WO2024075717A1 - 硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板 - Google Patents

硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板 Download PDF

Info

Publication number
WO2024075717A1
WO2024075717A1 PCT/JP2023/036030 JP2023036030W WO2024075717A1 WO 2024075717 A1 WO2024075717 A1 WO 2024075717A1 JP 2023036030 W JP2023036030 W JP 2023036030W WO 2024075717 A1 WO2024075717 A1 WO 2024075717A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
resin composition
film
compounds
mass
Prior art date
Application number
PCT/JP2023/036030
Other languages
English (en)
French (fr)
Inventor
拓人 田村
康代 金沢
智崇 野口
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Publication of WO2024075717A1 publication Critical patent/WO2024075717A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a curable resin composition. Furthermore, the present invention relates to a dry film, a cured product, and a printed wiring board using the curable resin composition.
  • Patent Document 1 discloses a printed wiring board with built-in inductor in which a spiral conductor pattern is formed on a multilayer substrate, and the ends of the conductor pattern on each layer are connected to the upper and lower layers to form a spiral coil as a whole.
  • Patent Document 2 proposes that by providing a magnetic layer between each substrate in a multilayer wiring substrate or by filling the through vias with a magnetic material, it is possible to reduce noise in a compact, low-cost manner even when multiple circuit elements are mounted on a multilayer substrate.
  • inductor components and noise suppression materials are required to have high magnetic permeability even in the high frequency range in order to achieve smaller size and higher performance.
  • interlayer materials, solder resists, and fillers when used as inductor components, interlayer materials, solder resists, and fillers, they are immersed in acidic and alkaline chemicals such as wet plating, desmear, and gold plating, so they are also required to be resistant to these.
  • acidic and alkaline chemicals such as wet plating, desmear, and gold plating
  • ferrite-based magnetic fillers which are mainly composed of iron oxide, can provide a cured coating film with high chemical resistance, it has been difficult to maintain magnetic permeability even in the high frequency range due to the snake's limit.
  • the magnetic filler in the cured coating film dissolves into the plating solution during electroless copper plating or gold plating, making the cured coating film brittle, or the cured coating film is easily peeled off by acid treatment (i.e., low chemical resistance).
  • the present invention has been made in consideration of the above problems, and aims to provide a curable resin composition capable of forming a cured coating film that has high magnetic permeability even in the high frequency range, and that can suppress the elution of magnetic fillers in the cured coating film into the plating solution during electroless copper plating or gold plating, thereby suppressing deterioration of the cured coating film, and can suppress peeling of the cured coating film due to acid treatment (i.e., has excellent resistance to chemical solutions).
  • Another aim of the present invention is to provide a dry film having a resin layer consisting of a dried coating film of the resin composition, a cured product of the resin composition or the resin layer of the dry film, and a printed wiring board having the cured product.
  • the inventors conducted extensive research to achieve the above objective and discovered that by incorporating a magnetic filler containing at least one of boron (B), silicon (Si), copper (Cu), and niobium (Nb) as a trace component into a curable resin composition, a cured coating film can be obtained that has high magnetic permeability even in the high frequency range and has excellent resistance to chemical solutions.
  • a curable resin composition comprising (A) a curable resin, (B) a curing agent, and (C) a magnetic filler, (C) A curable resin composition, characterized in that the magnetic filler contains at least one of B, Si, Cu, and Nb.
  • a dry film comprising a first film and a resin layer formed on the first film and comprising a dry coating film of the curable resin composition according to any one of [1] to [5].
  • a cured product obtained by curing the curable resin composition according to any one of [1] to [5].
  • a cured product obtained by curing the resin layer of the dry film according to [6].
  • a printed wiring board comprising the cured product according to [7].
  • a printed wiring board comprising the cured product according to [8].
  • the present invention can provide a magnetic filler-containing curable resin composition capable of forming a cured coating film that has high magnetic permeability even in the high frequency range and has excellent resistance to chemical solutions.
  • the present invention can also provide a dry film having a resin layer made of a dried coating film of the resin composition, a cured product of the resin composition or the resin layer of the dry film, and a printed wiring board having the cured product.
  • the curable resin composition according to the present invention contains at least (A) a curable resin, (B) a curing agent, and (C) a magnetic filler.
  • the curable resin composition according to the present invention may further contain a photopolymerization initiator, a sensitizer, a colorant, etc.
  • a photopolymerization initiator e.g., a photopolymerization initiator, a sensitizer, a colorant, etc.
  • the curable resin can be used without any particular limitation as long as it is a resin that is cured by the action of heat, light, or the like. Specifically, a thermosetting resin, a photocurable resin, or the like can be used. The curable resin may be used alone or in combination of two or more. For example, a thermosetting resin or a photocurable resin may be used alone or in combination, but it is preferable to include a photocurable resin.
  • thermosetting resin Any known thermosetting resin can be used as the thermosetting resin.
  • the curable resin composition contains a thermosetting resin, thereby improving the heat resistance of the cured coating film.
  • thermosetting resin for example, known thermosetting resins such as amino resins such as melamine resins, benzoguanamine resins, melamine derivatives, and benzoguanamine derivatives, isocyanate compounds, blocked isocyanate compounds, cyclocarbonate compounds, epoxy compounds, oxetane compounds, episulfide resins, bismaleimide, and carbodiimide resins can be used.
  • thermosetting resin having a plurality of cyclic ether groups or cyclic thioether groups (hereinafter abbreviated as cyclic (thio) ether groups) in the molecule.
  • the thermosetting resin can be used alone or in combination of two or more types.
  • thermosetting resins having multiple cyclic (thio)ether groups in the molecule are compounds having multiple 3-, 4-, or 5-membered cyclic (thio)ether groups in the molecule, and examples of such compounds include compounds having multiple epoxy groups in the molecule, i.e., polyfunctional epoxy resins, compounds having multiple oxetanyl groups in the molecule, i.e., polyfunctional oxetane compounds, and compounds having multiple thioether groups in the molecule, i.e., episulfide resins.
  • Such epoxy resins include, for example, bisphenol A type epoxy resins, bisphenol F type epoxy resins, hydrogenated bisphenol A type epoxy resins, brominated bisphenol A type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, biphenyl type epoxy resins, naphthalene type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, etc.
  • epoxy resins include, for example, jER 828, 806, 807, YX8000, YX8034, and 834 manufactured by Mitsubishi Chemical Corporation; YD-128, YDF-170, ZX-1059, and ST-3000 manufactured by Nippon Steel Chemical & Material Co., Ltd.; EPICLON 830, 835, 840, 850, N-730A, and N-695 manufactured by DIC Corporation; and RE-306 manufactured by Nippon Kayaku Co., Ltd.
  • polyfunctional oxetane compounds include polyfunctional oxetanes such as bis[(3-methyl-3-oxetanylmethoxy)methyl]ether, bis[(3-ethyl-3-oxetanylmethoxy)methyl]ether, 1,4-bis[(3-methyl-3-oxetanylmethoxy)methyl]benzene, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, (3-methyl-3-oxetanyl)methyl acrylate, (3-ethyl-3-oxetanyl)methyl acrylate, (3-methyl-3-oxetanyl)methyl methacrylate, (3-ethyl-3-oxetanyl)methyl methacrylate, and oligomers or copolymers thereof, as well as ethers of oxetane alcohols with novolac resins, poly(p-hydroxystyrene), cardo-type bis
  • An example of a compound having multiple cyclic thioether groups in the molecule is bisphenol A type episulfide resin.
  • episulfide resins in which the oxygen atoms of the epoxy groups of novolac type epoxy resins are replaced with sulfur atoms can also be used.
  • Amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycoluril compounds, and methylol urea compounds.
  • a polyisocyanate compound can be blended.
  • the polyisocyanate compound include aromatic polyisocyanates such as 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate, and 2,4-tolylene dimer; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis(cyclohexyl isocyanate), and isophorone diisocyanate; alicyclic polyisocyanates such as bicycloheptane triisocyanate; and adducts, biuret bodies, and iso
  • an addition reaction product between an isocyanate compound and an isocyanate blocking agent can be used.
  • isocyanate compounds that can react with an isocyanate blocking agent include the polyisocyanate compounds described above.
  • isocyanate blocking agents include phenol-based blocking agents, lactam-based blocking agents, active methylene-based blocking agents, alcohol-based blocking agents, oxime-based blocking agents, mercaptan-based blocking agents, acid amide-based blocking agents, imide-based blocking agents, amine-based blocking agents, imidazole-based blocking agents, and imine-based blocking agents.
  • the amount of thermosetting resin is preferably 5% by mass to 40% by mass, more preferably 10% by mass to 30% by mass, calculated as solid content based on the total amount of the curable resin composition. If the amount of thermosetting resin is within the above numerical range, the curability will be good. Furthermore, when the composition contains a carboxyl group-containing resin described below, the amount of thermosetting resin is preferably 0.5 to 2.5 mol, more preferably 0.8 to 2.0 mol, of functional groups of the thermosetting component that reacts per 1 mol of carboxyl groups contained in the carboxyl group-containing resin.
  • the photocurable resin is a compound having an ethylenically unsaturated group, and may be a polymer, an oligomer, a monomer, or a mixture thereof. By including the photocurable resin, the strength of the cured film can be improved.
  • the photocurable resin may be used alone or in combination of two or more kinds.
  • the photocurable resin may be a carboxyl group-containing photosensitive resin described later.
  • a well-known and commonly used photopolymerizable oligomer, photopolymerizable monomer, etc. can be used.
  • a photopolymerizable monomer since it can impart more crosslinking and curing properties to the cured coating film.
  • the photopolymerizable oligomer is an oligomer having an ethylenically unsaturated double bond.
  • the photopolymerizable oligomer include unsaturated polyester oligomers and (meth)acrylate oligomers.
  • the (meth)acrylate oligomer include epoxy (meth)acrylates such as phenol novolac epoxy (meth)acrylate, cresol novolac epoxy (meth)acrylate, and bisphenol-type epoxy (meth)acrylate, urethane (meth)acrylate, epoxy urethane (meth)acrylate, polyester (meth)acrylate, polyether (meth)acrylate, and polybutadiene-modified (meth)acrylate.
  • the photopolymerizable monomer is a monomer having an ethylenically unsaturated double bond.
  • photopolymerizable monomers include alkyl (meth)acrylates such as 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate; hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate; mono- or di(meth)acrylates of alkylene oxide derivatives such as ethylene glycol, propylene glycol, diethylene glycol, and dipropylene glycol; hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, and the like.
  • Examples of the photopolymerizable monomer include polyhydric alcohols such as trishydroxyethyl isocyanurate and polyhydric (meth)acrylates of their ethylene oxide or propylene oxide adducts; (meth)acrylates of ethylene oxide or propylene oxide adducts of phenols such as phenoxyethyl (meth)acrylate and polyethoxy di(meth)acrylate of bisphenol A; (meth)acrylates of glycidyl ethers such as glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, and triglycidyl isocyanurate; and melamine (meth)acrylate.
  • One type of photopolymerizable monomer may be used alone, or two or more types may be used in combination.
  • the amount of the photopolymerizable monomer is preferably 1% by mass or more and 20% by mass or less, and more preferably 2% by mass or more and 10% by mass or less, calculated as the solid content based on the total amount of the curable resin composition.
  • the amount of the photopolymerizable monomer is 1% by mass or more, the photocurability is good, and pattern formation is easy in alkaline development after irradiation with active energy rays.
  • the amount is 10% by mass or less, halation is less likely to occur and good resolution is easily obtained.
  • the curable resin preferably contains an alkali-soluble resin having an alkali-soluble group, in that it can impart alkaline developability to the curable resin composition.
  • alkali-soluble resins include compounds having two or more phenolic hydroxyl groups, carboxyl group-containing resins, compounds having phenolic hydroxyl groups and carboxyl groups, and compounds having two or more thiol groups. Of these, carboxyl group-containing resins or phenolic resins are preferred because they improve adhesion to the base, and carboxyl group-containing resins are even more preferred because they have particularly excellent developability.
  • Carboxyl group-containing resins are described below.
  • Carboxyl group-containing resin As the carboxyl group-containing resin, various conventionally known resins having a carboxyl group in the molecule can be used.
  • the carboxyl group-containing resin may or may not have an ethylenically unsaturated double bond in the molecule, but in particular, a carboxyl group-containing photosensitive resin having an ethylenically unsaturated double bond in the molecule is preferred in terms of photocurability, development resistance, and resolution.
  • the curable resin composition of the present invention contains a carboxyl group-containing resin, it may be used not only for applications in which alkaline development is performed, but also for applications in which alkaline development is not performed.
  • the ethylenically unsaturated double bond is preferably derived from acrylic acid or methacrylic acid or a derivative thereof.
  • a carboxyl group-containing resin without an ethylenically unsaturated double bond is used, in order to make the composition photocurable, it is necessary to use a compound having a plurality of ethylenically unsaturated groups in the molecule, i.e., a photopolymerizable monomer, in combination with the above.
  • Specific examples of the carboxyl group-containing resin include the following compounds (which may be either oligomers or polymers).
  • Carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth)acrylic acid with an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth)acrylate, isobutylene, etc.
  • unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth)acrylate, isobutylene, etc.
  • lower alkyl (meth)acrylates include methyl (meth)acrylate, etc.
  • Carboxylic acid-containing urethane resins obtained by polyaddition reaction of diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates with carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, and diol compounds such as polycarbonate polyols, polyether polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A alkylene oxide adduct diols, and compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
  • diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates with carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbut
  • Carboxyl group-containing photosensitive urethane resins obtained by polyaddition reaction of diisocyanates with (meth)acrylates of bifunctional epoxy resins such as bisphenol A type epoxy resins, hydrogenated bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, bixylenol type epoxy resins, and biphenol type epoxy resins, or their partial acid anhydride modifications, carboxyl group-containing dialcohol compounds, and diol compounds.
  • bifunctional epoxy resins such as bisphenol A type epoxy resins, hydrogenated bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, bixylenol type epoxy resins, and biphenol type epoxy resins, or their partial acid anhydride modifications, carboxyl group-containing dialcohol compounds, and diol compounds.
  • a photosensitive urethane resin containing a carboxyl group which is terminated with (meth)acrylation by adding a compound having one hydroxyl group and one or more (meth)acryloyl groups in the molecule, such as hydroxyalkyl (meth)acrylate, during the synthesis of the resin (2) or (3).
  • a carboxyl group-containing photosensitive urethane resin that is (meth)acrylated at the end by adding a compound having one isocyanate group and one or more (meth)acryloyl groups in the molecule, such as an equimolar reactant of isophorone diisocyanate and pentaerythritol triacrylate, during the synthesis of the resin (2) or (3).
  • a carboxyl group-containing photosensitive resin obtained by reacting a difunctional or more polyfunctional (solid) epoxy resin with (meth)acrylic acid and adding a dibasic acid anhydride to the hydroxyl groups present in the side chains.
  • a carboxyl group-containing photosensitive resin obtained by reacting a polyfunctional epoxy resin in which the hydroxyl groups of a bifunctional (solid) epoxy resin have been further epoxidized with epichlorohydrin with (meth)acrylic acid, and then adding a dibasic acid anhydride to the resulting hydroxyl groups.
  • a carboxyl group-containing polyester resin obtained by reacting a dicarboxylic acid such as adipic acid, phthalic acid, or hexahydrophthalic acid with a bifunctional oxetane resin, and then adding a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride to the resulting primary hydroxyl groups.
  • a carboxyl group-containing photosensitive resin obtained by reacting an epoxy compound having multiple epoxy groups in one molecule with a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and an unsaturated group-containing monocarboxylic acid, such as (meth)acrylic acid, and then reacting the alcoholic hydroxyl group of the resulting reaction product with a polybasic acid anhydride, such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, or adipic acid.
  • a polybasic acid anhydride such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, or adipic acid.
  • a carboxyl group-containing photosensitive resin obtained by reacting a compound having multiple phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide, reacting the reaction product obtained with an unsaturated group-containing monocarboxylic acid, and then reacting the resulting reaction product with a polybasic acid anhydride.
  • an alkylene oxide such as ethylene oxide or propylene oxide
  • a carboxyl group-containing photosensitive resin obtained by reacting a compound having multiple phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate, reacting the reaction product obtained with an unsaturated group-containing monocarboxylic acid, and then reacting the resulting reaction product with a polybasic acid anhydride.
  • a cyclic carbonate compound such as ethylene carbonate or propylene carbonate
  • a carboxyl group-containing photosensitive resin obtained by further adding a compound having one epoxy group and one or more (meth)acryloyl groups in one molecule to the resins (1) to (11).
  • (meth)acrylate is a general term for acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
  • the carboxyl group-containing resins that can be used in the present invention are not limited to those listed above.
  • the carboxyl group-containing resins listed above may be used alone or in combination.
  • the acid value of the carboxyl group-containing resin is preferably in the range of 30 to 150 mg KOH/g, and more preferably in the range of 50 to 120 mg KOH/g.
  • the weight-average molecular weight of the carboxyl group-containing resin varies depending on the resin skeleton, but is generally in the range of 1,500 to 150,000, and preferably in the range of 1,800 to 100,000.
  • a carboxyl group-containing resin with a weight-average molecular weight of 2,000 or more it is possible to improve resolution and tack-free performance.
  • a carboxyl group-containing resin with a weight-average molecular weight of 150,000 or less it is possible to improve developability and storage stability.
  • the weight-average molecular weight can be measured by gel permeation chromatography (GPC).
  • the amount of the carboxyl group-containing resin is preferably 5% by mass or more and 80% by mass or less, and more preferably 10% by mass or more and 70% by mass or less, calculated as the solid content of the total amount of the curable resin composition.
  • the amount of the carboxyl group-containing resin 10% by mass or more the strength of the cured coating film can be improved.
  • the amount of the carboxyl group-containing resin 80% by mass or less the viscosity of the curable resin composition becomes appropriate, and processability is improved.
  • curing agent examples include imidazole derivatives such as imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, and 1-(2-cyanoethyl)-2-ethyl-4-methylimidazole; amine compounds such as dicyandiamide, benzyldimethylamine, 4-(dimethylamino)-N,N-dimethylbenzylamine, 4-methoxy-N,N-dimethylbenzylamine, and 4-methyl-N,N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine.
  • imidazole derivatives such as imidazole, 2-methylimidazole, 2-eth
  • examples of commercially available products include 2MZA-PW, 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, and 2P4MHZ (all trade names of imidazole-based compounds) manufactured by Shikoku Chemical Industry Co., Ltd., U-CAT 3513N (trade name of dimethylamine-based compounds), DBU, DBN, and U-CAT SA 102 (all bicyclic amidine compounds and salts thereof) manufactured by San-Apro Co., Ltd., and DICY (dicyandiamide) manufactured by Mitsubishi Chemical Corporation.
  • the curing agent is not limited to these, and any agent that promotes the reaction of at least one of an epoxy resin or oxetane compound with a carboxyl group and an epoxy group or an oxetanyl group may be used alone or in combination of two or more types.
  • S-triazine derivatives such as guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6-diamino-S-triazine-isocyanuric acid adduct, and 2,4-diamino-6-methacryloyloxyethyl-S-triazine-isocyanuric acid adduct can also be used, and preferably these compounds that also function as adhesion-imparting agents are used in combination with a curing agent.
  • the curing agent may be used alone or in combination of two or more types.
  • the amount of the curing agent is preferably 0.01% by mass or more and 8% by mass or less, and more preferably 0.03% by mass or more and 5% by mass or less, calculated as solid content based on the total amount of the curable resin composition.
  • the magnetic filler contains at least one of B, Si, Cu, and Nb.
  • the content of any of B, Si, Cu, and Nb in the (C) magnetic filler is preferably 0.1% by mass or more and less than 20% by mass, more preferably 0.5% by mass or more and 15% by mass or less, and even more preferably 1% by mass or more and 10% by mass or less. If the content of each trace component (B, Si, Cu, and Nb) is within the above numerical range, it is easy to form a cured coating film that has high magnetic permeability even in the high frequency range and excellent chemical resistance.
  • each trace component in the magnetic filler can be determined as follows: After cutting or milling each sample, it is ground or polished to a flat surface, attached to the sample support of an optical emission spectrometer to form an electrode, and silver or tungsten is used as a counter electrode to generate spectral lines, which are then separated by a spectroscope, and the spectral line intensity of the quantitative components is measured to determine the content (mass%) of each metal component in the magnetic filler. (Performed in accordance with JIS G 1253 "Iron and steel - Spark discharge optical emission spectrometry.")
  • the magnetic filler is not particularly limited in composition other than the above-mentioned minor components (B, Si, Cu, and Nb), but may include Fe, Fe 2 O 3 , MnO, etc.
  • Commercially available magnetic fillers can be used.
  • amorphous alloy magnetic powders include AW02-08PF3FG and ATFINE-NC1 PF3FA manufactured by Epson Atmix Corporation.
  • High-Si special alloy powders include AKT-PB (5.0) manufactured by Mitsubishi Steel Corporation.
  • ferrite magnetic powders include M10S manufactured by Powder Tech Co., Ltd.
  • carbonyl iron magnetic powders include HQ-I manufactured by BASF Corporation.
  • the average particle size (D50) of the magnetic filler is preferably 0.1 ⁇ m or more and less than 20 ⁇ m, more preferably 0.5 ⁇ m or more and 15 ⁇ m or less, and even more preferably 1 ⁇ m or more and 10 ⁇ m or less. If the average particle size of the magnetic filler is within the above numerical range, it is easy to form a cured coating film that has high magnetic permeability even in the high frequency range and has excellent chemical resistance.
  • the average particle size of the magnetic filler can be measured by a laser diffraction/scattering method based on the Mie scattering theory using a laser diffraction/scattering particle size distribution device.
  • the average particle size of the magnetic filler in the present invention refers to a value measured before preparing (pre-stirring, kneading) the curable resin composition.
  • the amount of magnetic filler is preferably 5% by volume or more and 80% by volume or less, more preferably 10% by volume or more and 75% by volume or less, and even more preferably 15% by volume or more and 70% by volume or less, assuming that the solid content in the curable resin composition is 100% by volume. If the amount of magnetic filler is within the above numerical range, it becomes easier to form a cured coating film that has high magnetic permeability even in the high frequency range and has excellent resistance to chemical solutions.
  • the curable resin composition of the present invention may contain the following optional components:
  • the photopolymerization initiator is used to react the carboxyl group-containing photosensitive resin or the photopolymerizable monomer by exposure to light. Any known photopolymerization initiator can be used. The photopolymerization initiator may be used alone or in combination of two or more.
  • photopolymerization initiators include bis-(2,6-dichlorobenzoyl)phenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-2,5-dimethylphenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-4-propylphenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-1-naphthylphosphine oxide, bis-(2,6-dimethoxybenzoyl)phenylphosphine oxide, and bis-(2,6-dimethoxybenzoyl)-2,4,4- Bisacylphosphine oxides such as trimethylpentylphosphine oxide, bis-(2,6-dimethoxybenzoyl)-2,5-dimethylphenylphosphine oxide, and bis-(2,4,6-trimethylbenzoyl)-phenylphosphine oxide; 2,6-dimeth
  • benzoins such as benzoin, benzil, benzoin methyl ether, benzoin ethyl ether, benzoin n-propyl ether, benzoin isopropyl ether, and benzoin n-butyl ether; benzoin alkyl ethers; benzophenone, p-methylbenzophenone, Michler's ketone, methylbenzophenone, 4,4'-dichlorobenzophenone, 4,4'-bis ...
  • Benzophenones such as ethylaminobenzophenone; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, 2-(dimethylamino)-2-[(4-methylphenyl)methyl)-1-[4-(4 acetophenones such as [-morpholinyl)phenyl]-1-butanone and N,N-dimethylaminoacetophenone; thioxanthones such as thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2,4
  • ⁇ -aminoacetophenone photopolymerization initiators include Omnirad 907, 369, 369E, and 379 manufactured by IGM Resins.
  • Commercially available acylphosphine oxide photopolymerization initiators include Omnirad 819 manufactured by IGM Resins.
  • Commercially available oxime ester photopolymerization initiators include Irgacure OXE01 and OXE02 manufactured by BASF Japan Ltd., N-1919 manufactured by ADEKA Corporation, Adeka Arcles NCI-831 and NCI-831E, and TR-PBG-304 manufactured by Changzhou Strong Electronic New Materials Co., Ltd.
  • the amount of photopolymerization initiator is preferably 0.1 to 10 mass %, more preferably 1 to 5 mass %, calculated as solid content based on the total amount of the curable resin composition.
  • the amount of photopolymerization initiator is 0.1 mass % or more, the photocurability of the curable resin composition is good, and the coating properties such as chemical resistance are also good.
  • the amount is 10 mass % or less, the light absorption at the surface of the resist film (cured coating film) is good, and the deep curing property is less likely to decrease.
  • a photoinitiator assistant or sensitizer may be used in combination with the above-mentioned photopolymerization initiator.
  • the photoinitiator assistant or sensitizer include benzoin compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, tertiary amine compounds, and xanthone compounds.
  • thioxanthone compounds such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and 4-isopropylthioxanthone.
  • thioxanthone compound can improve deep curing properties.
  • These compounds may be used as photopolymerization initiators, but are preferably used in combination with a photopolymerization initiator.
  • one type of photoinitiator assistant or sensitizer may be used alone, or two or more types may be used in combination.
  • photopolymerization initiators absorb specific wavelengths, and therefore in some cases may have low sensitivity and function as ultraviolet absorbers. However, they are not used solely for the purpose of improving the sensitivity of the resin composition. By absorbing light of specific wavelengths as necessary, they can increase the photoreactivity of the surface, change the line shape and openings of the resist pattern to vertical, tapered, or reverse tapered, and improve the precision of the line width and opening diameter.
  • a colorant can be blended in the curable resin composition of the present invention.
  • the colorant is not particularly limited, and known colorants such as red, blue, green, and yellow can be used. Any of pigments, dyes, and coloring matters can be used, but from the viewpoint of reducing the environmental load and having little effect on the human body, it is preferable that the colorant does not contain halogen.
  • Red colorants include monoazo, disazo, azo lake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, and quinacridone, and specific examples include those with the following Color Index (C.I.; published by The Society of Dyers and Colourists) numbers:
  • Examples of monoazo red colorants include Pigment Red 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 17, 21, 22, 23, 31, 32, 112, 114, 146, 147, 151, 170, 184, 187, 188, 193, 210, 245, 253, 258, 266, 267, 268, and 269.
  • Examples of disazo red colorants include Pigment Red 37, 38, and 41.
  • Examples of monoazo lake-based red colorants include Pigment Red 48:1, 48:2, 48:3, 48:4, 49:1, 49:2, 50:1, 52:1, 52:2, 53:1, 53:2, 57:1, 58:4, 63:1, 63:2, 64:1, and 68.
  • Examples of benzimidazolone-based red colorants include Pigment Red 171, 175, 176, 185, and 208.
  • Examples of perylene-based red colorants include Solvent Red 135, 179, Pigment Red 123, 149, 166, 178, 179, 190, 194, and 224.
  • Examples of diketopyrrolopyrrole red colorants include Pigment Red 254, 255, 264, 270, and 272.
  • Examples of condensed azo red colorants include Pigment Red 220, 144, 166, 214, 220, 221, and 242.
  • Examples of anthraquinone red colorants include Pigment Red 168, 177, and 216, Solvent Red 149, 150, 52, and 207.
  • Examples of quinacridone red colorants include Pigment Red 122, 202, 206, 207, and 209.
  • Blue colorants include phthalocyanine and anthraquinone types, and pigment types include compounds classified as pigments, such as Pigment Blue 15, 15:1, 15:2, 15:3, 15:4, 15:6, 16, and 60.
  • Dye types include Solvent Blue 35, 63, 68, 70, 83, 87, 94, 97, 122, 136, 67, and 70.
  • metal-substituted or unsubstituted phthalocyanine compounds can also be used.
  • Yellow colorants include monoazo, disazo, condensed azo, benzimidazolone, isoindolinone, and anthraquinone.
  • anthraquinone yellow colorants include Solvent Yellow 163, Pigment Yellow 24, 108, 193, 147, 199, and 202.
  • Isoindolinone yellow colorants include Pigment Yellow 110, 109, 139, 179, and 185.
  • Condensed azo yellow colorants include Pigment Yellow 93, 94, 95, 128, 155, 166, and 180.
  • Examples of benzimidazolone yellow colorants include Pigment Yellow 120, 151, 154, 156, 175, and 181.
  • Examples of monoazo yellow colorants include Pigment Yellow 1, 2, 3, 4, 5, 6, 9, 10, 12, 61, 62, 62:1, 65, 73, 74, 75, 97, 100, 104, 105, 111, 116, 167, 168, 169, 182, and 183.
  • Examples of disazo yellow colorants include Pigment Yellow 12, 13, 14, 16, 17, 55, 63, 81, 83, 87, 126, 127, 152, 170, 172, 174, 176, 188, and 198.
  • Pigment Black 1, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20, 25, 26, 28, 29, 30, 31, and 32 Pigment Violet 19, 23, 29, 32, 36, 38, and 42
  • Solvent Violet 13 and 36 C.I. Pigment Orange 1, 5, 13, 14, 16, 17, 24, 34, 36, 38, 40, 43, 46, 49, 51, 61, 63, 64, 71, and 73
  • Pigment Brown 23 and 25, and carbon black examples include Pigment Black 1, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20, 25, 26, 28, 29, 30, 31, and 32, Pigment Violet 19, 23, 29, 32, 36, 38, and 42, Solvent Violet 13 and 36, C.I. Pigment Orange 1, 5, 13, 14, 16, 17, 24, 34, 36, 38, 40, 43, 46, 49, 51, 61, 63, 64, 71, and 73, Pigment Brown 23 and 25, and carbon black.
  • the amount of colorant blended is preferably 0.1 to 2.0 mass %, more preferably 0.3 to 1.5 mass %, calculated as solid content based on the total amount of the curable resin composition.
  • the curable resin composition of the present invention may contain an organic solvent for the purpose of adjusting the viscosity when preparing the composition or when applying it to a substrate or film.
  • organic solvent include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; glycol ethers such as cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, and tripropylene glycol monomethyl ether; esters such as ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, diethylene
  • the amount of organic solvent is not particularly limited and can be set appropriately according to the desired viscosity so as to facilitate the preparation of the curable resin composition.
  • the curable resin composition of the present invention may further contain, as necessary, components such as cyanate compounds, elastomers, mercapto compounds, urethanization catalysts, thixotropic agents, adhesion promoters, block copolymers, chain transfer agents, polymerization inhibitors, copper inhibitors, antioxidants, rust inhibitors, thickeners, at least one of silicone-based, fluorine-based, and polymer-based defoamers and leveling agents, imidazole-based, thiazole-based, and triazole-based silane coupling agents, and phosphorus compounds such as phosphinates, phosphate ester derivatives, and phosphazene compounds. These may be known in the field of electronic materials.
  • the curable resin composition of the present invention may be used in the form of a dry film.
  • each component is weighed, mixed, and then pre-mixed with a mixer. Subsequently, each component is dispersed and kneaded with a kneader, whereby the curable resin composition of the present invention can be prepared.
  • Examples of the kneading machine include a bead mill, a ball mill, a sand mill, a three-roll mill, and a two-roll mill. Among these, it is preferable to use a bead mill in order to improve dispersibility.
  • the dispersion conditions, such as the type and particle size of the beads of the bead mill, can be set appropriately according to the desired viscosity.
  • the curable resin composition according to the present invention is useful for forming a pattern layer as a permanent coating for a printed wiring board, such as a solder resist, a coverlay, or an interlayer insulating layer.
  • the curable resin composition of the present invention can be used not only for forming a pattern layer of a cured coating film, but also for applications that do not form a pattern layer, such as molding applications (sealing applications).
  • the curable resin composition of the present invention can also be in the form of a dry film comprising a first film and a resin layer consisting of a dried coating film of the curable resin composition formed on the first film.
  • the curable resin composition of the present invention is diluted with the organic solvent to adjust the viscosity to an appropriate level, and then coated on the first film in a uniform thickness using a comma coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll coater, gravure coater, spray coater, or the like, and usually dried at a temperature of 50 to 130° C. for 1 to 30 minutes to obtain a film.
  • the coating film thickness is generally appropriately selected within the range of 1 to 150 ⁇ m, preferably 5 to 60 ⁇ m, in terms of the film thickness after drying.
  • any known film can be used without particular restriction.
  • polyester films such as polyethylene terephthalate and polyethylene naphthalate
  • films made of thermoplastic resins such as polyimide films, polyamideimide films, polypropylene films, and polystyrene films
  • polyester films are preferred from the standpoints of heat resistance, mechanical strength, and ease of handling.
  • a laminate of these films can also be used as the first film.
  • thermoplastic resin film described above is a film that has been oriented uniaxially or biaxially.
  • the thickness of the first film is not particularly limited, but can be, for example, 10 ⁇ m to 150 ⁇ m.
  • a peelable second film on the surface of the resin layer for the purpose of preventing dust from adhering to the surface of the resin layer.
  • a peelable second film for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, surface-treated paper, etc. can be used, and it is sufficient that the adhesive strength between the resin layer and the second film is smaller than the adhesive strength between the resin layer and the first film when the second film is peeled off.
  • the thickness of the second film is not particularly limited, but can be, for example, 10 ⁇ m to 150 ⁇ m.
  • the second film is peeled off from the dry film, and the exposed resin layer of the dry film is placed on a substrate on which a circuit has been formed, and the two are bonded together using a laminator or the like to form a resin layer on the substrate on which a circuit has been formed.
  • the formed resin layer is then exposed to light, developed, and heat cured to form a cured coating.
  • the second film can be peeled off either before or after exposure.
  • the cured product of the present invention is obtained by curing the curable resin composition of the present invention or the resin layer of the dry film of the present invention.
  • the manufacturing conditions such as curing conditions will be described later in [Printed wiring board].
  • the cured product of the present invention can be suitably used for printed wiring boards, electronic parts, etc.
  • the printed wiring board of the present invention has a cured product obtained from the resin layer of the curable resin composition or dry film of the present invention.
  • the curable resin composition of the present invention is adjusted to a viscosity suitable for the coating method using the organic solvent, and applied to a substrate by a method such as dip coating, flow coating, roll coating, bar coater, screen printing, or curtain coating, and then the organic solvent contained in the composition is evaporated and dried (temporarily dried) at a temperature of 60 to 100° C. for 15 to 90 minutes to form a tack-free resin layer.
  • the resin layer is attached to the substrate by a laminator or the like so that the resin layer contacts the substrate, and then the first film is peeled off to form a resin layer on the substrate.
  • the above-mentioned substrates include printed wiring boards and flexible printed wiring boards with circuits formed in advance using copper or the like, as well as materials such as paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy, synthetic fiber epoxy, copper-clad laminates for high-frequency circuits using fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, etc., and include copper-clad laminates of all grades (FR-4, etc.), as well as metal substrates, polyimide films, polyethylene terephthalate films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates, etc.
  • materials such as paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy, synthetic fiber epoxy, copper-clad laminates for high-frequency circuits using fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide,
  • the dry film is preferably bonded to the substrate using a vacuum laminator or the like under pressure and heat.
  • a vacuum laminator By using such a vacuum laminator, when a circuit-formed board is used, the dry film adheres closely to the circuit board even if the circuit board surface is uneven, preventing the inclusion of air bubbles and improving the filling of recesses in the board surface.
  • the pressure conditions are preferably around 0.1 to 2.0 MPa, and the heating conditions are preferably 40 to 120°C.
  • the volatilization drying carried out after the curable resin composition of the present invention is applied to a substrate can be carried out using a hot air circulation drying oven, an IR oven, a hot plate, a convection oven, etc. (a method in which hot air in a dryer is brought into countercurrent contact using a heat source that uses steam for air heating, or a method in which hot air is blown onto a substrate from a nozzle).
  • a hot air circulation drying oven such as the DF610 manufactured by Yamato Scientific Co., Ltd.
  • a resin layer on the substrate After forming a resin layer on the substrate, it is selectively exposed to active energy rays through a photomask with a predetermined pattern formed thereon, and the unexposed areas are developed with a dilute alkaline aqueous solution (e.g., a 0.3 to 3.0 mass % aqueous solution of sodium carbonate) to form a pattern of the cured product.
  • a dilute alkaline aqueous solution e.g., a 0.3 to 3.0 mass % aqueous solution of sodium carbonate
  • the first film after exposure, the first film is peeled off from the dry film and development is carried out to form a patterned cured product on the substrate. Note that, as long as the properties are not impaired, the first film may be peeled off from the dry film before exposure, and the exposed resin layer may be exposed and developed.
  • the exposure machine used for the above-mentioned active energy ray irradiation may be a machine equipped with a high pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, a mercury short arc lamp, or the like, and irradiates ultraviolet rays in the range of 350 to 450 nm.
  • a direct imaging machine for example, a laser direct imaging machine that draws an image directly with a laser based on CAD data from a computer
  • the lamp light source or laser light source of the direct imaging machine may have a maximum wavelength in the range of 350 to 450 nm.
  • the exposure dose for image formation varies depending on the film thickness, etc., but can generally be in the range of 100 to 2000 mJ/cm 2 , preferably 400 to 1600 mJ/cm 2 .
  • As an exposure machine equipped with a metal halide lamp HMW-680-GW20 manufactured by Oak Manufacturing Co., Ltd. may be mentioned.
  • the above-mentioned developing method can be a dipping method, a shower method, a spray method, a brush method, etc.
  • the developing solution can be an alkaline aqueous solution of potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines, etc.
  • the cured product is irradiated with active energy rays and then heat-cured (for example, at a temperature of 100 to 220°C for 30 to 90 minutes), or is irradiated with active energy rays after heat-curing (for example, 1,000 to 2,000 mJ/ cm2 ), or is heat-cured alone for final finish curing (main curing), thereby forming a cured coating film with excellent properties such as adhesion and hardness.
  • the device include a UV conveyor using a high-pressure mercury lamp, such as QRM-2082 manufactured by Oak Manufacturing Co., Ltd.
  • the coating film can be produced as follows.
  • the curable resin composition of the present invention is applied to a substrate by pattern printing or the like, and then cured by irradiation with active energy rays (for example, 1,000 to 2,000 mJ/cm 2 ) to form a cured coating film.
  • active energy rays for example, 1,000 to 2,000 mJ/cm 2
  • the curable resin composition of the present invention is applied to a substrate by pattern printing or the like, and then heat-cured (for example, at a temperature of 100 to 220° C. for 30 to 90 minutes) to form a cured coating film.
  • evaluation board 1 (For measuring gold plating resistance and acid resistance)
  • the curable resin compositions obtained in Examples 1 to 7 and Comparative Examples 1 and 2 were applied to the entire surface of a copper foil substrate by screen printing so that the film thickness after drying was 25 ⁇ m, and the substrate was heated at 180° C. for 60 minutes to be cured.
  • the following evaluations were performed on the obtained evaluation substrates.
  • the curable resin composition was screen-printed multiple times on a copper foil substrate so that the coating film after curing was 100 ⁇ m. When printing multiple times, each printing was dried at 90° C. for 30 minutes, and after the final printing, it was heated at 180° C. for 60 minutes to be cured.
  • an evaluation substrate was prepared by exposure to a high pressure mercury lamp at 1000 mJ / cm 2. The following evaluations were performed on the obtained evaluation substrate. (For magnetic permeability measurement) Screen printing was performed on a copper foil substrate, and the substrate was dried in a hot air circulating drying oven at 80°C for 30 minutes. After exposure to 1400 mJ/ cm2 from a metal halide lamp manufactured by Oak Manufacturing Co., Ltd., screen printing, drying, and exposure were repeated several times to produce a coating film with a thickness of 100 ⁇ m.
  • an evaluation substrate was produced by exposure to 1000 mJ/ cm2 from a high-pressure mercury lamp.
  • the curable resin compositions obtained in Examples 8 to 14 were applied to the entire surface of the substrate so that the film thickness after drying was 25 ⁇ m, and dried in a hot air circulating drying oven at 80 ° C for 30 minutes. After drying, the substrate was patterned through a predetermined photomask, exposed to 1400 mJ / cm 2 from a metal halide lamp manufactured by Oak Manufacturing Co., Ltd., and sprayed with a 1% by mass aqueous sodium carbonate solution at 30 ° C for 90 seconds to remove the unexposed portion, and then heated and cured in a hot air circulating drying oven at 150 ° C for 60 minutes. Furthermore, an evaluation substrate was prepared by exposing to 1000 mJ / cm 2 from a high pressure mercury lamp. All of the evaluation substrates obtained had 100 ⁇ m openings, which was a good result.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials For Photolithography (AREA)

Abstract

[課題]高周波領域においても高い透磁率を有し、かつ、薬液耐性に優れた硬化塗膜を形成可能な磁性フィラー含有硬化性樹脂組成物の提供。 [解決手段]本発明による硬化性樹脂組成物は、(A)硬化性樹脂、(B)硬化剤、および(C)磁性フィラーを含有する硬化性樹脂組成物であって、 (C)磁性フィラーが、B、Si、Cu、およびNbの少なくとも1種を含むことを特徴とする。

Description

硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
 本発明は、硬化性樹脂組成物に関する。さらに、本発明は、該硬化性樹脂組成物を用いたドライフィルム、硬化物、およびプリント配線板に関する。
 近年の電子部品への小型化・高機能化の要求に伴い、配線板の分野においても更なる高密度化および高機能化が求められている。従来はインダクタ部品がプリント配線板表面に実装されていたが、近年はプリント配線板の導体パターンによりコイルを形成し、インダクタを基板内部に設ける手法が行われるようになってきている。
 例えば、特許文献1には、多層基板に渦巻き状の導体パターンを形成し、各層の導体パターンの端を上層および下層を層間接続し、全体としてらせん状のコイルを形成した、インダクタ内蔵型のプリント配線板が開示されている。
 また、電子機器の性能向上により、電子回路の高速化、高周波化が進んでおり、電子回路から発生する電磁ノイズの増加が懸念されている。しかし、ノイズ抑制のためのフェライトビーズやシールド材を用いた場合、プリント配線板を小型化・高密度化することが困難となる。
 このような問題に対して、特許文献2には、多層配線基板において各基板の間に磁性体層を設けたり、貫通ビアを磁性材料で充填したりすることで、複数の回路要素を多層基板上に実装した場合であっても、小型かつ低コストでノイズを低減できることが提案されている。
特開2009-16504号公報 特開2017-017175号公報
 上記のようなインダクタ部品やノイズ抑制のための材料としては、より小型化や高性能化のために高周波領域においても透磁率が高いことが求められる。加えて、インダクタ部品や層間材、ソルダーレジスト、充填材として使用される際には、湿式めっきやデスミアや金めっきといった酸およびアルカリといった薬液に浸漬されることから、それらへの耐性も求められる。しかしながら、酸化鉄を主成分とするフェライト系の磁性フィラーを用いることで薬液耐性が高い硬化塗膜を提供できる一方で、スネークの限界といった理由から高周波領域においても透磁率を保つことが困難であった。また、スネークの限界がより高周波の磁性フィラーを用いた場合に、優れた透磁率を有するものの、無電解銅めっきや金めっき時に硬化塗膜中の磁性フィラーがめっき液へ溶出して硬化塗膜が脆くなったり、酸処理によって硬化塗膜が剥離し易くなる(すなわち薬液耐性が低い)という課題を見出した。
 本発明は、上記の課題に鑑みてなされたものであり、高周波領域においても高い透磁率を有し、かつ、無電解銅めっきや金めっき時に硬化塗膜中の磁性フィラーのめっき液へ溶出を抑制して硬化塗膜の劣化を抑制し、酸処理による硬化塗膜の剥離を抑制できる(すなわち薬液耐性に優れた)硬化塗膜を形成可能な硬化性樹脂組成物を提供することを目的とする。また、本発明は、該樹脂組成物の乾燥塗膜からなる樹脂層を有するドライフィルム、該樹脂組成物または該ドライフィルムの樹脂層の硬化物、および、該硬化物を有するプリント配線板を提供することも目的とする。
 本発明者らは、上記目的を達成すべく、鋭意検討した結果、微量成分としてホウ素(B)、ケイ素(Si)、銅(Cu)、およびニオブ(Nb)の少なくとも1種を含む磁性フィラーを硬化性樹脂組成物中に配合することにより、高周波領域においても高い透磁率を有し、かつ薬液耐性に優れた硬化塗膜が得られることを見出した。
 すなわち、本発明によれば、以下の発明が提供される。
[1] (A)硬化性樹脂、(B)硬化剤、および(C)磁性フィラーを含有する硬化性樹脂組成物であって、
 (C)磁性フィラーがB、Si、Cu、およびNbの少なくとも1種を含むことを特徴とする、硬化性樹脂組成物。
[2] (C)磁性フィラー中の、B、Si、Cu、およびNbのいずれかの含有量が1質量%以上10質量%未満である、[1]に記載の硬化性樹脂組成物。
[3] 前記硬化性樹脂組成物中の(C)磁性フィラーの配合量が、前記硬化性樹脂組成物中の固形分を100体積%とした場合、10体積%~70体積%である、[1]または[2]に記載の硬化性樹脂組成物。
[4] (C)磁性フィラーの平均粒径が、0.1μm以上20μm未満である、[1]~[3]のいずれかに記載の硬化性樹脂組成物。
[5] (A)硬化性樹脂が、光硬化性樹脂を含む、[1]~[4]のいずれかに記載の硬化性樹脂組成物。
[6] 第一のフィルムと、前記第一のフィルム上に形成された[1]~[5]のいずれかに記載の硬化性樹脂組成物の乾燥塗膜からなる樹脂層とを備えることを特徴とする、ドライフィルム。
[7] [1]~[5]のいずれかに記載の硬化性樹脂組成物を硬化させて得られることを特徴とする、硬化物。
[8] [6]に記載のドライフィルムの樹脂層を硬化させて得られることを特徴とする、硬化物。
[9] [7]に記載の硬化物を備えることを特徴とする、プリント配線板。
[10] [8]に記載の硬化物を備えることを特徴とする、プリント配線板。
 本発明によれば、高周波領域においても高い透磁率を有し、かつ、薬液耐性に優れた硬化塗膜を形成可能な磁性フィラー含有硬化性樹脂組成物を提供することができる。また、本発明によれば、該樹脂組成物の乾燥塗膜からなる樹脂層を有するドライフィルム、該樹脂組成物または該ドライフィルムの樹脂層の硬化物、および、該硬化物を有するプリント配線板を提供することができる。
[硬化性樹脂組成物]
 本発明による硬化性樹脂組成物は、少なくとも、(A)硬化性樹脂、(B)硬化剤、および(C)磁性フィラーを含有するものである。本発明による硬化性樹脂組成物は、光重合開始剤、増感剤、着色剤等をさらに含有してもよい。以下、本発明による硬化性樹脂組成物を構成する各成分について説明する。
((A)硬化性樹脂)
 硬化性樹脂としては、熱や光等が作用することにより硬化する樹脂であれば特に限定されることなく用いることができる。具体的には、熱硬化性樹脂、光硬化性樹脂等を用いることができる。硬化性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。例えば、熱硬化性樹脂または光硬化性樹脂をそれぞれ単独で用いてもよく、これらを組み合わせて用いてもよいが、光硬化性樹脂を含むことが好ましい。
(熱硬化性樹脂)
 熱硬化性樹脂としては、公知のものをいずれも用いることができる。硬化性樹脂組成物が、熱硬化性樹脂を含むことにより、硬化塗膜の耐熱性を向上させることができる。熱硬化性樹脂としては、例えば、メラミン樹脂、ベンゾグアナミン樹脂、メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂、イソシアネート化合物、ブロックイソシアネート化合物、シクロカーボネート化合物、エポキシ化合物、オキセタン化合物、エピスルフィド樹脂、ビスマレイミド、カルボジイミド樹脂等の公知の熱硬化性樹脂を使用できる。特に好ましいのは、分子中に複数の環状エーテル基または環状チオエーテル基(以下、環状(チオ)エーテル基と略す)を有する熱硬化性樹脂である。熱硬化性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。
 上記の分子中に複数の環状(チオ)エーテル基を有する熱硬化性樹脂は、分子中に3、4または5員環の環状(チオ)エーテル基を複数有する化合物であり、例えば、分子内に複数のエポキシ基を有する化合物、すなわち多官能エポキシ樹脂、分子内に複数のオキセタニル基を有する化合物、すなわち多官能オキセタン化合物、分子内に複数のチオエーテル基を有する化合物、すなわちエピスルフィド樹脂等が挙げられる。
 このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。
 市販されるエポキシ樹脂としては、例えば、三菱ケミカル株式会社製のjER 828、806、807、YX8000、YX8034、834、日鉄ケミカル&マテリアル株式会社製のYD-128、YDF-170、ZX-1059、ST-3000、DIC株式会社製のEPICLON 830、835、840、850、N-730A、N-695、および日本化薬株式会社製のRE-306等が挙げられる。
 多官能オキセタン化合物としては、例えば、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、またはシルセスキオキサン等の水酸基を有する樹脂とのエーテル化物等が挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等も挙げられる。
 分子中に複数の環状チオエーテル基を有する化合物としては、ビスフェノールA型エピスルフィド樹脂等が挙げられる。また、同様の合成方法を用いて、ノボラック型エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂なども用いることができる。
 メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂としては、メチロールメラミン化合物、メチロールベンゾグアナミン化合物、メチロールグリコールウリル化合物およびメチロール尿素化合物等が挙げられる。
 イソシアネート化合物としては、ポリイソシアネート化合物を配合することができる。ポリイソシアネート化合物としては、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネートおよび2,4-トリレンダイマー等の芳香族ポリイソシアネート;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4-メチレンビス(シクロヘキシルイソシアネート)およびイソホロンジイソシアネート等の脂肪族ポリイソシアネート;ビシクロヘプタントリイソシアネート等の脂環式ポリイソシアネート;並びに先に挙げたイソシアネート化合物のアダクト体、ビューレット体およびイソシアヌレート体等が挙げられる。
 ブロックイソシアネート化合物としては、イソシアネート化合物とイソシアネートブロック剤との付加反応生成物を用いることができる。イソシアネートブロック剤と反応し得るイソシアネート化合物としては、例えば、上述のポリイソシアネート化合物等が挙げられる。イソシアネートブロック剤としては、例えば、フェノール系ブロック剤;ラクタム系ブロック剤;活性メチレン系ブロック剤;アルコール系ブロック剤;オキシム系ブロック剤;メルカプタン系ブロック剤;酸アミド系ブロック剤;イミド系ブロック剤;アミン系ブロック剤;イミダゾール系ブロック剤;イミン系ブロック剤等が挙げられる。
 熱硬化性樹脂の配合量は、硬化性樹脂組成物全量あたり固形分換算で、好ましくは5質量%以上40質量%以下であり、より好ましくは10質量%以上30質量%以下である。熱硬化性樹脂の配合量が上記数値範囲内であれば、硬化性が良好となる。また、熱硬化性樹脂の配合量は、組成物中に後述するカルボキシル基含有樹脂を含む場合、カルボキシル基含有樹脂に含有されるカルボキシル基1molあたりに対し、反応する熱硬化成分の官能基数が0.5~2.5molが好ましく、より好ましくは0.8~2.0molである。
(光硬化性樹脂)
 光硬化性樹脂とは、エチレン性不飽和基を有する化合物であり、ポリマー、オリゴマー、モノマーなどが挙げられ、それらの混合物であってもよい。光硬化性樹脂を含むことにより、硬化膜の強度を向上させることができる。光硬化性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。また、光硬化性樹脂として、後述するカルボキシル基含有感光性樹脂を用いてもよい。
 エチレン性不飽和基を有する化合物としては、公知慣用の光重合性オリゴマー、光重合性モノマー等を用いることができる。この中でも、硬化塗膜の架橋性や硬化性をより付与できる点において、光重合性モノマーを用いることが好ましい。
 光重合性オリゴマーは、エチレン性不飽和二重結合を有するオリゴマーである。光重合性オリゴマーとしては、不飽和ポリエステル系オリゴマー、(メタ)アクリレート系オリゴマー等が挙げられる。(メタ)アクリレート系オリゴマーとしては、フェノールノボラックエポキシ(メタ)アクリレート、クレゾールノボラックエポキシ(メタ)アクリレート、ビスフェノール型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン変性(メタ)アクリレート等が挙げられる。
 光重合性モノマーは、エチレン性不飽和二重結合を有するモノマーである。このような光重合性モノマーとしては、例えば、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等のアルキレンオキサイド誘導体のモノまたはジ(メタ)アクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリスヒドロキシエチルイソシアヌレート等の多価アルコールまたはこれらのエチレンオキサイドあるいはプロピレンオキサイド付加物の多価(メタ)アクリレート類;フェノキシエチル(メタ)アクリレート、ビスフェノールAのポリエトキシジ(メタ)アクリレート等のフェノール類のエチレンオキサイドあるいはプロピレンオキサイド付加物の(メタ)アクリレート類;グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリシジルエーテルの(メタ)アクリレート類;およびメラミン(メタ)アクリレートが挙げられる。光重合性モノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
 光重合性モノマーの配合量は、硬化性樹脂組成物全量あたり固形分換算で、好ましくは1質量%以上20質量%以下であり、より好ましくは2質量%以上10質量%以下である。光重合性モノマーの配合量は、1質量%以上の場合、光硬化性が良好であり、活性エネルギー線照射後のアルカリ現像において、パターン形成がし易い。一方、10質量%以下の場合、ハレーションが生じにくく良好な解像性が得られ易い。
 硬化性樹脂は、硬化性樹脂組成物に対しアルカリ現像性を付与できる点において、アルカリ可溶性基を有するアルカリ可溶性樹脂を含むことが好ましい。アルカリ可溶性樹脂としては、例えば、フェノール性水酸基を2個以上有する化合物、カルボキシル基含有樹脂、フェノール性水酸基およびカルボキシル基を有する化合物、チオール基を2個以上有する化合物が挙げられる。中でも、下地との密着性が向上するため、カルボキシル基含有樹脂またはフェノール樹脂であると好ましく、特に現像性に優れるため、カルボキシル基含有樹脂であることがより好ましい。以下、カルボキシル基含有樹脂について、説明する。
(カルボキシル基含有樹脂)
 カルボキシル基含有樹脂としては、分子中にカルボキシル基を有している従来公知の各種樹脂を使用できる。カルボキシル基含有樹脂は分子中にエチレン性不飽和二重結合を有するものであっても有さないものであってもよいが、特に、分子中にエチレン性不飽和二重結合を有するカルボキシル基含有感光性樹脂が、光硬化性や耐現像性、解像性の面から好ましい。なお、本発明の硬化性樹脂組成物がカルボキシル基含有樹脂を含む場合、アルカリ現像する用途だけでなく、アルカリ現像しない用途に使用してもよい。エチレン性不飽和二重結合は、アクリル酸もしくはメタクリル酸またはそれらの誘導体由来であることが好ましい。エチレン性不飽和二重結合を有さないカルボキシル基含有樹脂のみを用いる場合、組成物を光硬化性とするためには、前述した分子中に複数のエチレン性不飽和基を有する化合物、即ち光重合性モノマーを併用する必要がある。カルボキシル基含有樹脂の具体例としては、以下のような化合物(オリゴマーおよびポリマーのいずれでもよい)を挙げることができる。
(1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂(低級アルキル(メタ)アクリレートとして、メチル(メタ)アクリレート等が挙げられる)。
(2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキサイド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。
(3)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応によるカルボキシル基含有感光性ウレタン樹脂。
(4)前記(2)または(3)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子内に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。
(5)前記(2)または(3)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物など、分子内に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。
(6)2官能またはそれ以上の多官能(固形)エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。
(7)2官能(固形)エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。
(8)2官能オキセタン樹脂にアジピン酸、フタル酸、ヘキサヒドロフタル酸等のジカルボン酸を反応させ、生じた1級の水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。
(9)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(10)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(12)前記(1)~(11)の樹脂にさらに1分子内に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂。
 なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語で、他の類似の表現についても同様である。
 本発明に使用できるカルボキシル基含有樹脂は、上記列挙したものに限られない。また、上記列挙したカルボキシル基含有樹脂は1種類を単独で用いてもよく、複数種を混合して用いてもよい。
 本発明において、炭酸ナトリウム水溶液等の弱アルカリ現像液を用いる際の現像性とレジストパターンの描画性を考慮すると、カルボキシル基含有樹脂の酸価は30~150mgKOH/gの範囲であることが好ましく、50~120mgKOH/gの範囲であることがより好ましい。カルボキシル基含有樹脂の酸価は高いほど現像性は向上するものの、現像液による露光部の溶解が進むために、露光部と未露光部の区別なく現像液で溶解剥離する場合がある。
 カルボキシル基含有樹脂の重量平均分子量は、樹脂骨格により異なるが、一般的に1,500~150,000の範囲であり、1,800~100,000の範囲にあるものが好ましい。重量平均分子量が2,000以上のカルボキシル基含有樹脂を用いることにより、解像性やタックフリー性能を向上させることができる。また、重量平均分子量が150,000以下のカルボキシル基含有樹脂を用いることにより現像性や貯蔵安定性を向上させることができる。重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定することができる。
 カルボキシル基含有樹脂の配合量は、硬化性樹脂組成物全量あたり固形分換算で、好ましくは5質量%以上80質量%以下であり、より好ましくは10質量%以上70質量%以下である。カルボキシル基含有樹脂の配合量は、10質量%以上とすることにより硬化塗膜の強度を向上させることができる。また、カルボキシル基含有樹脂の配合量は、80質量%以下とすることで硬化性樹脂組成物の粘性が適当となり加工性が向上する。
((B)硬化剤)
 硬化剤としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルフォスフィン等のリン化合物等が挙げられる。また、市販されているものとしては、例えば四国化成工業株式会社製の2MZA-PW、2MZ-A、2MZ-OK、2PHZ、2P4BHZ、2P4MHZ(いずれもイミダゾール系化合物の商品名)、サンアプロ株式会社製のU-CAT 3513N(ジメチルアミン系化合物の商品名)、DBU、DBN、U-CAT SA 102(いずれも二環式アミジン化合物およびその塩)、三菱ケミカル株式会社製のDICY(ジシアンジアミド)などが挙げられる。特に、これらに限られるものではなく、エポキシ樹脂やオキセタン化合物の硬化剤、もしくはエポキシ基およびオキセタニル基の少なくともいずれか1種とカルボキシル基の反応を促進するものであればよく、単独でまたは2種以上を混合して使用してもかまわない。
 さらに、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもでき、好ましくはこれら密着性付与剤としても機能する化合物を硬化剤と併用する。硬化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 硬化剤の配合量は、硬化性樹脂組成物全量あたり固形分換算で、好ましくは0.01質量%以上8質量%以下であり、より好ましくは0.03質量%以上5質量%以下である。
((C)磁性フィラー)
 磁性フィラーは、少なくとも、B、Si、Cu、およびNbの少なくとも1種を含む。(C)磁性フィラー中の、B、Si、Cu、およびNbのいずれかの含有量は、好ましくは0.1質量%以上20質量%未満であり、より好ましくは0.5質量%以上15質量%以下であり、さらに好ましくは1質量%以上10質量%以下である。各微量成分(B、Si、Cu、およびNb)の含有量が上記数値範囲内であれば、高周波領域においても高い透磁率を有し、かつ、薬液耐性に優れた硬化塗膜を形成し易くなる。
 なお、磁性フィラーの各微量成分の含有量は、以下のようにして求めることができる。各試料を切断又は切削した後、研削又は研磨して平面状に仕上げ、発光分光分析装置の試料支持台に取り付けて電極とし、対電極として銀又はタングステンを用いて発生させ、スペクトル線を分光器によって分光し、定量成分のスペクトル線強度を測定することにより、磁性フィラーの各金属成分の含有量(質量%)を求める。(JIS G 1253「鉄及び鋼-スパーク放電発光分析法」に従って実施。)
 磁性フィラーは、上記の微量成分(B、Si、Cu、およびNb)以外の組成としては、特に限定されないが、Fe、Fe、MnO等が挙げられる。磁性フィラーの市販品を用いることができる。アモルファス合金磁性粉体としては、例えば、エプソンアトミックス株式会社製のAW02-08PF3FG、ATFINE-NC1 PF3FA等が挙げられる。High-Si系特殊合金粉末としては、三菱製鋼株式会社のAKT-PB(5.0)等が挙げられる。フェライト系磁性粉体としては、例えば、パウダーテック社製のM10S等が挙げられる。カルボニル鉄系磁性粉体としては、例えば、BASF社製のHQ-I等が挙げられる。
 磁性フィラーの平均粒径(D50)は、好ましくは0.1μm以上20μm未満であり、より好ましくは0.5μm以上15μm以下であり、さらに好ましくは1μm以上10μm以下である。磁性フィラーの平均粒径が上記数値範囲内であれば、高周波領域においても高い透磁率を有し、かつ、薬液耐性に優れた硬化塗膜を形成し易くなる。
 磁性フィラーの平均粒径とは、Mie散乱理論に基づくレーザー回折・散乱法により、レーザー回折散乱式粒径分布装置を用いて測定することができる。尚、本発明における磁性フィラーの平均粒径とは、硬化性樹脂組成物を調整(予備撹拌、混錬)する前に測定された値をいう。
 磁性フィラーの配合量は、硬化性樹脂組成物中の固形分を100体積%とした場合、好ましくは5体積%以上80体積%以下であり、より好ましくは10体積%以上75体積%以下であり、さらに好ましくは15体積%以上70体積%以下である。磁性フィラーの配合量が上記数値範囲内であれば、高周波領域においても高い透磁率を有し、かつ、薬液耐性に優れた硬化塗膜を形成し易くなる。
 本発明の硬化性樹脂組成物は、以下の任意成分を含んでもよい。
(光重合開始剤)
 光重合開始剤は、カルボキシル基含有感光性樹脂や光重合性モノマーを露光により反応させるためのものである。光重合開始剤としては、公知のものをいずれも用いることができる。光重合開始剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 光重合開始剤としては、具体的には例えば、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド類;2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2-メチルベンゾイルジフェニルフォスフィンオキサイド、ピバロイルフェニルフォスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のモノアシルフォスフィンオキサイド類;フェニル(2,4,6-トリメチルベンゾイル)フォスフィン酸エチル、1-ヒドロキシ-シクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のヒドロキシアセトフェノン類;ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類;ベンゾインアルキルエーテル類;ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル)-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、p-ジメチル安息香酸エチルエステル等の安息香酸エステル類;1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム等のチタノセン類;フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。
 α-アミノアセトフェノン系光重合開始剤の市販品としては、IGM Resins社製のOmnirad 907、369、369E、379等が挙げられる。また、アシルフォスフィンオキサイド系光重合開始剤の市販品としては、IGM Resins社製のOmnirad 819等が挙げられる。オキシムエステル系光重合開始剤の市販品としては、BASFジャパン株式会社製のIrgacure OXE01、OXE02、株式会社ADEKA製N-1919、アデカアークルズ NCI-831、NCI-831E、常州強力電子新材料社製TR-PBG-304などが挙げられる。
 その他、特開2004-359639号公報、特開2005-097141号公報、特開2005-220097号公報、特開2006-160634号公報、特開2008-094770号公報、特表2008-509967号公報、特表2009-040762号公報、特開2011-80036号公報記載のカルバゾールオキシムエステル化合物等を挙げることができる。
 光重合開始剤の配合量は、硬化性樹脂組成物全量あたり固形分換算で、好ましくは0.1~10質量%であり、より好ましくは1~5質量%である。光重合開始剤の配合量は、0.1質量%以上の場合、硬化性樹脂組成物の光硬化性が良好となり、耐薬品性等の塗膜特性も良好となる。一方、10質量%以下の場合、レジスト膜(硬化塗膜)表面での光吸収が良好となり、深部硬化性が低下しにくい。
 上記した光重合開始剤と併用して、光開始助剤または増感剤を用いてもよい。光開始助剤または増感剤としては、ベンゾイン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、3級アミン化合物、およびキサントン化合物などを挙げることができる。特に、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン等のチオキサントン化合物を用いることが好ましい。チオキサントン化合物が含まれることにより、深部硬化性を向上させることができる。これらの化合物は、光重合開始剤として用いることができる場合もあるが、光重合開始剤と併用して用いることが好ましい。また、光開始助剤または増感剤は1種類を単独で用いてもよく、2種以上を併用してもよい。
 なお、これら光重合開始剤、光開始助剤、および増感剤は、特定の波長を吸収するため、場合によっては感度が低くなり、紫外線吸収剤として機能することがある。しかしながら、これらは樹脂組成物の感度を向上させることだけの目的に用いられるものではない。必要に応じて特定の波長の光を吸収させて、表面の光反応性を高め、レジストパターンのライン形状および開口を垂直、テーパー状、逆テーパー状に変化させるとともに、ライン幅や開口径の精度を向上させることができる。
(着色剤)
 本発明の硬化性樹脂組成物には、着色剤を配合することができる。着色剤としては、特に限定されず、赤、青、緑、黄等の公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよいが、環境負荷の低減や人体への影響が少ない観点からハロゲンを含有しない着色剤であることが好ましい。
 赤色着色剤としてはモノアゾ系、ジスアゾ系、アゾレーキ系、ベンズイミダゾロン系、ペリレン系、ジケトピロロピロール系、縮合アゾ系、アントラキノン系、キナクリドン系等があり、具体的には以下のようなカラ-インデックス(C.I.;ザ ソサイエティ オブ ダイヤーズ アンド カラリスツ(The Society of Dyersand Colourists)発行)番号が付されているものが挙げられる。
 モノアゾ系赤色着色剤としては、Pigment Red 1,2,3,4,5,6,8,9,12,14,15,16,17,21,22,23,31,32,112,114,146,147,151,170,184,187,188,193,210,245,253,258,266,267,268,269等が挙げられる。また、ジスアゾ系赤色着色剤としては、Pigment Red 37,38,41等が挙げられる。また、モノアゾレーキ系赤色着色剤としては、Pigment Red 48:1,48:2,48:3,48:4,49:1,49:2,50:1,52:1,52:2,53:1,53:2,57:1,58:4,63:1,63:2,64:1,68等が挙げられる。また、ベンズイミダゾロン系赤色着色剤としては、Pigment Red 171,175,176、185、208等が挙げられる。また、ぺリレン系赤色着色剤としては、Solvent Red 135,179,Pigment Red 123,149,166,178,179,190,194,224等が挙げられる。また、ジケトピロロピロール系赤色着色剤としては、Pigment Red 254,255,264,270,272等が挙げられる。また、縮合アゾ系赤色着色剤としては、Pigment Red 220,144,166,214,220,221,242等が挙げられる。また、アントラキノン系赤色着色剤としては、Pigment Red 168,177,216、Solvent Red 149,150,52,207等が挙げられる。また、キナクリドン系赤色着色剤としては、Pigment Red 122,202,206,207,209等が挙げられる。
 青色着色剤としてはフタロシアニン系、アントラキノン系があり、顔料系はピグメント(Pigment)に分類されている化合物が挙げられ、例えば、Pigment Blue 15,15:1,15:2,15:3,15:4,15:6,16,60。染料系としては、Solvent Blue 35,63,68,70,83,87,94,97,122,136,67,70等を使用することができる。上記以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。
 黄色着色剤としてはモノアゾ系、ジスアゾ系、縮合アゾ系、ベンズイミダゾロン系、イソインドリノン系、アントラキノン系等が挙げられ、例えば、アントラキノン系黄色着色剤としては、Solvent Yellow 163,Pigment Yellow 24,108,193,147,199,202等が挙げられる。イソインドリノン系黄色着色剤としては、Pigment Yellow 110,109,139,179,185等が挙げられる。縮合アゾ系黄色着色剤としては、Pigment Yellow 93,94,95,128,155,166,180等が挙げられる。ベンズイミダゾロン系黄色着色剤としては、Pigment Yellow 120,151,154,156,175,181等が挙げられる。また、モノアゾ系黄色着色剤としては、Pigment Yellow 1,2,3,4,5,6,9,10,12,61,62,62:1,65,73,74,75,97,100,104,105,111,116,167,168,169,182,183等が挙げられる。また、ジスアゾ系黄色着色剤としては、Pigment Yellow 12,13,14,16,17,55,63,81,83,87,126,127,152,170,172,174,176,188,198等が挙げられる。
 その他、紫、オレンジ、茶色、黒等の着色剤を加えてもよい。具体的には、Pigment Black 1,6,7,8,9,10,11,12,13,18,20,25,26,28,29,30,31,32、Pigment Violet 19、23、29、32、36、38、42、Solvent Violet13,36、C.I.Pigment Orange 1,5,13,14,16,17,24,34,36,38,40,43,46,49,51,61,63,64,71,73、PigmentBrown 23,25,カーボンブラック等が挙げられる。
 着色剤の配合量は、硬化性樹脂組成物全量あたり固形分換算で、好ましくは0.1~2.0質量%であり、より好ましくは0.3~1.5質量%である。
(有機溶剤)
 本発明の硬化性樹脂組成物には、組成物の調製や、基板やフィルムに塗布する際の粘度調整等の目的で、有機溶剤を含有させることができる。有機溶剤としては、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、ジエチレングリコールモノエチルエーテルアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤など、公知慣用の有機溶剤が使用できる。これらの有機溶剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 有機溶剤の配合量は、特に限定されず、硬化性樹脂組成物を調製し易いように目的の粘度に応じて適宜設定することができる。
(その他の添加成分)
 本発明の硬化性樹脂組成物には、必要に応じてさらに、シアネート化合物、エラストマー、メルカプト化合物、ウレタン化触媒、チキソ化剤、密着促進剤、ブロック共重合体、連鎖移動剤、重合禁止剤、銅害防止剤、酸化防止剤、防錆剤、増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤およびレベリング剤の少なくともいずれか1種、イミダゾール系、チアゾール系、トリアゾール系等のシランカップリング剤、フォスフィン酸塩、燐酸エステル誘導体、フォスファゼン化合物等のリン化合物等の難燃剤などの成分を配合することができる。これらは、電子材料の分野において公知の物を使用することができる。
 本発明の硬化性樹脂組成物は、ドライフィルム化して用いてもよい。
[調製方法]
 本発明の硬化性樹脂組成物の調製には、各成分を秤量、配合した後、撹拌機にて予備撹拌する。続いて、混練機にて各成分を分散させ、混練を行うことで調製することができる。
 上記の混練機としては、例えばビーズミル、ボールミル、サンドミル、3本ロールミル、2本ロールミル等を挙げることができる。これらの中でも、分散性を向上させるためには、ビーズミルを用いることが好ましい。ビーズミルのビーズの種類や粒径等の分散条件は、目的とする粘度に応じて適宜設定することができる。
[用途]
 本発明による硬化性樹脂組成物は、ソルダーレジストやカバーレイ、層間絶縁層等のプリント配線板の永久被膜としてのパターン層を形成するために有用である。
 また、本発明の硬化性樹脂組成物は、硬化塗膜のパターン層を形成する用途だけでなく、パターン層を形成しない用途、例えばモールド用途(封止用途)に用いることができる。
[ドライフィルム]
 本発明の硬化性樹脂組成物は、第一のフィルムと、この第一のフィルム上に形成された上記硬化性樹脂組成物の乾燥塗膜からなる樹脂層とを備えたドライフィルムの形態とすることもできる。ドライフィルム化に際しては、本発明の硬化性樹脂組成物を上記有機溶剤で希釈して適切な粘度に調整し、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等で第一のフィルム上に均一な厚さに塗布し、通常、50~130℃の温度で1~30分間乾燥して膜を得ることができる。塗布膜厚については特に制限はないが、一般に、乾燥後膜厚で、1~150μm、好ましくは5~60μmの範囲で適宜選択される。
 第一のフィルムとしては、公知のものであれば特に制限なく使用することができ、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等の熱可塑性樹脂からなるフィルムを好適に使用することができる。これらの中でも、耐熱性、機械的強度、取扱性等の観点から、ポリエステルフィルムが好ましい。また、これらフィルムの積層体を第一のフィルムとして使用することもできる。
 また、上記したような熱可塑性樹脂フィルムは、機械的強度向上の観点から、一軸方向または二軸方向に延伸されたフィルムであることが好ましい。
 第一のフィルムの厚さは、特に制限されるものではないが、例えば、10μm~150μmとすることができる。
 第一のフィルム上に本発明の硬化性樹脂組成物の乾燥塗膜からなる樹脂層を形成した後、さらに、樹脂層の表面に塵が付着するのを防ぐなどの目的で、樹脂層の表面に剥離可能な第二のフィルムを積層することが好ましい。剥離可能な第二のフィルムとしては、例えば、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができ、第二のフィルムを剥離するときに樹脂層と第一のフィルムとの接着力よりも樹脂層と第二のフィルムとの接着力がより小さいものであればよい。
 第二のフィルムの厚さは、特に限定されるものではないが、例えば、10μm~150μmとすることができる。
 ドライフィルムを用いてプリント配線板上に硬化塗膜を作製するには、ドライフィルムから第二のフィルムを剥離し、ドライフィルムの露出した樹脂層を回路形成された基材に重ね、ラミネーター等を用いて貼り合わせ、回路形成された基材上に樹脂層を形成する。次いで、形成された樹脂層に対し、露光、現像、加熱硬化すれば、硬化塗膜を形成することができる。第二のフィルムは、露光前または露光後のいずれかで剥離すればよい。
[硬化物]
 本発明の硬化物は、上記本発明の硬化性樹脂組成物、または、上記本発明のドライフィルムの樹脂層を硬化して得られるものである。硬化条件等の製造条件については[プリント配線板]にて後述する。本発明の硬化物は、プリント配線板や電子部品等に好適に用いることができる。
[プリント配線板]
 本発明のプリント配線板は、本発明の硬化性樹脂組成物またはドライフィルムの樹脂層から得られる硬化物を有するものである。本発明のプリント配線板の製造方法としては、例えば、本発明の硬化性樹脂組成物を、上記有機溶剤を用いて塗布方法に適した粘度に調整して、基材上に、ディップコート法、フローコート法、ロールコート法、バーコーター法、スクリーン印刷法、カーテンコート法等の方法により塗布した後、60~100℃の温度で15~90分間、組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることで、タックフリーの樹脂層を形成する。また、ドライフィルムの場合、ラミネーター等により樹脂層が基材と接触するように基材上に貼り合わせた後、第一のフィルムを剥がすことにより、基材上に樹脂層を形成する。
 上記基材としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル、ポリフェニレンオキサイド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板等を挙げることができる。
 ドライフィルムの基材上への貼合は、真空ラミネーター等を用いて、加圧および加熱下で行うことが好ましい。このような真空ラミネーターを使用することにより、回路形成された基板を用いた場合に、回路基板表面に凹凸があっても、ドライフィルムが回路基板に密着するため、気泡の混入がなく、また、基板表面の凹部の穴埋め性も向上する。加圧条件は、0.1~2.0MPa程度であることが好ましく、また、加熱条件は、40~120℃であることが好ましい。
 本発明の硬化性樹脂組成物を基材上に塗布した後に行う揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。装置としては、熱風循環乾燥炉として、ヤマト科学株式会社製DF610等が挙げられる。
 基材上に樹脂層を形成後、所定のパターンを形成したフォトマスクを通して選択的に活性エネルギー線により露光し、未露光部を希アルカリ水溶液(例えば、0.3~3.0質量%炭酸ソーダ水溶液)により現像して硬化物のパターンを形成する。ドライフィルムの場合には、露光後、ドライフィルムから第一のフィルムを剥離して現像を行うことにより、基材上にパターニングされた硬化物を形成する。なお、特性を損なわない範囲であれば、露光前にドライフィルムから第一のフィルムを剥離して、露出した樹脂層を露光および現像してもよい。
 上記活性エネルギー線照射に用いられる露光機としては、高圧水銀灯ランプ、超高圧水銀灯ランプ、メタルハライドランプ、水銀ショートアークランプ等を搭載し、350~450nmの範囲で紫外線を照射する装置であればよく、さらに、直接描画装置(例えば、コンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)も用いることができる。直描機のランプ光源またはレーザー光源としては、最大波長が350~450nmの範囲にあるものでよい。画像形成のための露光量は膜厚等によって異なるが、一般には100~2000mJ/cm、好ましくは400~1600mJ/cmの範囲内とすることができる。装置としては、メタルハライドランプ搭載の露光装置として、株式会社オーク製作所製HMW-680-GW20等が挙げられる。
 上記現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液が使用できる。
 さらに、硬化物に活性エネルギー線を照射後に加熱硬化(例えば、100~220℃の温度で30~90分間)、もしくは加熱硬化後に活性エネルギー線を照射(例えば、1,000~2,000mJ/cm)、または、加熱硬化のみで最終仕上げ硬化(本硬化) させることにより、密着性、硬度等の諸特性に優れた硬化塗膜を形成する。装置としては、高圧水銀ランプを用いたUVコンベアとして、株式会社オーク製作所製QRM-2082等が挙げられる。
 上記内容は光硬化型熱硬化型の樹脂組成物による硬化塗膜の形成方法であるが、光硬化のみや熱硬化のみの場合は以下のとおり、製造することができる。
 光硬化のみの場合、本発明の硬化性樹脂組成物を基材上にパターン印刷等で塗布した後に活性エネルギー線(例えば、1,000~2,000mJ/cm)を照射して硬化させることにより、硬化塗膜を形成する。
 一方、熱硬化のみの場合、本発明の硬化性樹脂組成物を基材上にパターン印刷等で塗布した後に加熱硬化(例えば、100~220℃の温度で30~90分間)させることにより、硬化塗膜を形成する。
 以下、本発明を、実施例を用いてより詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。
(合成例 カルボキシル基含有感光性樹脂1の合成)
 ジエチレングリコールモノエチルエーテルアセテート650質量部にオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製、EPICLON N-695、軟化点95℃、エポキシ当量214、平均官能基数7.6)1070g、アクリル酸360g、及びハイドロキノン1.5gを仕込み、100℃に加熱攪拌し、均一溶解した。次いで、トリフェニルフォスフィン4.3質量部を仕込み、110℃に加熱して2時間反応後、更にトリフェニルフォスフィン1.6質量部を追加し、120℃に昇温してさらに12時間反応を行った。得られた反応液に芳香族系炭化水素(株式会社スタンダード石油大阪発売所製、ティーソル150)525g、テトラヒドロ無水フタル酸608g(4.0モル)を仕込み、110℃で4時間反応を行った。さらに、得られた反応液にグリシジルメタクリレート142.0gを仕込み、115℃で4時間反応を行った。このようにして、固形分65%、固形分の酸価77mgKOH/gであるカルボキシル基含有感光性樹脂1の溶液を得た。
[実施例1~14、比較例1~4]
(硬化性樹脂組成物の調製)
 各組成物について、下記表1~2に示す処方に従って各成分を配合し、撹拌機にて撹拌した。その後、3本ロールミルにて混錬し、硬化性樹脂組成物を調整した。
(評価基板の作製1)
 (金めっき耐性と耐酸性測定用)
 実施例1~7および比較例1~2で得られた硬化性樹脂組成物を、銅箔基板上にスクリーン印刷で乾燥後の膜厚が25μmになるように全面塗布し、180℃で60分間加熱し、硬化した。得られた評価基板に対して下記の評価を行った。
 (透磁率測定用)
 硬化性樹脂組成物を銅箔基板上に複数回スクリーン印刷を行い、硬化後の塗膜が100μmとなるようにした。複数回印刷する際には、印刷毎に90℃で30分間乾燥し、最終印刷後に180℃で60分間加熱し、硬化した。
(評価基板の作製2)
 (金めっき耐性と耐酸性測定用)
 実施例8~14および比較例3~4で得られた硬化性樹脂組成物を、基板上に乾燥後の膜厚が25μmになるように全面塗布し、80℃の熱風循環乾燥炉内で30分間乾燥した。乾燥後所定のフォトマスクを介して、株式会社オーク製作所製メタルハライドランプ1400mJ/cmの露光を行い、30℃で1質量%の炭酸ナトリウム水溶液を90秒間スプレーすることにより未露光部分を除去したのち、150℃の熱風循環乾燥炉内で60分間加熱し、硬化させた。さらに、高圧水銀灯1000mJ/cmの露光を行うことで評価基板を作製した。得られた評価基板に対して下記の評価を行った。
 (透磁率測定用)
 銅箔基板上にスクリーン印刷を行い、80℃の熱風循環乾燥炉内で30分間乾燥した。株式会社オーク製作所製メタルハライドランプ1400mJ/cmの露光を行ったのち、再度、スクリーン印刷、乾燥、露光を複数回繰り返し膜厚が100μmとなるように塗膜を作製した。その後、30℃で1質量%の炭酸ナトリウム水溶液を90秒間スプレーすることにより未露光部分を除去したのち、150℃の熱風循環乾燥炉内で60分間加熱し、硬化させた。さらに、高圧水銀灯1000mJ/cmの露光を行うことで評価基板を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2中の配合量は、質量部(固形分換算量)を示す。
 表1、2中の各成分の詳細は、以下の通りである。
※1:ビスフェノールA型液状エポキシ樹脂(三菱ケミカル株式会社、jER828)
※2:ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の50:50混合品(日鉄ケミカル&マテリアル株式会社製、ZX-1059)
※3:イミダゾール型硬化剤(四国化成工業株式会社、2MZA-PW)
※4:アモルファス合金磁性粉体(エプソンアトミックス株式会社製、ATFINE-NC1 PF3FA)
※5:アモルファス合金磁性粉体(エプソンアトミックス株式会社製、ATFINE-NC1 PF3FC124A)
※6:High-Si系特殊合金粉末(三菱製鋼株式会社、AKT-PB(5.0))
※7:フェライト系磁性粉体(パウダーテック株式会社製、M10S)
※8:カルボニル鉄系磁性粉体(BASF社製、HQ-I)
※9:球状シリカ(株式会社アドマテックス製、SC-6500SQ)
※10:シリコーン系消泡剤(信越化学工業株式会社、KS-66)
※11:上記合成例にて合成したカルボキシ基含有感光性樹脂1
※12:ジペンタエリエリスリトールヘキサアクリレート(日本化薬株式会社、DPHA)
※13:ビフェニル型固形エポキシ樹脂(三菱ケミカル株式会社製、YX-4000)
※14:ジシジアンジアミド(三菱ケミカル株式会社、DICY)
※15:硫酸バリウム(堺化学工業株式会社、B-30)
※16:アシルフォスフィンオキサイド系重合開始剤(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)
※17:チタノセン系重合開始剤(Yueyang Kimoutain Scitech Co. Ltd.社、JMT784)
※18:増感剤(日本化薬株式会社製、DETX-S)
[硬化塗膜の性能評価]
(磁気特性の評価)
 上記で作製した評価基板から硬化塗膜を剥離した。剥離した硬化塗膜を外径7mm、内径3mmのトロイダル形状に切り出し、評価試験片を作製した。各評価試験片について、Keysight社製インピーダンスアナライザE4291Bを用いて、温度25℃、1 GHzでの比透磁率(μ’)を測定した。下記の基準に基づいて磁気特性を評価し、評価結果を表3~4に示した。
[評価基準]
 ◎:透磁率1.5以上(@3GHz)
 〇:透磁率1.3以上1.5未満(@3GHz)
 ×:透磁率1.3未満(@3GHz)
(金めっき耐性の評価)
 上記で作製した評価基板を無電解ニッケルめっき浴および無電解金めっき浴を用いて、ニッケル3.0μm、金0.03μmの条件でめっきを行った際に、めっき浴処理中に塗膜表面を観察して以下の基準に評価した。評価結果を表3~4に示した。
[評価基準]
 〇:変化が認められなかった。
 ×:塗膜表面から泡を生じる等のめっき液への塗膜の溶出を確認した。
(耐酸性の評価)
 上記で作製した評価基板を10%硫酸に30分間室温で浸漬させて、その後、クロスカットテープピール試験を実施した。下記の基準に基づいて耐酸性を評価し、評価結果を表3~4に示した。
[評価基準]
 ○:剥離しなかった。
 ×:剥離した。
(パターンの開口径の評価)
 実施例8~14で得られた硬化性樹脂組成物を、基板上に乾燥後の膜厚が25μmになるように全面塗布し、80℃の熱風循環乾燥炉内で30分間乾燥した。乾燥後所定のフォトマスクを介してパターニングし、株式会社オーク製作所製メタルハライドランプ1400mJ/cmの露光を行い、30℃で1質量%の炭酸ナトリウム水溶液を90秒間スプレーすることにより未露光部分を除去したのち、150℃の熱風循環乾燥炉内で60分間加熱し、硬化させた。さらに、高圧水銀灯1000mJ/cmの露光を行うことで評価基板を作製した。得られた評価基板はいずれも100μmの開口が形成できており、良好な結果であった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (10)

  1.  (A)硬化性樹脂、(B)硬化剤、および(C)磁性フィラーを含有する硬化性樹脂組成物であって、
     (C)磁性フィラーが、B、Si、Cu、およびNbの少なくとも1種を含むことを特徴とする、硬化性樹脂組成物。
  2.  (C)磁性フィラー中の、B、Si、Cu、およびNbのいずれかの含有量が1質量%以上10質量%未満である、請求項1に記載の硬化性樹脂組成物。
  3.  前記硬化性樹脂組成物中の(C)磁性フィラーの配合量が、前記硬化性樹脂組成物中の固形分を100体積%とした場合、10体積%以上70体積%以下である、請求項1に記載の硬化性樹脂組成物。
  4.  (C)磁性フィラーの平均粒径が、0.1μm以上20μm未満である、請求項1に記載の硬化性樹脂組成物。
  5.  (A)硬化性樹脂が、光硬化性樹脂を含む、請求項1に記載の硬化性樹脂組成物。
  6.  第一のフィルムと、前記第一のフィルム上に形成された請求項1~5のいずれか一項に記載の硬化性樹脂組成物の乾燥塗膜からなる樹脂層とを備えることを特徴とする、ドライフィルム。
  7.  請求項1~5のいずれか一項に記載の硬化性樹脂組成物を硬化させて得られることを特徴とする、硬化物。
  8.  請求項6に記載のドライフィルムの樹脂層を硬化させて得られることを特徴とする、硬化物。
  9.  請求項7に記載の硬化物を備えることを特徴とする、プリント配線板。
  10.  請求項8に記載の硬化物を備えることを特徴とする、プリント配線板。
PCT/JP2023/036030 2022-10-07 2023-10-03 硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板 WO2024075717A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022162740 2022-10-07
JP2022-162740 2022-10-07

Publications (1)

Publication Number Publication Date
WO2024075717A1 true WO2024075717A1 (ja) 2024-04-11

Family

ID=90608163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036030 WO2024075717A1 (ja) 2022-10-07 2023-10-03 硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板

Country Status (1)

Country Link
WO (1) WO2024075717A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022087923A (ja) * 2020-12-02 2022-06-14 住友ベークライト株式会社 電子装置および電子装置の製造方法
WO2022202939A1 (ja) * 2021-03-26 2022-09-29 太陽インキ製造株式会社 硬化性樹脂組成物
JP2022142747A (ja) * 2021-03-16 2022-09-30 味の素株式会社 樹脂組成物
JP2023123169A (ja) * 2022-02-24 2023-09-05 味の素株式会社 樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022087923A (ja) * 2020-12-02 2022-06-14 住友ベークライト株式会社 電子装置および電子装置の製造方法
JP2022142747A (ja) * 2021-03-16 2022-09-30 味の素株式会社 樹脂組成物
WO2022202939A1 (ja) * 2021-03-26 2022-09-29 太陽インキ製造株式会社 硬化性樹脂組成物
JP2023123169A (ja) * 2022-02-24 2023-09-05 味の素株式会社 樹脂組成物

Similar Documents

Publication Publication Date Title
JP5882510B2 (ja) 感光性ドライフィルムおよびそれを用いたプリント配線板の製造方法
JP5513711B2 (ja) 感光性樹脂組成物及びその硬化物
TWI704169B (zh) 硬化性樹脂組成物,乾薄膜,硬化物及印刷電路板
JP6258547B2 (ja) 感光性ドライフィルムおよびそれを用いたプリント配線板の製造方法
JP6852234B2 (ja) フォトレジスト組成物およびその硬化物
JP7181094B2 (ja) 光硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
JP5854600B2 (ja) 光硬化性樹脂組成物
WO2011010459A1 (ja) 光硬化性樹脂組成物
JP7066634B2 (ja) 硬化性組成物、主剤および硬化剤、ドライフィルム、硬化物、および、プリント配線板
JP5660690B2 (ja) 感光性樹脂組成物及びその硬化物
KR20220016178A (ko) 배선 기판용 기재의 재이용 방법
JP2020164749A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
CN114945611A (zh) 固化性组合物、其干膜和固化物
WO2024075717A1 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
TW201945844A (zh) 硬化性樹脂組成物、乾膜、硬化物,及電子零件
TWI838054B (zh) 基板上的樹脂硬化物之製造方法
WO2023136084A1 (ja) 基板上における樹脂硬化物の製造方法
WO2023190455A1 (ja) 感光性樹脂組成物、硬化物、プリント配線板およびプリント配線板の製造方法
JP2022159028A (ja) 2液型硬化性樹脂組成物、製品、ドライフィルム、硬化物、およびプリント配線板
JP2023148938A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
JP2024054101A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2024065048A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
JP2023083103A (ja) 感光性樹脂組成物、硬化物、プリント配線板、およびプリント配線板の製造方法
JP2023146928A (ja) 樹脂硬化膜を備えた基板の製造方法
JP2022151853A (ja) 感光性樹脂組成物、硬化物、プリント配線板、およびプリント配線板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874844

Country of ref document: EP

Kind code of ref document: A1