WO2024071428A1 - 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法 - Google Patents

蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法 Download PDF

Info

Publication number
WO2024071428A1
WO2024071428A1 PCT/JP2023/035814 JP2023035814W WO2024071428A1 WO 2024071428 A1 WO2024071428 A1 WO 2024071428A1 JP 2023035814 W JP2023035814 W JP 2023035814W WO 2024071428 A1 WO2024071428 A1 WO 2024071428A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
storage device
resin layer
power storage
porous substrate
Prior art date
Application number
PCT/JP2023/035814
Other languages
English (en)
French (fr)
Inventor
隆裕 萩原
孝 松尾
正典 森下
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Publication of WO2024071428A1 publication Critical patent/WO2024071428A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers

Definitions

  • the present invention relates to a separator for an electricity storage device, a method for manufacturing a separator for an electricity storage device, and an electricity storage device, and in particular to a separator for a lithium ion secondary battery, a method for manufacturing a separator, and a lithium ion secondary battery.
  • High-energy density electricity storage devices such as lithium-ion secondary batteries, lithium-ion capacitors, and electric double-layer capacitors are composed of a pair of electrodes and a separator impregnated with an electrolyte solution, and are used in a variety of industrial and consumer electrical and electronic devices.
  • Patent Document 1 proposes using a highly breathable microporous film (stretched film) made by stretching polyolefin as a separator by forming through holes with a needle or laser to further enhance breathability.
  • a microporous resin film is used alone, there is a risk of short-circuiting between the positive and negative electrodes due to the through holes.
  • it has a tendency to shrink in the meltdown temperature range above the shutdown temperature, which results in a problem that the electrodes are likely to come into direct contact with each other when the temperature becomes high.
  • reducing the porosity of the separator is considered as a method of ensuring heat shrinkage prevention and mechanical strength in a thin film state, but in that case, the internal resistance increases and ionic conductivity decreases, making it impossible to meet the demand for high functionality.
  • Patent Document 2 a separator for an electricity storage device that has excellent charge/discharge characteristics, load characteristics, and low-temperature characteristics
  • the main objective of the present invention is to provide a separator for an electricity storage device that has excellent heat resistance and can impart excellent charge/discharge cycle characteristics to the electricity storage device.
  • the inventors have discovered that by supporting a resin layer composed of a specific polyether copolymer and/or a crosslinked product thereof on at least one side of a laminate of a porous substrate and a ceramic layer, and by making the ratio of the Gurley value before and after supporting the resin layer 200% or more, the heat resistance of the separator can be improved and excellent charge/discharge cycle characteristics can be imparted to an electricity storage device.
  • the present invention was completed based on this knowledge and through further investigations.
  • the present invention provides an invention having the following configuration:
  • a separator for an electric storage device comprising a laminate of a porous substrate and a ceramic layer, and a resin layer supported on at least one surface of the laminate, the resin layer is composed of a polyether copolymer and/or a crosslinked product thereof,
  • the polyether copolymer is composed of 2 to 40 mol % of a repeating unit derived from a monomer represented by the following formula (1), 98 to 60 mol % of a repeating unit derived from a monomer represented by the following formula (2), and 0 to 15 mol % of a repeating unit derived from a monomer represented by the following formula (3):
  • a separator for an electricity storage device wherein the resin layer has a basis weight of 0.4 g/ m2 or more and 3.0 g/ m2 or less, and a ratio of Gurley values before and after the resin layer is supported is 200% or more.
  • R is an alkyl group having 1 to 12 carbon atoms or -CH 2 O(CR 1 R 2 R 3 ).
  • R 1 , R 2 and R 3 are hydrogen atoms or -CH 2 O(CH 2 CH 2 O)nR 4 , where n and R 4 may be different among R 1 , R 2 and R 3.
  • R 4 is an alkyl group having 1 to 12 carbon atoms or an aryl group, and n is an integer from 0 to 12.
  • R5 is a group having an ethylenically unsaturated group.
  • the separator for an electricity storage device according to Item 1 wherein the porous substrate is a porous film made of at least one resin selected from the group consisting of a polyolefin resin, a polyester resin, a cellulose resin, and a polyamide resin.
  • the porous substrate has a film thickness of 3 ⁇ m or more and 40 ⁇ m or less.
  • An electricity storage device comprising the electricity storage device separator according to any one of items 1 to 3.
  • the present invention makes it possible to improve the charge-discharge cycle characteristics after overdischarge, and to provide a separator and an electricity storage device with excellent stability.
  • the term “electricity storage device” includes secondary batteries (lithium ion secondary batteries, nickel-metal hydride secondary batteries, etc.) and electrochemical capacitors.
  • the electricity storage device is characterized in that the positive and negative electrodes are stacked via an integrated separator carrying the polyether copolymer described below.
  • the separator of the present invention is a separator for an electric storage device, comprising a laminate of a porous substrate and a ceramic layer, and a resin layer supported on at least one surface of the laminate.
  • the resin layer is composed of a polyether copolymer and/or a crosslinked product thereof.
  • the polyether copolymer is composed of 2 to 40 mol % of a repeating unit derived from a monomer represented by the following formula (1), 98 to 60 mol % of a repeating unit derived from a monomer represented by the following formula (2), and 0 to 15 mol % of a repeating unit derived from a monomer represented by the following formula (3), the resin layer has a basis weight of 0.4 g/ m2 or more and 3.0 g/ m2 or less, and the ratio of the Gurley value before and after the support of the resin layer is 200% or more.
  • R is an alkyl group having 1 to 12 carbon atoms or -CH 2 O(CR 1 R 2 R 3 ).
  • R 1 , R 2 and R 3 are hydrogen atoms or -CH 2 O(CH 2 CH 2 O)nR 4 , where n and R 4 may be different among R 1 , R 2 and R 3.
  • R 4 is an alkyl group having 1 to 12 carbon atoms or an aryl group, and n is an integer from 0 to 12.
  • R5 is a group having an ethylenically unsaturated group.
  • the separator of the present invention has these configurations, and thus has excellent heat resistance and can impart excellent charge-discharge cycle characteristics to the electricity storage device.
  • the charge-discharge cycle characteristics after overdischarge can be improved by reducing the deposition on the electrode of metal ions that leach from the negative electrode current collector during overdischarge.
  • the separator of the present invention is described in detail below.
  • the separator of the present invention is characterized by comprising a laminate of a porous substrate and a ceramic layer, and a resin layer supported on at least one side of the laminate.
  • Specific examples of the laminate configuration of the separator of the present invention include a laminate configuration in which a porous substrate, a ceramic layer, and a resin layer are laminated in this order; a laminate configuration in which a resin layer, a porous substrate, and a ceramic layer are laminated in this order; and a laminate configuration in which a resin layer, a porous substrate, a ceramic layer, and a resin layer are laminated in this order. It is preferable that the porous substrate and the ceramic layer are adjacent to each other (contact surface).
  • the resin layer and the porous substrate are adjacent to each other (contact surface).
  • the resin layer and the ceramic layer are adjacent to each other (contact surface).
  • the resins constituting the resin may be the same or different.
  • Gurley value ratio (%) ⁇ Gurley value of laminate after supporting resin layer/Gurley value of laminate before supporting resin layer ⁇ 100
  • the Gurley value ratio is 200% or more, and from the viewpoint of more optimally exerting the effects of the present invention, it is preferably 300% or more, more preferably 350% or more, even more preferably 400% or more, and is preferably 10,000% or less, more preferably 8,000% or less, even more preferably 5,000% or less.
  • the film thickness (total thickness) of the separator of the present invention is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 8 ⁇ m or more, and is preferably 40 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • the porous substrate is laminated with a ceramic layer to form a laminate. As described above, the porous substrate is preferably adjacent to the ceramic layer (in contact with the ceramic layer).
  • the porous substrate is preferably made of a porous film.
  • the material of the porous substrate there are no particular limitations on the material of the porous substrate, and any conventionally known material can be used.
  • the material of the porous substrate is preferably a resin.
  • the resin constituting the porous substrate include at least one selected from the group consisting of polyolefin resin, polyester resin, cellulose resin, and polyamide resin.
  • the porous substrate in the separator of the present invention is composed of a porous resin film containing at least one of these resins.
  • a nonwoven fabric can also be used as the porous substrate. Examples of the nonwoven fabric include those containing at least one of these resins.
  • the film thickness of the porous substrate is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, with preferred ranges including 3 to 40 ⁇ m, 3 to 30 ⁇ m, 5 to 40 ⁇ m, and 5 to 30 ⁇ m.
  • the Gurley value of the porous substrate used in the separator of the present invention is not particularly limited as long as the ratio of the Gurley value is 200% or more, but from the viewpoint of improving the charge/discharge cycle characteristics after overdischarge, the lower limit is preferably 200 seconds/100 ml or more, more preferably 300 seconds/100 ml or more, and particularly preferably 400 seconds/100 ml or more, and is also preferably 20,000 seconds/100 ml or less, more preferably 16,000 seconds/100 ml or less, and even more preferably 10,000 seconds/100 ml or less.
  • One of the features of the separator of the present invention is that it includes a ceramic layer .
  • the ceramic layer is laminated with the porous substrate to form a laminate. As described above, it is preferable that the ceramic layer is adjacent to (in contact with) the porous substrate.
  • the material constituting the ceramic layer is not particularly limited as long as it exerts the effects of the present invention, but preferred examples include alumina, boehmite, titania, etc.
  • the material constituting the ceramic layer may be one type only, or two or more types.
  • the thickness of the ceramic layer is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, even more preferably 2.0 ⁇ m or more, and is preferably 5.0 ⁇ m or less, more preferably 4.0 ⁇ m or less, even more preferably 3.0 ⁇ m or less.
  • Commercially available products can be used as the laminate of the porous substrate and the ceramic layer.
  • Examples of commercially available products include Celgard (registered trademark) manufactured by CELGARD, Seapore (registered trademark) manufactured by UBE Inc., and Ceteera (registered trademark) manufactured by Toray Industries, Inc.
  • the resin layer is composed of a polyether copolymer and/or a crosslinked product thereof.
  • the polyether copolymer is represented by the following general formula (1):
  • R is an alkyl group having 1 to 12 carbon atoms or -CH 2 O(CR 1 R 2 R 3 ).
  • R 1 , R 2 and R 3 are hydrogen atoms or -CH 2 O(CH 2 CH 2 O)nR 4 , where n and R 4 may be different among R 1 , R 2 and R 3 .
  • R 4 is an alkyl group having 1 to 12 carbon atoms or an aryl group, and n is an integer of 0 to 12.
  • R 5 is a group having an ethylenically unsaturated group.
  • the compound of formula (1) can be obtained from commercial products or can be easily synthesized by a general ether synthesis method from epihalohydrin and alcohol.
  • Examples of commercially available compounds include propylene oxide, butylene oxide, methyl glycidyl ether, ethyl glycidyl ether, butyl glycidyl ether, tertiary butyl glycidyl ether, benzyl glycidyl ether, 1,2-epoxydodecane, 1,2-epoxyoctane, 1,2-epoxyheptane, 2-ethylhexyl glycidyl ether, 1,2-epoxydecane, 1,2-epoxyhexane, glycidyl phenyl ether, 1,2-epoxypentane, and isopropyl glycidyl ether.
  • R is preferably -CH2O ( CR1R2R3 ), and at least one of R1 , R2 and R3 is preferably -CH2O ( CH2CH2O ) nR4 .
  • R4 is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms.
  • n is preferably 0 to 6, more preferably 0 to 4.
  • Compound (2) is a basic chemical and is readily available commercially.
  • R 5 is a substituent containing an ethylenically unsaturated group.
  • the monomer component containing an ethylenically unsaturated group allyl glycidyl ether, 4-vinylcyclohexyl glycidyl ether, ⁇ -terpinyl glycidyl ether, cyclohexenyl methyl glycidyl ether, p-vinylbenzyl glycidyl ether, allyl phenyl glycidyl ether, vinyl glycidyl ether, 3,4-epoxy-1-butene, 3,4-epoxy-1-pentene, 4,5-epoxy-2-pentene, 1,2-epoxy-5,9-cyclododecanediene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5-cyclooctene, glycidyl acrylate
  • the polyether copolymer comprises a repeating unit derived from a monomer represented by formula (1): [In the formula, R is an alkyl group having 1 to 12 carbon atoms or -CH 2 O(CR 1 R 2 R 3 ). R 1 , R 2 and R 3 are hydrogen atoms or -CH 2 O(CH 2 CH 2 O)nR 4 , where n and R 4 may be different among R 1 , R 2 and R 3.
  • R 4 is an alkyl group having 1 to 12 carbon atoms or an aryl group which may have a substituent, and n is an integer from 0 to 12.] and (B): a repeating unit derived from a monomer of formula (2), and and (C): a repeating unit derived from a monomer of formula (3), [In the formula, R5 is a substituent containing a group having an ethylenically unsaturated group.] It consists of:
  • repeating units (A) and (C) may each be derived from two or more types of monomers.
  • the molar ratios of the repeating units (A), (B) and (C) are (A) 2-40 mol%, (B) 98-60 mol%, and (C) 0-15 mol%, preferably (A) 5-35 mol%, (B) 95-60 mol%, and (C) 0-10 mol%, and more preferably (A) 5-30 mol%, (B) 95-65 mol%, and (C) 0-7 mol%.
  • the repeating unit (B) exceeds 98 mol%, the glass transition temperature will increase and the oxyethylene chains will crystallize, resulting in a significant deterioration in ionic conductivity. It is generally known that ionic conductivity can be improved by reducing the crystallinity of polyethylene oxide, but the polyether copolymer of the present invention is far superior in this respect.
  • the molecular weight of the polyether copolymer of the present invention is preferably such that the lower limit of the weight average molecular weight is 50,000 or more, more preferably 300,000 or more, and even more preferably 500,000 or more, and the upper limit of the weight average molecular weight is preferably 2.5 million or less, and preferably 1.5 million or less.
  • the viscosity of the polymer solution in which the polyether copolymer is dissolved is appropriate, and the workability is good.
  • the lower limit of the weight average molecular weight By setting the lower limit of the weight average molecular weight to 300,000 or more, the polyether copolymer supported on the separator or its crosslinked product will not dissolve in the electrolyte solution. For this reason, the resin layer is less likely to peel off from the laminate, which is preferable in that better charge and discharge characteristics can be obtained as an electricity storage device.
  • the polyether copolymer may be either a block copolymer or a random copolymer. Random copolymers are preferred because they have a greater effect of reducing the crystallinity of polyethylene oxide.
  • Polyether copolymers can be synthesized as follows. Polyether copolymers can be obtained by reacting each monomer with stirring at a reaction temperature of 10 to 120°C in the presence or absence of a solvent using a coordinated anion initiator such as an organoaluminum-based catalyst system, an organozinc-based catalyst system, or an organotin-phosphate ester condensate catalyst system as a ring-opening polymerization catalyst, or an anion initiator such as potassium alkoxide, diphenylmethyl potassium, or potassium hydroxide that contains K+ as a counter ion. From the viewpoint of the degree of polymerization or the properties of the resulting copolymer, coordinated anion initiators are preferred, and among them, organotin-phosphate ester condensate catalyst systems are particularly preferred as they are easy to handle.
  • a coordinated anion initiator such as an organoaluminum-based catalyst system, an organozinc-based catalyst system, or an organotin-phosphate ester
  • the separator of the present invention at least a portion of the polyether copolymer constituting the resin layer may be a cross-linked product of the polyether copolymer.
  • the strength of the separator is improved.
  • the basis weight of the resin layer is 0.4 g/ m2 or more and 3.0 g/ m2 or less.
  • the basis weight of the resin layer in the separator of the present invention is preferably 0.45 g/ m2 or more, more preferably 0.5 g/ m2 or more, even more preferably 0.7 g/ m2 or more, and is preferably 2.5 g/ m2 or less, more preferably 2.2 g/ m2 or less, even more preferably 2.0 g/ m2 or less.
  • the manufacturing method of the separator of the present invention is not particularly limited, but examples thereof include a method of immersing a laminate of a porous substrate and a ceramic layer in a solution obtained by dissolving a polyether copolymer in water or an organic solvent, and then drying to form a resin layer, and a method of applying a solution obtained by dissolving a polyether copolymer in water or an organic solvent to at least one surface of the laminate of the porous substrate and the ceramic layer, and then drying to form a resin layer, etc.
  • the method of applying a solution obtained by dissolving a polyether copolymer in water or an organic solvent to a separator, and then drying to form a resin layer is preferable.
  • the organic solvent used in the present invention is not particularly limited, but can be selected from aprotic organic solvents that can dissolve the polyether copolymer, such as acetone, 2-butanone, toluene, xylene, THF, acetonitrile, methanol, isopropanol, and N-methyl-2-pyrrolidone. These solvents may be used alone or in combination of two or more.
  • the concentration of the polyether copolymer in the solution is not particularly limited, but is preferably 2% by mass to 40% by mass, more preferably 5% by mass to 40% by mass, and even more preferably 8% by mass to 30% by mass.
  • the solution obtained by dissolving the polyether copolymer in water or an organic solvent can be applied to the surface of the laminate by a suitable method such as microgravure, slot die, or knife coating depending on the solution viscosity and the desired coating film thickness.
  • the polyether copolymer used in the present invention can be supported on at least one surface of the laminate of the porous substrate and the ceramic layer by coating or immersion, and then dried to remove the water or organic solvent and form a resin layer. Drying equipment such as heater type, hot air drying type, infrared irradiation type, and vacuum type can be used as the drying method.
  • a solution containing a polyether copolymer dissolved therein and further containing a photoreaction initiator or a thermal polymerization initiator can be used, and after coating the laminate or immersing the laminate in the solution, the laminate can be irradiated with active energy rays such as ultraviolet rays or by applying heat, thereby making it possible to support a resin layer made of a crosslinked product of the polyether copolymer on the laminate.
  • active energy rays such as ultraviolet rays or by applying heat, thereby making it possible to support a resin layer made of a crosslinked product of the polyether copolymer on the laminate.
  • an electrolyte salt or a crosslinking assistant can be added to the solution obtained by dissolving the polyether copolymer.
  • Thermal polymerization initiators include radical initiators such as organic peroxides and azo compounds.
  • Organic peroxides include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxy esters, etc., which are typically used for crosslinking purposes.
  • Specific examples include 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, etc.
  • Azo compounds include azonitrile compounds, azoamide compounds, azoamidine compounds, and other compounds that are typically used for crosslinking. Specific examples include 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2-azobis(2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane], 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], 2,2'-azobis(2-methylpropane), and 2,2'-azobis[2-(hydroxymethyl)propionitrile].
  • the amount of thermal polymerization initiator is preferably within the range of 0.01 to 10 parts by mass, and more preferably 0.1 to 4.0 parts by mass, per 100 parts by mass of polyether polymer.
  • Photoinitiators that can be used in the present invention include alkylphenones, benzophenones, acylphosphine oxides, titanocenes, triazines, bisimidazoles, and oxime esters. Among these, alkylphenones, benzophenones, and acylphosphine oxides are preferred. Two or more types of photoinitiators can also be used in combination.
  • alkylphenone photoinitiators include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-[4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]phenyl]-2-methyl-propan-1-one, etc.
  • 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl-phenyl-ketone, and 2-hydroxy-2-methyl-1-phenyl-propan-1-one are preferred.
  • benzophenone-based photoinitiators include benzophenone, 2-chlorobenzophenone, 4,4'-bis(diethylamino)benzophenone, 4,4'-bis(dimethylamino)benzophenone, and methyl-2-benzoylbenzoate.
  • benzophenone, 4,4'-bis(diethylamino)benzophenone, and 4,4'-bis(dimethylamino)benzophenone are preferred.
  • acylphosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide.
  • Bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide is preferred.
  • the amount of photoreaction initiator is preferably within the range of 0.01 to 6.0 parts by mass, and more preferably 0.1 to 4.0 parts by mass, per 100 parts by mass of polyether polymer.
  • a crosslinking aid may be used in combination with the photoreaction initiator.
  • the crosslinking aid is usually a polyfunctional compound (e.g., a compound containing at least two CH 2 ⁇ CH-, CH 2 ⁇ CH-CH 2 -, or CF 2 ⁇ CF-).
  • crosslinking aid examples include triallyl cyanurate, triallyl isocyanurate, triacrylformal, triallyl trimellitate, N,N'-m-phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalamide, triallyl phosphate, hexafluorotriallyl isocyanurate, N-methyl tetrafluorodiallyl isocyanurate, trimethylolpropane trimethacrylate, and trimethylolpropane triacrylate.
  • the amount of the crosslinking aid used in the present invention is preferably within the range of 0.1 to 30 parts by mass, and more preferably 0.5 to 20 parts by mass, per 100 parts by mass of the polyether copolymer.
  • the active energy rays used in the present invention to crosslink the polyether copolymer may be ultraviolet light, visible light, electron beams, etc. Among these, ultraviolet light is particularly preferred in terms of the cost of the equipment and ease of control.
  • the crosslinking reaction can be carried out by heating for about 10 minutes to 24 hours at a temperature setting of room temperature to about 200° C.
  • a xenon lamp, a mercury lamp, a high-pressure mercury lamp, or a metal halide lamp can be used, and the crosslinking reaction can be carried out, for example, by irradiating the electrolyte with light of 365 nm wavelength and 1 to 50 mW/cm 2 for 0.1 to 30 minutes.
  • the crosslinking reaction may be carried out after applying the separator to a solution obtained by dissolving a polyether copolymer containing a photoinitiator or a thermal polymerization initiator, or after immersing the separator in the solution, and before, during, or after drying the separator.
  • the electricity storage device of the present invention uses the above-mentioned “1. Separator for electricity storage device” and specifically has a positive electrode, a negative electrode, the separator for electricity storage device interposed between the positive electrode and the negative electrode, and an electrolyte (solution).
  • the positive electrode has a positive electrode composition containing a positive electrode active material and a binder on a current collector.
  • the material of the current collector used in the electrode for the electricity storage device of the present invention can be, for example, metal, carbon, conductive polymer, etc., and metal is preferably used.
  • metal for the current collector typically, aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys, etc. are used. Among these, it is preferable to use copper, aluminum or an aluminum alloy in terms of conductivity and voltage resistance, and as the current collector used for the positive electrode, a metal foil such as aluminum foil is preferably used.
  • the positive electrode active material can be a metal oxide, a metal sulfide, or a specific polymer, depending on the type of battery desired.
  • metal sulfides or oxides not containing lithium such as TiS 2 , MoS 2 , NbS 2 , and V 2 O 5 , as well as polymers such as polyacetylene and polypyrrole, can also be used.
  • a lithium composite oxide represented by LixMO2 (wherein M represents one or more transition metals, and x varies depending on the charge/discharge state of the battery and is usually 0.05 or more and 1.10 or less) or a lithium composite phosphate represented by LixMPO4 (wherein M represents one or more transition metals, and x varies depending on the charge/discharge state of the battery and is usually 0.05 or more and 1.10 or less) can be used.
  • the transition metal M constituting this lithium composite oxide or lithium phosphate is preferably Co, Ni, Mn, Al, Fe, or the like.
  • lithium composite oxides include LiCoO2 , LiNiO2 , LiNiyCozMn1 -yzO2 (wherein 0 ⁇ y, z ⁇ 1 ) , LiNiyCozAl1 -yzO2 (wherein 0 ⁇ y, z ⁇ 1), LiMn2O4 , LiFePO4 , etc.
  • Lithium composite oxides are capable of generating high voltages and are excellent in terms of energy density as positive electrode active materials.
  • a combination of these positive electrode active materials may be used as the positive electrode active material.
  • known binders, etc. may be added.
  • binder used in the positive electrode composition for example, one or more compounds selected from fluorine-based binders, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber, acrylic polymers, and vinyl polymers can be used.
  • acrylic polymers because they are oxidation-resistant, have sufficient adhesion with a small amount, and can provide flexibility to the electrode plate.
  • water-based binders that dissolve in water are preferable because they do not dissolve organic active materials. These binders are added to the positive electrode current collector in a ratio of preferably 0.1 to 10 mass %, more preferably 0.5 to 5 mass %, as the positive electrode composition.
  • the electrode composition for the positive electrode may contain, in addition to the above, a conductive assistant, a solvent, and a thickener.
  • the conductive assistant include carbon compounds such as acetylene black, ketjen black, carbon fiber, graphite, and other conductive carbons, conductive polymers, and metal powders, with conductive carbon being particularly preferred.
  • the solvent any solvent that can dissolve the positive electrode active material and the binder can be used, and preferably water, N-methyl-2-pyrrolidone, and the like are used.
  • the thickener carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, and the like, or alkali metal salts of these, polyethylene oxide, and the like are used.
  • the negative electrode has a negative electrode composition containing a negative electrode active material and a binder on a current collector.
  • the material of the current collector used in the electrode for the electricity storage device of the present invention can be, for example, metal, carbon, conductive polymer, etc., and metal is preferably used.
  • metal for the current collector typically, aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys, etc. are used. Among these, it is preferable to use copper, aluminum or an aluminum alloy in terms of conductivity and voltage resistance, and as the current collector used for the negative electrode, a metal foil such as copper foil is preferably used.
  • metallic lithium or a lithium alloy capable of absorbing and releasing lithium can be used as the negative electrode active material.
  • carbon materials based on non-graphitizable carbon or graphite can be used. More specifically, carbon materials such as graphite, mesocarbon microbeads, carbon fibers such as mesophase carbon fiber, pyrolytic carbon, cokes (pitch coke, needle coke, petroleum coke), glassy carbon, organic polymer compound sintered bodies (phenolic resin, furan resin, etc., sintered at an appropriate temperature and carbonized), and activated carbon can be used. When forming a negative electrode from such materials, known binders can be added.
  • the binder used in the negative electrode composition for example, one or more compounds selected from fluorine-based binders, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber, acrylic polymers, and vinyl polymers can be used.
  • acrylic polymers because they are oxidation-resistant, have sufficient adhesion with a small amount, and can provide flexibility to the electrode plate.
  • water-based binders that dissolve in water are preferable because they do not dissolve organic active materials. These binders are added to the negative electrode current collector in a ratio of preferably 0.1 to 10 mass %, more preferably 0.5 to 5 mass %, as the negative electrode composition.
  • the electrode composition for the negative electrode may contain, in addition to the above, a conductive assistant, a solvent, a thickener, etc.
  • conductive assistants include carbon compounds such as acetylene black, ketjen black, carbon fiber, graphite, and other conductive carbons, conductive polymers, metal powders, etc., with conductive carbon being particularly preferred.
  • the solvent any solvent that can dissolve the negative electrode active material and the binder can be used, and preferably water, N-methyl-2-pyrrolidone, etc. are used.
  • the thickener carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, etc., or alkali metal salts of these, polyethylene oxide, etc. are used.
  • the electrodes (positive electrode/negative electrode) for the electric storage device of the present invention are obtained by forming the composition for electrodes (positive electrode/negative electrode) on a current collector. Specifically, the electrode composition for the electric storage device formed into a sheet shape is laminated on the current collector (kneading sheet forming method); the electrode composition for the electric storage device in a paste form is applied on the current collector and dried (wet forming method); and the composite particles of the electrode composition for the electric storage device are prepared, and the composite particles are formed into a sheet on the current collector and roll pressed (dry forming method). Among them, the wet forming method and the dry forming method are preferred, and the wet forming method is more preferred.
  • Electrolytes (solutions)
  • the electrolyte solution is prepared by dissolving an electrolyte salt in an aprotic organic solvent, and a room temperature molten salt (ionic liquid) may also be used.
  • the following electrolyte salt compounds are preferably used. That is, examples of the compound include a compound consisting of a cation selected from a metal cation, an ammonium ion, an amidinium ion, and a guanidium ion, and an anion selected from a chloride ion, a bromide ion, an iodide ion, a perchlorate ion, a thiocyanate ion, a tetrafluoroborate ion, a nitrate ion, AsF 6 ⁇ , PF 6 ⁇ , a stearyl sulfonate ion, an octyl sulfonate ion, a dodecylbenzenesulfonate ion, a naphthalenesulfonate ion , a dodecylnaphthalenesulfonate ionate ion
  • X 1 , X 2 , X 3 and Y are electron-withdrawing groups.
  • X 1 , X 2 and X 3 are each independently a perfluoroalkyl group having 1 to 6 carbon atoms or a perfluoroaryl group having 6 to 18 carbon atoms
  • Y is a nitro group, a nitroso group, a carbonyl group, a carboxyl group or a cyano group.
  • X 1 , X 2 and X 3 may be the same or different.
  • the metal cation may be a transition metal cation.
  • a metal cation selected from Mn, Fe, Co, Ni, Cu, Zn, and Ag metals is used.
  • a metal cation selected from Li, Na, K, Rb, Cs, Mg, Ca, and Ba metals may be used to obtain favorable results.
  • Two or more of the above-mentioned compounds may be used in combination as the electrolyte salt compound.
  • a Li salt compound is preferably used as the electrolyte salt compound.
  • the Li salt compound is a Li salt compound having a wide potential window, as is generally used in lithium ion capacitors.
  • the Li salt compound include, but are not limited to, LiBF4 , LiPF6 , LiClO4, LiCF3SO3, LiN(CF3SO2)2, LiN(C2F5SO2 ) 2 , and LiN [ CF3SC ( C2F5SO2 ) 3 ] 2 . These compounds may be used alone or in combination of two or more.
  • room temperature molten salts can be used as electrolyte salts or electrolyte solutions.
  • Room temperature molten salt refers to salt that is at least partially liquid at room temperature
  • room temperature refers to the temperature range in which the power supply is expected to operate normally.
  • the temperature range in which the power supply is expected to operate normally has an upper limit of approximately 120°C, and in some cases approximately 60°C, and a lower limit of approximately -40°C, and in some cases approximately -20°C.
  • Room-temperature molten salts are also called ionic liquids, and known quaternary ammonium organic cations include pyridine-based, aliphatic amine-based, and alicyclic amine-based quaternary ammonium organic cations.
  • Examples of quaternary ammonium organic cations include imidazolium ions such as dialkylimidazolium and trialkylimidazolium ions, tetraalkylammonium ions, alkylpyridinium ions, pyrazolium ions, pyrrolidinium ions, and piperidinium ions. Imidazolium cations are particularly preferred.
  • imidazolium cations include, but are not limited to, 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-ethylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1-butyl-3-methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, and 1-butyl-2,3-dimethylimidazolium ion.
  • room temperature molten salts having cations may be used alone or in combination of two or more.
  • the content of the electrolyte salt is preferably 0.1 to 3.0 mol/L, and more preferably 1.0 to 2.0 mol/L. If the content of the electrolyte salt is less than 0.1 mol/L, the resistance of the electrolyte solution is high and the large current and low temperature discharge characteristics are reduced, and if it exceeds 3.0 mol/L, the solubility is poor and crystals may precipitate.
  • the aprotic organic solvent used in the electrolyte solution of the present invention is not particularly limited.
  • Specific aprotic organic solvents that can be used include propylene carbonate, ethylene carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane, dipropyl carbonate, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propyl nitrile, anisole, acetate esters, propionate esters, etc., and may be used alone or in combination of two or more.
  • the electricity storage device of the present invention can be produced by stacking a positive electrode and a negative electrode, which are electrodes formed by forming an electrode composition on a current collector, via the above-mentioned separator, and injecting an electrolyte solution.
  • the composition of the polyether copolymer calculated in terms of monomers was determined by 1 H NMR spectrum.
  • the molecular weight of the polyether copolymer was measured by gel permeation chromatography (GPC), and the weight average molecular weight was calculated based on standard polystyrene.
  • the GPC measurement was performed at 60° C. using RID-6A manufactured by Shimadzu Corporation, Showdex KD-807, KD-806, KD-806M and KD-803 columns manufactured by Showa Denko K.K., and DMF as a solvent.
  • the polymerization reaction was stopped by adding 1mL of methanol. After removing the polymer by decantation, it was dried at 40°C under normal pressure for 24 hours and further at 45°C under reduced pressure for 10 hours to obtain 280g of polymer.
  • the weight average molecular weight of the obtained polyether copolymer was 1 million, and the monomer-equivalent composition analysis result was 72 mol% of ethylene oxide, 23 mol% of compound (a), and 5 mol% of allyl glycidyl ether.
  • Example 1 Preparation of a lithium ion battery 1 composed of a negative electrode 1/separator 1 (with ceramic layer, resin layer with a basis weight of 0.5 g/m 2 on the porous substrate surface)/positive electrode 1 ⁇ Preparation of negative electrode 1> 90 parts by mass of graphite powder (porous structure material), 10 parts by mass of polyvinylidene fluoride, and 100 parts by mass of N-methyl-2-pyrrolidone were used as a solvent and stirred for 1 hour using a stainless steel ball mill, and then the mixture was applied onto a copper current collector using a bar coater with a gap of 50 ⁇ m. The mixture was dried at 80° C. in a vacuum state for 12 hours or more and then roll-pressed to form a negative electrode sheet.
  • 10 ⁇ m LiNi 0.80 Co 0.15 Al 0.05 O 2 was used for the positive electrode active material. 90 parts by mass of this positive electrode active material was mixed with 3 parts by mass of spherical carbon particles produced by pyrolysis of acetylene as a conductive assistant, 7 parts by mass of polyvinylidene fluoride as a binder, and 50 parts by mass of N-methyl-2-pyrrolidone as a solvent, and the mixture was stirred for 1 hour using a stainless steel ball mill, and then coated on an aluminum current collector using a bar coater with a gap of 100 ⁇ m, dried at 80° C. in a vacuum state for 12 hours or more, and then roll-pressed to form a positive electrode sheet.
  • a non-aqueous electrolyte solution was prepared by mixing 50 parts by mass of ethylene carbonate (EC), 50 parts by mass of dimethyl carbonate (DMC), and 20 parts by mass of LiPF 6 as an electrolyte salt.
  • one sheet of the negative electrode and one sheet of the positive electrode were pressed together via the separator 1 to form a laminate.
  • the laminate was then placed in an aluminum laminate and a non-aqueous electrolyte solution was injected to produce the lithium-ion battery 1.
  • Example 2 Preparation of a lithium ion battery 2 composed of a negative electrode 1/separator 2 (with ceramic layer, resin layer with a basis weight of 1.0 g/m 2 on the porous substrate surface)/positive electrode 1 ⁇ Preparation of separator 2> Separator 2 was produced in the same manner as separator 1, except that the coating weight of the polyether copolymer was 1.0 g/m 2 .
  • lithium ion battery 2 was produced in the same manner as lithium battery 1, except that separator 2 was used instead of the separator used in the production process of lithium battery 1.
  • Example 3 Preparation of a lithium ion battery 3 composed of a negative electrode 1/separator 3 (with ceramic layer, resin layer with a basis weight of 1.5 g/m 2 on the porous substrate surface)/positive electrode 1 ⁇ Preparation of separator 3> Separator 3 was produced in the same manner as separator 1, except that the coating weight of the polyether copolymer was 1.5 g/m 2 .
  • lithium ion battery 3 was produced in the same manner as lithium battery 1, except that separator 3 was used instead of the separator used in the production process of lithium battery 1.
  • Example 4 Preparation of Lithium-ion Battery 4 Consisting of Negative Electrode 1/Separator 4 (with ceramic layer, resin layer on ceramic layer surface in an amount of 1.5 g/m 2 )/Positive Electrode 1 ⁇ Preparation of Separator 4> Separator 4 was produced in the same manner as separator 1, except that the surface to which the polyether copolymer was applied was the ceramic-coated surface.
  • lithium ion battery 4 was produced in the same manner as lithium battery 1, except that separator 4 was used instead of the separator used in the production process of lithium battery 1.
  • Example 5 Preparation of lithium ion battery 5 composed of negative electrode 1/separator 5 (with ceramic layer, resin layer with a basis weight of 1.5 g/m 2 on the porous substrate surface, resin layer UV crosslinked)/positive electrode 1 ⁇ Preparation of electrolyte solution> A non-aqueous electrolyte solution was prepared by mixing 15 parts by mass of ethylene carbonate (EC), 15 parts by mass of propylene carbonate (PC), 50 parts by mass of diethyl carbonate, and 20 parts by mass of LiBF 4 as an electrolyte salt.
  • EC ethylene carbonate
  • PC propylene carbonate
  • LiBF 4 LiBF 4
  • crosslinking was performed by irradiating a high-pressure mercury lamp (30 mW/ cm2 ) manufactured by GS Yuasa Corporation for 30 seconds, and a separator with a crosslinked polyether copolymer supported on the polyethylene porous film was produced.
  • one sheet of the negative electrode and one sheet of the positive electrode were pressed together via a separator 5 to form a laminate.
  • the laminate was then placed in an aluminum laminate and a non-aqueous electrolyte solution was injected to produce a lithium-ion battery 5.
  • Comparative Example 1 Preparation of a lithium ion battery 6 composed of a negative electrode 1/separator 6 (with ceramic layer, without resin layer)/positive electrode 1 ⁇ Preparation of separator 6> Separator 6 was produced in the same manner as separator 1, except that a non-coated polyether copolymer was used.
  • lithium ion battery 6 was produced in the same manner as lithium battery 1, except that separator 4 was used instead of the separator used in the production process of lithium battery 1.
  • Comparative Example 2 Preparation of Lithium-ion Battery 7 Consisting of Negative Electrode 1/Separator 7 (without ceramic layer, resin layer with a basis weight of 0.5 g/m 2 on the porous substrate surface)/Positive Electrode 1 ⁇ Preparation of Separator 7> A polyethylene porous substrate (thickness: 9 ⁇ m) that was not ceramic-coated in the process for producing separator 1 was used as separator 7 .
  • lithium ion battery 7 was produced in the same manner as lithium battery 1, except that separator 7 was used instead of the separator used in the production process of lithium battery 1.
  • lithium ion battery 8 was produced in the same manner as lithium battery 1, except that separator 7 was used instead of the separator used in the production process of lithium battery 1.
  • the Gurley value of the porous substrate before and after the resin layer was supported was measured using the Gurley value method shown below.
  • the measurement results and the ratio of the Gurley values are shown in Table 1.
  • the ratio (%) of the Gurley values before and after the resin layer was supported can be calculated by (Gurley value of laminate after the resin layer was supported/Gurley value of laminate before the resin layer was supported) x 100.
  • Gurley value (sec/100 mL) was measured in accordance with JIS P8117 (ISO 5636/5).
  • ⁇ Separator heat resistance test> A test sample was cut into a square with each side being 6 cm long. The test sample separator was sandwiched between 1 mm thick SUS plates on a hot plate set at 130°C, and a glass plate was placed as a weight to apply uniform pressure. After leaving the sample to stand for 10 minutes, the shape of the sample was confirmed. The samples that could be used normally were rated as ⁇ , and the samples that curled and could not be used were rated as ⁇ . The evaluation results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Separators (AREA)

Abstract

耐熱性に優れ、蓄電デバイスに対して優れた充放電サイクル特性を付与し得る蓄電デバイス用セパレータを提供する。 多孔質基材及びセラミック層の積層体と、前記積層体の少なくとも一方面に担持された樹脂層と、を備える蓄電デバイス用セパレータである。樹脂層は、ポリエーテル共重合体及び/又はその架橋物から構成されている。ポリエーテル共重合体は、下記式(1)で示される単量体から誘導される繰り返し単位2~40モル%、下記式(2)で示される単量体から誘導される繰り返し単位98~60モル%、及び下記式(3)で示される単量体から誘導される繰り返し単位0~15モル%から構成されており、前記樹脂層の目付量が、0.4g/m2以上3.0g/m2以下であり、前記樹脂層の担持前後におけるガーレ値の比率が、200%以上である、蓄電デバイス用セパレータ。

Description

蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法
 本発明は、蓄電デバイス用セパレータ、蓄電デバイス用セパレータの製造方法および蓄電デバイスに係り、特にリチウムイオン二次電池用のセパレータ、セパレータの製造方法およびリチウムイオン二次電池に関するものである。
 最近のマイクロエレクトロニクス化は、各種電子機器のメモリーバックアップ用電源に代表されるように、顕著になっている。すなわち、電池の電子機器内への収納、エレクトロニクス素子との一体化等に伴って、電池の小型化、軽量化、更には高エネルギー密度を有する蓄電デバイスが要望されている。更に近年、カムコーダ、携帯用通信機器、ラップトップコンピューター等の各種小型電子機器の小型化、軽量化に伴い、それらの駆動用電源として高エネルギー密度の蓄電デバイスの要求が高まってきており、それらの研究開発が盛んに行われている。
 リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタなどの高エネルギー密度な蓄電デバイスは、一対の電極とセパレータとを備え、電解質溶液が含浸された構成のものであり、産業用または民生用の種々の電気・電子機器に使用されている。
 従来、電気化学反応を利用したリチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタ等の蓄電デバイスはより一層の高容量化、高機能化、小型化、軽量化が不可欠であり、そのために、セパレータの改良が求められている。例えば、蓄電デバイスの高容量化に対応するために、充放電時の自己発熱もしくは異常充電時などの異常発熱に耐えうる耐熱性、機械的強度、寸法安定性を有するセパレータが求められている。また、蓄電デバイスの高機能化、特に、急速充放電特性および高出力特性を向上させるために、薄膜化され、かつ、均一性が向上したセパレータが強く要求されている。
 これらの要求を満たすことを目的として、例えば、特許文献1には、ポリオレフィンを延伸して作製される通気性が高い微多孔性フィルム(延伸膜)に針やレーザで貫通孔を形成して通気性をより一層高めたものをセパレータとして使用することが提案されている。しかしながら、このような微多孔樹脂フィルムは、単体で使用すると貫通孔があるが故に正極と負極とが短絡を起こしてしまう恐れがあった。また、シャットダウン温度以上のメルトダウン温度域において収縮しやすい性質を有しており、その結果、高温になった場合に電極同士が直接接触しやすくなる問題を有していた。また、薄膜の状態で、熱収縮防止性、機械的強度を確保する方法として、セパレータの空隙率を低下させることが考えられるが、その場合、内部抵抗の上昇を伴い、イオン伝導性が低下するため、高機能化の要求を満たすことができない。
 また、セパレータへの電解液の浸透に不均一が生じると、イオン移動が局在化し、負極集電体に汎用的に用いられる銅といった金属の溶解が発生し、電極上に析出、デンドライト成長及び短絡のおそれがあり、充放電特性の劣化が課題として挙げられている。
 そこで、本出願人は、充放電特性、負荷特性、及び低温特性が優れた蓄電デバイス用セパレータを開示している(特許文献2)。
国際公開第01/67536号公報 特開2013-152857号公報
 本発明は、耐熱性に優れ、蓄電デバイスに対して優れた充放電サイクル特性を付与し得る蓄電デバイス用セパレータを提供することを主な目的とする。
 本発明者らは、上記課題を解決するために検討を重ねた結果、多孔質基材及びセラミック層の積層体の少なくとも一方面に、特定のポリエーテル共重合体及び/又はその架橋物から構成された樹脂層を担持させ、当該樹脂層の担持前後におけるガーレ値の比率を200%以上とすることにより、セパレータの耐熱性が向上し、蓄電デバイスに対して優れた充放電サイクル特性を付与し得ることを見出した。本発明は、このような知見に基づき、さらに検討を重ねることで完成した発明である。
 すなわち、本発明は、以下の構成を備える発明を提供する。
項1. 多孔質基材及びセラミック層の積層体と、前記積層体の少なくとも一方面に担持された樹脂層と、を備える蓄電デバイス用セパレータであって、
 前記樹脂層は、ポリエーテル共重合体及び/又はその架橋物から構成されており、
 前記ポリエーテル共重合体は、下記式(1)で示される単量体から誘導される繰り返し単位2~40モル%、下記式(2)で示される単量体から誘導される繰り返し単位98~60モル%、及び下記式(3)で示される単量体から誘導される繰り返し単位0~15モル%から構成されており、
 前記樹脂層の目付量が、0.4g/m2以上3.0g/m2以下であり、前記樹脂層の担持前後におけるガーレ値の比率が、200%以上である、蓄電デバイス用セパレータ。
Figure JPOXMLDOC01-appb-C000004
[式(1)中、Rは炭素数1~12のアルキル基、または-CH2O(CR123)である。R1、R2、R3は水素原子または-CH2O(CH2CH2O)nR4であり、nおよびR4はR1、R2、R3の間で異なっていてもよい。R4は炭素数1~12のアルキル基または、アリール基であり、nは0~12の整数である。]
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
[式(3)中、R5はエチレン性不飽和基を有する基である。]
項2. 前記多孔質基材が、ポリオレフィン樹脂、又はポリエステル系樹脂、セルロース系樹脂、及びポリアミド系樹脂からなる群から選択される少なくとも1種の樹脂からなる多孔質フィルムである、項1に記載の蓄電デバイス用セパレータ。
項3. 前記多孔質基材の膜厚が3μm以上40μm以下である、項1または2に記載の蓄電デバイス用セパレータ。
項4. 前記多孔質基材及び前記セラミック層の積層体の少なくとも片面に、前記ポリエーテル共重合体を非プロトン性有機溶媒に溶解させた溶液を塗布し、乾燥させて前記樹脂層を形成する工程を含む、項1~3のいずれか1項に記載の蓄電デバイス用セパレータの製造方法。
項5. 請求項1~3のいずれか1項に記載の蓄電デバイス用セパレータを備える、蓄電デバイス。
 本発明によれば、過放電後の充放電サイクル特性の向上を図ることができ、安定性に優れたセパレータおよび蓄電デバイスを提供することができる。
 本明細書において、蓄電デバイスとは、二次電池(リチウムイオン二次電池及びニッケル水素二次電池等)、電気化学キャパシタを包含するものである。
 また、本発明に係る蓄電デバイスは、正極と負極とが、下記のポリエーテル共重合体が担持され、一体化されたセパレータを介して積層されることを特徴とするものである。
<1.蓄電デバイス用セパレータ>
 本発明のセパレータは、多孔質基材及びセラミック層の積層体と、前記積層体の少なくとも一方面に担持された樹脂層と、を備える蓄電デバイス用セパレータである。樹脂層は、ポリエーテル共重合体及び/又はその架橋物から構成されている。ポリエーテル共重合体は、下記式(1)で示される単量体から誘導される繰り返し単位2~40モル%、下記式(2)で示される単量体から誘導される繰り返し単位98~60モル%、及び下記式(3)で示される単量体から誘導される繰り返し単位0~15モル%から構成されており、前記樹脂層の目付量が、0.4g/m2以上3.0g/m2以下であり、前記樹脂層の担持前後におけるガーレ値の比率が、200%以上であることを特徴としている。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、Rは炭素数1~12のアルキル基、または-CH2O(CR123)である。R1、R2、R3は水素原子または-CH2O(CH2CH2O)nR4であり、nおよびR4はR1、R2、R3の間で異なっていてもよい。R4は炭素数1~12のアルキル基または、アリール基であり、nは0~12の整数である。]
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
[式(3)中、R5はエチレン性不飽和基を有する基である。]
 本発明のセパレータは、これらの構成を備えることにより、耐熱性に優れ、蓄電デバイスに対して優れた充放電サイクル特性を付与し得る。充放電サイクル特性については、特に、過放電時に発生する負極集電体から溶出する金属イオンの電極上での析出が低減され、過放電後の充放電サイクル特性の向上を図ることができる。以下、本発明のセパレータについて詳述する。
 本発明のセパレータは、多孔質基材及びセラミック層の積層体と、前記積層体の少なくとも一方面に担持された樹脂層とを備えることを特徴としている。本発明のセパレータの積層構成の具体例としては、多孔質基材、セラミック層及び樹脂層がこの順に積層された積層構成;樹脂層、多孔質基材及びセラミック層がこの順に積層された積層構成;樹脂層、多孔質基材、セラミック層及び樹脂層がこの順に積層された積層構成が挙げられる。多孔質基材とセラミック層とは互いに隣接(接面)していることが好ましい。また、多孔質基材のセラミック層側とは反対側に樹脂層を備える場合、樹脂層と多孔質基材とは互いに隣接(接面)していることが好ましい。また、セラミック層の多孔質基材側とは反対側に樹脂層を備える場合、樹脂層とセラミック層とは互いに隣接(接面)していることが好ましい。樹脂層を2層以上備える場合、樹脂を構成する樹脂は、同一であってもよいし異なっていても良い。
 ガーレ値は、JIS P8117(ISO 5636/5)に準拠して測定して得られる値である。本発明において、セパレータの樹脂層の担持前後におけるガーレ値の比率は、以下の式より算出される。
ガーレ値の比率(%)={樹脂層の担持後の積層体のガーレ値/樹脂層の担持前の積層体のガーレ値}×100
 本発明において、前記ガーレ値の比率は、200%以上であり、本発明の効果をより一層好適に発揮する観点から、好ましくは300%以上、より好ましくは350%以上、さらに好ましくは400%以上であり、また、好ましくは10000%以下、より好ましくは8000%以下、さらに好ましくは5000%以下である。
 本発明の効果をより一層好適に発揮する観点から、本発明のセパレータの膜厚(総厚み)は、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは8μm以上であり、また、好ましくは40μm以下、より好ましくは25μm以下、さらに好ましくは15μm以下である。
多孔質基材
 多孔質基材は、セラミック層と積層されて積層体を構成している。前記の通り、多孔質基材は、セラミック層と隣接(接面)していることが好ましい。
 多孔質基材は、多孔質フィルムにより構成されていることが好ましい。多孔質基材の材質は特に限定されるものではなく、従来公知のものを使用することができる。
 多孔質基材の材質、好ましくは樹脂である。多孔質基材を構成する樹脂としては、例えば、ポリオレフィン樹脂、又はポリエステル系樹脂、セルロース系樹脂、及びポリアミド系樹脂からなる群から選択される少なくとも1種が挙げられる。本発明の効果をより一層好適に発揮する観点から、本発明のセパレータにおいて、多孔質基材は、これらの樹脂のうち少なくとも1種を含む、多孔質の樹脂フィルムにより構成されていることが好ましい。本発明の効果を阻害しないことを限度として、多孔質基材としては、不織布を用いることもできる。不織布としては、これらの樹脂のうち少なくとも1種を含むものが挙げられる。
 多孔質基材の膜厚は、好ましくは3μm以上、より好ましくは5μm以上であり、また、好ましくは40μm以下、より好ましくは30μm以下であり、好ましい範囲としては、3~40μm、3~30μm、5~40μm、5~30μmなどが挙げられる。多孔質基材の膜厚をこれらの範囲とすることにより、セパレータとして充分な機械的強度が得られるとともに、本発明のセパレータを備える蓄電デバイスは良好な電気的特性が得られる。
 本発明のセパレータに用いられる多孔質基材のガーレ値(すなわち、多孔質基材に樹脂層を担持する前におけるガーレ値)は、前記のガーレ値の比率が200%以上となれば、特に制限されないが、過放電後の充放電サイクル特性の向上を図る観点から、下限は200秒/100ml以上であることが好ましく、300秒/100ml以上であることがより好ましく、400秒/100ml以上であることが特に好ましく、また、好ましくは20000秒/100ml以下、より好ましくは16000秒/100ml以下、さらに好ましくは10000秒/100ml以下である。
セラミック層
 本発明のセパレータは、セラミック層を備えることを特徴の1つとしている。セラミック層は、多孔質基材と積層されて積層体を構成している。前記の通り、セラミック層は、多孔質基材と隣接(接面)していることが好ましい。
 セラミック層を構成する材料としては、本発明の効果を発揮することを限度として、特に制限されないが、好ましくはアルミナ、ベーマイト、チタニアなどが挙げられる。セラミック層を構成する材料は、1種類のみであってもよいし、2種類以上であってもよい。
 本発明の効果をより一層好適に発揮する観点から、セラミック層の膜厚は、好ましくは0.5μm以上、より好ましくは1.0μm以上、さらに好ましくは2.0μm以上であり、また好ましくは5.0μm以下、より好ましくは4.0μm以下、さらに好ましくは3.0μm以下である。
 多孔質基材とセラミック層との積層体としては、市販品を利用することもできる。市販品としては、CELGARD社製の商品名Celgard(登録商標)、UBE株式会社製の商品名シーポア(登録商標)、東レ株式会社製の商品名セティーラ(登録商標)などが挙げられる。
樹脂層
 樹脂層は、ポリエーテル共重合体及び/又はその架橋物から構成されている。ポリエーテル共重合体は、下記一般式(1):
Figure JPOXMLDOC01-appb-C000010
[式中、Rは炭素数1~12のアルキル基、または-CH2O(CR123)である。R1、R2、R3は水素原子または-CH2O(CH2CH2O)nR4であり、nおよびR4はR1、R2、R3の間で異なっていてもよい。R4は炭素数1~12のアルキル基または、アリール基であり、nは0~12の整数である。]で示される単量体から誘導される繰り返し単位2~40モル%、及び
下記一般式(2)
Figure JPOXMLDOC01-appb-C000011
で示される単量体から誘導される繰り返し単位98~60モル%、及び
下記一般式(3)
Figure JPOXMLDOC01-appb-C000012
[式中、R5はエチレン性不飽和基を有する基である。]で示される単量体から誘導される繰り返し単位0~15モル%から構成される。
 式(1)の化合物は市販品からの入手、またはエピハロヒドリンとアルコールからの一般的なエーテル合成法等により容易に合成が可能である。市販品から入手可能な化合物としては、例えば、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、ターシャリーブチルグリシジルエーテル、ベンジルグリシジルエーテル、1,2-エポキシドデカン、1,2-エポキシオクタン、1,2-エポキシヘプタン、2-エチルヘキシルグリシジルエーテル、1,2-エポキシデカン、1,2-エポキシへキサン、グリシジルフェニルエーテル、1,2-エポキシペンタン、イソプロピルグリシジルエーテルなどが使用できる。これら市販品のなかでは、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、イソプロピルグリシジルエーテルが好ましく、プロピレンオキシド、ブチレンオキシド、メチルグリシジルエーテル、エチルグリシジルエーテルが特に好ましい。
 合成によって得られる式(1)で表される単量体では、Rは-CH2O(CR123)が好ましく、R1、R2、R3の少なくとも一つが-CH2O(CH2CH2O)n4であることが好ましい。R4は炭素数1~6のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。nは0~6が好ましく、0~4がより好ましい。
 (2)の化合物は基礎化学品であり、市販品を容易に入手可能である。
 式(3)の化合物において、R5はエチレン性不飽和基を含む置換基である。エチレン性不飽和基含有のモノマー成分としては、アリルグリシジルエーテル、4-ビニルシクロヘキシルグリシジルエーテル、α-テルピニルグリシジルエーテル、シクロヘキセニルメチルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、アリルフェニルグリシジルエーテル、ビニルグリシジルエーテル、3,4-エポキシ-1-ブテン、3,4-エポキシ-1-ペンテン、4,5-エポキシ-2-ペンテン、1,2-エポキシ-5,9-シクロドデカンジエン、3,4-エポキシ-1-ビニルシクロヘキセン、1,2-エポキシ-5-シクロオクテン、アクリル酸グリシジル、メタクリル酸グリシジル、ソルビン酸グリシジル、ケイ皮酸グリシジル、クロトン酸グリシジル、グリシジル-4-ヘキセノエートが用いられる。好ましくは、アリルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジルである。
 ポリエーテル共重合体は、(A):式(1)の単量体から誘導された繰り返し単位
Figure JPOXMLDOC01-appb-C000013
[式中、Rは炭素数1~12のアルキル基、または-CH2O(CR123)である。R1、R2、R3は水素原子または-CH2O(CH2CH2O)nR4であり、nおよびR4はR1、R2、R3の間で異なっていてもよい。R4は炭素数1~12のアルキル基、置換基を有してもよいアリール基であり、nは0~12の整数である。] 及び
(B):式(2)の単量体から誘導された繰り返し単位、及び
Figure JPOXMLDOC01-appb-C000014
及び(C):式(3)の単量体から誘導された繰り返し単位、
Figure JPOXMLDOC01-appb-C000015
[式中、R5はエチレン性不飽和基を有する基を含む置換基である。]
から構成される。
 ここで、繰り返し単位(A)及び(C)は、それぞれ2種以上のモノマーから誘導されるものであってもよい。
 ポリエーテル共重合体においては、繰り返し単位(A)、繰り返し単位(B)及び繰り返し単位(C)のモル比が、(A)2~40モル%、(B)98~60モル%、及び(C)0~15モル%であり、好ましくは(A)5~35モル%、(B)95~60モル%、及び(C)0~10モル%、更に好ましくは(A)5~30モル%、(B)95~65モル%、及び(C)0~7モル%である。繰り返し単位(B)が98モル%を越えるとガラス転移温度の上昇とオキシエチレン鎖の結晶化を招き、結果的にイオン伝導性を著しく悪化させることになる。一般にポリエチレンオキシドの結晶性を低下させることによりイオン伝導性が向上することは知られているが、本発明のポリエーテル共重合体はこの点において格段に優れている。
 本発明のポリエーテル共重合体の分子量は、良好な加工性、機械的強度、柔軟性を得るために、重量平均分子量の下限が5万以上であることが好ましく、30万以上であることがより好ましく、50万以上であることが更に好ましく、重量平均分子量の上限は250万以下であることが好ましく、150万以下であることが好ましい。重量平均分子量がこの範囲の共重合体では、ポリエーテル共重合体を溶解させた高分子溶液の粘度も適切となり、良好な作業性を有し、重量平均分子量の下限を30万以上とすることにより、セパレータに担持するポリエーテル共重合体、又はその架橋物が電解液に溶解することがない。このため、樹脂層が積層体から剥離しにくく、蓄電デバイスとしてより良好な充放電特性が得られる点で好ましい。
 ポリエーテル共重合体は、ブロック共重合体、ランダム共重合体何れの共重合タイプでも良い。ランダム共重合体がよりポリエチレンオキシドの結晶性を低下させる効果が大きいので好ましい。
 ポリエーテル共重合体の合成は次のようにして行える。開環重合触媒として有機アルミニウムを主体とする触媒系、有機亜鉛を主体とする触媒系、有機錫-リン酸エステル縮合物触媒系などの配位アニオン開始剤、または対イオンにK+を含むカリウムアルコキシド、ジフェニルメチルカリウム、水酸化カリウムなどのアニオン開始剤を用いて、各モノマーを溶媒の存在下又は非存在下、反応温度10~120℃、撹拌下で反応させることによってポリエーテル共重合体が得られる。重合度、あるいは得られる共重合体の性質などの点から、配位アニオン開始剤が好ましく、なかでも有機錫-リン酸エステル縮合物触媒系が取り扱い易く特に好ましい。
 本発明のセパレータにおいては、樹脂層を構成するポリエーテル共重合体は、少なくとも一部がポリエーテル共重合体の架橋物であってもよい。架橋物を担持することにより、セパレータの強度が向上する点で好ましい。
 本発明のセパレータにおいて、樹脂層の目付量は、0.4g/m2以上3.0g/m2以下である。本発明の効果をより一層好適に発揮する観点から、本発明のセパレータにおける樹脂層の目付量は、好ましくは0.45g/m2以上、より好ましくは0.5g/m2以上、さらに好ましくは0.7g/m2以上であり、また、好ましくは2.5g/m2以下、より好ましくは2.2g/m2以下、さらに好ましくは2.0g/m2以下である。
蓄電デバイス用セパレータの製造方法
 本発明のセパレータの製造方法としては、特に限定されないが、ポリエーテル共重合体を水または有機溶剤に溶解して得られる溶液に、多孔質基材及びセラミック層の積層体を浸漬後、乾燥させて樹脂層を形成する方法や、ポリエーテル共重合体を水または有機溶剤に溶解して得られる溶液を、前記多孔質基材及び前記セラミック層の積層体の少なくとも片面に塗布後、乾燥させて樹脂層を形成する方法等を例示することができる。前記ガーレ値の比率が得られやすい点で、ポリエーテル共重合体を水または有機溶剤に溶解して得られる溶液をセパレータに塗布後、乾燥させて樹脂層を形成する方法であることが好ましい。
 本発明で用いられる有機溶剤は、特に制約はないが、ポリエーテル共重合体を溶解することのできるものであり、アセトン、2-ブタノン、トルエン、キシレン、THF、アセトニトリル、メタノール、イソプロパノール、N-メチル-2-ピロリドン等の非プロトン性有機溶媒から選ぶことができる。これらの溶媒は単独でも2種類以上混合して使用してもよい。
 溶液におけるポリエーテル共重合体の濃度としては、特に限定されないが、2質量%~40質量%であることが好ましく、5質量%~40質量%であることがより好ましく、8質量%~30質量%であることがさらに好ましい。
 本発明で用いられるポリエーテル共重合体を積層体に塗布する方法としては、特に制約はないが、ポリエーテル共重合体を水または有機溶剤に溶解して得られる溶液を、溶液粘度、目的の塗工膜厚みに応じてマイクログラビア、スロットダイ、ナイフコーティング等から適した方式で積層体の表面に塗布することができる。
 本発明で用いられるポリエーテル共重合体を、塗布又は浸漬等により、多孔質基材及びセラミック層の積層体の少なくとも一方面に担持した後に、乾燥させることにより、水または有機溶剤を除き樹脂層を形成ことができる。乾燥方法としては、ヒーター式、熱風乾燥式、赤外線照射式、真空式等の乾燥設備を用いることができる。
 本発明においては、ポリエーテル共重合体を溶解し、更に光反応開始剤、又は熱重合開始剤を含有させた溶液を用いることにより、積層体に塗布後、又は積層体を浸漬後に紫外線などの活性エネルギー線を照射することにより、又は熱を加えることにより、前記のポリエーテル共重合体の架橋物からなる樹脂層を積層体に担持させることができる。ポリエーテル共重合体を溶解して得られる溶液には、必要に応じて、電解質塩や架橋助剤を添加することもできる。
 熱重合開始剤としては、有機過酸化物系、アゾ化合物系等のラジカル開始剤が挙げられる。
 有機過酸化物系としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル等、通常架橋用途に使用されているものが用いられ、具体例としては、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート等が挙げられる。
 アゾ化合物系としては、アゾニトリル化合物、アゾアミド化合物、アゾアミジン化合物等、通常架橋用途に使用されているものが用いられ、具体例としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2-アゾビス(2-メチル-N-フェニルプロピオンアミジン)・二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロパン)、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等が挙げられる。
 熱重合開始剤の量は、ポリエーテル重合体100質量部に対して0.01~10質量部の範囲内が好ましく、更に好ましくは0.1~4.0質量部である。
 本発明に用いることができる光反応開始剤としては、アルキルフェノン系、ベンゾフェノン系、アシルフォスフィンオキサイド系、チタノセン類、トリアジン類、ビスイミダゾール類、オキシムエステル類などが挙げられる。これらの中でも、アルキルフェノン系、ベンゾフェノン系、アシルフォスフィンオキサイド系の光反応開始剤が好ましい。光反応開始剤として、2種類以上併用することも可能である。
 アルキルフェノン系光反応開始剤の具体例としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オンなどが挙げられる。2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オンが好ましい。
 ベンゾフェノン系光反応開始剤の具体例としては、ベンゾフェノン、2-クロロベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、メチル-2-ベンゾイルベンゾエートなどが挙げられる。ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノンが好ましい。
 アシルフォスフィンオキサイド系光反応重合開始剤の具体例としては、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどが挙げられる。ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドが好ましい。
 光反応開始剤の量はポリエーテル重合体100質量部に対して0.01~6.0質量部の範囲内が好ましく、更に好ましくは0.1~4.0質量部である。
 本発明においては、架橋助剤を光反応開始剤と併用してもよい。架橋助剤は、通常、多官能性化合物(例えば、CH2=CH-、CH2=CH-CH2-、CF2=CF-を少なくとも2個含む化合物)である。架橋助剤の具体例は、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアクリルホルマール、トリアリルトリメリテート、N,N’-m-フェニレンビスマレイミド、ジプロパルギルテレフタレート、ジアリルフタレート、テトラアリルテレフタールアミド、トリアリルホスフェート、ヘキサフルオロトリアリルイソシアヌレート、N-メチルテトラフルオロジアリルイソシアヌレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレートなどである。
 本発明に用いられる架橋助剤の量は、上記のポリエーテル共重合体100質量部に対して0.1~30質量部の範囲内が好ましく、0.5~20質量部であることがより好ましい。
 本発明で用いられるポリエーテル共重合体を架橋させるために用いる光の活性エネルギー線は、紫外線、可視光、電子線等を用いることができる。この中でも特に装置の価格、制御のしやすさから紫外線が好ましい。
 架橋反応は、熱による場合は、室温から200℃程度の温度設定で10分から24時間程度加熱することによって行なうことができる。紫外線による場合では、キセノンランプ、水銀ランプ、高圧水銀ランプおよびメタルハライドランプを用いることができ、例えば、電解質を波長365nm、光量1~50mW/cm2で0.1~30分間照射することによって行うことができる。
 架橋反応は、光反応開始剤、熱重合開始剤を含有させたポリエーテル共重合体を溶解して得られる溶液を用いて、セパレータに塗布後、又はセパレータを浸漬後に、セパレータを乾燥前・乾燥時・乾燥後に行ってもよい。
<2.蓄電デバイス>
 本発明の蓄電デバイスは、先述の「1.蓄電デバイス用セパレータ」を用いてなり、具体的には、正極、負極、正極と負極との間に介在する前記の蓄電デバイス用セパレータ、電解質(溶液)を有する。
正極
 正極は、集電体上に正極活物質と結着剤とを含有する正極用電極組成物を有する。
 本発明の蓄電デバイス用電極に用いる集電体の材料は、例えば、金属、炭素、導電性高分子などを用いることができ、好適には金属が用いられる。集電体用金属としては、通常、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金等が使用される。これらの中で導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用するのが好ましく、正極に用いる集電体としては、例えばアルミニウム箔等の金属箔が好適に用いられる。
 正極活物質としては、目的とする電池の種類に応じて、金属酸化物、金属硫化物、又は特定の高分子を使用することができる。
 例えば、リチウムの溶解・析出を利用したリチウム電池とする場合、TiS2、MoS2 、NbS2、V25等のリチウムを含まない金属硫化物あるいは酸化物、さらにはポリアセチレン、ポリピロール等の高分子を使用することもできる。
 リチウムイオンのドープ・脱ドープを利用したリチウムイオン電池とする場合には、LixMO2(式中Mは一種以上の遷移金属を表し、xは電池の充放電状態によって異なり、通常0.05以上、1.10以下である。)で示されるリチウム複合酸化物、またはLixMPO4(式中Mは一種以上の遷移金属を表し、xは電池の充放電状態によって異なり、通常0.05以上、1.10以下である。)で示されるリチウム複合リン酸化物等を使用することができる。このリチウム複合酸化物またはリチウムリン酸化物を構成する遷移金属Mとしては、Co、Ni、Mn、Al、Fe等が好ましい。このようなリチウム複合酸化物の具体例としてはLiCoO2 、LiNiO2、LiNiyCozMn1-y-z2 (式中、0<y,z<1である)、LiNiyCozAl1-y-z2 (式中、0<y,z<1である)、LiMn24、LiFePO4等を挙げることができる。
 リチウム複合酸化物は、高電圧を発生でき、エネルギー密度的に優れた正極活物質となる。正極活物質には、これらの正極活物質の複数種を併せて使用してもよい。また、以上のような正極活物質を使用して正極活物質を形成するときには、公知の結着剤等を添加することができる。
 正極用電極組成物に用いられる結着剤としては、例えばフッ素系結着剤やアクリルゴム、変性アクリルゴム、スチレン-ブタジエンゴム、アクリル系重合体、ビニル系重合体から選ばれる1種以上の化合物を用いることができる。また、耐酸化性、少量で充分な密着性、極板に柔軟性が得られるためアクリル系重合体を用いることが好ましい。特に有機系活物質を溶解しないことから水に溶解するような水系の結着剤が好ましい。これら結着剤は正極集電体に対して、正極用電極組成物として好ましくは0.1~10質量%、更に好ましくは0.5~5質量%の割合で添加する。
 正極の正極用電極組成物には、上記の他に、導電助剤や溶媒、増粘剤を含んでもよい。導電助剤としては、アセチレンブラック、ケッチェンブラック、炭素繊維、グラファイト等の導電性カーボンなどの炭素化合物や、導電性ポリマー、金属粉末等が挙げられるが、導電性カーボンが特に好ましい。溶媒としては、正極活物質や結着剤を溶解出来るものであればどのような溶媒でも用いることができ、好適には水、N-メチル-2-ピロリドン等が用いられる。また、増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース等もしくはこれらのアルカリ金属塩、ポリエチレンオキサイド等が用いられる。
 負極
 負極は、集電体上に負極活物質と結着剤とを含有する負極用電極組成物を有する。
 本発明の蓄電デバイス用電極に用いる集電体の材料は、例えば、金属、炭素、導電性高分子などを用いることができ、好適には金属が用いられる。集電体用金属としては、通常、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金等が使用される。これらの中で導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用するのが好ましく、負極に用いる集電体としては、例えば銅箔等の金属箔が好適に用いられる。
 負極活物質としては、例えば、リチウムの溶解・析出を利用したリチウム電池とする場合、金属リチウムや、リチウムを吸蔵・放出することが可能なリチウム合金等を用いることができる。
 リチウムイオンのドープ・脱ドープを利用したリチウムイオン電池とする場合には、難黒鉛化炭素系や黒鉛系の炭素材料を使用することができる。より具体的には、黒鉛類、メソカーボンマイクロビーズ、メソフェーズカーボンファイバー等の炭素繊維、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス)、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、及び活性炭などの炭素材料を使用することができる。このような材料から負極を形成するときには、公知の結着剤などを添加することができる。
 負極用電極組成物に用いられる結着剤としては、例えばフッ素系結着剤やアクリルゴム、変性アクリルゴム、スチレン-ブタジエンゴム、アクリル系重合体、ビニル系重合体から選ばれる1種以上の化合物を用いることができる。また、耐酸化性、少量で充分な密着性、極板に柔軟性が得られるためアクリル系重合体を用いることが好ましい。特に有機系活物質を溶解しないことから水に溶解するような水系の結着剤が好ましい。これら結着剤は負極集電体に対して、負極用電極組成物として好ましくは0.1~10質量%、更に好ましくは0.5~5質量%の割合で添加する。
 負極の負極用電極組成物には、上記の他に、導電助剤や溶媒、増粘剤等を含んでもよい。導電助剤としては、アセチレンブラック、ケッチェンブラック、炭素繊維、グラファイト等の導電性カーボンなどの炭素化合物や、導電性ポリマー、金属粉末等が挙げられるが、導電性カーボンが特に好ましい。溶媒としては、負極活物質や結着剤を溶解出来るものであればどのような溶媒でも用いることができ、好適には水、N-メチル-2-ピロリドン等が用いられる。また、増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース等もしくはこれらのアルカリ金属塩、ポリエチレンオキサイド等が用いられる。
電極(正極・負極)の製造方法
 本発明の蓄電デバイス用電極(正極・負極)は、電極(正極・負極)用組成物を集電体上に形成させることにより得られる。具体的には、シート状に成形した蓄電デバイス用電極組成物を、集電体上に積層する方法(混練シート成形法);ペースト状の蓄電デバイス用電極組成物を集電体上に塗布し、乾燥する方法(湿式成形法);蓄電デバイス用電極組成物の複合粒子を調製し、集電体上にシート成形、ロールプレスし得る方法(乾式成形法)などが挙げられる。中でも、湿式成形法、乾式成形法が好ましく、湿式成形法がより好ましい。
電解質(溶液)
 電解質溶液は、非プロトン性有機溶媒に電解質塩を溶解させたものであり、常温溶融塩(イオン性液体)を用いることもできる。
 本発明においては、以下に挙げる電解質塩化合物が好ましく用いられる。即ち、金属陽イオン、アンモニウムイオン、アミジニウムイオン、及びグアニジウムイオンから選ばれた陽イオンと、塩化物イオン、臭化物イオン、ヨウ化物イオン、過塩素酸イオン、チオシアン酸イオン、テトラフルオロホウ素酸イオン、硝酸イオン、AsF6 -、PF6 -、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、7,7,8,8-テトラシアノ-p-キノジメタンイオン、X1SO3 -、[(X1SO2)(X2SO2)N]-、[(X1SO2)(X2SO2)(X3SO2)C]-、及び[(X1SO2)(X2SO2)YC]-から選ばれた陰イオンとからなる化合物が挙げられる。但し、X1、X2、X3、およびYは電子吸引基である。好ましくはX1、X2、及びX3は各々独立して炭素数が1~6のパーフルオロアルキル基又は炭素数が6~18のパーフルオロアリール基であり、Yはニトロ基、ニトロソ基、カルボニル基、カルボキシル基又はシアノ基である。X1、X2及びX3は各々同一であっても、異なっていてもよい。
 金属陽イオンとしては遷移金属の陽イオンを用いる事ができる。好ましくはMn、Fe、Co、Ni、Cu、Zn及びAg金属から選ばれた金属の陽イオンが用いられる。又、Li、Na、K、Rb、Cs、Mg、Ca及びBa金属から選ばれた金属の陽イオンを用いても好ましい結果が得られる。電解質塩化合物として前述の化合物を2種類以上併用することが可能である。
 特に、リチウムイオンキャパシタにおいて電解質塩化合物としては、Li塩化合物が好適に用いられる。
 Li塩化合物としては、リチウムイオンキャパシタに一般的に利用されているような、広い電位窓を有するLi塩化合物が用いられる。たとえば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN[CF3SC(C25SO23 2などを挙げられるが、これらに限定されるものではない。これらは、単独で用いても、2種類以上を混合して用いても良い。
 また、電解質塩や電解質用の溶液として、常温溶融塩を用いることができる。
 常温溶融塩とは、常温において少なくとも一部が液状を呈する塩をいい、常温とは電源が通常作動すると想定される温度範囲をいう。電源が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては60℃程度であり、下限は-40℃程度、場合によっては-20℃程度である。
 常温溶融塩はイオン性液体とも呼ばれており、ピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムカチオンが好ましい。
 イミダゾリウムカチオンとしては、1,3-ジメチルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-メチル-3-エチルイミダゾリウムイオン、1-メチル-3-ブチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1,2,3-トリメチルイミダゾリウムイオン、1,2-ジメチル-3-エチルイミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。
 なお、これらのカチオンを有する常温溶融塩は、単独で用いてもよく、または2種以上を混合して用いても良い。
 本発明において、電解質塩の含有量は、0.1~3.0mol/Lであること、特に、1.0~2.0mol/Lであることが好ましい。電解質塩の含有量が0.1mol/L未満であると、電解質溶液の抵抗が大きく、大電流・低温放電特性が低下し、3.0mol/Lを超えると溶解性が悪く、結晶が析出したりする。
 本発明の電解質溶液に用いられる非プロトン性の有機溶媒についても特に限定されない。具体的な非プロトン性有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、ジプロピルカーボネート、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル等を使用することができ、単独でも使用してもよく、2種類以上混合して使用してもよい。
蓄電デバイスの製造方法
 本発明の蓄電デバイスは、上記のセパレータを介して、電極用組成物を集電体上に形成してなる電極である正極と負極とを積層し、電解質溶液を注入して作製することができる。
 本発明を実施するための具体的な形態を以下に実施例を挙げて説明する。但し、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。
[合成例(ポリエーテル共重合用触媒の製造)]
 撹拌機、温度計及び蒸留装置を備えた3つ口フラスコにトリブチル錫クロライド10g及びトリブチルホスフェート35gを入れ、窒素気流下に撹拌しながら250℃で20分間加熱して留出物を留去させ残留物として固体状の縮合物質を得た。以下の重合例で重合触媒として用いた。
 ポリエーテル共重合体のモノマー換算組成は1H NMRスペクトルにより求めた。
 ポリエーテル共重合体の分子量測定にはゲルパーミエーションクロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算により重量平均分子量を算出した。GPC測定は(株)島津製作所製RID-6A、昭和電工(株)製ショウデックスKD-807、KD-806、KD-806MおよびKD-803カラム、および溶媒にDMFを用いて60℃で行った。
[重合例1]
 内容量3Lのガラス製4つ口フラスコの内部を窒素置換し、これに重合触媒として触媒の合成例で示した縮合物質1gと水分10ppm以下に調整したグリシジルエーテル化合物(a):
Figure JPOXMLDOC01-appb-C000016
158g、アリルグリシジルエーテル22g、及び溶媒としてn-ヘキサン1000gを仕込み、化合物(a)の重合率をガスクロマトグラフィーで追跡しながら、エチレンオキシド125gを逐次添加した。このときの重合温度は20℃とし、10時間反応を行った。重合反応はメタノールを1mL加え反応を停止した。デカンテーションによりポリマーを取り出した後、常圧下40℃で24時間、更に減圧下45℃で10時間乾燥してポリマー280gを得た。得られたポリエーテル共重合体の重量平均分子量は100万、モノマー換算組成分析結果はエチレンオキサイド72モル%、化合物(a)23モル%、アリルグリシジルエーテル5モル%であった。
[実施例1] 負極1/セパレータ1(セラミック層あり、樹脂層の多孔質基材面への目付量0.5g/m2)/正極1で構成されたリチウムイオン電池1の作製
<負極1の作製>
 グラファイト粉末(多孔質構造材料)90質量部およびポリフッ化ビニリデンを10質量部、N-メチル-2-ピロリドン100質量部を溶媒としてステンレスボールミルを用いて、1時間攪拌したのち、銅集電体上に50μmギャップのバーコーターを用いて塗布し、80℃真空状態で12時間以上乾繰後、ロールプレスして負極シートとした。
<正極1の作製>
 正極活物質には、10μmのLiNi0.80Co0.15Al0.052を用いた。この正極活物質90質量部に対して、導電助剤としてアセチレンの熱分解によって製造された球状炭素微粒子を3質量部、結着剤としてポリフッ化ビニリデンを7質量部、N-メチル-2-ピロリドン50質量部を溶媒としてステンレスボールミルを用いて1時間攪拌したのち、アルミニウム集電体上に100μmギャップのバーコーターを用いて塗布し、80℃真空状態で12時間以上乾繰後、ロールプレスして正極シートとした。
<電解質溶液の作製>
 エチレンカーボネート(EC)を50質量部と、ジメチルカーボネート(DMC)を50質量部と、電解質塩であるLiPF6を20質量部とを混合して、非水電解質溶液を作製した。
<セパレータ1の作製>
 膜厚が2μmのセラミック(アルミナ)コーティングしたポリエチレン多孔質基材(総厚さ9μm)上に、重合例1で得られたポリエーテル共重合体1を20質量部をアセトニトリル180質量部に溶解させた溶液をセラミックコーティングされていない面(多孔質基材面)に乾燥後の目付量約0.5g/m2となるように塗布し、60℃で10分、常圧乾燥機にて乾燥させ、ポリエチレン多孔質基材上に樹脂層が担持されたセパレータ1を作製した。
 最後に、負極1シートと正極1シートとをセパレータ1を介して圧着し、積層体を形成した。そして、積層体をアルミラミネートへ収容し、非水電解質溶液を注入してリチウムイオン電池1を作製した。
[実施例2] 負極1/セパレータ2(セラミック層あり、樹脂層の多孔質基材面への目付量1.0g/m2)/正極1で構成されたリチウムイオン電池2の作製
<セパレータ2の作製>
 セパレータ1の作製過程において塗工するポリエーテル共重合体の目付量を1.0g/m2とした以外同等の方法でセパレータ2を作製した。
 最後に、リチウム電池1の作製過程において使用するセパレータにセパレータ2を用いた以外同等の方法でリチウムイオン電池2を作製した。
[実施例3] 負極1/セパレータ3(セラミック層あり、樹脂層の多孔質基材面への目付量1.5g/m2)/正極1で構成されたリチウムイオン電池3の作製
<セパレータ3の作製>
 セパレータ1の作製過程において塗工するポリエーテル共重合体の目付量を1.5g/m2とした以外同等の方法でセパレータ3を作製した。
 最後に、リチウム電池1の作製過程において使用するセパレータにセパレータ3を用いた以外同等の方法でリチウムイオン電池3を作製した。
[実施例4] 負極1/セパレータ4(セラミック層あり、樹脂層のセラミック層面への目付量1.5g/m2)/正極1で構成されたリチウムイオン電池4の作製
<セパレータ4の作製>
 セパレータ1の作製過程において塗工するポリエーテル共重合体の塗布面をセラミックコートされている面とした以外同等の方法でセパレータ4を作製した。
 最後に、リチウム電池1の作製過程において使用するセパレータにセパレータ4を用いた以外同等の方法でリチウムイオン電池4を作製した。
[実施例5] 負極1/セパレータ5(セラミック層あり、樹脂層の多孔質基材面への目付量1.5g/m2、樹脂層はUV架橋)/正極1で構成されたリチウムイオン電池5の作製
<電解質溶液の作製>
  エチレンカーボネート(EC)を15質量部と、プロピレンカーボネート(PC)を15質量部と、ジエチルカーボネートを50質量部と、電解質塩であるLiBF4を20質量部とを混合して、非水電解質溶液を作製した。
<セパレータ5の作製>
 膜厚が2μmのセラミック(アルミナ)コーティングしたポリエチレン多孔質基材(総厚さ9μm)のセラミックコーティングされていない面(多孔質基材面)上に、重合例1で得られたポリエーテル共重合体1を20質量部と光反応開始剤ベンゾフェノン0.4質量部をアセトニトリル180質量部に溶解させた溶液を乾燥後の目付量が1.5g/m2となるように塗布し、60℃で10時間、常圧乾燥機にて乾燥させた。つぎに表面をラミネートフィルムでカバーした状態で、(株)GSユアサ製の高圧水銀灯(30mW/cm2)を30秒間照射することにより架橋し、ポリエチレン多孔質膜上に架橋したポリエーテル共重合体が担持されたセパレータを作製した。
 最後に、負極1シートと正極1シートとをセパレータ5を介して圧着し、積層体を形成した。そして、積層体をアルミラミネートへ収容し、非水電解質溶液を注入してリチウムイオン電池5を作製した。
[比較例1] 負極1/セパレータ6(セラミック層あり、樹脂層なし)/正極1で構成されたリチウムイオン電池6の作製
<セパレータ6の作製>
 セパレータ1の作製過程において塗工するポリエーテル共重合体を塗工していないものを使用した以外同等の方法でセパレータ6を作製した。
 最後に、リチウム電池1の作製過程において使用するセパレータにセパレータ4を用いた以外同等の方法でリチウムイオン電池6を作製した。
[比較例2] 負極1/セパレータ7(セラミック層なし、樹脂層の多孔質基材面への目付量0.5g/m2)/正極1で構成されたリチウムイオン電池7の作製
<セパレータ7の作製>
 セパレータ1の作製過程において使用するセパレータにセラミックコーティングされていないポリエチレン多孔質基材(厚さ9μm)をセパレータ7として使用した。
 最後に、リチウム電池1の作製過程において使用するセパレータにセパレータ7を用いた以外同等の方法でリチウムイオン電池7を作製した。
[比較例3] 負極1/セパレータ8(セラミック層あり、樹脂層の多孔質基材面への目付量5.0g/m2)/正極1で構成されたリチウムイオン電池8の作製
<セパレータ8の作製>
 セパレータ1の作製過程において塗工するポリエーテル共重合体の目付量を5.0g/m2とした以外同等の方法でセパレータ8を作製した。
 最後に、リチウム電池1の作製過程において使用するセパレータにセパレータ7を用いた以外同等の方法でリチウムイオン電池8を作製した。
[比較例4] セパレータ9(セラミック層あり、樹脂層の多孔質基材面への目付量0.3g/m2)の作製
<セパレータ9の作製>
 セパレータ1の作製過程において塗工するポリエーテル共重合体の目付量を0.3g/m2とした以外同等の方法でセパレータ9を作製した。
 実施例1~実施例5及び比較例1~比較例4で作製されたセパレータについて、それぞれ、樹脂層担持前の多孔質基材のガーレ値、樹脂層担持後の多孔質基材のガーレ値を、以下に示す<ガーレ値>の方法によって測定した。測定結果、及びガーレ値の比率を表1に示す。尚、表中において、樹脂層の担持前後のガーレ値の比率(%)は(樹脂層の担持後の積層体のガーレ値/樹脂層の担持前の積層体のガーレ値)×100で算出することができる。
<ガーレ値>
 JIS P8117(ISO 5636/5)に準拠してガーレ値(秒/100mL)を測定した。
 実施例1~実施例5及び比較例1~比較例3で作製されたリチウムイオン電池について、それぞれ、以下に示す方法によって過放電後の充放電サイクル特性を測定した。測定結果を表1に示す。
<充放電サイクル特性>
 理論容量の10時間率放電(1/10C)において2.7-4.1Vの充放電サイクル試験を1回行った後、理論容量の5時間率放電(1/5C)において2.7-4.1Vの充放電サイクル試験を30回行った後の放電容量(mAh/g)を測定した。
<過放電後の充放電サイクル特性>
 理論容量の10時間率放電(1/10C)において2.0-4.2Vの充放電サイクル試験を1回行った後、4.2Vに充電後、2Vまで1/5Cで放電した後1/16Cにて0Vまで放電し、開回路電圧で1時間放置するサイクルを20サイクル実施した。その後前記の充放電サイクル試験と同条件でサイクル試験実施し、測定された放電容量(mAh/g)を比較した。
Figure JPOXMLDOC01-appb-T000017
 表1より、実施例1~5における本発明のセパレータは、樹脂層の架橋、未架橋に関係なく、サイクル前後の放電容量において劣化が少なく、過放電後のサイクル試験において容量低下が起こりづらいことから良好であることがわかる。比較例3においてはサイクル特性、過放電特性において比較的良好な結果であったが初期容量の低下がみられた。
 実施例1~実施例5及び比較例1~比較例4で使用されたセパレータについて、それぞれ、セパレータの耐熱性の評価を以下の方法で行った。
<セパレータ耐熱性試験>
 試験サンプルとして1辺6cmの正方形に裁断130℃に温度設定したホットプレート上に試験サンプルセパレータを厚さ1mmのSUS板に挟み均一に圧力がかかるよう重りとしてガラス板を置き10分間静置した後、サンプルの形状を確認した。
通常に使用できるものを〇、サンプルがカールし使用できないものを×と評価した。評価結果を表2に記す。
Figure JPOXMLDOC01-appb-T000018
 表2より、実施例1~5における本発明のセパレータは、耐熱性が高くセパレータの伸縮が小さいためカールが発生しづらいことから良好であることがわかる。比較例1,2,4におけるセパレータは耐熱性が低く、比較例3においては耐熱性試験においては問題なかったが、表1で示したとおり、初期容量の点で実施例1~5と比較して劣る結果であった。

Claims (5)

  1.  多孔質基材及びセラミック層の積層体と、前記積層体の少なくとも一方面に担持された樹脂層と、を備える蓄電デバイス用セパレータであって、
     前記樹脂層は、ポリエーテル共重合体及び/又はその架橋物から構成されており、
     前記ポリエーテル共重合体は、下記式(1)で示される単量体から誘導される繰り返し単位2~40モル%、下記式(2)で示される単量体から誘導される繰り返し単位98~60モル%、及び下記式(3)で示される単量体から誘導される繰り返し単位0~15モル%から構成されており、
     前記樹脂層の目付量が、0.4g/m2以上3.0g/m2以下であり、前記樹脂層の担持前後におけるガーレ値の比率が、200%以上である、蓄電デバイス用セパレータ。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rは炭素数1~12のアルキル基、または-CH2O(CR123)である。R1、R2、R3は水素原子または-CH2O(CH2CH2O)nR4であり、nおよびR4はR1、R2、R3の間で異なっていてもよい。R4は炭素数1~12のアルキル基または、アリール基であり、nは0~12の整数である。]
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、R5はエチレン性不飽和基を有する基である。]
  2.  前記多孔質基材が、ポリオレフィン樹脂、又はポリエステル系樹脂、セルロース系樹脂、及びポリアミド系樹脂からなる群から選択される少なくとも1種の樹脂からなる多孔質フィルムである、請求項1に記載の蓄電デバイス用セパレータ。
  3.  前記多孔質基材の膜厚が3μm以上40μm以下である、請求項1または2に記載の蓄電デバイス用セパレータ。
  4.  前記多孔質基材及び前記セラミック層の前記積層体の少なくとも片面に、前記ポリエーテル共重合体を非プロトン性有機溶媒に溶解させた溶液を塗布し、乾燥させて前記樹脂層を形成する工程を含む、請求項1または2に記載の蓄電デバイス用セパレータの製造方法。
  5.  請求項1または2に記載の蓄電デバイス用セパレータを備える、蓄電デバイス。
PCT/JP2023/035814 2022-09-29 2023-09-29 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法 WO2024071428A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022157087 2022-09-29
JP2022-157087 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071428A1 true WO2024071428A1 (ja) 2024-04-04

Family

ID=90478189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035814 WO2024071428A1 (ja) 2022-09-29 2023-09-29 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法

Country Status (1)

Country Link
WO (1) WO2024071428A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152857A (ja) * 2012-01-25 2013-08-08 Daiso Co Ltd 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法
WO2015030230A1 (ja) * 2013-09-02 2015-03-05 日本ゴア株式会社 保護膜、ならびにそれを用いたセパレータおよび二次電池
JP2016060061A (ja) * 2014-09-16 2016-04-25 旭化成イーマテリアルズ株式会社 積層微多孔フィルム及びその製造方法、並びに電池用セパレータ
WO2019194094A1 (ja) * 2018-04-06 2019-10-10 株式会社大阪ソーダ 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152857A (ja) * 2012-01-25 2013-08-08 Daiso Co Ltd 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法
WO2015030230A1 (ja) * 2013-09-02 2015-03-05 日本ゴア株式会社 保護膜、ならびにそれを用いたセパレータおよび二次電池
JP2016060061A (ja) * 2014-09-16 2016-04-25 旭化成イーマテリアルズ株式会社 積層微多孔フィルム及びその製造方法、並びに電池用セパレータ
WO2019194094A1 (ja) * 2018-04-06 2019-10-10 株式会社大阪ソーダ 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法

Similar Documents

Publication Publication Date Title
JP5286001B2 (ja) 電池用セパレータとこれを用いてなる非水リチウムイオン二次電池
JP7359137B2 (ja) 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法
US8216723B2 (en) Polymer electrolyte and electrochemical device
WO2008032679A1 (en) Polymeric electrolyte, method for production thereof, and electrochemical element
JP6061066B2 (ja) 電気化学キャパシタ
US20180254152A1 (en) Composition for gel electrolytes
KR102367371B1 (ko) 음극 및 이를 포함하는 리튬 이차전지
JP6933979B2 (ja) 電気化学キャパシタ
JP2012226854A (ja) 非水電解質二次電池
JP5915967B2 (ja) 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法
JP6341360B2 (ja) 非水電解質二次電池
JP2013155318A (ja) 電解質組成物およびそれを用いた非水電解質二次電池
KR102246730B1 (ko) 그래프트 공중합체, 이차전지용 바인더 조성물, 이차전지용 세퍼레이터 및 전극, 이차전지 및 그래프트 공중합체의 제조 방법
JP5879720B2 (ja) 非水電解質二次電池
WO2024071428A1 (ja) 蓄電デバイス用セパレータ、蓄電デバイスおよびそれらの製造方法
JP2021057205A (ja) 蓄電デバイス、およびその製造方法
CN107430946B (zh) 电化学电容器
JP5959089B2 (ja) 非水電解質二次電池
JP5373349B2 (ja) 電池用セパレータとこれを用いてなる非水リチウムイオン二次電池
JP2009087795A (ja) 電池用セパレータとこれを用いてなる非水リチウムイオン二次電池
CN109935765A (zh) 非水电解液二次电池
KR102452647B1 (ko) 이온성 화합물, 이를 포함하는 이온성 고분자 전해질 전구체 조성물, 이로부터 제조된 이온성 고분자 전해질 및 리튬 이차 전지
JP7415298B2 (ja) 電極用スラリー組成物、電極、及び蓄電デバイス
JP2022062997A (ja) 蓄電デバイス用正極、蓄電デバイス用正極の製造方法および蓄電デバイス
JP2016091668A (ja) 有機二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872647

Country of ref document: EP

Kind code of ref document: A1