウォール15ということがある。
(駆動基板11)
 駆動基板11は、いわゆるバックプレーンであり、複数の発光素子12R、12G、12Bを駆動する。駆動基板11は、例えば、基板111と、絶縁層112とを順に備える。
 複数の駆動回路および複数の配線(いずれも図示せず)等が、基板111の第1面に設けられていてもよい。基板111は、例えば、トランジスタ等の形成が容易な半導体で構成されてもよいし、水分および酸素の透過性が低いガラスまたは樹脂で構成されてもよい。具体的には、基板111は、半導体基板、ガラス基板または樹脂基板等であってもよい。半導体基板は、例えば、アモルファスシリコン、多結晶シリコンまたは単結晶シリコン等を含む。ガラス基板は、例えば、高歪点ガラス、ソーダガラス、ホウケイ酸ガラス、フォルステライト、鉛ガラスまたは石英ガラス等を含む。樹脂基板は、例えば、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルフェノール、ポリエーテルスルホン、ポリイミド、ポリカーボネート、ポリエチレンテレフタラートおよびポリエチレンナフタレート等からなる群より選ばれた少なくとも1種を含む。
 絶縁層112は、基板111の第1面に設けられ、複数の駆動回路および複数の配線等を覆い、駆動基板11の第1面を平坦化してもよい。絶縁層112は、基板111の第1面に設けられた複数の駆動回路および複数の配線等と、複数の発光素子12の間を絶縁してもよい。
 絶縁層112は、有機絶縁層であってもよいし、無機絶縁層であってもよし、これらの積層体であってもよい。有機絶縁層は、例えば、ポリイミド系樹脂、アクリル系樹脂およびノボラック系樹脂等からなる群より選ばれた少なくとも1種を含む。無機絶縁層は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)および酸窒化シリコン(SiO)等からなる群より選ばれた少なくとも1種を含む。
(発光素子12R、12G、12B)
 発光素子12Rの発光光の色、発光素子12Gの発光光の色および発光素子12Bの発光光の色は異なっている。発光素子12Rは、駆動回路等の制御に基づき、赤色光を発光することができる。発光素子12Gは、駆動回路等の制御に基づき、緑色光を発光することができる。発光素子12Bは、駆動回路等の制御に基づき、青色光を発光することができる。発光素子12は、OLED(Organic Light Emitting Diode)素子である。
 発光素子12Rは、副画素10Rに含まれる。発光素子12Gは、副画素10Gに含まれる。発光素子12Bは、副画素10Bに含まれる。複数の発光素子12は、規定の配置パターンで駆動基板11の第1面上に2次元配置されている。規定の配置パターンは、複数の副画素10の規定の配置パターンとして説明したとおりである。
 発光素子12Rは、第1電極121と、OLED層122Rと、第2電極123とを順に駆動基板11の第1面上に備える。発光素子12Gは、第1電極121と、OLED層122Gと、第2電極123とを順に駆動基板11の第1面上に備える。発光素子12Bは、第1電極121と、OLED層122Bと、第2電極123とを順に駆動基板11の第1面上に備える。
(OLED層122R、122G、122B)
 OLED層122Rは、赤色光を発光することができる。OLED層122Gは、緑色光を発光することができる。OLED層122Bは、青色光を発光することができる。OLED層122R、122G、122Bは、特許請求の範囲における有機物含有層の一例である。
 OLED層122R、122G、122Bはそれぞれ、第1電極121と第2電極123の間に設けられている。OLED層122Rは、赤色光を発光することができる有機発光層(以下「赤色の有機発光層」という。)を含む。OLED層122Rは、緑色光を発光することができる有機発光層(以下「緑色の有機発光層」という。)を含む。OLED層122Bは、青色光を発光することができる有機発光層(以下「青色の有機発光層」という。)を含む。また、以下の説明において、OLED層122R、122G、122Bを特に区別せず総称する場合には、単にOLED層122ということがある。赤色の有機発光層、緑色の有機発光層および青色の有機発光層を特に区別せず総称する場合には、単に有機発光層ということがある。
 OLED層122R、122G、122Bは、有機発光層を含む積層体により構成されてもよく、その場合、積層体のうちの一部の層(例えば電子注入層)が無機層であってもよい。OLED層122R、122G、122Bが積層体である場合、OLED層122R、122G、122Bは、第2電極123と接する面側に有機物含有層(例えば電子輸送層または電子注入層)を備えてもよい。この場合、OLED層122と第2電極123の密着性が特に低下する傾向があるため、側面保護層14が設けられることが特に有効である。
 OLED層122Rは、例えば、第1電極121から第2電極123に向かって、正孔注入層、正孔輸送層、赤色の有機発光層、電子輸送層、電子注入層を順に備える。OLED層122Gは、例えば、第1電極121から第2電極123に向かって、正孔注入層、正孔輸送層、緑色の有機発光層、電子輸送層、電子注入層を順に備える。OLED層122Gは、例えば、第1電極121から第2電極123に向かって、正孔注入層、正孔輸送層、青色の有機発光層、電子輸送層、電子注入層を順に備える。
 赤色の有機発光層は、第1電極121から注入された正孔と第2電極123から注入された電子との再結合により、赤色光を発光することができる。緑色の有機発光層は、上記の赤色有機発光層と同様の現象により、緑色光を発光することができる。青色の有機発光層は、上記の赤色有機発光層と同様の現象により、青色光を発光することができる。
 正孔注入層は、各色の有機発光層への正孔注入効率を高めると共に、リークを抑制することができる。正孔輸送層は、各色の有機発光層への正孔輸送効率を高めることができる。電子注入層は、各色の有機発光層への電子注入効率を高めることができる。電子輸送層は、各色の有機発光層への電子輸送効率を高めることができる。
(第1電極121)
 第1電極121は、OLED層122の第2面側に設けられている。第1電極121は、表示領域RE1内において複数の発光素子12で別々に設けられている。すなわち、第1電極121は、表示領域RE1内において、面内方向に隣接する発光素子12の間で分断されている。本明細書においては、面内方向とは、特に断りがない限り、駆動基板11の第1面の面内方向を表す。第1電極121のサイズは、平面視において、OLED層122および第2電極123のサイズよりも大きく、第1電極121の側面がOLED層122および第2電極123の側面の外側に位置している。すなわち、第1電極121の第1面の周縁部が、OLED層122および第2電極123に覆われずに露出している。第1電極121は、アノードである。第1電極121と第2電極123の間に電圧が加えられると、第1電極121からOLED層122にホールが注入される。
 第1電極121は、例えば、金属層により構成されてもよいし、金属層と透明導電性酸化物層により構成されてもよい。第1電極121が金属層と透明導電性酸化物層により構成されている場合には、高い仕事関数を有する層をOLED層122に隣接させる観点からすると、透明導電性酸化物層がOLED層122側に設けられることが好ましい。
 金属層は、OLED層122で発光された光を反射する反射層としての機能も有している。金属層は、例えば、クロム(Cr)、金(Au)、白金(Pt)、ニッケル(Ni)、銅(Cu)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、タングステン(W)および銀(Ag)からなる群より選ばれた少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、アルミニウム合金または銀合金が挙げられる。アルミニウム合金の具体例としては、例えば、AlNdまたはAlCuが挙げられる。
 下地層(図示せず)が、金属層の第2面側に隣接して設けられていてもよい。下地層は、金属層の成膜時に、金属層の結晶配向性を向上させるためのものである。下地層は、例えば、チタン(Ti)およびタンタル(Ta)からなる群より選ばれた少なくとも1種の金属元素を含む。下地層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。
 透明導電性酸化物層は、透明導電性酸化物を含む。透明導電性酸化物は、例えば、インジウムを含む透明導電性酸化物(以下「インジウム系透明導電性酸化物」という。)、錫を含む透明導電性酸化物(以下「錫系透明導電性酸化物」という。)および亜鉛を含む透明導電性酸化物(以下「亜鉛系透明導電性酸化物」という。)からなる群より選ばれた少なくとも1種を含む。
 インジウム系透明導電性酸化物は、例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムガリウム(IGO)、酸化インジウムガリウム亜鉛(IGZO)またはフッ素ドープ酸化インジウム(IFO)を含む。これらの透明導電性酸化物のうちでも酸化インジウム錫(ITO)が特に好ましい。酸化インジウム錫(ITO)は、仕事関数的にOLED層122R、122G、122Bへのホール注入障壁が特に低いため、表示装置101の駆動電圧を特に低電圧化することができるからである。錫系透明導電性酸化物は、例えば、酸化錫、アンチモンドープ酸化錫(ATO)またはフッ素ドープ酸化錫(FTO)を含む。亜鉛系透明導電性酸化物は、例えば、酸化亜鉛、アルミニウムドープ酸化亜鉛(AZO)、ホウ素ドープ酸化亜鉛またはガリウムドープ酸化亜鉛(GZO)を含む。
(第2電極123)
 第2電極123は、OLED層122の第1面側に設けられている。第2電極123は、表示領域RE1内において複数の発光素子12で別々に設けられている。すなわち、第2電極123は、表示領域RE1内において、面内方向に隣接する発光素子12の間で分断されている。第2電極123は、平面視において、OLED層122と略同一のサイズを有している。第2電極123の側面とOLED層122の側面とは略面一になっている。
 第2電極123は、カソードである。第1電極121と第2電極123の間に電圧が加えられると、第2電極123からOLED層122に電子が注入される。第2電極123は、OLED層122R、122G、122Bから発せられる各光に対して透光性を有している。第2電極123は、可視光に対して透明性を有する透明電極であることが好ましい。本明細書において、可視光とは、360nm以上830nmの波長域の光をいう。
 第2電極123は、できるだけ透光性が高く、かつ仕事関数が小さい材料によって構成されることが、発光効率を高める上で好ましい。第2電極123は、例えば、金属層および透明導電性酸化物層のうちの少なくとも一層により構成されている。より具体的には、第2電極123は、金属層もしくは透明導電性酸化物層の単層膜、または金属層と透明導電性酸化物層の積層膜により構成されている。第2電極123が積層膜により構成されている場合、金属層がOLED層122側に設けられてもよいし、透明導電性酸化物層がOLED層122側に設けられてもよいが、低い仕事関数を有する層をOLED層122に隣接させる観点からすると、金属層がOLED層122側に設けられていることが好ましい。
 第2電極123のエッチングレートは、保護層13のエッチングレートに比べて小さいことが好ましい。この場合、保護層13および第2電極123をエッチングにより加工する工程において、保護層13がサイドエッチングされやすくなる。すなわち、保護層13の側面と第2電極123の側面の間にステップ123Sが形成されやすくなる。第2電極123は、難エッチング材料であってもよい。
 金属層は、例えば、マグネシウム(Mg)、アルミニウム(Al)、銀(Ag)、カルシウム(Ca)およびナトリウム(Na)からなる群より選ばれた少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、MgAg合金、MgAl合金またはAlLi合金等が挙げられる。透明導電性酸化物層は、透明導電性酸化物を含む。当該透明導電性酸化物としては、上記の第1電極121の透明導電性酸化物と同様の材料を例示することができる。
(保護層13)
 図4は、発光素子12Rの一部を拡大して表す断面図である。保護層13は、第2電極123の第1面上に設けられている。保護層13は、第2電極123と共に、隣接する発光素子12の間で分離されている。保護層13の側面は、面内方向において第2電極123の側面の内側に位置していることが好ましい。ここで、保護層13の側面が面内方向において第2電極123の側面の内側に位置するとは、保護層13の第2面の周縁が、面内方向において第2電極123の第1面の周縁の内側に位置していることを表す。
 より具体的には、ステップ123Sが、保護層13の側面と第2電極123の側面の間に設けられていることが好ましい。当該ステップ123Sは、第2電極123の第1面の周縁部が保護層13に覆われずに露出した露出部により構成されている。当該露出部は、保護層13の第2面の周縁全体を囲む閉ループ状を有していてもよいし、保護層13の第2面の周縁を部分的に囲む、部分的に分断されたループ状を有していてもよい。
 上記のように、ステップ123Sが保護層13の側面と第2電極123の側面の間に設けられていることで、保護層13、第2電極123およびOLED層122の加工工程において、当該ステップ123S上に堆積物を堆積させることができる。したがって、ステップ123Sが保護層13の側面と第2電極123の側面の間に設けられていない場合に比べて、すなわち保護層13の側面と第2電極123の側面が面一になっている場合に比べて、保護層13、第2電極123およびOLED層122の加工工程においてステップ123Sの近傍の堆積物の堆積量を増加させることができる。すなわち、ステップ123Sの近傍の側面保護層14の厚さを増加させることができる。よって、OLED層122と第2電極123の間の剥がれを抑制することができる。ここで、ステップ123Sの近傍には、第2電極123の側面とOLED層122の側面の境界を含むものとする。
 ステップ123Sの幅Wは、ステップ123Sの近傍の堆積物の堆積量を増加させる観点から、好ましくは50nm以上、より好ましくは60nm以上、さらにより好ましくは70nm以上、80nm以上、90nm以上または100nm以上である。
 ステップ123Sの幅Wは、発光素子12の発光領域の面積の低下を抑制する観点から、好ましくは200nm以下、より好ましくは180nm以下、さらにより好ましくは160nm以下、140nm以下または120nm以下である。
 ステップ123Sの幅Wは以下のようにして求められる。まず、クライオFIB(Focused Ion Beam)加工等により表示装置101の断面(表示装置101の厚さ方向に平行な断面)を切り出し、薄片を作製する。続いて、作製した薄片をTEM(Transmission Electron Microscope)により観察し、断面TEM像を取得する。次に、取得した断面TEM像中において、ステップ123Sの幅Wを測定する。
 保護層13の側壁は、第2電極123の第1面に対して垂直であってもよいし、傾斜していてもよい。保護層13の側壁が傾斜している場合、保護層13の側壁は、順テーパ状を有していてもよいし、逆テーパ状を有していてもよい。ここで、順テーパとは、保護層13の第1面側(上面側)が保護層13の第2面側(下面側)に比べて狭くなっている形状を表し、逆テーパ―とは、保護層13の保護層13の第1面側(上面側)が第2面側(下面側)に比べて広くなっている形状を表す。
 保護層13は、発光素子12の第1面を保護することができる。例えば、保護層13は、外部環境から表示装置101内部への水分浸入を抑制し、複数の発光素子12の劣化を抑制することができる。また、第2電極123が金属層により構成されている場合には、保護層13は、この金属層の酸化を抑制する機能を有していてもよい。保護層13は、発光素子12R、12G、12Bから発せられる各光に対して透光性を有している。保護層13は、可視光に対して透明性を有することが好ましい。
 保護層13は、例えば、吸湿性が低い無機材料または高分子樹脂を含む。保護層13は、単層構造であってもよいし、多層構造であってもよい。保護層13の厚さを厚くする場合には、多層構造とすることが好ましい。保護層13における内部応力を緩和するためである。無機材料は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、酸化窒化シリコン(SiO)、酸化チタン(TiO)および酸化アルミニウム(AlO)等からなる群より選ばれた少なくとも1種を含む。高分子樹脂は、例えば、熱硬化性樹脂および紫外線硬化性樹脂等からなる群より選ばれた少なくとも1種を含む。高分子樹脂は、具体的には例えば、アクリル系樹脂、ポリイミド系樹脂、ノボラック系樹脂、エポキシ系樹脂、ノルボルネン系樹脂およびパリレン系樹脂等からなる群より選ばれた少なくとも1種を含む。
(側面保護層14)
 側面保護層14は、少なくとも、OLED層122の側面と第2電極123の側面の境界を覆っている。これにより、OLED層122と第2電極123の界面に対する、保護層13の膜ストレスの影響を抑制することができる。側面保護層14は、OLED層122の側面から保護層13の側面までの範囲を覆っていてもよい。より具体的には、側面保護層14は、OLED層122の側面と、第2電極123の側面と、ステップ123S(第2電極123の第2面の周縁部)と、保護層13の側面とを覆っていてもよい。側面保護層14は、保護層13の側面の全体を覆っていてもよいし、保護層13の側面のうち、保護層13の第2面の周縁から規定の高さまでの範囲を覆っていてもよい。側面保護層14は、平面視において、閉ループ状を有していてもよいし、部分的に分断されたループ状を有していてもよい。
 側面保護層14は、発光素子12の側面を保護することができる。例えば、側面保護層14は、外部環境から発光素子12内部への水分浸入を抑制し、発光素子12の劣化を抑制することができてもよい。側面保護層14は、発光素子12R、12G、12Bから発せられる各光に対して透光性を有している。側面保護層14は、可視光に対して透明性を有することが好ましい。側面保護層14は、絶縁性を有していることが好ましい。
 側面保護層14は、保護層13、第2電極123およびOLED層122をエッチングすることにより堆積される堆積物を含んでもよいし、保護層13、第2電極123、OLED層122および第1電極121をエッチングすることにより堆積される堆積物を含んでもよい。側面保護層14は、保護層13の構成材料と、第2電極123の構成材料およびOLED層122の構成材料とを含んでもよいし、保護層13の構成材料と、第2電極123の構成材料、OLED層122の構成材料および第1電極121の構成材料とを含んでもよい。
 側面保護層14に含まれる保護層13の構成材料は、保護層13の構成材料の一部であってもよいし、全部であってもよい。側面保護層14に含まれる第2電極123の構成材料は、第2電極123の構成材料の一部であってもよいし、全部であってもよい。側面保護層14に含まれるOLED層122の構成材料は、OLED層122の構成材料の一部であってもよいし、全部であってもよい。側面保護層14に含まれる第1電極121の構成材料は、第1電極121の構成材料の一部であってもよいし、全部であってもよい。
(サイドウォール15R、15G、15B)
 サイドウォール15Rは、側面保護層14が設けられた発光素子12Rおよび保護層13の側面を覆う。サイドウォール15Rは、絶縁性を有していることが好ましい。サイドウォール15Rは、第1サイドウォール151により構成されていてもよい。第1サイドウォール151は、第1電極121の第1面の周縁部上に設けられ、側面保護層14を覆う。
 サイドウォール15Gは、側面保護層14が設けられた発光素子12Gおよび保護層13の側面を覆う。サイドウォール15Gは、絶縁性を有していることが好ましい。サイドウォール15Gは、第1サイドウォール151と第2サイドウォール152により構成されていてもよい。第2サイドウォール152は、駆動基板11の第1面上に設けられ、第1電極121の側面および第1サイドウォール151の側面を覆う。
 サイドウォール15Bは、側面保護層14が設けられた発光素子12Bおよび保護層13の側面を覆う。サイドウォール15Bは、絶縁性を有していることが好ましい。サイドウォール15Gは、第1サイドウォール151と第2サイドウォール152と第3サイドウォール153により構成されていてもよい。第3サイドウォール153は、駆動基板11の第1面上に設けられ、第2サイドウォール152の側面を覆う。
 第1サイドウォール151、第2サイドウォール152および第3サイドウォール153は、発光素子12R、12G、12Bから発せられる各光に対して透光性を有していてもよい。第1サイドウォール151、第2サイドウォール152および第3サイドウォール153は、可視光に対して透明性を有することが好ましい。
 第1サイドウォール151、第2サイドウォール152および第3サイドウォール153は、例えば、吸湿性が低い無機材料を含む。当該無機材料としては、上記の保護層13と同様の無機材料を例示することができる。第1サイドウォール151、第2サイドウォール152および第3サイドウォール153それぞれの材料は同一であってもよいし、異なっていてもよい。
(保護層16)
 保護層16は、サイドウォール15がそれぞれ設けられた複数の発光素子12を覆うように、駆動基板11の第1面上に設けられている。保護層16は、複数の発光素子12等を保護することができる。例えば、保護層16は、外部環境から発光装置101内部への水分浸入を抑制し、複数の発光素子12等の劣化を抑制することができる。保護層16は、発光素子12R、12G、12Bから発せられる各光に対して透光性を有している。保護層16は、可視光に対して透明性を有することが好ましい。
 保護層16は、複数のコンタクト孔161を有している。各コンタクト孔161は、保護層16の第1面から発光素子12の第2面まで延設されている。コンタクト孔161は、平面視において発光素子12の発光領域内に設けられていてもよいし、平面視において発光素子12の発光領域外に設けられていてもよい。図2、図3では、コンタクト孔161が平面視において発光素子12の発光領域内に設けられている例が示されている。
 保護層16は、例えば、吸湿性が低い無機材料または高分子樹脂を含む。保護層16は、単層構造であってもよいし、多層構造であってもよい。保護層16の厚さを厚くする場合には、多層構造とすることが好ましい。保護層16における内部応力を緩和するためである。無機材料としては、上記の保護層13と同様の無機材料を例示することができる。高分子樹脂としては、上記の保護層13と同様の高分子樹脂を例示することができる。
(共通電極17)
 共通電極17は、保護層16の第1面上に設けられている。共通電極17は、表示領域RE1内において面内方向に隣接する発光素子12間で繋がり、表示領域RE1内に設けられた複数の発光素子12で共通の電極である。共通電極17は、発光素子12R、12G、12Bから発せられる各光に対して透光性を有している。共通電極17は、可視光に対して透明性を有することが好ましい。共通電極17は、表示領域RE1から周辺領域RE2まで延設されている。共通電極17の周縁部は、コンタクト電極(図示せず)に接続されている。コンタクト電極は、駆動基板11の第1面の周縁部に設けられている。コンタクト電極は、共通電極17と駆動基板11の配線を接続する補助電極である。
 共通電極17は、副画素10毎に分離された各第2電極123に接続されている。具体的には、共通電極17は、複数のコンタクト部171を有し、複数のコンタクト部171がそれぞれ、保護層16のコンタクト孔161内に設けられている。これにより、複数のコンタクト部171の先端がそれぞれ、副画素10毎に分離された第2電極123の第1面に接続されている。但し、コンタクト部171と第2電極123の接続形態はこの例に限定されるものではなく、例えばコンタクト部171が第2電極123の側面に接続されていてもよい。図2、図3では、1つのコンタクト部171が1つの副画素10に対して設けられている例に示されているが、2つ以上のコンタクト部171が1つの副画素10に対して設けられていてもよい。
[表示装置の製造方法]
 以下、図5Aから図5Eを参照して、第1の実施形態に係る表示装置101の製造方法の一例について説明する。
 まず、例えばスパッタリング法を用いて、金属層(例えば厚さ200nm程度のアルミニウム層)を駆動基板11の第1面上に形成した後、例えばフォトリソグラフィおよびドライエッチングを用いて金属層をパターニングする。これにより、複数の第1電極121が駆動基板11の第1面上に形成される。
 次に、例えば蒸着法を用いて、正孔注入層、正孔輸送層、青色の有機発光層、電子輸送層、電子注入層を複数の第1電極121の第1面および駆動基板11の第1面上にこの順序で積層することにより、OLED層122Bを形成する。次に、例えば蒸着法またはスパッタリング法を用いて、第2電極(例えば厚さ60nm程度のIZO層)123をOLED層122Bの第1面上に形成する。
 次に、例えばCVD(Chemical Vapor Deposition)法を用いて、図5Aに示されるように、保護層(例えば厚さ1μm程度の窒化シリコン層)13を第2電極123の第1面上に形成する。次に、例えばフォトリソグラフィおよびドライエッチングを用いて、図5Bに示されるように、複数の副画素10B以外の部分の保護層13、第2電極123およびOLED層122Bを除去し、駆動基板11の第1面上に複数の発光素子12Bを形成する。当該ドライエッチングの際に、側面保護層14がOLED層122Bの側面から保護層13の側面に亘って形成される。
 具体的には、以下のようにして複数の発光素子12Bおよび側面保護層14を形成する。レジストを保護層13の第1面上に塗布し、硬化することにより、レジスト層81を形成した後、当該レジスト層81を露光、現像する。これにより、島状のレジスト層81が、複数の副画素10Bに対応する位置に残存する。
 レジスト層81をマスクとして、保護層13、第2電極123およびOLED層122Bを順次ドライエッチングにより加工し、複数の副画素10B以外の部分の保護層13、第2電極123およびOLED層122Bを除去する。保護層13のドライエッチングの際に、保護層13がサイドエッチングされ、レジスト層81の周縁部の下側に位置する保護層13が除去され、サイドエッチング部131が形成される。これより、保護層13の側面を面内方向において第2電極123の側面の内側に位置させることができる。すなわち、保護層13の側面を第2電極123の側面の間にステップ123Sを形成することができる。
 保護層13、第2電極123およびOLED層122Bのエッチングの際に、イオンにより弾き飛ばされた保護層13、第2電極123およびOLED層122Bの構成材料が、サイドエッチング部131に堆積すると共に、第2電極123の側面およびOLED122Bの側面に堆積し、側面保護層14が形成される。庇状にせり出したレジスト層81が、ステップ123S上を覆っているため、サイドエッチング部131に堆積された堆積物に対するイオンの入射が抑制される。これにより、ステップ123S上に堆積される堆積物およびステップ123Sの近傍の堆積物を増加させることができる。ここで、ステップ123Sの近傍には、第2電極123の側面とOLED層122Bの側面の境界を含むものとする。
 次に、例えばCVD法を用いて、絶縁層(例えば厚さ100nm程度の窒化シリコン層)を形成した後、例えばドライエッチングを用いて絶縁層をエッチバックすることにより、図5Cに示されるように、複数のサイドウォール15Bを形成する。
 次に、上記の発光素子12Bおよびサイドウォール15Bの形成工程と同様の手順で、図5Dに示されるように、複数の発光素子12R、複数の発光素子12G、複数のサイドウォール15Rおよび複数のサイドウォール15Gを駆動基板11の第1面上に形成する。
 次に、例えばCVD法を用いて、図5Eに示されるように、複数の発光素子12R、12G、12Bを覆うように保護層(例えば窒化シリコン層)16を形成する。次に、必要に応じて、例えばCMP(Chemical Mechanical Polishing)を用いて、保護層16の第1面を研磨し、平坦化してもよい。次に、例えばフォトリソグラフィおよびドライエッチングを用いて、保護層16および保護層13を加工し、複数の発光素子12R、12G、12B上にそれぞれコンタクト孔161を形成する。次に、例えば蒸着法またはスパッタリング法を用いて、共通電極17(例えばIZO層)を保護層16の第1面およびコンタクト孔161内に形成する。以上により、表示装置101が得られる。
[作用効果]
 第1の実施形態に係る表示装置101では、側面保護層14が、少なくとも、OLED層122の側面と第2電極123の側面の境界を覆っている。これにより、OLED層122と第2電極123の界面に対する、保護層13の膜ストレスの影響を抑制することができる。したがって、OLED層122と第2電極123の間の剥がれを抑制することができる。よって、発光素子12の駆動電圧の高電圧化を抑制することができる。
 側面保護層14がOLED層122の側面、第2電極123の側面および保護層13の側面を覆っている場合、保護層13の側面は、面内方向において第2電極123の側面の内側に位置し、保護層13の側面と第2電極123の側面の間にステップ123Sが形成されていることが好ましい。これにより、保護層13、第2電極123およびOLED層122をエッチングにより加工する際に、当該ステップ123S上に堆積物を堆積させることができる。このため、上記ステップ123Sが存在しない場合に比べて、ステップ123Sの近傍の堆積物の堆積量を増加させることができるので、ステップ123Sの近傍の側面保護層14の厚さを増加させることができる。したがって、OLED層122と第2電極123の間の剥がれを抑制することができる。よって、表示装置101の駆動電圧の高電圧化をさらに抑制することができる。
<2 第2の実施形態>
[表示装置の構成]
 図6は、第2の実施形態に係る表示装置102の表示領域RE1の一部を拡大して表す平面図である。図7は、図6のVII-VII線に沿った断面図である。表示装置102は、保護層18をさらに備える点において、第1の実施形態に係る表示装置101とは異なっている。
 保護層18は、保護層13の第1面上に設けられている。積層構造を有する保護層が、保護層13と保護層18とにより構成されている。第2の実施形態において、保護層13は、特許請求の範囲における第1保護層の一例であり、保護層18は、特許請求の範囲における第2保護層の一例である。
 保護層18の側面は、面内方向において保護層13の側面の外側に位置していてもよい。すなわち、保護層18の周縁部が、保護層13の側面に対して鍔状に突出していてもよい。鍔状の突出部は、平面視において閉ループ状を有していてもよい。
 保護層18は、保護層13と共に発光素子12の第1面を保護することができる。例えば、保護層18は、外部環境から複数の発光素子12内部への水分浸入を抑制することができる。保護層18は、発光素子12R、12G、12Bから発せられる各光に対して透光性を有している。保護層18は、可視光に対して透明性を有することが好ましい。保護層18は、表示装置102の製造工程においてハードマスクとして使用可能に構成されていてもよい。
 保護層18は、単分子層を含むことが好ましい。保護層18は、単分子層の堆積物により構成されていてもよい。より具体的には、保護層18は、ALD(Atomic Layer Deposition)層であってもよい。保護層18が単分子層を含むことで、保護層18による水分浸入の抑制効果を向上させることができる。
 保護層18のエッチングレートは、保護層13のエッチングレートに比べて小さいことが好ましい。この場合、保護層18をハードマスクとして保護層13をエッチングにより加工する工程において、保護層13がサイドエッチングされやすくなる。保護層18は、難エッチング材料であってもよい。
 保護層18は、例えば、吸湿性が低い無機材料を含む。無機材料は、例えば、金属酸化物を含む。無機材料は、より具体的には例えば、酸化アルミニウム(AlO)または酸化チタン(TiO)を含む。
[表示装置の製造方法]
(第1の例)
 以下、図5A、図8Aから図8Fを参照して、第2の実施形態に係る表示装置102の製造方法の第1の例について説明する。
 まず、第1電極121の形成工程から保護層13の形成工程までの工程を第1の実施形態に係る表示装置101の製造方法と同様に実施する(図5A参照)。第2の実施形態においては、保護層13は、例えば、厚さ200nm程度のSiN層であってもよい。次に、例えばCVD法を用いて、図8Aに示されるように、保護層13の第1面上に保護層(厚さ60nm程度の酸化アルミニウム層)18を形成する。
 次に、例えばフォトリソグラフィおよびドライエッチングを用いて、保護層18を加工する。これにより、図8Bに示されるように、島状を有する複数の保護層18が、複数の副画素10Bに対応する位置に残存する。次に、例えばアッシングにより、複数の保護層18の第1面上のレジスト層(図示せず)を除去する。
 次に、複数の保護層18をハードマスクとして、複数の副画素10B以外の部分の保護層13、OLED層122Bおよび第2電極123をドライエッチングにより除去する。これにより、図8Cに示されるように、駆動基板11の第1面上に複数の発光素子12Bが形成される。当該ドライエッチングの際に、側面保護層14がOLED層122Bの側面から保護層13の側面に亘って形成される。
 保護層13、第2電極123およびOLED層122Bのエッチングの際に、イオンにより弾き飛ばされた保護層13、第2電極123およびOLED層122Bの構成材料が、サイドエッチング部131に堆積すると共に、第2電極123の側面およびOLED層122Bの側面に堆積し、側面保護層14が形成される。庇状にせり出した保護層(ハードマスク)18が、ステップ123S上を覆っているため、サイドエッチング部131に堆積された堆積物に対するイオンの入射が抑制される。これにより、ステップ123S上に堆積される堆積物およびステップ123Sの近傍の堆積物を増加させることができる。
 次に、例えばCVD法を用いて、保護層(例えば厚さ100nm程度の窒化シリコン層)を形成した後、例えばドライエッチングを用いて保護層をエッチバックすることにより、図8Dに示されるように、第1サイドウォール151を形成する。
 次に、上記の発光素子12Bおよびサイドウォール15Bの形成工程と同様の手順で、図8Eに示されるように、複数の発光素子12R、複数の発光素子12G、複数のサイドウォール15Rおよび複数のサイドウォール15Gを駆動基板11の第1面上に形成する。
 次に、例えばCVD法を用いて、図8Fに示されるように、複数の発光素子12R、12G、12Bを覆うように保護層(例えば窒化シリコン層)16を形成する。次に、必要に応じて、例えばCMP(Chemical Mechanical Polishing)により保護層16の第1面を研磨し、平坦化してもよい。次に、例えばフォトリソグラフィおよびドライエッチングを用いて、保護層16、保護層18および保護層13を加工し、複数の発光素子12R、12G、12B上にそれぞれコンタクト孔161を形成する。次に、例えば蒸着法またはスパッタリング法を用いて、共通電極17(例えばIZO層)を保護層16の第1面およびコンタクト孔161内に形成する。以上により、表示装置102が得られる。
(第2の例)
 以下、図8A、図9Aから図9Dを参照して、第2の実施形態に係る表示装置102の製造方法の第2の例について説明する。
 まず、第1電極121の形成工程から保護層18の形成工程までの工程を上記第1の例と同様に実施する(図8A参照)。次に、例えばCVD法を用いて、図9Aに示されるように、保護層18の第1面上にハードマスク(例えば厚さ800nm程度の窒化シリコン層)72を形成する。
 次に、例えばフォトリソグラフィを用いて、ハードマスク82の第1面上にレジスト層83を形成した後、例えばドライエッチングを用いて、レジスト層83越しにハードマスク82を加工する。これにより、図9Bに示されるように、島状を有する複数のハードマスク82が、複数の副画素10Bに対応する位置に残存する。次に、例えばアッシングにより、図9Cに示されるように、複数のハードマスク82上のレジスト層83を除去する。
 次に、例えばドライエッチングを用いて、保護層18、保護層13、第2電極123およびOLED層122Bを複数のハードマスク82越しに加工する。これにより、図9Dに示されるように、複数の副画素10B以外の部分の保護層18、保護層13、第2電極123およびOLED層122Bが除去され、複数の発光素子12Bが駆動基板11の第1面上に形成される。当該ドライエッチングの際に、側面保護層14がOLED層122Bの側面から保護層13の側面に亘って形成される。保護層13、第2電極123およびOLED層122Bのエッチングの際に、堆積物により側面保護層14が形成されるメカニズムは、上記第1の例にて説明したとおりである。
 次に、上記第1の例と同様にして、サイドウォール15Bを形成する。次に、上記の発光素子12Bおよびサイドウォール15Bの形成工程と同様の手順で、複数の発光素子12R、複数の発光素子12G、複数のサイドウォール15Rおよび複数のサイドウォール15Gを駆動基板11の第1面上に形成する。次に、保護層16の形成工程から共通電極17の形成工程までの工程を上記第1の例と同様に実施する。以上により、表示装置102が得られる。
(第3の例)
 以下、図9Aから図9C、図10を参照して、第2の実施形態に係る表示装置102の製造方法の第3の例について説明する。
 まず、第1電極121の形成工程からレジスト層83の除去の工程までを上記第2の例と同様に実施する(図9Aから図9C参照)。次に、例えばドライエッチングを用いて、保護層18をハードマスク82越しに加工した後、ハードマスク82および加工後の保護層18からなる積層体をハードマスクとして、保護層13、第2電極およびOLED層122Bを加工する。この加工の際に、図10に示されるように、ハードマスク82が除去され、保護層18の第1面が露出される。
 次に、上記第1の例と同様にして、サイドウォール15Bを形成する。次に、上記の発光素子12Bおよびサイドウォール15Bの形成工程と同様の手順で、複数の発光素子12R、複数の発光素子12G、複数のサイドウォール15Rおよび複数のサイドウォール15Gを駆動基板11の第1面上に形成する。次に、保護層16の形成工程から共通電極17の形成工程までの工程を上記第1の例と同様に実施する。以上により、表示装置102が得られる。
[作用効果]
 第2の実施形態に係る表示装置102では、第1の実施形態に係る表示装置101と同様の作用効果を得ることができる。
<3 第3の実施形態>
[概要]
 OLED層が、隣接する発光素子の間で繋がり、複数の発光素子の間で共通の層であると、OLED層を介しての発光素子間のキャリアリークの発生が懸念される。このような発光素子間のキャリアリークの発生は、発光素子が微細化された高精細のOLD表示装置において特に懸念される。発光素子間のリーク対策として、OLED層を発光素子ごとに分離する技術が検討されている。
 図11は、OLED層712Wが発光素子711Wごとに分離された参考例の表示装置701の断面図である。図12は、発光素子711Wを拡大して表す断面図である。発光素子711Wは、第1電極121とOLED層712Wと第2電極123とを駆動基板11の第1面に順に備える。第1電極121、OLED層712Wおよび第2電極123は、複数の発光素子711Wで別々に設けられている。すなわち、第1電極121、OLED層712Wおよび第2電極123はそれぞれ、面内方向に隣接する発光素子711Wの間で分断されている。第1電極121の第1面の周縁部と第1電極121の側面とは、絶縁層713により覆われている。絶縁層713は、発光素子71Wの信頼性の改善のために設けられる。
 上記構成を有する表示装置701では、第2電極123とOLED層712Wとの周縁部間に剥がれ714が発生することがある。このような剥がれ714が発生すると、発光素子71Wの駆動電圧が高電圧化する。
 上記剥がれ714は、例えば、表示装置701の製造工程において以下のようにして発生する。すなわち、保護層16の形成工程後、保護層16の成膜装置から取り出され、次工程の装置に搬送される。保護層16の形成工程における保護層16の成膜温度T1と、当該保護層16の形成工程後に駆動基板11が成膜装置から取り出された際の環境温度(例えば室温)T2との間には、温度差ΔT(=T2-T1)がある。IZO層等の第2電極123とOLED層122の密着性が悪いため、上記温度差ΔTにより保護層16に膜応力が生じると、第2電極123とOLED層122との周縁部間に剥がれ714が発生する。このため、第2電極123とOLED層122との周縁部間の剥がれ714の発生を抑制するための技術が望まれる。
 第3の実施形態では、このような第2電極123とOLED層712Wとの周縁部間の剥がれ発生を抑制することができる表示装置について説明する。なお、第1の実施形態に係る表示装置101および第2の実施形態に係る表示装置102においても、上記の剥がれ発生を抑制することができる。
[表示装置の構成]
 図13は、第3の実施形態に係る表示装置103の表示領域RE1の一部を拡大して表す平面図である。図14は、図13のXIV-XIV線に沿った断面図である。表示装置103は、駆動基板11と、複数の発光素子19Wと、第1絶縁層211と、第2絶縁層212と、保護層20と、側面保護層22と、保護層16と、共通電極17と、保護層23と、カラーフィルタ24とを備える。なお、第3の実施形態において、第1の実施形態と同様の箇所には同一の符号を付して説明を省略する。
 第3の実施形態では、表示装置103が第1絶縁層211および第2絶縁層212を備える例について説明するが、表示装置103が第1絶縁層211および第2絶縁層212のうちの少なくとも一方のみを備えていてもよい。
(発光素子19W)
 図15は、発光素子19Wを拡大して表す断面図である。発光素子19Wは、白色光を発光することができる。発光素子19Wは、白色OLED素子であり、駆動回路等の制御に基づき、白色光を発光することができる。発光素子19Wは、第1電極191と、OLED層192Wと、第2電極193とを順に駆動基板11の第1面上に備える。OLED層192Wの側面、第2電極193の側面および保護層20の側面は、略面一になっている。
(OLED層192W)
 OLED層192Wは、表示領域RE1内において複数の発光素子19Wで別々に設けられている。すなわち、OLED層192Wは、表示領域RE1内において、面内方向に隣接する発光素子19Wの間で分断されている。OLED層192Wは、平面視において、第1電極121と略同一のサイズを有していてもよいし、第1電極121に比べて小さいサイズ、または第1電極121に比べて大きいサイズを有していてもよい。
 OLED層192Wは、白色光を発光することができる。OLED層192Wは、単層の発光ユニットを備えるOLED層であってもよいし、2層の発光ユニットを備えるOLED層(タンデム構造)であってもよいし、これら以外の構造のOLED層であってもよい。単層の発光ユニットを備えるOLED層は、例えば、第1電極121から第2電極193に向かって、正孔注入層、正孔輸送層、赤色の有機発光層、発光分離層、青色の有機発光層、緑色の有機発光層、電子輸送層、電子注入層がこの順序で積層された構成を有する。2層の発光ユニットを備えるOLED層は、例えば、第1電極121から第2電極193に向かって、正孔注入層、正孔輸送層、青色の有機発光層、電子輸送層、電荷発生層、正孔輸送層、黄色の有機発光層、電子輸送層と、電子注入層がこの順序で積層された構成を有していてもよい。
 発光分離層は、各発光層へのキャリアの注入を調整するための層であり、発光分離層を介して各発光層に電子やホールが注入されることにより各色の発光バランスが調整される。電荷発生層は、当該電荷発生層を挟むように設けられた2つの発光層に電子と正孔をそれぞれ供給することができる。黄色の有機発光層は、電界をかけることにより、電荷発生層から注入された正孔と第2電極193または電荷発生層から注入された電子との再結合が起こり、黄色光を発光することができる。発光分離層、電荷発生層および黄色の有機発光層以外の層は、第1の実施形態において説明したとおりである。
(第1電極191)
 第1電極191は、第1の実施形態における第1電極21と同様である。
(第2電極193)
 第2電極193は、平面視において、第1電極191と略同一のサイズを有している。第2電極193は、これ以外の点においては、第1実施形態における第2電極123と同様であってもよい。
(保護層20)
 保護層20は、平面視において、第2電極193と略同一のサイズを有し、保護層20の側面と第2電極193の側面は、略面一になっている。保護層20は、これ以外の点においては、第1実施形態における保護層13と同様であってもよい。
(第1絶縁層211)
 第1絶縁層211は、駆動基板11の第1面のうち、離隔された第1電極191の間の部分に設けられている。第1絶縁層211は、隣接する第1電極191の間を絶縁する。第1絶縁層211は、複数の開口211aを有する。複数の開口211aはそれぞれ、各発光素子19Wに対応して設けられている。複数の第1電極191はそれぞれ、各開口211a内に設けられている。複数の開口211aはそれぞれ、各第1電極191の第1面(OLED層192W側の面)上に設けられていてもよい。この場合、第1電極191とOLED層192Wは、開口211aを介して接触する。
 第1絶縁層211は、高い耐湿性を有していることが好ましい。第1絶縁層211は、例えば、金属酸化物を含む。当該金属酸化物は、例えば、酸化ジルコニウム(ZrO)、酸化タンタル(TaO)および酸化アルミニウム(AlO)等からなる群より選ばれた少なくとも1種を含む。
(第2絶縁層212)
 第2絶縁層212は、第1電極191の第1面の周縁部上に設けられている。第2絶縁層212が、第1電極191の第1面の周縁部上と第1絶縁層211の第1面の開口周縁部上との両方に設けられていてもよい。本明細書において、第1面の開口周縁とは、第1面において開口211aの周縁から外側に向かって、所定の幅を有する領域をいう。
 第2絶縁層212は、高い耐湿性を有していることが好ましい。第2絶縁層212は、例えば、金属酸化物および金属窒化物を含む。当該金属酸化物は、例えば、酸化シリコン(SiO)および酸窒化シリコン(SiO)等からなる群より選ばれた少なくとも1種を含む。当該金属窒化物は、例えば、窒化シリコン(SiN)を含む。
(側面保護層22)
 側面保護層22は、サイドウォール状の絶縁層である。側面保護層22は、OLED層192Wの側面から保護層20の側面までの範囲を覆っている。より具体的には、側面保護層22は、OLED層192Wの側面、第2電極193の側面および保護層20の側面を覆っている。これにより、OLED層192Wと第2電極193の界面に対する、保護層20の膜ストレスの影響を抑制することができる。側面保護層22は、保護層20の側面の全体を覆っていてもよいし、保護層20の側面のうち、保護層20の第2面の周縁から規定の高さまでの範囲を覆っていてもよい。側面保護層22は、平面視において、閉ループ状を有していてもよいし、部分的に分断されたループ状を有していてもよい。
 側面保護層22は、発光素子19Wの側面を保護することができる。例えば、側面保護層22は、外部環境から複数の発光素子19W内部への水分浸入を抑制し、発光素子19Wの劣化を抑制することができてもよい。側面保護層22は、発光素子19Wから発せられる白色光に対して透光性を有している。側面保護層22は、可視光に対して透明性を有することが好ましい。
 側面保護層22は、多層構造を有している。側面保護層22は、第1側面保護層221と第2側面保護層222とを備える。
 第1側面保護層221は、発光素子19Wの側面上に設けられている。第1側面保護層221は、第2絶縁層212をドライエッチングすることにより堆積される堆積物を含んでもよい。第1側面保護層221は、第2絶縁層212と同一の材料を含んでもよい。より具体的には、第1側面保護層221は、第2絶縁層212の構成材料の一部を含んでもよいし、第2絶縁層212の構成材料の全部を含んでもよい。
 第1側面保護層221の屈折率は、保護層20の屈折率に比べて低いことが好ましい。第1側面保護層221の屈折率が保護層20の屈折率に比べて低いことで、発光素子19Wから斜め方向に出射された光を保護層20と第1側面保護層221の界面にて反射させることができる。したがって、隣接する副画素10間の混色を抑制することができる。また、表示装置103の正面輝度を向上させることができる。本明細書において、屈折率は、波長589.3nmの光(ナトリウムのD線)に対する屈折率を表す。
 第2側面保護層222は、第1側面保護層221上に設けられている。第2側面保護層222は、第1絶縁層211をドライエッチングすることにより堆積される堆積物を含んでもよい。第2側面保護層222は、第1絶縁層211と同一の材料を含んでもよい。より具体的には、第2側面保護層222は、第1絶縁層211の構成材料の一部を含んでもよいし、第1絶縁層211の構成材料の全部を含んでもよい。
(保護層23)
 保護層23は、共通電極17の第1面上に設けられている。保護層23は、共通電極17の第1面の凹凸を埋め、平坦な第1面を共通電極17の上方に形成することができる。保護層23は、共通電極17および複数の発光素子19W等を保護することができる。例えば、保護層23は、外部環境から表示装置103内部への水分浸入を抑制し、共通電極17および複数の発光素子19W等の劣化を抑制することができてもよい。保護層23は、発光素子19Wから発せられる白色光に対して透光性を有している。保護層23は、可視光に対して透明性を有することが好ましい。保護層23に含まれる材料としては、第1の実施形態における保護層13と同様の無機材料を例示することができる。
(カラーフィルタ24)
 カラーフィルタ24は、複数の発光素子19Wの上方に設けられている。より具体的には、カラーフィルタ24は、保護層23の第1面上に設けられている。カラーフィルタ24は、例えば、複数の赤色フィルタ部24FRと、複数の緑色フィルタ部24FGと、複数の青色フィルタ部24FBとを備える。なお、以下の説明において、赤色フィルタ部24FR、緑色フィルタ部24FG、青色フィルタ部24FBを特に区別せず総称する場合には、フィルタ部24Fということがある。
 複数のフィルタ部24Fは、面内方向に2次元配置されている。各フィルタ部24Fは、発光素子19Wの上方に設けられている。赤色フィルタ部24FRと発光素子19Wとにより副画素10Rが構成され、緑色フィルタ部24FGと発光素子19Wとにより副画素10Gが構成され、青色フィルタ部24FBと発光素子19Wとにより副画素10Bが構成されている。
 赤色フィルタ部24FRは、発光素子19Wから出射された白色光のうち赤色光を透過するのに対して、赤色光以外の光を吸収する。緑色フィルタ部24FGは、発光素子19Wから出射された白色光のうち緑色光を透過するのに対して、緑色光以外の光を吸収する。青色フィルタ部24FBは、発光素子19Wから出射された白色光のうち青色光を透過するのに対して、青色光以外の光を吸収する。
 赤色フィルタ部24FRは、例えば、赤色のカラーレジストを含む。緑色フィルタ部24FGは、例えば、緑色のカラーレジストを含む。青色フィルタ部24FBは、例えば、青色のカラーレジストを含む。
[表示装置の製造方法]
 以下、図16Aから図16Hを参照して、第3の実施形態に係る表示装置103の製造方法の一例について説明する。
 まず、例えばスパッタリング法を用いて、駆動基板11の第1面上に金属層を形成した後、例えばフォトリソグラフィおよびドライエッチングを用いて、金属層をパターニングする。これにより、図16Aに示されるように、複数の第1電極191が駆動基板11の第1面上に形成される。
 次に、例えばCVD法を用いて、複数の第1電極191を覆うように、第1絶縁層(例えば厚さ300nm程度の酸化ジルコニウム層)211を駆動基板11の第1面に形成する。次に、例えばCMPを用いて、第1絶縁層211を研磨し、各第1電極191の第1面を露出させる。これにより、図16Bに示されるように、第1絶縁層211が、駆動基板11の第1面のうち、離隔された第1電極191の間の部分に残る。
 次に、例えばCVD法を用いて、第2絶縁層212(例えば厚さ30nm程度の酸窒化シリコン層)を複数の第1電極191の第1面上および第1絶縁層の第1面上に形成する。次に、例えばフォトリソグラフィを用いて、図16Cに示されるように、複数の開口74aを有するレジスト層84を第2絶縁層212の第1面上に形成する。この際、複数の開口74aはそれぞれ、各第1電極191の上方に形成される。
 次に、例えばCFガス等によるドライエッチングを用いて、レジスト層84越しに第2絶縁層212を加工する。これにより、複数の開口212aが第2絶縁層212に形成される。次に、例えばアッシングにより、図16Dに示されるように、第2絶縁層212の第1面上のレジスト層84を除去する。次に、例えば蒸着法を用いて、OLED層192Wを複数の第1電極191の第1面および第2絶縁層212の第1面上に形成した後、例えばスパッタ法により、第2電極(例えば厚さ100nm程度のIZO層)193をOLED層192Wの第1面上に形成する。次に、例えばPCVD(プラズマCVD)法を用いて、保護層(例えば厚さ500nm程度の窒化シリコン層)20を第2電極193の第1面上に形成する。
 次に、例えばフォトリソグラフィを用いて、図16Eに示されるように、島状のレジスト層85を各副画素10Bに対応する位置に形成する。次に、例えばドライエッチングを用いて、保護層20、第2電極193およびOLED層192Wをレジスト層85越しに順に加工する。これにより、図16Fに示されるように、複数の発光素子19Wが駆動基板11の第1面上に形成される。
 次に、例えばArプラズマを用いて、第1絶縁層211および第2絶縁層212を順次スパッタエッチングする。これにより、図16Gに示されるように、第2側面保護層222および第1側面保護層221が、OLED層192Wの側面、第2電極193の側面および保護層13の側面に順次堆積させる。スパッタエッチングは、駆動基板11の第1面が露出するまで行われてもよいし、駆動基板11の第1面が露出する前に停止されてもよい。
 保護層20、第2電極193およびOLED層192Wの加工と、第1絶縁層211および第2絶縁層212の加工とは、同一のエッチング装置を用いて連続で行われることが好ましい。これにより、大気暴露せずに、保護層20の側面、第2電極193の側面およびOLED層192Wの側面に第1側面保護層221および第2側面保護層222を順に形成することができる。したがって、大気暴露によるOLED層192W等の劣化を抑制することができる。よって、表示装置103の信頼性を向上させることができる。
 次に、例えばPCVD法を用いて、図16Hに示すように、側面保護層22が設けられた複数の発光素子19Wを覆うように保護層16を形成する。
 次に、例えばフォトリソグラフィ及びドライエッチングを用いて、保護層16および保護層20を加工し、各発光素子19W上にコンタクト孔161を形成する。次に、例えば蒸着法またはスパッタリング法を用いて、共通電極17を保護層16の第1面およびコンタクト孔161内に形成する。次に、例えばPCVD法を用いて、共通電極17の第1面上に保護層23を形成する。
 次に、保護層23の第1面上に緑色フィルタ部形成用の着色組成物を塗布し、フォトマスクを介して紫外線を照射しパターン露光した後、現像することにより、複数の緑色フィルタ部24FGを形成する。次に、保護層23の第1面上に赤色フィルタ部形成用の着色組成物を塗布し、フォトマスクを介して紫外線を照射しパターン露光した後、現像することにより、複数の赤色フィルタ部24FRを形成する。次に、保護層23の第1面上に青色フィルタ部形成用の着色組成物を塗布し、フォトマスクを介して紫外線を照射しパターン露光した後、現像することにより、複数の青色フィルタ部24FBを形成する。これにより、保護層23の第1面上にカラーフィルタ24が形成される。
以上により、表示装置103が得られる。
[作用効果]
 第3の実施形態に係る表示装置103では、側面保護層22がOLED層192Wの側面、第2電極193および保護層20の側面を覆い、これらの側面を固定している。これにより、保護層16の形成工程における保護層16の成膜温度T1と、当該保護層16の形成工程後に駆動基板11が成膜装置から取り出された際の環境温度(例えば室温)T2との間に温度差ΔT(=T2-T1)がある場合でも、OLED層192Wと第2電極193の周縁部間における剥がれの発生を抑制することができる。したがって、発光素子19Wの駆動電圧の高電圧化を抑制することができる。
<4 第4の実施形態>
[表示装置の構成]
 図17は、第4の実施形態に係る表示装置104の断面図である。表示装置104は、駆動基板11と、複数の発光素子25Rと、複数の発光素子25Gと、複数の発光素子25Bと、絶縁層26と、複数の保護層27と、複数の側面保護層28と、保護層16と、共通電極17とを備える。なお、第4の実施形態において、第1の実施形態と同様の箇所には同一の符号を付して説明を省略する。
(発光素子25R、25G、25B)
 図18は、発光素子25Rを拡大して表す断面図である。発光素子25Rは、第1電極251と、OLED層252Rと、第2電極253とを順に駆動基板11の第1面上に備える。発光素子25Gは、第1電極251と、OLED層252Gと、第2電極253とを順に駆動基板11の第1面上に備える。発光素子25Bは、第1電極251と、OLED層252Bと、第2電極253とを順に駆動基板11の第1面上に備える。以下の説明において、発光素子25R、25G、25Bを特に区別せず総称する場合には、単に発光素子25ということがある。また、OLED層252R、252G、252Bを特に区別せず総称する場合には、単にOLED層252ということがある。
 OLED層252および第2電極253のサイズは、平面視において第1電極251のサイズよりも大きく、OLED層252および第2電極253が、第1電極251を覆っている。第1電極251、OLED層252および第2電極253は、上記以外の点においては、第1の実施形態における第1電極121、OLED層122および第2電極123と同様である。
(絶縁層26)
 絶縁層26は、駆動基板11の第1面のうち、離隔された第1電極251の間の部分に設けられている。絶縁層26は、隣接する第1電極251の間を絶縁する。絶縁層26は、複数の開口26aを有する。複数の開口26aはそれぞれ、発光素子12Wに対応して設けられている。より具体的には、複数の開口26aはそれぞれ、第1電極251の第1面(OLED層252側の面)上に設けられている。開口26aを介して、第1電極251とOLED層252とが接触する。
 絶縁層26は、有機絶縁層であってもよいし、無機絶縁層であってもよいし、これらの積層体であってもよい。有機絶縁層は、例えば、ポリイミド系樹脂、アクリル系樹脂およびノボラック系樹脂等からなる群より選ばれた少なくとも1種を含む。無機絶縁層は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)および酸窒化シリコン(SiO)等からなる群より選ばれた少なくとも1種を含む。
(保護層27)
 保護層27は、平面視においてOLED層252および第2電極253と略同一のサイズを有し、OLED層252の側面、第2電極253の側面および保護層27の側面は略面一になっている。保護層27は、これ以外の点においては、第1の実施形態における保護層13と同様であってもよい。
(側面保護層28)
 側面保護層28は、少なくともOLED層252の側面と第2電極253の側面の境界を覆っている。これにより、OLED層252と第2電極253の界面に対する、保護層27の膜ストレスの影響を抑制することができる。側面保護層28は、OLED層252の側面から保護層27の側面までの範囲を覆っていてもよい。より具体的には、側面保護層28は、OLED層252の側面、第2電極253の側面および保護層27の側面を覆っていてもよい。側面保護層28は、保護層27の側面の全体を覆っていてもよいし、保護層27の側面のうち、保護層27の第2面の周縁から規定の高さまでの範囲を覆っていてもよい。側面保護層28は、平面視において、閉ループ状を有していてもよいし、部分的に分断されたループ状を有していてもよい。
 側面保護層28は、単分子層を含むことが好ましい。側面保護層28が単分子層を含むことで、側面保護層28のバリア性を向上させることができる。単分子層は密着性が高いため、単分子層は、OLED層252と第2電極253の界面に対する、保護層27の膜ストレスの影響を抑制する効果が高い。したがって、単分子層は、OLED層252と第2電極253の間の剥がれ抑制効果が高い。よって、単分子層は、発光素子25の駆動電圧の高電圧化の抑制効果が高い。側面保護層28は、単分子層の堆積物により構成されていてもよい。側面保護層28は、ALD(Atomic Layer Deposition)層であってもよい。
 側面保護層28は、例えば、金属酸化物を含む。金属酸化物は、例えば、酸化アルミニウム(AlO)または酸化チタン(TiO)を含む。
[表示装置の製造方法]
 以下、図19Aから図19Eを参照して、第3の実施形態に係る表示装置103の製造方法の一例について説明する。
 まず、例えばスパッタリング法を用いて、駆動基板11の第1面上に金属層を形成した後、例えばフォトリソグラフィおよびドライエッチングを用いて、金属層をパターニングする。これにより、複数の第1電極251が駆動基板11の第1面上に形成される。
 次に、例えばCVD法を用いて、複数の第1電極251を覆うように駆動基板11の第1面上に絶縁層26を形成する。次に、例えばフォトリソグラフィおよびドライエッチングを用いて、絶縁層26に複数の開口26aを形成する。これにより、各第1電極251の第1面が開口26aを介して露出する。
 次に、例えば蒸着法を用いて、正孔注入層、正孔輸送層、青色の有機発光層、電子輸送層、電子注入層を複数の第1電極251の第1面上および絶縁層26の第1面上に順次積層することにより、OLED層252Bを形成する。次に、例えば蒸着法またはスパッタリング法を用いて、第2電極253をOLED層252Bの第1面上に形成する。次に、例えばCVD法を用いて、保護層27を第2電極253の第1面上に形成する。
 次に、例えばフォトリソグラフィを用いて、図19Aに示されるように、島状のレジスト層86を各副画素10Bに対応する位置に形成する。次に、例えばドライエッチングを用いて、保護層27、第2電極253およびOLED層252Bをレジスト層86越しに順に加工する。これにより、図19Bに示されるように、複数の発光素子25Bが駆動基板11の第1面上に形成される。
 次に、上記の発光素子25Bの形成工程と同様の手順で、図19Cに示されるように、複数の発光素子25Rおよび複数の発光素子25Gを駆動基板11の第1面上に形成する。
 次に、例えばALDを用いて、図19Dに示されるように、複数の発光素子25R、複数の発光素子25Gおよび複数の発光素子25Bを覆うように、駆動基板11の第1面上に保護層281を形成する。次に、例えばエッチバック(ドライエッチング)を用いて、図19Eに示されるように、保護層27の第1面上および駆動基板11の第1面上の保護層281を除去し、OLED層252の側面、第2電極253の側面および保護層27の側面の保護層281を残す。これにより、複数の発光素子25R、複数の発光素子25Gおよび複数の発光素子25Bの側面にそれぞれ側面保護層28が形成される。
 次に、保護層16の形成工程から共通電極17の形成工程までの工程を第1の実施形態に係る表示装置101の製造方法と同様に実施する。以上により、表示装置104が得られる。
[作用効果]
 第4の実施形態に係る表示装置104では、側面保護層28は、少なくとも、OLED層252の側面と第2電極253の側面の境界を覆っている。したがって、第1の実施形態に係る表示装置101と同様の作用効果を得ることができる。
<5 第5の実施形態>
 図20は、第5の実施形態に係る表示装置105の断面図である。表示装置105は、駆動基板11と、複数の発光素子31Rと、複数の発光素子31Gと、複数の発光素子31Bと、複数の金属層32と、複数の保護層33と、複数の側面保護層34と、保護層16と、共通電極17とを備える。なお、第5の実施形態において、第1の実施形態と同様の箇所には同一の符号を付して説明を省略する。
(発光素子31R、31G、31B)
 図21は、発光素子31Bの一部を拡大して表す断面図である。発光素子31Rは、第1電極311と、OLED層312Rと、第2電極313と、絶縁層314とを備える。発光素子31Gは、第1電極311と、OLED層312Gと、第2電極313と、絶縁層314とを備える。発光素子31Bは、第1電極311と、OLED層312Bと、第2電極313と、絶縁層314とを備える。以下の説明において、発光素子31R、31G、31Bを特に区別せず総称する場合には、単に発光素子31ということがある。また、OLED層312R、312G、312Bを特に区別せず総称する場合には、単にOLED層312ということがある。
 第1電極311、OLED層312および第2電極313のサイズは、平面視において略同一であり、第1電極311、OLED層312および第2電極313の側面が、略面一になっていてもよい。第1電極311、OLED層312および第2電極313は、上記以外の点においては、第1の実施形態における第1電極121、OLED層122および第2電極123と同様である。
 絶縁層314は、第1電極311の第1面の周縁部に設けられている。絶縁層314の第1面および内側側面は、OLED層312により覆われている。絶縁層314は、平面視において、閉ループ状を有していることが好ましい。
 絶縁層314は、例えば、金属酸化物および金属窒化物を含む。当該金属酸化物は、例えば、酸化シリコン(SiO)および酸窒化シリコン(SiO)等からなる群より選ばれた少なくとも1種を含む。当該金属窒化物は、例えば、窒化シリコン(SiN)を含む。
(金属層32)
 金属層32は、絶縁層112の第1面と発光素子31の第2面の間に設けられている。金属層32のサイズは、平面視において第1電極311のサイズと略同一であり、金属層32の側面および第1電極311の側面が、略面一になっていてもよい。
 金属層は、OLED層312から出射された光を反射する反射層としての機能を有していてもよい。金属層は、例えば、クロム(Cr)、金(Au)、白金(Pt)、ニッケル(Ni)、銅(Cu)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、タングステン(W)および銀(Ag)からなる群より選ばれた少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、アルミニウム合金または銀合金が挙げられる。アルミニウム合金の具体例としては、例えば、AlNdまたはAlCuが挙げられる。
(側面保護層34)
 側面保護層34は、金属層32の側面、発光素子31の側面および保護層33の側面を覆っている。より具体的には、側面保護層34は、金属層32の側面、第1電極311の側面、OLED層312の側面、第2電極313の側面および保護層33の側面を覆っている。
 第5の実施形態では、側面保護層34は、金属層32の側面、第1電極311の側面、OLED層312の側面、第2電極313の側面および保護層33の側面を覆っている例について説明するが、側面保護層34が、第1電極311、OLED層312の側面、第2電極313の側面および保護層33の側面を覆っていてもよいし、OLED層312の側面、第2電極313の側面および保護層33の側面を覆っていてもよい。
 側面保護層34は、発光素子31の側面を保護することができる。例えば、側面保護層34は、OLED層312と第2電極313の界面に対する、保護層33の膜ストレスの影響を抑制することができる。側面保護層34は、外部環境から発光素子31内部への水分浸入を抑制し、発光素子31の劣化を抑制することができてもよい。側面保護層34は、発光素子31から出射された光を反射することができる。側面保護層34は、発光素子31から出射された光を反射することができる少なくとも一層の反射層を含むことが好ましい。
 側面保護層34は、保護層33、第2電極313、OLED層312、絶縁層314、第1電極311、金属層32を順にドライエッチングすることにより堆積される堆積物を含んでもよい。側面保護層34は、保護層33の構成材料の一部または全部と、第2電極313の構成材料の一部または全部と、絶縁層314の構成材料の一部または全部と、第1電極311の構成材料の一部または全部と、金属層32の構成材料の一部または全部とを含んでもよい。
 側面保護層34は、第1側面保護層341と、第2側面保護層342と、第3側面保護層343と、第4側面保護層344と、第5側面保護層345とを順に備えていてもよい。
(第1側面保護層341)
 第1側面保護層341は、第2電極313の側面および保護層33の側面を覆っていてもよい。第1側面保護層341の底部は、第2電極313の側面に接続されていてもよい。第1側面保護層341は、導電性を有していてもよい。第1側面保護層341は、発光素子31から出射された光を反射することができる反射層であってもよいし、発光素子31から出射された光を透過することができる光透過層であってもよい。第1側面保護層341は、第2電極313をドライエッチング等することにより堆積される堆積物を含んでもよい。第1側面保護層341は、第2電極313の構成材料の一部を含んでもよいし、第2電極313の構成材料の全部を含んでもよい。
(第2側面保護層342)
 第2側面保護層342は、絶縁層314の側面、OLED層312の側面および第1側面保護層341の主面を覆っていてもよい。第2側面保護層342の底部は、絶縁層314の側面に接続されていてもよい。第2側面保護層342は、絶縁性を有していてもよい。第2側面保護層342は、第1側面保護層341と第3側面保護層343の間を絶縁することができてもよい。第2側面保護層342は、発光素子31から出射された光を透過することができてもよい。第2側面保護層342は、絶縁層314をドライエッチング等することにより堆積される堆積物を含んでもよい。第2側面保護層342は、絶縁層314の構成材料の一部を含んでもよいし、絶縁層314の構成材料の全部を含んでもよい。第2側面保護層342は、OLED層312の構成材料の一部をさらに含んでもよい。
(第3側面保護層343)
 第3側面保護層343は、第1電極311の側面および第2側面保護層342の主面を覆っていてもよい。第3側面保護層343の底部は、第1電極311の側面に接続されていてもよい。第3側面保護層343は、導電性を有していてもよい。第3側面保護層343は、表示装置105の光取り出し効率の向上の観点から、発光素子31から斜め方向に出射された光を反射することができる反射層であることが好ましい。第3側面保護層343は、第1電極311をドライエッチング等することにより堆積される堆積物を含んでもよい。第3側面保護層343は、第1電極311の構成材料の一部を含んでもよいし、第1電極311の構成材料の全部を含んでもよい。
(第4側面保護層344)
 第4側面保護層344は、金属層32の側面および第3側面保護層343の主面を覆っていてもよい。第4側面保護層344の底部は、金属層32の側面に接続されていてもよい。第4側面保護層344は、導電性を有していてもよい。第4側面保護層344は、表示装置105の光取り出し効率の向上の観点から、発光素子31から斜め方向に出射された光を反射することができる反射層であることが好ましい。表示装置105の光取り出し効率の向上の観点からすると、第3側面保護層343および第4側面保護層344の両方が、発光素子31から斜め方向に出射された光を反射することができる反射層であることが特に好ましい。第4側面保護層344は、金属層32をドライエッチング等することにより堆積される堆積物を含んでもよい。第4側面保護層344は、金属層32の構成材料の一部を含んでもよいし、金属層32の構成材料の全部を含んでもよい。
(第5側面保護層345)
 第5側面保護層345は、第4側面保護層344の主面を覆っていてもよい。第5側面保護層345は、絶縁性を有していてもよい。第5側面保護層345は、絶縁層112をドライエッチング等することにより堆積される堆積物を含んでもよい。第5側面保護層345は、絶縁層112の構成材料の一部を含んでもよいし、絶縁層112の構成材料の全部を含んでもよい。
(保護層33)
 保護層33は、平面視において第2電極313と同一のサイズを有し、保護層33の側面および第2電極313の側面は略面一になっていてもよい。保護層33は、これ以外の点においては、第1の実施形態における保護層13と同様であってもよい。
[表示装置の製造方法]
 以下、図22Aから図22Dを参照して、第5の実施形態に係る表示装置105の製造方法の一例について説明する。
 まず、例えばスパッタリング法、蒸着法およびCVD法等を用いて、図22Aに示されるように、金属層32、第1電極311、絶縁層314、OLED層312B、第2電極313、保護層33を駆動基板11の第1面上に順次積層する。但し、絶縁層314の形成工程とOLED層312Bの形成工程の間において、例えばフォトリソグラフィおよびドライエッチングを用いて、絶縁層314をパターニングすることにより、複数の開口314aがそれぞれ複数の副画素10Bに対応する位置に形成される。第5の実施形態に係る表示装置105の製造方法においては、絶縁層112、金属層32、第1電極311、絶縁層314および第2電極313は、発光素子31の側面に堆積物を生成するための堆積物生成層としての機能を有する。
 次に、例えばフォトリソグラフィを用いて、図22Bおよび図22Cに示されるように、島状のレジスト層87を各副画素10Bに対応する位置に形成する。次に、例えばドライエッチングを用いて、保護層33、第2電極313、OLED層312B、絶縁層314、第1電極311、金属層32および絶縁層112をレジスト層85越しに順に加工し、保護層33の側面、発光素子31Bの側面および金属層32の側面に堆積物を堆積させる。これにより、図22Dに示されるように、複数の発光素子31Bがそれぞれ金属層32を間に挟むようにして駆動基板11の第1面上に形成される。また、第1側面保護層341、第2側面保護層342、第3側面保護層343、第4側面保護層344、第5側面保護層345が、金属層32の側面、発光素子31Bの側面および保護層33の側面に順に形成される。
 次に、上記の発光素子31Bの形成工程と同様の手順で、複数の発光素子31Rおよび複数の発光素子31Gをそれぞれ金属層32を間に挟むようにして駆動基板11の第1面上に形成する。
 次に、保護層16の形成工程から共通電極17の形成工程までの工程を第1の実施形態に係る表示装置101の製造方法と同様に実施する。以上により、表示装置105が得られる。
[作用効果]
 第5の実施形態に係る表示装置105では、側面保護層34は、発光素子31の側面および保護層33の側面を覆い、かつ、発光素子31から斜め方向に出射された光を反射することができる。したがって、OLED層312と第2電極123の間の剥がれを抑制することができ、かつ、表示装置105の光取り出し効率を向上させることができる。
 絶縁性を有する第2側面保護層342が、第1側面保護層341と第3側面保護層343の間に設けられているので、第1側面保護層341および第3側面保護層343の接触による第1電極311と第2電極313の間のキャリアリークを抑制することができる。
[変形例]
(変形例1)
 第5の実施形態では、表示装置105が、絶縁層112と発光素子31の間に金属層32を備え、第3側面保護層343と第5側面保護層345の間に第4側面保護層344を備える例(図21参照)について説明した。しかしながら、表示装置105の構成はこの例に限定されるものではなく、例えば、図23に示されるように、表示装置105が、金属層32と第4側面保護層344とを備えていなくてもよい。
 上記構成を有する表示装置105は、図24に示されるように、第1電極311、絶縁層314、OLED層312、第2電極313、保護層33を駆動基板11の第1面上に順次積層すること以外は、第5の実施形態に係る表示装置105の製造方法と同様にして製造される。
(変形例2)
 第5の実施形態では、表示装置105が、絶縁層112と発光素子31の間に金属層32を備える例(図21参照)について説明した。しかしながら、表示装置105の構成はこの例に限定されるものではなく、例えば、図25に示されるように、表示装置105が、金属層32を備えていなくてもよい。
 上記構成を有する表示装置105は、金属層32の形成工程と第1電極311の形成工程の間において、図26に示されるように、例えばフォトリソグラフィおよびドライエッチングを用いて、金属層32に複数の開口32aを形成すること以外は、第5の実施形態に係る表示装置105の製造方法と同様に製造される。開口32aは、金属層32のうち、各発光素子31に対応する位置に形成される。
(変形例3)
 第5の実施形態では、金属層32が、発光素子31の下全体に設けられている例(図21参照)について説明したが、図27に示されるように、金属層32が発光素子31の下に開口32aを有していてもよい。
 上記金属層32を有する表示装置105は、図28に示されるように、金属層32の開口32aの周縁を、発光素子31の形成領域の周縁より内側の位置させること以外は変形例3に係る表示装置105の製造方法と同様にして製造される。
(変形例4)
 第5の実施形態では、発光素子31が、1層の絶縁層314を備える例(図21参照)について説明したが、発光素子31の構成はこれに限定されるものではない。例えば、図29に示されるように、発光素子31が、2層の絶縁層314、315を備えてもよい。この場合、側面保護層34は、第6側面保護層346をさらに備えていてもよい。
 絶縁層315は絶縁層314上に設けられ、絶縁層314と絶縁層315は、積層体を構成している。積層体は、第1電極311の第1面の周縁部に設けられていてもよい。積層体の第1面および内側側面は、OLED層312により覆われていてもよい。積層体は、平面視において、閉ループ状を有していることが好ましい。
 絶縁層315の材料としては、絶縁層314と同様の材料を例示することができる。絶縁層314と絶縁層315の材料は、異なっていてもよいし、同一であってもよい。ここで、絶縁層314と絶縁層315の材料が異なるとは、絶縁層314と絶縁層315を構成する材料の成分が異なること、および、絶縁層314と絶縁層315を構成する材料の成分は同じではあるが、各成分の含有量が異なること、のいずれを表していてもよい。
 第6側面保護層346は、第1側面保護層341と第2側面保護層342の間に設けられている。第6側面保護層346の底部は、絶縁層315の側面に接続されていてもよい。第6側面保護層346は、絶縁性を有していてもよい。第6側面保護層346は、発光素子31から出射された光を透過することができてもよい。第6側面保護層346は、絶縁層315をドライエッチング等することにより堆積される堆積物を含んでもよい。第6側面保護層346は、絶縁層315の構成材料の一部を含んでもよいし、絶縁層315の構成材料の全部を含んでもよい。第6側面保護層346は、OLED層312の構成材料の一部をさらに含んでもよい。
 上記構成を有する表示装置105は、例えばスパッタリング法、蒸着法およびCVD法等を用いて、図30に示されるように、金属層32、第1電極311、絶縁層314、絶縁層315、OLED層312、第2電極313、保護層33を駆動基板11の第1面上に順次積層すること以外は第5の実施形態に係る表示装置105の製造方法と同様に製造される。但し、絶縁層315の形成工程とOLED層312の形成工程の間において、例えばフォトリソグラフィおよびドライエッチングを用いて、絶縁層314および絶縁層315をパターニングすることにより、複数の開口314a、315aがそれぞれ複数の副画素10に対応する位置に形成される。
 変形例4においては、発光素子31が、2層の絶縁層314、315により構成された積層体を備える例について説明したが、発光素子31が、3層以上の絶縁層により構成された積層体を備えていてもよい。
(変形例5)
 第5の実施形態では、保護層16が、隣接する発光素子31の間の領域において平坦な面を有している例(図21参照)について説明したが、保護層16の構成はこれに限定されるものではない。例えば、図31Aに示されるように、保護層16が、隣接する発光素子31の間の領域に凹部162を有していてもよい。この場合、共通電極17は、凹部162に倣うように設けられていてもよい。保護層16aが、凹部162を埋めるように、共通電極17の第1面上に設けられていてもよい。
 上記構成を有する表示装置105では、図31Bに示されるように、発光素子31から広角(斜め方向)に出射された光31Laを保護層16と共通電極17の間の界面で反射させることができる。また、発光素子31から、より広角に出射された光31Lbを側面保護層34により反射させることができる。したがって、表示装置105の光取り出し効率を向上させることができる。
(変形例6)
 変形例5においては、共通電極17が保護層16と保護層16aの間に設けられている例について説明したが、共通電極17が保護層16と保護層16aの間に設けられていなくてもよい。この場合、共通電極17とは異なる構成を有する共通電極が、表示装置105に設けられていてもよい。
 保護層16aの屈折率は、保護層16の屈折率に比べて低い。保護層16の屈折率は、例えば、1.4を超え1.8以下である。保護層16aの屈折率は、例えば、1.4以下である。
 上記構成を有する表示装置105では、保護層16aの屈折率が保護層16の屈折率に比べて低いため、発光素子31から広角(斜め方向)に出射された光31Laを保護層16と保護層16aの間の界面で反射させることができる。また、発光素子31から、より広角に出射された光31Lbを側面保護層34により反射させることができる。したがって、表示装置105の光取り出し効率を向上させることができる。
 なお、側面保護層34が設けられていない場合には、発光素子31から、より広角に出射された光31Lc(図31B参照)は、保護層16と保護層16aの界面にて反射されず、隣接する副画素10等に入射する虞がある。
<6 第6の実施形態>
[表示装置の構成]
 図32は、第6の実施形態に係る表示装置106の断面図である。表示装置106は、駆動基板11と、複数の発光素子36Wと、複数の絶縁層37と、複数の保護層33と、複数の側面保護層38と、保護層16と、共通電極17と、保護層23と、カラーフィルタ24とを備える。なお、第6の実施形態において、第1の実施形態または第3の実施形態と同様の箇所には同一の符号を付して説明を省略する。
(発光素子36W)
 図33は、発光素子36Wを拡大して表す断面図である。発光素子36Wは、白色光を発光することができる。発光素子36Wは、白色OLED素子であり、駆動回路等の制御に基づき、白色光を発光することができる。発光素子36Wは、第1電極361と、OLED層362Wと、第2電極363と、絶縁層364とを備える。
 第5の実施形態においては、発光素子31が金属層32の第1面上に設けられている例について説明したが、第6の実施形態においては、発光素子36Wが駆動基板の第1面上に設けられている。
 第1電極361のサイズは、平面視においてOLED層362Wおよび第2電極363のサイズに比べて小さい。第1電極361の側面は、面内方向においてOLED層362Wの側面および第2電極363の側面の内側に位置している。第1電極361、OLED層362Wおよび第2電極363は、上記以外の点においては、第3の実施形態における第1電極191、OLED層192Wおよび第2電極193と同様であってもよい。
 絶縁層364は、絶縁層37の第1面上に設けられている。絶縁層364は、平面視において閉ループ状を有していてもよい。絶縁層364は、絶縁層364の外側の側面がOLED層362Wの側面から露出するように、OLED層362Wにより覆われている。絶縁層364の材料としては、第4の実施形態における絶縁層26と同様の無機材料を例示することができる。
(絶縁層37)
 各絶縁層37は、駆動基板11の第1面のうち、第1電極361の側面と側面保護層38の内側面の間の部分に設けられている。絶縁層37は、第1電極361と側面保護層38との間を絶縁する。絶縁層37は、平面視において閉ループ状を有していてもよい。絶縁層37の材料としては、第4の実施形態における絶縁層26と同様の無機材料を例示することができる。
(側面保護層38)
 側面保護層38は、第1側面保護層341と、第2側面保護層342と、第4側面保護層344と、第5側面保護層345とを順に備える。第4側面保護層344の底部は、絶縁層37の側面に接していてもよい。第4側面保護層344は、表示装置106の製造工程において、面内方向隣接する第1電極361の間に設けられた金属層32(図34G、図34H参照)をドライエッチングすることにより堆積される堆積物を含んでもよい。側面保護層38は、上記以外の点においては、第5の実施形態における側面保護層34と同様であってもよい。
[表示装置の製造方法]
 以下、図34Aから図34Hを参照して、第6の実施形態に係る表示装置106の製造方法の一例について説明する。
 まず、例えばスパッタリング法を用いて、金属層を駆動基板11の第1面上に形成した後、例えばフォトリソグラフィおよびドライエッチングを用いて、金属層をパターニングする。これにより、複数の第1電極311が駆動基板11の第1面上に形成される。
 次に、例えばスパッタリング法を用いて、図34Aに示されるように、複数の第1電極311を覆うように、金属層32を駆動基板11の第1面上に形成する。次に、例えばドライエッチングを用いて金属層32をエッチバックすることにより、もしくは、例えばCMPにより金属層32の第1面を研磨することにより、図34Bに示されるように、複数の第1電極311の第1面を露出させる。
 次に、例えばフォトリソグラフィおよびドライエッチングを用いて、金属層32をパターニングすることにより、図34Cに示されるように、平面視において各第1電極361を囲む閉ループ状の開口32aを形成する。次に、例えばCVD法を用いて、図34Dに示されるように、開口32aを埋めるように、複数の第1電極361の第1面上および金属層32の第1面上に絶縁層37を形成する。次に、例えばドライエッチングを用いて絶縁層37をエッチバックすることにより、もしくは、例えばCMPにより絶縁層37の第1面を研磨することにより、図34Eに示されるように、複数の第1電極311および金属層32の第1面を露出させる。
 次に、例えばスパッタリング法を用いて、複数の第1電極361の第1面、金属層32の第1面および複数の絶縁層37の第1面上に絶縁層364を形成した後、例えばフォトリソグラフィおよびドライエッチングを用いて絶縁層364をパターニングすることにより、図34Fに示されるように、複数の開口364aをそれぞれ複数の副画素10に対応する位置に形成する。次に、例えば蒸着法を用いて、図34Fに示されるように、複数の開口364aを埋めるように、OLED層362Wを絶縁層37の第1面上および第1電極311の第1面上に形成する。次に、例えば蒸着法またはスパッタリング法を用いて、図34Fに示されるように、OLED層362Wの第1面上に第2電極363を形成する。次に、例えば蒸着法またはCVD法を用いて、図34Fに示されるように、第2電極363の第1面上に保護層33を形成する。
 次に、例えばフォトリソグラフィを用いて、図34F、図34Gに示されるように、島状のレジスト層87を各副画素10に対応する位置に形成する。次に、例えばドライエッチングを用いて、保護層33、第2電極363、OLED層362W、絶縁層364、金属層32、絶縁層112をレジスト層85越しに順に加工し、保護層33の側面、第2電極363の側面、OLED層362Wの側面、絶縁層364の側面および絶縁層37の側面に堆積物を堆積させる。これにより、図34Hに示されるように、複数の発光素子36Wが駆動基板11の第1面上に形成される。また、第1側面保護層341、第2側面保護層342、第4側面保護層344、第5側面保護層345が、発光素子36Wの側面に順に形成される。
 次に、保護層16の形成工程からカラーフィルタ24の形成工程までの工程を第3の実施形態に係る表示装置103の製造方法と同様に実施する。以上により、表示装置106が得られる。
[作用効果]
 第6の実施形態に係る表示装置106では、側面保護層38は、発光素子36Wの側面および保護層33の側面を覆い、かつ、発光素子36Wから斜め方向に出射された光を反射することができる。したがって、第6の実施形態に係る表示装置106では、第5の実施形態に係る表示装置105と同様の作用効果を得ることができる。
[変形例]
 第6の実施形態では、発光素子36Wが絶縁層364を備える例(図33参照)について説明したが、図35に示されるように、発光素子36Wが絶縁層364を備えていなくてもよい。この場合、第2側面保護層342の底部は、絶縁層37の側面に接続されていてもよい。
 上記構成を有する表示装置106は、例えば以下のようにして製造されてもよい。図36A、図36Bに示されるように、駆動基板11の第1面のうち、隣接する発光素子36Wの間の領域に金属層32と絶縁層39とを順に形成する。この際、金属層32および絶縁層39は、絶縁層39の高さが第1電極361の高さと略同一となるように形成されてもよい。絶縁層39は、例えば酸化アルミニウム(AlO)を含んでもよい。次に、図36A、図36Bに示されるように、OLED層362W、第2電極363、保護層33を複数の第1電極311の第1面、絶縁層39の第1面および複数の絶縁層37の第1面上に順次積層した後、島状のレジスト層87を各副画素10に対応する位置に形成する。次に、例えばドライエッチングを用いて、保護層33、第2電極363、OLED層362W、絶縁層39、金属層32をレジスト層87越しに順に加工し、保護層33の側面、第2電極363の側面、OLED層362Wの側面および絶縁層37の側面に堆積物を堆積させる。これにより、図36Cに示されるように、複数の発光素子36Wが駆動基板11の第1面上に形成される。また、第1側面保護層341、第2側面保護層342、第4側面保護層344、第5側面保護層345が、発光素子36Wの側面に順に形成される。
 上記の製造方法の例では、絶縁層37および絶縁層39が、隣接する第1電極361の間に形成される例について説明したが、絶縁層37および絶縁層39が一層の絶縁層により構成されていてもよい。
<7 第7の実施形態>
[表示装置の構成]
 図37は、第7の実施形態に係る表示装置107の断面図である。表示装置107は、駆動基板11と、複数の発光素子41Rと、複数の発光素子41Gと、複数の発光素子41Bと、複数の保護層42と、保護層43とを備える。なお、第7の実施形態において、第5の実施形態と同様の箇所には同一の符号を付して説明を省略する。
(発光素子41R、41G、41B)
 発光素子41Rは、第1電極411と、OLED層312Rと、第2電極313とを順に備える。発光素子41Gは、第1電極411と、OLED層312Gと、第2電極313とを順に備える。発光素子31Bは、第1電極411と、OLED層312Bと、第2電極313とを順に備える。以下の説明において、発光素子41R、41G、41Bを特に区別せず総称する場合には、単に発光素子41ということがある。
 図38は、隣接する発光素子41間の領域を拡大して表す断面図である。第1電極411は、表示領域RE1内において、隣接する発光素子41間で繋がり、表示領域RE1内において複数の発光素子41に共有されている。第2電極413は、アノードである。第1電極411は、各OLED層312の周辺領域に少なくとも1つのステップ411aを有している。図38では、第1電極411が、各OLED層312の周辺領域に2つのステップ411aを有する例が示されている。第1電極411が各OLED層312の周辺領域に少なくとも1つのステップ411aを有することで、第1電極411と保護層43の密着性を向上させることができる。第1電極411と保護層43の密着性の向上の観点からすると、ステップ411aの数は2以上であることが好ましい。ステップ411aは、第1電極411の厚みを変えることにより形成されていてもよい。
 ステップ411aは、発光素子41の幾何中心から離れるに従って下降している。ステップ411aは、平面視において、発光素子12を囲む閉ループ状を有していてもよい。凹部411bが、隣接する発光素子12のステップ411aにより構成されていてもよい。
 ステップ411aは、第1面411cと第2面411dとを備える。第1面411cは、第1電極411の厚さ方向に対して略垂直な面である。第2面411dは、第1面411cの外周から下方に延設されている。ここで、下方とは、第1電極411の厚さ方向のうち、第1電極411の第1面411cから第2面411dに向かう方向を表す。第2面411dは、第1面411cと略垂直であってもよいし、第1面411cに対して傾斜していてもよい。OLED層312の第2面と、OLED層312の第2面に最も近いステップ411aの第1面411cとが、同一の高さに位置していてもよい。すなわち、OLED層312の側面312Sと、OLED層312の側面312Sに最も近いステップ411aの第2面411dとが、面内方向にずれた位置に設けられていてもよい。
 第1電極411は、上記以外の点においては、第5の実施形態における第1電極311と同様であってもよい。
(保護層42)
 保護層42は、コンタクト孔161を有していないこと以外は、第5の実施形態における保護層33と同様であってもよい。なお、第2電極313は、図示しない接続部材を介して駆動基板11の配線等に接続されていてもよい。
(保護層43)
 保護層43は、複数のコンタクト孔161を有していないこと以外は、第5の実施形態における保護層16と同様であってもよい。保護層43は、隣接する発光素子41の間を埋めるように、複数の保護層42および複数の発光素子41を覆うように設けられている。
[作用効果]
 第7の実施形態では、第1電極411は、OLED層312の周辺領域に少なくとも1つのステップ411aを有している。これにより、第1電極411と保護層43の接触面積を増やすことができるので、第1電極411と保護層43の密着性を向上させることができる。したがって、OLED層312Rと第2電極313の間の剥がれを抑制することができる。
[変形例]
(変形例1)
 第7の実施形態では、OLED層312の第2面と、OLED層312の第2面に最も近いステップ411aの第1面411cとが、同一の高さに位置している例(図38参照)について説明した。しかしながら、OLED層312の第2面と、OLED層312の第2面に最も近いステップ411aの第1面411cの位置関係はこの例に限定されるものではない。例えば、図39に示されるように、OLED層312の第2面(すなわち第1電極411とOLED層312の界面)の高さが、OLED層312の第2面に最も近いステップ411aの第1面411cの高さに比べて高くてもよい。すなわち、OLED層312の側面312Sと、凹部411bの側面とが略面一に繋がっていてもよい。この場合、第1電極411と保護層43の密着性をさらに向上させることができる。
(変形例2)
 第7の実施形態では、少なくとも1つのステップ411aが第1電極411にのみ設けられている例について説明したが、図40に示されるように、少なくとも1つのステップ411aが第1電極411と絶縁層112にわたって設けられていてもよい。この場合、開口411eが、隣接する発光素子41間に形成されてもよい。開口411eは、発光素子41の周縁全体を囲む閉ループ状を有していてもよいし、保護層13の第2面の周縁を部分的に囲む、部分的に分断されたループ状を有していてもよい。
(変形例3)
 第7の実施形態では、少なくとも1つのステップ411aが第1電極411の第1面に設けられている例について説明したが、ステップ411aが設けられる位置は第1電極411に限定されるものではない。例えば、図41に示されるように、少なくとも1つのステップ411aが第1電極411の第1面に設けられる代わりに、少なくとも1つのステップ411aがOLED層312の側面に設けられていてもよい。あるいは、少なくとも1つのステップ411aが第1電極411の第1面に設けられると共に、少なくとも1つのステップ411aがOLED層312の側面に設けられていてもよい。
(変形例4)
 第7の実施形態では、第1電極411の厚みを変えることにより、ステップ411aが第1電極411の第1面に形成されている例について説明したが、ステップ411aの構成はこの例に限定されるものではない。例えば、図42に示されるように、絶縁層112の第1面が、各発光素子41の周辺領域に少なくとも1つのステップ112aを有し、第1電極411が上記ステップ112aに倣うように設けられることで、少なくとも1つのステップ411aが第1電極411の第1面に設けられていてもよい。絶縁層112は、複数の発光素子41の下に設けられた下地層の一例である。
 上記構成の場合、図42に示されるように、OLED層312の側面312Sと、凹部411bの側面とが面一に繋がってなくてもいし、図43に示されるように、OLED層312の側面312Sと、凹部411bの側面とが面一に繋がっていてもよい。第1電極411と保護層43の密着性の向上の観点からすると、OLED層312の側面312Sと、凹部411bの側面とが面一に繋がっていることが好ましい。
 より具体的には、図42に示されるように、OLED層312の第2面(すなわち第1電極411とOLED層312の界面)の高さが、OLED層312の第2面に最も近いステップ411aの第1面411cと同一の高さであってもよい。あるいは、図43に示されるように、OLED層312の第2面(すなわち第1電極411とOLED層312の界面)の高さが、OLED層312の第2面に最も近いステップ411aの第1面411cの高さに比べて高くてもよい。
<8 第8の実施形態>
[概要]
 本発明者等は、表示装置の製造方法として、以下に示す製造方法を検討している。まず、駆動基板の第1面上に複数の第1電極を形成した後、複数の第1電極を覆うように、OLED層、第2電極および保護層を順に積層し、積層体を形成する。次に、例えばフォトリソグラフィおよびドライエッチングを用いて、積層体を分離することにより、複数の発光素子を駆動基板の第1面に形成する。
 上記のように、発光素子毎にOLED層を分離した構造を採用することにより、画素間のキャリアリークを抑制し、発光効率を向上させることができる。しかしながら、上記のように1回の加工で積層体を分離した場合、積層体を構成する各層が全て分離されるため、膜応力でOLED層と第2電極の間に剥がれが発生する虞がある。剥がれたが発生した場合には、発光素子の駆動電圧が高電圧化することがある。これは、第3の実施形態における概要等で述べたとおりである。
 第8の実施形態では、積層体を分離加工する際に、積層体が完全に分離されないように複数回に分けて分割加工を行うことで、膜応力によるOLED層と第2電極の間の剥がれ発生を抑制することができる。
[表示装置の構成]
 図44は、第8の実施形態に係る表示装置108の表示領域RE1の一部を拡大して表す平面図である。図45は、図44の一部を拡大して表す平面図である。図46は、図44のB-B線に沿った断面図である。図47は、図44のC-C線に沿った断面図である。表示装置108は、駆動基板44と、複数の発光素子19Wと、複数の保護層(第1保護層)20と、保護層(第2保護層)45と、保護層(第3保護層)46と、保護層(第4保護層)16と、共通電極17と、保護層(第5保護層)23と、カラーフィルタ24とを備える。なお、第8の実施形態において、第3の実施形態と同様の箇所には同一の符号を付して説明を省略する。
 本明細書において、表示装置108の表示面において直交する2方向のうち一方の方向を第1方向、他方の方向を第2方向という。表示装置108の表示面において、第1方向と第2方向の間の方向を第3方向という。第1方向、第2方向はそれぞれ、表示装置108の表示面の水平方向、垂直方向であってもよい。
 本明細書において、第1方向における第1電極191間の領域、すなわち第1方向における発光素子19W間の領域を第1領域19RE1という。第2方向における第1電極191間の領域、すなわち第2方向における発光素子19W間の領域を第2領域19RE2という。第3方向における第1電極191間の領域、すなわち第1方向における発光素子19W間の領域を第3領域19RE3という。第1領域19RE1は、第2方向に延設された長尺状を有している。第2領域19RE2は、第1方向に延設された長尺状を有している。
 複数の発光素子19Wは、第1方向および第2方向に並べられている。複数の発光素子19Wが、ストライプ配列等で2次元配置されていてもよい。第1領域19RE1と第3領域19RE3が、第2方向に交互に設けられている。第2領域19RE2と第3領域19RE3が、第1方向に交互に設けられている。
 溝19a1は、第1領域19RE1に設けられている。すなわち、溝19a1は、第1方向に隣接する発光素子19Wの間に設けられている。溝19a1は、第2方向に延設されている。溝19a2は、第2領域19RE2に設けられている。すなわち、溝19a2は、第2方向に隣接する発光素子19Wの間に設けられている。溝19a2は、第2方向に延設されている。溝19a1と溝19a2は、第3領域19RE3において交差している。
 第1方向に隣接する発光素子19Wの間は、溝19a1により2種以上の分離幅で分離されている。より具体的には例えば、第1方向に隣接する発光素子19Wの間は、少なくとも第1分離幅W11と第2分離幅W12で分離されている。第2分離幅W12は、第1領域19RE1の両端部における分離幅であり、第1分離幅W11は、上記第1領域19RE1の両端部の間における分離幅であってもよい。溝19a1の幅W12が、溝19a1の幅W11に比べて広くてもよいし、溝19a1の幅W11に比べて狭くてもよい。図44および図45では、前者の例が示されている。発光素子19W上に設けられた保護層20も、発光素子19Wと同様に溝19a1により2種以上の分離幅で分離されている。
 第2方向に隣接する発光素子19Wの間は、溝19a2により2種以上の分離幅で分離されている。より具体的には例えば、第2方向に隣接する発光素子19Wの間は、少なくとも第3分離幅W21と第4分離幅W22で分離されている。第3分離幅W21は、第2領域19RE2の両端部における分離幅であり、第4分離幅W22は、上記第2領域19RE2の両端部の間における分離幅であってもよい。溝19a2の幅W22が、溝19a2の幅W21に比べて広くてもよいし、溝19a1の幅W21に比べて狭くてもよい。図44および図45では、前者の例が示されている。発光素子19W上に設けられた保護層20も、発光素子19Wと同様に溝19a2により2種以上の分離幅で分離されている。
(駆動基板44)
 駆動基板44は、当該駆動基板44の第1面の第3領域19RE3に複数の段差44Stを有している。駆動基板44は、基板441と絶縁層442とを備える。下地層としての絶縁層442は、複数の発光素子19Wの下に設けられている。絶縁層442は、複数の発光素子19Wが設けられている第1面に上記の複数の段差44Stを有している。該複数の段差44Stは、第1領域19RE1の両端部、および第2領域19RE2の両端部に設けられていてもよい。段差44Stは、2回のエッチング加工が重複して行われることにより形成されてもよい。駆動基板44、基板441および絶縁層442は、上記以外の点においては、第1の実施形態における駆動基板11、基板111および絶縁層112と同様であってもよい。
(保護層45)
 保護層45は、複数の保護層20の第1面上に設けられている。各保護層20上における保護層45は、規定方向で繋がっている。より具体的には、各保護層20上における保護層45は、第1方向と第2方向の間の第3方向における発光素子19W間で繋がっている。一方、各保護層20上における保護層45は、第1方向における発光素子19W間で分離され、かつ、第2方向における発光素子19W間で分離されている。保護層45は、溝19a1と溝19a2の各交差部に倣うように設けられ、各発光素子19Wの側面の一部を覆うと共に、各保護層20の側面の一部を覆っている。
 保護層45は、第1の実施形態における保護層13と同様の特性を有していてもよい。保護層45に含まれる材料としては、第1の実施形態における保護層13と同様の無機材料を例示することができる。
(保護層46)
 保護層46は、保護層45が設けられた複数の発光素子19Wを覆っている。保護層46は、溝19a1および溝19a2に倣うように設けられている。保護層46は、第1方向における発光素子19W間、第2方向における発光素子19W間、および第3方向における発光素子19W間で繋がっている。
 保護層46は、第1の実施形態における保護層13と同様の特性を有していてもよい。保護層46に含まれる材料としては、第1の実施形態における保護層13と同様の無機材料を例示することができる。
 保護層45と保護層46の材料は、異なっていてもよいし、同一であってもよい。ここで、保護層45と保護層46の材料が異なるとは、保護層45と保護層46を構成する材料の成分が異なること、および、保護層45と保護層46を構成する材料の成分は同じではあるが、各成分の含有量が異なること、のいずれを表していてもよい。第8の実施形態では、保護層45と保護層46が備えられている例について説明するが、保護層45と保護層46が一体となり一つの層を構成していてもよい。
(保護層48)
 保護層48が、保護層20、保護層45および保護層46により構成されていてもよい。第1方向における発光素子19W間に位置する保護層48の厚み、および第2方向における発光素子19W間に位置する保護層48の厚みは、第3方向における発光素子19W間における保護層48の厚みとは異なっていてもよい。
 第1方向における発光素子19W間に位置する保護層48の層数、および第2方向における発光素子19W間に位置する保護層48の層数は、第3方向における発光素子19W間における保護層48の層数と異なっていてもよい。第8の実施形態では、保護層20と保護層45と保護層46が備えられている例について説明するが、保護層20と保護層45と保護層46が一体となり一つの層を構成していてもよい。
[表示装置の製造方法]
 以下、図48Aから図52Cを参照して、第8の実施形態に係る表示装置108の製造方法の一例について説明する。
 まず、例えばスパッタリング法を用いて、金属層を駆動基板44の第1面上に形成した後、例えばフォトリソグラフィおよびドライエッチングを用いて金属層をパターニングする。これにより、複数の第1電極311が駆動基板44の第1面上に形成される。次に、例えばスパッタリング法、蒸着法およびCVD法等を用いて、図48A、図48Bおよび図48Cに示されるように、複数の第1電極191を覆うように、OLED層192W、第2電極193、保護層20を複数の第1電極191の第1面上に順次積層する。以下、OLED層192W、第2電極193および保護層20からなる積層体を積層体47という。
 次に、例えばフォトリソグラフィおよびドライエッチングを用いて、図49A、図49Bおよび図49Cに示されるように、積層体47の各第3領域19RE3を駆動基板44の第1面が露出するまで加工する。これにより、凹部19a3が、積層体47の各第3領域19RE3に形成される。図49Aにおいてグレーの色が付けられた領域は、本工程において駆動基板44の第1面が露出された領域を表している。以下では、本工程における積層体47の加工を積層体47の第1加工という。次に、例えばCVD法を用いて、図50A、図50Bおよび図50Cに示されるように、複数の凹部19a3に倣うように、保護層20の第1面上および複数の凹部19a3内に保護層45を形成する。
 次に、例えばフォトリソグラフィおよびドライエッチングを用いて、図51A、図51Bおよび図51Cに示されるように、保護層45が形成された積層体47の第1領域19RE1および第2領域19RE2を駆動基板44の第1面が露出するまで加工する。これにより、溝19a1が積層体47の第1領域19RE1に形成され、溝19a2が積層体47の第2領域19RE2に形成される。したがって、積層体47が副画素10ごとに分離され、複数の発光素子19Wが駆動基板44の第1面上に形成される。以下では、本工程における積層体47の加工を積層体47の第2加工という。図51Aにおいてグレーの色が付けられた領域は、本工程において駆動基板44の第1面が露出された領域を表している。
 積層体47の第2加工の工程において、積層体47の第1面上に形成されている保護層45は、第1領域19RE1および第2領域19RE2では分離されるのに対して、第3領域19RE3では繋がった状態で保持される。また、駆動基板44の第1面の第3領域19RE3には、積層体47の第1加工と積層体47の第2加工とで2回加工される部分が存在する。この部分には、図51Bに示されるように、段差44Stが形成される。
 次に、例えばCVD法を用いて、図52A、図52Bおよび図52Cに示されるように、溝19a1および溝19a2に倣うように、保護層45の第1面上、溝19a1内および溝19a2内に保護層46を形成する。
 次に、保護層16の形成工程からカラーフィルタ24の形成工程までの工程を第3の実施形態に係る表示装置103の製造方法と同様に実施する。以上により、表示装置108が得られる。
[作用効果]
 第8の実施形態に係る表示装置108では、保護層45が、複数の保護層20の第1面上に設けられ、各保護層20上における保護層45は、第1方向と第2方向の間の第3方向における発光素子19W間で繋がっている。これにより、保護層45は、溝19a1と溝19a2の各交差部において、各発光素子19Wの側面を部分的に覆っている。したがって、OLED層192Wと第2電極193の周縁部間における剥がれの発生を抑制することができる。したがって、発光素子19Wの駆動電圧の高電圧化を抑制することができる。また、発光効率を向上させることができる。
 保護層46は、溝19a1および溝19a2に倣うように、保護層45が設けられた複数の発光素子19Wを覆っている。これにより、OLED層192Wと第2電極193の周縁部間における剥がれの発生をさらに抑制することができる。
 第8の実施形態に係る表示装置108では、上記のように、OLED層192Wと第2電極193等の周縁部間における剥がれの発生を抑制できるため、OLED層192Wと第2電極193等の膜種の選択肢を広げることができる。
 第8の実施形態に係る表示装置108の製造方法では、積層体47を分離加工する際に、積層体47が完全に分離されないように複数回に分けて分割加工を行うことで、膜応力によるOLED層192Wと第2電極193の間の剥がれ発生を抑制することができる。
 また、各発光素子19Wの側面および各保護層20の側面を覆う保護層45を形成することで、最終的に発光素子19Wが分離されたときの膜剥がれの発生を抑制することができる。
 第8の実施形態に係る表示装置108の製造方法では、積層体47の第1加工の工程において、積層体47の第3領域19RE3を加工し、凹部19a3を形成する。この際、積層体47は、第3領域19RE3では分離されるが、第1領域19RE1および第2領域19RE2では繋がっているため、積層体47が完全に分離されることがない。したがって、積層体47の第1加工の工程において、OLED層192Wと第2電極193の界面に対する、保護層20の膜応力の影響を抑制することができる。よって、積層体47の第1加工の工程において、OLED層192Wと第2電極193の間に剥がれが発生し難い。積層体47の第1加工の工程後に、保護層45を積層体47の第1面上および凹部19a3の側面等を保護層45により覆う。これにより、OLED層192Wと第2電極193の間の剥がれ対策を行うことができる。
 保護層45の形成後、積層体47の第2加工の工程において、第1領域19RE1および第2領域19RE2の間を加工することにより、溝19a1および溝19a2を形成する。この際、保護層45は、積層体47と共に、第1領域19RE1および第2領域19RE2では分離されるが、第3領域19RE3では繋がっているため、保護層45が形成された積層体47は、完全に分離されることがない。また、第3領域19RE3の凹部19a3の側面は、保護層45により覆われている。したがって、積層体47の第2加工の工程においても、OLED層192Wと第2電極193の界面に対する、保護層20の膜応力の影響を抑制することができる。よって、積層体47の第2加工の工程においても、OLED層192Wと第2電極193の間に剥がれが発生し難い。
 積層体47の第2加工の工程後に、積層体47の第1面上および溝19a1、19a2の側面上等を保護層46により覆う。これにより、OLED層192Wと第2電極193の間の剥がれ対策を行うことができる。
<9 第9の実施形態>
[表示装置の構成]
 図53は、第9の実施形態に係る表示装置109の断面図である。表示装置109は、平坦化層54とレンズアレイ55とをさらに備える点において、第3の実施形態に係る表示装置103(図14参照)とは異なっている。表示装置109は、必要に応じて、保護層56とカバー層57とをさらに備えてもよい。
(平坦化層54)
 平坦化層54は、カラーフィルタ24を覆い、カラーフィルタ24の第1面の上方に平坦な面を形成する。平坦化層54は、例えば、無機材料または高分子樹脂を含む。無機材料としては、第1の実施形態における保護層13と同様の無機材料を例示することができる。高分子樹脂としては、第1の実施形態における保護層13と同様の高分子樹脂を例示することができる。
(レンズアレイ55)
 レンズアレイ55は、平坦化層54の第1面上に設けられている。レンズアレイ55は、複数のレンズ551を含む。レンズ551は、発光素子19Wから上方に出射された光を正面方向に集光することができる。複数のレンズ551は、いわゆるオンチップマイクロレンズ(On Chip Microlens:OCL)であり、規定の配置パターンで平坦化層54の第1面上に2次元配置されている。
 1つのレンズ551が、1つの発光素子19Wの上方に設けられていてもよいし、2つ以上のレンズ551が、1つの発光素子19Wの上方に設けられていてもよい。図53では、1つのレンズ551が1つの発光素子19Wの上方に設けられる例が示されている。レンズ551は、発光素子19Wから入射した光を出射する面側に曲面を有していてもよい。当該曲面は、発光素子19Wから遠ざかる方向に突出した凸状の湾曲面であってもよいし、発光素子19Wに近づく方向に窪んだ凹状の湾曲面であってもよい。湾曲面としては、例えば、略放物面状、略半球面状および略半楕円面状等が挙げられるが、これらの形状に限定されるものではない。
 レンズ551は、例えば、可視光に対して透明な無機材料または高分子樹脂を含む。無機材料は、例えば、酸化シリコン(SiO)を含む。高分子樹脂は、例えば、紫外線硬化樹脂を含む。
(保護層56)
 保護層56は、レンズアレイ55を覆う。保護層56の屈折率は、レンズアレイ55の屈折率とは異なっている。保護層56の屈折率は、レンズアレイ55の屈折率よりも高くてもよいし、低くてもよい。レンズ551が出射面側に凸状の湾曲面を有する場合には、正面輝度の向上の観点から、保護層56の屈折率は、レンズアレイ55の屈折率よりも低いことが好ましい。レンズ551が出射面側に凹状の湾曲面を有する場合には、正面輝度の向上の観点から、保護層56の屈折率は、レンズアレイ55の屈折率よりも高いことが好ましい。
(カバー層57)
 カバー層57は、保護層56の第1面上に設けられている。カバー層57は、駆動基板11上の第1面に設けられた複数の発光素子12W等の各部材を封止する。カバー層57は、発光素子19Wから発せられる光に対して透光性を有している。カバー層57は、可視光に対して透明性を有することが好ましい。カバー層57は、例えば、ガラス基板である。
[作用効果]
 第9の実施形態では、レンズアレイ55が複数の発光素子19Wの上方に設けられている。これにより、発光素子19Wから上方に出射された光をレンズアレイ55により正面方向に集光することができる。したがって、表示装置109の正面輝度を向上させることができる。
[変形例]
 第9の実施形態では、第3の実施形態に係る表示装置103に平坦化層54とレンズアレイ55とがさらに備えられる例について説明したが、第1、第2、および第4~第8の実施形態に係る表示装置101、102、104~108に平坦化層54とレンズアレイ55とがさらに備えられてもよい。後述の第10の実施形態に係る表示装置109Aに平坦化層54とレンズアレイ55とがさらに備えられてもよい。
 上記構成が採用される場合、保護層56とカバー層57とがさらに備えられてもよい。上記構成が採用される場合、第1、第2、および第4~第8の実施形態に係る表示装置101、102、104~108のうち、カラーフィルタ24が備えられていない表示装置に対して、カラーフィルタ24がさらに備えられてもよい。
<10 第10の実施形態>
[表示装置の構成]
 図70は、第10の実施形態に係る表示装置109Aの表示領域RE1の一部を拡大して表す平面図である。図71は、図70のLXXI-LXXI線に沿った断面図である。図72は、発光素子19Wの一部を拡大して表す断面図である。表示装置109Aは、駆動基板11と、複数の発光素子19Wと、絶縁層91と、側面保護層92と、保護層16と、共通電極17と、保護層23と、カラーフィルタ24とを備える。なお、第10の実施形態において、第3の実施形態と同一または対応する箇所には同一の符号を付す。
(絶縁層91)
 絶縁層91は、第1電極191の第1面の周縁部、第1電極191の側面(端面)および第1電極191の周辺部を覆っている。絶縁層91は、表示領域RE1内において複数の発光素子12で別々に設けられている。すなわち、絶縁層91は、表示領域RE1内において、面内方向に隣接する発光素子19Wの間で分断されている。絶縁層91は、複数の開口91aを有する。複数の開口91aはそれぞれ、発光素子19Wに対応して設けられている。より具体的には、複数の開口91aはそれぞれ、第1電極191の第1面(OLED層192W側の面)上に設けられている。開口91aを介して、第1電極191とOLED層192Wとが接触する。
(発光素子19W)
 発光素子19W、より具体的には第2電極193は、図72に示されるように、平坦部193aと凸部193bとを第1面に有している。凸部193bは、平坦部193aに対して突出している。凸部193bは、平坦部193aの外周に沿って設けられ、平面視において平坦部193aを囲む閉ループ状を有している。凸部193bは、発光素子19Wの第1面の周縁に沿って傾斜部193cを有している。傾斜部193cは、発光素子19Wの側面に隣接して設けられている。傾斜部193cは、発光素子19Wの第1面の周縁の内側から外側に向かって下降している。
 発光素子19Wは、側面の上端部(側面のうち第1面側(上面側)の端部)が一様に張り出した庇状の張出部194を有している。より具体的には、発光素子19Wは、OLED層192Wの側面に凹部195を有し、当該凹部195は、サイドエッチング部であり、発光素子19Wの側面の全周に沿って設けられている。発光素子19Wが張出部194を有することにより、OLED層192Wおよび第2電極193がエッチングにより分断される工程において、エッチングにより凹部195に堆積した堆積物が、張出部194の陰になるため、堆積物に対するイオンの入射が抑制され、堆積物がエッチングされ難くなる。したがって、側面保護層92の厚さを増加させることができるため、OLED層192Wと第2電極193の間の剥がれを抑制することができる。
 傾斜部193cにおける第2電極193の厚みtは、平坦部193aにおける第2電極193の厚みtに比べて厚い。これにより、OLED層192Wおよび第2電極193がエッチングにより分断される工程において、第2電極193の周縁部の後退が抑制され、発光素子19Wの側面がサイドエッチングされやすくなるため、発光素子19Wの側面に張出部194が形成さらやすくなる。ここで、第2電極193の厚みt、tはいずれも、平坦部193aに対して垂直な方向における厚みを表す。
 OLED層192Wは、平坦部192aと凸部192bとを第1面に有している。平坦部192aは、第1電極191の上方に設けられ、かつ、平面視において凸部192bにより囲まれている。平坦部192aは、第1電極191の第1面と平行である。平坦部192aは、絶縁層91の開口91aから露出した第1電極191の第1面に対応して形成されている。
 凸部192bは、平坦部192aに対して突出している。凸部192bは、平坦部193aの外周に沿って設けられ、平面視において平坦部192aを囲む閉ループ状を有している。凸部192bは、絶縁層91の開口91aの側面により形成される段差、および、第1電極191の側面により形成される段差に対応して形成されている。凸部192bが、上記両段差に追随して形成されていてもよい。
 凸部192bは、OLED層192Wの第1面の周縁に沿って傾斜部192cを有している。傾斜部192cは、OLED層192Wの側面に隣接して設けられている。傾斜部192cは、OLED層192Wの第1面の周縁の内側から外側に向かう方向に下降している。傾斜部192cの断面形状は、例えば、凸の湾曲線状または略直線状であってもよいが、これらの形状に限定されるものではない。ここで、傾斜部192cの断面形状とは、発光素子19Wの中心軸を含むように表示装置109Aを切断して得られる傾斜部192cの断面形状を表す。傾斜部192cは、第1電極191の側面により形成される段差に対応して形成されている。傾斜部192cが、上記段差に追随して形成されていてもよい。
 第2電極193は、OLED層192Wの第1面の形状、すなわちOLED層192Wの第1面における平坦部192aおよび凸部192bに追随している。これにより、平坦部193aおよび凸部193bが、第2電極193の第1面(すなわち発光素子19Wの第1面)に形成されている。第2電極193の平坦部193aおよび凸部193bは、OLED層192Wの平坦部192aおよび凸部192bに追従して形成されるため、平坦部193aおよび凸部193bの形状および位置関係等は、平坦部192aおよび凸部192bの形状および位置関係等と同様である。したがって、平坦部193aおよび凸部193bの形状および位置関係等の説明を省略する。
 第2電極193は、難エッチング材料により構成されていることが好ましい。具体的には、第2電極193のエッチングレート(エッチング速度)は、OLED層192Wのエッチングレートに比べて低いことが好ましい。これにより、OLED層192Wおよび第2電極193がエッチングにより分断される工程において、OLED層192Wがサイドエッチングされやすくなるため、発光素子19Wの側面に張出部194が形成さらやすくなる。
(側面保護層92)
 側面保護層92は、OLED層192Wの側面と第2電極193の側面の境界を少なくとも覆っている。これにより、OLED層192Wと第2電極193の界面に対する、保護層13の膜ストレスの影響を抑制することができる。より具体的には、側面保護層92は、第2電極193の側面、OLED層192Wの側面および絶縁層91の側面を覆っている。第10の実施形態では、側面保護層92が絶縁層91の側面を覆う例について説明するが、絶縁層91の側面を覆っていなくてもよい。
 側面保護層92は、平面視において、閉ループ状を有していてもよいし、部分的に分断されたループ状を有していてもよい。側面保護層92の下端(駆動基板11側の一端)は、第1電極191の第2面に比べて低く、かつ、絶縁層91の第1面上に位置している。但し、側面保護層92の下端の位置はこの例に限定されるものではない。例えば、側面保護層92の下端は、第1電極191の第2面と略同一の高さであり、かつ、絶縁層91の第1面上に位置していてもよいし、第1電極191の第2面に比べて高く、かつ、絶縁層91の第1面上に位置していてもよい。
 側面保護層92の上端(駆動基板11側とは反対側の他端)は、発光素子19Wの第1面の周縁と略同一の位置、または発光素子19Wの第1面の周縁よりも低い位置に設けられている。
 側面保護層92は、発光素子19Wの側面を保護することができる。例えば、側面保護層92は、外部環境から発光素子19W内部への水分浸入を抑制し、発光素子19Wの劣化を抑制することができてもよい。側面保護層92は、発光素子19Wから発せられる白色光に対して透光性を有している。側面保護層92は、可視光に対して透明性を有することが好ましい。側面保護層92は、絶縁性を有していることが好ましい。
 側面保護層92は、例えば、第2電極193、OLED層192Wおよび絶縁層91をエッチングすることにより、発光素子19Wの側面に堆積される堆積物を含む。側面保護層92は、より具体的には例えば、第2電極193の構成材料、OLED層192Wの構成材料および絶縁層91の構成材料を含む。
 側面保護層92の堆積物および構成材料は上記の例に限定されるものではない。例えば、側面保護層92は、第2電極193、OLED層192W、絶縁層91および絶縁層112をエッチングすることにより、発光素子19Wの側面に堆積される堆積物を含んでもよい。側面保護層92は、より具体的には例えば、第2電極193の構成材料、OLED層192Wの構成材料、絶縁層91の構成材料および絶縁層112の構成材料を含んでもよい。
 側面保護層92の下端が絶縁層91の第1面上に設けられている場合、側面保護層92は、例えば、第2電極193およびOLED層192Wをエッチングすることにより、発光素子19Wの側面に堆積される堆積物を含んでもよい。側面保護層92は、より具体的には例えば、第2電極193の構成材料およびOLED層192Wの構成材料を含んでもよい。
 側面保護層92に含まれる第2電極193の構成材料は、第2電極193の構成材料の一部であってもよいし、全部であってもよい。側面保護層92に含まれるOLED層192Wの構成材料は、OLED層192Wの構成材料の一部であってもよいし、全部であってもよい。側面保護層92に含まれる絶縁層91の構成材料は、絶縁層91の構成材料の一部であってもよいし、全部であってもよい。側面保護層92に含まれる絶縁層112の構成材料は、絶縁層112の構成材料の一部であってもよいし、全部であってもよい。
[表示装置の製造方法]
(第1の例)
 以下、図73Aから図73Eを参照して、第10の実施形態に係る表示装置109Aの製造方法の第1の例について説明する。
 まず、例えばスパッタリング法を用いて、金属層(例えば厚さ200nm程度のアルミニウム層)を駆動基板11の第1面上に形成した後、例えばフォトリソグラフィおよびドライエッチングを用いて金属層をパターニングする。これにより、複数の第1電極191が駆動基板11の第1面上に形成される。
 次に、例えばCVD法を用いて、複数の第1電極191を覆うように駆動基板11の第1面上に絶縁層91(例えば厚さ200nm程度の酸化シリコン層)を形成する。次に、例えばフォトリソグラフィおよびドライエッチングを用いて、絶縁層91に複数の開口91aを形成する。これにより、各第1電極191の第1面が開口91aを介して露出する。
 次に、例えば蒸着法を用いて、OLED層192Wを複数の第1電極191の第1面および絶縁層91の第1面上に形成する。この際、OLED層192Wの第1面の平坦部192aが、絶縁層91の開口91aにより露出した第1電極191の第1面に対応して形成され、かつ、OLED層192Wの第1面の凸部192bが、絶縁層91の開口91aの側面により形成される段差、および、第1電極191の側面により形成される段差に対応して形成される。
 次に、例えばスパッタ法により、第2電極193(例えば厚さ60nm程度のIZO層)をOLED層192Wの第1面上に形成する。この際に、第2電極193は、OLED層192Wの第1面の形状、すなわちOLED層192Wの第1面における平坦部192aおよび凸部192bに追随するように形成される。これにより、平坦部193aおよび凸部193bが、第2電極193の第1面に形成される。また、傾斜部193cにおける第2電極193の厚みtが、平坦部193aにおける第2電極193の厚みtに比べて厚くなる。
 次に、例えばPCVD(プラズマCVD)法を用いて、第1保護層163(例えば厚さ1μm程度の窒化シリコン層)を第2電極193の第1面上に形成する。次に、例えばフォトリソグラフィを用いて、図73Aに示されるように、マスクとして島状のレジスト層93を各副画素10に対応する位置に形成する。この際、島状のレジスト層93のエッジが、図73Bに示されるように、傾斜部193cの上方に位置するように、島状のレジスト層93の形成位置が調整される。
 次に、例えばドライエッチングを用いて、第1保護層163、第2電極193、OLED層192Wおよび絶縁層91をレジスト層93越しに順に加工する。これにより、図73Cに示されるように、複数の発光素子19Wが駆動基板11の第1面上に形成される。エッチングの際に、図73Dに示されるように、発光素子19Wの側面がサイドエッチングされ、発光素子19Wの側面に凹部(サイドエッチング部)195が形成されると共に、イオンにより弾き飛ばされた第2電極193、OLED層192Wおよび絶縁層91の構成材料が、凹部195を埋めるように発光素子19Wの側面に堆積される。
 上記凹部195の形成により、発光素子19Wの側面の上端部に庇状の張出部194が形成されるため、発光素子19Wの側面に堆積した堆積物が張出部194の陰になり、堆積物に対するイオンの入射が抑制され、堆積物がエッチングされ難くなる。したがって、側面保護層92の厚さを増加させることができるため、OLED層192Wと第2電極193の間の剥がれを抑制することができる。
 上記のように、島状のレジスト層93のエッジが傾斜部193cの上方に位置するように、島状のレジスト層93の形成位置が調整されているため(図73B参照)、傾斜部193cにおいて第2電極193をエッチングにより分断することができる。傾斜部193cにおける第2電極193の厚みtは、平坦部193aにおける第2電極193の厚みtに比べて厚くなっているため(図73D参照)、第2電極193の周縁部の後退が抑制され、発光素子19Wの側面がサイドエッチングされやすくなる。したがって、発光素子19Wの側面に凹部195が形成されやすくなる。すなわち、発光素子19Wの側面の上端部に庇状の張出部194が一様に形成されやすくなる。
 次に、例えばアッシングを用いて、マスクとしてのレジスト層93を第1保護層163の第1面上から除去する。次に、例えばPCVD法を用いて、図73Eに示されるように、第1保護層163が設けられた各発光素子19Wを覆うように第2保護層164(例えば窒化シリコン層)を形成する。これにより、複数の発光素子19Wが、第1保護層163と第2保護層164からなる保護層16により覆われる。その後、必要に応じて、例えばCMPを用いて、保護層16の第1面を研磨し、平坦化してもよい。
 次に、例えばフォトリソグラフィおよびドライエッチングを用いて、保護層16を加工し、各発光素子19W上にコンタクト孔161を形成する。次に、例えば蒸着法またはスパッタリング法を用いて、共通電極17(例えばIZO層)を保護層16の第1面およびコンタクト孔161内に形成する。次に、例えばPCVD法を用いて、共通電極17の第1面上に保護層23を形成する。
 次に、例えばフォトリソグラフィを用いて、複数の緑色フィルタ部24FG、複数の赤色フィルタ部24FRおよび複数の青色フィルタ部24FBを保護層23の第1面上に形成する。これにより、保護層23の第1面上にカラーフィルタ24が形成される。以上により、表示装置109Aが得られる。
(第2の例)
 以下、図74Aおよび図74Bを参照して、第10の実施形態に係る表示装置109Aの製造方法の第2の例について説明する。
 まず、第1電極191の形成工程からレジスト層93の形成工程までの工程を、第3の実施形態に係る表示装置109Aの製造方法の第1の例と同様に実施する。
 次に、例えばドライエッチングを用いて、第1保護層163をレジスト層93越しに加工した後、例えばアッシングを用いて、マスクとしてのレジスト層93を第1保護層163の第1面上から除去する。これにより、図74Aに示されるように、島状の第1保護層163が各副画素10に対応する位置に形成される。エッチングにより島状の第1保護層163のエッジが傾斜部193c上に形成されるように、島状のレジスト層93の形成位置が調整される。
 次に、例えばドライエッチングを用いて、島状の第1保護層163をマスクとして第2電極193、OLED層192Wおよび絶縁層91を順に加工する。これにより、図74Bに示されるように、複数の発光素子19Wが駆動基板11の第1面上に形成される。次に、第2保護層164の形成工程からカラーフィルタ24の形成工程までの工程を、第3の実施形態に係る表示装置109Aの製造方法の第1の例と同様に実施する。以上により、表示装置109Aが得られる。
[作用効果]
 第10の実施形態に係る表示装置109Aでは、OLED層192Wは、第2電極193側の第1面の周縁部に傾斜部192cを有し、傾斜部192cにおける第2電極193の厚みtは、平坦部192aにおける第2電極193の厚みtに比べて厚い。これにより、OLED層192Wおよび第2電極193がエッチングにより分断される工程において、第2電極193の周縁部の後退が抑制され、発光素子19Wの側面がサイドエッチングされやすくなるため、発光素子19Wの側面に張出部194が形成されやすくなる。発光素子19Wの側面に張出部194が形成されると、OLED層192Wおよび第2電極193がエッチングにより分断される工程において、エッチングにより発光素子19Wの側面に堆積した堆積物が張出部194の陰になり、堆積物に対するイオンの入射が抑制され、堆積物がエッチングされ難くなる。したがって、側面保護層92の厚さを増加させることができるため、OLED層192Wと第2電極193の間の剥がれを抑制することができる。よって、発光素子19Wの駆動電圧の高電圧化を抑制することができる。
 第10の実施形態に係る表示装置109Aの製造方法の第1の例および第2の例では、第2電極193は、平坦部193aまたは平坦部193dの位置(図73B参照)で分断されるのではなく、傾斜部193cの位置で分断される。傾斜部193cにおける第2電極193の厚みtは、平坦部193aおよび平坦部193dにおける第2電極193の厚みtに比べて厚い。このため、第2電極193が傾斜部193cの位置で分断された場合には、第2電極193が平坦部193aまたは平坦部193dの位置で分断された場合に比べて、第2電極193の周縁部の後退が抑制され、発光素子19Wの側面がサイドエッチングされやすくなる。すなわち、OLED層192Wの面内方向への後退が、第2電極193よりも大きくなり、サイドエッチング量が増加する。その結果、発光素子19Wの側面の上端部に庇状の張出部194が形成されやすくなる。このように張出部194が形成されやすくなると、発光素子19Wの側面に側面保護層92が厚く形成されやすくなり、OLED層192Wと第2電極193の界面に対する保護層13の膜ストレスの影響を抑制することができる。したがって、OLED層192Wと第2電極193の間の剥がれを抑制することができる。よって、発光素子19Wの駆動電圧の高電圧化を抑制することができる。
[変形例]
(変形例1)
 第10の実施形態では、表示装置109Aが、第1電極191の第1面の周縁部、第1電極191の側面および第1電極191の周辺部を覆う絶縁層91を備える例について説明した(図72参照)。しかしながら、絶縁層91は必須の構成要件ではなく、表示装置109Aが、図75に示されるように、絶縁層91を備えていなくてもよい。この場合、OLED層192Wが平坦部192aと傾斜部192cとを第1面に有し、第2電極193がこれらの平坦部192aと傾斜部192cにそれぞれ追随する平坦部193aと傾斜部193cとを第1面に有していてもよい。但し、OLED層192Wの第1面および第2電極193の第1面の形状はこの例に限定されるものではなく、第10の実施形態のように、OLED層192Wが平坦部192aと凸部192bとを第1面に有し、第2電極193がこれらの平坦部192aと凸部192bにそれぞれ追随する平坦部193aと凸部193bとを第1面に有していてもよい。
(変形例2)
 第10の実施形態では、側面保護層92の上端が、発光素子19Wの第1面の周縁と略同一の位置、または発光素子19Wの第1面の周縁よりも低い位置に設けられている例について説明した。しかしながら、側面保護層92の上端の位置は、この例に限定されるものではなく、例えば、図76に示されるように、発光素子19Wの第1面の周縁よりも高い位置に設けられていてもよい。この場合、側面保護層92の上端部分が、発光素子19Wの第1面上に設けられた第1保護層163の側面の下端部分を覆っていてもよい。
(変形例3)
 第10の実施形態では、表示装置109Aが、白色光を発光することができる複数の発光素子19Wとカラーフィルタ24とを備え、これらの組み合わせによりカラー画像を表示することができる例について説明したが、表示装置109Aのカラー化の方式はこれに限定されるものではない。例えば、表示装置109Aが、複数の発光素子19Wに代えて、赤色光を発光することができる複数の発光素子と、緑色光を発光することができる複数の発光素子と、青色光を発光することができる複数の発光素子を備えてもよい。この場合、カラーフィルタ24は備えられていてもよいし、備えられていなくてもよい。
 各色の光を発光することができる上記発光素子は、例えば、(1)所定色の光(赤色光、緑色光または青色光)を発光することができる発光層を含む発光素子、(2)白色光を発光することができる発光層を含み、当該発光層で発光された白色光に含まれる所定波長の光(赤色光、緑色光または青色光)を共振器構造により共振させ強調することができる発光素子、または(3)所定色の光(赤色光、緑色光または青色光)を発光することができる発光層を含み、当該発光層で発光された所定色の光に含まれる所定波長の光を共振器構造により共振させ強調することができる発光素子である。
<10 変形例>
(変形例1)
 第3から第9の実施形態、および第10の実施形態においては、第2電極の側面と第2電極上に設けられた保護層の側面とが略面一になっている例について説明したが、第2電極の側面と第2電極上に設けられた保護層の側面の位置関係はこの例に限定されるものではない。例えば、第3から第9の実施形態にて、第2電極上に設けられた保護層の側面が、第1または第2の実施形態におけるように、面内方向において第2電極123の側面の内側に位置していてもよい。この場合、OLED層と第2電極の間の剥がれ抑制効果をさらに向上させることができる。
(変形例2)
 第3の実施形態においては、第1電極251上にOLED層252、第2電極253および保護層27からなる積層体が設けられている例(図18参照)について説明した。当該積層体は、図54、図55に示されるように、溝25aにより面内方向に2つの領域に分割されていてもよい。溝25aは、平面視において閉ループ状を有している。第2電極123の第1面うち、溝25aの内側に位置する部分が、共通電極17のコンタクト部171に接続される。すなわち、溝25aの内側に位置する部分が発光部分となり、溝25aの外側に位置する部分が非発光部分となる。
 変形例2においては、側面保護層28は、発光素子25の側面に代えて、溝25aの側面に設けられていてもよいし、発光素子25の側面と溝25aの側面の両方に設けられていてもよい。側面保護層28は、図54、図55に示されるように、溝25aの内側側面と外側側面の両方に設けられていてもよいし、溝25aの内側側面にのみ設けられていてもよい。ここで、溝25aの内側側面とは、溝25aを構成する1組の側面のうち、発光素子25の側面から遠い方の側面を表し、溝25aの外側側面とは、溝25aを構成する1組の側面のうち、発光素子25の側面に近い方の側面を表す。
 上記の例では、第3の実施形態における積層体に対して溝25aを設ける例について説明したが、第1、第2、第4から第9の実施形態における積層体に対して溝を設けてもよい。この場合、溝の側面に側面保護層が設けられてもよい。第1、第2の実施形態における積層体に対して溝が設けられる場合、溝の内側側面が、第1、第2の実施形態における積層体の側面と同様の構成を有していてもよい。すなわち、溝の内側側面において、保護層13の側面が、面内方向において第2電極123の側面の内側に位置していてもよい。
(変形例3)
 第7の実施形態において、表示装置107が複数の側面保護層を備え、各側面保護層が発光素子41Gの側面を覆っていてもよい。当該側面保護層は、第1から第6、第8の実施形態における側面保護層のいずれであってもよい。この場合、OLED層312Rと第2電極313の間の剥がれ抑制効果をさらに向上させることができる。
(変形例4)
 第1の実施形態では、保護層13の側面が面内方向において第2電極123の側面の内側に位置する例について説明したが、保護層13の側面と第2電極123の側面が略面一になっていてもよい。
(変形例5)
 第1から第9の実施形態、および第10の実施形態では、第1電極がアノードであり、第2電極がカソードである例について説明したが、第1電極がカソードであり、第2電極がアノードであってもよい。
(その他の変形例)
 以上、本開示の第1から第9の実施形態、第10の実施形態およびそれらの変形例について具体的に説明したが、本開示は、上記の第1から第9の実施形態、第10の実施形態およびそれらの変形例に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。
 例えば、上記の第1から第9の実施形態、第10の実施形態およびそれらの変形例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。
 上記の第1から第9の実施形態、第10の実施形態およびそれらの変形例の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 上記の第1から第9の実施形態、第10の実施形態およびそれらの変形例に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。
 本開示は以下の構成(1-1)から(1-20)を採用することもできる。なお、以下の構成(1-1)から(1-20)は、第1から第8の実施形態に対応する構成である。
(1)
 第1電極と、有機発光層を含む有機物含有層と、第2電極とを有し、2次元配置された複数の発光素子と、
 各前記発光素子上に設けられ、隣接する前記発光素子の間で分離された保護層と、
 各前記有機物含有層の側面、各前記第2電極の側面および各前記保護層の側面を覆う側面保護層と
 を備え、
 前記保護層の側面は、前記第2電極の側面の内側に位置している、
 発光装置。
(2)
 前記保護層は、窒化シリコンを含む、
 (1)に記載の発光装置。
(3)
 前記保護層は、第1保護層と第2保護層とを順に有し、
 前記第2保護層のエッチングレートは、前記第1保護層のエッチングレートに比べて小さい、
 (1)に記載の発光装置。
(4)
 前記保護層は、第1保護層と第2保護層とを順に有し、
 前記第2保護層は、単分子層を含む、
 (1)に記載の発光装置。
(5)
 前記保護層は、窒化シリコンを含む第1保護層と、酸化アルミニウムを含む第2保護層とを順に有する、
 (1)に記載の発光装置。
(6)
 前記保護層は、第1保護層と第2保護層とを順に有し、
 前記第2保護層の側面は、前記第1保護層の側面の外側に位置している、
 (1)に記載の発光装置。
(7)
 前記側面保護層は、第1側面保護層と、第2側面保護層とを有する、
 (1)から(6)のいずれか1項に記載の発光装置。
(8)
 前記第2側面保護層が、酸化ジルコニウム、酸化タンタルおよび酸化アルミニウムからなる群より選ばれた少なくとも1種を含む、
 (7)に記載の発光装置。
(9)
 前記第1側面保護層の屈折率が、前記保護層の屈折率に比べて低い、
 (7)または(8)に記載の発光装置。
(10)
 隣接する前記第1電極の間に設けられた第1絶縁層と、
 前記第1電極の前記有機物含有層側の面の周縁部に設けられた第2絶縁層と
 をさらに備える、
 (7)から(9)のいずれか1項に記載の発光装置。
(11)
 前記第1側面保護層は、前記第2絶縁層と同一材料を含み、
 前記第2側面保護層は、前記第1絶縁層と同一材料を含む、
 (10)に記載の発光装置。
(12)
 前記側面保護層は、単分子層を含む、
 (1)から(6)のいずれか1項に記載の発光装置。
(13)
 前記側面保護層は、前記発光素子から出射された光を反射することができる、
 (1)から(6)のいずれか1項に記載の発光装置。
(14)
 前記側面保護層は、
 導電性を有する第1側面保護層と、絶縁性を有する第2側面保護層と、導電性を有する第3側面保護層とを順に有する、
 (13)に記載の発光装置。
(15)
 隣接する前記発光素子の間を埋める第3保護層をさらに備え、
 少なくとも1つの第1ステップが、各前記発光素子の周辺に設けられている、
 (1)から(14)のいずれか1項に記載の発光装置。
(16)
 各前記第1ステップは、前記第1電極に設けられている、
 (15)に記載の発光装置。
(17)
 前記発光素子の下に設けられた下地層をさらに備え、
 前記下地層は、少なくとも1つの第2ステップを各前記発光素子の周辺に有し、
 前記第1電極は、前記各第2ステップに倣うように設けられている、
 (16)に記載の発光装置。
(18)
 積層体が、前記発光素子と前記保護層により構成され、
 隣接する前記積層体の間は、2種以上の分離幅で分離され、
 前記保護層は、第1保護層と、前記第1保護層上に設けられた第2保護層とを含み、
 前記第1保護層は、隣接する前記積層体の間において分離され、
 前記第2保護層は、隣接する前記積層体の間において規定方向で繋がっている、
 (1)に記載の発光装置。
(19)
 複数の前記積層体を覆う第3保護層をさらに備え、
 溝が、隣接する前記積層体の間に設けられ、
 前記第2保護層および前記第3保護層は、前記溝に倣うように設けられている、
 (18)に記載の発光装置。
(20)
 請求項1に記載の発光装置を備える電子機器。
 本開示は以下の構成(3-1)から(3-7)を採用することもできる。なお、以下の構成(3-1)から(3-7)は、第3の実施形態に対応する構成である。
(3-1)
 第1電極と、有機発光層を含む有機物含有層と、第2電極とを備え、2次元配置された複数の発光素子と、
 各前記発光素子上に設けられ、隣接する前記発光素子の間で分離された保護層と、
 各前記有機物含有層の側面、各前記第2電極の側面および各前記保護層の側面を覆う側面保護層と
 を備え、
 前記側面保護層は、第1側面保護層と、第2側面保護層とを備える、
 発光装置。
(3-2)
 前記第2電極は、透明導電性酸化物を含む、
 (3-1)に記載の発光装置。
(3-3)前記第2側面保護層が、酸化ジルコニウム、酸化タンタルおよび酸化アルミニウムからなる群より選ばれた少なくとも1種を含む、
 (3-1)から(3-2)のいずれか1項に記載の発光装置。
(3-4)
 前記第1側面保護層の屈折率が、前記保護層の屈折率に比べて低い、
 (3-1)から(3-3)のいずれか1項に記載の発光装置。
(3-5)
 隣接する前記第1電極の間に設けられた第1絶縁層と、
 前記第1電極の前記有機物含有層側の面の周縁部に設けられた第2絶縁層と
 をさらに備える、
 (3-1)から(3-4)のいずれか1項に記載の発光装置。
(3-6)
 前記第1側面保護層は、前記第2絶縁層の構成材料の一部または全部を含み、
 前記第2側面保護層は、前記第1絶縁層の構成材料の一部または全部を含み、
 (3-5)に記載の発光装置。
(3-7)
 駆動基板上に2次元配置された複数の第1電極を形成する工程と、
 隣接する前記第1電極の間の領域に第1絶縁層および第2絶縁層を積層する工程と、
 前記第1電極上および前記第2絶縁層上に、有機発光層を含む有機物含有層、第2電極、保護層を積層する工程と、
 隣接する前記第1電極の間の領域の前記保護層、前記第2電極および前記有機物含有層を除去する工程と、
 隣接する前記第1電極の間の領域の前記第2絶縁層および前記第1絶縁層を順次スパッタエッチングすることにより、前記有機物含有層の側面、前記第2電極の側面および前記保護層の側面に第1側面保護層、第2側面保護層を順次形成する工程と
 を備える発光装置の製造方法。
 本開示は以下の構成(4-1)および(4-2)を採用することもできる。なお、以下の構成(4-1)および(4-2)は、第4の実施形態に対応する構成である。
(4-1)
 第1電極と、有機発光層を含む有機物含有層と、第2電極とを備え、2次元配置された複数の発光素子と、
 複数の前記発光素子上に設けられ、前記発光素子の間で分離された保護層と、
 各前記発光素子の前記有機物含有層の側面、前記第2電極の側面および前記保護層の側面を覆う側面保護層と
 を備え、
 前記側面保護層は、単分子層を含む、
 発光装置。
(4-2)
 前記単分子層は、ALD層を含む、
 (4-1)に記載の発光装置。
 本開示は以下の構成(5-1)から(5-6)を採用することもできる。なお、以下の構成(5-1)から(5-6)は、第5、第6の実施形態に対応する構成である。
(5-1)
 第1電極と、有機発光層を含む有機物含有層と、第2電極とを備え、2次元配置された複数の発光素子と、
 各前記発光素子上に設けられ、隣接する前記発光素子の間で分離された保護層と、
 各前記有機物含有層の側面、各前記第2電極の側面および各前記保護層の側面を覆う側面保護層と
 を備え、
 前記側面保護層は、前記発光素子から出射された光を反射することができる、
 発光装置。
(5-2)
 前記側面保護層は、少なくとも一層の反射層を含む、
 (5-1)に記載の発光装置。
(5-3)
 各前記発光素子は、絶縁層をさらに備え、
 前記絶縁層は、前記第1電極の前記有機物含有層側の面の周縁部に設けられている、
 (5-1)に記載の発光装置。
(5-4)
 前記側面保護層は、
 導電性を有する第1側面保護層と、絶縁性を有する第2側面保護層と、導電性を有する第3側面保護層とを順に備え、
 前記第1側面保護層は、前記第2電極に接続され、
 前記第3側面保護層は、前記第1電極に接続されている、
 (5-1)または(5-3)に記載の発光装置。
(5-5)
 前記各発光素子の下に設けられた金属層をさらに備える、
 (5-1)または(5-3)に記載の発光装置。
(5-6)
 前記側面保護層は、導電性を有する前記第1側面保護層と、絶縁性を有する第2側面保護層と、前記発光素子から出射された光を反射することができる第3側面保護層と、前記発光素子から出射された光を反射することができる第4側面保護層とを順に備える、
 (5-1)または(5-5)に記載の発光装置。
(5-7)
 金属層、第1電極、絶縁層、有機発光層を含む有機物含有層、第2電極、保護層を駆動基板上に順に形成する工程と、
 前記保護層、前記第2電極、前記有機物含有層、前記絶縁層、前記第1電極、前記金属層を順にエッチングすることにより、前記第1電極の側面、前記有機物含有層の側面、前記第2電極の側面および前記保護層の側面に堆積物を堆積する工程と
 を備える、
 発光装置の製造方法。
 本開示は以下の構成(7-1)から(7-7)を採用することもできる。なお、以下の構成(7-1)から(7-7)は、第7の実施形態に対応する構成である。
(7-1)
 2次元配置された複数の発光素子と、
 隣接する前記発光素子の間を埋める保護層と
 を備え、
 少なくとも1つの第1ステップが、各前記発光素子の周辺に設けられている、
 発光装置。
(7-2)
 前記発光素子は、第1電極と、有機発光層を含む有機物含有層と、第2電極とを順に備える、
 (7-1)に記載の発光装置。
(7-3)
 各前記第1ステップは、前記第1電極に設けられている、
 (7-2)に記載の発光装置。
(7-4)
 前記第1電極は、隣接する前記発光素子の間で繋がっている、
 (7-2)または(7-3)に記載の発光装置。
(7-5)
 各前記第1ステップは、前記有機物含有層に設けられている、
 (7-2)に記載の発光装置。
(7-6)
 前記発光素子の下に設けられた下地層をさらに備え、
 各前記第1ステップは、前記第1電極と前記下地層に設けられている、
 (7-2)に記載の発光装置。
(7-7)
 前記発光素子の下に設けられた下地層をさらに備え、
 前記下地層は、少なくとも1つの第2ステップを各前記発光素子の周辺に有し、
 前記第1電極は、前記各第2ステップに倣うように設けられている、
 (7-2)に記載の発光装置。
 本開示は以下の構成(8-1)から(8-13)を採用することもできる。なお、以下の構成(8-1)から(8-13)は、第8の実施形態に対応する構成である。
(8-1)
 2次元配置された複数の積層体を備え、
 前記積層体は、
 発光素子と、
 前記発光素子上に設けられた保護層と
 を含み、
 前記発光素子は、第1電極とOLED層と第2電極とを含み、
 隣接する前記積層体の間は、2種以上の分離幅で分離されている、
 発光装置。
(8-2)
 前記保護層は、第1保護層と、前記第1保護層上に設けられた第2保護層とを含み、
 前記第1保護層は、隣接する前記積層体間において分離され、
 前記第2保護層は、隣接する前記積層体間において規定方向で繋がっている、
 (8-1)に記載の発光装置。
(8-3)
 前記積層体は、第1保護層と、前記第1保護層上に設けられた第2保護層とを含み、
 複数の前記積層体は、第1方向および第2方向に並べられ、
 前記第2保護層は、前記第1方向における前記積層体間で分離され、かつ、前記第2方向における前記積層体間で分離され、
 前記第2保護層は、前記第1方向と前記第2方向の間の第3方向における前記積層体間で繋がっている、
 (8-1)に記載の発光装置。
(8-4)
 前記第1方向に隣接する前記積層体間は、少なくとも第1分離幅と第2分離幅で分離され、
 前記第2分離幅は、前記第1方向に隣接する前記積層体間の領域の両端部における分離幅であり、
 前記第1分離幅は、前記両端部の間における分離幅であり、
 前記第2方向に隣接する前記積層体間は、少なくとも第3分離幅と第4分離幅で分離され、
 前記第4分離幅は、前記第2方向に隣接する前記積層体間の領域の両端部における分離幅であり、
 前記第3分離幅は、前記両端部の間における分離幅である、
 (8-2)または(8-3)に記載の発光装置。
(8-5)
 前記第2保護層は、前記積層体の側面の一部を覆っている、
 (8-2)から(8-4)のいずれか1項に記載の発光装置。
(8-6)
 溝が、隣接する前記積層体の間に設けられ、
 前記第2保護層は、前記溝に倣うように設けられている、
 (8-2)から(8-5)のいずれか1項に記載の発光装置。
(8-7)
 複数の前記積層体を覆う第3保護層をさらに備え、
 前記第3保護層は、前記溝に倣うように設けられている、
 (8-6)に記載の発光装置。
(8-8)
 前記第3保護層は、前記第1方向における前記積層体間、前記第2方向における前記積層体間、および第3方向における前記積層体間で繋がっている、
 (8-7)に記載の発光装置。
(8-9)
 前記第2保護層と前記第3保護層の材料が異なっている、
 (8-7)または(8-8)に記載の発光装置。
(8-10)
 複数の前記積層体は、第1方向および第2方向に並べられ、
 前記第1方向における前記積層体間に位置する保護層の厚み、および前記第2方向における前記積層体間に位置する保護層の厚みは、前記第1方向と前記第2方向の間の第3方向における前記積層体間における前記保護層の厚みと異なっている、
 (8-1)に記載の発光装置。
(8-11)
 複数の前記積層体は、第1方向および第2方向に並べられ、
 前記第1方向における前記積層体間に位置する保護層の層数、および前記第2方向における前記積層体間に位置する保護層の層数は、前記第1方向と前記第2方向の間の第3方向における前記積層体間における前記保護層の層数と異なっている、
 (8-1)に記載の発光装置。
(8-12)
 前記複数の積層体の下に設けられた下地層をさらに備え、
 複数の前記積層体は、第1方向および第2方向に並べられ、
 前記下地層は、複数の前記積層体が設けられている面に段差を有し、該段差は、隣接する前記積層体間の領域の両端部に設けられている、
 (8-1)に記載の発光装置。
(8-13)
 第1方向および第2方向に2次元配置された複数の第1電極を形成する工程と、
 前記第1電極を覆うように、OLED層、第2電極および第1保護層を順に形成することにより積層体を形成する工程と、
 前記積層体の複数の第3領域を加工することにより、複数の凹部を前記積層体に形成する工程と、
 複数の凹部が形成された前記積層体を覆う第2保護層を形成する工程と、
 前記積層体の複数の第1領域および複数の第2領域を加工することにより、前記積層体を分割する工程と
 を備え、
 前記第1領域は、前記第1方向における前記第1電極間の領域であり、
 前記第2領域は、前記第2方向における前記第1電極間の領域であり、
 前記第3領域は、前記第1方向と前記第2方向の間の第3方向における前記第1電極間の領域である、
 発光装置の製造方法。
 本開示は以下の構成(9-1)から(9-4)を採用することもできる。なお、以下の構成(9-1)から(9-4)は、第10の実施形態に対応する構成である。
(9-1)
 第1電極と、有機発光層を含む有機物含有層と、第2電極とを有し、2次元配置された複数の発光素子と、
 各前記発光素子の側面に設けられた側面保護層と
 を備え、
 前記有機物含有層は、前記第2電極側の面に平坦部と傾斜部とを有し、前記傾斜部は、前記有機物含有層の側面に隣接して設けられ、
 前記第2電極は、前記平坦部と前記傾斜部に追随しており、前記傾斜部における前記第2電極の厚みは、前記平坦部における前記第2電極の厚みに比べて厚い、
 発光装置。
(9-2)
 前記発光素子は、該発光素子の側面の上端部に張出部を有している、
 (9-1)に記載の発光装置。
(9-3)
 前記側面保護層は、前記有機物含有層および前記第2電極の境界を覆っている、
 (9-1)または(9-2)に記載の発光装置。
(9-4)
 前記複数の発光素子上に設けられ、隣接する前記発光素子の間にて分断された保護層をさらに備え、
 前記側面保護層は、各前記発光素子の側面と共に、前記保護層の側面も覆っている、
 (9-1)から(9-3)のいずれか1項に記載の発光装置。
(9-5)
 2次元配置された複数の第1電極を形成する工程と、
 前記複数の第1電極のエッジにそれぞれ対応する複数の第1傾斜部を表面に有する、有機発光層を含む有機物含有層を形成する工程と、
 前記有機物含有層の表面形状に追随するように、第2電極を前記有機物含有層上に形成することにより、前記複数の第1傾斜部にそれぞれ対応する複数の第2傾斜部を前記第2電極の表面に形成する工程と、
 前記各第2傾斜部の位置において前記第2電極および前記有機物含有層を分断する工程と
 を備える発光装置の製造方法。
<10 発光部、レンズ部材、波長選択部のそれぞれの中心を通る法線の関係>
 以下、発光部の中心を通る法線LNと、レンズ部材の中心を通る法線LN’と、波長選択部の中心を通る法線LN”との関係を説明する。ここで、発光部は、例えば、第9の実施形態における発光素子18Wである。レンズ部材は、例えば、第9の実施形態におけるレンズアレイ55のレンズ551である。波長選択部は、例えば、第9の実施形態におけるフィルタ部24Fである。ここでは、第9の実施形態に係る表示装置109に対して以下の構成が適用された例について説明するが、第9の実施形態の変形例に係る表示装置101、102、104~108、109Aに対して以下の構成が適用されてもよい。
 なお、発光部が出射する光に対応して、波長選択部の大きさを、適宜、変えてもよいし、隣接する発光部の波長選択部の間に光吸収部(例えば、ブラックマトリクス部)が設けられている場合、発光部が出射する光に対応して、光吸収部の大きさを、適宜、変えてもよい。また、波長選択部の大きさを、発光部の中心を通る法線と波長選択部の中心を通る法線との間の距離(オフセット量)dに応じて、適宜、変えてもよい。波長選択部の平面形状は、レンズ部材の平面形状と同じであってもよいし、相似であってもよいし、異なっていてもよい。
 以下、図56A、図56B、図56C、図57を参照して、発光部51と、波長選択部52、レンズ部材53が、この順序で配置されている場合の各部の中心を通る法線の関係について説明する。
 図56Aに示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とは、一致していてもよい。すなわち、D=0、d=0であってもよい。但し、Dは、発光部51の中心を通る法線LNとレンズ部材53の中心を通る法線LN’との間の距離(オフセット量)を表し、dは、発光部51の中心を通る法線LNと波長選択部52の中心を通る法線LN”との間の距離(オフセット量)を表す。
 図56Bに示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”とは、一致しているが、発光部51の中心を通る法線LNおよび波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とは、一致していない構成としてもよい。すなわち、D>0、d=0であってもよい。
 図56Cに示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”およびレンズ部材53の中心を通る法線LN’とは、一致しておらず、波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とは、一致している構成としてもよい。すなわち、D>0、d>0、D=dであってもよい。
 図57に示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とがいずれも、一致していない構成としてもよい。すなわち、D>0、d>0、D≠dであってもよい。ここで、発光部51の中心とレンズ部材53の中心(図57において黒丸で示される位置)とを結ぶ直線LL上に、波長選択部52の中心(図57において黒四角で示される位置)が位置することが好ましい。具体的には、発光部51の中心と波長選択部52の中心との間の、厚さ方向(図57中、垂直方向)における距離をLL、波長選択部52の中心とレンズ部材53の中心との間の、厚さ方向における距離をLLとしたとき、
  D>d>0
であり、製造上のバラツキを考慮した上で、
  d:D=LL:(LL+LL
を満足することが好ましい。
 ここで、厚さ方向とは、発光部51、波長選択部52、レンズ部材53の厚さ方向を表す。
 以下、図58A、図58B、図59を参照して、発光部51と、レンズ部材53、波長選択部52が、この順序で配置されている場合の各部の中心を通る法線の関係について説明する。
 図58Aに示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とは、一致している構成としてもよい。すなわち、D>0、d=0であってもよい。
 図58Bに示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”およびレンズ部材53の中心を通る法線LN’とは、一致しておらず、波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とは、一致している構成としてもよい。すなわち、D>0、d>0、D=dであってもよい。
 図59に示されるように、発光部51の中心を通る法線LNと、波長選択部52の中心を通る法線LN”と、レンズ部材53の中心を通る法線LN’とがいずれも、一致していない構成としてもよい。ここで、発光部51の中心と波長選択部52の中心(図59において黒四角で示される位置)とを結ぶ直線LL上に、レンズ部材53の中心(図59において黒丸で示される位置)が位置することが好ましい。具体的には、発光部51の中心とレンズ部材53の中心との間の、厚さ方向(図59中、垂直方向)における距離をLL、レンズ部材53の中心と波長選択部52の中心との間の、厚さ方向における距離をLLとしたとき、
  d>D>0
であり、製造上のバラツキを考慮した上で、
  D:d=LL:(LL+LL
を満足することが好ましい。
 ここで、厚さ方向とは、発光部51、波長選択部52、レンズ部材53の厚さ方向を表す。
<11 共振器構造の例>
 上述した本開示に係る表示装置に用いられる画素は、発光素子で発生した光を共振させる共振器構造を備えている構成とすることができる。以下、図面を参照しながら、共振器構造について説明する。また、以下の説明において、各層の第1面を上面ということがある。
(共振器構造:第1例)
 図60Aは、共振器構造の第1例を説明するための模式的な断面図である。以下の説明において、副画素10R、10G、10Bにそれぞれに対応して設けられた発光素子を特に区別せず総称する場合には、発光素子12ということがある。副画素10R、10G、10Bにそれぞれに対応して設けられた発光素子を区別する場合には、発光素子12、12、12ということがある。OLED層122のうち副画素10R、10G、10Bにそれぞれに対応する部分を、OLED層122、OLED層122、OLED層122ということがある。発光素子は、第1から第9の実施形態および第10の実施形態における発光素子のいずれであってもよい。
 第1例において、第1電極121は各発光素子12において共通の膜厚で形成されている。第2電極123においても同様である。
 発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配されている。反射板71と第2電極123との間にOLED層122が発生する光を共振させる共振器構造が形成される。以下の説明において、副画素10R、10G、10Bにそれぞれに対応して設けられた光学調整層72を、光学調整層72、72、72ということがある。
 反射板71は各発光素子12において共通の膜厚で形成されている。光学調整層72の膜厚は、画素が表示すべき色に応じて異なっている。光学調整層72、72、72が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。
 図60Aに示す例では、発光素子12、12、12における反射板71の上面は揃うように配置されている。上述したように、光学調整層72の膜厚は、画素が表示すべき色に応じて異なっているので、第2電極123の上面の位置は、発光素子12、12、12の種類に応じて相違する。
 反射板71は、例えば、アルミニウム(Al)、銀(Ag)、銅(Cu)等の金属、あるいは、これらを主成分とする合金を用いて形成することができる。
 光学調整層72は、シリコン窒化物(SiN)、シリコン酸化物(SiO)、シリコン酸窒化物(SiO)等の無機絶縁材料や、アクリル系樹脂やポリイミド系樹脂等といった有機樹脂材料を用いて構成することができる。光学調整層72は単層でも良いし、これら複数の材料の積層膜であってもよい。また、発光素子12の種類に応じて積層数が異なっても良い。
 第1電極121は、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)等の透明導電材料を用いて形成することができる。
 第2電極123は、半透過反射膜として機能する必要がある。第2電極123は、マグネシウム(Mg)や銀(Ag)、またはこれらを主成分とするマグネシウム銀合金(MgAg)、さらには、アルカリ金属やアルカリ土類金属を含んだ合金等を用いて形成することができる。
(共振器構造:第2例)
 図60Bは、共振器構造の第2例を説明するための模式的な断面図である。
 第2例においても、第1電極121や第2電極123は各発光素子12において共通の膜厚で形成されている。
 そして、第2例においても、発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配される。反射板71と第2電極123との間にOLED層122が発生する光を共振させる共振器構造が形成される。第1例と同様に、反射板71は各発光素子12において共通の膜厚で形成されており、光学調整層72の膜厚は、画素が表示すべき色に応じて異なっている。
 図60Aに示す第1例においては、発光素子12、12、12における反射板71の上面は揃うように配置され、第2電極123の上面の位置は、発光素子12、12、12の種類に応じて相違していた。
 これに対し、図60Bに示す第2例において、第2電極123の上面は、発光素子12、12、12で揃うように配置されている。第2電極123の上面を揃えるために、発光素子12、12、12において反射板71の上面は、発光素子12、12、12の種類に応じて異なるように配置されている。このため、反射板71の下面(換言すれば、下地層(絶縁層)73の上面)は、発光素子12の種類に応じた階段形状となる。
 反射板71、光学調整層72、第1電極121および第2電極123を構成する材料等については、第1例において説明した内容と同様であるので、説明を省略する。
(共振器構造:第3例)
 図61Aは、共振器構造の第3例を説明するための模式的な断面図である。以下の説明において、副画素10R、10G、10Bにそれぞれに対応して設けられた反射板71を、反射板71、71、71ということがある。
 第3例においても、第1電極121や第2電極123は各発光素子12において共通の膜厚で形成されている。
 そして、第3例においても、発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配される。反射板71と第2電極123との間に、OLED層122が発生する光を共振させる共振器構造が形成される。第1例や第2例と同様に、光学調整層72の膜厚は、画素が表示すべき色に応じて異なっている。そして、第2例と同様に、第2電極123の上面の位置は、発光素子12、12、12で揃うように配置されている。
 図60Bに示す第2例にあっては、第2電極123の上面を揃えるために、反射板71の下面は、発光素子12の種類に応じた階段形状であった。
 これに対し、図61Aに示す第3例において、反射板71の膜厚は、発光素子12、12、12の種類に応じて異なるように設定されている。より具体的には、反射板71、71、71の下面が揃うように膜厚が設定されている。
 反射板71、光学調整層72、第1電極121および第2電極123を構成する材料等については、第1例において説明した内容と同様であるので、説明を省略する。
(共振器構造:第4例)
 図61Bは、共振器構造の第4例を説明するための模式的な断面図である。以下の説明において、副画素10R、10G、10Bにそれぞれに対応して設けられた第1電極121を、第1電極121、121、121ということがある。
 図60Aに示す第1例において、各発光素子12の第1電極121や第2電極123は、共通の膜厚で形成されている。そして、発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配されている。
 これに対し、図61Bに示す第4例では、光学調整層72を省略し、第1電極121の膜厚を、発光素子12、12、12の種類に応じて異なるように設定した。
 反射板71は各発光素子12において共通の膜厚で形成されている。第1電極121の膜厚は、画素が表示すべき色に応じて異なっている。第1電極121、121、121が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。
 反射板71、光学調整層72、第1電極121および第2電極123を構成する材料等については、第1例において説明した内容と同様であるので、説明を省略する。
(共振器構造:第5例)
 図62Aは、共振器構造の第5例を説明するための模式的な断面図である。
 図60Aに示す第1例において、第1電極121や第2電極123は各発光素子12において共通の膜厚で形成されている。そして、発光素子12の第1電極121の下に、光学調整層72を挟んだ状態で、反射板71が配されている。
 これに対し、図62Aに示す第5例にあっては、光学調整層72を省略し、代わりに、反射板71の表面に酸化膜74を形成した。酸化膜74の膜厚は、発光素子12、12、12の種類に応じて異なるように設定した。以下の説明において、副画素10R、10G、10Bにそれぞれに対応して設けられた酸化膜74を、酸化膜74、74、74ということがある。
 酸化膜74の膜厚は、画素が表示すべき色に応じて異なっている。酸化膜74、74、74が異なる膜厚を有することにより、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。
 酸化膜74は、反射板71の表面を酸化した膜であって、例えば、アルミニウム酸化物、タンタル酸化物、チタン酸化物、マグネシウム酸化物、ジルコニウム酸化物等から構成される。酸化膜74は、反射板71と第2電極123との間の光路長(光学的距離)を調整するための絶縁膜として機能する。
 発光素子12、12、12の種類に応じて膜厚が異なる酸化膜74は、例えば、以下のようにして形成することができる。
 先ず、容器の中に電解液を充填し、反射板71が形成された基板を電解液の中に浸漬する。また、反射板71と対向するように電極を配置する。
 そして、電極を基準として正電圧を反射板71に印加して、反射板71を陽極酸化する。陽極酸化による酸化膜の膜厚は、電極に対する電圧値に比例する。そこで、反射板71、71、71のそれぞれに発光素子12の種類に応じた電圧を印加した状態で陽極酸化を行う。これによって、膜厚の異なる酸化膜74を一括して形成することができる。
 反射板71、第1電極121および第2電極123を構成する材料等については、第1例において説明した内容と同様であるので、説明を省略する。
(共振器構造:第6例)
 図62Bは、共振器構造の第6例を説明するための模式的な断面図である。
 第6例において、発光素子12は、第1電極121とOLED層122と第2電極123とが積層されて構成されている。但し、第6例において、第1電極121は、電極と反射板の機能を兼ねるように形成されている。第1電極(兼反射板)121は、発光素子12、12、12の種類に応じて選択された光学定数を有する材料によって形成されている。第1電極(兼反射板)121による位相シフトが異なることによって、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。
 第1電極(兼反射板)121は、アルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)等の単体金属や、これらを主成分とする合金から構成することができる。例えば、発光素子12の第1電極(兼反射板)121を銅(Cu)で形成し、発光素子12の第1電極(兼反射板)121と発光素子12の第1電極(兼反射板)121とをアルミニウムで形成するといった構成とすることができる。
 第2電極123を構成する材料等については、第1例において説明した内容と同様であるので、説明を省略する。
(共振器構造:第7例)
 図63は、共振器構造の第7例を説明するための模式的な断面図である。
 第7例は、基本的には、発光素子12、12については第6例を適用し、発光素子12については第1例を適用したといった構成である。この構成においても、表示すべき色に応じた光の波長に最適な共振を生ずる光学的距離を設定することができる。
 発光素子12、12に用いられる第1電極(兼反射板)121、121は、アルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)等の単体金属や、これらを主成分とする合金から構成することができる。
 発光素子12に用いられる、反射板71、光学調整層72および第1電極121を構成する材料等については、第1例において説明した内容と同様であるので、説明を省略する。
<12 応用例>
(電子機器)
 上記の第1~第9の実施形態、第10の実施形態およびそれらの変形例に係る表示装置101~109、109A(以下「表示装置101等」という。)は、各種の電子機器に備えられてもよい。表示装置101等は、特にヘッドマウント型ディスプレイ等のアイウェアデバイス、またはビデオカメラもしくは一眼レフカメラの電子ビューファインダ等の高解像度が要求され、目の近くで拡大して使用されるものに適する。
(具体例1)
 図64A、図64Bは、デジタルスチルカメラ610の外観の一例を示す。このデジタルスチルカメラ610は、レンズ交換式一眼レフレックスタイプのものであり、カメラ本体部(カメラボディ)611の正面略中央に交換式の撮影レンズユニット(交換レンズ)612を有し、正面左側に撮影者が把持するためのグリップ部613を有している。
 カメラ本体部611の背面中央から左側にずれた位置には、モニタ614が設けられている。モニタ614の上部には、電子ビューファインダ(接眼窓)615が設けられている。撮影者は、電子ビューファインダ615を覗くことによって、撮影レンズユニット612から導かれた被写体の光像を視認して構図決定を行うことが可能である。電子ビューファインダ615は、上記の表示装置101等のうちいずれかを備える。
(具体例2)
 図65は、ヘッドマウントディスプレイ620の外観の一例を示す。ヘッドマウントディスプレイ620は、アイウェアデバイスの一例である。ヘッドマウントディスプレイ620は、例えば、眼鏡形の表示部621の両側に、使用者の頭部に装着するための耳掛け部622を有している。表示部621は、上記の表示装置101等のうちいずれかを備える。
(具体例3)
 図66は、テレビジョン装置630の外観の一例を示す。このテレビジョン装置630は、例えば、フロントパネル632およびフィルターガラス633を含む映像表示画面部631を有しており、この映像表示画面部631は、上記の表示装置101等のうちいずれかを備える。
(具体例4)
 図67は、シースルーヘッドマウントディスプレイ640の外観の一例を示す。シースルーヘッドマウントディスプレイ640は、アイウェアデバイスの一例である。シースルーヘッドマウントディスプレイ640は、本体部641と、アーム642と、鏡筒643とを備える。
 本体部641は、アーム642および眼鏡650と接続される。具体的には、本体部641の長辺方向の端部はアーム642と結合され、本体部641の側面の一側は接続部材を介して眼鏡650と連結される。なお、本体部641は、直接的に人体の頭部に装着されてもよい。
 本体部641は、シースルーヘッドマウントディスプレイ640の動作を制御するための制御基板や、表示部を内蔵する。アーム642は、本体部641と鏡筒643とを接続させ、鏡筒643を支える。具体的には、アーム642は、本体部641の端部および鏡筒643の端部とそれぞれ結合され、鏡筒643を固定する。また、アーム642は、本体部641から鏡筒643に提供される画像に係るデータを通信するための信号線を内蔵する。
 鏡筒643は、本体部641からアーム642を経由して提供される画像光を、接眼レンズ651を通じて、シースルーヘッドマウントディスプレイ640を装着するユーザの目に向かって投射する。このシースルーヘッドマウントディスプレイ640において、本体部641の表示部は、上記の表示装置101等のうちいずれかを備える。
(具体例5)
 図68は、スマートフォン660の外観の一例を示す。スマートフォン660は、各種情報を表示する表示部661、およびユーザによる操作入力を受け付けるボタン等から構成される操作部662等を備える。表示部661は、上記の表示装置101等のうちいずれかを備える。
(具体例6)
 上記の表示装置101等は、乗物に備えられるか各種のディスプレイに備えられてもよい。
 図69Aおよび図69Bは、各種のディスプレイが備えられた乗物500の内部の構成の一例を示す図である。具体的には、図69Aは、乗物500の後方から前方にかけての乗物500の内部の様子の一例を示す図、図69Bは、乗物500の斜め後方から斜め前方にかけての乗物500の内部の様子の一例を示す図である。
 乗物500は、センターディスプレイ501と、コンソールディスプレイ502と、ヘッドアップディスプレイ503と、デジタルリアミラー504と、ステアリングホイールディスプレイ505と、リアエンタテイメントディスプレイ506とを備える。これらのディスプレイの少なくとも1つが、上記の表示装置101等のうちいずれかを備える。例えば、これらのディスプレイのすべてが、上記の表示装置101等のうちいずれかを備えてもよい。
 センターディスプレイ501は、運転席508および助手席509に対向するダッシュボードの部分に配置されている。図69Aおよび図69Bでは、運転席508側から助手席509側まで延びる横長形状のセンターディスプレイ501の例を示すが、センターディスプレイ501の画面サイズや配置場所は任意である。センターディスプレイ501には、種々のセンサで検知された情報を表示可能である。具体的な一例として、センターディスプレイ501には、イメージセンサで撮影した撮影画像、ToFセンサで計測された乗物500の前方や側方の障害物までの距離画像、赤外線センサで検出された乗客の体温等を表示可能である。センターディスプレイ501は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、およびエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。
 安全関連情報は、居眠り検知、よそ見検知、同乗している子供のいたずら検知、シートベルト装着有無、乗員の置き去り検知等の情報であり、例えばセンターディスプレイ501の裏面側に重ねて配置されたセンサにて検知される情報である。操作関連情報は、センサを用いて乗員の操作に関するジェスチャを検知する。検知されるジェスチャは、乗物500内の種々の設備の操作を含んでいてもよい。例えば、空調設備、ナビゲーション装置、AV装置、照明装置等の操作を検知する。ライフログは、乗員全員のライフログを含む。例えば、ライフログは、乗車中の各乗員の行動記録を含む。ライフログを取得および保存することで、事故時に乗員がどのような状態であったかを確認できる。健康関連情報は、温度センサ等のセンサを用いて乗員の体温を検知し、検知した体温に基づいて乗員の健康状態を推測する。あるいは、イメージセンサを用いて乗員の顔を撮像し、撮像した顔の表情から乗員の健康状態を推測してもよい。さらに、乗員に対して自動音声で会話を行って、乗員の回答内容に基づいて乗員の健康状態を推測してもよい。認証/識別関連情報は、センサを用いて顔認証を行うキーレスエントリ機能や、顔識別でシート高さや位置の自動調整機能等を含む。エンタテイメント関連情報は、センサを用いて乗員によるAV装置の操作情報を検出する機能や、センサで乗員の顔を認識して、乗員に適したコンテンツをAV装置にて提供する機能等を含む。
 コンソールディスプレイ502は、例えば、ライフログ情報の表示に用いることができる。コンソールディスプレイ502は、運転席508と助手席509の間のセンターコンソール510のシフトレバー511の近くに配置されている。コンソールディスプレイ502にも、種々のセンサで検知された情報を表示可能である。また、コンソールディスプレイ502には、イメージセンサで撮像された車両周辺の画像を表示してもよいし、車両周辺の障害物までの距離画像を表示してもよい。
 ヘッドアップディスプレイ503は、運転席508の前方のフロントガラス512の奥に仮想的に表示される。ヘッドアップディスプレイ503は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、およびエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。ヘッドアップディスプレイ503は、運転席508の正面に仮想的に配置されることが多いため、乗物500の速度や燃料(バッテリ)残量等の乗物500の操作に直接関連する情報を表示するのに適している。
 デジタルリアミラー504は、乗物500の後方を表示できるだけでなく、後部座席の乗員の様子も表示できるため、デジタルリアミラー504の裏面側に重ねてセンサを配置することで、例えばライフログ情報の表示に用いることができる。
 ステアリングホイールディスプレイ505は、乗物500のハンドル513の中心付近に配置されている。ステアリングホイールディスプレイ505は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、およびエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、ステアリングホイールディスプレイ505は、運転者の手の近くにあるため、運転者の体温等のライフログ情報を表示したり、AV装置や空調設備等の操作に関する情報等を表示するのに適している。
 リアエンタテイメントディスプレイ506は、運転席508や助手席509の背面側に取り付けられており、後部座席の乗員が視聴するためのものである。リアエンタテイメントディスプレイ506は、例えば、安全関連情報、操作関連情報、ライフログ、健康関連情報、認証/識別関連情報、およびエンタテイメント関連情報の少なくとも一つを表示するために用いることができる。特に、リアエンタテイメントディスプレイ506は、後部座席の乗員の目の前にあるため、後部座席の乗員に関連する情報が表示される。例えば、AV装置や空調設備の操作に関する情報を表示したり、後部座席の乗員の体温等を温度センサで計測した結果を表示してもよい。
 表示装置101等の裏面側に重ねてセンサを配置し、周囲に存在する物体までの距離を計測することができる構成としてもよい。光学的な距離計測の手法には、大きく分けて、受動型と能動型がある。受動型は、センサから物体に光を投光せずに、物体からの光を受光して距離計測を行うものである。受動型には、レンズ焦点法、ステレオ法、および単眼視法等がある。能動型は、物体に光を投光して、物体からの反射光をセンサで受光して距離計測を行うものである。能動型には、光レーダ方式、アクティブステレオ方式、照度差ステレオ法、モアレトポグラフィ法、干渉法等がある。上記の表示装置101等は、これらのどの方式の距離計測にも適用可能である。上記の表示装置101等の裏面側に重ねて配置されるセンサを用いることで、上述した受動型又は能動型の距離計測を行うことができる。
 10B、10G、10R・・・副画素、11・・・駆動基板、12B、12G、12R、12W・・・発光素子、13・・・保護層、14・・・側面保護層、15B、15G、15R・・・サイドウォール、16・・・保護層、16a・・・保護層、17・・・共通電極、18・・・保護層、18W・・・発光素子、19RE1・・・第1領域、19RE2・・・第2領域、19RE3・・・第3領域、19W・・・発光素子、19a1、19a2・・・溝、19a3・・・凹部、20・・・保護層、20R・・・発光素子、21・・・第1電極、22・・・側面保護層、23・・・保護層、24・・・カラーフィルタ、24FB・・・青色フィルタ部、24FG・・・緑色フィルタ部、24FR・・・赤色フィルタ部、25B、25G、25R・・・発光素子、25a・・・溝、26・・・絶縁層、26a・・・開口、27・・・保護層、28・・・側面保護層、31B、31G、31R・・・発光素子、31La、31Lb、31Lc・・・光、32・・・金属層、32a・・・開口、33・・・保護層、34・・・側面保護層、36W・・・発光素子、37・・・絶縁層、38・・・側面保護層、39・・・絶縁層、41B、41G、41R・・・発光素子、42、43・・・保護層、44・・・駆動基板、44St・・・段差、45、46・・・保護層、47・・・積層体、48・・・保護層、51・・・発光部、52・・・波長選択部、53・・・レンズ部材、54・・・平坦化層、55・・・レンズアレイ、56・・・保護層、57・・・カバー層、71・・・反射板、71B、71G、71R、71W・・・反射板、72B、72G、72R・・・光学調整層、74B、74G、74R・・・酸化膜、74a・・・開口、81・・・レジスト層、82・・・ハードマスク、83、84、85、86、87・・・レジスト層、91・・・保護層、92・・・側面保護層、101、102、103、104、105、106、107、108、109、109A・・・表示装置、101a・・・パッド部、111・・・基板、112・・・絶縁層、112a・・・ステップ、121B、121G、121R・・・第1電極、122B、122G、122R・・・OLED層、123・・・第2電極、123S・・・ステップ、131・・・サイドエッチング部、151・・・第1サイドウォール、152・・・第2サイドウォール、153・・・第3サイドウォール、161・・・コンタクト孔、162・・・凹部、163・・・第1保護層、164・・・第2保護層、171・・・コンタクト部、191・・・第1電極、192W・・・OLED層、193・・・第2電極、192a、193a・・・平坦部、192b、193b・・・凸部、192c、193c・・・傾斜部、194・・・張出部、195・・・凹部、211・・・第1絶縁層、211a・・・開口、212・・・第2絶縁層、212a・・・開口、221・・・第1側面保護層、222・・・第2側面保護層、251・・・第1電極、252B、252G、252R・・・OLED層、253・・・第2電極、281・・・保護層、311・・・第1電極、312B、312G、312R・・・OLED層、312S・・・側面、313・・・第2電極、314・・・絶縁層、314a・・・開口、315・・・絶縁層、315a・・・開口、341・・・第1側面保護層、342・・・第2側面保護層、343・・・第3側面保護層、344・・・第4側面保護層、345・・・第5側面保護層、346・・・第6側面保護層、361・・・第1電極、362W・・・OLED層、363・・・第2電極、364・・・絶縁層、364a・・・開口、411・・・第1電極、411a・・・ステップ、411b・・・凹部、411c・・・第1面、411d・・・第2面、411e・・・開口、413・・・第2電極、441・・・基板、442・・・絶縁層、500・・・乗物、501・・・センターディスプレイ、502・・・コンソールディスプレイ、503・・・ヘッドアップディスプレイ、504・・・デジタルリアミラー、505・・・ステアリングホイールディスプレイ、506・・・リアエンタテイメントディスプレイ、508・・・運転席、509・・・助手席、510・・・センターコンソール、511・・・シフトレバー、512・・・フロントガラス、513・・・ハンドル、551・・・レンズ、610・・・デジタルスチルカメラ、611・・・カメラ本体部、612・・・撮影レンズユニット、613・・・グリップ部、614・・・モニタ、615・・・電子ビューファインダ、620・・・ヘッドマウントディスプレイ、621・・・表示部、622・・・耳掛け部、630・・・テレビジョン装置、631・・・映像表示画面部、632・・・フロントパネル、633・・・フィルターガラス、640・・・シースルーヘッドマウントディスプレイ、641・・・本体部、642・・・アーム、643・・・鏡筒、650・・・眼鏡、651・・・接眼レンズ、660・・・スマートフォン、661・・・表示部、662・・・操作部、701・・・表示装置、711W・・・発光素子、712W・・・OLED層、713・・・絶縁層、RE1・・・表示領域、RE2・・・周辺領域

Claims (24)

  1.  第1電極と、有機発光層を含む有機物含有層と、第2電極とを有し、2次元配置された複数の発光素子と、
     各前記発光素子上に設けられ、隣接する前記発光素子の間で分離された保護層と、
     各前記有機物含有層の側面、各前記第2電極の側面および各前記保護層の側面を覆う側面保護層と
     を備え、
     前記保護層の側面は、前記第2電極の側面の内側に位置している、
     発光装置。
  2.  前記保護層は、窒化シリコンを含む、
     請求項1に記載の発光装置。
  3.  前記保護層は、第1保護層と第2保護層とを順に有し、
     前記第2保護層のエッチングレートは、前記第1保護層のエッチングレートに比べて小さい、
     請求項1に記載の発光装置。
  4.  前記保護層は、第1保護層と第2保護層とを順に有し、
     前記第2保護層は、単分子層を含む、
     請求項1に記載の発光装置。
  5.  前記保護層は、窒化シリコンを含む第1保護層と、酸化アルミニウムを含む第2保護層とを順に有する、
     請求項1に記載の発光装置。
  6.  前記保護層は、第1保護層と第2保護層とを順に有し、
     前記第2保護層の側面は、前記第1保護層の側面の外側に位置している、
     請求項1に記載の発光装置。
  7.  前記側面保護層は、第1側面保護層と、第2側面保護層とを有する、
     請求項1に記載の発光装置。
  8.  前記第2側面保護層が、酸化ジルコニウム、酸化タンタルおよび酸化アルミニウムからなる群より選ばれた少なくとも1種を含む、
     請求項7に記載の発光装置。
  9.  前記第1側面保護層の屈折率が、前記保護層の屈折率に比べて低い、
     請求項7に記載の発光装置。
  10.  隣接する前記第1電極の間に設けられた第1絶縁層と、
     前記第1電極の前記有機物含有層側の面の周縁部に設けられた第2絶縁層と
     をさらに備える、
     請求項7に記載の発光装置。
  11.  前記第1側面保護層は、前記第2絶縁層と同一材料を含み、
     前記第2側面保護層は、前記第1絶縁層と同一材料を含む、
     請求項10に記載の発光装置。
  12.  前記側面保護層は、単分子層を含む、
     請求項1に記載の発光装置。
  13.  前記側面保護層は、前記発光素子から出射された光を反射することができる、
     請求項1に記載の発光装置。
  14.  前記側面保護層は、
     導電性を有する第1側面保護層と、絶縁性を有する第2側面保護層と、導電性を有する第3側面保護層とを順に有する、
     請求項13に記載の発光装置。
  15.  隣接する前記発光素子の間を埋める第3保護層をさらに備え、
     少なくとも1つの第1ステップが、各前記発光素子の周辺に設けられている、
     請求項1に記載の発光装置。
  16.  各前記第1ステップは、前記第1電極に設けられている、
     請求項15に記載の発光装置。
  17.  前記発光素子の下に設けられた下地層をさらに備え、
     前記下地層は、少なくとも1つの第2ステップを各前記発光素子の周辺に有し、
     前記第1電極は、前記各第2ステップに倣うように設けられている、
     請求項16に記載の発光装置。
  18.  積層体が、前記発光素子と前記保護層により構成され、
     隣接する前記積層体の間は、2種以上の分離幅で分離され、
     前記保護層は、第1保護層と、前記第1保護層上に設けられた第2保護層とを含み、
     前記第1保護層は、隣接する前記積層体の間において分離され、
     前記第2保護層は、隣接する前記積層体の間において規定方向で繋がっている、
     請求項1に記載の発光装置。
  19.  複数の前記積層体を覆う第3保護層をさらに備え、
     溝が、隣接する前記積層体の間に設けられ、
     前記第2保護層および前記第3保護層は、前記溝に倣うように設けられている、
     請求項18に記載の発光装置。
  20.  第1電極と、有機発光層を含む有機物含有層と、第2電極とを有し、2次元配置された複数の発光素子と、
     各前記発光素子の側面に設けられた側面保護層と
     を備え、
     前記有機物含有層は、前記第2電極側の面に平坦部と傾斜部とを有し、前記傾斜部は、前記有機物含有層の側面に隣接して設けられ、
     前記第2電極は、前記平坦部と前記傾斜部に追随しており、前記傾斜部における前記第2電極の厚みは、前記平坦部における前記第2電極の厚みに比べて厚い、
     発光装置。
  21.  前記発光素子は、該発光素子の側面の上端部に張出部を有している、
     請求項20に記載の発光装置。
  22.  前記側面保護層は、前記有機物含有層および前記第2電極の境界を覆っている、
     請求項20に記載の発光装置。
  23.  前記複数の発光素子上に設けられ、隣接する前記発光素子の間にて分断された保護層をさらに備え、
     前記側面保護層は、各前記発光素子の側面と共に、前記保護層の側面も覆っている、
     請求項20に記載の発光装置。
  24.  請求項1に記載の発光装置を備える電子機器。
PCT/JP2023/042892 2022-11-30 2023-11-30 発光装置および電子機器 WO2024117219A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022192288 2022-11-30
JP2022-192288 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024117219A1 true WO2024117219A1 (ja) 2024-06-06

Family

ID=91324022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042892 WO2024117219A1 (ja) 2022-11-30 2023-11-30 発光装置および電子機器

Country Status (1)

Country Link
WO (1) WO2024117219A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093398A (ja) * 2003-09-19 2005-04-07 Sony Corp 有機発光素子およびその製造方法ならびに表示装置
WO2020004086A1 (ja) * 2018-06-25 2020-01-02 ソニーセミコンダクタソリューションズ株式会社 有機el素子および有機el素子の製造方法
WO2022034862A1 (ja) * 2020-08-12 2022-02-17 ソニーセミコンダクタソリューションズ株式会社 表示装置、表示装置の製造方法、並びに、表示装置を用いた電子機器
JP2022114732A (ja) * 2021-01-27 2022-08-08 株式会社ジャパンディスプレイ 表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093398A (ja) * 2003-09-19 2005-04-07 Sony Corp 有機発光素子およびその製造方法ならびに表示装置
WO2020004086A1 (ja) * 2018-06-25 2020-01-02 ソニーセミコンダクタソリューションズ株式会社 有機el素子および有機el素子の製造方法
WO2022034862A1 (ja) * 2020-08-12 2022-02-17 ソニーセミコンダクタソリューションズ株式会社 表示装置、表示装置の製造方法、並びに、表示装置を用いた電子機器
JP2022114732A (ja) * 2021-01-27 2022-08-08 株式会社ジャパンディスプレイ 表示装置

Similar Documents

Publication Publication Date Title
KR102663231B1 (ko) 유기발광 표시장치
CN110120405B (zh) 显示装置
KR20180047592A (ko) 유기발광 표시장치와 그의 제조방법
WO2017169961A1 (ja) 表示装置及び電子機器
US12075657B2 (en) Apparatus, display apparatus, photoelectric conversion apparatus, electronic equipment, illumination apparatus, and moving object
KR20200079684A (ko) 표시장치
JP2022071601A (ja) 発光装置、表示装置、撮像装置および電子機器、ならびに発光装置の製造方法
WO2024117219A1 (ja) 発光装置および電子機器
WO2024048559A1 (ja) 発光装置および電子機器
WO2024185733A1 (ja) 表示装置および電子機器
CN116057427A (zh) 显示设备和电子设备
WO2024053611A1 (ja) 発光装置および電子機器
WO2024204580A1 (ja) 表示装置および電子機器
WO2024080039A1 (ja) 表示装置、電子機器及び表示装置の製造方法
WO2024116879A1 (ja) 発光装置およびその製造方法、ならびに電子機器
WO2024117213A1 (ja) 表示装置および電子機器
WO2023176474A1 (ja) 発光装置及び電子機器
WO2024034502A1 (ja) 発光装置および電子機器
WO2024024491A1 (ja) 表示装置及び電子機器
WO2024048556A1 (ja) 発光装置およびアイウェアデバイス
WO2024128206A1 (ja) 発光装置及び電子機器
WO2023095857A1 (ja) 発光装置及び電子機器
WO2024117193A1 (ja) 表示装置、表示装置の製造方法及び電子機器
WO2024009728A1 (ja) 表示装置及び電子機器
WO2024014214A1 (ja) 表示装置及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897865

Country of ref document: EP

Kind code of ref document: A1