WO2024077677A1 - 气凝胶复合材料及其制备方法、应用 - Google Patents

气凝胶复合材料及其制备方法、应用 Download PDF

Info

Publication number
WO2024077677A1
WO2024077677A1 PCT/CN2022/128949 CN2022128949W WO2024077677A1 WO 2024077677 A1 WO2024077677 A1 WO 2024077677A1 CN 2022128949 W CN2022128949 W CN 2022128949W WO 2024077677 A1 WO2024077677 A1 WO 2024077677A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerogel
composite material
polymer
aerogel composite
preparing
Prior art date
Application number
PCT/CN2022/128949
Other languages
English (en)
French (fr)
Inventor
郝晓明
Original Assignee
电子科技大学长三角研究院(湖州)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学长三角研究院(湖州) filed Critical 电子科技大学长三角研究院(湖州)
Publication of WO2024077677A1 publication Critical patent/WO2024077677A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of aerogels, and in particular to an aerogel composite material and a preparation method and application thereof.
  • aerogel is a solid material form, composed of colloidal particles or polymer molecules that are mutually aggregated to form a nanoporous network structure, and a highly dispersed solid material filled with a gaseous dispersion medium in the pores. It is also one of the solids with very low density among existing materials. It has excellent properties such as ultra-low density, high specific surface area, high porosity, extremely low thermal conductivity and low dielectric constant. It is widely used in super insulation materials, sound insulation materials, particle detectors, low dielectric constant aerogel films, inertial targeting materials, oil and heavy metal adsorption, oil storage, gas storage, catalyst carriers, supercapacitors and filter materials. At present, the industry has conducted extensive research on various types of aerogels such as silica aerogel, cross-linked polymer aerogel, metal foam, pyrolytic carbon material and cellulose aerogel.
  • aerogels There are many types of aerogels, including silicon-based, carbon-based, sulfur-based, metal oxide-based or metal-based, etc.
  • the most common aerogel is silicon-based aerogel.
  • Silica aerogel has excellent thermal insulation performance and environmental stability as a thermal insulation and fireproof material, and its thermal conductivity is as low as 17 ⁇ 21mW ⁇ m -1 ⁇ K -1 . It is usually prepared by the sol-gel method, but the shrinkage produced during the aging and drying process of the gel can easily cause the gel to crack, resulting in a low yield of block aerogels, poor mechanical properties, and fragility. It can only be strengthened and toughened with the help of materials such as fiber cloth, which seriously hinders the commercialization of aerogels.
  • aerogels prepared from various polymer nanofibers such as acrylic/silica nanofibers, carbon nanotubes, and cellulose nanofibers have greatly improved their mechanical properties, such as mechanical strength and toughness, due to their cross-linked, interpenetrating mixed network structures.
  • the storage modulus of cellulose aerogels can reach up to 1.6GPa; however, for such composite systems, the inherent low mechanical strength of nanofibers limits the overall physical and chemical stability and mechanical properties of aerogels, and traditional research methods are relatively complex and not resistant to high temperatures; graphene, carbon nanotubes, or all-carbon aerogels have excellent electrical properties and thermal stability, but the mechanical strength of the aerogels in this system is not high.
  • Polymer aerogels are lightweight, flexible, and easy to process, which has led to the continuous expansion of their application areas.
  • Common polymer aerogel materials include phenolic (RF), polystyrene (PS), and polyimide (PI) aerogels.
  • RF phenolic
  • PS polystyrene
  • PI polyimide
  • PMDA 4,4'-diphenylmethane diisocyanate
  • MDI 4,4'-diphenylmethane diisocyanate
  • the existing methods for preparing PI aerogels still have the following defects: the process product polyamic acid will degrade rapidly during storage, resulting in a decrease in its molecular weight, which ultimately affects the performance of polyimide aerogels; in addition, the cross-linked PI aerogels prepared by the prior art generally have a higher density, which increases the cost of the aerogels, and at the same time, the thermal insulation performance is low, making it difficult to meet the requirements of aerogel thermal insulation base materials.
  • lithium batteries as the core component of electric vehicles, have high energy density and long cycle life.
  • the temperature of the flames emitted by the battery can reach 1200°C. After the heat is transferred to the entire battery pack through heat conduction, heat convection and heat diffusion, it will cause the entire battery pack to catch fire and explode, seriously endangering the safety of passengers. Therefore, it is necessary to design fireproof and heat-insulated battery packs for electric vehicles; in addition, when the battery pack catches fire, the impact force of the flame reaches 1MPa. It is difficult for existing battery protection materials to meet the requirements of fire prevention, heat insulation and impact resistance. Once the battery catches fire, there is a lack of reliable fireproof materials for isolation, and the fire cannot be effectively contained.
  • CN102399445A uses inorganic flame retardants to prepare flame-retardant VO-grade silicone fire-retardant electronic potting glue, but the potting glue cannot withstand the burning of 1200°C for a long time and has no adhesion to the substrate;
  • CN109468058A uses nano-modified polysiloxane oligomers to prepare fire-retardant silicone materials with high bonding strength to the substrate, but it still cannot withstand fire at 1200°C;
  • CN103059725A uses benzyl silicone resin and synthetic resin to prepare fire-retardant silicone materials with high bonding strength to the substrate.
  • Ceramic filler is used to prepare an organic silicon material that forms a vertical hard ceramic layer at high temperature, but the material has a high density and cannot meet the lightweight requirements. Although it can withstand high-temperature burning at 1200°C, its thermal insulation performance is poor and it still cannot isolate the heat transfer caused by thermal runaway;
  • CN112500789A discloses a fireproof and thermal insulation coating for delaying the thermal diffusion of lithium batteries and a preparation method thereof. The fireproof and thermal insulation coating has a low density and is suitable for lightweight requirements, and can withstand 1500°C fire for 2h, but the coating needs to work in a wet film state, which greatly limits its practical application;
  • CN 110265746A provides a functional thermal insulation material for lithium batteries and a preparation method thereof.
  • the material is made by ball-milling a certain proportion of melamine, tetrabromobisphenol, hexachlorocyclotriphosphazene, pentaerythritol phosphate, ammonium polyphosphate, ammonium chloride, aluminum hydroxide, etc., and then putting them into a mold for compression molding, and then putting them into a bag body.
  • This type of thermal insulation material uses phase change material to absorb the heat generated when the battery catches fire, but it cannot provide structural strength and good thermal insulation effect, and cannot meet the lightweight requirements.
  • the first object of the present invention is to provide an aerogel composite material, which has high thermal insulation and fireproof properties, can be used as a component of a lithium ion battery package, and has good mechanical properties.
  • the second object of the present invention is to provide a method for preparing the aerogel composite material.
  • the third object of the present invention is to provide use of the aerogel composite material in thermal insulation materials and/or fireproof materials and/or battery protection materials.
  • An aerogel composite material comprising a polymer aerogel and an inorganic nano aerogel
  • the polymer aerogel is an aerogel made of at least one of aramid, poly(p-phenylene benzobisoxazole) and polyimide; and the inorganic nano aerogel includes silica aerogel.
  • the aerogel composite material is solid and flexible, and the shape of the material can be arbitrarily controlled;
  • the aerogel composite material has a porous structure, wherein the porosity of the aerogel composite material is >99.5%, and/or the pore size of the aerogel composite material is 10 nm to 200 nm.
  • the method for preparing the aerogel composite material as described above comprises the following steps:
  • step (3) The mixed gel obtained in step (2) is evacuated to allow the silica sol to completely penetrate into the polymer wet gel, and then allowed to stand until it is completely gelled, and then subjected to aging treatment and surface hydrophobicity treatment in sequence to obtain an aerogel composite material.
  • the method for preparing the polymer dispersion comprises: fully mixing the polymer and the solvent in proportion, and continuously stirring for 144 h to 192 h under dry conditions at room temperature to obtain a polymer dispersion; wherein the polymer comprises at least one of aramid, poly(p-phenylene benzobisoxazole) and polyimide.
  • the phase inversion method comprises: immersing the polymer dispersion in a second solvent to effect solvent exchange;
  • phase inversion method is repeated 1 to 3 times.
  • the preparation method of the silica sol comprises: fully mixing tetraethyl orthosilicate, ethanol and deionized water, and then adjusting the pH to 2-3 with hydrochloric acid to obtain the silica sol;
  • the method further comprises: adjusting the pH value of the silica sol to 5-7 by using ammonia water.
  • the aging treatment comprises: standing under closed conditions for 1 h to 4 h, then adding anhydrous ethanol, and sealing and standing under water bath conditions for 4 h to 6 h.
  • the surface hydrophobicity treatment comprises: adding n-hexane at 50° C. to 80° C. to perform solvent replacement; preferably, the time for the solvent replacement is 2 h to 6 h, and the solvent replacement is performed 1 to 4 times in total.
  • step (3) a drying process is further included;
  • the drying treatment comprises: drying at 50°C-70°C for 0.5h-2h, then heating to 70°C-90°C for drying for 1h-4h, and finally heating to 90°C-120°C for drying for 0.5h-2h; and/or, the drying treatment comprises: drying using a supercritical carbon dioxide method.
  • the beneficial effects of the present invention are as follows: the inorganic nano-aerogel in the aerogel composite material of the present invention permeates and evenly fills the gaps of the polymer aerogel, so that the aerogel composite material has good mechanical properties, thermal insulation properties and high temperature resistance, and can be used in engineering fireproof materials or lithium ion battery packages and other fields.
  • the aerogel of the present invention has a lower thermal conductivity and a higher heat resistance temperature than traditional aerogels, and therefore has good application prospects.
  • FIG1 is a schematic structural diagram of an aerogel composite material of the present invention.
  • FIG2 is a thermogravimetric analysis graph of Example 1 of the present invention.
  • FIG3 is a thermogravimetric analysis graph of Example 2 of the present invention.
  • FIG4 is a thermogravimetric analysis graph of Example 3 of the present invention.
  • FIG5 is a schematic diagram of the method of Experimental Example 2 of the present invention.
  • FIG6 is a graph showing the thermal insulation performance of Example 1 of the present invention.
  • FIG7 is a graph showing the thermal insulation performance of Example 2 of the present invention.
  • FIG8 is a graph showing the thermal insulation performance of Example 3 of the present invention.
  • An aerogel composite material comprising polymer aerogel and inorganic nano aerogel; wherein the polymer aerogel is an aerogel made of at least one of aramid, poly(p-phenylene benzobisoxazole) and polyimide; and the inorganic nano aerogel comprises silica aerogel.
  • FIG1 provides a schematic structural diagram of the aerogel composite material of the present invention. As shown in FIG1 , in the present invention, the inorganic nano-aerogel is uniformly dispersed in the gaps of the polymer aerogel.
  • the method for preparing the aerogel composite material as described above comprises the following steps:
  • step (3) The mixed gel obtained in step (2) is evacuated to allow the silica sol to completely penetrate into the polymer wet gel, and then allowed to stand until it is completely gelled, and then subjected to aging treatment and surface hydrophobicity treatment in sequence to obtain an aerogel composite material.
  • the method for preparing the aerogel composite material specifically comprises the following steps:
  • polymer dispersion wherein the polymer comprises at least one of aramid, poly(p-phenylene benzobisoxazole), and polyimide;
  • phase inversion method i.e., immersing the polymer dispersion in a second solvent to exchange solvents and obtain a polymer wet gel, first subjecting the polymer wet gel to freeze drying and/or ethanol replacement to remove moisture, and then subjecting the polymer wet gel to a supercritical carbon dioxide method to obtain a loose and porous polymer aerogel;
  • step (4) vacuumizing the mixed gel obtained in step (4) to allow the silica sol to completely penetrate into the polymer wet gel, and then allowing it to stand until it is completely gelled, aging it under closed conditions for 1 h to 4 h, and then adding anhydrous ethanol, and aging it in a sealed state in a water bath for 4 h to 6 h;
  • step (1) when the polymer is aramid 1414 (poly(p-phenylene terephthalamide, PPTA), the solvent includes dimethyl sulfoxide and potassium hydroxide;
  • step (1) when the polymer is poly(p-phenylene benzobisoxazole) (PBO), the solvent includes methanesulfonic acid and trifluoroacetic acid;
  • the solvent comprises concentrated sulfuric acid with a mass fraction of 98%;
  • the mass ratio of the polymer to the solvent is 1:(8-12); as a more preferred embodiment, the mass ratio of the polymer to the solvent is 1:10.
  • the second solvent includes deionized water; as a more preferred embodiment, the temperature of the deionized water is 4°C to 18°C;
  • the second solvent includes isopropanol; as a more preferred embodiment, the temperature of the isopropanol is -40°C; as a more preferred embodiment, after the phase conversion is achieved by the isopropanol, the step of soaking in deionized water to wash away the isopropanol is further included;
  • the second solvent includes deionized water; as a more preferred embodiment, the temperature of the deionized water is 10°C.
  • step (3) the volume ratio of the tetraethyl orthosilicate, the ethanol and the deionized water is 5:17:1.6.
  • step (4) the volume ratio of the silica sol to the polymer aerogel is 1:1.
  • Step 1 Add poly(p-phenylene terephthalamide) (PPTA) fiber (DuPont, USA, K49) into a mixed solvent of dimethyl sulfoxide (DMSO) and potassium hydroxide (KOH), and stir for one week under dry conditions at room temperature to form a PPTA solution with a mass fraction of 10 wt%.
  • PPTA poly(p-phenylene terephthalamide)
  • Step 2 Add the above solution into the mold and degas under vacuum.
  • Step 3 Immerse the solution together with the mold into deionized water to allow solvent exchange to occur.
  • PPTA undergoes phase inversion and solidifies to form a wet gel; this step is repeated 3 times to allow DMSO and KOH to be fully washed out.
  • Step 4 Freeze drying, and then drying using a carbon dioxide supercritical process to obtain a loose and porous PPTA aerogel.
  • Step 5 7 parts by volume of tetraethyl orthosilicate (TEOS), 17 parts by volume of ethanol, and 1.92 parts by volume of deionized water were mixed under stirring conditions, and the pH value was adjusted to 3 with a hydrochloric acid solution, and stirred for 6.5 hours to fully hydrolyze the precursor.
  • TEOS tetraethyl orthosilicate
  • Step 6 Add ammonia water dropwise to the solution of step 5, adjust the pH value to 7.3, and obtain silica sol; after rapidly stirring the silica sol for 2 minutes, quickly add it to the mold containing PPTA aerogel, and evacuate the mold to allow the solution to quickly and fully penetrate into the pores of the PPTA aerogel. After it is completely gelled, cover it with plastic wrap to form a sealed environment, and let it stand at room temperature for aging for 2 hours.
  • Step 7 Add anhydrous ethanol and seal and age at 60°C for 5 hours.
  • Step 8 Use n-hexane as a solvent replacement agent to perform solvent replacement at 60° C., once every 4 hours, for a total of 2 times.
  • Step nine Dry the obtained sample in a vacuum oven at 60°C for 1 hour, then increase the temperature to 80°C for 2 hours, and finally increase the temperature to 100°C for 1 hour to finally obtain PPTA/ SiO2 composite aerogel.
  • Step 1 Add poly (p-phenylene benzobisoxazole) (PBO) fiber (Zhongke Jinqi PBO HM) into a mixed solvent of methanesulfonic acid (MSA) and trifluoroacetic acid (TFA), and stir for one week under dry conditions at room temperature to form a PBO solution with a mass fraction of 1 wt%.
  • PBO poly (p-phenylene benzobisoxazole)
  • MSA methanesulfonic acid
  • TFA trifluoroacetic acid
  • Step 2 Add the above solution into the mold after vacuum degassing.
  • Step 3 Immerse the solution together with the mold in isopropanol at a temperature of -40°C for 4 hours to allow solvent exchange to occur. During this process, PBO undergoes phase inversion and solidification to form a wet gel. This process is repeated twice.
  • Step 4 Soak and clean the PBO wet gel with a large amount of deionized water. Repeat this step 3 times to fully wash out the isopropanol.
  • Step 5 Drying is then performed using a carbon dioxide supercritical process to obtain a loose and porous PBO aerogel.
  • Step 6 Mix 5 parts by volume of methyltrimethoxysilane (MTMS), 17 parts by volume of ethanol, and 1.6 parts by volume of deionized water under stirring conditions, add concentrated hydrochloric acid solution, adjust the pH value to 2.0, and stir for 50 minutes to fully hydrolyze the precursor.
  • MTMS methyltrimethoxysilane
  • Step 7 Add ammonia water dropwise into the solution and adjust the pH value to 7 to obtain silica sol; after rapidly stirring the silica sol for 2 minutes, quickly add it into the mold containing the PBO aerogel and evacuate the mold to allow the solution to quickly and fully penetrate into the pores of the PBO aerogel. After it is completely gelled, cover it with plastic wrap to form a sealed environment and age it at room temperature for 2 hours.
  • Step 8 Add anhydrous ethanol and seal and age at 60°C for 5 hours.
  • Step 9 Use n-hexane as a solvent replacement agent to perform solvent replacement at 60° C., once every 4 hours, for a total of 2 times.
  • Step 10 Dry the obtained sample in a vacuum oven at 60°C for 1 hour, then increase the temperature to 80°C for 2 hours, and finally increase the temperature to 100°C for 1 hour to finally obtain PBO/ SiO2 composite aerogel.
  • Step 1 Add polyimide (PI) (Changchun Gaoqi, Yilun 95) fiber into concentrated sulfuric acid and stir for one week under dry conditions at room temperature to form a PI solution with a mass fraction of 1wt%.
  • PI polyimide
  • Step 2 Vacuum degas the above solution and then add it into the mold.
  • Step 3 Immerse the solution together with the mold into deionized water with a mass of 40 times and a temperature of 10°C for 4 hours to allow solvent exchange to occur. During this process, PI undergoes phase inversion and solidifies to form a wet gel. This process is repeated 3 times.
  • Step 4 Then use the carbon dioxide supercritical process to dry it to obtain loose and porous PI aerogel.
  • Step 5 Mix 3 parts by volume of tetraethyl orthosilicate (TEOS), 17 parts by volume of ethanol, and 1.6 parts by volume of deionized water under stirring conditions, add hydrochloric acid solution, adjust the pH value to 2.4, and stir for 3 hours to fully hydrolyze the precursor.
  • TEOS tetraethyl orthosilicate
  • Step 6 Add dilute ammonia water dropwise to the solution and adjust the pH value to 6.6 to obtain silica gel; after rapidly stirring the silica gel for 2 hours, add it to the mold containing PI aerogel and evacuate the mold to allow the solution to quickly and fully penetrate into the pores of the PI aerogel. After it is completely gelled, cover it with plastic wrap to form a sealed environment and let it stand and age at room temperature for 2 hours.
  • Step 7 Add anhydrous ethanol and seal and age at 60°C for 5 hours.
  • Step 8 Use n-hexane as a solvent replacement agent to perform solvent replacement at 60° C., once every 4 hours, for a total of 2 times.
  • Step nine Dry the obtained sample in a vacuum oven at 60°C for 1 hour, then increase the temperature to 80°C for 2 hours, and finally increase the temperature to 100°C for 1 hour to finally obtain PI/ SiO2 composite aerogel.
  • the composite aerogels prepared in Examples 1 to 3 were sampled for testing, and 5 samples of each composite aerogel were taken to form a volume of 500 mm ⁇ 500 mm ⁇ 10 mm.
  • the thermal conductivity test method is detailed in: GB/T32981-2016.
  • the thermal conductivity test results of the 5 samples in each example were averaged.
  • thermogravimetric analysis was performed on the composite aerogels prepared in Examples 1 to 3 of the present invention.
  • the thermogravimetric analysis test method is detailed in: GB/T 27761-2011.
  • the results of the thermogravimetric test are shown in Figures 2, 3, and 4, which show that the composite aerogels prepared in the present invention have good thermal stability.
  • the composite aerogels prepared in Examples 1 to 3 were tested and sampled; the high temperature fire resistant and heat insulating properties of the composite aerogels under extreme fire conditions were simulated and tested, and the test scene simulation is shown in FIG5 .
  • the flame of a propane/butane blowtorch was used to contact one side of the aerogel, and the flame temperature was 1200° C.
  • the temperature change over time was measured on the other side of the composite aerogel using a thermocouple, and the temperature data was recorded and summarized using a computer.
  • the results of the heat insulation performance test are shown in FIG6 , FIG7 , and FIG8 , which shows that the composite aerogel prepared by the present invention has good heat insulation and fire resistant properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种气凝胶复合材料及其制备方法、应用。所述气凝胶复合材料包括聚合物气凝胶和无机纳米气凝胶;所述聚合物气凝胶为包括芳纶、聚对苯撑苯并二恶唑、聚酰亚胺中至少一种制得的气凝胶;所述无机纳米气凝胶包括二氧化硅气凝胶。气凝胶复合材料中无机纳米气凝胶渗透并均匀填充至聚合物气凝胶的间隙中,使气凝胶复合材料具有良好的机械性能、隔热性能和耐高温性能,可以用于工程防火材料或锂离子电池包体等多领域,具有良好的应用前景。

Description

[根据细则37.2由ISA制定的发明名称] 气凝胶复合材料及其制备方法、应用 技术领域
本发明涉及气凝胶技术领域,具体而言,涉及一种气凝胶复合材料及其制备方法、应用。
背景技术
20世纪30年代,Kistler研究出世界首例气凝胶;气凝胶,是一种固体物质形态,由胶体粒子或高聚物分子相互聚结构成纳米多孔网络结构,并在孔隙中充满气态分散介质的一种高分散固态材料,也是现有材料中密度很小的固体之一,其具有超低密度、高比表面积、高孔隙率、导热系数极低及低介电常数等优异等性能,在超级隔热材料、隔音材料、粒子探测器、低介电常数气凝胶薄膜、惯性靶向材料、油及重金属吸附、储油、储存气体、催化剂载体、超级电容器及过滤材料等领域具有广泛应用。目前业内对二氧化硅气凝胶,交联聚合物气凝胶,金属泡沫、热解碳材料及纤维素气凝胶等各类气凝胶进行了广泛的研究。
气凝胶的种类很多,有硅系、碳系、硫系、金属氧化物系或金属系等等,常见的气凝胶为硅系气凝胶,二氧化硅气凝胶作为隔热防火材料具有优异的隔热性能和耐环境稳定性,导热系数低达17~21mW·m -1·K -1。通常采用溶胶凝胶法制备,但在凝胶老化和干燥过程中产生的收缩,极易造成凝胶的开裂,导致块状气凝胶成品率不高,且机械性能差、易碎,只能借助纤维布等材料进行增强增韧,严重阻碍气凝胶的商业化进程。
与传统的二氧化硅气凝胶相比,由腈纶/二氧化硅纳米纤维、碳纳米管、纤维素纳米纤维等各种聚合物纳米纤维制备的气凝胶,其交联、互穿混合网络结构使气凝胶的机械性能得到了很大的提高,比如机械强度和韧性。例如,纤维素气凝胶储能模量最高可达1.6GPa;然而针对此种复合体系,纳米纤维的固有机械强度不高限制了气凝胶的整体物理化学稳定性及机械性能,并且传统的研究方法较为复杂,且不耐高温;石墨烯、碳纳米管或全碳气凝胶具有优异的电学性能和热稳定性,但该体系的气凝胶机械性强度不高。
技术问题
聚合物气凝胶轻质、柔性、易于加工使其应用领域不断扩大,常见的聚合物气凝胶材料包括酚醛(RF) 、聚苯乙烯(PS) 及聚酰亚胺(PI)气凝胶等。例如:2010年,美国密苏里大学在室温下边用PMDA与4,4’-二苯基甲烷二异氰酸酯(MDI)为原料,通过异氰酸醋法合成出了PI气凝胶。但是现有的制备PI气凝胶的方法仍然存在以下几个缺陷:过程产物聚酰胺酸在存放过程中会迅速降解,导致其分子量降低,最终影响聚酰亚胺气凝胶的性能;此外,现有技术制备的交联型PI气凝胶的密度普遍较高,增加了气凝胶的成本,且同时隔热性能较低,难以达到气凝胶隔热基础材料的要求。
从另一方面上看,锂电池作为电动汽车的核心组成部分,能量密度高、循环寿命长,但是电池在发生热失控时喷射火焰温度可高达1200℃,热量通过热传导、热对流和热扩散等方法传递至整个电池包后会导致整个电池包起火、爆炸,严重危害乘客人身安全。因此,需要对电动汽车的电池包进行防火隔热设计;另外电池包起火时,火焰冲击力达到1MPa,现有的电池防护材料很难兼顾防火、隔热和抗冲击要求,一旦电池发生失火,缺少可靠的防火材料进行隔离,不能有效遏制火情。
目前国内外有很多专利对防火阻燃硅胶进行了研究;如CN102399445A采用无机阻燃剂制备了阻燃VO级别的有机硅防火电子灌封胶,但该灌封胶无法长时间耐1200℃高温的灼烧且对基材无粘结性;再如CN109468058A通过纳米改性聚硅氧烷低聚物制备了对基材粘结强度高的防火有机硅材料,但依然无法在1200℃高温下抗住火烧;再如CN103059725A采用苯甲基硅树脂和成瓷填料制备了在高温下形成竖硬陶瓷层的有机硅材料,但该材料密度大,无法满足轻量化需求,虽然可以耐1200℃高温灼烧,但隔热性能不好,依然无法隔离热失控带来的热量的传递;CN112500789A公布了一种延缓锂电池热扩散用的防火隔热涂料及其制备方法,该防火隔热涂料密度低,适合轻量化需求,且能耐1500℃火烧2h,但是该涂层需要在湿膜状态下工作,极大地限制了其实际应用;CN 110265746A提供了一种应用于锂电池的功能性隔热材料及其制备方法,该材料是将一定比例的三聚氰胺、四溴双酚、六氯环三磷腈、季戊四醇磷酸酯、聚磷酸铵、氯化铵、氢氧化铝等经过球磨后放入模具压制成型,装入袋体中制成,该类隔热材料是利用相变物质吸收电池起火时产生的热量,但并不能提供结构强度和很好的绝热效果,且不能满足轻量化需求。
有鉴于此,特提出本发明。
技术解决方案
本发明的第一目的在于提供一种气凝胶复合材料,所述的气凝胶复合材料具有高隔热防火性能,能够用于锂离子电池包体组分,且具有良好的机械性能。
本发明的第二目的在于提供一种所述的气凝胶复合材料的制备方法。
本发明的第三目的在于提供所述的气凝胶复合材料在隔热材料和/或防火材料和/或电池防护材料方面的用途。
为了实现本发明的上述目的,特采用以下技术方案:
一种气凝胶复合材料,所述气凝胶复合材料包括聚合物气凝胶和无机纳米气凝胶;
其中,所述聚合物气凝胶为包括芳纶、聚对苯撑苯并二恶唑、聚酰亚胺中至少一种制得的气凝胶;所述无机纳米气凝胶包括二氧化硅气凝胶。
优选地,所述气凝胶复合材料呈现固态,具有柔性,可以任意地控制材料形状;
优选地,所述气凝胶复合材料具有多孔结构,其中,所述气凝胶复合材料的孔隙度>99.5%,和/或,所述气凝胶复合材料的孔径为10nm~200nm。
如上所述的气凝胶复合材料的制备方法包括如下步骤:
(1)将聚合物分散液通过相转化法制得聚合物湿凝胶,将所述聚合物湿凝胶通过冷冻干燥法和/或二氧化碳超临界干燥法制备得到聚合物气凝胶;
(2)将硅溶胶添加至所述聚合物气凝胶;
(3)将步骤(2)所的混合胶抽真空至,使所述硅溶胶完全渗透至所述聚合物湿凝胶中,然后静置直到完全凝胶化,依次经过老化处理、表面疏水性处理,而后得到气凝胶复合材料。
优选地,在步骤(1)中,所述聚合物分散液的制备方法包括:将聚合物与溶剂按比例充分混合,在室温干燥的条件下持续搅拌144h~192h,得到聚合物分散液;其中,所述聚合物包括芳纶、聚对苯撑苯并二恶唑、聚酰亚胺中至少一种。
优选地,在步骤(1)中,所述相转化法包括:将所述聚合物分散液浸入第二溶剂中以发生溶剂交换;
更优选地,所述相转化法重复进行1~3次。
优选地,在步骤(2)中,所述硅溶胶的制备方法包括:将正硅酸乙酯、乙醇与去离子水充分混合,而后通过盐酸调节pH至2~3,得到所述硅溶胶;
更优选地,在进行步骤(2)前还包括:通过氨水将所述硅溶胶的pH调节至5~7。
优选地,在步骤(3),所述老化处理包括:在封闭条件下静置1h~4h,而后加入无水乙醇,在水浴条件下密封静置4h~6h。
优选地,所述表面疏水性处理包括:在50℃~80℃下加入正己烷以进行溶剂置换;优选地,所述溶剂置换的时间为2h~6h,所述溶剂置换共进行1~4次。
优选地,在步骤(3)后还包括干燥处理;
更优选地,所述干燥处理包括:在50℃~70℃下干燥0.5h~2h,而后升温至70℃~90℃下干燥1h~4h,最后升温至90℃~120℃下干燥0.5h~2h;和/或,所述干燥处理包括:采用超临界二氧化碳法进行干燥。
如上所述的气凝胶复合材料在隔热材料和/或防火材料和/或电池防护材料方面的用途。
有益效果
与现有技术相比,本发明的有益效果为:本发明的气凝胶复合材料中无机纳米气凝胶渗透并均匀填充至聚合物气凝胶的间隙中,使气凝胶复合材料具有良好的机械性能、隔热性能和耐高温性能,可以用于工程防火材料或锂离子电池包体等多领域。本发明的气凝胶比传统气凝胶具有更低的导热系数,更高的耐热温度,因此具有良好的应用前景。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的气凝胶复合材料的结构示意图;
图2为本发明实施例1的热重分析曲线图;
图3为本发明实施例2的热重分析曲线图;
图4为本发明实施例3的热重分析曲线图;
图5为本发明试验例2的方法示意图;
图6为本发明实施例1的隔热性能曲线图;
图7为本发明实施例2的隔热性能曲线图;
图8为本发明实施例3的隔热性能曲线图。
本发明的实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明是通过如下实施方式进行的:
一种气凝胶复合材料,所述气凝胶复合材料包括聚合物气凝胶和无机纳米气凝胶;其中,所述聚合物气凝胶为包括芳纶、聚对苯撑苯并二恶唑、聚酰亚胺中至少一种制得的气凝胶;所述无机纳米气凝胶包括二氧化硅气凝胶。
图1提供了本发明的气凝胶复合材料的结构示意图,如图1所示,在本发明中所述无机纳米气凝胶均匀分散在所述聚合物气凝胶的间隙中。
如上所述的气凝胶复合材料的制备方法包括如下步骤:
(1)将聚合物分散液通过相转化法制得聚合物湿凝胶,将所述聚合物湿凝胶通过冷冻干燥法和/或二氧化碳超临界干燥法制备得到聚合物气凝胶;
(2)将硅溶胶添加至所述聚合物气凝胶;
(3)将步骤(2)所的混合胶抽真空,使所述硅溶胶完全渗透至所述聚合物湿凝胶中,然后静置直至完全凝胶化,依次经过老化处理、表面疏水性处理,而后得到气凝胶复合材料。
作为一种优选的实施方式,所述的气凝胶复合材料的制备方法具体地包括如下步骤:
(1)将聚合物与溶剂按比例充分混合,在室温干燥的条件下持续搅拌144h~192h,得到聚合物分散液;其中,所述聚合物包括芳纶、聚对苯撑苯并二恶唑、聚酰亚胺中至少一种;
(2)将所述聚合物分散液通过相转化法,即将所述聚合物分散液浸入第二溶剂中以发生溶剂交换并制得聚合物湿凝胶,将所述聚合物湿凝胶先冷冻干燥法和/或乙醇置换法去除水分,而后通过二氧化碳超临界法制备得到疏松多孔的聚合物气凝胶;
(3)将正硅酸乙酯、乙醇与去离子水充分混合,而后通过盐酸调节pH至2~3,得到所述硅溶胶;通过氨水将所述硅溶胶的pH调节至6~10;
(4)将硅溶胶添加至所述聚合物气凝胶;
(5)将步骤(4)所的混合胶抽真空,使所述硅溶胶完全渗透至所述聚合物湿凝胶中,然后静置直至完全凝胶化,在封闭条件下老化1h~4h,而后加入无水乙醇,在水浴条件下密封老化4h~6h;
(6)在50℃~80℃下加入正己烷以进行溶剂置换1~4次,而后在50℃~70℃下干燥0.5h~2h,而后升温至70℃~90℃下干燥1h~4h,最后升温至90℃~120℃下干燥0.5h~2h,得到所述气凝胶复合材料。
作为一种优选的实施方式,在步骤(1)中,当所述聚合物为芳纶1414(聚对苯二甲酰对苯二胺,PPTA)时,所述溶剂包括二甲基亚砜和氢氧化钾;
作为一种优选的实施方式,在步骤(1)中,当所述聚合物为聚对苯撑苯并二恶唑(PBO)时,所述溶剂包括甲基磺酸和三氟乙酸;
作为一种优选的实施方式,在步骤(1)中,当所述聚合物为聚酰亚胺(PI)时,所述溶剂包括质量分数为98%的浓硫酸;
作为一种优选的实施方式,在步骤(1)中,所述聚合物和溶剂的质量比1:(8~12);作为一种更优选的实施方式,所述聚合物和溶剂的质量比1:10。
作为一种优选的实施方式,在步骤(2)中,当所述聚合物为芳纶1414(聚对苯二甲酰对苯二胺,PPTA)时,所述第二溶剂包括去离子水;作为一种更优选的实施方式,所述去离子水的温度为4℃~18℃;
作为一种优选的实施方式,在步骤(2)中,当所述聚合物为聚对苯撑苯并二恶唑(PBO)时,所述第二溶剂包括异丙醇;作为一种更优选的实施方式,所述异丙醇的温度为-40℃;作为一种更优选的实施方式,在通过所述异丙醇实现所述相转化后,还包括用去离子水浸泡以洗去所述异丙醇的步骤;
作为一种优选的实施方式,在步骤(2)中,当所述聚合物为聚酰亚胺(PI)时,所述第二溶剂包括去离子水;作为一种更优选的实施方式,所述去离子水的温度为10℃。
作为一种优选的实施方式,在步骤(3)中,所述正硅酸乙酯、所述乙醇与所述去离子水的体积比为5:17:1.6。
作为一种优选的实施方式,在步骤(4)中,所述硅溶胶与所述聚合物气凝胶的体积比为1:1。
实施例1
步骤一:将聚对苯二甲酰对苯二胺(PPTA)纤维(美国杜邦,K49)加入到二甲基亚枫(DMSO)和氢氧化钾(KOH) 的混合溶剂中,在室温干燥的条件下搅拌一周,形成质量分数10 wt%的PPTA溶液。
步骤二:将上述溶液加入模具中,并在真空下脱泡。
步骤三:将溶液连同模具一起浸没到去离子水中,使发生溶剂交换,在此过程中PPTA发生相转化固化并形成湿凝胶;该步骤重复3次,使得DMSO和KOH充分洗出。
步骤四:冷冻干燥,然后利用二氧化碳超临界工艺干燥,得到疏松多孔的PPTA气凝胶。
步骤五:将7个体积份的正硅酸乙酯(TEOS)、17个体积份的乙醇、1.92个体积份的去离子水在搅拌条件混合,并通过盐酸溶液将pH值调节到3,搅拌6.5小时,使前驱体充分水解。
步骤六:将氨水逐滴加入到步骤五的溶液中,调节pH值至7.3,得到硅溶胶;快速搅拌硅溶胶2分钟后,迅速加入到盛有PPTA气凝胶的模具中,并抽真空,使溶液快速充分渗透到PPTA气凝胶孔隙中,待其完全凝胶后,加盖保鲜膜,形成密封环境,室温静置老化2小时。
步骤七:加入无水乙醇,并在60℃条件下密封老化5小时。
步骤八:以正己烷作为溶剂置换剂,在60℃下进行溶剂置换,每4小时置换一次,共进行2次。
步骤九:用真空烘箱对所得到的的样品进行干燥,干燥条件为60℃,时间1小时,然后升至80℃干燥2小时,最后升至100℃干燥1小时,最终得到PPTA/SiO 2复合气凝胶。
实施例2 
步骤一:将聚对苯撑苯并二恶唑(PBO)纤维(中科金绮PBO HM)加入到甲基磺酸(MSA)和三氟乙酸(TFA)的混合溶剂中,在室温干燥的条件下搅拌一周,形成质量分数1 wt%的PBO溶液。
步骤二:将上述溶液经过真空脱泡后加入到模具中。
步骤三:将溶液连同模具一起浸没入温度为-40℃的异丙醇中处理4 小时,使发生溶剂交换,在此过程中PBO发生相转化固化并形成湿凝胶,该过程重复2次。
步骤四:用大量去离子水浸泡清洗PBO湿凝胶,该步骤重复3次,使得异丙醇充分洗出。
步骤五:后利用二氧化碳超临界工艺干燥,得到疏松多孔的PBO气凝胶。
步骤六:将5个体积份的甲基三甲氧基硅烷(MTMS)、17体积份的乙醇、1.6体积份的去离子水在搅拌条件混合,并加入浓盐酸溶液,将pH值调节到2.0,搅拌50分钟,使前驱体充分水解。
步骤七:将氨水逐滴加入到溶液中,调节pH值至7,得到硅溶胶;将硅溶胶快速搅拌2分钟后,迅速加入到盛有PBO气凝胶的模具中,并抽真空,使溶液快速充分渗透到PBO气凝胶孔隙中,待其完全凝胶后,加盖保鲜膜,形成密封环境,室温静置老化2小时。
步骤八:加入无水乙醇,并在60℃条件下密封老化5小时。
步骤九:以正己烷作为溶剂置换剂,在60℃下进行溶剂置换,每4小时置换一次,共进行2次。
步骤十:用真空烘箱对所得到的的样品进行干燥,干燥条件为60℃,时间1小时,然后升至80℃干燥2小时,最后升至100℃干燥1小时,最终得到PBO/SiO 2复合气凝胶。
实施例3
步骤一:将聚酰亚胺(PI)(长春高琦,轶纶95)纤维加入到浓硫酸中,在室温干燥的条件下搅拌一周,形成质量分数1wt%的PI溶液。
步骤二:将上述溶液真空脱泡,后加入模具中。
步骤三:将溶液连同模具一起浸没到40倍质量,温度为10℃的去离子水中处理4小时,使发生溶剂交换,在此过程中PI发生相转化固化并形成湿凝胶,该过程重复3次。
步骤四:然后利用二氧化碳超临界工艺干燥,得到疏松多孔的PI气凝胶。
步骤五:将3个体积份的正硅酸乙酯(TEOS)、17个体积份的乙醇、1.6个体积份的去离子水在搅拌条件混合,并加入盐酸溶液,将pH值调节到2.4,搅拌3小时,使前驱体充分水解。
步骤六:将稀氨水逐滴加入到溶液中,调节pH值至6.6,得到硅凝胶;将硅凝胶快速搅拌2小时后,加入到盛有PI气凝胶的模具中,并抽真空,使溶液快速充分渗透到PI气凝胶孔隙中,待其完全凝胶后,加盖保鲜膜,形成密封环境,室温静置老化2小时。
步骤七:加入无水乙醇,并在60℃条件下密封老化5小时。
步骤八:以正己烷作为溶剂置换剂,在60℃下进行溶剂置换,每4小时置换一次,共进行2次。
步骤九:用真空烘箱对所得到的的样品进行干燥,干燥条件为60℃,时间1小时,然后升至80℃干燥2小时,最后升至100℃干燥1小时,最终得到PI/SiO 2复合气凝胶。
试验例1导热性能测试
将实施例1~3中制得的复合气凝胶进行测试取样,每种复合气凝胶样品各取5个,制成500 mm×500 mm×10 mm的体积大小。导热系数测试方法详见:GB/T32981-2016。各实施例中5个样品导热系数测试结果去平均值。
表1实施例导热系数统计
此外,还对本发明实施例1~3所制得的复合气凝胶进行了热重分析,热重分析测试方法详见:GB/T 27761-2011。热重测试的结果如图2、图3、图4所示,可见本发明所制得的复合气凝胶具有良好的热稳定性能。
试验例2隔热性能测试
将实施例1~3中制得的复合气凝胶进行测试取样;模拟测试极端火灾情况下复合气凝胶的高温耐火隔热性能,试验场景模拟如图5所示。使用丙烷/丁烷喷灯的火焰接触气凝胶一侧,火焰温度为1200℃。在复合气凝胶的另一侧用热电偶测量温度随时间的变化,并用电脑记录、汇总温度数据,隔热性能测试的结果如图6、图7、图8所示,可见本发明所制得的复合气凝胶具有良好的隔热耐火性能。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,以上各实施例仅用以说明本发明的技术方案,而非对其限制;本领域的普通技术人员应当理解:在不背离本发明的精神和范围的情况下,可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围;因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些替换和修改。

Claims (10)

  1. 一种气凝胶复合材料,其特征在于,所述气凝胶复合材料包括聚合物气凝胶和无机纳米气凝胶;
    其中,所述聚合物气凝胶为包括芳纶、聚对苯撑苯并二恶唑、聚酰亚胺中的至少一种制备得到;所述无机纳米气凝胶包括二氧化硅气凝胶。
  2. 根据权利要求1所述的气凝胶复合材料,其特征在于,所述气凝胶复合材料为固态,且具有多孔结构。
  3. 根据权利要求1所述的气凝胶复合材料,其特征在于,所述气凝胶复合材料的孔隙度>99.5%,和/或,所述气凝胶复合材料的孔径为10nm~200nm。
  4. 如权利要求1~3任一项所述的气凝胶复合材料的制备方法,其特征在于,包括如下步骤:
    (1)将聚合物分散液通过相转化法制得聚合物湿凝胶,将所述聚合物湿凝胶通过冷冻干燥法和/或二氧化碳超临界干燥法制备得到聚合物气凝胶;
    (2)将硅溶胶添加至所述聚合物气凝胶;
    (3)将步骤(2)所的混合胶抽真空,使所述硅溶胶完全渗透至所述聚合物湿凝胶中,然后静置直至完全凝胶化,依次经过老化处理、表面疏水性处理,而后得到气凝胶复合材料。
  5. 根据权利要求4所述的气凝胶复合材料的制备方法,其特征在于,在步骤(1)中,所述聚合物分散液的制备方法包括:将聚合物与溶剂按比例充分混合,在室温干燥的条件下持续搅拌144h~192h,得到聚合物分散液;
    其中,所述聚合物包括芳纶、聚对苯撑苯并二恶唑、聚酰亚胺中至少一种。
  6. 根据权利要求4所述的气凝胶复合材料的制备方法,其特征在于,在步骤(1)中,所述相转化法包括:将所述聚合物分散液浸入第二溶剂中以发生溶剂交换;
    优选地,所述相转化法重复进行1~3次。
  7. 根据权利要求4所述的气凝胶复合材料的制备方法,其特征在于,在步骤(2)中,所述硅溶胶的制备方法包括:将正硅酸乙酯、乙醇与去离子水充分混合,而后通过盐酸调节pH至2~3,得到所述硅溶胶;
    优选地,在进行步骤(2)前还包括:通过氨水将所述硅溶胶的pH调节至5~7。
  8. 根据权利要求4所述的气凝胶复合材料的制备方法,其特征在于,在步骤(3),所述老化处理包括:在封闭条件下静置1h~4h,而后加入无水乙醇,在水浴条件下密封静置4h~6h;
    和/或,所述表面疏水性处理包括:在50℃~80℃下加入正己烷以进行溶剂置换;优选地,所述溶剂置换的时间为2h~6h,所述溶剂置换共进行1~4次。
  9. 根据权利要求4所述的气凝胶复合材料的制备方法,其特征在于,在步骤(3)后还包括干燥处理;
    优选地,所述干燥处理包括:在50℃~70℃下干燥0.5h~2h,而后升温至70℃~90℃下干燥1h~4h,最后升温至90℃~120℃下干燥0.5h~2h;和/或,所述干燥处理包括:采用超临界二氧化碳法进行干燥。
  10. 如权利要求1~3任一项所述的气凝胶复合材料在隔热材料和/或防火材料和/或电池防护材料方面的用途。
PCT/CN2022/128949 2022-10-11 2022-11-01 气凝胶复合材料及其制备方法、应用 WO2024077677A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211240577.0A CN115710117A (zh) 2022-10-11 2022-10-11 一种气凝胶复合材料及其制备方法、应用
CN202211240577.0 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024077677A1 true WO2024077677A1 (zh) 2024-04-18

Family

ID=85230962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128949 WO2024077677A1 (zh) 2022-10-11 2022-11-01 气凝胶复合材料及其制备方法、应用

Country Status (2)

Country Link
CN (1) CN115710117A (zh)
WO (1) WO2024077677A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116103015A (zh) * 2023-03-29 2023-05-12 广州市垠瀚能源科技有限公司 一种灌封胶及其制备方法
CN117362743B (zh) * 2023-12-08 2024-03-08 烟台泰和新材高分子新材料研究院有限公司 一种耐热冲击的芳纶气凝胶的制备方法和芳纶气凝胶

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108727818A (zh) * 2018-06-26 2018-11-02 中国科学技术大学 一种疏水型二氧化硅/聚酰亚胺气凝胶复合材料及制备方法
CN108914557A (zh) * 2018-06-04 2018-11-30 东莞市武华新材料有限公司 一种纳米二氧化硅气凝胶芳纶复合材料制备方法
KR20190085426A (ko) * 2018-01-10 2019-07-18 인하대학교 산학협력단 표면이 아민기로 개질된 중공형 메조포러스 실리카 입자를 포함한 폴리 이미드 에어로젤의 제조방법
CN113816720A (zh) * 2021-09-30 2021-12-21 浙江鹏辰造纸研究所有限公司 一种pbo纤维制品复合气凝胶高性能隔热材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104129973B (zh) * 2014-08-08 2017-02-15 苏州宏久航空防热材料科技有限公司 一种填充SiO2气凝胶的碳气凝胶的制备方法
CN109734412B (zh) * 2019-03-06 2021-11-09 湖北三江航天红阳机电有限公司 一种制备疏水铝硅气凝胶隔热材料的二次干燥法
CN110305360B (zh) * 2019-07-12 2022-02-18 航天特种材料及工艺技术研究所 一种可变形气凝胶材料及其制备方法
CN110394128A (zh) * 2019-07-18 2019-11-01 复旦大学 一种疏水阻燃隔热气凝胶复合材料及其制备方法
CN112047711A (zh) * 2020-07-23 2020-12-08 北京卫星制造厂有限公司 一种提高纳米多孔隔热材料高温隔热性能的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190085426A (ko) * 2018-01-10 2019-07-18 인하대학교 산학협력단 표면이 아민기로 개질된 중공형 메조포러스 실리카 입자를 포함한 폴리 이미드 에어로젤의 제조방법
CN108914557A (zh) * 2018-06-04 2018-11-30 东莞市武华新材料有限公司 一种纳米二氧化硅气凝胶芳纶复合材料制备方法
CN108727818A (zh) * 2018-06-26 2018-11-02 中国科学技术大学 一种疏水型二氧化硅/聚酰亚胺气凝胶复合材料及制备方法
CN113816720A (zh) * 2021-09-30 2021-12-21 浙江鹏辰造纸研究所有限公司 一种pbo纤维制品复合气凝胶高性能隔热材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI CONGCONG: "The Preparation of Monolithic Silica/Polyimide Aerogels and Their Structures and Properties", MASTER'S THESIS, UNIVERSITY OF SCIECE AND TECNOLOGY OF CHINA, 1 May 2018 (2018-05-01), University of Sciece and Tecnology of China, XP093158035 *
TIAN, JING ET AL.: "Highly Flexible and Compressible Polyimide/Silica Aerogels with Integrated Double Network for Thermal Insulation and Fire-retardancy", JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, vol. 105, 20 September 2021 (2021-09-20), pages 194 - 202, XP087010644, DOI: 10.1016/j.jmst.2021.07.030 *
WU, SHUAI ET AL.: "Silica-aerogel-powders "Jammed" Polyimide Aerogels with Excellent Hydrophobicity and Conversion to Ultra-Light Polyimide Aerogel", RSC ADVANCES, vol. 6, 8 June 2016 (2016-06-08), pages 58268 - 58278, XP055851129, DOI: 10.1039/C6RA11801A *

Also Published As

Publication number Publication date
CN115710117A (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
WO2024077677A1 (zh) 气凝胶复合材料及其制备方法、应用
Pan et al. Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites
Sun et al. Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator
Hu et al. Hyperelastic kevlar nanofiber aerogels as robust thermal switches for smart thermal management
Ding et al. Flexible, mechanically stable, porous self‐standing microfiber network membranes of covalent organic frameworks: preparation method and characterization
WO2020130499A2 (ko) 다공성 구조체 기반 그래핀 폼 및 그 제조방법
EP3942215A1 (en) Composite thermal barrier materials
CN111423728A (zh) 一种隔热复合材料及其制备方法
CN109867785A (zh) 一种聚酰亚胺气凝胶吸附材料的制备方法
CN114854087B (zh) 一种具备双导热网络的聚酰亚胺复合材料及其制备方法
Chao et al. Enhanced wettability and thermal stability of polypropylene separators by organic–inorganic coating layer for lithium‐ion batteries
Dong et al. Robust polyimide nanofibrous membrane with bonding microstructures fabricated via dipping process for lithium‐ion battery separators
CN107799701A (zh) 一种间位芳纶涂覆锂电池隔膜及其制备方法
US20150108389A1 (en) Method for preparing bulk c-aln composite aerogel with high strength and high temperature resistance
CN113683812A (zh) 一种阻燃隔热的聚酰亚胺纳米纤维气凝胶及其制备方法
CN110938306B (zh) 磷灰石纳米线/聚酰亚胺复合气凝胶及其制备方法与应用
CN110938228B (zh) 一种沸石/聚酰亚胺复合膜的制备方法及应用
CN114096616B (zh) 一种隔热组合物及制备方法和应用
Huang et al. Natural Halloysite Nanotubes Coated Commercial Paper or Waste Newspaper as Highly‐Thermal‐Stable Separator for Lithium‐Ion Batteries
WO2024119863A1 (zh) 一种隔热阻燃的纳米复合片材及其制备方法
CN108862286B (zh) 阻燃隔热的弹性二氧化硅气凝胶片材及汽车锂离子动力电池热管理系统用薄片
CN112292261B (zh) 隔热部件
CN113193299A (zh) 一种用于锂电池的耐高温聚丙烯隔膜及制备方法
CN113337177A (zh) 一种多孔有机聚合物改性碳纳米管的环氧树脂涂料及其制备方法
CN116376101B (zh) 一种高阻燃聚酰亚胺纤维/气凝胶复合膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961860

Country of ref document: EP

Kind code of ref document: A1