WO2024077880A1 - 一种大倾角斜墙收分顶升式钢平台施工装置及方法 - Google Patents

一种大倾角斜墙收分顶升式钢平台施工装置及方法 Download PDF

Info

Publication number
WO2024077880A1
WO2024077880A1 PCT/CN2023/084697 CN2023084697W WO2024077880A1 WO 2024077880 A1 WO2024077880 A1 WO 2024077880A1 CN 2023084697 W CN2023084697 W CN 2023084697W WO 2024077880 A1 WO2024077880 A1 WO 2024077880A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel platform
steel
platform system
scaffolding
inclined wall
Prior art date
Application number
PCT/CN2023/084697
Other languages
English (en)
French (fr)
Inventor
徐磊
朱毅敏
童一倡
李子乔
张忆州
Original Assignee
上海建工一建集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海建工一建集团有限公司 filed Critical 上海建工一建集团有限公司
Publication of WO2024077880A1 publication Critical patent/WO2024077880A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G11/00Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs
    • E04G11/06Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs for walls, e.g. curved end panels for wall shutterings; filler elements for wall shutterings; shutterings for vertical ducts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • E04G17/06Tying means; Spacers ; Devices for extracting or inserting wall ties
    • E04G17/065Tying means, the tensional elements of which are threaded to enable their fastening or tensioning
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G3/00Scaffolds essentially supported by building constructions, e.g. adjustable in height
    • E04G3/28Mobile scaffolds; Scaffolds with mobile platforms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G5/00Component parts or accessories for scaffolds
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G5/00Component parts or accessories for scaffolds
    • E04G5/04Means for fastening, supporting, or bracing scaffolds on or against building constructions
    • E04G5/046Means for fastening, supporting, or bracing scaffolds on or against building constructions for fastening scaffoldings on walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G3/00Scaffolds essentially supported by building constructions, e.g. adjustable in height
    • E04G3/28Mobile scaffolds; Scaffolds with mobile platforms
    • E04G2003/286Mobile scaffolds; Scaffolds with mobile platforms mobile vertically

Definitions

  • the invention belongs to the technical field of building construction, and particularly relates to a construction device and method for a large-angle inclined wall retracting and jacking steel platform.
  • the core tube is usually set up by reducing the core tube wall thickness, reducing the number of core tubes, or reducing the overall layout of the core tube, so as to reduce the plane area of the core tube and the cross-sectional volume of the components.
  • the core tube inclined wall is mostly used to gradually reduce the core tube plane area, while achieving the adaptability of structure and load, saving materials.
  • the traditional method of setting up construction scaffolding if used, there are two problems: on the one hand, multiple diagonal braces are set at different positions, the construction period is long, and the form of scaffolding components needs to be adjusted according to the shape of the inclined wall; on the other hand, ordinary construction scaffolding is difficult to resist the oblique overturning force transmitted from the inclined wall formwork, and cannot effectively transmit the oblique force of the bottom support to the steel platform system.
  • the present invention provides a construction device and method for a steel platform for large-angle inclined wall retraction, wherein the steel platform is designed to be a first steel platform system and a second steel platform system that are detachably connected, and the first steel platform system is fixed in the straight wall at the lower end of the inclined wall retraction section to be constructed, so as to serve as a large construction space, and better construction protection measures can be taken, thereby solving the problem of overturning of the outer template at the large-angle inclined wall retraction branch template of the core tube.
  • the second steel platform system is lifted upward along the right straight wall section by converting the lifting cylinder system, and a temporary support steel frame is connected by snapping on both sides of the second straight wall section above the inclined wall retraction section to support a temporary welding construction platform, and the supplementary module is hoisted to perform supplementary construction on the second steel platform system to the left to form a new steel platform system, and a movable tool-type scaffold is used to complete the construction of the second straight wall section and its upper structure.
  • the present invention includes the following technical solutions:
  • a high-angle inclined wall retracting and jacking steel platform construction device comprising:
  • the steel platform includes a first steel platform system, a second steel platform system and an additional steel platform that are detachably connected.
  • the first steel platform system and the second steel platform system are lifted together by a lifting cylinder system to a certain height below the bottom end of the core tube inclined wall segment to be cast and fixed;
  • a temporary support steel frame wherein the temporary support steel frame is buckled on both sides and arranged at the top of the second straight wall section of the core tube shear wall, and the additional steel platform is arranged on the upper part of the temporary support steel frame;
  • a tetrafluoroethylene composite sliding structure wherein the tetrafluoroethylene composite sliding structure is arranged between the temporary supporting steel tire frame and the top beam of the second steel platform system, and a synchronous jacking jack mechanism is arranged at one end of the tetrafluoroethylene composite sliding structure;
  • a tilt fine-tuning jack wherein a plurality of the tilt fine-tuning jacks are arranged at intervals between the platform base and the tetrafluoroethylene composite sliding structure;
  • the additional steel platform top beam is detachably connected to a positioning piece at one end close to the second steel platform system top beam.
  • the positioning member is a L-shaped or inverted L-shaped structure, and the positioning member is used to ensure that the additional steel platform is consistent with the horizontality of the top beam of the second steel platform system in the pushing direction.
  • the tetrafluoroethylene composite sliding structure includes a tetrafluoroethylene composite sliding layer and a tray structure, and the tray structure is sandwiched between two layers of tetrafluoroethylene composite sliding layers;
  • the tetrafluoroethylene composite sliding layer includes a rubber layer and a steel plate layer sandwiched between tetrafluoroethylene plates.
  • a rotating base is provided in the middle of the synchronous jacking jack mechanism, a jacking head is provided at the front end of the rotating base, rotating tracks are provided on both sides of the rotating base, and the rotating base can rotate along the rotating tracks at a corresponding angle.
  • the direction of the rotating base is adjusted according to the measured inclination angle of the top beam of the second steel platform system, so that the inclination angle of the jacking head is consistent with the inclination angle of the top beam of the second steel platform system.
  • a reversible top joint is provided at the contact surface between the push end of the synchronous push jack mechanism and the top beam of the second steel platform system, and a pin is provided at the free end of the reversible top joint, and the reversible top joint can rotate to a certain extent with the pin as the axis.
  • a scaffolding system which includes a movable tool scaffolding and a temporary construction scaffolding
  • the movable tool scaffolding includes: a tool scaffolding body, a sliding bottom wheel, an anti-overturning socket and a limiting fixing block, the anti-overturning socket is inserted into the track base along the length direction of the track, the tool scaffolding body is fixedly connected to the sliding bottom wheel through a connecting head, and the limiting fixing block is invertedly arranged on the front and rear sides of the sliding bottom wheel and fixed by bolts.
  • an adjustable inclined wall casting formwork which is fixed to the outermost inclined crossbar of the movable tool scaffolding
  • the adjustable inclined wall casting formwork includes an inner wooden formwork and an outer wooden formwork.
  • the distance between the inner and outer wooden formworks is controlled by a plurality of fixed-distance rigid pads, and is fixed by tension bolts.
  • the outer side of the inner wooden formwork is clamped with a tool-type square back rib by a back rib fixing fixture, and the top support plate is fixed to the outer side of the back rib fixing fixture by a telescopic screw.
  • the top support plate is fixedly connected to the outermost cross bar of the movable tool-type scaffolding by a telescopic screw.
  • the present invention also provides a method for constructing a large-angle inclined wall retractable jacking steel platform, which comprises the following steps:
  • Step S1 providing the aforementioned high-angle inclined wall retraction jacking type steel platform construction device for standby, jacking up the overall steel platform formwork system to a certain height below the bottom end of the inclined wall retraction section to be cast by the jacking cylinder system, and fixing the steel platform on the reserved hole of the first straight wall section of the core tube by the shelving bracket on the bottom beam of the steel platform;
  • Step S2 welding a rotating sleeve below the top beam of the first steel platform system, passing the lower straight reinforcement through the rotating sleeve and then connected with the upper oblique reinforcement, and casting the free end of the top beam of the first steel platform system into the wall of the first straight wall section;
  • Step S3 constructing a diagonal brace, wherein the upper end of the diagonal brace is welded to the lower flange of the top beam of the first steel platform system, and the lower end of the diagonal brace is fixedly connected to the embedded part at the top of the left first straight wall section below the diagonal wall shrinking section;
  • Step S4 hoisting the movable tool scaffolding to the track base of the top beam of the first steel platform system; using the conversion jacking cylinder system to continue the jacking construction of the second steel platform system on the first straight wall section on the right;
  • Step S5 installing an adjustable inclined wall casting formwork on the outermost inclined crossbar of the movable tool scaffolding, accurately adjusting the position of the formwork through telescopic screws at each point and BIM technology, performing segmented casting construction of the left inclined wall, and simultaneously performing the construction of the first straight wall section on the right;
  • Step S6 continue to set up the tool-type external scaffolding as the outer scaffolding, use the second steel platform system as the inner scaffolding, connect the temporary support steel frame on both sides of the top of the second straight wall section above the left inclined wall segment, fix the temporary welded construction platform on the temporary support steel frame, and remove the temporary construction scaffolding set up below the inclined wall segment;
  • Step S7 complete the additional construction of the second steel platform system to form an additional steel platform, use the previously erected standard sections of the tool scaffolding and the pre-designed non-standard sections to install a movable tool scaffolding on the outside of the additional steel platform, then install the steel formwork, tie the steel bars, pour the concrete, and use the additional steel platform to continue to complete the construction of the second straight wall section and its upper structure.
  • first steel platform system and the second steel platform system are modularly designed according to the segmented contraction of the core tube shear wall and the inclined wall, and the first steel platform system and the second steel platform system are connected by modular component high-strength bolts.
  • the present invention has the following advantages and beneficial effects:
  • the large-angle inclined wall retraction jacking type steel platform construction device designed the steel platform into a first steel platform system and a second steel platform system that are detachably connected.
  • the first steel platform system is fixed in the straight wall at the lower end of the inclined wall retraction section to be constructed as a large construction space.
  • a movable tool scaffolding and an adjustable inclined wall casting formwork can be used to perform faster casting work, thereby avoiding the need to consider the coordination of the formwork overturning and the steel platform retraction or other conversion construction systems in the traditional steel platform construction method.
  • the second steel platform system is lifted upward along the right straight wall section by converting the jacking cylinder system, and the two sides of the second straight wall section above the inclined wall retraction section are connected by a temporary support steel frame for supporting a temporary welding construction platform.
  • the supplementary module is hoisted to perform supplementary construction on the second steel platform system to the left, forming a new steel platform system, that is, completing the supplementary steel platform construction, and using the movable tool scaffolding to complete the construction of the second straight wall section and its upper structure.
  • the track base is laterally inserted into the tool-type bottom anti-overturning bracket, and combined with the bottom wheel rails on both sides of the sliding bottom wheel on the track base, the anti-overturning ability can be effectively improved.
  • the overall structure can effectively support the oblique force transmitted by the construction of large-angle inclined walls without setting diagonal braces.
  • the method for constructing a high-angle inclined wall retracting jacking steel platform adopts a movable tool-type external scaffolding to provide an external construction operation surface, avoiding the complexity of the traditional repeated scaffolding.
  • a tool-type external scaffolding standard section is used for wall-attached construction, which saves scaffolding building materials on the one hand, and on the other hand, after the overall steel platform system is disassembled and the second steel platform system is lifted into place, the external tool-type scaffolding formed by splicing standard sections at the bottom is connected to the upper second steel platform system through prefabricated extension sections. After removing the wall attachments, a new set of external scaffolding can be formed as the outer operation surface during the upper lifting construction, once again avoiding the complexity of repeatedly setting up scaffolding.
  • FIG1 is a schematic structural diagram of a temporary welded construction platform in a high-angle inclined wall retracting and lifting steel platform construction device in one embodiment of the present invention
  • FIG2 is a schematic structural diagram of a movable tool-type scaffold in a high-angle inclined wall retracting jacking type steel platform construction device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a limit fixing block in a movable tool-type scaffold in a large-angle inclined wall retracting jacking type steel platform construction device according to an embodiment of the present invention
  • FIG4 is a schematic structural diagram of an adjustable inclined wall casting formwork in a large-angle inclined wall retracting and lifting steel platform construction device in one embodiment of the present invention
  • 5 to 11 are schematic diagrams of steps S1 to S7 of a method for constructing a steeply inclined wall-splitting jacking steel platform in accordance with an embodiment of the present invention
  • FIG. 12 is a schematic diagram of the installation of a rotating sleeve in step S2 of a method for constructing a steeply inclined wall-splitting jacking steel platform in accordance with an embodiment of the present invention.
  • a high-angle inclined wall retraction and jacking steel platform construction device comprises a steel platform, a temporary support steel frame 70, a tetrafluoroethylene composite sliding structure 81 and an inclination fine-tuning jack 84.
  • the steel platform comprises a first steel platform system 21, a second steel platform system 22 and an additional steel platform 23 which are detachably connected.
  • the first steel platform system 21 and the second steel platform system 22 are jacked together by a jacking cylinder system to a certain height position below the bottom end of the inclined wall retraction section of the core tube to be cast and fixed; a double-jointed temporary support steel frame 70 is arranged at the top of the second straight wall section 13 of the core tube shear wall in a double-sided buckled manner, the additional steel platform 23 is arranged on the upper part of the temporary support steel frame 70, and the top of the temporary support steel frame 70 is fixedly connected to the platform base 82; the tetrafluoroethylene composite sliding structure 81 is arranged between the temporary support steel frame 70 and the additional steel platform top beam 26, and a synchronous jacking jack mechanism 83 is provided at one end of the tetrafluoroethylene composite sliding structure 81; a plurality of inclination fine-tuning jacks 84 are arranged at intervals on the platform base 82 and the tetrafluoroethylene composite sliding structure 81; in order to fix
  • a temporary construction platform needs to be provided for precise welding construction to effectively reduce welding stress, and it is necessary to comprehensively consider how to accurately position the hoisted additional modules and the original steel platform formwork system to further reduce welding stress and improve structural strength. In addition, it is also necessary to comprehensively consider the corresponding adjustment of the horizontality of the original steel platform formwork system and the additional modules.
  • a support frame needs to be set through the wall. Due to the dense steel bar heads protruding from the wall surface, it is impossible to set a support frame directly on the wall surface, and the uneven wall surface cannot ensure the plane levelness of the upper support temporary welding construction platform, so the design needs to be comprehensively considered.
  • the above-mentioned design problems are solved by lifting and connecting to the wall laterally and reserving space on the top surface of the wall.
  • the temporary support steel frames 70 on both sides are effectively connected to the tension members through the embedded parts on the wall, and the hollow areas of the temporary support steel frames 70 on both sides of the upper part are connected by high-strength bolts and fasteners (the overall inverted support frame design will inevitably have a large error due to the unevenness of the walls on both sides, which cannot be guaranteed to be inserted exactly, affecting the upper platform structure, so it is designed to be double-joined with a small space in the middle, and the heights of both sides are aligned in place before connection).
  • a height alignment card seat matching measuring device is set to ensure the horizontality of the upper plane of the temporary support steel frames 70 on both sides.
  • the number of temporary support steel frames 70 is calculated and set according to the load condition of the upper part, which perfectly solves the above-mentioned problems.
  • the positioning member 85 is a L-shaped or inverted L-shaped structure, and the positioning member 85 is used to ensure that the additional steel platform top beam 26 is consistent with the level of the second steel platform system top beam 25 in the pushing direction.
  • the tetrafluoroethylene composite sliding structure 81 includes a tetrafluoroethylene composite sliding layer and a tray structure, and the tray structure is sandwiched between two layers of tetrafluoroethylene composite sliding layers;
  • the tetrafluoroethylene composite sliding layer includes a rubber layer and a steel plate layer sandwiched between a tetrafluoroethylene plate, which can provide a certain deformation and withstand a certain force.
  • a rotating base is provided in the middle of the synchronous jacking mechanism 83, a jacking head is provided at the front end of the rotating base, rotating tracks are provided on both sides of the rotating base, and the rotating base can rotate along the rotating tracks at a corresponding angle.
  • the direction of the rotating base is adjusted according to the measured inclination angle of the second steel platform system top beam 25, so that the inclination angle of the jacking head is consistent with the inclination angle of the second steel platform system top beam 25, which is used to adjust the inclination angle of the second steel platform system top beam 25.
  • a reversible top joint is provided at the contact surface between the push end of the synchronous push jack mechanism 83 and the tetrafluoroethylene composite sliding structure 81, and a pin is provided at the free end of the reversible top joint, and the reversible top joint can rotate to a certain extent with the pin as the axis.
  • the angle of the tetrafluoroethylene composite sliding structure 81 has been adjusted to the same angle as the second steel platform system top beam 25 by the inclination fine-tuning jack 84.
  • the reversible top joint contacts the surface of the second steel platform system top beam 25
  • its rear end slowly moves forward and automatically adjusts and rotates until the surface of the reversible top joint and the second steel platform body are in contact.
  • the surfaces of the top beam 25 are in the same horizontal plane, and the angle can be automatically adjusted to align with the top beam 25 of the second steel platform system. It can be slowly pushed until the top joint of the synchronous pushing jack mechanism 83 rotates and is vertically pressed against the pushing surface of the tetrafluoroethylene composite sliding structure 81 with a slightly large inclination angle.
  • a scaffolding system is further included, the scaffolding system includes a movable tool scaffolding 30 and a temporary construction scaffolding, the movable tool scaffolding 30 includes: a tool scaffolding body, a sliding bottom wheel 32, an anti-overturning clamp 33 and a limiting fixed block 34, the anti-overturning clamp 33 is clamped into the track base 35 along the length direction of the track, the tool scaffolding body is fixedly connected to the sliding bottom wheel 32 through a connector 36, and the limiting fixed block 34 is invertedly arranged on the front and rear sides of the sliding bottom wheel 32 and fixed by bolts.
  • the movable tool scaffolding 30 can be directly hoisted and installed on the track base 35 pre-set on the top beam 24 of the first steel platform system, the sliding bottom wheel 32 is connected to the middle position of the bottom wheel clamp 31, and then the anti-overturning clamp 33 is clamped from the side of the track base 35, so that the bottom wheel clamps on both sides of the sliding bottom wheel 32 on the track base 35 can effectively improve the anti-overturning ability.
  • an adjustable inclined wall casting formwork (not shown) is further included, the adjustable inclined wall casting formwork is fixed on the outermost inclined crossbar of the movable tool scaffolding 30, the adjustable inclined wall casting formwork includes an inner wooden formwork 41 and an outer wooden formwork 42, a steel pipe back rib 43, and a tool-type square back rib 44.
  • the distance between the inner wooden formwork 41 and the outer wooden formwork 42 is controlled by a plurality of fixed-distance rigid pads 45, and is tied and fixed by tension bolts 46.
  • the outer side of the inner wooden formwork 41 is clamped with a tool-type square back rib 44 by a back rib fixing fixture 47, and the outer side of the back rib fixing fixture 47 is fixed with a top support plate 49 by a telescopic screw 48.
  • the top support plate 49 is fixedly connected to the outermost crossbar of the movable tool scaffolding by a telescopic screw 48.
  • the present invention also provides a method for constructing a large-angle inclined wall-splitting jacking steel platform, which includes the following steps:
  • Step S1 provide the aforementioned high-angle inclined wall retraction jacking type steel platform construction device for standby, jack up the whole steel platform formwork system to a certain height below the bottom end of the inclined wall retraction section to be cast by the jacking cylinder system, and fix the steel platform on the reserved hole of the first straight wall section 12 of the core tube by the shelving bracket 11 on the bottom beam of the steel platform;
  • Step S2 welding a rotating sleeve 50 under the top beam 24 of the first steel platform system, after the lower straight reinforcement 60 passes through the rotating sleeve 50, it is connected with the upper oblique reinforcement, and the free end of the top beam 24 of the first steel platform system is cast into the wall of the first straight wall section 12; the use of this rotating sleeve 50 transfer method combined with the additional stiffening rib solves the problem that the lower straight reinforcement 60 needs to pass through the steel beam, and also solves the problem that the lower straight reinforcement 60 needs to pass through the steel beam.
  • Step S3 construct the diagonal brace 89, the upper end of the diagonal brace 89 is welded to the lower flange of the top beam 24 of the first steel platform system, and the lower end of the diagonal brace 89 is fixedly connected to the embedded part at the top of the left first straight wall section 12 below the diagonal wall shrinking section 14;
  • Step S4 hoist the movable tool scaffolding 30 onto the track base 35 of the top beam 24 of the first steel platform system; after fixing the steel platform in the core tube by placing the corbel group, cut the top beam and bottom beam, disassemble the connecting fasteners of the transverse components of the first steel platform system 21 and the second steel platform system 22 in the core tube at the preset splitting position, unscrew the bolts to disconnect the protective nets installed on both sides; use the conversion jacking cylinder system to continue the jacking construction of the second steel platform system 22 on the first straight wall section 12 on the right side;
  • Step S5 installing an adjustable inclined wall casting formwork on the outermost inclined crossbar of the movable tool scaffolding 30, accurately adjusting the template position by telescopic screws at each point and BIM technology, performing casting construction of the left inclined wall shrinking segment 14, and simultaneously performing construction of the right first straight wall segment 12;
  • Step S6 continue to erect the tool-type external scaffolding as the external scaffolding, use the second steel platform system 22 as the internal scaffolding, and connect the temporary support steel frame 70 on both sides of the second straight wall section 13 above the left inclined wall segment 14 by snap-on connection, and fix the temporary welded construction platform 80 on the temporary support steel frame 70, and remove the temporary construction scaffolding erected below the inclined wall segment;
  • the external scaffolding includes an external tool-type scaffolding and an extension section, one end of the extension section is connected to the second steel platform system top beam 25, and the other end of the extension section is connected to the external tool-type scaffolding, and the external tool-type scaffolding is composed of a number of standard sections connected end to end.
  • Step S7 lift the additional module and fix it to the second steel platform system 22, complete the additional construction of the second steel platform system 22, form the additional steel platform 23, use the previously erected tool scaffolding standard section and the pre-designed non-standard section to install the movable tool scaffolding 30 on the outside of the additional steel platform 23, then install the steel formwork, tie the steel bars, pour the concrete, and use the additional steel platform 23 to continue to complete the construction of the second straight wall section 13 and its upper structure.
  • first steel platform system 21 and the second steel platform system 22 are modularly designed according to the contraction of the core tube shear wall inclined wall section 14, and the first steel platform system 21 and the second steel platform system 22 are connected by modular component high-strength bolts.

Abstract

本发明涉及一种大倾角斜墙收分顶升式钢平台施工装置及方法,目的在于解决传统钢平台施工需考虑支模倾覆与钢平台收分协调的问题。该装置包括钢平台、临时支撑钢胎架、四氟乙烯复合滑移结构以及倾角微调千斤顶,钢平台包括可拆卸式连接的第一、第二钢平台体系以及增补钢平台,第一、第二钢平台体系固定于斜墙收分段底端下方一定高度处;双拼式临时支撑钢胎架设置于第二直墙段顶端,增补钢平台设置于临时支撑钢胎架上部;四氟乙烯复合滑移结构设置于临时支撑钢胎架与第二钢平台体系顶梁之间,其端部设有同步顶推千斤顶机构;多个倾角微调千斤顶间隔设置于平台底座与四氟乙烯复合滑移结构之间;增补钢平台靠近第二钢平台体系顶梁一端连接定位件。

Description

一种大倾角斜墙收分顶升式钢平台施工装置及方法 技术领域
本发明属于建筑施工技术领域,特别涉及一种大倾角斜墙收分顶升式钢平台施工装置及方法。
背景技术
大多数超高层建筑都需要设置核心筒来提高整体塔楼的抗侧力能力,而随着结构楼层数的不断增高,超高层的受力形式将由弯剪式逐步向弯曲式转换,顶部楼层相较于底部楼层,所受弯矩相对较小,与之对应的核心筒墙体所受的拉、压力就会减小。为了提高经济效益优化结构,在核心筒设置上,通常采用减少核心筒墙厚、减少核心筒筒数或者减少核心筒整体布局的方法,以达到减小核心筒的平面面积以及构件截面量。
目前多采用核心筒斜墙收分的方式,可逐步降低核心筒平面面积,同时实现结构与荷载的适应性,节省材料。在超高层钢平台上施工大倾角斜墙时,若采用传统搭设施工脚手的方法,存在两方面问题:一方面不同位置设置多道斜撑,施工工期长,还需要根据斜墙的形状调整脚手构件形式;另一方面普通施工脚手难以抵抗斜墙模板传来的斜向倾覆力,无法有效地将底部底撑的斜向力传递至钢平台体系上。
因此,如何提供一种大倾角斜墙收分顶升式钢平台施工装置及方法,是本领域技术人员亟需解决的技术问题。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当视为承认或以任何形式暗示该信息为本领域一般技术人员所公知的现有技术。
发明内容
本发明提供一种大倾角斜墙收分顶升式钢平台施工装置及方法,将钢平台设计成可拆卸式连接的第一钢平台体系和第二钢平台体系,将第一钢平台体系固定于待施工的斜墙收分段下端的直墙体中,作为施工大空间,可以更好的建设防护措施,解决了核心筒大倾角斜墙收分支模处的外侧模板倾覆问题。然后通过转换顶升油缸体系将第二钢平台体系沿着右侧直墙段往上顶升,并利用斜墙收分段上方的第二直墙段两侧扣接式连接临时支撑钢胎架,用于支撑临时焊接施工平台,吊运增补模块对第二钢平台体系往左侧进行增补施工,形成新的钢平台体系,并利用可移动工具式脚手架完成第二直墙段及其上部结构施工。
为解决以上技术问题,本发明包括如下技术方案:
一种大倾角斜墙收分顶升式钢平台施工装置,包括:
钢平台,所述钢平台包括可拆卸式连接的第一钢平台体系、第二钢平台体系以及增补钢平台,所述第一钢平台体系和所述第二钢平台体系一起通过顶升油缸体系顶升至待浇筑核心筒斜墙收分段底端下方一定高度位置并固定;
临时支撑钢胎架,所述临时支撑钢胎架双侧扣接式设置于核心筒剪力墙第二直墙段顶端,所述增补钢平台设置于临时支撑钢胎架上部;
四氟乙烯复合滑移结构,所述四氟乙烯复合滑移结构设置于所述临时支撑钢胎架与第二钢平台体系顶梁之间,所述四氟乙烯复合滑移结构一端端部设有同步顶推千斤顶机构;
倾角微调千斤顶,多个所述倾角微调千斤顶间隔设置于平台底座与四氟乙烯复合滑移结构之间;
所述增补钢平台顶梁靠近所述第二钢平台体系顶梁一端可拆卸式连接定位件。
进一步地,所述定位件为]型或者倒L型结构,所述定位件用于保证增补钢平台在顶推方向与第二钢平台体系顶梁水平度一致。
进一步地,所述四氟乙烯复合滑移结构包括四氟乙烯复合滑移层和托盘结构,所述托盘结构夹设于两层四氟乙烯复合滑移层之间;所述四氟乙烯复合滑移层包括四氟乙烯板中间夹设橡胶层及钢板层。
进一步地,所述同步顶推千斤顶机构中部设有旋转基座,所述旋转基座最前端设有顶推头,所述旋转基座两侧设有旋转轨道,所述旋转基座能够沿着旋转轨道旋转对应角度。根据测得的第二钢平台体系顶梁的倾角角度调整旋转基座方向,使得所述顶推头倾角与第二钢平台体系顶梁的倾角角度一致。
进一步地,所述同步顶推千斤顶机构顶推端与第二钢平台体系顶梁接触面设有可翻转式顶接头,所述可翻转式顶接头自由端设有销轴,所述可翻转式顶接头能够以所述销轴为轴心进行一定幅度的旋转。可翻转式顶接头接触第二钢平台体系顶梁表面后,其后端缓慢前移自动调整旋转至可翻转式顶接头表面与第二钢平台体系顶梁表面呈同一水平面位置关系,实现自动调整角度对准第二钢平台体系顶梁。
进一步地,还包括脚手系统,所述脚手系统包括可移动工具式脚手架和临时施工脚手,所述可移动工具式脚手架包括:工具式脚手架本体、滑移底轮、防倾覆卡座以及限位固定块,所述防倾覆卡座沿着轨道的长度方向卡入轨道基座,所述工具式脚手架本体通过连接头与滑移底轮固定连接,所述限位固定块倒扣设置于滑移底轮的前后两侧,且通过螺栓固定。
进一步地,还包括可调式斜墙浇筑模架,所述可调式斜墙浇筑模架固定于所述可移动工具式脚手架最外侧的斜面横杆上,所述可调式斜墙浇筑模架包括内侧木模板和外侧木模 板、钢管背楞、工具式方背楞,内侧木模板和外侧木模板之间通过多个定距刚性垫块控制间距,并由对拉螺栓拉结固定,所述内侧木模板外侧通过背楞固定夹具夹设工具式方背楞,所述背楞固定夹具外侧通过伸缩螺杆固定顶托板。该顶托板与可移动工具式脚手架最外侧的横杆通过伸缩螺杆固定连接。通过设置定距刚性垫块,用以保证模板之间的间距只需调整一侧模板的位置即可。施工时可结合BIM数字化技术,利用伸缩螺杆对模板各对应点进行精准调整。而且,除了初始将模板整体调整到预定位置,还能在无需设置斜撑结构的情况下,确保整个过程中浇筑斜墙墙体的变形与设计一致。
本发明还提供了一种大倾角斜墙收分顶升式钢平台施工方法,该施工方法包括如下步骤:
步骤S1、提供前述的大倾角斜墙收分顶升式钢平台施工装置备用,通过顶升油缸体系将整体钢平台模架系统顶升至待浇筑斜墙收分段底端下方一定高度位置,并通过钢平台底梁上的搁置牛腿,将钢平台固定在核心筒第一直墙段预留洞上;
步骤S2、在第一钢平台体系顶梁下方焊接旋转套筒,下部直筋穿过所述旋转套筒后,与上部斜筋连接,并将第一钢平台体系顶梁自由端浇筑于第一直墙段墙体内;
步骤S3、施工斜撑,所述斜撑上端与第一钢平台体系顶梁下翼缘焊接连接,所述斜撑下端与斜墙收分段下方的左侧第一直墙段顶端的预埋件固定连接;
步骤S4、将可移动工具式脚手架吊运至第一钢平台体系顶梁的轨道基座上;采用转换顶升油缸体系在右侧第一直墙段继续进行第二钢平台体系顶升施工;
步骤S5、在可移动工具式脚手架最外侧斜面横杆上安装可调式斜墙浇筑模架,通过各点伸缩螺杆和BIM技术精准调整模板位置,进行左侧斜墙收分段浇筑施工,并同步进行右侧第一直墙段施工;
步骤S6、继续搭设工具式外挂脚手架作为外脚手,以第二钢平台体系为内脚手,在左侧斜墙收分段上方的第二直墙段顶端两侧扣接式连接临时支撑钢胎架,并在临时支撑钢胎架上固定临时焊接施工平台,拆除架设在斜墙收分段下方的临时施工脚手;
步骤S7、完成第二钢平台体系增补施工,形成增补钢平台,利用先前搭设的工具式脚手架标准节及预先设计的非标段在增补钢平台外侧安装可移动工具式脚手架,之后安装钢大模,并绑扎钢筋、浇筑混凝土,利用增补钢平台继续完成第二直墙段及其上部结构施工。
进一步地,所述第一钢平台体系和第二钢平台体系均按照核心筒剪力墙斜墙收分段收分情况进行模块化设计,所述第一钢平台体系和第二钢平台体系之间通过模块化构件高强螺栓连接。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明提供的大倾角斜墙收分顶升式钢平台施工装置,将钢平台设计成可拆卸式连接的第一钢平台体系和第二钢平台体系,将第一钢平台体系固定于待施工的斜墙收分段下端的直墙体中,作为施工大空间,配合核心筒斜墙收分段采用可移动工具式脚手架及可调式斜墙浇筑模架可进行较快的浇筑工作,避免了传统钢平台施工方式中需考虑支模倾覆与钢平台收分或其它转换施工体系协调方面的问题。然后通过转换顶升油缸体系将第二钢平台体系沿着右侧直墙段往上顶升,并利用斜墙收分段上方的第二直墙段两侧扣接式连接临时支撑钢胎架,用于支撑临时焊接施工平台,吊运增补模块对第二钢平台体系往左侧进行增补施工,形成新的钢平台体系即完成增补钢平台施工,并利用可移动工具式脚手架完成第二直墙段及其上部结构施工。通过在第一钢平台体系顶梁上的轨道基座上安装整体预制可移动工具式脚手架,轨道基座侧向卡入工具式底部防倾覆卡座,结合轨道基座上滑移底轮两侧的底轮卡轨可有效提高抗倾覆能力,而且通过在滑移底轮前后两端的轨道基座上倒扣限位固定块,并同其下方钢平螺栓紧固,整体结构在不设置斜撑的情况下,能够有效支撑大倾角斜墙施工传递的斜向力。
(2)本发明提供的大倾角斜墙收分顶升式钢平台施工方法,采用了一种可移动工具式外挂脚手架,提供了外部施工操作面,避免了传统需重复搭设脚手的复杂性。且在斜墙收分段上方的第二直墙段上通过采用一节节工具式外脚手标准段附墙施工,一方面节省了脚手建材,一方面在整体钢平台系统拆分并将第二钢平台体系顶升到位后,通过预制的加长节将下方由标准节拼接而成的外挂工具式脚手架与上部第二钢平台体系连接,拆除附墙件后可形成一套新的外挂脚手架,作为上方顶升施工时外侧的操作面,再一次避免了需重复搭设脚手的复杂性。
附图说明
图1为本发明一实施例中大倾角斜墙收分顶升式钢平台施工装置中临时焊接施工平台的结构示意图;
图2为本发明一实施例中大倾角斜墙收分顶升式钢平台施工装置中可移动工具式脚手架的结构示意图;
图3为本发明一实施例中大倾角斜墙收分顶升式钢平台施工装置中可移动工具式脚手架中限位固定块的结构示意图;
图4为本发明一实施例中大倾角斜墙收分顶升式钢平台施工装置中可调式斜墙浇筑模架的结构示意图;
图5至图11为本发明一实施例中大倾角斜墙收分顶升式钢平台施工方法步骤S1~S7的示意图;
图12为本发明一实施例中大倾角斜墙收分顶升式钢平台施工方法步骤S2中旋转套筒的安装示意图。
图中:
11-搁置牛腿,12-第一直墙段,13-第二直墙段,14-斜墙收分段;21-第一钢平台体系,22-
第二钢平台体系,23-增补钢平台,24-第一钢平台体系顶梁,25-第二钢平台体系顶梁,26-增补钢平台顶梁;30-可移动工具式脚手架,31-底轮卡轨,32-滑移底轮,33-防倾覆卡座,34-限位固定块,35-轨道基座,36-连接头;41-内侧木模板,42-外侧木模板,43-钢管背楞,44-工具式方背楞,45-定距刚性垫块,46-对拉螺栓,47-背楞固定夹具,48-伸缩螺杆,49-顶托板;50-旋转套筒;60-直筋;70-临时支撑钢胎架;80-临时焊接施工平台,81-四氟乙烯复合滑移结构,82-平台底座,83-同步顶推千斤顶机构,84-倾角微调千斤顶,85-定位件,86-限位块,89-斜撑。
具体实施方式
以下结合附图和具体实施例对本发明提供的一种大倾角斜墙收分顶升式钢平台施工装置及方法作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。为叙述方便,下文中所述的“上”、“下”与附图的上、下的方向一致,但这不能成为本发明技术方案的限制。
实施例一
下面结合图1至图12,详细说明本发明的大倾角斜墙收分顶升式钢平台施工装置的结构组成。
一种大倾角斜墙收分顶升式钢平台施工装置,包括钢平台、临时支撑钢胎架70、四氟乙烯复合滑移结构81以及倾角微调千斤顶84,钢平台包括可拆卸式连接的第一钢平台体系21、第二钢平台体系22以及增补钢平台23,第一钢平台体系21和第二钢平台体系22一起通过顶升油缸体系顶升至待浇筑核心筒斜墙收分段底端下方一定高度位置并固定;双拼式临时支撑钢胎架70双侧扣接式设置于核心筒剪力墙第二直墙段13顶端,增补钢平台23设置于临时支撑钢胎架70上部,临时支撑钢胎架70顶端固定连接平台底座82;四氟乙烯复合滑移结构81设置于临时支撑钢胎架70与增补钢平台顶梁26之间,四氟乙烯复合滑移结构81一端端部设有同步顶推千斤顶机构83;多个倾角微调千斤顶84间隔设置于平台底座 82与四氟乙烯复合滑移结构81之间;为了固定安装倾角微调千斤顶84,位于两端的倾角微调千斤顶84底座的外侧还设有限位块86;增补钢平台顶梁26靠近第二钢平台体系顶梁25一端可拆卸式连接定位件85。第一钢平台体系顶梁24上设有轨道基座35。
在焊接增补新的钢平台模块体系时,需要提供一个临时的施工平台用以精准焊接施工,有效减少焊接应力,并且需要综合考虑如何将吊运来的增补模块与原钢平台模架体系精准就位,进一步减少焊接应力提高结构强度,此外还需要综合考虑原钢平台模架体系与增补模块的水平度对应调整问题。而在平台下方还需要通过墙体设置支撑架,由于墙体表面有较密的钢筋头伸出,无法直接在墙体表面设置支撑胎架,且墙体表面不平整无法保证上部支撑临时焊接施工平台的平面水平度,需要综合考虑设计。通过吊运与墙体侧向连接且在墙体顶部表面预留空间解决了上述提到的设计问题,两侧临时支撑钢胎架70通过墙体上的预埋件与对拉构件有效连接,上部两侧临时支撑钢胎架70的中空区域部分通过高强螺栓及扣件连接(整体倒扣式支撑胎架设计一定会由于两侧墙面不平整无法保证正好卡入存在较大误差,影响上部平台结构,故设计成双拼式中间留存小空间两侧高度对准就位之后连接即可)。而在临时支撑钢胎架70底部及一些关键水平位置设置标高对准卡座配套测量装置保证两侧临时支撑钢胎架70上部平面的水平度,临时支撑钢胎架70布置数量视上部承受荷载状况计算设定,完美解决了前述问题。
在本实施例中,更优选地,定位件85为]型或者倒L型结构,定位件85用于保证增补钢平台顶梁26在顶推方向与第二钢平台体系顶梁25水平度一致。
在本实施例中,更优选地,四氟乙烯复合滑移结构81包括四氟乙烯复合滑移层和托盘结构,托盘结构夹设于两层四氟乙烯复合滑移层之间;四氟乙烯复合滑移层包括四氟乙烯板中间夹设橡胶层及钢板层,既可提供一定变形又可承受一定的受力。
在本实施例中,更优选地,同步顶推千斤顶机构83中部设有旋转基座,旋转基座最前端设有顶推头,旋转基座两侧设有旋转轨道,旋转基座能够沿着旋转轨道旋转对应角度。根据测得的第二钢平台体系顶梁25的倾角角度调整旋转基座方向,使得顶推头倾角与第二钢平台体系顶梁25的倾角角度一致,用于调整第二钢平台体系顶梁25的倾角的角度。
在本实施例中,更优选地,同步顶推千斤顶机构83顶推端与四氟乙烯复合滑移结构81接触面设有可翻转式顶接头,可翻转式顶接头自由端设有销轴,可翻转式顶接头能够以销轴为轴心进行一定幅度的旋转。此时,四氟乙烯复合滑移结构81的角度已经通过倾角微调千斤顶84调整至和第二钢平台体系顶梁25的角度相同。可翻转式顶接头接触第二钢平台体系顶梁25表面后,其后端缓慢前移自动调整旋转至可翻转式顶接头表面与第二钢平台体 系顶梁25表面呈同一水平面位置关系,实现自动调整角度对准第二钢平台体系顶梁25,可以慢慢顶推至同步顶推千斤顶机构83的顶接头旋转与微大倾角的四氟乙烯复合滑移结构81顶推面垂直顶紧。
在本实施例中,更优选地,还包括脚手系统,脚手系统包括可移动工具式脚手架30和临时施工脚手,可移动工具式脚手架30包括:工具式脚手架本体、滑移底轮32、防倾覆卡座33以及限位固定块34,防倾覆卡座33沿着轨道的长度方向卡入轨道基座35,工具式脚手架本体通过连接头36与滑移底轮32固定连接,限位固定块34倒扣设置于滑移底轮32的前后两侧,且通过螺栓固定。也就是说,可移动工具式脚手架30可直接吊运安装于预先设置在第一钢平台体系顶梁24上的轨道基座35上,滑移底轮32于底轮卡轨31中间位置连接,再从轨道基座35侧向卡入防倾覆卡座33,从而,结合轨道基座35上滑移底轮32两侧的底轮卡轨可有效提高抗倾覆能力。
在本实施例中,更优选地,还包括可调式斜墙浇筑模架(未图示),可调式斜墙浇筑模架固定于可移动工具式脚手架30最外侧的斜面横杆上,可调式斜墙浇筑模架包括内侧木模板41和外侧木模板42、钢管背楞43、工具式方背楞44,内侧木模板41和外侧木模板42之间通过多个定距刚性垫块45控制间距,并由对拉螺栓46拉结固定,内侧木模板41外侧通过背楞固定夹具47夹设工具式方背楞44,背楞固定夹具47外侧通过伸缩螺杆48固定顶托板49。该顶托板49与可移动工具式脚手架最外侧的横杆通过伸缩螺杆48固定连接。通过设置定距刚性垫块45,用以保证内侧木模板41和外侧木模板42之间的间距只需调整一侧模板,例如:内侧木模板41或外侧木模板42之间的位置即可。施工时可结合BIM数字化技术,利用伸缩螺杆48对模板各对应点进行精准调整。而且,除了初始将模板整体调整到预定位置,还能在无需设置斜撑结构的情况下,确保整个过程中浇筑外翻斜墙段墙体的变形与设计一致。
请继续参考图1至图12,本发明还提供了一种大倾角斜墙收分顶升式钢平台施工方法,该施工方法包括如下步骤:
步骤S1、提供前述的大倾角斜墙收分顶升式钢平台施工装置备用,通过顶升油缸体系将整体钢平台模架系统顶升至待浇筑斜墙收分段底端下方一定高度位置,并通过钢平台底梁上的搁置牛腿11,将钢平台固定在核心筒第一直墙段12的预留洞上;
步骤S2、在第一钢平台体系顶梁24下方焊接旋转套筒50,下部直筋60穿过旋转套筒50后,与上部斜筋连接,并将第一钢平台体系顶梁24自由端浇筑于第一直墙段12墙体内;利用此旋转套筒50转接法结合增补加劲肋解决了下部直筋60需要穿越钢梁的问题,还解决了下部 直筋向60上绑扎可能出现的施工误差问题,直接在下部直筋向60顶端在第一钢平台体系顶梁24下方对应位置处焊接旋转套筒50,拧出旋转套筒50的内筒将其与下部直筋向60有效机械连接即可。第一钢平台体系顶梁24上部钢筋直接通过与旋转套筒50机械连接继续向上绑扎施工,第一钢平台体系顶梁24腹板两侧对应上下旋转套筒50处增补加劲肋进行加强。
步骤S3、施工斜撑89,斜撑89上端与第一钢平台体系顶梁24下翼缘焊接连接,斜撑89下端与斜墙收分段14下方的左侧第一直墙段12顶端的预埋件固定连接;
步骤S4、将可移动工具式脚手架30吊运至第一钢平台体系顶梁24的轨道基座35上;利用搁置牛腿组固定住核心筒内钢平台后,切割顶梁底梁,拆卸预设拆分处核心筒内第一钢平台体系21和第二钢平台体系22横向构件的连接扣件,拧开螺栓即可断开侧两边安装防护网;采用转换顶升油缸体系在右侧第一直墙段12继续进行第二钢平台体系22顶升施工;
步骤S5、在可移动工具式脚手架30最外侧斜面横杆上安装可调式斜墙浇筑模架,通过各点伸缩螺杆和BIM技术精准调整模板位置,进行左侧斜墙收分段14浇筑施工,并同步进行右侧第一直墙段12施工;
步骤S6、继续搭设工具式外挂脚手架作为外脚手,以第二钢平台体系22为内脚手,在左侧斜墙收分段14上方的第二直墙段13两侧扣接式连接临时支撑钢胎架70,并在临时支撑钢胎架70上固定临时焊接施工平台80,拆除架设在斜墙收分段下方的临时施工脚手;为了提高外挂脚手架的安装效率,保证施工安全,外挂脚手架包括外挂工具式脚手架和加长节连接而成,加长节一端与第二钢平台体系顶梁25连接,加长节另一端与外挂工具式脚手架连接,外挂工具式脚手架由若干标准节首尾顺次连接而成。
步骤S7、吊运增补模块,并与第二钢平台体系22固定连接,完成第二钢平台体系22增补施工,形成增补钢平台23,利用先前搭设的工具式脚手架标准节及预先设计的非标段在增补钢平台23外侧安装可移动工具式脚手架30,之后安装钢大模,并绑扎钢筋、浇筑混凝土,利用增补钢平台23继续完成第二直墙段13及其上部结构施工。
在本实施例中,更优选地,第一钢平台体系21和第二钢平台体系22均按照核心筒剪力墙斜墙收分段14收分情况进行模块化设计,第一钢平台体系21和第二钢平台体系22之间通过模块化构件高强螺栓连接。
上述实例为本发明较佳的实施方式,但本发明的实施方式并不受以上实例的限制。以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此, 本发明专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种大倾角斜墙收分顶升式钢平台施工装置,其特征在于,包括:
    钢平台,所述钢平台包括可拆卸式连接的第一钢平台体系、第二钢平台体系以及增补钢平台,所述第一钢平台体系和所述第二钢平台体系一起通过顶升油缸体系顶升至待浇筑核心筒斜墙收分段底端下方一定高度位置并固定;收分前,所述钢平台由第一钢平台体系和第二钢平台体系连接形成;收分后,所述钢平台包括第二钢平台体系和增补模块形成的增补钢平台;
    临时支撑钢胎架,所述临时支撑钢胎架双侧扣接式设置于核心筒剪力墙第二直墙段顶端,所述增补钢平台设置于临时支撑钢胎架上部;
    四氟乙烯复合滑移结构,所述四氟乙烯复合滑移结构设置于所述临时支撑钢胎架与第二钢平台体系顶梁之间,所述四氟乙烯复合滑移结构一端端部设有同步顶推千斤顶机构;
    倾角微调千斤顶,多个所述倾角微调千斤顶间隔设置于平台底座与四氟乙烯复合滑移结构之间;
    所述增补钢平台顶梁靠近所述第二钢平台体系顶梁一端可拆卸式连接定位件。
  2. 根据权利要求1所述的大倾角斜墙收分顶升式钢平台施工装置,其特征在于,所述定位件为]型或者倒L型结构。
  3. 根据权利要求1所述的大倾角斜墙收分顶升式钢平台施工装置,其特征在于,所述四氟乙烯复合滑移结构包括四氟乙烯复合滑移 层和托盘结构,所述托盘结构夹设于两层四氟乙烯复合滑移层之间;所述四氟乙烯复合滑移层包括四氟乙烯板中间夹设橡胶层及钢板层。
  4. 根据权利要求1所述的大倾角斜墙收分顶升式钢平台施工装置,其特征在于,所述同步顶推千斤顶机构中部设有旋转基座,所述旋转基座最前端设有顶推头,所述旋转基座两侧设有旋转轨道,所述旋转基座能够沿着旋转轨道旋转对应角度。
  5. 根据权利要求1所述的大倾角斜墙收分顶升式钢平台施工装置,其特征在于,所述同步顶推千斤顶机构顶推端与第二钢平台体系顶梁接触面设有可翻转式顶接头,所述可翻转式顶接头自由端设有销轴,所述可翻转式顶接头能够以所述销轴为轴心进行一定幅度的旋转。
  6. 根据权利要求1所述的大倾角斜墙收分顶升式钢平台施工装置,其特征在于,还包括脚手系统,所述脚手系统包括可移动工具式脚手架和临时施工脚手,所述可移动工具式脚手架包括:工具式脚手架本体、滑移底轮、防倾覆卡座以及限位固定块,所述防倾覆卡座沿着轨道的长度方向卡入轨道基座,所述工具式脚手架本体通过连接头与滑移底轮固定连接,所述限位固定块倒扣设置于滑移底轮的前后两侧,且通过螺栓固定。
  7. 根据权利要求6所述的大倾角斜墙收分顶升式钢平台施工装置,其特征在于,还包括可调式斜墙浇筑模架,所述可调式斜墙浇筑模架固定于所述可移动工具式脚手架最外侧的斜面横杆上,所述可调式斜墙浇筑模架包括内侧木模板和外侧木模板、钢管背楞、工具式方 背楞,内侧木模板和外侧木模板之间通过多个定距刚性垫块控制间距,并由对拉螺栓拉结固定,所述内侧木模板外侧通过背楞固定夹具夹设工具式方背楞,所述背楞固定夹具外侧通过伸缩螺杆固定顶托板。
  8. 一种大倾角斜墙收分顶升式钢平台施工方法,其特征在于,包括如下步骤:
    步骤S1、提供如权利要求7所述的大倾角斜墙收分顶升式钢平台施工装置备用,通过顶升油缸体系将整体钢平台模架系统顶升至待浇筑斜墙收分段底端下方一定高度位置,并通过钢平台底梁上的搁置牛腿,将钢平台固定在核心筒第一直墙段预留洞上;
    步骤S2、在第一钢平台体系顶梁下方焊接旋转套筒,下部直筋穿过所述旋转套筒后,与上部斜筋连接,并将第一钢平台体系顶梁自由端浇筑于第一直墙段墙体内;
    步骤S3、施工斜撑,所述斜撑上端与第一钢平台体系顶梁下翼缘焊接连接,所述斜撑下端与斜墙收分段下方的左侧第一直墙段顶端的预埋件固定连接;
    步骤S4、将可移动工具式脚手架吊运至第一钢平台体系顶梁的轨道基座上;采用转换顶升油缸体系在右侧第一直墙段继续进行第二钢平台体系顶升施工;
    步骤S5、在可移动工具式脚手架最外侧斜面横杆上安装可调式斜墙浇筑模架,通过各点伸缩螺杆和BIM技术精准调整模板位置,进行左侧斜墙收分段浇筑施工,并同步进行右侧第一直墙段施工;
    步骤S6、继续搭设工具式外挂脚手架作为外脚手,以第二钢平 台体系为内脚手,在左侧斜墙收分段上方的第二直墙段顶端两侧扣接式连接临时支撑钢胎架,并在临时支撑钢胎架上固定临时焊接施工平台,拆除架设在斜墙收分段下方的临时施工脚手;
    步骤S7、完成第二钢平台体系增补施工,形成增补钢平台,利用先前搭设的工具式脚手架标准节及预先设计的非标段在增补钢平台外侧安装可移动工具式脚手架,之后安装钢大模,并绑扎钢筋、浇筑混凝土,利用增补钢平台继续完成第二直墙段及其上部结构施工。
  9. 根据权利要求8所述的方法,其特征在于,所述第一钢平台体系和第二钢平台体系均按照核心筒剪力墙斜墙收分段收分情况进行模块化设计,所述第一钢平台体系和第二钢平台体系之间通过模块化构件高强螺栓连接。
PCT/CN2023/084697 2022-10-12 2023-03-29 一种大倾角斜墙收分顶升式钢平台施工装置及方法 WO2024077880A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211243467.XA CN115306152B (zh) 2022-10-12 2022-10-12 一种大倾角斜墙收分顶升式钢平台施工装置及方法
CN202211243467.X 2022-10-12

Publications (1)

Publication Number Publication Date
WO2024077880A1 true WO2024077880A1 (zh) 2024-04-18

Family

ID=83867652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084697 WO2024077880A1 (zh) 2022-10-12 2023-03-29 一种大倾角斜墙收分顶升式钢平台施工装置及方法

Country Status (2)

Country Link
CN (1) CN115306152B (zh)
WO (1) WO2024077880A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115306152B (zh) * 2022-10-12 2022-12-16 上海建工一建集团有限公司 一种大倾角斜墙收分顶升式钢平台施工装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1037478A (ja) * 1996-07-30 1998-02-10 Hazama Gumi Ltd 屋根の自動上昇装置と屋根を上昇して建築物を施工する方法
CN103967277A (zh) * 2014-05-21 2014-08-06 中国建筑第八工程局有限公司 超高层核心筒倾斜剪力墙的施工方法
JP2018071080A (ja) * 2016-10-25 2018-05-10 株式会社東京架設 仮設足場用跳ね出し架台
CN108331336A (zh) * 2018-03-12 2018-07-27 上海建工建集团有限公司 楼板同步施工的整体提升钢平台系统及其施工方法
CN109457931A (zh) * 2018-11-07 2019-03-12 上海建工建集团有限公司 适用于斜墙施工的筒架支撑式整体钢平台及其施工方法
CN109457951A (zh) * 2018-11-07 2019-03-12 上海建工建集团有限公司 收分剪力墙模架系统及其施工方法
CN112482434A (zh) * 2020-10-23 2021-03-12 浙江世润建创科技发展有限公司 定型化大模板直立薄壁侧墙及施工方法
CN115012634A (zh) * 2022-06-13 2022-09-06 上海建工一建集团有限公司 一种核心筒斜墙施工的钢平台变形施工结构及方法
CN115306152A (zh) * 2022-10-12 2022-11-08 上海建工一建集团有限公司 一种大倾角斜墙收分顶升式钢平台施工装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109162437B (zh) * 2018-10-11 2023-07-14 上海建工一建集团有限公司 用于多筒钢板剪力墙的整体钢平台及其施工方法
CN209482679U (zh) * 2018-11-07 2019-10-11 上海建工一建集团有限公司 适用于斜墙施工的筒架支撑式整体钢平台
US11655641B2 (en) * 2019-12-29 2023-05-23 The Third Construction Co., Ltd Of China Construction Third Engneering Bureau Construction building equipment and construction method thereof
CN115233960B (zh) * 2022-06-13 2023-06-02 上海建工一建集团有限公司 一种用于空中增加核心筒墙体的整体施工平台结构及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1037478A (ja) * 1996-07-30 1998-02-10 Hazama Gumi Ltd 屋根の自動上昇装置と屋根を上昇して建築物を施工する方法
CN103967277A (zh) * 2014-05-21 2014-08-06 中国建筑第八工程局有限公司 超高层核心筒倾斜剪力墙的施工方法
JP2018071080A (ja) * 2016-10-25 2018-05-10 株式会社東京架設 仮設足場用跳ね出し架台
CN108331336A (zh) * 2018-03-12 2018-07-27 上海建工建集团有限公司 楼板同步施工的整体提升钢平台系统及其施工方法
CN109457931A (zh) * 2018-11-07 2019-03-12 上海建工建集团有限公司 适用于斜墙施工的筒架支撑式整体钢平台及其施工方法
CN109457951A (zh) * 2018-11-07 2019-03-12 上海建工建集团有限公司 收分剪力墙模架系统及其施工方法
CN112482434A (zh) * 2020-10-23 2021-03-12 浙江世润建创科技发展有限公司 定型化大模板直立薄壁侧墙及施工方法
CN115012634A (zh) * 2022-06-13 2022-09-06 上海建工一建集团有限公司 一种核心筒斜墙施工的钢平台变形施工结构及方法
CN115306152A (zh) * 2022-10-12 2022-11-08 上海建工一建集团有限公司 一种大倾角斜墙收分顶升式钢平台施工装置及方法

Also Published As

Publication number Publication date
CN115306152A (zh) 2022-11-08
CN115306152B (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
CN110644664A (zh) 装配式建筑施工方法及叠合板施工支撑系统
CN206680962U (zh) 液压自升桁架式悬臂重型拱坝模板系统
WO2024077880A1 (zh) 一种大倾角斜墙收分顶升式钢平台施工装置及方法
AU2013212529A1 (en) Automated formwork climbing system
CN111119071A (zh) 混凝土预制节段箱梁拼装施工方法
CN111455852A (zh) 桥梁施工用移动模架的拼装方法
CN110735530A (zh) 一种外墙钢模架与内墙铝模板结合的系统及其操作方法
WO2024077879A1 (zh) 一种斜墙外翻爬升式钢平台施工装置及方法
CN113833263A (zh) 一种用于框架柱的整体灯笼式支架循环吊装施工方法
CN111535188A (zh) 钢索塔的导轨式安装系统
CN206667192U (zh) 液压自升悬臂重型模板
CN106812121B (zh) 用于自爬升悬臂模板的退模合模装置
CN112609966B (zh) 一种利用简易格构柱叠合板体系构筑超厚混凝土顶板的施工方法
CN209907886U (zh) 一种可调节的装配式楼梯施工平台
CN212316696U (zh) 钢索塔的导轨式安装系统
CN113719116A (zh) 一种基于铝合金模板支撑的叠合楼板施工方法
CN112942809A (zh) 一种可机械化施工的组合模板拼装方法
CN112323632A (zh) 一种用于空心墩封顶的拉压结合支撑体系及施工方法
CN113802468A (zh) 一种非对称斜拉桥异形混凝土塔柱施工工艺
CN219993240U (zh) 一种施工电梯基础侧向回顶装置
CN216157149U (zh) 一种叠合楼板的铝合金模板支撑体系
CN215594920U (zh) 一种回顶式悬挑结构模板支撑体系
CN220246891U (zh) 一种适用于基坑中的坑成型的一体化模板装置
KR200256837Y1 (ko) 조립식 밴드와 받침틀을 이용한 교각비계 받침틀 구조
CN218436660U (zh) 一种快速校正湿接缝钢筋的简易装置