WO2024070319A1 - ガラス基板、多層配線基板、およびガラス基板の製造方法 - Google Patents

ガラス基板、多層配線基板、およびガラス基板の製造方法 Download PDF

Info

Publication number
WO2024070319A1
WO2024070319A1 PCT/JP2023/029922 JP2023029922W WO2024070319A1 WO 2024070319 A1 WO2024070319 A1 WO 2024070319A1 JP 2023029922 W JP2023029922 W JP 2023029922W WO 2024070319 A1 WO2024070319 A1 WO 2024070319A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
hole
diagram showing
roughness
inclination angle
Prior art date
Application number
PCT/JP2023/029922
Other languages
English (en)
French (fr)
Inventor
将士 澤田石
Original Assignee
Toppanホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022158002A external-priority patent/JP2024051702A/ja
Priority claimed from JP2022157982A external-priority patent/JP2024051691A/ja
Priority claimed from JP2022157968A external-priority patent/JP2024051679A/ja
Application filed by Toppanホールディングス株式会社 filed Critical Toppanホールディングス株式会社
Publication of WO2024070319A1 publication Critical patent/WO2024070319A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a glass substrate, a multilayer wiring substrate, and a method for manufacturing a glass substrate.
  • through electrodes are formed in the circuit board.
  • the through electrodes are formed by forming through holes in a substrate made of an insulator and placing a conductor in the through hole. As circuit boards become more highly integrated, the through holes also need to be made finer.
  • Patent Document 1 discloses a technique for irradiating a sheet of glass with an excimer laser beam to provide a glass substrate having a plurality of through holes.
  • Patent Document 2 discloses a method for producing a high-density array of holes in glass, including a step of irradiating the front surface of a glass product with a UV laser beam.
  • Patent Document 3 discloses a shape of a through hole that includes a substrate including a through hole and a conductor arranged along the inner side surface of the through hole, and satisfies the condition that the total value of the inclination angle of the inner side surface with respect to the central axis of the through hole (the angle at which the first surface side expands is defined as a positive inclination angle) is 8.0° or more at positions at distances of 6.25%, 18.75%, 31.25%, 43.75%, 56.25%, 68.75%, 81.25%, and 93.75% from the first surface in the section from the first surface to the second surface.
  • Patent Documents 1 to 3 do not consider the effect of the side roughness of the through hole on the transmission characteristics of the through electrode. For this reason, the side of the through hole described in Patent Documents 1 to 3 has a distributed roughness of 1,000 nm or more, and a PV (Peak to Valley) of 1,500 nm or more. For this reason, it is difficult to maintain sufficiently good transmission characteristics of the through electrode, especially in high frequency bands such as the sub-6 GHz band, which is one of the frequency bands used for 5G, due to the roughness of the side of the through hole.
  • high frequency bands such as the sub-6 GHz band, which is one of the frequency bands used for 5G
  • the present invention aims to provide a glass substrate capable of forming through electrodes with good transmission characteristics, and a multilayer wiring substrate including such a glass substrate.
  • one representative glass substrate of the present invention has a first surface and a second surface, and is provided with at least one through hole that penetrates from the first surface to the second surface, and the side surface of the through hole has a dispersion roughness of 1,000 nm or less and an unevenness width of 1,500 nm or less.
  • FIG. 1 is a diagram showing a method for measuring the cross section and inclination angle of a through hole having a truncated cone shape.
  • FIG. 2 is a diagram showing a method for measuring the cross section and inclination angle of an X-shaped through hole.
  • FIG. 3 is a diagram showing a method for measuring the side surface roughness of a through hole.
  • FIG. 4 is a diagram showing a method for measuring the cross section and inclination angle of a truncated cone-shaped through hole.
  • FIG. 5 is a diagram showing the measurement results of the inclination angle of the through hole in Example 1 of the first embodiment.
  • FIG. 6 is a diagram showing the measurement results of the inclination angle of the through hole in Example 2 in the first embodiment.
  • FIG. 1 is a diagram showing a method for measuring the cross section and inclination angle of a through hole having a truncated cone shape.
  • FIG. 2 is a diagram showing a method for measuring the cross section and inclin
  • FIG. 7 is a diagram showing the measurement results of the inclination angle of the through hole in Example 3 in the first embodiment.
  • FIG. 8 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 1 in the first embodiment.
  • FIG. 9 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 1 in the first embodiment.
  • FIG. 10 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 2 in the first embodiment.
  • FIG. 11 is a diagram showing the measurement results of the inclination angle of the through hole in Comparative Example 2 in the first embodiment.
  • FIG. 12 is a diagram showing the shape of a through hole in Comparative Example 3 in the first embodiment.
  • FIG. 13 is a diagram showing the measurement results of the inclination angle of the through hole in Comparative Example 3 in the first embodiment.
  • FIG. 14 is a diagram showing the transmission characteristics of the through electrode of Example 1 and the transmission characteristics of the through electrode of Comparative Example 1 in the first embodiment.
  • FIG. 15A is an SEM image of a cross section of a through hole in each of the examples and comparative examples of the first embodiment.
  • FIG. 15B is a diagram illustrating the ridge lines of the through holes in each example of the first embodiment.
  • FIG. 16 is a diagram showing an example of the structure of the multilayer wiring board according to the first embodiment.
  • FIG. 17 is a diagram showing another example of the configuration of the multilayer wiring board according to the first embodiment.
  • FIG. 18 is a diagram showing a step of bonding a glass substrate to a first support.
  • FIG. 19 is a diagram showing a process for forming a laser modified portion.
  • FIG. 20 is a diagram showing a process of forming a first wiring layer.
  • FIG. 21 is a diagram showing a step of adhering a second support.
  • FIG. 22 is a diagram showing a step of peeling off the first support.
  • FIG. 23 is a diagram showing a process of forming a through hole.
  • FIG. 24 is a diagram showing a process of forming a through electrode.
  • FIG. 25 is a diagram showing a process of forming an insulating resin layer.
  • FIG. 26 is a diagram showing a step of peeling off the second support and the second adhesive layer.
  • FIG. 27 is a diagram showing a process of forming a first wiring layer and a second wiring layer.
  • FIG. 28 is a diagram showing an example of the configuration of a multilayer wiring board in the second embodiment.
  • FIG. 29 is a diagram showing another example of the configuration of the multilayer wiring board according to the second embodiment.
  • FIG. 30 is a diagram showing a process of preparing a glass substrate.
  • FIG. 31 is a diagram showing a process of forming a laser modified portion.
  • FIG. 32 is a diagram showing a process of forming a through hole.
  • FIG. 33 is a diagram showing a process of forming a through electrode in the through hole.
  • FIG. 34 is a diagram showing a process of forming a first wiring layer and a second wiring layer.
  • FIG. 35 is a diagram showing the measurement results of the inclination angle of the through hole in Example 1 of the second embodiment.
  • FIG. 36 is a diagram showing the measurement results of the inclination angle of the through hole in Example 2 of the second embodiment.
  • FIG. 37 is a diagram showing the measurement results of the inclination angle of the through hole in Example 3 of the second embodiment.
  • FIG. 38 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 1 in the second embodiment.
  • FIG. 39 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 1 in the second embodiment.
  • FIG. 40 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 2 in the second embodiment.
  • FIG. 41 is a diagram showing the measurement results of the inclination angle of the through hole in Comparative Example 2 in the second embodiment.
  • FIG. 42 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 3 in the second embodiment.
  • FIG. 43 is a diagram showing the measurement results of the inclination angle of the through hole in Comparative Example 3 in the second embodiment.
  • FIG. 44 is a diagram showing the transmission characteristics of the through electrode of Example 1 and the transmission characteristics of the through electrode of Comparative Example 1 in the first embodiment.
  • FIG. 45 is a diagram showing a case where a multilayer wiring board is used as an interposer board for a semiconductor device and a BGA board.
  • FIG. 46 is a diagram showing a cross section in the case of FIG. FIG.
  • FIG. 47 is a diagram showing a case where a multilayer wiring board and a semiconductor device are used in an electronic device for communication.
  • FIG. 48 is a diagram showing a cross section in the case of FIG.
  • FIG. 49 is a diagram showing a method for measuring the cross section and inclination angle of a truncated cone-shaped through hole.
  • FIG. 50 is a diagram showing a method for measuring the side roughness of a through hole.
  • FIG. 51 is a diagram showing the measurement results of the inclination angle of the through hole in Example 1 in the first embodiment (Supplementary Note 1).
  • FIG. 52 is a diagram showing the measurement results of the inclination angle of the through hole in Example 2 in the first embodiment (Supplementary Note 1).
  • FIG. 53 is a diagram showing the measurement results of the inclination angle of the through hole in Example 3 in the first embodiment (Supplementary Note 1).
  • FIG. 54 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 1 in the first embodiment (Supplementary Note 1).
  • FIG. 55 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 1 in the first embodiment (Supplementary Note 1).
  • FIG. 56 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 2 in the first embodiment (Supplementary Note 1).
  • FIG. 57 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 2 in the first embodiment (Supplementary Note 1).
  • FIG. 58 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 3 in the first embodiment (Supplementary Note 1).
  • FIG. 59 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 3 in the first embodiment (Supplementary Note 1).
  • FIG. 60A is a graph showing Table 4.
  • FIG. 60B is a schematic diagram showing a case where a through electrode is formed.
  • FIG. 61A is a diagram showing SEM images of cross sections of through holes in each example and each comparative example in the first embodiment (Supplementary Note 1).
  • FIG. 61B is a diagram illustrating the ridge lines of the through holes in each example of the first embodiment (Supplementary Note 1).
  • FIG. 61C is a diagram showing a case where a through electrode is formed in the through hole in the first embodiment (Supplementary note 1).
  • FIG. 62 is a diagram showing the transmission characteristics of the through electrode of Example 1 and the transmission characteristics of the through electrode of Comparative Example 1 in the embodiment.
  • FIG. 63 is a diagram showing an example of the configuration of a multilayer wiring board 1 according to the first embodiment (Supplementary Note 1).
  • FIG. 64 is a diagram showing another example of the configuration of the multilayer wiring board 1 according to the first embodiment (Supplementary Note 1).
  • FIG. 65 is a diagram showing a step of bonding a glass substrate to a first support.
  • FIG. 66 is a diagram showing a process for forming a laser modified portion.
  • FIG. 67 is a diagram showing a step of forming a first wiring layer.
  • FIG. 68 is a diagram showing a step of adhering a second support.
  • FIG. 69 is a diagram showing a step of peeling off the first support.
  • FIG. 70 is a diagram showing a step of forming a through hole.
  • FIG. 71 is a diagram showing a process for forming a through electrode.
  • FIG. 72 is a diagram showing a process of forming an insulating resin layer.
  • FIG. 73 is a diagram showing a step of peeling off the second support and the second adhesive layer.
  • FIG. 74 is a diagram showing a process of forming a first wiring layer and a second wiring layer.
  • FIG. 75 is a diagram showing a case where a multi-layer wiring board is used as an interposer board for a semiconductor element and a BGA board.
  • FIG. 76 is a diagram showing a cross section in the case of FIG.
  • FIG. 77 is a diagram showing a case where a multilayer wiring board and a semiconductor element are used in an electronic device for communication.
  • FIG. 78 is a diagram showing a cross section in the case of FIG.
  • FIG. 79 is a diagram illustrating the features of the through holes and through electrodes formed in the present disclosure.
  • FIG. 80 is a diagram showing a method for measuring the cross section and inclination angle of a truncated cone-shaped through hole.
  • FIG. 81 is a diagram showing a method for measuring the side roughness of a through hole.
  • FIG. 82 is a diagram showing the measurement results of the inclination angle of the through hole in Example 1 in the first embodiment (Supplementary Note 2).
  • FIG. 83 is a diagram showing the measurement results of the inclination angle of the through hole in Example 2 in the first embodiment (Supplementary Note 2).
  • FIG. 84 is a diagram showing the measurement results of the inclination angle of the through hole in Example 3 in the first embodiment (Supplementary Note 2).
  • FIG. 85 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 1 in the first embodiment (Supplementary Note 2).
  • FIG. 82 is a diagram showing the measurement results of the inclination angle of the through hole in Example 1 in the first embodiment (Supplementary Note 2).
  • FIG. 83 is a diagram showing the measurement results of the inclination angle of the through hole in Example 2 in the first
  • FIG. 86 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 1 in the first embodiment (Supplementary Note 2).
  • FIG. 87 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 2 in the first embodiment (Supplementary Note 2).
  • FIG. 88 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 2 in the first embodiment (Supplementary Note 2).
  • FIG. 89 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 3 in the first embodiment (Supplementary Note 2).
  • FIG. 90 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 3 in the first embodiment (Supplementary Note 2).
  • FIG. 91 is a diagram showing the measurement results of the inclination angle of the through hole in Application Example 1.
  • FIG. 92 is a diagram showing the measurement results of the inclination angle of the through hole in Application Example 2.
  • FIG. 93 is a diagram showing the measurement results of the inclination angle of the through hole in Application Example 3.
  • FIG. 94A is a graph showing Table 19.
  • FIG. 94B is a schematic diagram showing a case where a through electrode is formed.
  • FIG. 94C is a diagram illustrating the characteristics of the through holes and through electrodes formed in the present disclosure.
  • FIG. 95A is a diagram showing an SEM image of a typical cross-sectional shape of a through hole in each example and each comparative example in the first embodiment (Supplementary Note 2).
  • FIG. 95B is a diagram showing an SEM image of a cross section of a through hole in each example and each comparative example in the first embodiment (Supplementary Note 2).
  • FIG. 95C is a diagram illustrating the ridge lines of the through holes in each example of the first embodiment (Supplementary Note 2).
  • FIG. 95D is a diagram showing a case where a through electrode is formed in the through hole in the first embodiment (Supplementary note 2).
  • FIG. 96 is a diagram showing the transmission characteristics of the through electrode of Example 1 and the transmission characteristics of the through electrode of Comparative Example 1 in the first embodiment (Supplementary Note 2).
  • FIG. 97 is a diagram showing an example of the configuration of a multilayer wiring board in the first embodiment (Supplementary Note 2).
  • FIG. 98 is a diagram showing another example of the configuration of the multilayer wiring board in the first embodiment (Supplementary Note 2).
  • FIG. 99 is a diagram showing a step of bonding a glass substrate to a first support.
  • FIG. 100 is a diagram showing a process for forming a laser modified portion.
  • FIG. 101 is a diagram showing a process of forming a first wiring layer.
  • FIG. 102 is a diagram showing a step of adhering a second support.
  • FIG. 103 is a diagram showing a step of peeling off the first support.
  • FIG. 104 is a diagram showing a step of forming a through hole.
  • FIG. 105 is a diagram showing a process of forming a through electrode.
  • FIG. 106 is a diagram showing a process of forming an insulating resin layer.
  • FIG. 107 is a diagram showing a step of peeling off the second support and the second adhesive layer.
  • FIG. 108 is a diagram showing a process of forming a first wiring layer and a second wiring layer.
  • FIG. 109 is a diagram showing a case where a multi-layer wiring board is used as an interposer board for a semiconductor element and a BGA board.
  • FIG. 110 is a diagram showing a cross section in the case of FIG.
  • FIG. 111 is a diagram showing a case where a multilayer wiring board and a semiconductor element are used in an electronic device for communication.
  • FIG. 112 is a diagram showing a cross section in the case of FIG.
  • surface may refer not only to the surface of a plate-like member, but also to the interface of a layer contained in the plate-like member that is approximately parallel to the surface of the plate-like member. Additionally, “upper surface” and “lower surface” refer to the surface shown at the top or bottom of a drawing when a plate-like member or a layer contained in the plate-like member is illustrated. Additionally, the “upper surface” and “lower surface” may also be referred to as the “first surface” and the "second surface”.
  • side surface refers to a surface of a plate-like member or a layer included in a plate-like member, or a portion of the thickness of a layer. Furthermore, a part of a surface and a side surface may be collectively referred to as an "end portion.” Furthermore, the “side surface of a through hole” refers to the interface on the object that forms the through hole when the through hole is provided in the object. In addition, “upper” refers to the vertically upward direction when a plate-like member or layer is placed horizontally.
  • the distance in the Z-axis direction is referred to as the "height,” and the distance on the XY plane defined by the X-axis and Y-axis directions is referred to as the "width.”
  • the term "through electrode provided in a glass substrate” refers to a conductive path provided to electrically connect the first and second surfaces of a glass substrate when the glass substrate is used as a part of a multilayer wiring substrate, and does not necessarily have to completely penetrate the glass substrate with a single conductive material. If the conductive path from the first surface and the conductive path from the second surface are connected, they are included in the through electrode.
  • the form of the through electrode may be a filled type in which a through hole (including both bottomed and completely through holes) is filled with a conductive material, or a conformal type in which only the sidewall portion of the through hole is covered with a conductive material.
  • planar shape and plan view refer to the shape of a surface or layer when viewed from above.
  • cross-sectional shape and cross-sectional view refer to the shape of a plate-like member or layer when cut in a specific direction and viewed from the horizontal direction.
  • central portion refers to the central portion other than the peripheral portion of the surface or layer, and the term “toward the center” refers to the direction from the peripheral portion of the surface or layer toward the center of the planar shape of the surface or layer.
  • ⁇ Measurement method> In order to explain the shape of the through hole provided in the glass substrate according to the first and second embodiments of the present invention, first, a method for measuring the inclination angle of the through hole 12 and a method for measuring the side roughness will be described below.
  • the results can be significantly different when observing the inclination angle of the sidewall at a certain position on the sidewall using a scale that overlooks the entire through hole in the glass substrate, compared to when the sidewall near the measurement point is enlarged so that the minute unevenness of the sidewall at that position becomes clear, and a precise determination is made as to where on that unevenness the point at which the angle is specified corresponds, and the inclination angle of the tangent at that position is used to determine the desired angle.
  • the inclination angle of the glass substrate through hole in the present disclosure corresponds to the former, and means an inclination angle that reflects the tendency when the entire through hole is viewed from above, without being overly influenced by the unevenness of the side surface.
  • One example of a measurement method is to set a tangent at a measurement point in a cross-sectional photograph taken at a scale and resolution that allows a bird's-eye view of the entire through hole and where minute irregularities on the side surface cannot be seen with the naked eye, so as to reflect as closely as possible the tendency of inclination at the measurement point and its vicinity.
  • FIG. 1 illustrates the shape of the through hole 12 obtained in the first embodiment of the present invention.
  • FIG. 1 is a diagram showing a method for measuring the cross section and inclination angle of the truncated cone-shaped through hole 12.
  • the cross section of the through hole 12 shown in FIG. 1 is obtained by fracturing (cutting) the through hole 12 from the first surface 101 side in the thickness direction of the glass substrate to obtain a cross section (cut surface), and analyzing the SEM image observed by a SEM (Scanning Electron Microscope) using image analysis software.
  • the area shown by the pattern pattern indicates the glass substrate 10.
  • FIG. 1 is a truncated cone shape, and the through hole 12 has a minimum value on the second surface 102 side where the diameter of the through hole is minimal.
  • the scales 5%, 10%, ... 95% shown in FIG. 1 indicate the length from the first surface 101 to the second surface 102 of the glass substrate 10 as a percentage.
  • a center line TC is drawn perpendicular to the second surface 102 at the center of the opening on the second surface 102 side of the glass substrate 10.
  • the center line TC is translated toward either one of the two sides of the through hole 12 as shown by the arrow, and the translated center line TC is brought into contact with the point where the diameter of the through hole 12 is at its minimum value, and the point of contact is defined as a reference point RP.
  • a tangent line ss is drawn at the cross-sectional position at the height of each of the scale positions from 5% to 95% from the reference point RP, and the inclination angle of the tangent line ss is measured, and the inclination angle is defined as the inclination angle at each of the cross-sectional positions from 5% to 95%. Note that the inclination angle is positive in the direction in which the diameter of the through hole 12 expands upward.
  • the method for measuring the inclination angle includes steps (1) to (3): (1) creating a center line for the through hole 12, (2) moving the center line horizontally to a position where the opening is at its minimum to create a reference point, and (3) drawing a tangent line from the reference point to a specific position on the through hole to measure the angle.
  • steps (1) to (3) (1) creating a center line for the through hole 12, (2) moving the center line horizontally to a position where the opening is at its minimum to create a reference point, and (3) drawing a tangent line from the reference point to a specific position on the through hole to measure the angle.
  • a scribe and a precision breaker are used to cut (cut) the through hole 12 at the center from the first surface 101 side to expose the cross section of the through hole 12.
  • a cutting method for example, three-point bending can be applied. After that, SEM observation is performed on the exposed cross section, and the angle of the through hole 12 is measured by image analysis of the SEM image of the cross section.
  • FIG. 2 is a diagram showing a method for measuring the cross section and inclination angle of a through hole 12 having an hourglass shape (hereinafter also referred to as "X-shape") with a narrowed central portion in the height direction.
  • the cross section of the through hole 12 shown in FIG. 2 is obtained by image analysis of an SEM image observed by a SEM (Scanning Electron Microscope) after cutting the through hole 12 from the first surface 101 side by a scribe to expose the cross section.
  • SEM Sccanning Electron Microscope
  • the cross section is shown taken along a plane passing through the center of the through hole 12, and the portion shown by the pattern pattern indicates the glass substrate 10, as in FIG. 1.
  • the scales 5%, 10%, ... 95% shown in FIG. 2(a) and (b) indicate the length from the first surface 101 to the second surface 102 of the glass substrate 10 as a percentage.
  • the shape of the through hole 12 shown in FIG. 2 has a structure that is almost symmetrical up and down at the 50% position of the scale.
  • a center line TC is drawn at the center of the opening on the first surface 101 side of the glass substrate 10 so as to be perpendicular to the first surface 101.
  • the center line TC is moved in parallel toward both sides of the through hole 12, and is brought into contact with the point where the diameter of the through hole 12 is at its minimum value, and the point of contact is set as the reference point RP.
  • a tangent line ss is drawn from the reference point RP, which is a straight line connecting the positions of the cross sections at the heights of the respective scale positions from 5% to 50%, and the inclination angle of the tangent line ss is measured, and the inclination angle is set as the inclination angle at each of the cross sections positions from 5% to 50%.
  • the inclination angle is positive in the direction in which the diameter of the through hole 12 expands upward or downward.
  • a center line TC is drawn at the center of the opening on the second surface 102 side of the glass substrate 10 so as to be perpendicular to the second surface 102.
  • the center line TC is translated toward either side of the through hole 12, and is brought into contact with the point where the diameter of the through hole 12 is at its minimum value, and the point of contact is set as the reference point RP.
  • a tangent line ss is drawn at the cross-sectional position at the height of each of the scale positions from 50% to 95% from the reference point RP, and the inclination angle of the tangent line ss is measured.
  • the direction from the translated center line TC toward the tangent line ss is positive in the clockwise direction as viewed on the paper in the section from 5% to 50%.
  • the direction from the translated center line TC toward the tangent line ss is counterclockwise as viewed on the paper in the region from 50% to 95%, so the inclination angle is displayed as a negative value.
  • the measurement range is usually the range from the first surface 101 to the second surface 102 of the through hole.
  • two or more measurement ranges excluding the irregularities are set, and the results of the measurement ranges are averaged to determine the side roughness.
  • FIG. 3 is a diagram showing a method for measuring the side roughness of a through hole.
  • FIG. 3(a) shows an SEM image of the cross section of a through hole 12.
  • FIG. 3(b) shows a diagram in which the contour of the side of the through hole 12 is extracted from an SEM image obtained by observing the cross section of the through hole 12. Measurements of the average dispersion roughness and the unevenness width are carried out from the extracted contour data.
  • 3(c) is a diagram showing a formula for calculating the average dispersion roughness and the unevenness width.
  • a roughness curve f(x) showing the roughness of the contour is measured in a set region L set based on the first surface 101.
  • the average dispersion roughness (hereinafter also simply referred to as "dispersion roughness") Ra is obtained by integrating the absolute value of the roughness curve f(x) squared over the set region L and then dividing it by the length of the set region L, as shown in formula (1).
  • the roughness width (hereinafter also referred to as "unevenness width”) a is the difference between the peak portion showing the maximum roughness value and the bottom portion showing the minimum roughness value in the roughness curve f(x).
  • the average roughness of the through hole is calculated by averaging the roughness values calculated from them.
  • the transmission characteristics are measured using the S parameter (S21), which indicates the frequency dependency of the degree of the propagating wave relative to the input wave.
  • S21 is expressed as the logarithm of the power ratio (transmitted wave power/input wave power), and the smaller the absolute value, the smaller the transmission loss.
  • a network analyzer was used to measure the S parameter (S21).
  • a measurement sample was prepared by surrounding the periphery of the through electrode 11 formed on the glass substrate with a conductor and grounding the conductor, and S21 between the first surface 101 side and the second surface 102 side of the through electrode 11 was measured.
  • FIG. 4 is a diagram showing a method for measuring the cross section and inclination angle of the truncated cone-shaped through hole 12.
  • the glass substrate 10 on which the laser modified portion 65 is formed is etched from the first surface 101 side of the glass substrate 10. Therefore, the formed through hole 12 has a truncated cone shape whose diameter narrows from the first surface 101 toward the second surface 102.
  • the inclination angle of the side surface of the through hole 12 changes depending on the laser processing conditions and etching conditions for the glass substrate 10.
  • Example 1 of the first embodiment the pulse width is 5 ps and the number of shots is 1, in Example 2, the pulse width is 15 ps and the number of shots is 1, and in Example 3, the pulse width is 25 ps and the number of shots is 1.
  • the comparative examples are through holes created by modifying the manufacturing method and laser processing method shown in the first embodiment.
  • the pulse width is 30 ps and the number of shots is 1
  • the pulse width is 30 ns and the number of shots is 50
  • the pulse width is 50 ⁇ s and the number of shots is 5.
  • the opening diameter on the second surface 102 side of the glass substrate 10 was 80 ⁇ m on average, and in this case, 3 ⁇ , which is the value obtained by adding three times the standard deviation to the average value of the measured values, was 4.5 ⁇ m or less.
  • the difference between the maximum opening diameter ⁇ Max and the minimum opening diameter ⁇ Min was 10 ⁇ m or less.
  • FIG. 5 is a diagram showing the measurement results of the inclination angle of the through hole in Example 1 of the first embodiment.
  • FIG. 6 is a diagram showing the measurement results of the inclination angle of the through hole in Example 2 in the first embodiment.
  • FIG. 7 is a diagram showing the measurement results of the inclination angle of the through hole in Example 3 in the first embodiment.
  • FIG. 8 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 1 in the first embodiment.
  • FIG. 9 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 1 in the first embodiment.
  • FIG. 10 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 2 in the first embodiment.
  • FIG. 11 is a diagram showing the measurement results of the inclination angle of the through hole in Comparative Example 2 in the first embodiment.
  • FIG. 12 is a diagram showing the shape of a through hole in Comparative Example 3 in the first embodiment.
  • FIG. 13 is a diagram showing the measurement results of the inclination angle of the through hole in Comparative Example 3 in the first embodiment.
  • Table 2 is a tabular summary of the results of measuring the inclination angle of the side surface of through hole 12 in each example and each comparative example of the first embodiment.
  • the inclination angle is almost constant at each cross-sectional position of 5% to 95% of through hole 12. It can be seen that in each comparative example of the first embodiment, the inclination angle of the side surface varies at each position of 5% to 95%.
  • the average dispersion roughness and unevenness width of the side surface of the through hole 12 will be described for each example and each comparative example of the first embodiment with reference to Table 3.
  • the dispersion roughness of the side surface shape at the cut surface of the through hole 12 in the thickness direction of the glass substrate is 1,000 nm or less and the unevenness width is 1,500 nm or less.
  • the dispersion roughness is 1,500 nm or more and the unevenness width is 1,500 nm or more, confirming that there is a difference in the roughness of the side surface of the through hole.
  • Fig. 14 is a diagram showing the transmission characteristics of the through electrodes of Example 1 and Comparative Example 1 in the first embodiment.
  • the transmission characteristics are shown as the results of measuring the transmission loss S21. Note that, since Examples 1 to 3 showed the same tendency in the transmission characteristics, Example 1 is shown as a representative. Furthermore, since Comparative Examples 1 to 3 also showed almost the same tendency in the transmission characteristics, Comparative Example 1 is shown as a representative.
  • the conditions for forming the seed layer and plating for forming the electrode in the through hole were the same for both the embodiment and the comparative example. As shown in Fig.
  • the transmission loss of the embodiment is smaller than that of the comparative example in all frequency ranges. Therefore, it can be seen that the smaller the dispersion roughness and the unevenness width of the side of the through hole, the smaller the loss in the through electrode formed in the through hole, and the better the transmission characteristics.
  • the transmission characteristic S21 was also measured when the thickness of the glass substrate 10 was changed.
  • Table 4 the thickness of the glass substrate 10 was set to 100 ⁇ m, 150 ⁇ m, and 200 ⁇ m, and through holes and through electrodes were created under conditions based on each example and each comparative example, and the transmission characteristics were measured.
  • the examples in the first embodiment show better transmission characteristic S21 values than the comparative examples.
  • the transmission characteristics shown in Table 4 are those of a single through electrode, and in a multilayer wiring board that requires multiple through electrodes, improving the transmission characteristics of a single through electrode leads to a significant performance improvement.
  • Fig. 15A is a diagram for explaining the side of the through hole in each example and comparative example of the first embodiment.
  • Fig. 15A is a diagram showing an SEM image of a cross section of the through hole in each example and comparative example of the first embodiment.
  • the SEM image was taken of the cut surface of the through hole in the thickness direction of the glass substrate.
  • the SEM image shown in Fig. 15A has a magnification of 1000 times (one division of the scale is 5 ⁇ m).
  • the areas that have high contrast and appear white are areas where the angle of the inclined surface of the sample changes and become the ridges of the inclined surface. Therefore, the areas that appear as white lines indicate the peaks or bottoms of the roughness of the sample surface, and the roughness of the side surface of the through hole, which affects the transmission characteristics of the through electrode, can be grasped based on the presence and degree of arrangement of the ridges formed on the side surface of these through holes.
  • FIG. 15A In each example of the first embodiment shown in Figure 15A, multiple white ridge lines extending in a direction parallel or approximately parallel to the first surface 101 of the glass substrate 10 appear and can be seen, forming a band-like striped pattern.
  • Fig. 15B is a diagram for explaining the ridge lines of the through hole of each example in the first embodiment.
  • Fig. 15B(a) is an enlarged view of Example 3 of Fig. 15A.
  • Fig. 15B(b) is a diagram showing the ridge lines of the side and cross section of the through hole observed in the SEM image by solid lines.
  • Fig. 15B(a) is an enlarged view of Example 3 of Fig. 15A.
  • Fig. 15B(b) is a diagram showing the ridge lines of the side and cross section of the through hole observed in the SEM image by solid lines.
  • Fig. 15B(a) is an enlarged view of Example 3 of Fig. 15A.
  • Fig. 15B(b) is a
  • the widest spacing between the substantially parallel ridgelines is between ridgeline Rl1 and ridgeline Rl2.
  • the spacing between the ridgelines on the side surface in the direction perpendicular to the first surface 101 is equal to or less than Rs.
  • the spacing between the ridgelines is 15.5 ⁇ m or less.
  • the distance between the ridgelines in the direction perpendicular to the first surface 101 is in the range of 2 ⁇ m to 3 ⁇ m in Example 1.
  • the distance between the ridgelines in the direction perpendicular to the first surface 101 of the glass substrate 10 is in the range of 5 ⁇ m to 6 ⁇ m.
  • the frequency of ridgelines that extend in a direction perpendicular to the first surface 101 and ridgelines that extend in a direction between the direction parallel to the first surface 101 and the direction perpendicular to the first surface 101 increases.
  • the average dispersion roughness is 500 nm and the unevenness width is 980 nm
  • a white line that extends in a direction between the direction parallel to the first surface 101 and the direction perpendicular to the first surface 101 becomes visible.
  • FIG. 16 is a diagram showing an example of the configuration of the multilayer wiring board according to the first embodiment.
  • FIG. 17 is a diagram showing another example of the configuration of the multilayer wiring board according to the first embodiment.
  • the multilayer wiring board 1 includes a glass substrate 10, a first wiring layer 21, and a second wiring layer 22.
  • the first wiring layer 21 is disposed on the first surface 101 side of the glass substrate 10, and the second wiring layer 22 is disposed on the second surface 102 side of the glass substrate 10.
  • the glass substrate 10 includes a through hole 12 penetrating from the first surface 101 side to the second surface 102 side.
  • the through electrode 11 is formed by a conductor formed along the side surface of the through hole 12.
  • the through electrode 11 electrically connects a part of the first wiring layer 21 and a part of the second wiring layer 22.
  • the first wiring layer 21 and the second wiring layer 22 include an insulating resin layer 25.
  • the first wiring layer 21 and the second wiring layer 22 may have a structure in which a plurality of layers are stacked, and the number of layers may be set as necessary.
  • the through electrode 11 is an electrode for establishing an electrical connection between the first wiring layer 21 and the second wiring layer 22.
  • the conductive electrode 31 is an electrode for ensuring electrical continuity in the thickness direction of the multilayer wiring board 1.
  • the semiconductor element bonding pad 50 is a member for connecting a semiconductor circuit mounted on the multilayer wiring board 1.
  • the board bonding pad 54 is a member for bonding the multilayer wiring board 1 to another board or another semiconductor element.
  • a conductor may be placed only on the side of the through hole 12 as shown in FIG. 16, or a conductor may be embedded in the through hole 12 as shown in FIG. 17.
  • the thickness of the multilayer wiring board 1 is, for example, in the range of 100 ⁇ m or more and 400 ⁇ m or less.
  • a method for manufacturing the multilayer wiring board 1 in the first embodiment will be described with reference to Figures 18 to 27. First, the process of forming the through holes 12 in the glass substrate 10 will be described.
  • First support bonding step 18 is a diagram showing a process of bonding the glass substrate 10 to a first support 62.
  • the thickness of the glass substrate 10 can be appropriately set depending on the application, taking into consideration the thickness after etching.
  • the thickness of the glass substrate 10 can be appropriately set depending on the application, taking into consideration the thickness of the glass substrate 10 after the etching step for forming the through holes.
  • alkali-free glass having a SiO2 ratio in the range of 55% by mass to 81% by mass can be used as the glass substrate 10. If the SiO2 ratio of the glass substrate 10 is greater than 81% by mass, the etching speed decreases, the flatness of the angle of the side surface of the through hole 12 decreases, and poor adhesion may occur when forming the through electrode 11 described later. If the SiO2 ratio is less than 55% by mass, the glass is more likely to contain alkali metals, which affects the reliability of the multilayer wiring substrate after mounting the electronic device.
  • the glass substrate 10 and the first support 62 are bonded together at the first adhesive layer 61, forming a laminated structure 63 including the glass substrate 10, the first adhesive layer 61, and the first support 62.
  • the glass substrate 10 and the first support 62 are temporarily fixed by a first adhesive layer 61 .
  • a laminator, a vacuum pressure press, a reduced pressure bonding machine, or the like can be used.
  • the first support 62 is desirably made of, for example, the same material as the glass substrate 10.
  • the first support 62 is desirably made of alkali-free glass.
  • the thickness of the first support 62 can be appropriately set according to the thickness of the glass substrate 10. However, it is desirably a thickness that allows transport during the manufacturing process, and the thickness of the support is, for example, in the range of 300 ⁇ m to 1,500 ⁇ m.
  • [Laser modification process] 19 is a diagram showing a process of forming a laser modified portion.
  • a laser modified portion 65 is formed on the glass substrate 10 by irradiating a laser on a portion of the glass substrate 10 where a through hole is to be formed.
  • the laser modified portion 65 is formed on the glass substrate 10 in a shape of ⁇ 3 ⁇ m or less, and is formed continuously in the thickness direction of the glass substrate 10. At this time, it is desirable that no minute cracks (hereinafter, also referred to as "microcracks”) of 5 ⁇ m or more are generated around the laser modified portion 65 (hereinafter, also referred to as "laser irradiated peripheral portion").
  • the dispersion roughness of the side of the through hole 12 after etching will be 1000 nm or more, and the unevenness width will also be 1500 nm or more. As a result, it becomes difficult to obtain a through hole 12 with a smooth side surface.
  • ridge lines extending in a direction parallel to the first surface 101 of the glass substrate 10 in addition to the ridge lines extending in a direction parallel to the first surface 101 of the glass substrate 10, ridge lines extending in a direction perpendicular to the first surface 101 and ridge lines extending in a direction between the direction parallel to the first surface 101 and the direction perpendicular to the first surface 101 can be seen in the SEM image.
  • the laser modified portion 65 For processing the laser modified portion 65, it is preferable to use, for example, a femtosecond laser or a picosecond laser, and to use a laser oscillation wavelength of one of 1064 nm, 532 nm, or 355 nm. If the laser pulse width is 25 picoseconds or more, microcracks of 5 ⁇ m or more tend to occur around the laser modified portion 65, so it is preferable that the laser pulse width is 25 picoseconds or less. In addition, since microcracks tend to occur when processing is performed by multiple pulse irradiation, it is preferable to form the laser modified portion 65 with one pulse.
  • the laser oscillation wavelength and laser output may be appropriately set according to the thickness of the glass substrate 10.
  • a laser is irradiated to the glass substrate at the portion where the through hole is to be formed, and the maximum length of the microcracks that occur around the laser irradiation is 5 ⁇ m.
  • FIG. 20 is a diagram showing a process of forming the first wiring layer 21.
  • the first wiring layer 21 made of a conductive layer and an insulating resin layer is formed on the first surface 101 on the glass substrate 10 of the laminated structure 63.
  • the through electrode connection portion 41 (or wiring between the through electrodes) is formed on the first surface 101 by a semi-additive (SAP) process.
  • SAP semi-additive
  • the hydrofluoric acid resistant metal layer on the glass substrate 10 is an alloy layer containing chromium, nickel, or both, and can be formed in the range of 10 nm to 1,000 nm by sputtering. Then, a conductive metal film is formed on the hydrofluoric acid resistant metal with a desired thickness.
  • the conductive metal film can be appropriately selected from, for example, Cu, Ni, Al, Ti, Cr, Mo, W, Ta, Au, Ir, Ru, Pd, Pt, AlSi, AlSiCu, AlCu, NiFe, ITO, IZO, AZO, ZnO, PZT, TiN, and Cu 3 N 4 .
  • a photoresist is used to form the desired pattern in order to form a wiring pattern by plating.
  • a dry film resist is used, but liquid resist can also be used.
  • a plating film is formed by electrolytic plating, the unnecessary resist is peeled off, and the seed layer is etched to form the wiring.
  • the insulating resin layer 25 is a thermosetting resin, and the material thereof is a material containing at least one of an epoxy resin, a polyimide resin, and a polyamide resin, and containing a silica SiO2 filler.
  • the material of the insulating resin layer 25 can be appropriately selected according to need. However, when a photosensitive insulating resin material is used, it becomes difficult to fill the silica SiO2 filler in order to ensure photolithography properties, so although a photosensitive insulating resin material can also be used, it is more preferable to use a thermosetting resin.
  • FIG. 21 is a diagram showing a step of adhering a second support body.
  • a second adhesive layer 71 is formed on the first wiring layer 21 of the laminated structure 63, and a second support body 70 is disposed on the second adhesive layer 71 and adhered thereto.
  • the second support 70 may be made of, for example, glass, and is preferably made of the same material as the glass substrate 10.
  • the second support 70 is preferably made of alkali-free glass.
  • the thickness of the second support 70 may be appropriately set depending on the thickness of the glass substrate 10. However, it is preferable that the thickness be such that the second support 70 can be transported, and the range of this thickness is from 300 ⁇ m to 1,500 ⁇ m.
  • [Peeling process] 22 is a diagram showing a step of peeling off the first support 62. As shown in FIG. 22, the glass substrate 10 and the first support 62 are peeled off at the first adhesive layer 61.
  • FIG. 23 is a diagram showing a process of forming the through holes 12. As shown in FIG. 23
  • the glass substrate 10 on which the laser modified portion 65 is formed is subjected to an etching process using a predetermined etching solution to form the through hole 12.
  • the second surface of the glass substrate 10 is also etched, and the thickness of the glass substrate 10 is reduced.
  • the etching is performed from the second surface 102 side of the glass substrate 10. Therefore, the through hole 12 in the first embodiment has a truncated cone shape whose diameter narrows from the second surface 102 side toward the first surface 101 side.
  • the etching solution contains hydrofluoric acid in the range of 0.2 mass% to 20.0 mass%, nitric acid in the range of 4.0 mass% to 25.0 mass%, and inorganic acid other than hydrofluoric acid and nitric acid in the range of 0.5 mass% to 11.0 mass%.
  • inorganic acids other than hydrofluoric acid and nitric acid include hydrochloric acid, sulfuric acid, phosphoric acid, and sulfamic acid, and at least one inorganic acid is contained depending on the type of components other than silicon contained in the glass substrate 10.
  • the etching solution contains hydrochloric acid and sulfuric acid, and the etching rate for the glass substrate 10 is appropriately adjusted to be in the range of 0.1 ⁇ m/min to 10 ⁇ m/min.
  • the etching rate for the glass substrate 10 is preferably in the range of 0.25 ⁇ m/min to 4 ⁇ m/min, and more preferably in the range of 0.25 ⁇ m/min to 0.5 ⁇ m/min.
  • the etching temperature is not particularly limited and can be appropriately adjusted, but is, for example, in the range of 10°C to 30°C.
  • the concentration of hydrofluoric acid may be lowered and etching may be performed multiple times.
  • the etching rate for the glass substrate 10 in the first etching process may be set to a range of 4 ⁇ m/min to 10 ⁇ m/min
  • the etching rate for the glass substrate 10 in the second etching process may be set to a range of 0.5 ⁇ m/min to 4 ⁇ m/min
  • the etching rate for the glass substrate 10 in the third etching process may be set to a range of 0.25 ⁇ m/min to 0.5 ⁇ m/min.
  • the number of etching processes may be set appropriately so that the roughness of the side surface of the through-hole falls within the desired range.
  • FIG. 24 is a diagram showing a process for forming the through electrodes 11.
  • a metal layer for electrolytic plating is formed on the second surface 102 of the glass substrate 10 in which the through hole 12 is formed.
  • the metal layer may be any metal that functions as a seed layer for electrolytic plating, such as metals including Cu, Ti, Cr, W, Ni, etc. At least one of the above metals is used for the metal layer, and it is preferable that a Cu layer is formed on the outermost surface of the metal layer. It is preferable that Ti, Cr, W, and Ni are used as an adhesive layer with the glass substrate 10 below the Cu layer.
  • the thickness of the metal layer is appropriately set to a range that can cover the side of the through hole 12. As a formation method, for example, a deposition formation method using sputtering can be adopted.
  • the through electrode 11 is formed by electrolytic plating using the metal layer as a seed layer.
  • a mask is formed of an insulator such as resist on the first surface 101 and the second surface 102 of the glass substrate 10 other than the through hole 12, and then electrolytic plating is performed.
  • a material used for electrolytic plating for example, Cu can be used, and as other metals, metals including Au, Ag, Pt, Ni, Sn, etc. can also be used.
  • electrolytic plating may be performed so that the through hole 12 is filled with the conductor of the above metal.
  • Fig. 25 is a diagram showing the process of forming the insulating resin layer. After performing the electrolytic plating process for forming the through electrodes, the insulator such as resist is removed, and the metal film formed as the seed layer on the second surface 102 of the glass substrate 10 is removed. After each of the multiple through electrodes 11 formed on the glass substrate 10 is electrically isolated, as shown in Fig. 25, the insulating resin layer 25 is formed on the second surface side.
  • Fig. 26 is a diagram showing the step of peeling the second support 70 and the second adhesive layer 71.
  • the second adhesive layer 71 and the second support 70 formed above the first wiring layer 21 are peeled off from the interface between the first wiring layer 21 and the second adhesive layer 71 on the first surface 101 side.
  • a glass substrate 10 is obtained in a state in which the first wiring layer 21 is formed on the first surface 101 side and the second wiring layer 22 is formed on the second surface 102 side.
  • a peeling method according to the material used can be appropriately selected from UV light irradiation, heat treatment, physical peeling, etc., depending on the material used in the second adhesive layer 71. Furthermore, if a residue of the second adhesive layer 71 remains on the bonding surface between the first wiring layer 21 and the second adhesive layer 71, plasma cleaning, ultrasonic cleaning, water washing, solvent cleaning using alcohol, etc. may be performed.
  • FIG. 27 is a diagram showing the process of forming the first wiring layer 21 and the second wiring layer 22.
  • the first wiring layer 21 is formed on the first surface 101
  • the second wiring layer 22 is formed on the second surface 102.
  • a mask having a pattern is formed by a photosensitive resist or a dry film resist, and then wiring is formed by electrolytic plating.
  • the insulating resin layer 25 is laminated.
  • a hole is formed in the insulating resin layer 25 by laser processing or the like, and then a metal film is formed by electroless plating or deposition treatment by sputtering.
  • a mask having a pattern is formed on the above-mentioned metal film using a resist, and a conductor is filled in the hole formed by electrolytic plating. Then, the mask and the excess metal film are removed. The above process is repeated multiple times according to the required number of layers to form the first wiring layer 21 and the second wiring layer 22.
  • the first wiring layer 21 and the second wiring layer 22 have the same number of layers in order to suppress warping of the multilayer wiring board 1.
  • the number of layers of the first wiring layer 21 and the second wiring layer 22 may be different.
  • the number of layers of the first wiring layer 21 and the number of layers of the second wiring layer 22 may be set appropriately depending on the application of the multilayer wiring board.
  • Fig. 28 is a diagram showing an example of the configuration of the multilayer wiring board 1 in the second embodiment.
  • Fig. 29 is a diagram showing another example of the configuration of the multilayer wiring board 1 in the second embodiment.
  • the second embodiment is different from the first embodiment in that the conductive electrode 31 is not arranged on the Z-axis direction of the through electrode 11 of the first wiring layer 21, and that since no support is used in the manufacturing process of the multilayer wiring board, etching is performed from both the first surface 101 and the second surface 102 of the glass substrate 10, and the through hole shape is X-shaped.
  • the multilayer wiring board 1 includes a glass substrate 10, a first wiring layer 21, and a second wiring layer 22.
  • the first wiring layer 21 is disposed on the first surface 101 side of the glass substrate 10, and the second wiring layer 22 is disposed on the second surface 102 side of the glass substrate 10.
  • the glass substrate 10 includes a through hole 12 penetrating from the first surface 101 side to the second surface 102 side.
  • the through electrode 11 is formed of a conductor formed along the side surface of the through hole 12.
  • the through electrode 11 electrically connects a part of the first wiring layer 21 and a part of the second wiring layer 22.
  • the first wiring layer 21 and the second wiring layer 22 include an insulating resin layer 25.
  • the first wiring layer 21 and the second wiring layer 22 may be configured by stacking a plurality of layers, and the number of layers may be set as necessary.
  • the through electrode 11 is an electrode for establishing an electrical connection between the first wiring layer 21 and the second wiring layer 22.
  • the conductive electrode 31 is an electrode for ensuring conduction in the thickness direction of the multilayer wiring board 1.
  • the semiconductor element bonding pads 50 are members for connecting a semiconductor circuit to be mounted on the multilayer wiring board 1.
  • the board bonding pads 54 are members for bonding the multilayer wiring board 1 to another board or another semiconductor element.
  • a conductor may be placed only on the side of the through hole 12 as shown in FIG. 28, or a conductor may be embedded in the through hole 12 as shown in FIG. 29.
  • the thickness of the multilayer wiring board 1 is, for example, in the range of 100 ⁇ m to 400 ⁇ m.
  • [Glass substrate] 30 is a diagram showing a process for preparing the glass substrate 10.
  • the thickness of the glass substrate 10 can be appropriately set depending on the application, taking into consideration the thickness of the glass substrate 10 after the etching process for forming the through holes.
  • alkali-free glass having a SiO2 ratio in the range of 55 mass% to 81 mass% can be used as the glass substrate 10. If the SiO2 ratio of the glass substrate 10 is greater than 81 mass%, the etching processing speed decreases, the flatness of the angle of the side surface of the through hole 12 decreases, and a poor adhesion may occur when forming the through electrode 11 described later. If the SiO2 ratio is less than 55 mass%, the glass is more likely to contain alkali metals, which affects the reliability of the multilayer wiring substrate after mounting the electronic device.
  • [Laser modification process] 31 is a diagram showing a process of forming a laser modified portion.
  • a laser modified portion 65 is formed on the glass substrate 10 by irradiating a laser on a portion of the glass substrate 10 where a through hole is to be formed.
  • the laser modified portion 65 is formed on the glass substrate 10 in a shape of ⁇ 3 ⁇ m or less, and is formed continuously in the thickness direction of the glass substrate 10.
  • the periphery of the laser modified portion 65 hereinafter also referred to as the "laser irradiated periphery”
  • the dispersion roughness of the side of the through hole 12 after etching will be 1000 nm or more, and the unevenness width will also be 1500 nm or more. As a result, it becomes difficult to obtain a through hole 12 with a smooth side.
  • ridge lines extending in a direction parallel to the first surface 101 of the glass substrate 10 in addition to the ridge lines extending in a direction parallel to the first surface 101 of the glass substrate 10, ridge lines extending in a direction perpendicular to the first surface 101 and ridge lines extending in a direction between the direction parallel to the first surface 101 and the direction perpendicular to the first surface 101 can be seen in the SEM image.
  • the laser modified portion 65 For processing the laser modified portion 65, it is preferable to use, for example, a femtosecond laser or a picosecond laser, and to use a laser oscillation wavelength of one of 1064 nm, 532 nm, or 355 nm. If the laser pulse width is 25 picoseconds or more, microcracks of 5 ⁇ m or more tend to occur around the laser modified portion 65, so it is preferable that the laser pulse width is 25 picoseconds or less. In addition, since microcracks tend to occur when processing is performed by multiple pulse irradiation, it is preferable to form the laser modified portion 65 with one pulse.
  • the laser oscillation wavelength and laser output may be appropriately set according to the thickness of the glass substrate 10.
  • a laser is irradiated to the glass substrate at the portion where the through hole is to be formed, and the maximum length of the microcracks that occur around the laser irradiation is 5 ⁇ m.
  • [Etching process] 32 is a diagram showing a process of forming a through hole.
  • the etching process (second process) is a process of etching the glass substrate irradiated with a laser to form a through hole.
  • the glass substrate 10 on which the laser modified portion 65 is formed is subjected to an etching process with a predetermined etching solution to form a through hole 12.
  • the first and second surfaces of the glass substrate 10 are also etched, and the thickness of the glass substrate 10 is reduced.
  • the through hole 12 of the second embodiment is processed into a shape that is almost symmetrical up and down.
  • the etching solution contains hydrofluoric acid in the range of 0.2 mass% to 20.0 mass%, nitric acid in the range of 4.0 mass% to 25.0 mass%, and inorganic acid other than hydrofluoric acid and nitric acid in the range of 0.5 mass% to 11.0 mass%.
  • inorganic acids other than hydrofluoric acid and nitric acid include hydrochloric acid, sulfuric acid, phosphoric acid, and sulfamic acid, and at least one inorganic acid is contained depending on the type of components other than silicon contained in the glass substrate 10.
  • the etching solution contains hydrochloric acid and sulfuric acid, and the etching rate for the glass substrate 10 is appropriately adjusted to be in the range of 0.1 ⁇ m/min to 10 ⁇ m/min.
  • the etching rate for the glass substrate 10 is preferably in the range of 0.25 ⁇ m/min to 4 ⁇ m/min, and more preferably in the range of 0.25 ⁇ m/min to 0.5 ⁇ m/min.
  • the etching temperature is not particularly limited and can be appropriately adjusted, but is, for example, in the range of 10°C to 30°C.
  • the concentration of hydrofluoric acid may be lowered and etching may be performed multiple times.
  • the etching rate for the glass substrate 10 in the first etching process may be set to a range of 4 ⁇ m/min to 10 ⁇ m/min
  • the etching rate for the glass substrate 10 in the second etching process may be set to a range of 0.5 ⁇ m/min to 4 ⁇ m/min
  • the etching rate for the glass substrate 10 in the third etching process may be set to a range of 0.25 ⁇ m/min to 0.5 ⁇ m/min.
  • the number of etching processes may be set appropriately so that the roughness of the side surface of the through-hole falls within the desired range.
  • [Formation of through electrodes] 33 is a diagram showing a process of forming through electrodes 11 in the through holes 12. As shown in FIG.
  • a metal layer for electrolytic plating is formed on the first surface 101 and the second surface 102 of the glass substrate 10 in which the through hole 12 is formed.
  • the metal layer may be any metal that functions as a seed layer for the electrolytic plating process, such as metals including Cu, Ti, Cr, W, Ni, etc. At least one of the above metals is used for the metal layer, and it is preferable that a Cu layer is formed on the outermost surface of the metal layer. It is preferable that Ti, Cr, W, and Ni are used as an adhesive layer with the glass substrate 10 below the Cu layer.
  • the thickness of the metal layer is appropriately set to a range that can cover the side of the through hole 12. As a formation method, for example, a deposition formation method using sputtering can be adopted.
  • the through electrode 11 is formed by electrolytic plating using the metal layer as a seed layer.
  • a mask is formed of an insulator such as resist on the first surface 101 and the second surface 102 of the glass substrate 10 other than the through hole 12, and then electrolytic plating is performed.
  • a material used for electrolytic plating for example, Cu can be used, and as other metals, metals including Au, Ag, Pt, Ni, Sn, etc. can also be used.
  • electrolytic plating may be performed so that the through hole 12 is filled with the conductor of the above metal.
  • the resist and other insulators are removed, and the metal film formed on the first surface 101 and the second surface 102 of the glass substrate 10 is removed, making each of the multiple through electrodes 11 formed on the glass substrate 10 electrically independent.
  • FIG. 34 is a diagram showing the process of forming the first wiring layer 21 and the second wiring layer 22.
  • the first wiring layer 21 is formed on the first surface 101
  • the second wiring layer 22 is formed on the second surface 102.
  • a mask having a pattern is formed by a photosensitive resist or a dry film resist, and then wiring is formed by electrolytic plating.
  • the insulating resin layer 25 is laminated.
  • a hole is formed in the insulating resin layer 25 by laser processing or the like, and then a metal film is formed by electroless plating or deposition treatment by sputtering.
  • a mask having a pattern is formed on the above-mentioned metal film using a resist, and a conductor is filled in the hole formed by electrolytic plating. Then, the mask and the excess metal film are removed. The above process is repeated multiple times according to the required number of layers to form the first wiring layer 21 and the second wiring layer 22.
  • the first wiring layer 21 and the second wiring layer 22 have the same number of layers in order to suppress warping of the multilayer wiring board 1.
  • the number of layers of the first wiring layer 21 and the second wiring layer 22 may be different.
  • the number of layers of the first wiring layer 21 and the number of layers of the second wiring layer 22 may be set appropriately depending on the application of the multilayer wiring board.
  • the insulating resin layer 25 is made of a thermosetting resin.
  • the material is, for example, a material containing at least one of epoxy resin, polyimide resin, and polyamide resin, and containing silica SiO2 filler, and is a liquid or film-like material.
  • a spin coating method is used, and in the case of film-like resin, a vacuum laminator is used, and in either case, heating and pressurization are performed under vacuum to form the insulating resin layer 25.
  • the material of the insulating resin layer 25 can be appropriately selected according to the needs.
  • the shape of the through hole 12 in the second embodiment will be described with reference to FIG. 2.
  • the glass substrate 10 on which the laser modified portion 65 is formed is etched from the first surface 101 and the second surface 102. Therefore, the formed through hole 12 has a minimum point at a position approximately halfway between the first surface 101 and the second surface 102 where the diameter is the smallest, and has a vertically symmetrical structure.
  • the inclination angle of the side surface of the through hole 12 varies depending on the laser processing conditions and etching conditions for the glass substrate 10.
  • the laser processing is performed under the irradiation conditions of the pulse width and the number of shots shown in Table 5, and the through hole 12 is formed by etching.
  • the pulse width is 5 ps and the number of shots is 1
  • the pulse width is 15 ps and the number of shots is 1
  • the pulse width is 25 ps and the number of shots is 1.
  • the comparative examples are through holes produced by the same manufacturing method as that shown in the second embodiment.
  • the pulse width is 30 ps and the number of shots is 1 in the comparative example 1
  • the pulse width is 30 ns and the number of shots is 100 in the comparative example 2
  • the pulse width is 50 ⁇ s and the number of shots is 10 in the comparative example 3.
  • the opening diameter on the first surface 101 side of the glass substrate 10 was 80 ⁇ m on average, and 3 ⁇ was 4.5 ⁇ m or less.
  • the difference between the maximum opening diameter ⁇ Max and the minimum opening diameter ⁇ Min was 5 ⁇ m or less.
  • FIG. 35 is a diagram showing the measurement results of the inclination angle of the through hole in Example 1 of the second embodiment.
  • FIG. 36 is a diagram showing the measurement results of the inclination angle of the through hole in Example 2 of the second embodiment.
  • FIG. 37 is a diagram showing the measurement results of the inclination angle of the through hole in Example 3 of the second embodiment.
  • FIG. 38 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 1 in the second embodiment.
  • FIG. 39 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 1 in the second embodiment.
  • FIG. 35 is a diagram showing the measurement results of the inclination angle of the through hole in Example 1 of the second embodiment.
  • FIG. 36 is a diagram showing the measurement results of the inclination angle of the through hole in Example 2 of the second embodiment.
  • FIG. 37 is a diagram showing the measurement results of the inclination angle of the through hole in Example 3 of the second embodiment.
  • FIG. 38
  • FIG. 40 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 2 in the second embodiment.
  • FIG. 41 is a diagram showing the measurement results of the inclination angle of the through hole in Comparative Example 2 in the second embodiment.
  • FIG. 42 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 3 in the second embodiment.
  • FIG. 43 is a diagram showing the measurement results of the inclination angle of the through hole in Comparative Example 3 in the second embodiment.
  • Table 6 shows the results of measuring the inclination angle of the side of the through hole 12 in each example and each comparative example of the second embodiment.
  • the side angle of the through hole 12 is almost constant and symmetrical above and below, starting from a point 50% of the distance from the first surface 101. It can be seen that in each comparative example, the inclination angle of the side of the through hole 12 varies from 5% to 95%.
  • Table 7 summarizes in tabular form the results of measuring the inclination angle of the side surface of through hole 12 in each example and each comparative example of the second embodiment.
  • the dispersion roughness is 1,000 nm or less and the unevenness width is 1,500 nm or less.
  • the dispersion roughness is 1,500 nm or more and the unevenness width is 1,500 nm or more, and it is confirmed that there is a difference in the roughness of the through hole side surface.
  • FIG. 44 is a diagram showing the transmission characteristics of the through electrodes of Example 1 and Comparative Example 1 in the second embodiment.
  • the transmission characteristics are shown as the results of measuring the transmission loss S21. Since Examples 1 to 3 showed the same tendency in the transmission characteristics, Example 1 is shown as a representative. Furthermore, since Comparative Examples 1 to 3 showed almost the same tendency in the transmission characteristics, Comparative Example 1 is shown as a representative.
  • the formation conditions of the seed layer for forming the electrode and the plating process were the same for both the examples and the comparative examples. As shown in FIG.
  • the transmission loss of the examples is smaller than the transmission loss of the comparative examples in any frequency range. Therefore, it can be seen that the smaller the values of the dispersion roughness and the unevenness width are for the side surface of the through hole, the smaller the loss in the through electrode formed in the through hole, and the better the transmission characteristics are.
  • the transmission characteristic S21 was also measured for each example and each comparative example when the thickness of the glass substrate 10 was changed.
  • the results are shown in Table 8.
  • the thickness of the glass substrate 10 was set to 250 ⁇ m, 300 ⁇ m, 350 ⁇ m, and 400 ⁇ m, and through holes and through electrodes were created under conditions based on each example and each comparative example, and the transmission characteristic was measured.
  • the transmission characteristic S21 of each example in the second embodiment is better than that of each comparative example.
  • the transmission characteristics shown in Table 8 are those of a single through electrode, and in a multilayer wiring board that requires multiple through electrodes, improving the transmission characteristics of a single through electrode leads to a significant improvement in performance.
  • Example 1 is the most preferable, followed by Example 2 and Example 3.
  • FIG. 45 is a diagram showing a case where a multilayer wiring board 1 is used as an interposer board for a semiconductor element 100 and a BGA (Ball Grid Array) board 90.
  • FIG. 46 is a diagram showing a cross section in the case of FIG. 45.
  • FIG. 47 is a diagram showing a case where a multilayer wiring board 1 and a semiconductor element 100 are used in an electronic device for communication.
  • FIG. 48 is a diagram showing a cross section in the case of FIG. 47.
  • the electronic device used has a layer thickness of 800 ⁇ m or less.
  • the electronic device is an interposer board on which a memory compatible with HBM (High Bandwidth Memory) is mounted.
  • HBM High Bandwidth Memory
  • the scope of the present invention is not limited to the exemplary embodiments shown and described, and includes various modifications.
  • the above-described embodiments have been described in detail to clearly explain the present invention, and the present invention is not necessarily limited to the embodiments having all the configurations described.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • the present invention also includes all embodiments that provide effects equivalent to those intended by the present invention.
  • the present disclosure also includes the following aspects.
  • (Aspect 1) A glass substrate having a first surface and a second surface, and at least one through hole extending from the first surface to the second surface, A glass substrate, characterized in that the dispersion roughness of a side shape of a cut surface of the through hole in a thickness direction of the glass substrate is 1,000 nm or less and the unevenness width is 1,500 nm or less.
  • the glass substrate according to aspect 1 The distributed roughness is an arithmetic average roughness calculated by extracting a roughness curve based on the profile data of the side surface, setting a set interval on the roughness curve, and calculating the arithmetic average roughness in the set interval using Equation 1, A glass substrate, wherein the unevenness width is the difference between the highest part and the lowest part in the set section.
  • a glass substrate having a first surface and a second surface, and at least one through hole extending from the first surface to the second surface, In a 1000x magnification SEM image of the cut surface of the through hole in the thickness direction of the glass substrate, a plurality of ridge lines extending in a direction approximately parallel to the first surface can be seen within a side wall surface of the through hole, and the spacing between the ridge lines in a direction perpendicular to the first surface is 15.5 ⁇ m or less.
  • a multilayer wiring substrate comprising the glass substrate according to any one of aspects 1 to 4, The thickness of the electronic device mounted on the multilayer wiring board is 800 ⁇ m or less; The thickness of the multilayer wiring board is 100 ⁇ m or more and 400 ⁇ m or less.
  • a method for producing a glass substrate according to aspect 6, comprising the steps of: A method for manufacturing a glass substrate, wherein in the first step, the laser irradiated has a laser oscillation wavelength of any one of 1064 nm, 532 nm, and 355 nm and a pulse width of 25 picoseconds or less.
  • a method for producing a glass substrate according to aspect 6 or 7, comprising the steps of: The method for manufacturing a glass substrate, wherein in the first step, the maximum length of microcracks generated in the peripheral portion of the laser irradiation is 5 ⁇ m.
  • the present invention relates to a glass substrate, a multilayer wiring substrate, and a method for manufacturing a glass substrate.
  • through electrodes are formed in the circuit board.
  • the through electrodes are formed by forming through holes in a substrate made of an insulator and placing a conductor in the through hole. As circuit boards become more highly integrated, the through holes also need to be made finer.
  • Patent Document 1 discloses a technique for irradiating a plate-shaped glass with an excimer laser beam to provide a glass substrate having a plurality of through holes.
  • Patent Document 2 discloses a method for producing a high-density array of holes in glass, including a step of irradiating the front surface of a glass product with a UV laser beam.
  • Patent Document 3 discloses a shape of a through hole that satisfies the condition that the total value of the inclination angle of the inner side surface of the through hole with respect to the central axis of the through hole (the angle at which the first surface side spreads is defined as a positive inclination angle) at positions at distances of 6.25%, 18.75%, 31.25%, 43.75%, 56.25%, 68.75%, 81.25%, and 93.75% from the first surface in the section from the first surface to the second surface is 8.0° or more.
  • Patent Document 4 discloses a through electrode substrate comprising a substrate 12 including a first surface 13 and a second surface 14 located opposite the first surface and having a through hole 20 formed therein, and a through electrode 22 located in the through hole of the substrate.
  • Patent Document 1 International Publication No. 2010/087483
  • Patent Document 2 JP-T-2014-501686
  • Patent Document 3 Japanese Patent No. 6809511
  • Patent Document 4 Japanese Patent No. 6965589 A
  • Patent No. 6965589 A Japanese Patent No. 6965589 A
  • Patent Documents 1 to 3 do not consider the effect of the side roughness of the through hole on the transmission characteristics of the through electrode. Therefore, the side surfaces described in Patent Documents 1 to 3 have insufficient flatness in terms of transmission characteristics, and there is also an issue with the uniformity of the inclination angle of the side surface of the through hole. ⁇ 0006>
  • Patent Document 4 it is necessary to form a metal layer by sputtering, and then perform electroless plating to form a metal layer for electrolytic plating on the side of the through hole.
  • the applicable metals are limited in electroless plating, and Ni is selected, for example.
  • the wiring layer is affected in the removal process after forming the wiring in the through hole, the wiring is roughened, and undercut occurs at the bottom of the wiring, so the transmission characteristics of the through electrode are an issue.
  • a glass substrate having a through hole in which a through electrode can be easily formed is required.
  • an object of the present invention is to provide a glass substrate on which a through electrode having good transmission characteristics can be formed, and a multilayer wiring board including such a glass substrate.
  • one representative glass substrate of the present invention has a first surface and a second surface, and is provided with at least one through hole penetrating from the first surface to the second surface, the side surface of the through hole has an inclination angle in the range of 7° or more and 15° or less at a position in a range of 5% to 95% from the first surface, and when the side surfaces of the through hole are the left side and the right side in a cross-sectional view, the difference in the inclination angle of the left side and the inclination angle of the right side is 1.0° or less.
  • the scope of the present invention is not limited to the exemplary embodiments and examples shown and described, and includes various modifications.
  • the embodiments and examples in the present disclosure have been described in detail to clearly explain the present invention, and are not necessarily limited to those including all of the configurations described.
  • it is possible to replace a part of the configuration of one embodiment or example with the configuration of another embodiment or example and it is also possible to add the configuration of another embodiment or example to the configuration of one embodiment or example.
  • the present invention also includes all embodiments that provide effects equivalent to those intended by the present invention.
  • the position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. Therefore, the present invention is not necessarily limited to the position, size, shape, range, etc. disclosed in the drawings.
  • surface may refer not only to the surface of a plate-like member, but also to the interface of a layer contained in the plate-like member that is approximately parallel to the surface of the plate-like member. Additionally, “upper surface” and “lower surface” refer to the surface shown at the top or bottom of a drawing when a plate-like member or a layer contained in the plate-like member is illustrated. Additionally, the “upper surface” and “lower surface” may also be referred to as the “first surface” and the "second surface”.
  • side surface refers to a surface of a plate-like member or a layer included in a plate-like member, or a portion of the thickness of a layer. Furthermore, a part of a surface and a side surface may be collectively referred to as an "end portion.” Furthermore, the “side surface of a through hole” refers to the interface on the object that forms the through hole when the through hole is provided in the object. In addition, “upper” refers to the vertically upward direction when a plate-like member or layer is placed horizontally.
  • the distance in the Z-axis direction is referred to as the "height,” and the distance on the XY plane defined by the X-axis and Y-axis directions is referred to as the "width.”
  • the term "through electrode provided in a glass substrate” refers to a conductive path provided to electrically connect the first and second surfaces of a glass substrate when the glass substrate is used as a part of a multilayer wiring substrate, and does not necessarily have to completely penetrate the glass substrate with a single conductive material. If the conductive path from the first surface and the conductive path from the second surface are connected, they are included in the through electrode.
  • the form of the through electrode may be a filled type in which a through hole (including both bottomed and completely through holes) is filled with a conductive material, or a conformal type in which only the sidewall portion of the through hole is covered with a conductive material.
  • planar shape and plan view refer to the shape of a surface or layer when viewed from above.
  • cross-sectional shape and cross-sectional view refer to the shape of a plate-like member or layer when cut in a specific direction and viewed from the horizontal direction.
  • central portion refers to the central portion other than the peripheral portion of the surface or layer, and the term “toward the center” refers to the direction from the peripheral portion of the surface or layer toward the center of the planar shape of the surface or layer.
  • the results can be significantly different when observing the inclination angle of the sidewall at a certain position on the sidewall using a scale that overlooks the entire through hole in the glass substrate, compared to when the sidewall near the measurement point is enlarged so that the minute unevenness of the sidewall at that position becomes clear, and a precise determination is made as to where on that unevenness the point at which the angle is specified corresponds, and the inclination angle of the tangent at that position is used to determine the desired angle.
  • the inclination angle of the glass substrate through hole in the present disclosure corresponds to the former, and means an inclination angle that reflects the tendency when the entire through hole is viewed from above, without being overly influenced by the unevenness of the side surface.
  • One example of a measurement method is to set a tangent at a measurement point in a cross-sectional photograph taken at a scale and resolution that allows a bird's-eye view of the entire through hole and where minute irregularities on the side surface cannot be seen with the naked eye, so as to reflect as closely as possible the tendency of inclination at the measurement point and its vicinity.
  • FIG. 49 illustrates the shape of the through hole 12 obtained in the first embodiment (Appendix 1) of the present invention.
  • FIG. 49 is a diagram showing a method for measuring the cross section and inclination angle of the truncated cone-shaped through hole 12.
  • the cross section of the through hole 12 shown in FIG. 49 is obtained by fracturing (cutting) the through hole 12 from the first surface 101 side in the thickness direction of the glass substrate to produce a cross section (cut surface), and analyzing the SEM image observed by a SEM (Scanning Electron Microscope) using image analysis software.
  • the area shown by the pattern pattern indicates the glass substrate 10.
  • the through hole 12 has a minimum value on the first surface side 101 where the diameter of the through hole becomes minimum.
  • the scales 5%, 10%, ... 95% shown in FIG. 49 indicate the length from the first surface 101 to the second surface 102 of the glass substrate 10 as a percentage.
  • a center line TC is drawn perpendicular to the first surface 101 at the center of the opening on the first surface 101 of the glass substrate 10.
  • the center line TC is translated toward either one of the two sides of the through hole 12 as shown by the arrow, and the translated center line TC is brought into contact with the point where the diameter of the through hole 12 is at its minimum value, and the point of contact is defined as a reference point RP.
  • a tangent line ss is drawn at the cross-sectional position at each of the heights of the scale positions from 5% to 100% from the reference point RP, and the inclination angle of the tangent line ss is measured, and the inclination angle is defined as the inclination angle at each of the cross-sectional positions from 5% to 95%.
  • the inclination angle is defined as positive in the direction in which the diameter of the through hole 12 expands downward.
  • the method for measuring the inclination angle includes steps (1) to (3): (1) creating a center line for the through hole 12, (2) moving the center line horizontally to a position where the opening is at its minimum to create a reference point, and (3) drawing a tangent line from the reference point to a specific position on the through hole to measure the angle.
  • steps (1) to (3) (1) creating a center line for the through hole 12, (2) moving the center line horizontally to a position where the opening is at its minimum to create a reference point, and (3) drawing a tangent line from the reference point to a specific position on the through hole to measure the angle.
  • a scribe and a precision breaker are used to cut (cut) the through hole 12 at the center from the first surface 101 side to expose the cross section of the through hole 12.
  • a cutting method for example, three-point bending can be applied. After that, SEM observation is performed on the exposed cross section, and the angle of the through hole 12 is measured by image analysis of the SEM image of the cross section.
  • the measurement range is usually the range from the first surface 101 to the second surface 102 of the through hole. However, if the through hole has unevenness, two or more measurement ranges are set excluding the unevenness, and the results of the measurement ranges are averaged to determine the side roughness.
  • FIG. 50 is a diagram showing a method for measuring the side roughness of a through hole.
  • FIG. 50(a) shows an SEM image of the cross section of the through hole 12.
  • FIG. 50(b) shows a diagram in which the contour of the side of the through hole 12 is extracted from an SEM image obtained by observing the cross section of the through hole 12. Measurements of the average dispersion roughness and the unevenness width are carried out from the extracted contour data.
  • 50(c) is a diagram showing a formula for calculating the average dispersion roughness and the unevenness width.
  • a roughness curve f(x) showing the roughness of the contour is measured in a set region L set based on the first surface 101.
  • the average dispersion roughness (hereinafter, also simply referred to as "dispersion roughness") Ra is obtained by integrating the absolute value of the roughness curve f(x) squared over the set region L and then dividing it by the length of the set region L, as shown in formula (1).
  • the roughness width (hereinafter also referred to as "unevenness width”) a is the difference between the peak portion showing the maximum roughness value and the bottom portion showing the minimum roughness value in the roughness curve f(x).
  • the average roughness of the through hole is calculated by averaging the roughness values calculated from them.
  • the transmission characteristics are measured using the S parameter (S21), which indicates the frequency dependency of the degree of the propagating wave relative to the input wave.
  • S21 is expressed as the logarithm of the power ratio (transmitted wave power/input wave power), and the smaller the absolute value, the smaller the transmission loss.
  • a network analyzer was used to measure the S parameter (S21).
  • a measurement sample was prepared by surrounding the periphery of the through electrode 11 formed on the glass substrate with a conductor and grounding the conductor, and S21 between the first surface 101 side and the second surface 102 side of the through electrode 11 was measured.
  • Example 1 of the first embodiment (Appendix 1)
  • the pulse width is 5 ps and the number of shots is 1
  • the pulse width is 15 ps and the number of shots is 1
  • the pulse width is 25 ps and the number of shots is 1.
  • the comparative examples are through holes created by modifying the manufacturing method and laser processing method shown in the first embodiment (Appendix 1).
  • the pulse width is 30 ps and the number of shots is 1
  • the pulse width is 30 ns and the number of shots is 50
  • the pulse width is 50 ⁇ s and the number of shots is 5.
  • the opening diameter on the second surface 102 side of the glass substrate 10 was 80 ⁇ m on average, and in this case, 3 ⁇ , which is the value obtained by adding three times the standard deviation to the average value of the measured values, was 4.5 ⁇ m or less.
  • the difference between the maximum value ⁇ Max and the minimum value ⁇ Min of the opening diameter ⁇ was 10 ⁇ m or less.
  • FIG. 51 is a diagram showing the measurement results of the inclination angle of the through hole in Example 1 in the first embodiment (Supplementary Note 1).
  • FIG. 52 is a diagram showing the measurement results of the inclination angle of the through hole in Example 2 in the first embodiment (Supplementary Note 1).
  • FIG. 53 is a diagram showing the measurement results of the inclination angle of the through hole in Example 3 in the first embodiment (Supplementary Note 1).
  • FIG. 51 is a diagram showing the measurement results of the inclination angle of the through hole in Example 1 in the first embodiment (Supplementary Note 1).
  • FIG. 52 is a diagram showing the measurement results of the inclination angle of the through hole in Example 2 in the first embodiment (Supplementary Note 1).
  • FIG. 53 is a diagram showing the measurement results of the inclination angle of the through hole in Example 3 in the first embodiment (Supplementary Note 1).
  • FIG. 51 is a diagram showing the measurement results of the inclination angle of the through
  • FIG. 54 is a diagram showing a cross-sectional shape of a through hole serving as Comparative Example 1 in the first embodiment (Supplementary Note 1).
  • FIG. 55 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 1 in the first embodiment (Supplementary Note 1).
  • FIG. 56 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 2 in the first embodiment (Supplementary Note 1).
  • FIG. 57 is a diagram showing the measurement results of the inclination angle of a through hole serving as Comparative Example 2 in the first embodiment (Supplementary Note 1).
  • FIG. 58 is a diagram showing a cross-sectional shape of a through hole serving as Comparative Example 3 in the first embodiment (Supplementary Note 1).
  • FIG. 59 is a diagram showing the measurement results of the inclination angle of a through hole serving as Comparative Example 3 in the first embodiment (Supplementary Note 1).
  • Table 10 is a table showing the results of measuring the inclination angle of the side of the through hole 12 in each example and each comparative example.
  • the side angle of the through hole 12 is almost constant from the 5% to 95% position.
  • the inclination angle of the side of the through hole 12 varies at each position from 5% to 95%.
  • the inclination angle of the side of the through hole is in the range of 7° to 15° in the range of 5% to 95% from the first surface.
  • the difference between the inclination angle of the left side and the inclination angle of the right side is 1.0° or less.
  • the difference between the inclination angle from the second surface (100%) to the 95% distance and the inclination angle from the 5% to the 95% distance is within ⁇ 1.0°.
  • the inclination angle from the second surface (100%) to the 95% distance is within the range of 7° to 15°
  • the inclination angle from the 5% to the 95% distance is within the range of 7° to 15°.
  • the difference between the inclination angle from the second surface (100%) to a distance of 95% and the inclination angle from a distance of 5% to 95% is +/- 1.0° or more.
  • the shape of the through hole in order to obtain good transmission characteristics, it is desirable for the shape of the through hole to have a side inclination angle in the range of 7° or more and 15° or less in a position between 5% and 95% from the first surface, and when viewed in cross section, when the side surfaces of the through hole are the left side and the right side, the difference in the inclination angle of the left side and the right side is 1.0° or less.
  • the average dispersion roughness and unevenness width of the side of the through hole 12 will be described for each example and each comparative example in the embodiment with reference to Table 11.
  • Table 11 in each example of the first embodiment (Appendix 1), the dispersion roughness is 1,000 nm or less and the unevenness width is 1,500 nm or less.
  • the dispersion roughness is 1,500 nm or more and the unevenness width is 1,500 nm or more, and it has been confirmed that there is a difference in the roughness of the side of the through hole.
  • FIG. 60A is a graph showing Table 12. According to the embodiment, regardless of the opening diameter of the second surface 102, the relationship between the opening diameter of the second surface 102 and the opening diameter of the first surface 101 is first surface side opening diameter ⁇ 1/second surface side opening diameter ⁇ 2 ⁇ 0.4.
  • Table 13 shows the first surface opening diameter and second surface opening diameter for each example and each comparative example in the first embodiment (Appendix 1).
  • Table 13 shows typical values of the opening diameter ⁇ 1 on the first surface 101 side and the opening diameter ⁇ 2 on the second surface 102 side of the through hole 12 measured for each example and each comparative example in the first embodiment (Appendix 1).
  • FIG. 60B is a schematic diagram showing the case where a through electrode 12 is formed.
  • the aperture diameter of the through hole 12 can be made smaller than ⁇ 2, as shown by the relationship ⁇ 1/ ⁇ 2 ⁇ 0.4.
  • a coil is formed using the through electrode 11, and the relationship between ⁇ 1 and ⁇ 2 makes it possible to ensure the design freedom of the coil.
  • the Q value can be reduced when a circuit including a coil is formed, making it possible to suppress transmission loss. As a result of the above, it is possible to stabilize the signal of the through electrode (reduce signal loss).
  • Figures 61A to 61C are diagrams for explaining the side of the through hole in each example and comparative example of the first embodiment (Supplementary Note 1).
  • Figures 61A to 61C are diagrams showing SEM images of the cross section of the through hole in each example and comparative example in the first embodiment (Supplementary Note 1).
  • the SEM images shown in Figures 61A to 61C were taken of the cut surface of a through hole in the thickness direction of a glass substrate, and the magnification was 1000 times (one division of the scale included in the SEM images is 5 ⁇ m).
  • the areas that have high contrast and appear white are areas where the angle of the inclined surface of the sample changes and become the ridges of the inclined surface. Therefore, the areas that appear as white lines indicate the peaks or bottoms of the roughness of the sample surface, and the roughness of the side surface of the through hole, which affects the transmission characteristics of the through electrode, can be grasped based on the presence and degree of arrangement of the ridges formed on the side surface of these through holes.
  • Fig. 61A is a diagram for explaining the ridge lines of the through holes of each example in the first embodiment (Supplementary Note 1).
  • Fig. 61B(a) is an enlarged view of Example 3 of Fig. 61A.
  • Fig. 61B(b) is a diagram showing the ridge lines of the side and cross section of the through hole observed in the SEM image by solid lines.
  • Fig. 61B(a) is an enlarged view of Example 3 of Fig. 61A.
  • Fig. 61B(b) is a diagram showing the ridge lines of the side and cross section of the through hole observed in the SEM image by solid lines.
  • the widest spacing between the substantially parallel ridgelines is between ridgeline Rl1 and ridgeline Rl2.
  • the spacing between the ridgelines on the side surface in the direction perpendicular to the first surface 101 is equal to or less than Rs.
  • the spacing between the ridgelines is 15.5 ⁇ m or less.
  • the distance between the ridgelines in the direction perpendicular to the first surface 101 is in the range of 2 ⁇ m to 3 ⁇ m in Example 1.
  • the distance between the ridgelines in the direction perpendicular to the first surface 101 of the glass substrate 10 is in the range of 5 ⁇ m to 6 ⁇ m.
  • the first embodiment changes from Example 3 to Example 1, that is, as the dispersion roughness, which is the smoothness of the side surface of the through hole, decreases, the white lines visible as ridgelines extending in a direction parallel to the first surface 101 of the glass substrate 10 on the side surface of the through hole 12 become denser, and the distance between the ridgelines becomes narrower.
  • the dispersion roughness increases (i.e., as the dispersion roughness changes from Example 1 to Example 3, and further from Comparative Example 1 to Comparative Example 3), the distance between the ridgelines increases, and the number of ridgelines extending in a direction not parallel to the first surface 101 also increases.
  • the frequency of occurrence of ridgelines extending in a direction perpendicular to the first surface 101 and ridgelines extending in a direction between the direction parallel to the first surface 101 and the direction perpendicular to the first surface 101 increases.
  • the proportion of ridgelines extending in a vertical direction and ridgelines extending in a diagonal direction decreases as the dispersion roughness decreases.
  • the average dispersion roughness is 500 nm and the unevenness width is 980 nm
  • a white line extending in a direction between a direction parallel to the first surface 101 and a direction perpendicular to the first surface 101 becomes visible.
  • FIG. 61C is a diagram showing an SEM image of a cross section when a through electrode is formed in a through hole in the first embodiment (Appendix 1).
  • the area indicated by the arrow and surrounded by a dashed line has a shape with a raised end.
  • the side of the through hole 12 and the second surface 102 of the glass substrate 10 have a shape with a raised end, and in a 1000x SEM image, the side surface and the area of the second surface can be clearly distinguished.
  • FIG. 62 is a diagram showing the transmission characteristics of the through electrodes of Example 1 in the embodiment and the transmission characteristics of the through electrodes of Comparative Example 1.
  • FIG. 62 shows the results of measuring the transmission loss S21 as the transmission characteristics in the through electrodes. Since Examples 1 to 3 showed the same tendency in the transmission characteristics, Example 1 is shown as a representative. Furthermore, since Comparative Examples 1 to 3 showed almost the same tendency in the transmission characteristics, Comparative Example 1 is shown as a representative.
  • the formation conditions of the seed layer for forming the electrode and the plating process were common to both the examples and the comparative examples. As shown in FIG.
  • the transmission loss of the examples is smaller than the transmission loss of the comparative examples in any frequency range. Therefore, it can be seen that the smaller the values of the dispersion roughness and the unevenness width are for the side surface of the through hole, the smaller the loss in the through electrode formed in the through hole, and the better the transmission characteristics are.
  • the transmission characteristic S21 was also measured when the thickness of the glass substrate 10 was changed.
  • Table 14 the thickness of the glass substrate 10 was set to 100 ⁇ m, 150 ⁇ m, and 200 ⁇ m, and through holes and through electrodes were created under conditions based on each example and each comparative example, and the transmission characteristics were measured.
  • the examples in the first embodiment show better transmission characteristic S21 values than the comparative examples.
  • the conditions for forming the through electrodes shown in each comparative example are the same as those for forming the through electrodes shown in Prior Art Document 4.
  • the through electrodes are formed using an electroless plating technique using an electrolytic plating solution containing Ni.
  • the plating thickness is the same in each example and each comparative example.
  • the transmission characteristics shown in Table 14 are those of a single through electrode, and in a multilayer wiring board that requires multiple through electrodes, improving the transmission characteristics of a single through electrode leads to a significant improvement in performance.
  • Appendix 1 it is possible to obtain a multilayer wiring board that realizes good transmission characteristics of the through electrode in the high frequency band compared to existing technologies.
  • the through electrodes shown in Examples 1 to 3 have achieved better results than the through electrodes shown in Comparative Examples 1 to 3. Comparing the Examples, it can be said that Example 1 is the most preferable, followed by Example 2 and Example 3.
  • FIG. 63 is a diagram showing an example of the configuration of the multilayer wiring board 1 according to the first embodiment (Appendix 1).
  • FIG. 64 is a diagram showing another example of the configuration of the multilayer wiring board 1 according to the first embodiment (Appendix 1).
  • the multilayer wiring board 1 includes a glass substrate 10, a first wiring layer 21, and a second wiring layer 22.
  • the first wiring layer 21 is disposed on the first surface 101 side of the glass substrate 10
  • the second wiring layer 22 is disposed on the second surface 102 side of the glass substrate 10.
  • the glass substrate 10 includes a through hole 12 penetrating from the first surface 101 side to the second surface 102 side.
  • the through electrode 11 is formed by a conductor formed along the side surface of the through hole 12.
  • the through electrode 11 electrically connects a part of the first wiring layer 21 and a part of the second wiring layer 22.
  • the first wiring layer 21 and the second wiring layer 22 include an insulating resin layer 25.
  • the first wiring layer 21 and the second wiring layer 22 may be configured by stacking a plurality of layers, and the number of layers may be set as necessary.
  • the through electrode 11 is an electrode for establishing an electrical connection between the first wiring layer 21 and the second wiring layer 22.
  • the conductive electrode 31 is an electrode for ensuring electrical continuity in the thickness direction of the multilayer wiring board 1.
  • the semiconductor element bonding pad 50 is a member for connecting a semiconductor circuit mounted on the multilayer wiring board 1.
  • the board bonding pad 54 is a member for bonding the multilayer wiring board 1 to another board or another semiconductor element.
  • a conductor may be placed only on the side of the through hole 12 as shown in Figure 63, or a conductor may be embedded in the through hole 12 as shown in Figure 64.
  • the first embodiment (Supplementary Note 1), it is possible to dispose the conductive electrode 31 above the through electrode 11 of the first wiring layer 21 in the Z-axis direction.
  • the thickness of the multilayer wiring board 1 is, for example, in the range of 100 ⁇ m to 200 ⁇ m.
  • First support bonding step 65 is a diagram showing a process of bonding the glass substrate 10 to a first support 62.
  • the thickness of the glass substrate 10 can be appropriately set depending on the application, taking into consideration the thickness after etching.
  • the glass substrate 10 and the first support 62 are bonded together at the first adhesive layer 61, forming a laminated structure 63 including the glass substrate 10, the first adhesive layer 61, and the first support 62.
  • the glass substrate 10 and the first support 62 are temporarily fixed by a first adhesive layer 61 .
  • a laminator, a vacuum pressure press, a reduced pressure bonding machine, or the like can be used.
  • the first support 62 is desirably made of, for example, the same material as the glass substrate 10.
  • the first support 62 is desirably made of alkali-free glass.
  • the thickness of the first support 62 can be appropriately set according to the thickness of the glass substrate 10. However, it is desirably a thickness that allows transport during the manufacturing process, and the thickness of the support is, for example, in the range of 300 ⁇ m to 1,500 ⁇ m.
  • alkali-free glass having a SiO 2 ratio in the range of 55% by mass to 81% by mass can be used. If the SiO 2 ratio of the glass substrate 10 is greater than 81% by mass, the etching processing speed decreases, the flatness of the angle of the side surface of the through hole 12 decreases, and poor adhesion occurs when forming the through electrode 11 described later. In addition, if the SiO 2 ratio is less than 55% by mass, there is a high possibility that alkali metals will be contained in the glass, which will affect the reliability of the multilayer wiring board after mounting the electronic device. If the SiO 2 ratio is 55% by mass to 81% by mass, the set ratio may be set appropriately.
  • [Laser modification process] 66 is a diagram showing a process of forming a laser modified portion.
  • a laser modified portion 65 is formed on the glass substrate 10 by irradiating a laser on a portion of the glass substrate 10 where a through hole is to be formed.
  • the laser modified portion 65 is processed into a shape of ⁇ 3 ⁇ m or less on the glass substrate 10, and is continuously formed in the thickness direction of the glass substrate 10. At this time, it is desirable that no minute cracks (hereinafter, also referred to as "microcracks”) of 5 ⁇ m or more are generated around the laser modified portion 65 (hereinafter, also referred to as "laser irradiated peripheral portion").
  • the dispersion roughness on the side of the through hole 12 after etching will be 1000 nm or more, and the unevenness width will also be 1500 nm or more. As a result, it becomes difficult to obtain a through hole 12 with a smooth side surface.
  • ridge lines extending in a direction parallel to the first surface 101 of the glass substrate 10 in addition to the ridge lines extending in a direction parallel to the first surface 101 of the glass substrate 10, ridge lines extending in a direction perpendicular to the first surface 101 and ridge lines extending in a direction between the direction parallel to the first surface 101 and the direction perpendicular to the first surface 101 can be seen in the SEM image.
  • the laser modified portion 65 For processing the laser modified portion 65, it is preferable to use, for example, a femtosecond laser or a picosecond laser, and to use a laser oscillation wavelength of one of 1064 nm, 532 nm, or 355 nm. If the laser pulse width is 25 picoseconds or more, microcracks of 5 ⁇ m or more tend to occur around the laser modified portion 65, so it is preferable that the laser pulse width is 25 picoseconds or less. In addition, since ⁇ -cracks tend to occur when processing is performed by multiple pulse irradiation, it is preferable to form the laser modified portion 65 with one pulse.
  • the laser oscillation wavelength and laser output may be appropriately set according to the thickness of the glass substrate 10. That is, in the laser modification process (first process), a laser is irradiated to the glass substrate at the portion where the through hole is to be formed, and the maximum length of the microcracks that occur around the laser irradiation is 5 ⁇ m.
  • FIG. 67 is a diagram showing a process of forming a first wiring layer 21.
  • a first wiring layer 21 made of a conductive layer and an insulating resin layer is formed on a first surface 101 on a glass substrate 10 of a laminated structure 63.
  • a seed layer including a hydrofluoric acid resistant metal layer is formed on the glass substrate 10, and then a through electrode connection portion 41 (or wiring between through electrodes) is formed on the first surface 101 by a semi-additive (SAP) method.
  • SAP semi-additive
  • the hydrofluoric acid resistant metal layer on the glass substrate 10 is an alloy layer containing chromium, nickel, or both, and can be formed in the range of 10 nm to 1,000 nm by sputtering. Then, a conductive metal film is formed on the hydrofluoric acid resistant metal with a desired thickness.
  • the conductive metal film can be appropriately selected from, for example, Cu, Ni, Al, Ti, Cr, Mo, W, Ta, Au, Ir, Ru, Pd, Pt, AlSi, AlSiCu, AlCu, NiFe, ITO, IZO, AZO, ZnO, PZT, TiN, and Cu 3 N 4 .
  • a photoresist is used to form the desired pattern in order to form a wiring pattern by plating.
  • a dry film resist is used, but liquid resist can also be used.
  • a plating film is formed by electrolytic plating, the unnecessary resist is peeled off, and the seed layer is etched to form the wiring.
  • the insulating resin layer 25 is a thermosetting resin, and the material thereof is a material containing at least one of an epoxy resin, a polyimide resin, and a polyamide resin, and containing a silica SiO2 filler.
  • the material of the insulating resin layer 25 can be appropriately selected according to need. However, when a photosensitive insulating resin material is used, it becomes difficult to fill the silica SiO2 filler in order to ensure photolithography properties, so although a photosensitive insulating resin material can also be used, it is more preferable to use a thermosetting resin.
  • Fig. 68 is a diagram showing a step of adhering a second support body.
  • a second adhesive layer 71 is formed on the first wiring layer 21 of the laminated structure 63, and a second support body 70 is disposed on the second adhesive layer 71 and adhered thereto.
  • the second support 70 may be made of, for example, glass, and is preferably made of the same material as the glass substrate 10.
  • the second support 70 is preferably made of alkali-free glass.
  • the thickness of the second support 70 may be appropriately set depending on the thickness of the glass substrate 60. However, it is preferable that the thickness be such that the second support 70 can be transported, and the range of this thickness is from 300 ⁇ m to 1,500 ⁇ m.
  • [Peeling process] 69 is a diagram showing a step of peeling off the first support 62. As shown in FIG. 69, the glass substrate 10 and the first support 62 are peeled off at the first adhesive layer 61.
  • FIG. 70 is a diagram showing a process of forming the through holes 12. As shown in FIG.
  • the glass substrate 10 on which the laser modified portion 65 is formed is subjected to an etching process using a predetermined etching solution to form the through hole 12. At the same time, the second surface of the glass substrate 10 is also etched, and the thickness of the glass substrate 10 is reduced.
  • the etching solution contains hydrofluoric acid in the range of 0.2 mass% to 20.0 mass%, nitric acid in the range of 4.0 mass% to 25.0 mass%, and inorganic acid other than hydrofluoric acid and nitric acid in the range of 0.5 mass% to 11.0 mass%.
  • inorganic acids other than hydrofluoric acid and nitric acid include hydrochloric acid, sulfuric acid, phosphoric acid, and sulfamic acid, and at least one inorganic acid is contained depending on the type of components other than silicon contained in the glass substrate 10.
  • the etching solution contains hydrochloric acid and sulfuric acid, and the etching rate for the glass substrate 10 is appropriately adjusted to be in the range of 0.1 ⁇ m/min to 10 ⁇ m/min.
  • the etching rate for the glass substrate 10 is preferably in the range of 0.25 ⁇ m/min to 4 ⁇ m/min, and more preferably in the range of 0.25 ⁇ m/min to 0.5 ⁇ m/min.
  • the etching temperature is not particularly limited and can be appropriately adjusted, but is, for example, in the range of 10°C to 30°C.
  • the concentration of hydrofluoric acid may be lowered and etching may be performed multiple times.
  • the etching rate for the glass substrate 10 in the first etching process may be set to a range of 4 ⁇ m/min to 10 ⁇ m/min
  • the etching rate for the glass substrate 10 in the second etching process may be set to a range of 0.5 ⁇ m/min to 4 ⁇ m/min
  • the etching rate for the glass substrate 10 in the third etching process may be set to a range of 0.25 ⁇ m/min to 0.5 ⁇ m/min.
  • the number of etching processes may be set appropriately so that the roughness of the side surface of the through-hole falls within the desired range.
  • Fig. 71 is a diagram showing a process for forming the through electrodes 11.
  • a metal layer for electrolytic plating is formed on the second surface 102 of the glass substrate 10 in which the through hole 12 is formed.
  • the metal layer may be any metal that functions as a seed layer for electrolytic plating, such as metals including Cu, Ti, Cr, W, Ni, etc. At least one of the above metals is used for the metal layer, and it is preferable that a Cu layer is formed on the outermost surface of the metal layer. It is preferable that Ti, Cr, W, and Ni are used as an adhesive layer with the glass substrate 10 below the Cu layer.
  • the thickness of the metal layer is appropriately set to a range that can cover the side of the through hole 12. As a formation method, for example, a deposition formation method using sputtering can be adopted.
  • the through electrode 11 is formed by electrolytic plating using the metal layer as a seed layer.
  • a mask is formed on the second surface 102 of the glass substrate 10 in the through hole 12 and a predetermined area around the through hole 12 using an insulator such as resist, and then electrolytic plating is performed.
  • a material used for electrolytic plating for example, Cu can be used, and other metals including Au, Ag, Pt, Ni, Sn, etc. can also be used.
  • electrolytic plating may be performed so that the through hole 12 is filled with the conductor of the above metal.
  • Fig. 72 is a diagram showing the process of forming the insulating resin layer. After the electrolytic plating process for forming the through electrodes is performed, the insulator such as resist is removed, and the metal film formed on the first surface 101 and the second surface 102 of the glass substrate 10 is removed. After the plurality of through electrodes 11 formed on the glass substrate 10 are electrically isolated from each other, the insulating resin layer 25 is formed on the second surface side as shown in Fig. 25.
  • Fig. 73 is a diagram showing a step of peeling the second support 70 and the second adhesive layer 71.
  • the second adhesive layer 71 and the second support 70 formed above the first wiring layer 21 are peeled off from the interface between the first wiring layer 21 and the second adhesive layer 71 on the first surface 101 side.
  • a glass substrate 10 is obtained in a state in which the first wiring layer 21 is formed on the first surface 101 side and the second wiring layer 22 is formed on the second surface 102 side.
  • a peeling method according to the material used can be appropriately selected from UV light irradiation, heat treatment, physical peeling, etc., depending on the material used in the second adhesive layer 71. Furthermore, if a residue of the second adhesive layer 71 remains on the bonding surface between the first wiring layer 21 and the second adhesive layer 71, plasma cleaning, ultrasonic cleaning, water washing, solvent cleaning using alcohol, etc. may be performed.
  • FIG. 74 is a diagram showing a process of forming the first wiring layer 21 and the second wiring layer 22.
  • the first wiring layer 21 is formed on the first surface 101
  • the second wiring layer 22 is formed on the second surface 102.
  • a mask having a pattern is formed using a photosensitive resist or a dry film resist, etc., and then wiring is formed by electrolytic plating.
  • the insulating resin layer 25 is laminated.
  • a hole is formed in the insulating resin layer 25 by laser processing or the like, and then a metal film is formed by electroless plating or deposition treatment by sputtering.
  • a mask having a pattern is formed on the above-mentioned metal film using a resist, and a conductor is filled in the hole formed by electrolytic plating. Then, the mask and the excess metal film are removed. The above process is repeated multiple times according to the required number of layers to form the first wiring layer 21 and the second wiring layer 22.
  • the first wiring layer 21 and the second wiring layer 22 have the same number of layers in order to suppress warping of the multilayer wiring board 1.
  • the number of layers of the first wiring layer 21 and the second wiring layer 22 may be changed.
  • the number of layers of the first wiring layer 21 and the number of layers of the second wiring layer 22 may be appropriately set according to the application of the multilayer wiring board.
  • FIG. 75 is a diagram showing a case where a multilayer wiring board 1 is used as an interposer board for a semiconductor element 100 and a BGA (Ball Grid Array) board 90.
  • FIG. 76 is a diagram showing a cross section in the case of FIG. 75.
  • FIG. 77 is a diagram showing a case where a multilayer wiring board 1 and a semiconductor element 100 are used in an electronic device for communication.
  • FIG. 78 is a diagram showing a cross section in the case of FIG. 77.
  • As the electronic device one having a layer thickness of 800 ⁇ m or less is used. Also, the above electronic device has limited application due to the influence of the transmission characteristics of the through electrode, and the use of the glass substrate of the present invention makes it possible to apply the electronic device in the high frequency band region.
  • FIG. 79 is a diagram for explaining the characteristics of the through hole and through electrode formed in the present disclosure.
  • FIG. 79 is a diagram showing, for example, an enlarged view of region Ra in FIG. 74.
  • a conductive electrode 31 can be formed directly on the through hole 12 (or the through electrode 11). This is because the through hole 12 has a so-called bottomed shape. By making it a bottomed shape, it is possible to form the conductive electrode 31 directly on the through hole 12. Therefore, the transmission distance of the electrode as a whole is shortened, and the transmission characteristics can be improved and the through hole 12 can be made finer.
  • the side surface of the through hole 12 in the present disclosure has no inflection point at which the side shape changes, and the surface is smooth. Therefore, when plating is performed on the through hole 12, a uniform metal film or the like can be formed, so that the generation of parasitic capacitance can be suppressed on the side surface of the through hole 12.
  • the shape of the through hole 12 can be a shape having an inflection point or a so-called straight shape in which the diameter hardly changes from the first surface to the second surface of the glass substrate, but from the viewpoint of transmission characteristics, the shape shown in the present disclosure that can suppress the generation of parasitic capacitance is desirable.
  • the through hole formed in the present disclosure has a truncated cone shape.
  • the through electrode 11 in the through hole 12 when performing sputtering to form a metal layer to be a seed layer, it is possible to select from a plurality of metals.
  • Ni is selected in Patent Document 4, in the present disclosure, the through electrode can be formed without necessarily using Ni, so that the through electrode can be easily formed.
  • the manufacturing method according to the embodiment of the present invention, and the examples it is possible to form the side surface of the through hole smoothly, and it is possible to improve the transmission characteristics of the through electrode compared to the existing technology. By using the present invention, it is possible to provide a multilayer wiring board having good transmission characteristics in the high frequency band.
  • a glass substrate having a first surface and a second surface, and at least one through hole extending from the first surface to the second surface, the side surface of the through hole has an inclination angle in the range of 7° to 15° at a position in a section of 5% to 95% from the first surface, A glass substrate, wherein, in a cross-sectional view, when the side surfaces of the through hole are the left side surface and the right side surface, the difference in the inclination angle of the left side surface and the inclination angle of the right side surface is 1.0° or less.
  • Aspect 2 The glass substrate according to aspect 1,
  • the side surface of the through hole is A glass substrate having an inclination angle from the second surface to a position at 95% of the distance therefrom in a range of 7° to 15°.
  • Aspect 3 A glass substrate according to aspect 1 or 2
  • a glass substrate according to any one of aspects 1 to 3 a dispersion roughness of a side shape of a cut surface of the through hole in a thickness direction of the glass substrate is 1,000 nm or less and an unevenness width is 1,500 nm or less.
  • a glass substrate according to any one of aspects 1 to 4 The distributed roughness is an arithmetic average roughness calculated by extracting a roughness curve based on the profile data of the side surface, setting a set interval on the roughness curve, and calculating the arithmetic average roughness in the set interval using Equation 1, A glass substrate, wherein the unevenness width is the difference between the highest part and the lowest part in the set section.
  • a glass substrate according to any one of aspects 1 to 5 The SiO2 ratio of the glass substrate is in the range of 55% by mass or more and 81% by mass or less.
  • a multilayer wiring substrate comprising the glass substrate according to any one of aspects 1 to 6, The thickness of the electronic device mounted on the multilayer wiring board is 800 ⁇ m or less; The thickness of the multilayer wiring board is in the range of 100 ⁇ m or more and 200 ⁇ m or less.
  • the present invention relates to a glass substrate, a multilayer wiring substrate, and a method for manufacturing a glass substrate.
  • through electrodes are formed in the circuit board.
  • the through electrodes are formed by forming through holes in a substrate made of an insulator and placing a conductor in the through hole. As circuit boards become more highly integrated, the through holes also need to be made finer.
  • Patent Document 1 discloses a technique for irradiating a plate-shaped glass with an excimer laser beam to provide a glass substrate having a plurality of through holes.
  • Patent Document 2 discloses a method for producing a high-density array of holes in glass, including a step of irradiating the front surface of a glass product with a UV laser beam.
  • Patent Document 3 discloses a shape of a through hole that satisfies the condition that the total value of the inclination angle of the inner side surface of the through hole with respect to the central axis of the through hole (the angle at which the first surface side spreads is defined as a positive inclination angle) at positions at distances of 6.25%, 18.75%, 31.25%, 43.75%, 56.25%, 68.75%, 81.25%, and 93.75% from the first surface in the section from the first surface to the second surface is 8.0° or more.
  • ⁇ Prior Art Literature> ⁇ Patent Documents>
  • Patent Document 1 International Publication No. 2010/087483
  • Patent Document 2 JP-T-2014-501686
  • Patent Document 3 Japanese Patent No. 6809511 A
  • Patent No. 6809511 A Japanese Patent No. 6809511 A
  • Patent Documents 1 to 3 do not consider the effect of the side roughness of the through hole on the transmission characteristics of the through electrode. For this reason, the side of the through hole described in Patent Documents 1 to 3 has a distributed roughness of 1,000 nm or more, and a PV (Peak to Valley) of 1,500 nm or more. For this reason, it is difficult to maintain sufficiently good transmission characteristics of the through electrode, especially in high frequency bands such as the sub-6 GHz band, which is one of the frequency bands used for 5G, due to the roughness of the side of the through hole.
  • high frequency bands such as the sub-6 GHz band, which is one of the frequency bands used for 5G
  • an object of the present invention is to provide a glass substrate capable of forming a through electrode having good transmission characteristics and high reliability, and a multilayer wiring board including such a glass substrate.
  • one representative glass substrate of the present invention is a glass substrate having a first surface and a second surface, and comprising at least one through hole penetrating from the first surface to the second surface, wherein a side surface of the through hole has an angle of 4° or more and 7° or less within a distance range of 0% or more and less than 10% from the first surface, and when the side surfaces of the through hole are the left side surface and the right side surface in a cross-sectional view, the difference in the inclination angle of the left side surface and the inclination angle of the right side surface is 1.0° or less, and within a distance range of 10% or more and 100% or less from the first surface, the angle of the side surface is -7° or more and -15° or less, and the difference in the inclination angle of the left side surface and the right side surface is 1.0° or less.
  • the scope of the present invention is not limited to the exemplary embodiments and examples shown and described, but includes various modifications.
  • the embodiments and examples in this disclosure have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all the configurations described.
  • the present invention also includes all embodiments that provide effects equivalent to those intended by the present invention.
  • surface may refer not only to the surface of a plate-like member, but also to the interface of a layer contained in the plate-like member that is approximately parallel to the surface of the plate-like member. Additionally, “upper surface” and “lower surface” refer to the surface shown at the top or bottom of a drawing when a plate-like member or a layer contained in the plate-like member is illustrated. Additionally, the “upper surface” and “lower surface” may also be referred to as the “first surface” and the "second surface”.
  • side surface refers to a surface of a plate-like member or a layer included in a plate-like member, or a portion of the thickness of a layer. Furthermore, a part of a surface and a side surface may be collectively referred to as an "end portion.” Furthermore, the “side surface of a through hole” refers to the interface on the object that forms the through hole when the through hole is provided in the object. In addition, “upper” refers to the vertically upward direction when a plate-like member or layer is placed horizontally.
  • the distance in the Z-axis direction is referred to as the "height,” and the distance on the XY plane defined by the X-axis and Y-axis directions is referred to as the "width.”
  • the term "through electrode provided in a glass substrate” refers to a conductive path provided to electrically connect the first and second surfaces of a glass substrate when the glass substrate is used as a part of a multilayer wiring substrate, and does not necessarily have to completely penetrate the glass substrate with a single conductive material. If the conductive path from the first surface and the conductive path from the second surface are connected, they are included in the through electrode.
  • the form of the through electrode may be a filled type in which a through hole (including both a bottomed type and a completely through type) is filled with a conductive material, or a conformal type in which only the sidewall portion of the through hole is covered with a conductive material.
  • planar shape and plan view refer to the shape of a surface or layer when viewed from above.
  • cross-sectional shape and cross-sectional view refer to the shape of a plate-like member or layer when cut in a specific direction and viewed from the horizontal direction.
  • central portion refers to the central portion other than the peripheral portion of a surface or layer, and the term “toward the center” refers to the direction from the peripheral portion of a surface or layer toward the center of the planar shape of the surface or layer.
  • the results can be significantly different when observing the inclination angle of the sidewall at a certain position on the sidewall using a scale that overlooks the entire through hole in the glass substrate, compared to when the sidewall near the measurement point is enlarged to clearly show the minute irregularities on the sidewall at that position, and a precise determination is made as to where on that irregularity the point at which the angle was specified corresponds, and the inclination angle of the tangent at that position is used to determine the desired angle.
  • the inclination angle of the glass substrate through hole in the present disclosure corresponds to the former, and means an inclination angle that reflects the tendency when the entire through hole is viewed from above, without being overly influenced by the unevenness of the side surface.
  • One example of a measurement method is to set a tangent at a measurement point in a cross-sectional photograph taken at a scale and resolution that allows a bird's-eye view of the entire through hole and where minute irregularities on the side surface cannot be seen with the naked eye, so as to reflect as closely as possible the tendency of inclination at the measurement point and its vicinity.
  • FIG. 80 illustrates the shape of the through hole 12 obtained in the first embodiment (Appendix 2) of the present invention.
  • FIG. 80 is a diagram showing a method for measuring the cross section and inclination angle of the through hole 12 having a truncated cone shape.
  • the cross section of the through hole 12 shown in FIG. 80 is obtained by fracturing (cutting) the through hole 12 from the first surface 101 side in the thickness direction of the glass substrate to produce a cross section (cut surface), and analyzing the SEM image observed by a SEM (Scanning Electron Microscope) using image analysis software.
  • the area shown by the pattern pattern indicates the glass substrate 10.
  • 80 has a minimum value between the first surface 101 and the second surface 102 where the diameter of the through hole is minimal.
  • a truncated cone shape is formed on the first surface 101 side, and a truncated cone shape is also formed on the second surface 102 side, sandwiching the point having the minimum value.
  • 80 indicate the length from the first surface 101 to the second surface 102 of the glass substrate 10 as a percentage.
  • a center line TC is drawn perpendicular to the first surface 101 at the center of the through hole 12 on the first surface 101 side of the glass substrate 10.
  • the center line TC is translated toward either one of the two sides of the through hole 12 as shown by the arrow, and the translated center line TC is brought into contact with the point where the diameter of the through hole 12 is at its minimum value, and the point of contact is defined as a reference point RP.
  • a tangent line ss is drawn at the cross-sectional position at each of the heights of the scale positions from 5% to 100% from the reference point RP, and the inclination angle of the tangent line ss is measured, and the inclination angle is defined as the inclination angle at each of the cross-sectional positions from 5% to 95%.
  • the inclination angle is positive in the direction in which the diameter of the through hole 12 expands upward.
  • the method for measuring the inclination angle includes steps (1) to (3): (1) creating a center line for the through hole 12, (2) moving the center line horizontally to a position where the opening is at its minimum value to create a reference point, and (3) drawing a tangent line from the reference point to a specific position on the through hole to measure the angle.
  • steps (1) to (3) (1) creating a center line for the through hole 12, (2) moving the center line horizontally to a position where the opening is at its minimum value to create a reference point, and (3) drawing a tangent line from the reference point to a specific position on the through hole to measure the angle.
  • a scribe and a precision breaker are used to cut (cut) the through hole 12 at the center from the first surface 101 side to expose the cross section of the through hole 12.
  • a cutting method for example, three-point bending can be applied. After that, SEM observation is performed on the exposed cross section, and the angle of the through hole 12 is measured by image analysis of the SEM image of the cross section.
  • the measurement range is usually the range from the first surface 101 to the second surface 102 of the through hole.
  • two or more measurement ranges excluding the irregularities are set, and the results of the measurement ranges are averaged to determine the side roughness.
  • FIG. 81 is a diagram showing a method for measuring the side roughness of a through hole.
  • the through hole 12 shown in FIG. 81 has a general shape.
  • FIG. 81(a) shows an SEM image of the cross section of the through hole 12.
  • FIG. 81(b) shows a diagram in which the contour of the side of the through hole 12 is extracted from an SEM image obtained by observing the cross section of the through hole 12. Measurements of the average dispersion roughness and the unevenness width are carried out from the extracted contour data.
  • FIG. 81(a) shows an SEM image of the cross section of the through hole 12.
  • FIG. 81(b) shows a diagram in which the contour of the side of the through hole 12 is extracted from an SEM image obtained by observing the cross section of the through hole 12. Measurements of the average dispersion roughness and the unevenness width are carried out from the extracted contour data.
  • 81(c) is a diagram showing a formula for calculating the average dispersion roughness and the unevenness width.
  • a roughness curve f(x) showing the roughness of the contour is measured in a set region L set based on the first surface 101.
  • the average dispersion roughness (hereinafter, also simply referred to as "dispersion roughness") Ra is obtained by integrating the absolute value of the roughness curve f(x) squared over the set region L and then dividing it by the length of the set region L, as shown in formula (1).
  • the roughness width (hereinafter also referred to as "unevenness width”) a is the difference between the peak portion showing the maximum roughness value and the bottom portion showing the minimum roughness value in the roughness curve f(x).
  • the average roughness of the through hole is calculated by averaging the roughness values calculated from them.
  • the transmission characteristics are measured using the S parameter (S21), which indicates the frequency dependency of the degree of the propagating wave relative to the input wave.
  • S21 is expressed as the logarithm of the power ratio (transmitted wave power/input wave power), and the smaller the absolute value, the smaller the transmission loss.
  • a network analyzer was used to measure the S parameter (S21).
  • a measurement sample was prepared by surrounding the periphery of the through electrode 11 formed on the glass substrate with a conductor and grounding the conductor, and S21 between the first surface 101 side and the second surface 102 side of the through electrode 11 was measured.
  • Example 1 of the first embodiment (Appendix 2)
  • the pulse width is 5 ps and the number of shots is 1
  • the pulse width is 15 ps and the number of shots is 1
  • the pulse width is 25 ps and the number of shots is 1.
  • the comparative examples are through holes created by modifying the manufacturing method and laser processing method shown in the first embodiment (Appendix 2).
  • the pulse width is 30 ps and the number of shots is 1
  • the pulse width is 30 ns and the number of shots is 50
  • the pulse width is 50 ⁇ s and the number of shots is 5.
  • the opening diameter on the second surface 102 side of the glass substrate 10 was 80 ⁇ m on average, and in this case, 3 ⁇ , which is the value obtained by adding three times the standard deviation to the average value of the measured values, was 4.5 ⁇ m or less.
  • the difference between the maximum opening diameter ⁇ Max and the minimum opening diameter ⁇ Min was 10 ⁇ m or less.
  • FIG. 82 is a diagram showing the measurement results of the inclination angle of the through hole in Example 1 in the first embodiment (Supplementary Note 2).
  • FIG. 83 is a diagram showing the measurement results of the inclination angle of the through hole in Example 2 in the first embodiment (Supplementary Note 2).
  • FIG. 84 is a diagram showing the measurement results of the inclination angle of the through hole in Example 3 in the first embodiment (Supplementary Note 2).
  • FIG. 82 is a diagram showing the measurement results of the inclination angle of the through hole in Example 1 in the first embodiment (Supplementary Note 2).
  • FIG. 83 is a diagram showing the measurement results of the inclination angle of the through hole in Example 2 in the first embodiment (Supplementary Note 2).
  • FIG. 84 is a diagram showing the measurement results of the inclination angle of the through hole in Example 3 in the first embodiment (Supplementary Note 2).
  • FIG. 85 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 1 in the first embodiment (Supplementary Note 2).
  • FIG. 86 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 1 in the first embodiment (Supplementary Note 2).
  • FIG. 87 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 2 in the first embodiment (Supplementary Note 2).
  • FIG. 88 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 2 in the first embodiment (Supplementary Note 2).
  • FIG. 86 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 1 in the first embodiment (Supplementary Note 2).
  • FIG. 87 is a diagram showing a cross-sectional shape of a through hole of Comparative Example 2 in the first embodiment (Supplementary Note 2).
  • FIG. 88 is
  • FIG. 90 is a diagram showing the measurement results of the inclination angle of the through hole of Comparative Example 3 in the first embodiment (Supplementary Note 2).
  • Table 16 is a table showing the results of measuring the inclination angle of the side of the through hole 12 in each example of the embodiment and each comparative example. In each example of the embodiment, it is confirmed that there is a difference between the value of the side angle of the through hole 12 in the range of 0% to less than 10% of the distance from the first surface and the value in the range of 10% to 95% of the distance from the first surface.
  • the side angle of the through hole 12 is almost constant in the range of 0% to less than 10% of the distance from the first surface (the side angle is in the range of 4° to 7°), and the side angle that is almost constant in the range of 10% to 95% of the distance from the first surface is in the range of -7° to -15°).
  • the inclination angle of the side of the through hole 12 in the range of 95% to 100% of the distance from the first surface is the same as the inclination angle of the side of the through hole 12 in the range of 10% to 95% of the distance from the first surface, and the difference in the inclination angle between the two ranges is 1.0° or less.
  • the inclination angle of the side surface of the through hole 12 varies at each position between 5% and 95% of the distance. It can be seen that the shapes of the inclination angles of the side surfaces of the through hole are significantly different between each of the examples of the present invention and the comparative examples.
  • the average dispersion roughness and unevenness width of the side surface of the through hole 12 will be described for each example and each comparative example in the first embodiment (Appendix 2) with reference to Table 17.
  • the dispersion roughness of the side surface shape on the cut surface of the through hole 12 in the thickness direction of the glass substrate is 1,000 nm or less and the unevenness width is 1,500 nm or less.
  • the dispersion roughness is 1,500 nm or more and the unevenness width is 1,500 nm or more, confirming that there is a difference in the roughness of the side surface of the through hole.
  • FIG. 91 to 93 show the results of forming the inflection point of the side inclination angle of the through hole 12 in the range of 1% to 5% of the distance from the first surface as an application example of the first embodiment (Appendix 2) according to the present invention.
  • FIG. 91 is a diagram showing the measurement result of the inclination angle of the through hole in Application Example 1.
  • FIG. 92 is a diagram showing the measurement result of the inclination angle of the through hole in Application Example 2.
  • FIG. 93 is a diagram showing the measurement result of the inclination angle of the through hole in Application Example 3.
  • Table 18 shows the measurement result of the inclination angle of the side of the through hole 12 in each application example.
  • the etching process is performed by immersion treatment using a jet, but each application example is formed by switching the direction of the jet more slowly than each comparative example.
  • the conditions of the number of pulses and the number of shots in each application example were the same as those in each example.
  • the side angle of the through hole 12 is almost constant in the range of 0% to 5% of the distance from the first surface, and is almost constant in the range of 5% to 95% of the distance from the first surface.
  • the inclination angle of the side of the through hole 12 in the range of 95% to 100% of the distance from the first surface is the same as the inclination angle of the side of the through hole 12 in the range of 10% to 95% of the distance from the first surface, and the difference in the inclination angle in the two ranges is 1.0° or less.
  • the values are the same as those in Table 17, that is, the dispersion roughness is 1000 nm or less and the unevenness width is 1500 nm or less.
  • FIG. 94A is a diagram showing Table 19 in the form of a graph. According to the first embodiment (Appendix 2), regardless of the opening diameter of the second surface 102, the relationship between the opening diameter of the second surface 102 and the opening diameter of the first surface 101 is first surface side opening diameter ⁇ 1/second surface side opening diameter ⁇ 2 ⁇ 0.4 or more.
  • Table 20 shows the first surface opening diameter and the second surface opening diameter for each example and each comparative example in the first embodiment (Appendix 2).
  • Table 20 shows typical values of the opening diameter ⁇ 1 on the first surface 101 side and the opening diameter ⁇ 2 on the second surface 102 side of the through hole 12 measured for each example and each comparative example in the first embodiment (Appendix 2).
  • FIG. 94B is a schematic diagram showing the case where a through electrode 12 is formed.
  • the aperture diameter of the through hole 12 can be made smaller than ⁇ 2, as shown by the relationship ⁇ 1/ ⁇ 2 ⁇ 0.4.
  • a coil is formed using the through electrode 11, and the relationship between ⁇ 1 and ⁇ 2 makes it possible to ensure the design freedom of the coil.
  • the Q value can be reduced when a circuit including a coil is formed, making it possible to suppress transmission loss. As a result of the above, it is possible to stabilize the signal of the through electrode (reduce signal loss).
  • FIG. 94C is a diagram for explaining the characteristics of the through hole and through electrode formed in the present disclosure.
  • FIG. 94C is a diagram showing, for example, an enlarged view of region Ra in FIG. 108.
  • a conductive electrode 31 can be formed directly on the through hole 12 (or the through electrode 11). This is because the through hole 12 has a so-called bottomed shape. By making it a bottomed shape, it is possible to form the conductive electrode 31 directly on the through hole 12. Therefore, the transmission distance of the electrode as a whole is shortened, and the transmission characteristics can be improved and the through hole 12 can be made finer.
  • the side surface of the through hole 12 in the present disclosure has no inflection point at which the side shape changes, and the surface is smooth. Therefore, when plating is performed on the through hole 12, a uniform metal film or the like can be formed, so that the generation of parasitic capacitance can be suppressed on the side surface of the through hole 12.
  • the shape of the through hole 12 can be a shape having an inflection point or a so-called straight shape in which the diameter hardly changes from the first surface to the second surface of the glass substrate, but from the viewpoint of transmission characteristics, the shape shown in the present disclosure that can suppress the generation of parasitic capacitance is desirable.
  • Figures 95A to 95D are diagrams for explaining the side of the through hole in each example and comparative example.
  • Figure 95A is a diagram showing an SEM image of a typical cross-sectional shape of the through hole in each example and comparative example in the first embodiment (Supplementary Note 2).
  • the SEM images were taken of the cut surface of the through-hole in the thickness direction of the glass substrate.
  • the SEM images shown in Figures 95A to 95D are taken at a magnification of 1000 times (one division of the scale is 5 ⁇ m).
  • 95A in order to facilitate observation of the cross-sectional shape of the glass substrate according to the first embodiment (Appendix 2), the through-hole 12 is filled with a resin material. It can be seen that the inclination angle of the side surface changes from the first surface 101 toward the second surface 102.
  • 95B is a diagram showing SEM images of the cross-sectional shapes of the through-holes of each example and each comparative example in the first embodiment (Appendix 2).
  • the inclination angle and cross-sectional shape are different from those described above, but the pulse width and shot number conditions are as described in each example and each comparative example.
  • the appearance of the SEM image and the smoothness of the cross section of the through-hole have common properties.
  • the areas that have high contrast and appear white are areas where the angle of the inclined surface of the sample changes and become the ridges of the inclined surface.
  • the areas that appear as white lines indicate the peaks or bottoms of the roughness of the sample surface, and the roughness of the side surface of the through hole, which affects the transmission characteristics of the through electrode, can be grasped based on the presence and degree of arrangement of the ridges formed on the side surface of these through holes.
  • FIG. 95C is a diagram for explaining the ridgeline of the through hole of each example in the first embodiment (Supplementary Note 2).
  • Fig. 95C(a) is an enlarged view of Example 3 of Fig. 95B.
  • Fig. 95C(b) is a diagram showing the ridgeline of the side and cross section of the through hole observed in the SEM image by a solid line.
  • Fig. 95C is a diagram showing the ridgeline of the side and cross section of the through hole observed in the SEM image by a solid line.
  • the widest spacing between the substantially parallel ridgelines is between ridgeline Rl1 and ridgeline Rl2.
  • the spacing between the ridgelines on the side surface in the direction perpendicular to the first surface 101 is equal to or less than Rs.
  • the spacing between the ridgelines is equal to or less than 15.5 ⁇ m.
  • the frequency of ridgelines extending in a direction perpendicular to the first surface 101 and white lines extending in a direction between the direction parallel to the first surface 101 and the direction perpendicular to the first surface 101 increases.
  • the proportion of ridgelines extending vertically and ridgelines extending diagonally decreases as the dispersion roughness decreases.
  • white lines extending in a direction between the direction parallel to the first surface 101 and the direction perpendicular to the first surface 101 i.e., diagonal direction
  • 95D is a diagram showing an SEM image of a cross section when a through electrode is formed in the through hole in the first embodiment (Appendix 2).
  • the inclination angle and cross-sectional shape are different from those described above, but the pulse width and the number of shots are as described in each example and each comparative example.
  • the appearance of the SEM image and the smoothness of the cross section of the through hole have common properties.
  • the area indicated by the arrow and surrounded by the dashed line has a shape with a rising edge.
  • the side surface of the through hole 12 and the second surface 102 of the glass substrate 10 have a shape with a rising edge, and the side surface and the second surface region can be clearly distinguished in a 1000x SEM image.
  • FIG. 96 is a diagram showing the transmission characteristics of the through electrodes of Example 1 and Comparative Example 1 in the first embodiment (Appendix 2).
  • FIG. 96 shows the results of measuring the transmission loss S21 as the transmission characteristics in the through electrodes. Since Examples 1 to 3 showed the same tendency in the transmission characteristics, Example 1 is shown as a representative. Furthermore, since Comparative Examples 1 to 3 showed almost the same tendency in the transmission characteristics, Comparative Example 1 is shown as a representative. The formation conditions of the seed layer for forming the electrode and the plating process were the same for both the examples and the comparative examples.
  • the transmission loss of the examples is smaller than the transmission loss of the comparative examples in any frequency range. Therefore, it can be seen that the smaller the values of the dispersion roughness and the unevenness width are for the side surface of the through hole, the smaller the loss in the through electrode formed in the through hole, and the better the transmission characteristics are.
  • the transmission characteristic S21 was also measured for each example and each comparative example when the thickness of the glass substrate 10 was changed.
  • the results are shown in Table 6.
  • the thickness of the glass substrate 10 was set to 100 ⁇ m, 150 ⁇ m, and 200 ⁇ m, and the through holes and through electrodes were created under conditions based on each example and each comparative example, and the transmission characteristics were measured.
  • Table 7 it is confirmed that the examples in the first embodiment (Appendix 2) show better transmission characteristic S21 values than the comparative examples.
  • the transmission characteristics shown in Table 21 are those of a single through electrode, and in a multilayer wiring board that requires multiple through electrodes, improving the transmission characteristics of a single through electrode leads to a significant improvement in performance.
  • Appendix 2 it is possible to obtain a multilayer wiring board that realizes good transmission characteristics of the through electrode in the high frequency band compared to existing technologies.
  • the through electrodes shown in Examples 1 to 3 have achieved better results than the through electrodes shown in Comparative Examples 1 to 3. Comparing the Examples, it can be said that Example 1 is the most preferable, followed by Example 2 and Example 3.
  • the reliability evaluation results by the TCT test are shown in Tables 22 and 23.
  • the reliability test conditions are as follows: Setting conditions: Lower limit temperature was -40°C/30 minutes, and upper limit temperature was 150°C/30 minutes.
  • ⁇ Test equipment TSA-43EL manufactured by Espec
  • NG criteria If the resistance value after cycling is more than 10 times the initial resistance value, it is judged as NG.
  • each example relating to an embodiment of the present invention shows higher reliability than each comparative example.
  • FIG. 97 is a diagram showing an example of the configuration of the multilayer wiring board 1 in the first embodiment (Appendix 2).
  • FIG. 98 is a diagram showing another example of the configuration of the multilayer wiring board 1 in the first embodiment (Appendix 2).
  • the multilayer wiring board 1 includes a glass substrate 10, a first wiring layer 21, and a second wiring layer 22.
  • the first wiring layer 21 is disposed on the first surface 101 side of the glass substrate 10
  • the second wiring layer 22 is disposed on the second surface 102 side of the glass substrate 10.
  • the glass substrate 10 includes a through hole 12 penetrating from the first surface 101 side to the second surface 102 side.
  • the through electrode 11 is formed by a conductor formed along the side surface of the through hole 12.
  • the through electrode 11 electrically connects a part of the first wiring layer 21 and a part of the second wiring layer 22.
  • the first wiring layer 21 and the second wiring layer 22 include an insulating resin layer 25.
  • the first wiring layer 21 and the second wiring layer 22 may be configured by stacking a plurality of layers, and the number of layers may be set as necessary.
  • the through electrode 11 is an electrode for establishing an electrical connection between the first wiring layer 21 and the second wiring layer 22.
  • the conductive electrode 31 is an electrode for ensuring electrical continuity in the thickness direction of the multilayer wiring board 1.
  • the semiconductor element bonding pad 50 is a member for connecting a semiconductor circuit mounted on the multilayer wiring board 1.
  • the board bonding pad 54 is a member for bonding the multilayer wiring board 1 to another board.
  • a conductor may be placed only on the side of the through hole 12 as shown in Figure 97, or a conductor may be embedded in the through hole 12 as shown in Figure 98.
  • the conductive electrode 31 it is possible to arrange the conductive electrode 31 above the through electrode 11 of the first wiring layer 21 in the Z-axis direction.
  • the thickness of the multilayer wiring board 1 is, for example, in the range of 100 ⁇ m to 400 ⁇ m.
  • FIG. 99 is a diagram showing a process of bonding the glass substrate 10 to the first support 62.
  • the thickness of the glass substrate 10 can be appropriately set depending on the application, taking into consideration the thickness after etching.
  • a first support 62 is bonded to a glass substrate 10 via a first adhesive layer 61, forming a laminated structure 63 including the glass substrate 10, the first adhesive layer 61, and the first support 62.
  • the glass substrate 10 and the first support 62 are temporarily fixed by a first adhesive layer 61 .
  • a laminator, a vacuum pressure press, a reduced pressure bonding machine, or the like can be used.
  • the first support 62 is desirably made of, for example, the same material as the glass substrate 10.
  • the first support 62 is desirably made of alkali-free glass.
  • the thickness of the first support 62 can be appropriately set according to the thickness of the glass substrate 10. However, it is desirably a thickness that allows transport during the manufacturing process, and the thickness of the support is, for example, in the range of 300 ⁇ m to 1,500 ⁇ m.
  • alkali-free glass having a SiO 2 ratio in the range of 55% by mass to 81% by mass can be used. If the SiO 2 ratio of the glass substrate 10 is greater than 81% by mass, the etching processing speed decreases, the side angle of the through hole 12 decreases, and poor adhesion occurs when forming the through electrode 11 described later. In addition, if the SiO 2 ratio is less than 55% by mass, there is a high possibility that alkali metals will be contained in the glass, which will affect the reliability of the multilayer wiring substrate after mounting the electronic device. If the SiO 2 ratio of the alkali-free glass is greater than 55% by mass to 81% by mass, the set ratio may be set appropriately.
  • FIG. 100 is a diagram showing a process of forming a laser modified portion.
  • a laser modified portion 65 is formed on the glass substrate 10.
  • the laser modified portion 65 is processed into a shape of ⁇ 3 ⁇ m or less on the glass substrate 10, and is continuously formed in the thickness direction of the glass substrate 10.
  • minute cracks hereinafter also referred to as "microcracks"
  • the dispersion roughness on the side of the through hole 12 after etching will be 1000 nm or more and the unevenness width will be 1500 nm or more, making it difficult to obtain a through hole 12 with a smooth side.
  • microcracks of 5 ⁇ m or more occur, as described later, roughness that changes at intervals will occur on the side of the through hole 12 after etching in a direction perpendicular to the first surface 101 of the glass substrate 10.
  • the laser modified portion 65 For processing the laser modified portion 65, it is preferable to use, for example, a femtosecond laser or a picosecond laser, and to use a laser oscillation wavelength of one of 1064 nm, 532 nm, or 355 nm. If the laser pulse width is 25 picoseconds or more, microcracks of 5 ⁇ m or more tend to occur around the laser modified portion 65, so it is preferable that the laser pulse width is 25 picoseconds or less. In addition, since microcracks tend to occur when processing is performed by multiple pulse irradiation, it is preferable to form the laser modified portion 65 with one pulse.
  • the laser oscillation wavelength and laser output may be appropriately set according to the thickness of the glass substrate 10.
  • a laser is irradiated to the glass substrate at the portion where the through hole is to be formed, and the maximum length of the microcracks that occur around the laser irradiation is 5 ⁇ m.
  • FIG. 101 is a diagram showing a process of forming a first wiring layer 21.
  • a first wiring layer 21 made of a conductive layer and an insulating resin layer is formed on a first surface 101 on a glass substrate 10 of a laminated structure 63.
  • a seed layer including a hydrofluoric acid resistant metal layer is formed on the glass substrate 10, and then a through electrode connection portion 41 (or wiring between through electrodes) is formed on the first surface 101 by a semi-additive (SAP) method.
  • SAP semi-additive
  • the hydrofluoric acid resistant metal layer on the glass substrate 10 is an alloy layer containing chromium, nickel, or both, and can be formed in the range of 10 nm to 1,000 nm by sputtering. Then, a conductive metal film is formed on the hydrofluoric acid resistant metal with a desired thickness.
  • the conductive metal film can be appropriately selected from, for example, Cu, Ni, Al, Ti, Cr, Mo, W, Ta, Au, Ir, Ru, Pd, Pt, AlSi, AlSiCu, AlCu, NiFe, ITO, IZO, AZO, ZnO, PZT, TiN, and Cu 3 N 4 .
  • a photoresist is used to form the desired pattern in order to form a wiring pattern by plating.
  • a dry film resist is used, but liquid resist can also be used.
  • a plating film is formed by electrolytic plating, the unnecessary resist is peeled off, and the seed layer is etched to form the wiring.
  • the insulating resin layer 25 is a thermosetting resin, and the material thereof is a material containing at least one of an epoxy resin, a polyimide resin, and a polyamide resin, and containing a silica SiO2 filler.
  • the material of the insulating resin layer 25 can be appropriately selected according to need. However, when a photosensitive insulating resin material is used, it becomes difficult to fill the silica SiO2 filler in order to ensure photolithography properties, so although a photosensitive insulating resin material can also be used, it is more preferable to use a thermosetting resin.
  • [Second support bonding step] 102 is a diagram showing a step of adhering a second support body.
  • a second adhesive layer 71 is formed on the first wiring layer 21 of the laminated structure 63, and a second support body 70 is disposed on the second adhesive layer 71 and adhered thereto.
  • the second support 70 may be made of, for example, glass, and is preferably made of the same material as the glass substrate 10.
  • the second support 70 is preferably made of alkali-free glass.
  • the thickness of the second support 70 can be appropriately set depending on the thickness of the glass substrate 10. However, it is preferable that the thickness be such that the second support 70 can be transported, and the range of this thickness is from 300 ⁇ m to 1,500 ⁇ m.
  • [Peeling process] 103 is a diagram showing a step of peeling off the first support 62. As shown in FIG. 103, the glass substrate 10 and the first support 62 are peeled off at the first adhesive layer 61.
  • FIG. 104 is a diagram showing a process of forming the through holes 12. As shown in FIG.
  • the glass substrate 10 on which the laser modified portion 65 is formed is subjected to an etching process using a predetermined etching solution, thereby forming the through hole 12.
  • the second surface of the glass substrate 10 is also etched, and the thickness of the glass substrate 10 is reduced. The etching is performed from the second surface 102 side of the glass substrate 10.
  • the etching solution contains hydrofluoric acid in the range of 0.2 mass% to 20.0 mass%, nitric acid in the range of 4.0 mass% to 25.0 mass%, and inorganic acid other than hydrofluoric acid and nitric acid in the range of 0.5 mass% to 11.0 mass%.
  • inorganic acids other than hydrofluoric acid and nitric acid include hydrochloric acid, sulfuric acid, phosphoric acid, and sulfamic acid, and at least one inorganic acid is contained depending on the type of components other than silicon contained in the glass substrate 10.
  • the etching solution contains hydrochloric acid and sulfuric acid, and the etching rate for the glass substrate 10 is appropriately adjusted to be in the range of 0.1 ⁇ m/min to 10 ⁇ m/min.
  • the etching rate for the glass substrate 10 is preferably in the range of 0.25 ⁇ m/min to 4 ⁇ m/min, and more preferably in the range of 0.25 ⁇ m/min to 0.5 ⁇ m/min.
  • the etching temperature is not particularly limited and can be appropriately adjusted, but is, for example, in the range of 10°C to 30°C.
  • etching is performed by immersion processing using a jet or spray processing to form the through-hole 12.
  • immersion processing using a jet for example, in order to efficiently etch the bottom of the through-hole 12, the direction of the jet is switched in the etching solution.
  • pressure is applied to the bottom of the through-hole 12, and it is possible to change the inclination angle of the TGV side at a position 1 to 10% away from the first surface.
  • etching process by spray processing by setting the oscillation speed of the spray having an injection port for injecting the etching solution or the oscillation speed of the substrate quickly, pressure is applied to the bottom of the through-hole 12, and it is possible to change the inclination angle of the TGV side at a position 1% to 10% away from the first surface.
  • the processing conditions vary depending on the size of the device used, it is desirable to set the processing conditions after confirming the shape of the through hole 12.
  • ultrasonic waves or the like may be used in combination as another mechanism.
  • Fig. 105 is a diagram showing a process for forming the through electrodes 11.
  • a metal layer for electrolytic plating is formed on the second surface 102 of the glass substrate 10 in which the through-hole 12 is formed.
  • the metal layer may be any metal that functions as a seed layer for electrolytic plating, such as metals including Cu, Ti, Cr, W, Ni, etc. At least one of the above metals is used for the metal layer, and it is preferable that a Cu layer is formed on the outermost surface of the metal layer. It is preferable that Ti, Cr, W, and Ni are used as an adhesive layer with the glass substrate 10 below the Cu layer.
  • the thickness of the metal layer is appropriately set to a range that can cover the side of the through-hole 12. As a formation method, for example, a deposition formation method using sputtering can be adopted.
  • the through electrode 11 is formed by electrolytic plating using the metal layer as a seed layer.
  • a mask is formed on the second surface 102 of the glass substrate 10 in the through hole 12 and a predetermined area around the through hole 12 using an insulator such as resist, and then electrolytic plating is performed.
  • a material used for electrolytic plating for example, Cu can be used, and other metals including Au, Ag, Pt, Ni, Sn, etc. can also be used.
  • electrolytic plating may be performed so that the inside of the through hole 12 is filled with a conductor such as the above metal.
  • FIG. 106 is a diagram showing the process of forming the insulating resin layer. After the electrolytic plating process for forming the through electrodes is performed, the insulator such as resist is removed, and the metal film that served as the seed layer formed on the second surface 102 of the glass substrate 10 is removed. After each of the multiple through electrodes 11 formed on the glass substrate 10 is electrically isolated, the insulating resin layer 25 is formed on the second surface side as shown in FIG. 27.
  • Fig. 107 is a diagram showing the step of peeling off the second support 70 and the second adhesive layer 71.
  • the second adhesive layer 71 and the second support 70 formed above the first wiring layer 21 are peeled off from the interface between the first wiring layer 21 and the second adhesive layer 71 on the first surface 101 side.
  • a glass substrate 10 is obtained in a state in which the first wiring layer 21 is formed on the first surface 101 side and the second wiring layer 22 is formed on the second surface 102 side.
  • a peeling method according to the material used can be appropriately selected from UV light irradiation, heat treatment, physical peeling, etc., depending on the material used in the second adhesive layer 71. Furthermore, if a residue of the second adhesive layer 71 remains on the bonding surface between the first wiring layer 21 and the second adhesive layer 71, plasma cleaning, ultrasonic cleaning, water washing, solvent cleaning using alcohol, etc. may be performed.
  • FIG. 108 is a diagram showing the process of forming the first wiring layer 21 and the second wiring layer 22.
  • the first wiring layer 21 is formed on the first surface 101
  • the second wiring layer 22 is formed on the second surface 102.
  • a mask having a pattern is formed by a photosensitive resist or a dry film resist, and then wiring is formed by electrolytic plating.
  • the insulating resin layer 25 is laminated.
  • a hole is formed in the insulating resin layer 25 by laser processing or the like, and then a metal film is formed by electroless plating or deposition treatment by sputtering.
  • a mask having a pattern is formed on the above-mentioned metal film using a resist, and a conductor is filled in the hole formed by electrolytic plating. Then, the mask and the excess metal film are removed. The above process is repeated multiple times according to the required number of layers to form the first wiring layer 21 and the second wiring layer 22.
  • the first wiring layer 21 and the second wiring layer 22 have the same number of layers in order to suppress warping of the multilayer wiring board 1.
  • the number of layers of the first wiring layer 21 and the second wiring layer 22 may be different.
  • the number of layers of the first wiring layer 21 and the number of layers of the second wiring layer 22 may be set appropriately depending on the application of the multilayer wiring board.
  • Fig. 109 is a diagram showing a case where a multilayer wiring board 1 is used as an interposer board for a semiconductor element 100 and a BGA (Ball Grid Array) board 90.
  • Fig. 110 is a diagram showing a cross section in the case of Fig. 109.
  • Fig. 111 is a diagram showing a case where a multilayer wiring board 1 and a semiconductor element 100 are used in an electronic device for communication.
  • Fig. 112 is a diagram showing a cross section in the case of Fig. 111.
  • the electronic device used has a layer thickness of 800 ⁇ m or less. The applications of the above electronic devices are limited due to the influence of the transmission characteristics of the through electrodes, but the use of a multilayer wiring board using the glass substrate of the present invention makes it possible to apply electronic devices to high frequency band regions.
  • a glass substrate having a first surface and a second surface, and at least one through hole extending from the first surface to the second surface,
  • the side surface of the through hole is within a distance range of 0% or more and less than 10% from the first surface, the angle of the side surface is in a range of 4° or more and 7° or less, and when the side surfaces of the through hole are a left side surface and a right side surface in a cross-sectional view, the difference between the inclination angle of the left side surface and the inclination angle of the right side surface is 1.0° or less, Within a distance range of 10% or more and 100% or less from the first surface, the angle of the side surface is in a range of -7° or more and -15° or less, and the difference between the inclination angle of the left side surface and the inclination angle of the right side surface is 1.0° or less.
  • a glass substrate characterized in that a dispersion roughness of a side shape of a cut surface of the through hole in a thickness direction of the glass substrate is 1,000 nm or less and an unevenness width is 1,500 nm or less.
  • a glass substrate according to any one of aspects 1 to 4 The distributed roughness is an arithmetic average roughness calculated by extracting a roughness curve based on the profile data of the side surface, setting a set interval on the roughness curve, and calculating the arithmetic average roughness in the set interval using Equation 1, A glass substrate, wherein the unevenness width is the difference between the highest part and the lowest part in the set section.
  • a glass substrate according to any one of aspects 1 to 5 The SiO2 ratio of the glass substrate is in the range of 55% by mass or more and 81% by mass or less.
  • Aspect 7 (Appendix 2)) A multilayer wiring substrate comprising the glass substrate according to any one of aspects 1 to 6, The thickness of the electronic device mounted on the multilayer wiring board is 800 ⁇ m or less; The multilayer wiring board has a thickness of 100 ⁇ m or more and 400 ⁇ m or less.
  • a method for producing a glass substrate according to any one of aspects 8 to 10 comprising the steps of: A method for manufacturing a glass substrate, wherein in the first step, the laser irradiated has a laser oscillation wavelength of any one of 1064 nm, 532 nm, and 355 nm and a pulse width of 25 picoseconds or less.
  • Aspect 12 (Appendix 2)) A method for producing a glass substrate according to any one of aspects 8 to 11, comprising the steps of: A method for manufacturing a glass substrate, wherein in the first step, the maximum length of microcracks generated in the peripheral portion of the laser irradiation is 5 ⁇ m.
  • Multilayer wiring board 10: Glass substrate, 11: Through electrode, 12: Through hole, 21: First wiring layer, 22: Second wiring layer, 25: Insulating resin layer, 31: Conductive electrode, 50: Bonding pad for semiconductor element, 54: Bonding pad for substrate, 61: First adhesive layer, 62: First support, 63: Laminated structure, 65: Laser modified part, 70: Second support, 71: Second adhesive layer, 90: BGA substrate, 100: Semiconductor element, 101: First surface of glass substrate 10, 102: Second surface of glass substrate 10, TC: Center line of through hole, ss: Tangent to the side of the through hole

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ceramic Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

本発明では、良好な伝送特性を備えた貫通電極を形成することが可能なガラス基板およびそのようなガラス基板を備えた多層配線基板を提供することを目的とする。 本発明の一実施形態によると、第一面と第二面を有し、前記第一面から前記第二面まで貫通する少なくとも1つの貫通孔を備えるガラス基板であって、前記貫通孔の側面は、分散粗さが1,000nm以下かつ凹凸巾が1,500nm以下である、ことを特徴とするガラス基板が提供される。 また、前記分散粗さは、前記側面の輪郭データに基づいて粗さ曲線を抽出し、前記粗さ曲線に設定区間を設定し、前記設定区間において式1によって算出された算術平均粗さであり、前記凹凸巾は、前記設定区間において、最も高い部分と最も低い部の間の差である。

Description

ガラス基板、多層配線基板、およびガラス基板の製造方法
 本発明は、ガラス基板、多層配線基板、およびガラス基板の製造方法に関する。
 近年、回路基板を積層した三次元実装技術が用いられている。このような実装技術においては、回路基板に貫通電極を形成することが行われる。貫通電極は、絶縁体で構成された基板に貫通孔を形成し、この貫通孔に導電体を配置することによって形成される。回路基板の高集積化に伴い、貫通孔についても更なる微細化が必要となる。
 例えば、特許文献1は、板状ガラスにエキシマレーザ光を照射して複数の貫通孔を有するガラス基板を提供する技術を開示している。特許文献2は、UVレーザビームによってガラス品の前面を照射する工程を含む、ガラスに孔の高密度アレイを作製する方法を開示する。また、特許文献3は、貫通孔を含む基板と、前記貫通孔の内側面に沿って配置された導電体と、を備え、前記貫通孔は、前記第1面から前記第2面までの区間のうち前記第1面から6.25%、18.75%、31.25%、43.75%、56.25%、68.75%、81.25%、93.75%の距離の位置における前記貫通孔の中心軸に対する内側面の傾斜角度(前記第1面側が拡がる角度を正の傾斜角度とする)の合計値が、8.0°以上である条件を満たす貫通孔の形状を開示する。
国際公開第2010/087483号 特表2014-501686号公報 特許第6809511号公報
 しかしながら、特許文献1から3に記載された内容で貫通孔は、貫通孔の側面粗さによる、貫通電極の伝送特性への影響については、検討されていない。このため、特許文献1から3に記載された貫通孔の側面は、側面の分散粗さは1,000nm以上となり、PV(Peak to Valley)は1,500nm以上となっている。このため、特に、5Gに用いられる周波数帯の内、サブ6GHz帯といった高周波数帯では、貫通孔側面の粗さが原因となり、貫通電極の伝送特性を十分良好に保つことが難しい。
 そこで、本発明では、良好な伝送特性を備えた貫通電極を形成することが可能なガラス基板およびそのようなガラス基板を備えた多層配線基板を提供することを目的とする。
 上記の課題を解決するため、代表的な本発明のガラス基板の一つは、第一面と第二面を有し、前記第一面から前記第二面まで貫通する少なくとも1つの貫通孔を備えており、前記貫通孔の側面は、分散粗さが1,000nm以下かつ凹凸巾が1,500nm以下である。
 本発明によれば、良好な伝送特性を備えた貫通電極を形成することが可能なガラス基板およびそのようなガラス基板を備えた多層配線基板を提供することが可能となる。
 上記した以外の課題、構成および効果は、以下の発明を実施するための形態における説明により明らかにされる。
図1は、円錐台形状の貫通孔の断面および傾斜角度の測定方法を示す図である。 図2は、X形状の貫通孔の断面および傾斜角度の測定方法を示す図である。 図3は、貫通孔の側面粗さの測定方法を示す図である。 図4は、円錐台形状の貫通孔の断面および傾斜角度の測定方法を示す図である。 図5は、第一実施形態における実施例1の貫通孔の傾斜角度の測定結果を示す図である。 図6は、第一実施形態における実施例2の貫通孔の傾斜角度の測定結果を示す図である。 図7は、第一実施形態における実施例3の貫通孔の傾斜角度の測定結果を示す図である。 図8は、第一実施形態における比較例1の貫通孔の断面形状を示す図である。 図9は、第一実施形態における比較例1の貫通孔の傾斜角度の測定結果を示す図である。 図10は、第一実施形態における比較例2の貫通孔の断面形状を示す図である。 図11は、第一実施形態における比較例2の貫通孔の傾斜角度の測定結果を示す図である。 図12は、第一実施形態における比較例3の貫通孔の形状を示す図である。 図13は、第一実施形態における比較例3の貫通孔の傾斜角度の測定結果を示す図である。 図14は、第一実施形態における、実施例1の貫通電極の伝送特性と、比較例1の貫通電極の伝送特性を示す図である。 図15Aは、第一実施形態における各実施例および各比較例の貫通孔の断面のSEM画像である。 図15Bは、第一実施形態における各実施例の貫通孔の稜線を説明する図である。 図16は、第一実施形態に係る多層配線基板の構造の一例を示す図である。 図17は、第一実施形態に係る多層配線基板の構成の他の例を示す図である。 図18は、ガラス基板を第一支持体に張り合わせる工程を示す図である。 図19は、レーザ改質部を形成する工程を示す図である。 図20は、第一配線層を形成する工程を示す図である。 図21は、第二支持体を接着する工程を示す図である。 図22は、第一支持体を剥離する工程を示す図である。 図23は、貫通孔を形成する工程を示す図である。 図24は、貫通電極を形成する工程を示す図である。 図25は、絶縁樹脂層を形成する工程を示す図である。 図26は、第二支持体および第二接着層を剥離する工程を示す図である。 図27は、第一配線層および第二配線層を形成する工程を示す図である。 図28は、第二実施形態における多層配線基板の構成の一例を示す図である。 図29は、第二実施形態における多層配線基板の構成の他の例を示す図である。 図30は、ガラス基板を準備する工程を示す図である。 図31は、レーザ改質部を形成する工程を示す図である。 図32は、貫通孔を形成する工程を示す図である。 図33は、貫通孔に貫通電極を形成する工程を示す図である。 図34は、第一配線層および第二配線層を形成する工程を示す図である。 図35は、第二実施形態における実施例1の貫通孔の傾斜角度の測定結果を示す図である。 図36は、第二実施形態における実施例2の貫通孔の傾斜角度の測定結果を示す図である。 図37は、第二実施形態における実施例3の貫通孔の傾斜角度の測定結果を示す図である。 図38は、第二実施形態における比較例1の貫通孔の断面形状を示す図である。 図39は、第二実施形態における比較例1の貫通孔の傾斜角度の測定結果を示す図である。 図40は、第二実施形態における比較例2の貫通孔の断面形状を示す図である。 図41は、第二実施形態における比較例2の貫通孔の傾斜角度の測定結果を示す図である。 図42は、第二実施形態における比較例3の貫通孔の断面形状を示す図である。 図43は、第二実施形態における比較例3の貫通孔の傾斜角度の測定結果を示す図である。 図44は、第一実施形態における、実施例1の貫通電極の伝送特性と、比較例1の貫通電極の伝送特性を示す図である。 図45は、半導体装置とBGA基板のインターポーザ基板として、多層配線基板を用いる場合を示す図である。 図46は、図45の場合の断面を示す図である。 図47は、通信用の電子デバイスに多層配線基板および半導体装置が用いられる場合を示す図である。 図48は、図47の場合の断面を示す図である。 図49は、円錐台形状の貫通孔の断面および傾斜角度の測定方法を示す図である。 図50は、貫通孔の側面粗さの測定方法を示す図である。 図51は、第一実施形態(付記1)における実施例1の貫通孔の傾斜角度の測定結果を示す図である。 図52は、第一実施形態(付記1)における実施例2の貫通孔の傾斜角度の測定結果を示す図である。 図53は、第一実施形態(付記1)における実施例3の貫通孔の傾斜角度の測定結果を示す図である。 図54は、第一実施形態(付記1)における比較例1の貫通孔の断面形状を示す図である。 図55は、第一実施形態(付記1)における比較例1の貫通孔の傾斜角度の測定結果を示す図である。 図56は、第一実施形態(付記1)における比較例2の貫通孔の断面形状を示す図である。 図57は、第一実施形態(付記1)における比較例2の貫通孔の傾斜角度の測定結果を示す図である。 図58は、第一実施形態(付記1)における比較例3の貫通孔の断面形状を示す図である。 図59は、第一実施形態(付記1)における比較例3の貫通孔の傾斜角度の測定結果を示す図である。 図60Aは、表4をグラフにして示す図である。 図60Bは、貫通電極を形成した場合を示す模式的に示す図である。 図61Aは、第一実施形態(付記1)における各実施例および各比較例の貫通孔の断面のSEM画像を示す図である。 図61Bは、第一実施形態(付記1)における各実施例の貫通孔の稜線を説明する図である。 図61Cは、第一実施形態(付記1)における貫通孔に貫通電極を形成した場合を示す図である。 図62は、実施形態における実施例1の貫通電極の伝送特性と、比較例1の貫通電極の伝送特性を示す図である。 図63は、第一実施形態(付記1)に係る多層配線基板1の構成の一例を示す図である。 図64は、第一実施形態(付記1)に係る多層配線基板1の構成の他の例を示す図である。 図65は、ガラス基板を第一支持体に張り合わせる工程を示す図である。 図66は、レーザ改質部を形成する工程を示す図である。 図67は、第一配線層を形成する工程を示す図である。 図68は、第二支持体を接着する工程を示す図である。 図69は、第一支持体を剥離する工程を示す図である。 図70は、貫通孔を形成する工程を示す図である。 図71は、貫通電極を形成する工程を示す図である。 図72は、絶縁樹脂層を形成する工程を示す図である。 図73は、第二支持体および第二接着層を剥離する工程を示す図である。 図74は、第一配線層および第二配線層を形成する工程を示す図である。 図75は、半導体素子とBGA基板のインターポーザ基板として、多層配線基板を用いる場合を示す図である。 図76は、図75の場合の断面を示す図である。 図77は、通信用の電子デバイスに多層配線基板および半導体素子が用いられる場合を示す図である。 図78は、図77の場合の断面を示す図である。 図79は、本開示において形成される貫通孔および貫通電極の特徴を説明する図である。 図80は、円錐台形状の貫通孔の断面および傾斜角度の測定方法を示す図である。 図81は、貫通孔の側面粗さの測定方法を示す図である。 図82は、第一実施形態(付記2)における実施例1の貫通孔の傾斜角度の測定結果を示す図である。 図83は、第一実施形態(付記2)における実施例2の貫通孔の傾斜角度の測定結果を示す図である。 図84は、第一実施形態(付記2)における実施例3の貫通孔の傾斜角度の測定結果を示す図である。 図85は、第一実施形態(付記2)における比較例1の貫通孔の断面形状を示す図である。 図86は、第一実施形態(付記2)における比較例1の貫通孔の傾斜角度の測定結果を示す図である。 図87は、第一実施形態に(付記2)おける比較例2の貫通孔の断面形状を示す図である。 図88は、第一実施形態(付記2)における比較例2の貫通孔の傾斜角度の測定結果を示す図である。 図89は、第一実施形態(付記2)における比較例3の貫通孔の断面形状を示す図である。 図90は、第一実施形態(付記2)における比較例3の貫通孔の傾斜角度の測定結果を示す図である。 図91は、応用例1の貫通孔の傾斜角度の測定結果を示す図である。 図92は、応用例2の貫通孔の傾斜角度の測定結果を示す図である。 図93は、応用例3の貫通孔の傾斜角度の測定結果を示す図である。 図94Aは、表19をグラフにして示す図である。 図94Bは、貫通電極を形成した場合を示す模式的に示す図である。 図94Cは、本開示において形成される貫通孔および貫通電極の特徴を説明する図である。 図95Aは、第一実施形態(付記2)における各実施例および各比較例の貫通孔の典型的な断面形状のSEM画像を示す図である。 図95Bは、第一実施形態(付記2)における各実施例および各比較例の貫通孔の断面のSEM画像を示す図である。 図95Cは、第一実施形態(付記2)における各実施例の貫通孔の稜線を説明する図である。 図95Dは、第一実施形態(付記2)における貫通孔に貫通電極を形成した場合を示す図である。 図96は、第一実施形態(付記2)における実施例1の貫通電極の伝送特性と、比較例1の貫通電極の伝送特性を示す図である。 図97は、第一実施形態(付記2)における多層配線基板の構成の一例を示す図である。 図98は、第一実施形態(付記2)における多層配線基板の構成の他の例を示す図である。 図99は、ガラス基板を第一支持体に張り合わせる工程を示す図である。 図100は、レーザ改質部を形成する工程を示す図である。 図101は、第一配線層を形成する工程を示す図である。 図102は、第二支持体を接着する工程を示す図である。 図103は、第一支持体を剥離する工程を示す図である。 図104は、貫通孔を形成する工程を示す図である。 図105は、貫通電極を形成する工程を示す図である。 図106は、絶縁樹脂層を形成する工程を示す図である。 図107は、第二支持体および第二接着層を剥離する工程を示す図である。 図108は、第一配線層および第二配線層を形成する工程を示す図である。 図109は、半導体素子とBGA基板のインターポーザ基板として、多層配線基板を用いる場合を示す図である。 図110は、図109の場合の断面を示す図である。 図111は、通信用の電子デバイスに多層配線基板および半導体素子が用いられる場合を示す図である。 図112は、図111の場合の断面を示す図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下に示す実施形態及び実施例は本発明の実施形態の一例であって、本発明はこれらの実施形態及び実施例に限定して解釈されるものではない。なお、本発明の実施形態で参照する図面において、同一部には同一の符号または類似の符号(数字の後にA、B等を付しただけの符号)を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法、比率の説明は、説明や表記の都合上実際の比率と異なったり、構成の一部から省略されたりする場合がある。
 図面において示す各構成要素の位置、大きさ、形状、範囲なども、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
 なお、本開示において、「面」とは、板状部材の面のみならず、板状部材に含まれる層について、板状部材の面と略平行な層の界面も指すことがある。また、「上面」、「下面」とは、板状部材や板状部材に含まれる層を図示した場合の、図面上の上方又は下方に示される面を意味する。なお、「上面」、「下面」については、「第一面」、「第二面」と称することもある。
 また、「側面」とは、板状部材や板状部材に含まれる層における面や層の厚みの部分を意味する。さらに、面の一部及び側面を合わせて「端部」ということがある。
 また、「貫通孔の側面」とは、物体に設けられた貫通孔について、貫通孔を形成している物体上の界面を意味する。
 また、「上方」とは、板状部材又は層を水平に載置した場合の垂直上方の方向を意味する。さらに、「上方」及びこれと反対の「下方」については、これらを「Z軸プラス方向」、「Z軸マイナス方向」ということがあり、水平方向については、「X軸方向」、「Y軸方向」ということがある。
 さらに、Z軸方向の距離を「高さ」と称し、X軸方向とY軸方向で規定されるXY平面上の距離を「幅」と称する。また、層状の物体に対して高さを言う場合、「厚み」とも称する。
 また、「ガラス基板に設けた貫通電極」とは、ガラス基板を多層配線基板の一部として用いる場合に、ガラス基板の第1面及び第二面を電気的に導通するために設けた導電経路を意味し、必ずしも、ガラス基板を単一の導電材料で完全に貫通している必要はない。第1面からの導電通路と第二面からの導電通路が接続されていれば、貫通電極に含まれる。さらに、貫通電極の形態は、貫通孔(有底のものも、完全な貫通のものも、いずれの形態をも含む)を導電材料で埋め込んだフィルド型でもよいし、貫通孔の側壁部分のみを導電材料で覆ったコンフォーマルのいずれをも含む。
 また、「平面形状」、「平面視」とは、上方から面又は層を視認した場合の形状を意味する。さらに、「断面形状」、「断面視」とは、板状部材又は層を特定の方向で切断した場合の水平方向から視認した場合の形状を意味する。
 さらに、「中心部」とは、面又は層の周辺部ではない中心部を意味する。そして、「中心方向」とは、面又は層の周辺部から面又は層の平面形状における中心に向かう方向を意味する。
 <測定方法>
 本発明の第一実施形態、第二実施形態に係るガラス基板に設けた貫通孔の形状を説明するために、まず、貫通孔12の傾斜角度の測定方法、側面粗さの測定方法を以下に示す。
 ここで、ガラス基板貫通孔の側壁の位置による傾斜角を測定し、その値を記述するにあたっての注意点を示す。
 貫通孔における特定の位置を、ガラス基板の片面からの深さ方向の位置で指定した場合、その位置での側面の角度は、その位置での側面表面の形状をどの程度のスケールにて観察するかに大きく依存する。
 つまり、ガラス基板の貫通孔全体を俯瞰するようなスケールにて、側壁のある位置での側壁の傾斜角を観察した場合と、測定点付近の側壁を拡大し、その位置での側壁の微小な凹凸が明瞭となり、角度を指定した点が、その凹凸のどこに相当するかを厳密に判定して、その位置での接線の傾斜角をもって、目的の角度とする場合とでは、結果が大きく異なる可能性がある。
 本開示におけるガラス基板貫通孔の傾斜角とは、前者にあたるものであり、側面表面の凹凸に過度に影響されることなく、貫通孔全体を俯瞰的に見た場合の傾向を反映した傾斜角を意味する。
 測定法の一例として、貫通孔全体が俯瞰でき、かつ、側面の表面の微細な凹凸が目視できないスケール、解像度での断面写真において、測定点およびその近傍での傾斜の傾向をできるだけ反映するように測定点における接線を設定することが挙げられる。
(貫通孔の傾斜角度の測定方法(円錐台形状))
 まず、図1に本発明の第一実施形態で得られる貫通孔12の形状を説明している。図1は、円錐台形状の貫通孔12の断面および傾斜角度の測定方法を示す図である。図1に示される貫通孔12の断面は、貫通孔12を第一面101側より、ガラス基板の厚さ方向においてスクライブにて割断(裁断)して断面(裁断面)を出し、SEM(Scanning Electron Microscope:走査電子顕微鏡)によって観察されたSEM画像を画像解析ソフトを使用して解析したものである。図1において、パターン模様で示した箇所がガラス基板10を示している。図1に示す貫通孔12の形状は円錐台形状をしており、貫通孔12は第二面102側に貫通孔の径が極小となる極小値を持つ。なお、図1に示される目盛り5%、10%、・・・95%は、ガラス基板10の第一面101から第二面102までの長さを割合で示している。
 ガラス基板10の第二面102側の開口部の中心部に、第二面102と垂直になるように中心線TCを引く。次に、矢印に示されるように中心線TCを貫通孔12の両側のいずれか一方に向かって平行移動させ、平行移動させた中心線TCが貫通孔12の径が極小値を取る点と接触させ、接触させた点を基準点RPとする。そして、基準点RPから5%から95%のそれぞれの目盛り位置の高さの断面の位置に接線ssを引き、接線ssの傾斜角度を測定し、その傾斜角度を、5%から95%のそれぞれの断面の位置における傾斜角度であるとする。なお、傾斜角度は、貫通孔12の径が上方に向けて広がる方向を正とする。
 上述のように、第一実施形態においては、傾斜角度の測定方法は、(1)貫通孔12の中心線を作成する、(2)中心線を開口部が極小値となる位置に水平移動し基準点を作成する、(3)基準点から貫通孔の特定の位置に接線を引き角度を測定する、という手順(1)から(3)を含む。特に(2)基準点を作成する手順を用いることにより、貫通孔全体を俯瞰するようなスケールでかつ側壁の微細な凹凸の影響を受けない信頼性の高い測定を行うことができる。
 なお、具体的な傾斜角度測定では、貫通孔12を第一面101側より、スクライブおよび精密ブレイカーを使用し、貫通孔12を中央部で割断(裁断)して、貫通孔12の断面を表出させる。割断の方法としては、例えば3点曲げを適用することができる。その後、表出した断面についてSEM観察を実施し、断面のSEM画像を画像解析することによって、貫通孔12の角度測定を実施している。
(貫通孔の傾斜角度の測定方法(X形状))
 次に、図2を参照して、本発明の第二実施形態で得られる貫通孔12の形状における傾斜角度の測定方法について説明する。
 図2は、高さ方向の中央部がくびれた砂時計形状(以下、「X形状」ともいう。)の貫通孔12の断面および傾斜角度の測定方法を示す図である。図2に示される貫通孔12の断面は、貫通孔12を第一面101側からスクライブにて割断して断面を表出させ、SEM(Scanning Electron Microscope:走査電子顕微鏡)によって観察されたSEM画像を画像解析したものである。図2(a)および図2(b)において、貫通孔12の中心を通過する面で断面とした様子を示しており、図1と同様に、パターン模様で示した箇所がガラス基板10を示している。また、図2(a)および(b)に示される目盛り5%、10%、・・・95%は、ガラス基板10の第一面101から第二面102までの長さを割合で示している。
 図2に示す貫通孔12の形状は、目盛り50%の位置でほぼ上下対称の構造を持つ。貫通孔12の側面の傾斜角度の測定方法について、第一面101からの距離が5%から50%までの区間に関しては、図2(a)に示されるように、ガラス基板10の第一面101側の開口部の中心部に、第一面101と垂直になるように中心線TCを引く。次に、矢印に示されるように中心線TCを貫通孔12の両側に向かって平行移動させ、貫通孔12の径が極小値をとる点と接触させ、接触した点を基準点RPとする。そして、基準点RPから5%から50%のそれぞれの目盛りの位置の高さの断面の位置を結ぶ直線である接線ssを引き、接線ssの傾斜角度を測定し、その傾斜角度を、5%から50%のそれぞれの断面の位置における傾斜角度であるとする。傾斜角度は、貫通孔12の径が上方または下方に向けて広がる方向を正とする。
 同様に、第一面101からの距離が50%から95%までの区間に関しては、図2(b)に示されるように、ガラス基板10の第二面102側の開口部において、開口部の中心部に第二面102と垂直になるように中心線TCを引く。次に、矢印に示されるように中心線TCを貫通孔12の両側のいずれか一方に向かって平行移動させ、貫通孔12の径が極小値を取る点と接触させ、接触した点を基準点RPとする。そして、基準点RPから50%から95%それぞれの目盛りの位置の高さの断面の位置に接線ssを引き、接線ssの傾斜角度を測定する。平行移動した中心線TCから接線ssに向かう方向は、図2(a)においては5%から50%の区間の場合は紙面を見て右回りを正とした。一方、図2(b)においては50%から95%までの領域では平行移動した中心線TCから接線ssに向かう方向は紙面を見て左回りであるため、傾斜角度は負の値で表示することとする。
(側面粗さの計測方法)
 続いて、貫通孔12の側面粗さの測定方法について説明する。貫通孔12の側面粗さに測定については、側面角度の測定と同様に貫通孔12の断面をSEMによって観察し、観察されたSEM画像を画像解析ソフトを使用して解析する。貫通孔の側面粗さを計測するためには、通常は、貫通孔の第一面101から第二面102に至る範囲を測定範囲とする。ただし、仮に、貫通孔に凹凸が存在している場合には、当該凹凸部を除いた範囲を2つ以上の測定範囲として設定し、それらの測定範囲の結果を平均して側面粗さとする。また、側面粗さの算出に当たっては、同じ条件で作成した貫通孔5つ(サンプル数n=5)について、同様の測定を行い、これらの平均値を当該条件で作成した貫通孔の側面粗さとして規定する。
 図3は、貫通孔の側面粗さの測定方法を示す図である。図3(a)は、貫通孔12の断面のSEM画像を示す。図3(b)は、貫通孔12の断面を観察したSEM画像より、貫通孔12の側面の輪郭を抽出した図を示す。抽出された輪郭データより平均分散粗さおよび凹凸巾の測定を実施する。図3(c)は、平均分散粗さの計算式および凹凸巾を模式的に示す図である。図3(b)において抽出された輪郭データに関し、第一面101を基準として設定した設定領域Lにおいて、輪郭の粗さを示す粗さ曲線f(x)を測定する。平均分散粗さ(以下、単に「分散粗さ」ともいう。)Raは、式(1)に示されるように、粗さ曲線f(x)の絶対値を2乗したものを、設定領域Lにわたって積分したうえで設定領域Lの長さで割ったものである。また、ラフネス幅(以下、「凹凸巾」ともいう。)aは、粗さ曲線f(x)のうち、粗さの最大値を示すピーク部と粗さの最小値を示すボトム部との差である。
 なお、一つ貫通孔において、複数の粗さ曲線f(x)が設定された場合には、それらから算出された粗さの値の平均値によって当該貫通孔の平均粗さを算出することとなる。
(伝送特性の測定方法)
 伝送特性の測定には、入力波に対する伝搬波の度合いの周波数依存性を示すSパラメータ(S21)を用いる。S21は電力比(透過波電力/入力波電力)の対数で表され、絶対値が小さいほうが伝送損失が小さいことを示す。
 Sパラメータ(S21)の測定にはネットワークアナライザを用いた。測定サンプルとしては、ガラス基板に形成した貫通電極11の周辺を導体で囲み、導体を接地した状態としたものを作製し、これによって、貫通電極11の第一面101側から第二面102側の間におけるS21を測定した。
<第一実施形態に係る実施例及び比較例>
 次に、図4を用いて、第一実施形態での貫通孔12に形状について説明する。図4は、円錐台形状の貫通孔12の断面および傾斜角度の測定方法を示す図である。第一実施形態では、後述する図23に示されるように、レーザ改質部65が形成されたガラス基板10に対して、ガラス基板10の第一面101側からエッチングが行われる。このため、形成された貫通孔12は、第一面101から第二面102に向かって径が窄まる円錐台形状を有する。貫通孔12の側面の傾斜角度は、ガラス基板10に対するレーザ加工条件、エッチング条件によって変化する。
 本発明の各実施例では、表1に示すパルス幅およびショット数の照射条件によってガラス基板にレーザ加工を行い、その後のエッチングにより貫通孔12を形成している。第一実施形態における実施例1においてはパルス幅が5psかつショット数が1、実施例2においてはパルス幅が15psかつショット数が1、実施例3においてはパルス幅が25psかつショット数が1である。
 また、比較例は、第一実施形態に示した製造方法とレーザ加工方法を変更して作成した貫通孔である。つまり、比較例1においてはパルス幅が30psかつショット数が1、比較例2においてはパルス幅が30nsかつショット数が50、比較例3においてはパルス幅が50μsかつショット数が5であるものを用いている。
 なお、各実施例および各比較例のいずれについても、ガラス基板10の第二面102側の開口径は平均80μmであり、この場合、計測値の平均値に標準偏差の3倍を加えた値である3σは4.5μm以下であった。また、形成されたレーザ改質部65の第二面102における開口径について、開口径の最大値φMaxと最小値φMinの差は10μm以下であった。
Figure JPOXMLDOC01-appb-T000002
(貫通孔の傾斜角度)
 以下、図5から図13を参照して、第一の実施形態における各実施例、比較例の貫通孔の形状、特性形状を説明する。
 図5は、第一実施形態における実施例1の貫通孔の傾斜角度の測定結果を示す図である。
 図6は、第一実施形態における実施例2の貫通孔の傾斜角度の測定結果を示す図である。
 図7は、第一実施形態における実施例3の貫通孔の傾斜角度の測定結果を示す図である。
 図8は、第一実施形態における比較例1の貫通孔の断面形状を示す図である。
 図9は、第一実施形態における比較例1の貫通孔の傾斜角度の測定結果を示す図である。
 図10は、第一実施形態における比較例2の貫通孔の断面形状を示す図である。
 図11は、第一実施形態における比較例2の貫通孔の傾斜角度の測定結果を示す図である。
 図12は、第一実施形態における比較例3の貫通孔の形状を示す図である。
 図13は、第一実施形態における比較例3の貫通孔の傾斜角度の測定結果を示す図である。
(傾斜角度)
 表2は、第一実施形態における各実施例および各比較例における貫通孔12の側面の傾斜角度を測定した結果を表形式に取りまとめたものである。第一実施形態における各実施例では、貫通孔12の5%から95%のそれぞれの断面の位置における傾斜角度がほぼ一定となる。第一実施形態における各比較例では、5%から95%の各位置で側面の傾斜角度がばらつくことがわかる。
Figure JPOXMLDOC01-appb-T000003
(平均分散粗さおよび凹凸巾)
 次に、表3を用いて第一実施形態における各実施例および各比較例に関し、貫通孔12の側面の平均分散粗さおよび凹凸巾について説明する。表3に示されるように、第一実施形態の各実施例では、ガラス基板の厚さ方向における貫通孔12の裁断面における側面形状の分散粗さが1,000nm以下かつ凹凸巾が1,500nm以下となる。各比較例では、分散粗さが1,500nm以上かつ凹凸巾が1,500nm以上となり、貫通孔側面の粗さに差があることが確認されている。
Figure JPOXMLDOC01-appb-T000004
(伝送特性)
 続いて、図14を用いて、第一実施形態における各実施例および各比較例の貫通電極の伝送特性について説明する。図14は、第一実施形態における、実施例1の貫通電極の伝送特性と、比較例1の貫通電極の伝送特性を示す図である。図14において、伝送特性としては、伝送損失S21を測定した結果を示している。なお、実施例1から3は伝送特性が同じ傾向を示したため、代表して実施例1を示している。また、比較例1から3についても伝送特性がほとんど同じ傾向を示したので、代表して比較例1を示している。
 なお、貫通孔に電極を形成するためのシード層の形成およびめっき処理等の形成条件は、実施例および比較例のいずれも共通とした。図14に示されるように、いずれの周波数領域においても、実施例の伝送損失のほうが比較例の伝送損失よりも小さいことが示される。したがって、貫通孔の側面については、分散粗さ、凹凸巾の値が小さいほど、貫通孔に形成される貫通電極における損失が小さくなり、伝送特性が良いことが分かる。
(ガラス基板の厚みを変更した場合の伝送特性)
 また、各実施例および各比較例について、ガラス基板10の厚みを変更した場合の伝送特性S21についても測定した。この結果を表4に示す。表4に示されるように、ガラス基板10の厚みを100μm、150μm、200μmに設定したうえで、各実施例および各比較例に基づく条件で貫通孔及び貫通電極を作成し、伝送特性を計測した。表4に示されるように、第一実施形態における各実施例では、各比較例に比べ伝送特性S21が良好な値を示していることが確認される。
 なお、表4に示す伝送特性は、単一の貫通電極の伝送特性となっており、複数個の貫通電極を必要とする多層配線基板では、単一貫通電極の伝送特性の向上が大きな性能向上につながる。第一実施形態に係る各実施例を使用することで、既存技術と比較し、高周波数帯での貫通電極の良好な伝送特性を実現した多層配線基板を得ることが可能となる。
Figure JPOXMLDOC01-appb-T000005
(断面形状)
 次に、貫通孔12の側面形状について説明する。図15Aは、第一実施形態の各実施例および並びに比較例に関し貫通孔の側面を説明する図である。図15Aは、第一実施形態における各実施例および各比較例の貫通孔の断面のSEM画像を示す図である。
 SEM画像は、ガラス基板の厚さ方向における貫通孔の裁断面を撮影したものである。図15Aに示されるSEM画像は、倍率は1000倍である(スケールの1目盛りは5μmである)。
 SEM画像において、コントラストが高く白色に見える箇所は、試料表面の傾斜面の角度が切り替わり、傾斜面の稜線となっている領域である。このため、白線で見える箇所は、試料表面の粗さのピークまたはボトムを示す箇所であり、これらの貫通孔の側面に形成されている稜線の存在状況や配置の程度によって、貫通電極の伝送特性に影響を与える貫通孔の側面の粗さを把握することができる。
 図15Aに示す第一実施形態の各実施例では、ガラス基板10の第一面101と平行な方向や略平行な方向に延びる白線の稜線が現れて複数視認でき、帯状の縞模様が形成されている。
 ここで、図15Bを参照して、貫通孔の断面の稜線について説明する。図15Bは、第一実施形態における各実施例の貫通孔の稜線を説明する図である。図15B(a)は図15Aの実施例3を拡大して示す図である。また、図15B(b)は、SEM画像において観察される貫通孔について、側面および断面の稜線を実線で示す図である。
 図15B(b)に示される例では、略平行な稜線のうち、稜線の間隔がもっとも広くなる場合は、稜線Rl1と稜線Rl2の間である。図15B(b)に示される例では、第一面101と垂直な方向の側面上の稜線の間隔はRs以下である。図15B(a)に示されるように、実施例3においては、稜線の間隔は、15.5μm以下である。
 同様の手法で、稜線の状況を観察すると、実施例1においては、第一面101と垂直な方向における稜線と稜線の間隔は、2μm以上3μm以下の範囲である。また、実施例2においては、ガラス基板10の第一面101と垂直な方向における稜線と稜線の間隔は、5μm以上6μm以下の範囲である。
 また、図15Aから明らかなように、第一実施形態における実施例3から1に変化するにつれて、つまり、貫通孔の側面の平滑度である分散粗さが小さくなるにつれて、貫通孔12の側面において、ガラス基板10の第一面101に平行な方向に延びる稜線として視認できる白線が緻密になり、稜線と稜線との間隔が狭くなる。これとは反対に、分散粗さが大きくなるほど(すなわち、実施例1から実施例3に変化し、更に、比較例1から3に変化するにつれて、稜線と稜線との間隔が大きくなるとともに、第一面101と平行ではない方向に延びる稜線も増えてくる。そして、更には、第一面101と垂直な方向に延びる稜線や第一面101と平行な方向と垂直な方向との間の方向(以下、「斜方向」ともいう。)に延びる稜線の発生頻度が多くなることが解る。これらは、分散粗さが小さくなるほど、垂直方向に延びる稜線および斜方向に延びる稜線の割合が少なくなることを示している。例えば、実施例2においては、平均分散粗さが500nmであって、凹凸巾が980nmの場合、第一面101に平行な方向と第一面101と垂直な方向の間の方向(つまり斜方向)に延びる白線が視認可能になる。
 一方、第一実施形態における比較例1から3のように貫通孔の側面が粗くなる(平均分散粗さ1,000nmより大きくかつ凹凸巾1,500nmより大きい)場合、ガラス基板10の第一面101に垂直な方向に、または第一面101と垂直な方向と第一面101に平行な方向の間の方向に、延びる白線の割合が増えてくる。すなわち、斜方向において、稜線が複数視認可能になる。このような貫通孔12側面の平滑性(粗さ)がSEM画像に表れ、また、貫通電極の伝送特性に影響することがわかる。
 なお、伝送特性の観点から、実施例1から3に示される貫通電極が比較例1から3に示される貫通電極よりも良好な結果が得られている。実施例の中で比較すると、実施例1が最も好ましく、実施例2、実施例3の順に良好であるということができる。
<第一実施形態に係る多層配線基板の構成>
 図16は、第一実施形態に係る多層配線基板の構成の一例を示す図である。また、図17は、第一実施形態に係る多層配線基板の構成の他の例を示す図である。多層配線基板1は、ガラス基板10、第一配線層21、および第二配線層22を含む。ガラス基板10の第一面101側には第一配線層21、ガラス基板10の第二面102側には第二配線層22が配置されている。ガラス基板10は、第一面101側から第二面102側まで貫通する貫通孔12を備える。貫通電極11は、貫通孔12の側面に沿って形成された導電体によって構成される。貫通電極11は第一配線層21の一部と第二配線層22の一部とを電気的に接続する。第一配線層21および第二配線層22は絶縁樹脂層25を含んでいる。
 また、第一配線層21および第二配線層22は複数の層が積層された構成でもよく、その層数は必要に応じて設定してよい。貫通電極11は、第一配線層21と第二配線層22の間に電気的な接続を確立するための電極である。導通電極31は、多層配線基板1において基板の厚さ方向に導通を確保するための電極である。また、半導体素子用接合パッド50は、多層配線基板1に搭載する半導体回路を接続するための部材である。基板用接合パッド54は、多層配線基板1と他の基板または他の半導体素子とを接合するための部材である。
 なお、貫通電極は、ガラス基板10の第一面101側から第二面102側を電気的に接続が可能であれば、図16に示すように貫通孔12の側面のみに導電体を配置してもよいし、図17に示すように貫通孔12に導電体を埋め込んでも構わない。
 なお、図16および図17において、貫通孔12の形状は詳細を省略して示している。図18から図27においても同様に省略してある。
 また、多層配線基板1の厚みは、例えば、100μm以上かつ400μm以下の範囲である。
<第一実施形態における多層配線基板の製造方法>
 第一実施形態における多層配線基板1の製造方法について、図18から図27を用いて説明する。まず、ガラス基板10に貫通孔12を形成する工程について説明する。
[第一支持体の接着工程]
 図18は、ガラス基板10を第一支持体62に張り合わせる工程を示す図である。ガラス基板10の厚みは、エッチング後の厚みを考慮したうえで、用途に応じて適宜設定することができる。
 ここで、ガラス基板10の厚みは、貫通孔を形成するためのエッチング工程の後のガラス基板10の厚みを考慮したうえで、用途に応じて適宜設定することができる。
 ガラス基板10としては、例えばSiO比率が55質量%以上81質量%以下の範囲である無アルカリガラスを用いることができる。ガラス基板10のSiO比率が81質量%より大きい場合、エッチングの加工速度が低下し、貫通孔12の側面の角度の平坦性が低下し、後述する貫通電極11の形成時に付き回り不良が発生してしまうことがある。また、SiO比率が55質量%より小さい場合、ガラス中にアルカリ金属が含まれる可能性が高くなり、電子デバイス搭載後の多層配線基板の信頼性に影響する。
 図18に示されるように、第一接着層61において、ガラス基板10と第一支持体62が貼り合わされており、ガラス基板10、第一接着層61、第一支持体62を含む積層構造体63が形成される。
 なお、ガラス基板10と第一支持体62は、第一接着層61によって仮固定されている。
 ガラス基板10に第一支持体を貼り合わせるためには、例えば、ラミネーター、真空加圧プレス、減圧貼り合わせ機等を使用することができる。
 第一支持体62は、例えば、ガラス基板10と同一の材料であることが望ましい。ガラス基板10のSiO比率が55質量%以上81質量%以下の範囲である無アルカリガラスである場合、第一支持体62も無アルカリガラスであることが望ましい。また第一支持体62の厚みについては、ガラス基板10の厚みに応じて、適宜設定することができる。ただし、製造工程中に搬送可能な厚みであることが望ましく、支持体の厚みは、例えば300μm以上1,500μm以下の範囲とする。
[レーザ改質工程]
 続いて、図19は、レーザ改質部を形成する工程を示す図である。ガラス基板10の貫通孔形成予定部にレーザを照射することによって、ガラス基板10にレーザ改質部65が形成される。レーザ改質部65は、ガラス基板10に対しΦ3μm以下の形状で形成されており、ガラス基板10の厚み方向に連続的に形成される。この時、レーザ改質部65の周辺(以下、「レーザ照射周辺部」ともいう。)には、5μm以上の微小なクラック(以下、「マイクロクラック」ともいう。)が発生していないことが望ましい。レーザ改質部65の周辺に5μm以上のマイクロクラックが発生すると、エッチング加工後の貫通孔12の側面の分散粗さが1000nm以上となり、凹凸巾も1500nm以上となる。この結果、平滑な側面の貫通孔12を得ることが困難となる。
 また、5μm以上のマイクロクラックが発生した場合、後述するように、エッチング後の貫通孔12の側面では、SEM画像において、ガラス基板10の第一面101平行な方向に延びる稜線以外にも、第一面101と垂直な方向に延びる稜線および、第一面101に平行な方向と第一面101と垂直な方向の間の方向に延びる稜線を視認可能になる。
 レーザ改質部65の加工については、例えば、フェムト秒レーザまたはピコ秒レーザを用い、且つレーザ発振波長は1064nm、532nm、または355nmのうちのいずれかの波長を使用することが好ましい。レーザのパルス幅が25ピコ秒以上ではレーザ改質部65の周辺に5μm以上のマイクロクラックが発生し易くなることから、レーザパルス幅は25ピコ秒以下であることが望ましい。また、複数回のパルス照射による加工を行うとマイクロクラックが発生し易くなることから、1パルスでレーザ改質部65を形成することが望ましい。レーザ改質部65の周辺に5μm以上のマイクロクラックが発生しない条件であれば、レーザ発振波長およびレーザ出力は、ガラス基板10の厚みに応じて、適宜設定して構わない。すなわち、レーザ改質工程(第1の工程)において、ガラス基板に対して、貫通孔形成予定部にレーザを照射し、レーザ照射周辺部に発生するマイクロクラックの最大長さが5μmである、ということもできる。
[第一配線層の形成]
 続いて、図20は、第一配線層21を形成する工程を示す図である。図20に示されるように、積層構造体63のガラス基板10上の第一面101に導電層と絶縁樹脂層からなる第一配線層21の形成を行う。ここでは、ガラス基板10上には耐フッ酸金属層を含むシード層を形成した後に、セミアディティブ(SAP)工法で第一面101に貫通電極接続部41(または貫通電極間の配線)を形成する。不要となったシード層を除去した後に、絶縁樹脂層25を形成する。
 なお、シード層の形成について、ガラス基板10上の耐フッ酸金属層は、クロム、ニッケル、または双方を含む合金層であり、スパッタ処理にて10nm以上1,000nm以下の範囲で形成することができる。その後、耐フッ酸金属上に導電金属皮膜を所望の厚みで形成する。導電金属皮膜は、例えば、Cu、Ni、Al、Ti、Cr、Mo、W、Ta、Au、Ir、Ru、Pd、Pt、AlSi、AlSiCu、AlCu、NiFe、ITO、IZO、AZO、ZnO、PZT、TiN、Cuから適宜設定することができる。
 セミアディティブ工法においては、めっきによる配線パターンを形成するために、フォトレジストを使用して所望のパターンを形成する。一般的には、ドライフィルムレジストを用いるが、液体のレジストを使用しても構わない。所望のパターンを露光、現像しパターン形成した後に、電解めっきにてめっき被膜を形成し、不要となったレジストを剥離し、シード層をエッチングすることで配線形成を行うことができる。
[絶縁樹脂層]
 次に絶縁樹脂層25の形成について、絶縁樹脂層25は熱硬化性樹脂であり、その材料は、エポキシ系樹脂、ポリイミド系樹脂、ポリアミド系樹脂の少なくとも一つを含み、かつシリカSiOフィラーを含む材料である。絶縁樹脂層25の材料は、必要に応じて適宜選択することができる。但し、感光性絶縁樹脂材料を用いる場合は、フォトリソグラフィ性を確保するためにシリカSiOフィラーの充填が困難となるため、感光性絶縁樹脂材料も使用可能であるが、熱硬化性樹脂を用いる方がより好ましい。
[第二支持体の接着工程]
 次に、図21は、第二支持体を接着する工程を示す図である。図21に示されるように、積層構造体63の第一配線層21上に第二接着層71を形成し、第二接着層71上に第二支持体70を配置し接着する。
 第二支持体70については、例えばガラスを用いることができ、ガラス基板10と同一の材料であることが望ましい。ガラス基板10が無アルカリガラスである場合、第二支持体70も無アルカリガラスであることが望ましい。また第二支持体70の厚みについては、ガラス基板10の厚みに応じて、適宜設定することができる。ただし、搬送可能な厚みであることが望ましく、その範囲は300μm以上1,500μm以下の範囲である。
[剥離工程]
 次に、図22は、第一支持体を剥離する工程を示す図である。図22に示されるように、ガラス基板10と第一支持体62を第一接着層61において剥離する。
[貫通孔の形成]
 続いて、図23は、貫通孔12を形成する工程を示す図である。
[エッチング工程]
 レーザ改質部65が形成されたガラス基板10に対し、所定のエッチング液でエッチング処理を施すことで貫通孔12が形成される。また、同時に、ガラス基板10の第二面もエッチングされ、ガラス基板10の厚さが減少することとなる。エッチングはガラス基板10の第二面102側から行われる。このため、第一実施形態の貫通孔12は、第二面102側から第一面101側に向かうにつれて径が窄まる円錐台形状を有する。
[エッチング液]
 エッチング液は、フッ酸を0.2質量%以上20.0質量%以下の範囲とし、硝酸を4.0質量%以上25.0質量%以下の範囲とし、フッ酸および硝酸以外の無機酸を0.5質量%以上11.0質量%以下の範囲として含有するものが用いられる。フッ酸および硝酸以外の無機酸としては、例えば、塩酸、硫酸、リン酸、スルファミン酸等が挙げられ、ガラス基板10中に含まれるケイ素以外の成分の種類に応じて、少なくとも1つの無機酸を含有させる。望ましくは、塩酸および硫酸を含有させたエッチング液であり、ガラス基板10に対するエッチングレートとしては、0.1μm/分以上10μm/分以下の範囲になるように適宜調整される。ガラス基板10に対するエッチングレートは、望ましくは0.25μm/分以上4μm/分以下の範囲であり、より望ましくは0.25μm/分以上0.5μm/分以下の範囲である。エッチング温度としては、特に限定されず、適宜調整することができるが、例えば10℃以上30℃以下の範囲となる。
 なお、エッチングによる貫通孔12の形成工程では、フッ酸の濃度を下げて複数回のエッチングを行うようにしてもよい。例えば、初回でのエッチング処理はガラス基板10に対するエッチングレートを4μm/分以上10μm/分以下の範囲とし、二回目のエッチング処理をガラス基板10に対するエッチングレートを0.5μm/分以上4μm/分以下の範囲とし、その後、三回目のエッチング処理をガラス基板10に対するエッチングレートを0.25μm/分以上0.5μm/分以下の範囲とすることが挙げられる。エッチングの処理回数については、貫通孔の側面の粗さが所望の範囲になるように適宜処理回数を設定してよい。
[貫通電極の形成]
 次に、図24を参照して、貫通電極11の形成工程について説明する。図24は、貫通電極11を形成する工程を示す図である。
 貫通孔12が形成されたガラス基板10に対し、第二面102から、電解めっき処理のための金属層を形成する。金属層については、電解めっき処理のシード層として機能する金属であればよく、例えば、Cu、Ti、Cr、W、Ni等を含む金属である。金属層には上記金属のうち少なくとも1つが用いられ、また金属層の最表面にCu層が形成されていることが望ましい。Ti、Cr、W、Niについては、Cu層の下部のガラス基板10との密着層として使用されることが望ましい。金属層の厚みは、貫通孔12の側面を覆うことができる範囲に適宜設定される。形成方法としては、例えばスパッタリングを用いた蒸着による形成方法を採用することが可能である。
 続いて、上記金属層をシード層として用いる電解めっき処理によって、貫通電極11を形成する。貫通孔12内を選択的に成長させるために、ガラス基板10の第一面101および第二面102のうち貫通孔12以外の部分にレジスト等の絶縁体でマスクを形成しておき、電解めっき処理を行う。電解めっき処理に用いる材料については、例えばCuを用いることが可能であり、他の金属としては、Au、Ag、Pt、Ni、Sn等を含む金属を用いることも可能である。多層配線基板の用途に応じて、上記金属の導電体で貫通孔12内が充填されるように電解めっき処理を行っても構わない。
[絶縁樹脂層の形成]
 また、図25を参照して、絶縁樹脂層25の形成工程について説明する。図25は、絶縁樹脂層を形成する工程を示す図である。貫通電極を形成するための電解めっき処理をした後は、レジスト等の絶縁体を除去し、ガラス基板10の第二面102に形成されたシード層とした金属膜を除去する。ガラス基板10に形成された複数の貫通電極11それぞれを電気的に独立させた後に、図25に示されるように、第二面側に絶縁樹脂層25の形成を行う。
[第二支持体の剥離]
 続いて、図26を参照して、第二支持体70および第二接着層71の剥離工程について説明する。図26は、第二支持体70および第二接着層71を剥離する工程を示す図である。図26に示されるように、第一配線層21の上方に形成された第二接着層71および第二支持体70を、第一面101側の第一配線層21と第二接着層71の界面より剥離する。これによって、図26に示されるように、第一面101側に第一配線層21、第二面102側に第二配線層22が形成された状態のガラス基板10が得られる。
 第二支持体70を第二配線層22から剥離するにあたっては、第二接着層71に使用した材料に応じて、UV光の照射、加熱処理、物理剥離等から使用材料に応じた剥離方式を適宜選択することができる。また、第一配線層21と第二接着層71との接合面に、第二接着層71の残差が生じる場合、プラズマ洗浄、超音波洗浄、水洗、アルコールを使用した溶剤洗浄などを行ってもよい。
[第一配線層および第二配線層の形成]
 続いて、図27を参照して、ガラス基板10に形成される第一配線層21および第二配線層22の形成について説明する。図27は、第一配線層21および第二配線層22を形成する工程を示す図である。貫通電極11が形成されたガラス基板10に対し、第一面101に第一配線層21を形成し、第二面102に第二配線層22を形成する。第一配線層21および第二配線層22の形成工程において、最初に、感光性のレジストまたはドライフィルムレジストによってパターンを有するマスクを形成した後に、電解めっき処理によって配線を形成する。その後、物理密着処理、もしくは、化学的な密着処理を施した後に、絶縁樹脂層25を積層する。導通電極31については、レーザ加工等によって絶縁樹脂層25に孔を形成した後に、無電解めっき、もしくは、スパッタリングによる蒸着処理によって金属皮膜を形成する。上記金属皮膜にレジストを用いてパターンを有するマスクを形成し、電解めっきによって形成した孔に導電体を充填する。その後、マスクおよび余分の金属皮膜を除去する。上記工程は必要な層数に応じて複数回繰り返すことで、第一配線層21および第二配線層22が形成される。なお、第一配線層21および第二配線層22は多層配線基板1の反りを抑制するために、同じ層数であることが望ましい。第一配線層21および第二配線層22の層厚が異なる場合は、第一配線層21と第二配線層22に層数を変えても構わない。多層配線基板の用途に応じて、第一配線層21の層数および第二配線層22の層数は適宜設定してよい。
 <第二実施形態における多層配線基板の構成>
 図28は、第二実施形態における多層配線基板1の構成の一例を示す図である。また、図29は、第二実施形態における多層配線基板1の構成の他の例を示す図である。第二実施形態では、第一配線層21の貫通電極11のZ軸方向上に導通電極31を配置しない点、及び、多層配線基板の製造工程において、支持体を用いないため、ガラス基板10の第一面101及び第二面102の両側からエッチング処理が行われ、貫通孔形状がX形状となる点で、前述の第一実施形態と異なっている。
 第二実施形態において、多層配線基板1は、ガラス基板10、第一配線層21、および第二配線層22を含む。ガラス基板10の第一面101側には第一配線層21、ガラス基板10の第二面102側には第二配線層22が配置されている。ガラス基板10は、第一面101側から第二面102側まで貫通する貫通孔12を備える。貫通電極11は、貫通孔12の側面に沿って形成された導電体によって構成される。貫通電極11は第一配線層21の一部と第二配線層22の一部とを電気的に接続する。第一配線層21および第二配線層22は絶縁樹脂層25を含む。第一配線層21および第二配線層22は複数の層が積層された構成でもよく、その層数は必要に応じて設定してよい。貫通電極11は、第一配線層21と第二配線層22の間に電気的な接続を確立するための電極である。導通電極31は、多層配線基板1において基板の厚さ方向に導通を確保するための電極である。また、半導体素子用接合パッド50は、多層配線基板1に搭載する半導体回路を接続するための部材である。基板用接合パッド54は、多層配線基板1と他の基板または他の半導体素子とを接合するための部材である。
 なお、貫通電極は、ガラス基板10の第一面101側から第二面102側を電気的に接続が可能であれば、図28に示すように貫通孔12の側面のみに導電体を配置してもよいし、図29に示すように貫通孔12に導電体を埋め込んでも構わない。
 なお、図28および図29において、貫通孔12の形状は詳細を省略して示している。図30から図34においても同様に省略してある。
 また、多層配線基板1の厚みは、例えば、100μm以上400μm以下の範囲である。
<第二実施形態における多層配線基板の製造方法>
 続いて、多層配線基板1の製造方法について、図30から図34を用いて説明する。まず、ガラス基板10に貫通孔12を形成する工程について説明する。
[ガラス基板]
 図30は、ガラス基板10を準備する工程を示す図である。ガラス基板10の厚みは、貫通孔を形成するためのエッチング工程の後のガラス基板10の厚みを考慮したうえで、用途に応じて適宜設定することができる。
 ガラス基板10としては、例えばSiO比率が55質量%以上81質量%以下の範囲である無アルカリガラスを用いることができる。ガラス基板10のSiO比率が81質量%より大きい場合、エッチングの加工速度が低下し、貫通孔12の側面の角度の平坦性が低下し、後述する貫通電極11の形成時に付き回り不良が発生してしまうことがある。また、SiO比率が55質量%より小さい場合、ガラス中にアルカリ金属が含まれる可能性が高くなり、電子デバイス搭載後の多層配線基板の信頼性に影響する。
[レーザ改質工程]
 続いて、図31は、レーザ改質部を形成する工程を示す図である。ガラス基板10の貫通孔形成予定部にレーザを照射することによって、ガラス基板10にレーザ改質部65が形成される。レーザ改質部65は、ガラス基板10に対しΦ3μm以下の形状で形成されており、ガラス基板10の厚み方向に連続的に形成される。この時、レーザ改質部65の周辺以下、「レーザ照射周辺部」ともいう。)には、5μm以上の微小なクラック(以下、「マイクロクラック」ともいう。)が発生していないことが望ましい。レーザ改質部65の周辺に5μm以上のマイクロクラックが発生すると、エッチング加工後の貫通孔12の側面の分散粗さが1000nm以上となり、凹凸巾も1500nm以上となる。この結果、平滑な側面の貫通孔12を得ることが困難となる。
 また、5μm以上のマイクロクラックが発生した場合、後述するように、エッチング後の貫通孔12の側面では、SEM画像において、ガラス基板10の第一面101平行な方向に延びる稜線以外にも、第一面101と垂直な方向に延びる稜線および、第一面101に平行な方向と第一面101と垂直な方向の間の方向に延びる稜線を視認可能になる。
 レーザ改質部65の加工については、例えば、フェムト秒レーザまたはピコ秒レーザを用い、且つレーザ発振波長は1064nm、532nm、または355nmのうちのいずれかの波長を使用することが好ましい。レーザのパルス幅が25ピコ秒以上ではレーザ改質部65の周辺に5μm以上のマイクロクラックが発生し易くなることから、レーザパルス幅は25ピコ秒以下であることが望ましい。また、複数回のパルス照射による加工を行うとマイクロクラックが発生し易くなることから、1パルスでレーザ改質部65を形成することが望ましい。レーザ改質部65の周辺に5μm以上のマイクロクラックが発生しない条件であれば、レーザ発振波長およびレーザ出力は、ガラス基板10の厚みに応じて、適宜設定して構わない。すなわち、レーザ改質工程(第1の工程)において、ガラス基板に対して、貫通孔形成予定部にレーザを照射し、レーザ照射周辺部に発生するマイクロクラックの最大長さが5μmである、ということもできる。
[エッチング工程]
 続いて、図32は、貫通孔を形成する工程を示す図である。エッチング工程(第2の工程)は、レーザ照射された前記ガラス基板をエッチングし、貫通孔を形成する工程である。レーザ改質部65が形成されたガラス基板10に対し、所定のエッチング液でエッチング処理を施すことで貫通孔12が形成される。また、同時に、ガラス基板10の第一面および第二面もエッチングされ、ガラス基板10の厚さが減少することとなる。エッチングを、ガラス基板10の第一面101および第二面102の両方から行なうと、第二実施形態の貫通孔12は、ほぼ上下対称の形状に加工される。
[エッチング液]
 エッチング液は、フッ酸を0.2質量%以上20.0質量%以下の範囲とし、硝酸を4.0質量%以上25.0質量%以下の範囲とし、フッ酸および硝酸以外の無機酸を0.5質量%以上11.0質量%以下の範囲として含有するものが用いられる。フッ酸および硝酸以外の無機酸としては、例えば、塩酸、硫酸、リン酸、スルファミン酸等が挙げられ、ガラス基板10中に含まれるケイ素以外の成分の種類に応じて、少なくとも1つの無機酸を含有させる。望ましくは、塩酸および硫酸を含有させたエッチング液であり、ガラス基板10に対するエッチングレートとしては、0.1μm/分以上10μm/分以下の範囲になるように適宜調整される。ガラス基板10に対するエッチングレートは、望ましくは0.25μm/分以上4μm/分以下の範囲であり、より望ましくは0.25μm/分以上0.5μm/分以下の範囲である。エッチング温度としては、特に限定されず、適宜調整することができるが、例えば10℃以上30℃以下の範囲となる。
 なお、エッチングによる貫通孔12の形成工程では、フッ酸の濃度を下げて複数回のエッチングを行うようにしてもよい。例えば、初回でのエッチング処理はガラス基板10に対するエッチングレートを4μm/分以上10μm/分以下の範囲とし、二回目のエッチング処理をガラス基板10に対するエッチングレートを0.5μm/分以上4μm/分以下の範囲とし、その後、三回目のエッチング処理をガラス基板10に対するエッチングレートを0.25μm/分以上0.5μm/分以下の範囲とすることが挙げられる。エッチングの処理回数については、貫通孔の側面の粗さが所望の範囲になるように適宜処理回数を設定してよい。
[貫通電極の形成]
 続いて、図33は、貫通孔12に貫通電極11を形成する工程を示す図である。
 貫通孔12が形成されたガラス基板10に対し、第一面101および第二面102から、電解めっき処理のための金属層を形成する。金属層については、電解めっき処理のシード層として機能する金属であればよく、例えば、Cu、Ti、Cr、W、Ni等を含む金属である。金属層には上記金属のうち少なくとも1つが用いられ、また金属層の最表面にCu層が形成されていることが望ましい。Ti、Cr、W、Niについては、Cu層の下部のガラス基板10との密着層として使用されることが望ましい。金属層の厚みは、貫通孔12の側面を覆うことができる範囲に適宜設定される。形成方法としては、例えばスパッタリングを用いた蒸着による形成方法を採用することが可能である。
 続いて、上記金属層をシード層として用いる電解めっき処理によって、貫通電極11を形成する。貫通孔12内を選択的に成長させるために、ガラス基板10の第一面101および第二面102のうち貫通孔12以外の部分にレジスト等の絶縁体でマスクを形成しておき、電解めっき処理を行う。電解めっき処理に用いる材料については、例えばCuを用いることが可能であり、他の金属としては、Au、Ag、Pt、Ni、Sn等を含む金属を用いることも可能である。多層配線基板の用途に応じて、上記金属の導電体で貫通孔12内が充填されるように電解めっき処理を行っても構わない。
 電解めっき処理後は、レジスト等の絶縁体を除去し、またガラス基板10の第一面101および第二面102に形成された金属膜を除去し、ガラス基板10に形成された複数の貫通電極11それぞれを電気的に独立させる。
[第一配線層および第二配線層の形成]
 続いて、図34を参照して、ガラス基板10に形成される第一配線層21および第二配線層22の形成について説明する。図34は、第一配線層21および第二配線層22を形成する工程を示す図である。貫通電極11が形成されたガラス基板10に対し、第一面101に第一配線層21を形成し、第二面102に第二配線層22を形成する。第一配線層21および第二配線層22の形成工程において、最初に、感光性のレジストまたはドライフィルムレジストによってパターンを有するマスクを形成した後に、電解めっき処理によって配線を形成する。その後、物理密着処理、もしくは、化学的な密着処理を施した後に、絶縁樹脂層25を積層する。導通電極31については、レーザ加工等によって絶縁樹脂層25に孔を形成した後に、無電解めっき、もしくは、スパッタリングによる蒸着処理によって金属皮膜を形成する。上記金属皮膜にレジストを用いてパターンを有するマスクを形成し、電解めっきによって形成した孔に導電体を充填する。その後、マスクおよび余分の金属皮膜を除去する。上記工程は必要な層数に応じて複数回繰り返すことで、第一配線層21および第二配線層22が形成される。なお、第一配線層21および第二配線層22は多層配線基板1の反りを抑制するために、同じ層数であることが望ましい。第一配線層21および第二配線層22の層厚が異なる場合は、第一配線層21と第二配線層22に層数を変えても構わない。層配線基板の用途に応じて、第一配線層21の層数および第二配線層22の層数は適宜設定してよい。
[絶縁樹脂層]
 絶縁樹脂層25は熱硬化性樹脂によって構成される。その材料は、例えば、エポキシ系樹脂、ポリイミド系樹脂、ポリアミド系樹脂の少なくとも一つを含み、かつシリカSiOフィラーを含む材料であり、液状、もしくはフィルム状の材料である。液状樹脂の場合はスピンコート法、フィルム状樹脂の場合は真空ラミネーターそれぞれを用い、いずれの場合においても真空下で加熱・加圧を行って形成することができる。絶縁樹脂層25の材料は、必要に応じて適宜選択することができる。
<第二実施形態に係る実施例、比較例>
 図2を用いて、第二実施形態における貫通孔12に形状について説明する。第二実施形態では、図32に示されるように、レーザ改質部65が形成されたガラス基板10に対して、第一面101および第二面102からエッチングを行う。このため、形成された貫通孔12は、第一面101と第二面102の間のほぼ中間にある位置に径が最も小さくなる極小点を有しており、上下対象な構造を持つようになる。貫通孔12の側面の傾斜角度は、ガラス基板10に対するレーザ加工条件、エッチング条件よって変化する。第二実施形態の各実施例では、表5に示すパルス幅およびショット数の照射条件でレーザ加工し、エッチングで貫通孔12を形成している。実施例1においてはパルス幅が5psかつショット数が1、実施例2においてはパルス幅が15psかつショット数が1、実施例3においてはパルス幅が25psかつショット数が1である。
 また、比較例は、第二実施形態に示した製造方法と同じ方法によって作成された貫通孔である。第二実施形態における比較例1においてはパルス幅が30psかつショット数が1、比較例2においてはパルス幅が30nsかつショット数が100、比較例3においてはパルス幅が50μsかつショット数が10である。
 なお、各実施例および各比較例のいずれについても、ガラス基板10の第一面101側の開口径が平均80μmであり、3σが4.5μm以下であった。また、形成されたレーザ改質部65の第一面101側の開口径について、開口径の最大値φMaxと最小値φMinの差は5μm以下であった。
Figure JPOXMLDOC01-appb-T000006
(貫通孔の傾斜角度)
 以下、図35から図43を用いて、各実施例、比較例の貫通孔の形状、特性形状を説明する。
 図35は、第二実施形態における実施例1の貫通孔の傾斜角度の測定結果を示す図である。
 図36は、第二実施形態における実施例2の貫通孔の傾斜角度の測定結果を示す図である。
 図37は、第二実施形態における実施例3の貫通孔の傾斜角度の測定結果を示す図である。
 図38は、第二実施形態における比較例1の貫通孔の断面形状を示す図である。
 図39は、第二実施形態における比較例1の貫通孔の傾斜角度の測定結果を示す図である。
 図40は、第二実施形態における比較例2の貫通孔の断面形状を示す図である。
 図41は、第二実施形態における比較例2の貫通孔の傾斜角度の測定結果を示す図である。
 図42は、第二実施形態における比較例3の貫通孔の断面形状を示す図である。
 図43は、第二実施形態における比較例3の貫通孔の傾斜角度の測定結果を示す図である。
 表6は、第二実施形態における各実施例および各比較例における貫通孔12の側面の傾斜角度を測定した結果を示す。第二実施形態に係る各実施例では、貫通孔12の側面角度が第一面101からの距離50%を起点にして、上下対称でほぼ一定となる。各比較例では、5%から95%の各位置で貫通孔12の側面の傾斜角度がばらつくことがわかる。
Figure JPOXMLDOC01-appb-T000007
(平均分散粗さおよび凹凸巾)
 次に、表7を用いて第二実施形態における各実施例および各比較例に関し貫通孔12の側面の平均分散粗さおよび凹凸巾について説明する。
 表7は、第二実施形態における各実施例および各比較例における貫通孔12の側面の傾斜角度を測定した結果を表形式に取りまとめたものである。
 表7に示されるように、第二実施形態の各実施例では、分散粗さが1,000nm以下かつ凹凸巾が1,500nm以下となる。各比較例では、分散粗さが1,500nm以上かつ凹凸巾が1,500nm以上となり、貫通孔側面の粗さに差があることが確認されている。
Figure JPOXMLDOC01-appb-T000008
(伝送特性)
 続いて、図44を用いて、第二実施形態での各実施例、各比較例の貫通電極の伝送特性について説明する。図44は、第二実施形態における、実施例1の貫通電極の伝送特性と、比較例1の貫通電極の伝送特性を示す図である。図44において伝送特性としては、伝送損失S21を測定した結果を示している。なお、実施例1から3は伝送特性が同じ傾向を示したため、代表して実施例1を示している。また、比較例1から3についても伝送特性がほとんど同じ傾向を示したので、代表して比較例1を示している。電極を形成するためのシード層の形成およびめっき処理等の形成条件は、実施例および比較例のいずれも共通とした。図44に示されるように、いずれの周波数領域においても、実施例の伝送損失のほうが比較例の伝送損失よりも小さいことが示される。したがって、貫通孔の側面については、分散粗さ、凹凸巾の値が小さいほど、貫通孔に形成される貫通電極における損失が小さくなり、伝送特性が良いことが分かる。
 また、各実施例および各比較例について、ガラス基板10の厚みを変更させた場合の伝送特性S21についても測定した。この結果を表8に示す。表8に示されるように、ガラス基板10の厚みを250μm、300μm、350μm、400μmに設定したうえで、各実施例および各比較例にもとづく条件で貫通孔および貫通電極を作成し、伝送特性を計測した。表8に示されるように、第二実施形態における各実施例では、各比較例に比べ伝送特性S21が良好な値を示していることが確認される。
 なお、表8に示す伝送特性は、単一の貫通電極の伝送特性となっており、複数個の貫通電極を必要とする多層配線基板では、単一貫通電極の伝送特性の向上が大きな性能向上につながる。第一実施形態に係る各実施例を使用することによって、既存技術と比較し、高周波数帯での貫通電極の良好な伝送特性を実現した多層配線基板を得ることが可能となる。
 なお、伝送特性の観点から、実施例1から3に示される貫通電極が比較例1から3に示される貫通電極よりも良好な結果が得られている。実施例の中で比較すると、実施例1が最も好ましく、実施例2、実施例3の順に良好であるということができる。
Figure JPOXMLDOC01-appb-T000009
<第三実施形態>
 図45は、半導体素子100とBGA(Ball Grid Array:ボールグリッドアレイ)基板90のインターポーザ基板として、多層配線基板1を用いる場合を示す図である。図46は、図45の場合の断面を示す図である。また、図47は、通信用の電子デバイスに多層配線基板1および半導体素子100が用いられる場合を示す図である。図48は、図47の場合の断面を示す図である。電子デバイスとしては、層厚が800μm以下のものが用いられる。例えば、電子デバイスは、HBM(High Bandwidth Memory)対応のメモリが実装されたインターポーザ基板である。
 上記電子デバイスは、貫通電極の伝送特性の影響によって、適応用途が限られており、本発明の多層配線基板を使用することで電子デバイスの高周波数帯領域での適応が可能となる。
<作用・効果>
 以上、第一実施形態および第二実施形態のいずれの場合においても、分散粗さおよび凹凸巾に関して、比較例よりも実施例のほうが値が小さい貫通孔を形成することができた。このように貫通孔の側面を平滑にできるため、貫通孔に貫通電極を形成した場合、高周波帯域において高い伝送特性を備えている。このように、高い伝送特性を備えている貫通電極を形成することができる。
 本発明の実施形態、並びに本発明の実施形態に係る製造方法、実施例によれば、貫通孔の側面を平滑に形成することで良好な伝送特性を実現可能であり、貫通電極の伝送特性を既存技術に対し向上させることが可能となる。本発明を使用することで、高周波帯で良好な伝送特性を備えた多層配線基板の提供が可能となる。
 本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 さらに、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含むものである。
<他の実施形態>
 本開示は次の態様も含む。
(態様1)
 第一面と第二面を有し、前記第一面から前記第二面まで貫通する少なくとも1つの貫通孔を備えるガラス基板であって、
 前記ガラス基板の厚さ方向における前記貫通孔の裁断面における側面形状の
 分散粗さが1,000nm以下かつ凹凸巾が1,500nm以下である、ことを特徴とするガラス基板。
(態様2)
 態様1に記載のガラス基板であって、
 前記分散粗さは、前記側面の輪郭データに基づいて粗さ曲線を抽出し、前記粗さ曲線に設定区間を設定し、前記設定区間において式1によって算出された算術平均粗さであり、
 前記凹凸巾は、前記設定区間において、最も高い部分と最も低い部の間の差である、ガラス基板。
Figure JPOXMLDOC01-appb-M000010
(態様3)
  第一面と第二面を有し、前記第一面から前記第二面まで貫通する少なくとも1つの貫通孔を備えるガラス基板であって、
 前記ガラス基板の厚さ方向における前記貫通孔の裁断面の倍率1000倍のSEM画像において、前記貫通孔の側壁面内に、前記第一面と略平行な方向に延びる稜線が複数視認でき、前記第一面と垂直な方向における稜線と稜線の間隔が15.5μm以下である、ガラス基板。
(態様4)
 態様1から3のいずれか1つに記載のガラス基板であって、
 前記ガラス基板のSiO比率は55質量%以上81質量%以下の範囲となる、ガラス基板。
(態様5)
 態様1から4のいずれか1つに記載のガラス基板を含む多層配線基板であって、
 前記多層配線基板に搭載される電子デバイスの層厚は800μm以下であり、
 前記多層配線基板の厚みは100μm以上かつ400μm以下となる、多層配線基板。
(態様6)
 態様1から5のいずれか1つに記載のガラス基板の製造方法であって、
 ガラス基板に対して、貫通孔形成予定部にレーザを照射する第1の工程、
 レーザ照射された前記ガラス基板をエッチングし、貫通孔を形成する第2の工程
 を有するガラス基板の製造方法。
(態様7)
 態様6に記載のガラス基板の製造方法であって、
 前記第1の工程において、照射されるレーザは、レーザ発振波長が1064nm、532nm、または355nmのうちのいずれかの波長でありかつパルス幅が25ピコ秒以下である、ガラス基板の製造方法。
(態様8)
 態様6または7に記載のガラス基板の製造方法であって、
 前記第1の工程において、前記レーザ照射周辺部に発生するマイクロクラックの最大長さが5μmである、ガラス基板の製造方法。
(態様9)
 態様6から8のいずれか1つに記載のガラス基板の製造方法であって、
 前記第2の工程において、エッチングレートを変更した複数回のエッチングが行われる、ガラス基板の製造方法。
(態様10)
 態様6から9のいずれか1つに記載のガラス基板の製造方法であって、
 前記第2の工程において、フッ酸を0.2質量%以上20.0質量%以下の範囲とし、硝酸を4.0質量%以上25.0質量%以下の範囲とし、フッ酸および硝酸以外の無機酸を0.5質量%以上11.0質量%以下の範囲として含有するエッチング液が用いられる、ガラス基板の製造方法。
(付記1)
 本開示の別の態様を以下に示す。
 本発明は、ガラス基板、多層配線基板、およびガラス基板の製造方法に関する。
<背景技術>
 近年、回路基板を積層した三次元実装技術が用いられている。このような実装技術においては、回路基板に貫通電極を形成することが行われる。貫通電極は、絶縁体で構成された基板に貫通孔を形成し、この貫通孔に導電体を配置することによって形成される。回路基板の高集積化に伴い、貫通孔についても更なる微細化が必要となる。
 例えば、特許文献1は、板状ガラスにエキシマレーザ光を照射して複数の貫通孔を有するガラス基板を提供する技術を開示している。特許文献2は、UVレーザビームによってガラス品の前面を照射する工程を含む、ガラスに孔の高密度アレイを作製する方法を開示する。また、特許文献3は、貫通孔を含む基板と、前記貫通孔の内側面に沿って配置された導電体と、を備え、前記貫通孔は、前記第1面から前記第2面までの区間のうち前記第1面から6.25%、18.75%、31.25%、43.75%、56.25%、68.75%、81.25%、93.75%の距離の位置における前記貫通孔の中心軸に対する内側面の傾斜角度(前記第1面側が拡がる角度を正の傾斜角度とする)の合計値が、8.0°以上である条件を満たす貫通孔の形状を開示する。特許文献4は、第1面13及び第1面の反対側に位置する第2面14を含むとともに貫通孔20が設けられた基板12と、基板の貫通孔に位置する貫通電極22と、を備える貫通電極基板を開示する。
<先行技術文献>
<特許文献>
<特許文献1>国際公開第2010/087483号
<特許文献2>特表2014-501686号公報
<特許文献3>特許第6809511号公報
<特許文献4>特許第6965589号公報
<発明の概要>
<発明が解決しようとする課題>
 しかしながら、特許文献1から3に記載された内容で貫通孔は、貫通孔の側面粗さによる、貫通電極の伝送特性への影響については、検討されていない。このため、特許文献1から3に記載された側面は伝送特性から見た側面の平坦性が不十分であり、貫通孔側面の傾斜角度の均一性にも課題がある。
<0006>
 また、貫通電極を形成するためには、特許文献4において開示されているように、スパッタリングにて金属層を形成した後に、無電解めっき処理を実施し、貫通孔の側面に電解めっき処理を行うための金属層を形成する必要がある。特許文献4において開示されるように、無電解めっき処理では、適応可能な金属が限られ、例えばNiが選択される。Niが磁性体材料であること、また、難エッチング金属であることから貫通穴に配線を形成した後の除去工程にて、配線層部に影響し配線が粗化されること、並びに配線下部へのアンダーカットの発生することから、貫通電極の伝送特性が課題となっている。上記内容より容易に貫通電極の形成可能な貫通孔を有するガラス基板が求められている。
 そこで、本発明では、良好な伝送特性を備えた貫通電極を形成することが可能なガラス基板およびそのようなガラス基板を備えた多層配線基板を提供することを目的とする。
<課題を解決するための手段>
 上記の課題を解決するために、代表的な本発明のガラス基板の一つは、第一面と第二面を有し、前記第一面から前記第二面まで貫通する少なくとも1つの貫通孔を備えており、前記貫通孔の側面は、前記第一面から5%以上95%以下の区間の位置において、傾斜角度が7°以上15°以下の範囲となり、断面視において、前記貫通孔の側面を左側面および右側面とした場合、左側面の傾斜角度と右側面の傾斜角度の差が1.0°以下となる。
<発明の効果>
 本発明によれば、良好な伝送特性を備えた貫通電極を形成することが可能なガラス基板およびそのようなガラス基板を備えた多層配線基板を提供することが可能となる。
 上記した以外の課題、構成および効果は、以下の発明を実施するための形態における説明により明らかにされる。
<発明を実施するための形態>
 本発明の範囲は、図示され記載された例示的な実施形態及び実施例に限定されるものではなく、様々な変形例が含まれる。例えば、本開示における実施形態及び実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施形態及び実施例の構成の一部を他の実施形態及び実施例の構成に置き換えることが可能であり、また、ある実施形態及び実施例の構成に他の実施形態及び実施例の構成を加えることも可能である。また、各実施形態及び実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 さらに、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含むものである。
 図面において示す各構成要素の位置、大きさ、形状、範囲なども、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
 なお、本開示において、「面」とは、板状部材の面のみならず、板状部材に含まれる層について、板状部材の面と略平行な層の界面も指すことがある。また、「上面」、「下面」とは、板状部材や板状部材に含まれる層を図示した場合の、図面上の上方又は下方に示される面を意味する。なお、「上面」、「下面」については、「第一面」、「第二面」と称することもある。
 また、「側面」とは、板状部材や板状部材に含まれる層における面や層の厚みの部分を意味する。さらに、面の一部及び側面を合わせて「端部」ということがある。
 また、「貫通孔の側面」とは、物体に設けられた貫通孔について、貫通孔を形成している物体上の界面を意味する。
 また、「上方」とは、板状部材又は層を水平に載置した場合の垂直上方の方向を意味する。さらに、「上方」及びこれと反対の「下方」については、これらを「Z軸プラス方向」、「Z軸マイナス方向」ということがあり、水平方向については、「X軸方向」、「Y軸方向」ということがある。
 さらに、Z軸方向の距離を「高さ」と称し、X軸方向とY軸方向で規定されるXY平面上の距離を「幅」と称する。また、層状の物体に対して高さを言う場合、「厚み」とも称する。
 また、「ガラス基板に設けた貫通電極」とは、ガラス基板を多層配線基板の一部として用いる場合に、ガラス基板の第1面及び第二面を電気的に導通するために設けた導電経路を意味し、必ずしも、ガラス基板を単一の導電材料で完全に貫通している必要はない。第1面からの導電通路と第二面からの導電通路が接続されていれば、貫通電極に含まれる。さらに、貫通電極の形態は、貫通孔(有底のものも、完全な貫通のものも、いずれの形態をも含む)を導電材料で埋め込んだフィルド型でもよいし、貫通孔の側壁部分のみを導電材料で覆ったコンフォーマルのいずれをも含む。
 また、「平面形状」、「平面視」とは、上方から面又は層を視認した場合の形状を意味する。さらに、「断面形状」、「断面視」とは、板状部材又は層を特定の方向で切断した場合の水平方向から視認した場合の形状を意味する。
 さらに、「中心部」とは、面又は層の周辺部ではない中心部を意味する。そして、「中心方向」とは、面又は層の周辺部から面又は層の平面形状における中心に向かう方向を意味する。
<測定方法>
 本発明の第一実施形態(付記1)に係るガラス基板に設けた貫通孔の形状を説明するために、まず、貫通孔12の傾斜角度の測定方法、側面粗さの測定方法を以下に示す。
 ここで、ガラス基板貫通孔の側壁の位置による傾斜角を測定し、その値を記述するにあたっての注意点を示す。
 貫通孔における特定の位置を、ガラス基板の片面からの深さ方向の位置で指定した場合、その位置での側面の角度は、その位置での側面表面の形状をどの程度のスケールにて観察するかに大きく依存する。
 つまり、ガラス基板の貫通孔全体を俯瞰するようなスケールにて、側壁のある位置での側壁の傾斜角を観察した場合と、測定点付近の側壁を拡大し、その位置での側壁の微小な凹凸が明瞭となり、角度を指定した点が、その凹凸のどこに相当するかを厳密に判定して、その位置での接線の傾斜角をもって、目的の角度とする場合とでは、結果が大きく異なる可能性がある。
 本開示におけるガラス基板貫通孔の傾斜角とは、前者にあたるものであり、側面表面の凹凸に過度に影響されることなく、貫通孔全体を俯瞰的に見た場合の傾向を反映した傾斜角を意味する。
 測定法の一例として、貫通孔全体が俯瞰でき、かつ、側面の表面の微細な凹凸が目視できないスケール、解像度での断面写真において、測定点およびその近傍での傾斜の傾向をできるだけ反映するように測定点における接線を設定することが挙げられる。
(貫通孔の傾斜角度の測定方法)
 図49に本発明の第一実施形態(付記1)で得られる貫通孔12の形状を説明している。図49は、円錐台形状の貫通孔12の断面および傾斜角度の測定方法を示す図である。図49に示される貫通孔12の断面は、貫通孔12を第一面101側より、ガラス基板の厚さ方向においてスクライブにて割断(裁断)して断面(裁断面)を出し、SEM(Scanning Electron Microscope:走査電子顕微鏡)によって観察されたSEM画像を画像解析ソフトを使用して解析したものである。図49において、パターン模様で示した箇所がガラス基板10を示している。図49に示す貫通孔12の形状は円錐台形状をしており、貫通孔12は第一面側101に貫通孔の径が極小となる極小値を持つ。なお、図49に示される目盛り5%、10%、・・・95%は、ガラス基板10の第一面101から第二面102までの長さを割合で示している。
 ガラス基板10の第一面側101の開口部の中心部に、第一面101と垂直になるように中心線TCを引く。次に、矢印に示されるように中心線TCを貫通孔12の両側のいずれか一方に向かって平行移動させ、平行移動させた中心線TCが貫通孔12の径が極小値を取る点と接触させ、接触させた点を基準点RPとする。そして、基準点RPから5%から100%のそれぞれの目盛り位置の高さの断面の位置に接線ssを引き、接線ssの傾斜角度を測定し、その傾斜角度を、5%から95%のそれぞれの断面の位置における傾斜角度であるとする。なお、傾斜角度は、貫通孔12の径が下方にむけて広がる方向を正とする。
 上述のように、第一実施形態(付記1)においては、傾斜角度の測定方法は、(1)貫通孔12の中心線を作成する、(2)中心線を開口部が極小値となる位置に水平移動し基準点を作成する、(3)基準点から貫通孔の特定の位置に接線を引き角度を測定する、という手順(1)から(3)を含む。特に(2)基準点を作成する手順を用いることにより、貫通孔全体を俯瞰するようなスケールでかつ側壁の微細な凹凸の影響を受けない信頼性の高い測定を行うことができる。
 なお、具体的な傾斜角度測定では、貫通孔12を第一面101側より、スクライブおよび精密ブレイカーを使用し、貫通孔12を中央部で割断(裁断)して、貫通孔12の断面を表出させる。割断の方法としては、例えば3点曲げを適用することができる。その後、表出した断面についてSEM観察を実施し、断面のSEM画像を画像解析することによって、貫通孔12の角度測定を実施している。
(側面粗さの計測方法)
 続いて、貫通孔12の側面粗さの測定方法について説明する。貫通孔12の側面粗さに測定については、側面角度の測定と同様に貫通孔12の断面をSEMによって観察し、観察されたSEM画像を画像解析ソフトを使用して解析する。貫通孔の側面粗さを計測するためには、通常は、貫通孔の第一面101から第二面102に至る範囲を測定範囲とする。ただし、仮に、貫通孔に凹凸が存在している場合には、当該凹凸部を除いた範囲を2つ以上の測定範囲として設定し、それらの測定範囲の結果を平均して側面粗さとする。また、側面粗さの算出に当たっては、同じ条件で作成した貫通孔5つ(サンプル数n=5)について、同様の測定を行い、これらの平均値を当該条件で作成した貫通孔の側面粗さとして規定する。
 図50は、貫通孔の側面粗さの測定方法を示す図である。図50(a)は、貫通孔12の断面のSEM画像を示す。図50(b)は、貫通孔12の断面を観察したSEM画像より、貫通孔12の側面の輪郭を抽出した図を示す。抽出された輪郭データより平均分散粗さおよび凹凸巾の測定を実施する。図50(c)は、平均分散粗さの計算式および凹凸巾を模式的に示す図である。図50(b)において抽出された輪郭データに関し、第一面101を基準として設定した設定領域Lにおいて、輪郭の粗さを示す粗さ曲線f(x)を測定する。平均分散粗さ(以下、単に「分散粗さ」ともいう。)Raは、式(1)に示されるように、粗さ曲線f(x)の絶対値を2乗したものを、設定領域Lにわたって積分したうえで設定領域Lの長さで割ったものである。また、ラフネス幅(以下、「凹凸巾」ともいう。)aは、粗さ曲線f(x)のうち、粗さの最大値を示すピーク部と粗さの最小値を示すボトム部との差である。
 なお、一つ貫通孔において、複数の粗さ曲線f(x)が設定された場合には、それらから算出された粗さの値の平均値によって当該貫通孔の平均粗さを算出することとなる。
(伝送特性の測定方法) 
 伝送特性の測定には、入力波に対する伝搬波の度合いの周波数依存性を示すSパラメータ(S21)を用いる。S21は電力比(透過波電力/入力波電力)の対数で表され、絶対値が小さいほうが伝送損失が小さいことを示す。
 Sパラメータ(S21)の測定にはネットワークアナライザを用いた。測定サンプルとしては、ガラス基板に形成した貫通電極11の周辺を導体で囲み、導体を接地した状態としたものを作製し、これによって、貫通電極11の第一面101側から第二面102側の間におけるS21を測定した。
<第一実施形態(付記1)に係る実施例および比較例>
 第一実施形態(付記1)における貫通孔12に実施形状について説明する。第一実施形態(付記1)では、後述する図70に示されるように、レーザ改質部65が形成されたガラス基板10に対して、ガラス基板10の第二面102側からエッチングが行われる。このため、形成された貫通孔12は、第二面102から第一面101に向かって径が窄まる円錐台形状を有する。貫通孔12の側面の傾斜角度は、ガラス基板10に対するレーザ加工条件、エッチング条件によって変化する。
 本発明の各実施例では、表1に示すパルス幅およびショット数の照射条件によってガラス基板にレーザ加工を行い、その後のエッチングにより貫通孔12を形成している。第一実施形態(付記1)における実施例1においてはパルス幅が5psかつショット数が1、実施例2においてはパルス幅が15psかつショット数が1、実施例3においてはパルス幅が25psかつショット数が1である。
 また、比較例は、第一実施形態(付記1)に示した製造方法とレーザ加工方法を変更して作成した貫通孔である。つまり、比較例1においてはパルス幅が30psかつショット数が1、比較例2においてはパルス幅が30nsかつショット数が50、比較例3においてはパルス幅が50μsかつショット数が5である。
 なお、各実施例および各比較例のいずれについても、ガラス基板10の第二面102側の開口径は平均80μmであり、この場合、計測値の平均値に標準偏差の3倍を加えた値である3σは4.5μm以下であった。また、形成されたレーザ改質部65の第二面102における開口径φについて、開口径φの最大値φMaxと最小値φMinの差は10μm以下であった。
Figure JPOXMLDOC01-appb-T000011
(貫通孔の傾斜角度)
 以下を用いて、第一の実施形態(付記1)における各実施例、比較例の貫通孔の形状、特性形状を説明する。
 図51は、第一実施形態(付記1)における実施例1の貫通孔の傾斜角度の測定結果を示す図である。
 図52は、第一実施形態(付記1)における実施例2の貫通孔の傾斜角度の測定結果を示す図である。
 図53は、第一実施形態(付記1)における実施例3の貫通孔の傾斜角度の測定結果を示す図である。
 図54は、第一実施形態(付記1)における比較例1となる貫通孔の断面形状を示す図である。
 図55は、第一実施形態(付記1)における比較例1の貫通孔の傾斜角度の測定結果を示す図である。
 図56は、第一実施形態(付記1)における比較例2の貫通孔の断面形状を示す図である。
 図57は、第一実施形態(付記1)における比較例2となる貫通孔の傾斜角度の測定結果を示す図である。
 図58は、第一実施形態(付記1)における比較例3となる貫通孔の断面形状を示す図である。
 図59は、第一実施形態(付記1)における比較例3となる貫通孔の傾斜角度の測定結果を示す図である。
 表10は、各実施例および各比較例における貫通孔12の側面の傾斜角度を測定した結果を表形式に取りまとめたものである。第一実施形態(付記1)に係る各実施例では、貫通孔12に側面角度が5%から95%の位置までほぼ一定となる。各比較例では、5%から95%の各位置で貫通孔12の側面の傾斜角度がばらつくことがわかる。表2に示されるように、貫通孔の側面は、前記第一面から5%以上95%以下の区間の位置において、傾斜角度が7°以上15°以下の範囲となる。また、断面視において、前記貫通孔の側面を左側面および右側面とした場合、左側面の傾斜角度と右側面の傾斜角度の差が1.0°以下となる。
 また、各実施例では、第二面(100%)から95%距離までの傾斜角度と5%から95%距離の傾斜角度の間の差が+/-1.0°以下となる。第二面(100%)から95%距離までの傾斜角度は7°以上15°以下の範囲となり、また、5%から95%距離の傾斜角度は7°以上15°以下の範囲となる。
 一方、各比較例では、第二面(100%)から95%距離までの傾斜角度と5%から95%距離の傾斜角度の間の差が+/-1.0°以上となる。
 このように、本発明の各実施例と比較例では、貫通孔の側面の傾斜角度が変化する傾向が大きく異なることがわかる。
Figure JPOXMLDOC01-appb-T000012
 これらのことから、良好な伝送特性を得るためには、貫通孔の形状は、側面の傾斜角度について、第一面から5%以上95%以下の区間の位置において、傾斜角度が7°以上かつ15°以下の範囲であり、断面視において、前記貫通孔の側面を左側面および右側面とした場合、左側面の傾斜角度と右側面の傾斜角度の差が1.0°以下であることが望ましいことが分かる。
(平均分散粗さおよび凹凸巾)
 次に、表11を用いて実施形態における各実施例および各比較例に関し、貫通孔12の側面の平均分散粗さおよび凹凸巾について説明する。表11に示されるように、第一実施形態(付記1)の各実施例では、分散粗さが1,000nm以下かつ凹凸巾が1,500nm以下となる。各比較例では、分散粗さが1,500nm以上かつ凹凸巾が1,500nm以上となり、貫通孔側面の粗さに差があることが確認されている。
Figure JPOXMLDOC01-appb-T000013
(開口径)
 表12および図60Aを用いて、第一実施形態(付記1)における貫通孔の第一面と第二面の開口径の関係性を説明する。表12は、実施例1の条件下でガラス基板10の厚さを100μmから200μmに変更した場合の貫通孔12の第一面101における開口部の径および第二面102における開口部の径を示す。図60Aは、表12をグラフにして示す図である。実施形態によれば、第二面102の開口径に関わらず、第二面102の開口径と第一面101の開口径の関係性は、第一面側開口径Φ1/第二面側開口径Φ2≧0.4となる。
Figure JPOXMLDOC01-appb-T000014
 次に表13に、第一実施形態(付記1)における各実施例および各比較例の第一面開口径と第二面開口径を示す。表13には、第一実施形態(付記1)における各実施例および各比較例において計測された、貫通孔12の第一面101側の開口径Φ1と第二面102側の開口径Φ2の典型的な値が示される。
Figure JPOXMLDOC01-appb-T000015
 ここで、図60Bを参照して、開口径と伝送特性の関係を説明する。図60Bは、貫通電極12を形成した場合を示す模式的に示す図である。貫通孔12の開口径は、Φ1/Φ2≧0.4という関係に示されるように、Φ2にくらべてΦ1を小さくすることができる。例えば、後述する通信用デバイスとして用いられる場合には貫通電極11を利用してコイルが形成されるところ、Φ1とΦ2の関係からコイルの設計自由度を確保することが可能となる。また、パッド間の距離Dpを確保できるため、コイルを含む回路を形成した場合にQ値を小さくすることができ、伝送損失を抑制することが可能である。上記内容より、貫通電極の信号を安定化(信号損失の低減)が可能となる。
(断面形状)
 次に、貫通孔12の側面形状について説明する。図61Aから図61Cは、第一実施形態(付記1)の各実施例および比較例に関し貫通孔の側面を説明する図である。図61Aから図61Cは、第一実施形態(付記1)における各実施例および各比較例の貫通孔の断面のSEM画像を示す図である。
 図61Aから図61Cに示されるSEM画像は、ガラス基板の厚さ方向における貫通孔の裁断面を撮影したものであり、倍率は1000倍である(SEM画像に含まれるスケールの1目盛りは5μmである)。
 SEM画像において、コントラストが高く白色に見える箇所は、試料表面の傾斜面の角度が切り替わり、傾斜面の稜線となっている領域である。このため、白線で見える箇所は、試料表面の粗さのピークまたはボトムを示す箇所であり、これらの貫通孔の側面に形成されている稜線の存在状況や配置の程度によって、貫通電極の伝送特性に影響を与える貫通孔の側面の粗さを把握することができる。
 図61Aに示す第一実施形態(付記1)の各実施例では、ガラス基板10の第一面101に平行な方向や略平行な方向に延びる白線の稜線が現れ、帯状の縞模様が形成されている。
 ここで、図61Bを参照して、貫通孔の断面の稜線について説明する。図61Bは、第一実施形態(付記1)における各実施例の貫通孔の稜線を説明する図である。図61B(a)は図61Aの実施例3を拡大して示す図である。また、図61B(b)は、SEM画像において観察される貫通孔について、側面および断面の稜線を実線で示す図である。
 図61B(b)に示される例では、略平行な稜線のうち、稜線の間隔がもっとも広くなる場合は、稜線Rl1と稜線Rl2の間である。図61B(b)に示される例では、第一面101と垂直な方向の側面上の稜線の間隔はRs以下である。図61B(a)に示されるように、実施例3においては、稜線の間隔は、15.5μm以下である。
 同様の手法で、稜線の状況を観察すると、実施例1においては、第一面101と垂直な方向における稜線と稜線の間隔は、2μm以上3μm以下の範囲である。また、実施例2においては、ガラス基板10の第一面101と垂直な方向における稜線と稜線の間隔は、5μm以上6μm以下の範囲である。
 また、図61Aから明らかなように、第一実施形態(付記1)における実施例3から1に変化するにつれて、つまり、貫通孔の側面の平滑度である分散粗さが小さくなるにつれて、貫通孔12の側面において、ガラス基板10の第一面101に平行な方向に延びる稜線として視認できる白線が緻密になり、稜線と稜線の間隔が狭くなる。これとは反対に、分散粗さが大きくなるほど(すなわち、実施例1から実施例3に変化し、さらに、比較例1から3に変化するにつれて)、稜線と稜線との間隔が大きくなるとともに、第一面101と平行ではない方向に延びる稜線も増えてくる。そして、更には、第一面101と垂直な方向に延びる稜線や第一面101と平行な方向と垂直な方向との間の方向(以下、「斜方向」ともいう。)に延びる稜線の発生頻度が多くなることが分かる。これらは、分散粗さが小さくなるほど、垂直方向に延びる稜線および斜方向に延びる稜線の割合が少なくなることを示している。例えば、実施例2においては、平均分散粗さが500nmであって、凹凸巾が980nmの場合、第一面101に平行な方向と第一面101と垂直な方向の間の方向に延びる白線が視認可能になる。
 一方、実施形態における比較例1から3のように貫通孔の側面が粗くなる(分散平均粗さ1,000nmより大きくかつ凹凸巾1,500nmより大きい)場合、ガラス基板10の第一面101に垂直な方向に、または第一面101と垂直な方向と第一面101に平行な方向の間の方向に、延びる白線の割合が増えてくる。すなわち、斜方向において、稜線が複数視認可能になる。このような貫通孔12側面の平滑性(粗さ)がSEM画像に表れ、また、貫通電極の伝送特性に影響することがわかる。
 また、図61Cは、第一実施形態(付記1)における貫通孔に貫通電極を形成した場合の断面のSEM画像を示す図である。ここに示されるように、矢印で差し示されて破線で囲まれた箇所は、端部が立つ形状を有している。言い換えると、貫通孔12の側面とガラス基板10の第二面102との間には、ゆるやかに変化する箇所がなく、断面視において角度が一変している。つまり、貫通孔12の側面とガラス基板10の第二面102とは、端部が立つ形状を有しており、1000倍のSEM画像において、側面と第二面の領域とが明確に識別できる形状となっている。
(伝送特性)
 続いて、図62を用いて、第一実施形態(付記1)における各実施例および各比較例の貫通電極の伝送特性について説明する。図62は、実施形態における実施例1の貫通電極の伝送特性と、比較例1の貫通電極の伝送特性を示す図である。図62では貫通電極における伝送特性として伝送損失S21を測定した結果を示す。なお、実施例1から3は伝送特性が同じ傾向を示したため、代表して実施例1を示している。また、比較例1から3についても伝送特性がほとんど同じ傾向を示したので、代表して比較例1を示している。電極を形成するためのシード層の形成およびめっき処理等の形成条件は、実施例および比較例のいずれも共通とした。図62に示されるように、いずれの周波数領域においても、実施例の伝送損失のほうが比較例の伝送損失よりも小さいことが示される。したがって、貫通孔の側面については、分散粗さ、凹凸巾の値が小さいほど、貫通孔に形成される貫通電極における損失が小さくなり、伝送特性が良いことが分かる。
(ガラス基板の厚みを変更した場合の伝送特性)
 また、各実施例および各比較例について、ガラス基板10の厚みを変更した場合の伝送特性S21についても測定した。この結果を表14に示す。表14に示されるように、ガラス基板10の厚みを100μm、150μm、200μmに設定したうえで、各実施例および各比較例に基づく条件で貫通孔及び貫通電極を作成し、伝送特性を計測した。表14に示されるように、第一実施形態(付記1)における各実施例では、各比較例に比べ伝送特性S21が良好な値を示していることが確認される。
 なお、各比較例に示される貫通電極の形成条件は、先行技術文献4に示された貫通電極の形成条件と同様である。先行技術文献4に記載されるように、Niを含む電解めっき液を用いた無電解めっきの技術を用いて貫通電極を形成している。なお、メッキの厚みは各実施例および各比較例において共通である。
 表14に示す伝送特性は、単一の貫通電極の伝送特性となっており、複数個の貫通電極を必要とする多層配線基板では、単一貫通電極の伝送特性の向上が大きな性能向上につながる。第一実施形態(付記1)に係る各実施例を使用することで、既存技術と比較し、高周波数帯での貫通電極の良好な伝送特性を実現した多層配線基板を得ることが可能となる。
 なお、伝送特性の観点から、実施例1から3に示される貫通電極が比較例1から3に示される貫通電極よりも良好な結果が得られている。実施例の中で比較すると、実施例1が最も好ましく、実施例2、実施例3の順に良好であるということができる。
Figure JPOXMLDOC01-appb-T000016
<第一実施形態(付記1)に係る多層配線基板の構成>
 図63は、第一実施形態(付記1)に係る多層配線基板1の構成の一例を示す図である。また、図64は、第一実施形態(付記1)に係る多層配線基板1の構成の他の例を示す図である。多層配線基板1は、ガラス基板10、第一配線層21、および第二配線層22を含む。ガラス基板10の第一面101側には第一配線層21、ガラス基板10の第二面102側には第二配線層22が配置されている。ガラス基板10は、第一面101側から第二面102側まで貫通する貫通孔12を備える。貫通電極11は、貫通孔12の側面に沿って形成された導電体によって構成される。貫通電極11は第一配線層21の一部と第二配線層22に一部とを電気的に接続する。第一配線層21および第二配線層22は絶縁樹脂層25を含む。第一配線層21および第二配線層22は複数の層が積層された構成でもよく、その層数は必要に応じて設定してよい。貫通電極11は、第一配線層21と第二配線層22の間に電気的な接続を確立するための電極である。導通電極31は、多層配線基板1において基板の厚さ方向に導通を確保するための電極である。また、半導体素子用接合パッド50は、多層配線基板1に搭載する半導体回路を接続するための部材である。基板用接合パッド54は、多層配線基板1と他の基板または他の半導体素子とを接合するための部材である。
 なお、貫通電極は、ガラス基板10の第一面101側から第二面102側を電気的に接続が可能であれば、図63に示すように貫通孔12の側面のみに導電体を配置してもよいし、図64に示すように貫通孔12に導電体を埋め込んでも構わない。
 なお、第一実施形態(付記1)では、第一配線層21の貫通電極11のZ軸方向上に導通電極31配置することが可能となる。
 なお、図64および図64において、貫通孔12の形状は詳細を省略して示している。図65から図74においても同様に省略してある。
 また、多層配線基板1の厚みは、例えば、100μm以上200μm以下の範囲である。
<第一実施形態(付記1)における多層配線基板の製造方法>
 続いて、多層配線基板1の製造方法について、図65から図74を用いて説明する。まず、ガラス基板10に貫通孔12を形成する工程について説明する。
[第一支持体の接着工程]
 図65は、ガラス基板10を第一支持体62に張り合わせる工程を示す図である。ガラス基板10の厚みは、エッチング後の厚みを考慮したうえ、用途に応じて適宜設定することができる。
 図65に示されるように、第一接着層61において、ガラス基板10と第一支持体62が貼り合わされており、ガラス基板10、第一接着層61、第一支持体62を含む積層構造体63が形成される。
 なお、ガラス基板10と第一支持体62は、第一接着層61によって仮固定されている。
 ガラス基板10に第一支持体を貼り合わせるためには、例えば、ラミネーター、真空加圧プレス、減圧貼り合わせ機等を使用することができる。
 第一支持体62は、例えば、ガラス基板10と同一の材料であることが望ましい。ガラス基板10のSiO比率が55質量%以上81質量%以下の範囲である無アルカリガラスである場合、第一支持体62も無アルカリガラスであることが望ましい。また第一支持体62の厚みについては、ガラス基板10の厚みに応じて、適宜設定することができる。ただし、製造工程中に搬送可能な厚みであることが望ましく、支持体の厚みは、例えば300μm以上1,500μm以下の範囲とする。
 ガラス基板10については、例えばSiO比率が55質量%以上81質量%以下の範囲である無アルカリガラスを用いることができる。ガラス基板10のSiO比率が81質量%より大きい場合、エッチングの加工速度が低下し、貫通孔12の側面の角度の平坦性が低下し、後述する貫通電極11の形成時に付き回り不良が発生してしまう。また、SiO比率が55質量%より小さい場合、ガラス中にアルカリ金属が含まれる可能性が高くなり、電子デバイス搭載後の多層配線基板の信頼性に影響する。SiO比率が55質量%以上81質量%以下の無アルカリガラスであれば、適宜設定比率を設定して構わない。
[レーザ改質工程]
 続いて、図66は、レーザ改質部を形成する工程を示す図である。ガラス基板10の貫通孔形成予定部にレーザを照射することによって、ガラス基板10にレーザ改質部65が形成される。レーザ改質部65は、ガラス基板10に対しΦ3μm以下の形状で加工されており、ガラス基板10の厚み方向に連続的に形成される。この時、レーザ改質部65の周辺(以下、レーザ照射周辺部」ともいう。)には、5μm以上の微小なクラック(以下、「マイクロクラック」ともいう。)が発生していないことが望ましい。レーザ改質部65の周辺に10μm以上のマイクロクラックが発生すると、エッチング加工後の貫通孔12に側面で分散粗さが1000nm以上となり、凹凸巾も1500nm以上となる。この結果、平滑な側面の貫通孔12を得ることが困難となる。
 また、5μm以上のマイクロクラックが発生した場合、後述するように、エッチング後の貫通孔12の側面では、SEM画像において、ガラス基板10の第一面101平行な方向に延びる稜線以外にも、第一面101と垂直な方向に延びる稜線および、第一面101に平行な方向と第一面101と垂直な方向の間の方向に延びる稜線を視認可能になる。
 レーザ改質部65の加工については、例えば、フェムト秒レーザまたはピコ秒レーザを用い、且つレーザ発振波長は1064nm、532nm、または355nmのうちのいずれかの波長を使用することが好ましい。レーザのパルス幅が25ピコ秒以上ではレーザ改質部65の周辺に5μm以上のマイクロクラックが発生し易くなることから、レーザパルス幅は25ピコ秒以下であることが望ましい。また、複数回のパルス照射による加工を行うとμクラックが発生し易くなることから、1パルスでレーザ改質部65を形成することが望ましい。レーザ改質部65の周辺に5μm以上のマイクロクラックが発生しない条件であれば、レーザ発振波長およびレーザ出力は、ガラス基板10の厚みに応じて、適宜設定して構わない。すなわち、レーザ改質工程(第1の工程)において、ガラス基板に対して、貫通孔形成予定部にレーザを照射し、レーザ照射周辺部に発生するマイクロクラックの最大長さが5μmである、ということもできる。
[第一配線層の形成]
 続いて、図67は、第一配線層21を形成する工程を示す図である。図67に示されるように、積層構造体63のガラス基板10上の第一面101に導電層と絶縁樹脂層からなる第一配線層21の形成を行う。ここでは、ガラス基板10上には耐フッ酸金属層を含むシード層を形成した後に、セミアディティブ(SAP)工法で第一面101に貫通電極接続部41(または貫通電極間の配線)を形成する。不要となったシード層を除去した後に、絶縁樹脂層25を形成する。
 なお、シード層の形成について、ガラス基板10上の耐フッ酸金属層は、クロム、ニッケル、または双方を含む合金層であり、スパッタ処理にて10nm以上1,000nmの範囲で形成することができる。その後、耐フッ酸金属上に導電金属皮膜を所望の厚みで形成する。導電金属皮膜は、例えば、Cu、Ni、Al、Ti、Cr、Mo、W、Ta、Au、Ir、Ru、Pd、Pt、AlSi、AlSiCu、AlCu、NiFe、ITO、IZO、AZO、ZnO、PZT、TiN、Cuから適宜設定することができる。
 セミアディティブ工法においては、めっきによる配線パターンを形成するために、フォトレジストを使用して所望のパターンを形成する。一般的には、ドライフィルムレジストを用いるが、液体のレジストを使用しても構わない。所望のパターンを露光、現像しパターン形成した後に、電解めっきにてめっき被膜を形成し、不要となったレジストを剥離し、シード層をエッチングすることで配線形成を行うことができる。
[絶縁樹脂層]
 次に絶縁樹脂層25の形成について、絶縁樹脂層25は熱硬化性樹脂であり、その材料は、エポキシ系樹脂、ポリイミド系樹脂、ポリアミド系樹脂の少なくとも一つを含み、かつシリカSiOフィラーを含む材料である。絶縁樹脂層25の材料は、必要に応じて適宜選択することができる。但し、感光性絶縁樹脂材料を用いる場合は、フォトリソグラフィ性を確保するためにシリカSiOフィラーの充填が困難となるため、感光性絶縁樹脂材料も使用可能であるが、熱硬化樹脂を用いる方がより好ましい。
[第二支持体の接着工程]
 次に、図68は、第二支持体を接着する工程を示す図である。図68に示されるように、積層構造体63の第一配線層21上に第二接着層71を形成し、第二接着層71上に第二支持体70を配置し接着する。
 第二支持体70については、例えばガラスを用いることができ、ガラス基板10と同一の材料であることが望ましい。ガラス基板10が無アルカリガラスである場合、第二支持体70も無アルカリガラスであることが望ましい。また第二支持体70の厚みについては、ガラス基板60の厚みに応じて、適宜設定することができる。ただし、搬送可能な厚みであることが望ましく、その範囲は、300μm以上1,500μm以下の範囲である。
[剥離工程]
 次に、図69は、第一支持体を剥離する工程を示す図である。図69に示されるように、ガラス基板10と第一支持体62を第一接着層61において剥離する。
[貫通孔の形成]
 続いて、図70は、貫通孔12を形成する工程を示す図である。
[エッチング工程]
 レーザ改質部65が形成されたガラス基板10に対し、所定のエッチング液でエッチング処理を施すことで貫通孔12が形成される。また、同時に、ガラス基板10の第二面もエッチングされ、ガラス基板10の厚さが減少することとなる。
[エッチング液]
 エッチング液は、フッ酸を0.2質量%以上20.0質量%以下の範囲とし、硝酸を4.0質量%以上25.0質量%以下の範囲とし、フッ酸および硝酸以外の無機酸を0.5質量%以上11.0質量%以下の範囲として含有するものが用いられる。フッ酸および硝酸以外の無機酸としては、例えば、塩酸、硫酸、リン酸、スルファミン酸等が挙げられ、ガラス基板10中に含まれるケイ素以外の成分の種類に応じて、少なくとも1つの無機酸を含有させる。望ましくは、塩酸および硫酸を含有させたエッチング液であり、ガラス基板10に対するエッチングレートとしては、0.1μm/分以上10μm/分以下の範囲になるように適宜調整される。ガラス基板10に対するエッチングレートは、望ましくは0.25μm/分以上4μm/分以下の範囲であり、より望ましくは0.25μm/分以上0.5μm/分以下の範囲である。エッチング温度としては、特に限定されず、適宜調整することができるが、例えば10℃以上30℃以下の範囲となる。
 なお、エッチングによる貫通孔12の形成工程では、フッ酸の濃度を下げて複数回のエッチングを行うようにしてもよい。例えば、初回でのエッチング処理はガラス基板10に対するエッチングレートを4μm/分以上10μm/分以下の範囲とし、二回目のエッチング処理をガラス基板10に対するエッチングレートを0.5μm/分以上4μm/分以下の範囲とし、その後、三回目のエッチング処理をガラス基板10に対するエッチングレートを0.25μm/分以上0.5μm/分以下の範囲とすることが挙げられる。エッチングの処理回数については、貫通孔の側面の粗さが所望の範囲になるように適宜処理回数を設定してよい。
[貫通電極の形成]
 次に、図71を参照して、貫通電極11の形成工程について説明する。図71は、貫通電極11を形成する工程を示す図である。
 貫通孔12が形成されたガラス基板10に対し、第二面102から、電解めっき処理のための金属層を形成する。金属層については、電解めっき処理のシード層として機能する金属であればよく、例えば、Cu、Ti、Cr、W、Ni等を含む金属である。金属層には上記金属のうち少なくとも1つが用いられ、また金属層の最表面にCu層が形成されていることが望ましい。Ti、Cr、W、Niについては、Cu層の下部のガラス基板10との密着層として使用されることが望ましい。金属層の厚みは、貫通孔12の側面を覆うことができる範囲に適宜設定される。形成方法としては、例えばスパッタリングを用いた蒸着による形成方法を採用することが可能である。
 続いて、上記金属層をシード層として用いる電解めっき処理によって、貫通電極11を形成する。貫通孔12内を選択的に成長させるために、ガラス基板10の第二面102において貫通孔12および貫通孔12の周りの所定の範囲にレジスト等の絶縁体でマスクを形成しておき、電解めっき処理を行う。電解めっき処理に用いる材料ついては、例えばCuを用いることが可能であり、他の金属としては、Au、Ag、Pt、Ni、Sn等を含む金属を用いることも可能である。多層配線基板の用途に応じて、上記金属の導電体で貫通孔12内が充填されるように電解めっき処理を行っても構わない。
[絶縁樹脂層の形成]
 また、図72を参照して、絶縁樹脂層25の形成工程について説明する。図72は、絶縁樹脂層を形成する工程を示す図である。貫通電極を形成するための電解めっき処理をした後は、レジスト等の絶縁体を除去し、またガラス基板10の第一面101および第二面102に形成された金属膜を除去し、ガラス基板10に形成された複数の貫通電極11それぞれを電気的に独立させた後に、図25に示されるように、第二面側に絶縁樹脂層25の形成を行う。
[第二支持体の剥離]
 続いて、図73を参照して、第二支持体70および第二接着層71の剥離工程について説明する。図73は、第二支持体70および第二接着層71を剥離する工程を示す図である。図73に示されるように、第一配線層21の上方に形成された第二接着層71および第二支持体70を、第一面101側の第一配線層21と第二接着層71の界面より剥離する。これによって、図73に示されるように、第一面101側に第一配線層21、第二面102側に第二配線層22が形成された状態のガラス基板10が得られる。
 第二支持体70を第二配線層22から剥離するにあたっては、第二接着層71に使用した材料に応じて、UV光の照射、加熱処理、物理剥離等から使用材料に応じた剥離方式を適宜選択することができる。また、第一配線層21と第二接着層71との接合面に、第二接着層71の残差が生じる場合、プラズマ洗浄、超音波洗浄、水洗、アルコールを使用した溶剤洗浄などを行ってもよい。
[第一配線層および第二配線層の形成]
 続いて、図74を参照して、ガラス基板10に形成される第一配線層21および第二配線層22の形成について説明する。図74は、第一配線層21および第二配線層22を形成する工程を示す図である。貫通電極11が形成されたガラス基板10に対し、第一面101に第一配線層21を形成し、第二面102に第二配線層22を形成する。第一配線層21および第二配線層22の形成工程においては、最初に、感光性のレジストまたはドライフィルムレジスト等によってパターンを有するマスクを形成した後に、電解めっき処理によって配線を形成する。その後、物理密着処理、もしくは、化学的な密着処理を施した後に、絶縁樹脂層25を積層する。導通電極31については、レーザ加工等によって絶縁樹脂層25に孔を形成した後に、無電解めっき、もしくは、スパッタリングによる蒸着処理によって金属皮膜を形成する。上記金属皮膜にレジストを用いてパターンを有するマスクを形成し、電解めっきによって形成した孔に導電体を充填する。その後、マスクおよび余分の金属皮膜を除去する。上記工程は必要な層数に応じて複数回繰り返すことで、第一配線層21および第二配線層22が形成される。なお、第一配線層21および第二配線層22は多層配線基板1の反りを抑制するために、同じ層数であることが望ましい。第一配線層21および第二配線層22の層厚が異なる場合は、第一配線層21と第二配線層22に層数を変えても構わない。多層配線基板に用途に応じて、第一配線層21の層数および第二配線層22の層数は適宜設定してよい。
<第二実施形態(付記1)>
 図75は、半導体素子100とBGA(Ball Grid Array:ボールグリッドアレイ)基板90のインターポーザ基板として、多層配線基板1を用いる場合を示す図である。図76は、図75の場合の断面を示す図である。また、図77は、通信用の電子デバイスに多層配線基板1および半導体素子100が用いられる場合を示す図である。図78は、図77の場合の断面を示す図である。電子デバイスとしては、層厚が800μm以下のものが用いられる。また
 上記電子デバイスは、貫通電極の伝送特性の影響によって、適応用途が限られており、本発明のガラス基板を使用することで電子デバイスの高周波数帯領域での適応が可能となる。
(本開示の貫通孔および貫通電極の特徴)
 図79は、本開示において形成される貫通孔および貫通電極の特徴を説明する図である。図79は、例えば、図74の領域Raを拡大して示す図である。図79に示されるように、貫通孔12(または貫通電極11)の直上に、導通電極31を形成することができる。これは、貫通孔12が所謂、有底形状であるためである。有底形状にすることで、貫通孔12上に直接に導通電極31を形成することが可能となる。このため、電極全体としての伝送距離が短縮され、伝送特性の向上および貫通孔12の微細化が可能となる。
 また、実施形態において説明したように、本開示における貫通孔12の側面には側面形状が変化する変曲点がなく、表面が滑らかである。したがって、貫通孔12にめっき処理を行う場合、均一な金属膜等を形成することができるため、貫通孔12側面において寄生容量の発生を抑制することができる。貫通孔12の形状は、変曲点を有する形状や、ガラス基板の第一面から第二面まで径がほとんど変化しない所謂ストレート形状とすることも可能であるが、伝送特性の観点からは、寄生容量の発生を抑制することができる本開示に示す形状が望ましい。
<作用・効果>
 本開示において形成される貫通孔は、円錐台形状を有している。貫通孔12に貫通電極11を形成する場合、シード層となる金属層を形成するためにスパッタを行う場合、複数の金属のなかから選択することが可能である。特許文献4においてはNiが選択されるところ、本開示においては必ずしもNiを用いなくとも貫通電極を形成することができるため、貫通電極を容易に形成することができる。
 以上、本発明の実施形態、並びに本発明の実施形態に係る製造方法、実施例によれば、貫通孔の側面を平滑に形成することで可能であり、貫通電極の伝送特性を既存技術に対し向上させることが可能となる。本発明を使用することで、高周波帯で良好な伝送特性を備えた多層配線基板の提供が可能となる。
(他の実施態様)
 本開示は次の態様も含む。
(態様1(付記1))
 第一面と第二面を有し、前記第一面から前記第二面まで貫通する少なくとも1つの貫通孔を備えるガラス基板であって、
 前記貫通孔の側面は、前記第一面から5%以上95%以下の区間の位置において、傾斜角度が7°以上15°以下の範囲となり、
 断面視において、前記貫通孔の側面を左側面および右側面とした場合、左側面の傾斜角度と右側面の傾斜角度の差が1.0°以下となる、ガラス基板。
(態様2(付記1))
 態様1に記載のガラス基板であって、
 前記貫通孔の側面は、
 前記第二面と距離95%の位置までの傾斜角度は7°以上15°以下の範囲となる、ガラス基板。
(態様3(付記1))
 態様1または2に記載のガラス基板であって、
 第二面側の開口径Φ2と、第一面側の開口径Φ1の関係が、Φ1/Φ2≧0.4以上となる、ガラス基板。
(態様4(付記1))
 態様1から3のいずれか1つに記載のガラス基板であって、
  前記ガラス基板の厚さ方向における前記貫通孔の裁断面における側面形状の
 分散粗さが1,000nm以下かつ凹凸巾が1,500nm以下である、ことを特徴とするガラス基板。
(態様5(付記1))
 態様1から4のいずれか1つに記載のガラス基板であって、
 前記分散粗さは、前記側面の輪郭データに基づいて粗さ曲線を抽出し、前記粗さ曲線に設定区間を設定し、前記設定区間において式1によって算出された算術平均粗さであり、
 前記凹凸巾は、前記設定区間において、最も高い部分と最も低い部の間の差である、ガラス基板。
Figure JPOXMLDOC01-appb-M000017
(態様6(付記1))
 態様1から5のいずれか1つに記載のガラス基板であって、
 前記ガラス基板のSiO比率は55質量%以上81質量%以下の範囲となる、ガラス基板。
(態様7(付記1))
 態様1から6のいずれか1つに記載のガラス基板を含む多層配線基板であって、
 前記多層配線基板に搭載される電子デバイスの層厚は800μm以下であり、
 前記多層配線基板の厚みは100μm以上200μm以下の範囲となる、多層配線基板。
(態様8(付記1))
 態様1から7のいずれか1つに記載のガラス基板の製造方法であって、
 ガラス基板に対して、貫通孔形成予定部にレーザを照射する第1の工程、
 レーザ照射された前記ガラス基板をエッチングし、貫通孔を形成する第2の工程
 を有するガラス基板の製造方法。
(態様9(付記1))
 態様8に記載のガラス基板の製造方法であって、
 前記ガラス基板の前記第一面には耐フッ酸金属膜が形成されており、
 前記第2の工程において、前記ガラス基板の前記第二面からエッチングが行われる、ガラス基板の製造方法。
(態様10(付記1))
 態様8または9に記載のガラス基板の製造方法であって、
 前記第1の工程において、照射されるレーザは、レーザ発振波長が1064nm、532nm、または355nmのうちのいずれかの波長でありかつパルス幅が25ピコ秒以下である、ガラス基板の製造方法。
(態様11(付記1))
 態様8から10のいずれか1つに記載のガラス基板の製造方法であって、
 前記第1の工程において、前記レーザ照射周辺部に発生するマイクロクラックの最大長さが5μmである、ガラス基板の製造方法。
(態様12(付記1))
 態様8から11のいずれか1つに記載のガラス基板の製造方法であって、
 前記第2の工程において、エッチングレートを変更した複数回のエッチングが行われる、ガラス基板の製造方法。
(態様13(付記1))
 態様8から12のいずれか1つに記載のガラス基板の製造方法であって、
 前記第2の工程において、フッ酸を0.2質量%以上20.0質量%以下の範囲とし、硝酸を4.0質量%以上25.0質量%以下の範囲とし、フッ酸および硝酸以外の無機酸を0.5質量%以上11.0質量%以下の範囲として含有するエッチング液が用いられる、ガラス基板の製造方法。
(付記2)
 本開示のさらに別の態様を以下に示す。
 本発明は、ガラス基板、多層配線基板、およびガラス基板の製造方法に関する。
<背景技術>
 近年、回路基板を積層した三次元実装技術が用いられている。このような実装技術においては、回路基板に貫通電極を形成することが行われる。貫通電極は、絶縁体で構成された基板に貫通孔を形成し、この貫通孔に導電体を配置することによって形成される。回路基板の高集積化に伴い、貫通孔についても更なる微細化が必要となる。
 例えば、特許文献1は、板状ガラスにエキシマレーザ光を照射して複数の貫通孔を有するガラス基板を提供する技術を開示している。特許文献2は、UVレーザビームによってガラス品の前面を照射する工程を含む、ガラスに孔の高密度アレイを作製する方法を開示する。また、特許文献3は、貫通孔を含む基板と、前記貫通孔の内側面に沿って配置された導電体と、を備え、前記貫通孔は、前記第1面から前記第2面までの区間のうち前記第1面から6.25%、18.75%、31.25%、43.75%、56.25%、68.75%、81.25%、93.75%の距離の位置における前記貫通孔の中心軸に対する内側面の傾斜角度(前記第1面側が拡がる角度を正の傾斜角度とする)の合計値が、8.0°以上である条件を満たす貫通孔の形状を開示する。
<先行技術文献>
<特許文献>
<特許文献1>国際公開第2010/087483号
<特許文献2>特表2014-501686号公報
<特許文献3>特許第6809511号公報
<発明の概要>
<発明が解決しようとする課題>
 しかしながら、特許文献1から3に記載された内容で貫通孔は、貫通孔の側面粗さによる、貫通電極の伝送特性への影響については、検討されていない。このため、特許文献1から3に記載された貫通孔の側面は、側面の分散粗さは1,000nm以上となり、PV(Peak to Valley)は1,500nm以上となっている。このため、特に、5Gに用いられる周波数帯の内、サブ6GHz帯といった高周波数帯では、貫通孔側面の粗さが原因となり、貫通電極の伝送特性を十分良好に保つことが難しい。
 また、ガラス基板上に配線層を形成し、これらを接続する貫通電極を形成した場合、ガラスのCTE(COEFFICIENT OF THERMAL EXPANSION、熱膨張率)と配線や貫通電極の材料となるCu等のCTEが異なるため、熱応力の影響が懸念される。このため、デバイスの信頼性を評価するための信頼性試験の一つとして加速試験のTCT(Thermal Cycle Test)を実施される。
 しかし、従来技術においては、熱応力に対する貫通電極の信頼性を高めるための貫通孔御形状について、十分に検討がされていないことから、貫通電極と配線層の界面で配線層が破断することが確認されている
 そこで、本発明では、良好な伝送特性および高い信頼性を備えた貫通電極を形成することが可能なガラス基板およびそのようなガラス基板を備えた多層配線基板を提供することを目的とする。
<課題を解決するための手段>
 上記の課題を解決するために、代表的な本発明のガラス基板の一つは、第一面と第二面を有し、前記第一面から前記第二面まで貫通する少なくとも1つの貫通孔を備えるガラス基板であって、前記貫通孔の側面は、前記第一面から距離0%以上10%未満の範囲において、側面の角度は4°以上7°以下の範囲となり、断面視において、前記貫通孔の側面を左側面および右側面とした場合、左側面の傾斜角度と右側面の傾斜角度の差が1.0°以下であり、前記第一面から距離10%以上100%以下の範囲において、側面の角度は-7°以上-15°以下の範囲となり、左側面の傾斜角度と右側面の傾斜角度の差が1.0°以下となる。
<発明の効果>
 本発明によれば、良好な伝送特性および高い信頼性を備えた貫通電極を形成することが可能なガラス基板およびそのようなガラス基板を備えた多層配線基板を提供することが可能となる。
 上記した以外の課題、構成および効果は、以下の発明を実施するための形態における説明により明らかにされる。
<発明を実施するための形態>
 本発明の範囲は、図示され記載された例示的な実施形態及び実施例に限定されるものではなく、様々な変形例が含まれる。例えば、本開示における実施形態及び実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態及び実施例の構成の一部を他の実施形態及び実施例の構成に置き換えることが可能であり、また、ある実施形態及び実施例の構成に他の実施形態及び実施例の構成を加えることも可能である。また、各実施形態及び実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 さらに、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含むものである。
 図面において示す各構成要素の位置、大きさ、形状、範囲なども、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
 なお、本開示において、「面」とは、板状部材の面のみならず、板状部材に含まれる層について、板状部材の面と略平行な層の界面も指すことがある。また、「上面」、「下面」とは、板状部材や板状部材に含まれる層を図示した場合の、図面上の上方又は下方に示される面を意味する。なお、「上面」、「下面」については、「第一面」、「第二面」と称することもある。
 また、「側面」とは、板状部材や板状部材に含まれる層における面や層の厚みの部分を意味する。さらに、面の一部及び側面を合わせて「端部」ということがある。
 また、「貫通孔の側面」とは、物体に設けられた貫通孔について、貫通孔を形成している物体上の界面を意味する。
 また、「上方」とは、板状部材又は層を水平に載置した場合の垂直上方の方向を意味する。さらに、「上方」及びこれと反対の「下方」については、これらを「Z軸プラス方向」、「Z軸マイナス方向」ということがあり、水平方向については、「X軸方向」、「Y軸方向」ということがある。
 さらに、Z軸方向の距離を「高さ」と称し、X軸方向とY軸方向で規定されるXY平面上の距離を「幅」と称する。また、層状の物体に対して高さを言う場合、「厚み」とも称する。
 また、「ガラス基板に設けた貫通電極」とは、ガラス基板を多層配線基板の一部として用いる場合に、ガラス基板の第1面及び第二面を電気的に導通するために設けた導電経路を意味し、必ずしも、ガラス基板を単一の導電材料で完全に貫通している必要はない。第1面からの導電通路と第二面からの導電通路が接続されていれば、貫通電極に含まれる。さらに、貫通電極の形態は、貫通孔(有底のものも、完全な貫通のものも、いずれの形態をも含む)を導電材料で埋め込んだフィルド型でもよいし、貫通孔の側壁部分のみを導電材料で覆ったコンフォーマルのいずれをも含む。
 また、「平面形状」、「平面視」とは、上方から面又は層を視認した場合の形状を意味する。さらに、「断面形状」、「断面視」とは、板状部材又は層を特定の方向で切断した場合の水平方向から視認した場合の形状を意味する。
 さらに、「中心部」とは、面又は層の周辺部ではない中心部を意味する。そして、「中心方向」とは、面又は層の周辺部から面又は層の平面形状における中心に向かう方向を意味する。
<測定方法>
 本発明の第一実施形態(付記2)に係るガラス基板に設けた貫通孔の形状を説明するために、まず、貫通孔12の傾斜角度の測定方法、側面粗さの測定方法を以下に示す。
 ここで、ガラス基板貫通孔の側壁の位置による傾斜角を測定し、その値を記述するにあたっての注意点を示す。
 貫通孔における特定の位置を、ガラス基板の片面からの深さ方向の位置で指定した場合、その位置での側面の角度は、その位置での側面表面の形状をどの程度のスケールにて観察するかに大きく依存する。
 つまり、ガラス基板の貫通孔全体を俯瞰するようなスケールにて、側壁のある位置での側壁の傾斜角を観察した場合と、測定点付近の側壁を拡大し、その位置での側壁の微小な凹凸が明瞭となり、角度を指定した点が、その凹凸のどこに相当するかを厳密に判定して、その位置での接線の傾斜角をもって、目的の角度とする場合とでは、結果が大きく異なる可能性がある。
 本開示におけるガラス基板貫通孔の傾斜角とは、前者にあたるものであり、側面表面の凹凸に過度に影響されることなく、貫通孔全体を俯瞰的に見た場合の傾向を反映した傾斜角を意味する。
 測定法の一例として、貫通孔全体が俯瞰でき、かつ、側面の表面の微細な凹凸が目視できないスケール、解像度での断面写真において、測定点およびその近傍での傾斜の傾向をできるだけ反映するように測定点における接線を設定することが挙げられる。
(貫通孔の傾斜角度の測定方法)
 まず、図80に本発明の第一実施形態(付記2)で得られる貫通孔12の形状を説明している。図80は、円錐台形状の貫通孔12の断面および傾斜角度の測定方法を示す図である。図80に示される貫通孔12の断面は、貫通孔12を第一面101側より、ガラス基板の厚さ方向においてスクライブにて割断(裁断)して断面(裁断面)を出し、SEM(Scanning Electron Microscope:走査電子顕微鏡)によって観察されたSEM画像を画像解析ソフトを使用して解析したものである。図80において、パターン模様で示した箇所がガラス基板10を示している。図80に示す貫通孔12は、貫通孔12は第一面101と第二面102の間に貫通孔の径が極小となる極小値を持つ。極小値を持つ点を挟んで、第一面101側には円錐台形状が形成され、第二面102側にも円錐台形状が形成されている。なお、図80に示される目盛り5%、10%、・・・95%は、ガラス基板10の第一面101から第二面102までの長さを割合で示している。
 ガラス基板10の第一面101側の貫通孔12の中心部に、第一面101と垂直になるように中心線TCを引く。次に、矢印に示されるように中心線TCを貫通孔12の両側のいずれか一方に向かって平行移動させ、平行移動させた中心線TCが貫通孔12の径が極小値を取る点と接触させ、接触させた点を基準点RPとする。そして、基準点RPから5%から100%のそれぞれの目盛り位置の高さの断面の位置に接線ssを引き、接線ssの傾斜角度を測定し、その傾斜角度を、5%から95%のそれぞれの断面の位置における傾斜角度であるとする。傾斜角度は、貫通孔12の径が上方に向けて広がる方向を正とする。
 上述のように、第一実施形態(付記2)においては、傾斜角度の測定方法は、(1)貫通孔12の中心線を作成する、(2)中心線を開口部が極小値となる位置に水平移動し基準点を作成する、(3)基準点から貫通孔の特定の位置に接線を引き角度を測定する、という手順(1)から(3)を含む。特に(2)基準点を作成する手順を用いることにより、貫通孔全体を俯瞰するようなスケールでかつ側壁の微細な凹凸の影響を受けない信頼性の高い測定を行うことができる。
 なお、具体的な傾斜角度測定では、貫通孔12を第一面101側より、スクライブおよび精密ブレイカーを使用し、貫通孔12を中央部で割断(裁断)して、貫通孔12の断面を表出させる。割断の方法としては、例えば3点曲げを適用することができる。その後、表出した断面についてSEM観察を実施し、断面のSEM画像を画像解析することによって、貫通孔12の角度測定を実施している。
(側面粗さの計測方法)
 続いて、貫通孔12の側面粗さの測定方法について説明する。貫通孔12の側面粗さに測定については、側面角度の測定と同様に貫通孔12の断面をSEMによって観察し、観察されたSEM画像を画像解析ソフトを使用して解析する。貫通孔の側面粗さを計測するためには、通常は、貫通孔の第一面101から第二面102に至る範囲を測定範囲とする。ただし、仮に、貫通孔に凹凸が存在している場合には、当該凹凸部を除いた範囲を2つ以上の測定範囲として設定し、それらの測定範囲の結果を平均して側面粗さとする。また、側面粗さの算出に当たっては、同じ条件で作成した貫通孔5つ(サンプル数n=5)について、同様の測定を行い、これらの平均値を当該条件で作成した貫通孔の側面粗さとして規定する。
 図81は、貫通孔の側面粗さの測定方法を示す図である。図81に示す貫通孔12は、説明のため、一般的な形状のものを掲載している。図81(a)は、貫通孔12の断面のSEM画像を示す。図81(b)は、貫通孔12の断面を観察したSEM画像より、貫通孔12の側面の輪郭を抽出した図を示す。抽出された輪郭データより平均分散粗さおよび凹凸巾の測定を実施する。図81(c)は、平均分散粗さの計算式および凹凸巾を模式的に示す図である。図81(b)において抽出された輪郭データに関し、第一面101を基準として設定した設定領域Lにおいて、輪郭の粗さを示す粗さ曲線f(x)を測定する。平均分散粗さ(以下、単に「分散粗さ」ともいう。)Raは、式(1)に示されるように、粗さ曲線f(x)の絶対値を2乗したものを、設定領域Lにわたって積分したうえで設定領域Lの長さで割ったものである。また、ラフネス幅(以下、「凹凸巾」ともいう。)aは、粗さ曲線f(x)のうち、粗さの最大値を示すピーク部と粗さの最小値を示すボトム部との差である。
 なお、一つ貫通孔において、複数の粗さ曲線f(x)が設定された場合には、それらから算出された粗さの値の平均値によって当該貫通孔の平均粗さを算出することとなる。
(伝送特性の測定方法)
 伝送特性の測定には、入力波に対する伝搬波の度合いの周波数依存性を示すSパラメータ(S21)を用いる。S21は電力比(透過波電力/入力波電力)の対数で表され、絶対値が小さいほうが伝送損失が小さいことを示す。
 Sパラメータ(S21)の測定にはネットワークアナライザを用いた。測定サンプルとしては、ガラス基板に形成した貫通電極11の周辺を導体で囲み、導体を接地した状態としたものを作製し、これによって、貫通電極11の第一面101側から第二面102側の間におけるS21を測定した。
<第一実施形態(付記2)に係る実施例および比較例>
 第一実施形態(付記2)における貫通孔12に実施形状について説明する。実施形態では、後述する図104に示されるように、レーザ改質部65が形成されたガラス基板10に対して、ガラス基板10の第二面102側からエッチングが行われる。このため、形成された貫通孔12は、第二面102から第一面101に向かって径が窄まる円錐台形状を有する。貫通孔12の側面の傾斜角度は、ガラス基板10に対するレーザ加工条件、エッチング条件よって変化する。
 本発明の各実施例では、表15に示すパルス幅およびショット数の照射条件によってガラス基板にレーザ加工を行い、その後のエッチングにより貫通孔12を形成している。第一実施形態(付記2)における実施例1においてはパルス幅が5psかつショット数が1、実施例2においてはパルス幅が15psかつショット数が1、実施例3においてはパルス幅が25psかつショット数が1である。
 また、比較例は、第一実施形態(付記2)に示した製造方法とレーザ加工方法を変更して作成した貫通孔である。つまり、比較例1においてはパルス幅が30psかつショット数が1、比較例2においてはパルス幅が30nsかつショット数が50、比較例3においてはパルス幅が50μsかつショット数が5である。
 なお、各実施例および各比較例のいずれについても、ガラス基板10の第二面102側の開口径は平均80μmであり、この場合、計測値の平均値に標準偏差の3倍を加えた値である3σは4.5μm以下であった。また、形成されたレーザ改質部65の第二面102における開口径について、開口径の最大値φMaxと最小値φMinの差は10μm以下であった。
Figure JPOXMLDOC01-appb-T000018
(貫通孔の傾斜角度)
 以下、図82から図102を参照して、第一実施形態(付記2)における各実施例、比較例の貫通孔の形状、特性形状を説明する。
 図82は、第一実施形態(付記2)における実施例1の貫通孔の傾斜角度の測定結果を示す図である。
 図83は、第一実施形態(付記2)における実施例2の貫通孔の傾斜角度の測定結果を示す図である。
 図84は、第一実施形態(付記2)における実施例3の貫通孔の傾斜角度の測定結果を示す図である。
 図85は、第一実施形態(付記2)における比較例1の貫通孔の断面形状を示す図である。
 図86は、第一実施形態(付記2)における比較例1の貫通孔の傾斜角度の測定結果を示す図である。
 図87は、第一実施形態(付記2)における比較例2の貫通孔の断面形状を示す図である。
 図88は、第一実施形態(付記2)における比較例2の貫通孔の傾斜角度の測定結果を示す図である。
 図89は、第一実施形態(付記2)における比較例3の貫通孔の断面形状を示す図である。
 図90は、第一実施形態(付記2)における比較例3の貫通孔の傾斜角度の測定結果を示す図である。
(傾斜角度)
 表16は、実施形態の各実施例および各比較例における貫通孔12の側面の傾斜角度を測定した結果を表形式に取りまとめたものである。実施形態に係る各実施例では、貫通孔12に側面角度が第一面からの距離0%以上10%未満の範囲における値と、第一面からの距離10%以上95%以下の範囲における値との間に、差があることが確認されている。言い換えると、貫通孔12に側面角度が第一面からの距離0%以上10%未満の範囲においてほぼ一定であり(側面の角度は4°以上7°以下の範囲となり)、第一面からの距離10%以上95%以下の範囲においてほぼ一定となる側面の角度は-7°以上-15°以下の範囲となる)ことが確認される。また、第一面からの距離95%以上100%以下の範囲における貫通孔12の側面の傾斜角度は、第一面からの距離10%以上95%以下の範囲における貫通孔12の側面の傾斜角度と同等の傾斜角度となり、2つの範囲における傾斜角度の差が1.0°以下となる。
 各比較例では、距離5%以上95%以下の各位置で貫通孔12の側面の傾斜角度がばらつくことがわかる。本発明の各実施例と比較例では貫通孔の側面の傾斜角度の形状が大きく異なることがわかる。
Figure JPOXMLDOC01-appb-T000019
(平均分散粗さおよび凹凸巾)
 次に、表17を用いて第一実施形態(付記2)における各実施例および各比較例に関し貫通孔12の側面の平均分散粗さおよび凹凸巾について説明する。表17に示されるように、第一各実施例では、ガラス基板の厚さ方向における貫通孔12の裁断面における側面形状の分散粗さが1,000nm以下かつ凹凸巾が1,500nm以下となる。各比較例では、分散粗さが1,500nm以上かつ凹凸巾が1,500nm以上となり、貫通孔側面の粗さに差があることが確認されている。
Figure JPOXMLDOC01-appb-T000020
(応用例の傾斜角度)
 続いて、図91から図93に本発明に係る第一実施形態(付記2)の応用例として、貫通孔12の側面傾斜角度の変曲点を第一面からの距離1%以上5%以下の範囲に形成した結果を示す。図91は、応用例1の貫通孔の傾斜角度の測定結果を示す図である。図92は、応用例2の貫通孔の傾斜角度の測定結果を示す図である。図93は、応用例3の貫通孔の傾斜角度の測定結果を示す図である。表18に各応用例での貫通孔12の側面の傾斜角度を測定した結果を示す。なお、後述するように、エッチング加工については噴流を使用した浸漬処理が行われるところ、各応用例は、各比較例に比べて噴流の方向の切り替えを緩くして形成されている。パルス数およびショット数については、各応用例の条件は、各実施例の条件と同様とした。
 各応用例では、貫通孔12に側面角度が第一面からの距離0%から5%の範囲においてほぼ一定であり、第一面からの距離5%から95%の範囲においてほぼ一定となることが確認された。また、第一面からの距離95%から100%の範囲における貫通孔12の側面の傾斜角度は、第一面からの距離10%から95%までの範囲における貫通孔12の側面の傾斜角度と同等の傾斜角度となり、2つの範囲における傾斜角度の差が1.0°以下となる。なお、貫通孔側面の粗さについては、実施例1から3と同様のレーザ加工条件およびエッチング液の組成を使用していることから、表17と同様の値、すなわち分散粗さが1000nm以下かつ凹凸巾が1500nm以下となる。
Figure JPOXMLDOC01-appb-T000021
(開口径)
 表19および図94Aを用いて、本発明の実施形態に係る貫通孔の第一面と第二面の開口径の関係性を説明する。表19は、実施例1の条件下でガラス基板10の厚さを100μmから200μmに変更した場合の貫通孔12の第一面101における開口部の径および第二面102における開口部の径を示す。図94Aは、表19をグラフにして示す図である。第一実施形態(付記2)によれば、第二面102の開口径に関わらず、第二面102の開口径と第一面101の開口径の関係性は、第一面側開口径Φ1/第二面側開口径Φ2≧0.4以上となる。
Figure JPOXMLDOC01-appb-T000022
 次に表20に、第一実施形態(付記2)における各実施例および各比較例の第一面開口径と第二面開口径を示す。表20には、第一実施形態(付記2)における各実施例および各比較例において計測された、貫通孔12の第一面101側の開口径Φ1と第二面102側の開口径Φ2の典型的な値が示される。
Figure JPOXMLDOC01-appb-T000023
 ここで、図94Bを参照して、開口径と伝送特性の関係を説明する。図94Bは、貫通電極12を形成した場合を示す模式的に示す図である。貫通孔12の開口径は、Φ1/Φ2≧0.4という関係に示されるように、Φ2にくらべてΦ1を小さくすることができる。例えば、後述する通信用デバイスとして用いられる場合には貫通電極11を利用してコイルが形成されるところ、Φ1とΦ2の関係からコイルの設計自由度を確保することが可能となる。また、パッド間の距離Dpを確保できるため、コイルを含む回路を形成した場合にQ値を小さくすることができ、伝送損失を抑制することが可能である。上記内容より、貫通電極の信号を安定化(信号損失の低減)が可能となる。
(本開示の貫通孔および貫通電極の特徴)
 また、図94Cは、本開示において形成される貫通孔および貫通電極の特徴を説明する図である。図94Cは、例えば、図108の領域Raを拡大して示す図である。図94Cに示されるように、貫通孔12(または貫通電極11)の直上に、導通電極31を形成することができる。これは、貫通孔12が所謂、有底形状であるためである。有底形状にすることで、貫通孔12上に直接に導通電極31を形成することが可能となる。このため、電極全体としての伝送距離が短縮され、伝送特性の向上および貫通孔12の微細化が可能となる。
 また、実施形態において説明したように、本開示における貫通孔12の側面には側面形状が変化する変曲点がなく、表面が滑らかである。したがって、貫通孔12にめっき処理を行う場合、均一な金属膜等を形成することができるため、貫通孔12側面において寄生容量の発生を抑制することができる。貫通孔12の形状は、変曲点を有する形状や、ガラス基板の第一面から第二面まで径がほとんど変化しない所謂ストレート形状とすることも可能であるが、伝送特性の観点からは、寄生容量の発生を抑制することができる本開示に示す形状が望ましい。
(断面形状)
 次に、貫通孔12の側面形状について説明する。図95Aから図95Dは、各実施例および比較例に関し貫通孔の側面を説明する図である。図95Aは、第一実施形態(付記2)における各実施例および各比較例の貫通孔の典型的な断面形状のSEM画像を示す図である。
 SEM画像は、ガラス基板の厚さ方向における貫通孔の裁断面を撮影したものである。図95Aから図95Dに示されるSEM画像は、倍率は1000倍である(スケールの1目盛りは5μmである)。
 図95Aにおいては、第一実施形態(付記2)にかかるガラス基板の断面形状を観察しやすくするため、貫通孔12を樹脂材料を充填させている。第一面101から第二面102に向かうにつれて、側面の傾斜角度が変化する様子が分かる。
 図95Bは、第一実施形態(付記2)における各実施例および各比較例の貫通孔の断面形状のSEM画像を示す図である。図95Bにおいて、傾斜角度および断面形状は上述のものとは異なるが、パルス幅およびショット数の条件は各実施例および各比較例において説明したとおりである。SEM画像の見え方および貫通孔の断面の平滑さに関しては、共通の性質を有している。
 SEM画像において、コントラストが高く白色に見える箇所は、試料表面の傾斜面の角度が切り替わり、傾斜面の稜線となっている領域である。このため、白線で見える箇所は、試料表面の粗さのピークまたはボトムを示す箇所であり、これらの貫通孔の側面に形成されている稜線の存在状況や配置の程度によって、貫通電極の伝送特性に影響を与える貫通孔の側面の粗さを把握することができる。
 図95Bに示す第一実施形態(付記2)の各実施例では、ガラス基板10の第一面101と平行な方向や略平行な方向に延びる白線の稜線が現れて複数視認でき、帯状の縞模様が形成されている。
 ここで、図95Cを参照して、貫通孔の断面の稜線について説明する。図95Cは、第一実施形態(付記2)における各実施例の貫通孔の稜線を説明する図である。図95C(a)は図95Bの実施例3を拡大して示す図である。また、図95C(b)は、SEM画像において観察される貫通孔について、側面および断面の稜線を実線で示す図である。
 図95C(b)に示される例では、略平行な稜線のうち、稜線の間隔がもっとも広くなる場合は、稜線Rl1と稜線Rl2の間である。図95C(b)に示される例では、第一面101と垂直な方向の側面上の稜線の間隔はRs以下である。図95C(a)に示されるように、実施例3においては、稜線の間隔は、15.5μm以下である。
 同様の手法で、稜線の状況を確認すると、実施例1においては、第一面101と垂直な方向における稜線と稜線の間隔は、2μm以上3μm以下の範囲である。また、実施例2においては、ガラス基板10の第一面101と垂直な方向における稜線と稜線の間隔は、5μm以上6μm以下の範囲である。
 また、図95Bから明らかなように、第一実施形態(付記2)における実施例3から1に変化するにつれて、つまり、貫通孔の側面の平滑度である分散粗さが小さくなるにつれて、貫通孔12の側面において、ガラス基板10の第一面101に平行な方向に延びる稜線として認識できる白線が緻密になり、稜線と稜線の間隔が狭くなる。これとは反対に、分散粗さが大きくなるほど(すなわち、実施例1から実施例3に変化し、さらに、比較例1から比較例3に変化するにつれて、稜線と稜線との間隔が大きくなるとともに、第一面101と平行ではない方向に延びる稜線も増えてくる。そして、更には、第一面101と垂直な方向に延びる稜線や第一面101と平行な方向と垂直な方向との間の方向(以下、「斜方向」ともいう。)に延びる白線の発生頻度が多くなることが分かる。これらは、分散粗さが小さくなるほど、垂直方向に延びる稜線および斜方向に延びる稜線の割合が少なくなることを示している。例えば、実施例2においては、平均分散粗さが500nmであって、凹凸巾が980nmの場合、第一面101に平行な方向と第一面101と垂直な方向の間の方向(つまり斜方向)に延びる白線が視認可能になる。
 一方、実施形態における比較例1から3のように貫通孔の側面が粗くなる(分散平均粗さ1,000nmより大きくかつ凹凸巾1,500nmより大きい)場合、ガラス基板10の第一面101に垂直な方向に、または第一面101に垂直な方向と第一面101に平行な方向の間の斜方向に、延びる白線の割合が増えてくる。すなわち、斜方向において、稜線が複数視認可能になる。このような貫通孔12側面の平滑性(粗さ)がSEM画像に表れ、また、貫通電極の伝送特性に影響することがわかる。
 なお、図95Dは、第一実施形態(付記2)における貫通孔に貫通電極を形成した場合の断面のSEM画像を示す図である。図95Dにおいて、傾斜角度および断面形状は上述のものとは異なるが、パルス幅およびショット数の条件は各実施例および各比較例において説明したとおりである。SEM画像の見え方および貫通孔の断面の平滑さに関しては、共通の性質を有している。
 ここに示されるように、矢印で差し示されて破線で囲まれた箇所は、端部が立つ形状を有している。言い換えると、貫通孔12の側面とガラス基板10の第二面102との間には、ゆるやかに変化する箇所がなく、断面視において角度が一変している。つまり、貫通孔12の側面とガラス基板10の第二面102とは、端部が立つ形状を有しており、1000倍のSEM画像において、側面と第二面の領域とが明確に識別できる形状となっている。
(伝送特性)
 続いて、図96を用いて、本発明の第一実施形態(付記2)での各実施例、各比較例の貫通電極の伝送特性について説明する。図96は、第一実施形態(付記2)における実施例1の貫通電極の伝送特性と、比較例1の貫通電極の伝送特性を示す図である。図96では貫通電極における伝送特性として伝送損失S21を測定した結果を示す。なお、実施例1から3は伝送特性が同じ傾向を示したため、代表して実施例1を示している。また、比較例1から3についても伝送特性がほとんど同じ傾向を示したので、代表して比較例1を示している。電極を形成するためのシード層の形成およびめっき処理等の形成条件は、実施例および比較例のいずれも共通とした。図96に示されるように、いずれの周波数領域においても、実施例の伝送損失のほうが比較例の伝送損失よりも小さいことが示される。したがって、貫通孔の側面については、分散粗さ、凹凸巾の値が小さいほど、貫通孔に形成される貫通電極における損失が小さくなり、伝送特性が良いことが分かる。
(ガラス基板の厚みを変更した場合の伝送特性)
 また、各実施例および各比較例について、ガラス基板10の厚みを変更させた場合の伝送特性S21についても測定した。この結果を表6に示す。表21に示されるように、ガラス基板10の厚みを100μm、150μm、200μmに設定したうえで、各実施例および各比較例に基づく条件で貫通孔及び貫通電極を作成し、の伝送特性を計測した。表7に示されるように、第一実施形態(付記2)における各実施例では、各比較例に比べ伝送特性S21が良好な値を示していることが確認される。
 表21に示す伝送特性は、単一の貫通電極の伝送特性となっており、複数個の貫通電極を必要とする多層配線基板では、単一貫通電極の伝送特性の向上が大きな性能向上につながる。第一実施形態(付記2)に係る各実施例を使用することで、既存技術と比較し、高周波数帯での貫通電極の良好な伝送特性を実現した多層配線基板を得ることが可能となる。
 なお、伝送特性の観点から、実施例1から3に示される貫通電極が比較例1から3に示される貫通電極よりも良好な結果が得られている。実施例の中で比較すると、実施例1が最も好ましく、実施例2、実施例3の順に良好であるということができる。
Figure JPOXMLDOC01-appb-T000024
 表22および表23にTCT試験(温度サイクル試験:Temperature Cycling Test)による信頼性評価結果を示す。信頼性試験条件は次の通りとなる。
・設定条件:下限温度-40℃/30分、上限温度150℃/30分とした。
・試験装置TSA-43EL(エスペック製)
・各サイクル数で貫通電極を含む配線経路を抵抗の上昇を測定。
・NG基準:サイクル後の抵抗値が初期状態の抵抗値の10倍を超える場合にNGと判定
 表22および表23に示すように、本発明の実施形態に係る各実施例では、各比較例と比べ高い信頼性が高くなることが示されている。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
<第一実施形態(付記2)における多層配線基板の構成>
 図97は、第一実施形態(付記2)における多層配線基板1の構成の一例を示す図である。また、図98は、第一実施形態(付記2)における多層配線基板1の構成の他の例を示す図である。多層配線基板1は、ガラス基板10、第一配線層21、および第二配線層22を含む。ガラス基板10の第一面101側には第一配線層21、ガラス基板10の第二面102側には第二配線層22が配置されている。ガラス基板10は、第一面101側から第二面102側まで貫通する貫通孔12を備える。貫通電極11は、貫通孔12の側面に沿って形成された導電体によって構成される。貫通電極11は第一配線層21の一部と第二配線層22の一部とを電気的に接続する。第一配線層21および第二配線層22は絶縁樹脂層25を含む。第一配線層21および第二配線層22は複数の層が積層された構成でもよく、その層数は必要に応じて設定してよい。貫通電極11は、第一配線層21と第二配線層22の間に電気的な接続を確立するための電極である。導通電極31は、多層配線基板1において基板の厚さ方向に導通を確保するための電極である。また、半導体素子用接合パッド50は、多層配線基板1に搭載する半導体回路を接続するための部材である。基板用接合パッド54は、多層配線基板1と他の基板とを接合するための部材である。
 なお、貫通電極は、ガラス基板10の第一面101側から第二面102側を電気的に接続が可能であれば、図97に示すように貫通孔12の側面のみに導電体を配置してもよいし、図98に示すように貫通孔12に導電体を埋め込んでも構わない。
 第一実施形態(付記2)では、第一配線層21の貫通電極11のZ軸方向上に導通電極31を配置することが可能となる。
 なお、図97および図98において、貫通孔12の形状は詳細を省略して示している。図99から図108においても同様に省略してある。
 また、多層配線基板1の厚みは、例えば、100μm以上400μm以下の範囲である。
<第一実施形態(付記2)における多層配線基板の製造方法>
 多層配線基板1の製造方法について、図82から図91を用いて説明する。まず、ガラス基板10に貫通孔12を形成する工程について説明する。
[第一支持体の接着工程]
 図99「は、ガラス基板10を第一支持体62に張り合わせる工程を示す図である。
 ガラス基板10の厚みは、エッチング後の厚みを考慮したうえで、用途に応じて適宜設定することができる。
 図99に示されるように、第一接着層61において、ガラス基板10に第一支持体62が貼り合わされており、ガラス基板10、第一接着層61、第一支持体62を含む積層構造体63が形成される。
 なお、ガラス基板10と第一支持体62は、第一接着層61によって仮固定されている。
 ガラス基板10に第一支持体を貼り合わせるためには、例えば、ラミネーター、真空加圧プレス、減圧貼り合わせ機等を使用することができる。
 前記第一支持体62は、例えば、ガラス基板10と同一の材料であることが望ましい。ガラス基板10のSiO比率が55質量%以上81質量%以下の範囲である無アルカリガラスである場合、第一支持体62も無アルカリガラスであることが望ましい。また第一支持体62の厚みについては、ガラス基板10の厚みに応じて、適宜設定することができる。ただし、製造工程中に搬送可能な厚みであることが望ましく、支持体の厚みは、例えば300μm以上1,500μm以下の範囲とする。
 ガラス基板10については、例えばSiO比率が55質量%以上81質量%以下の範囲である無アルカリガラスを用いることができる。ガラス基板10のSiO比率が81質量%より大きい場合、エッチングの加工速度が低下し、貫通孔12の側面角度が低下し、後述する貫通電極11の形成時に付き回り不良が発生してしまう。また、SiO比率が55質量%より小さい場合、ガラス中にアルカリ金属が含まれる可能性が高くなり、電子デバイス搭載後の多層配線基板の信頼性に影響する。SiO比率55質量%以上81質量%以下の範囲である無アルカリガラスであれば、適宜設定比率を設定して構わない。
[レーザ改質工程]
 続いて、図100は、レーザ改質部を形成する工程を示す図である。ガラス基板10にレーザ加工を実施することによって、ガラス基板10にレーザ改質部65が形成される。レーザ改質部65は、ガラス基板10に対しΦ3μm以下の形状で加工されており、ガラス基板10の厚み方向に連続的に形成される。この時、レーザ改質部65の周辺には、5μm以上の微小なクラック(以下、「マイクロクラック」ともいう。)が発生していないことが望ましい。レーザ改質部65の周辺に5μm以上のマイクロクラックが発生すると、エッチング加工後の貫通孔12に側面で分散粗さが1000nm以上かつ凹凸巾が1500nm以上となり、平滑な側面の貫通孔12を得ることが困難となる。また、5μm以上のマイクロクラックが発生した場合、後述するように、エッチング後の貫通孔12の側面ではガラス基板10の第一面101にと垂直な方向において、間隔をおいて変化する粗さが発生する。
 レーザ改質部65の加工については、例えば、フェムト秒レーザまたはピコ秒レーザを用い、且つレーザ発振波長は1064nm、532nm、または355nmのうちのいずれかの波長を使用することが好ましい。レーザのパルス幅が25ピコ秒以上ではレーザ改質部65の周辺に5μm以上のマイクロクラックが発生し易くなることから、レーザパルス幅は25ピコ秒以下であることが望ましい。また、複数回のパルス照射による加工を行うとマイクロクラックが発生し易くなることから、1パルスでレーザ改質部65を形成することが望ましい。レーザ改質部65の周辺に5μm以上のマイクロクラックが発生しない条件であれば、レーザ発振波長およびレーザ出力は、ガラス基板10の厚みに応じて、適宜設定して構わない。すなわち、レーザ改質工程(第1の工程)において、ガラス基板に対して、貫通孔形成予定部にレーザを照射し、レーザ照射周辺部に発生するマイクロクラックの最大長さが5μmである、ということもできる。
[第一配線層の形成]
 続いて、図101は、第一配線層21を形成する工程を示す図である。図101に示されるように、積層構造体63のガラス基板10上の第一面101に導電層と絶縁樹脂層からなる第一配線層21の形成を行う。ここでは、ガラス基板10上には耐フッ酸金属層を含むシード層を形成した後に、セミアディティブ(SAP)工法で第一面101に貫通電極接続部41(または貫通電極間の配線)を形成する。不要となったシード層を除去した後に、絶縁樹脂層25を形成する。
 なお、シード層の形成について、ガラス基板10上の耐フッ酸金属層は、クロム、ニッケル、または双方を含む合金層であり、スパッタ処理にて10nm以上1,000nmの範囲で形成することができる。その後、耐フッ酸金属上に導電金属皮膜を所望の厚みで形成する。導電金属皮膜は、例えば、Cu、Ni、Al、Ti、Cr、Mo、W、Ta、Au、Ir、Ru、Pd、Pt、AlSi、AlSiCu、AlCu、NiFe、ITO、IZO、AZO、ZnO、PZT、TiN、Cuから適宜設定することができる。
 セミアディティブ工法においては、めっきによる配線パターンを形成するために、フォトレジストを使用して所望のパターンを形成する。一般的には、ドライフィルムレジストを用いるが、液体のレジストを使用しても構わない。所望のパターンを露光、現像しパターン形成した後に、電解めっきにてめっき被膜を形成し、不要となったレジストを剥離し、シード層をエッチングすることで配線形成を行うことができる。
[絶縁樹脂層]
 次に絶縁樹脂層25の形成について、絶縁樹脂層25は熱硬化性樹脂であり、その材料は、エポキシ系樹脂、ポリイミド系樹脂、ポリアミド系樹脂の少なくとも一つを含み、かつシリカSiOフィラーを含む材料である。絶縁樹脂層25の材料は、必要に応じて適宜選択することができる。但し、感光性絶縁樹脂材料を用いる場合は、フォトリソグラフィ性を確保するためにシリカSiOフィラーの充填が困難となるため、感光性絶縁樹脂材料も使用可能であるが、熱硬化性樹脂を用いる方がより好ましい。
[第二支持体の接着工程]
 次に図102は、第二支持体を接着する工程を示す図である。図102に示されるように、積層構造体63の第一配線層21上に第二接着層71を形成し、第二接着層71上に第二支持体70を配置し接着する。
 第二支持体70については、例えばガラスを用いることができ、ガラス基板10と同一の材料であることが望ましい。ガラス基板10が無アルカリガラスである場合、第二支持体70も無アルカリガラスであることが望ましい。また第二支持体70の厚みについては、ガラス基板10の厚みに応じて、適宜設定することができる。ただし、搬送可能な厚みであることが望ましく、その範囲は、300μm以上1,500μm以下の範囲である。
[剥離工程]
 次に、図103は、第一支持体を剥離する工程を示す図である。図103に示されるように、ガラス基板10と第一支持体62を第一接着層61において剥離する。
[貫通孔の形成]
 続いて、図104は、貫通孔12を形成する工程を示す図である。
[エッチング工程]
 レーザ改質部65が形成されたガラス基板10に対し、所定のエッチング液でエッチング処理を施すことで貫通孔12が形成される。また、同時に、ガラス基板10の第二面もエッチングされ、ガラス基板10の厚さが減少することとなる。エッチングはガラス基板10の第二面102側から行われる。
[エッチング液]
 エッチング液は、フッ酸を0.2質量%以上20.0質量%以下の範囲とし、硝酸を4.0質量%以上25.0質量%以下の範囲とし、フッ酸および硝酸以外の無機酸を0.5質量%以上11.0質量%以下の範囲として含有するものが用いられる。フッ酸および硝酸以外の無機酸としては、例えば、塩酸、硫酸、リン酸、スルファミン酸等が挙げられ、ガラス基板10中に含まれるケイ素以外の成分の種類に応じて、少なくとも1つの無機酸を含有させる。望ましくは、塩酸および硫酸を含有させたエッチング液であり、ガラス基板10に対するエッチングレートとしては、0.1μm/分以上10μm/分以下の範囲になるように適宜調整される。ガラス基板10に対するエッチングレートは、望ましくは0.25μm/分以上4μm/分以下の範囲であり、より望ましくは0.25μm/分以上0.5μm/分以下の範囲である。エッチング温度としては、特に限定されず、適宜調整することができるが、例えば10℃以上30℃以下の範囲となる。
 エッチング加工については、噴流を使用した浸漬処理、スプレー処理によってエッチング加工を行い、貫通孔12に形成を行う。噴流を使用した浸漬処理の場合、例えば、貫通孔12の底部を効率的にエッチング行うために、エッチング液中で噴流の方向を切り替えて加工することが挙げられる。噴流の方向を切り替えるタイミングを早く設定することで、貫通孔12の底部に圧力を加えることで、第一面からの距離1~10%の位置で、TGV側面の傾斜角度を変化させる事が可能となる。スプレー処理によるエッチング加工も同様に、エッチング液を噴射する噴射口を有するスプレーの揺動速度、もしくは基板の揺動速度を速く設定することで、貫通孔12の底部の圧力を加えることで、第一面からの距離1%以上10%以下の位置で、TGV側面の傾斜角度を変化させる事が可能となる。
 なお、噴流を使用した浸漬処理、スプレー処理によるエッチング加工では、使用する装置のサイズによって、加工条件が異なることから、貫通孔12の形状を確認し、加工条件を設定することが望ましい。また、噴流を使用した浸漬処理では、他の機構として、超音波等を合わせて使用しても構わない。
[貫通電極の形成]
 次に、図105を参照して、貫通電極11の形成工程について説明する。図105は、貫通電極11を形成する工程を示す図である。
 貫通孔12が形成されたガラス基板10に対し、第二面102から、電解メッキ処理のための金属層を形成する。金属層については、電解めっき処理のシード層として機能する金属であればよく、例えば、Cu、Ti、Cr、W、Ni等を含む金属である。金属層には上記金属のうち少なくとも1つが用いられ、また金属層の最表面にCu層が形成されていることが望ましい。Ti、Cr、W、Niについては、Cu層の下部のガラス基板10との密着層として使用されることが望ましい。金属層の厚みは、貫通孔12の側面を覆うことができる範囲に適宜設定される。形成方法としては、例えばスパッタリングを用いた蒸着による形成方法を採用することが可能である。
 続いて、上記金属層をシード層として用いる電解めっき処理によって、貫通電極11を形成する。貫通孔12内を選択的に成長させるために、ガラス基板10の第二面102において貫通孔12および貫通孔12の周りの所定の範囲にレジスト等の絶縁体でマスクを形成しておき、電解めっき処理を行う。電解めっき処理に用いる材料ついては、例えばCuを用いることが可能であり、他の金属としては、Au、Ag、Pt、Ni、Sn等を含む金属を用いることも可能である。多層配線基板の用途に応じて、上記金属等の導電体で貫通孔12内が充填されるように電解めっき処理を行っても構わない。
 また、図106を参照して、絶縁樹脂層25の形成工程について説明する。図106は、絶縁樹脂層を形成する工程を示す図である。貫通電極を形成するための電解めっき処理をした後は、レジスト等の絶縁体を除去し、ガラス基板10の第二面102に形成されたシード層とした金属膜を除去する。ガラス基板10に形成された複数の貫通電極11それぞれを電気的に独立させた後に、図27に示すように第二面側に絶縁樹脂層25の形成を行う。
[第二支持体の剥離]
 続いて、図107を参照して、第二支持体70および第二接着層71の剥離工程について説明する。図107は、第二支持体70および第二接着層71を剥離する工程を示す図である。図107に示されるように、第一配線層21の上方に形成された第二接着層71および第二支持体70を、第一面101側の第一配線層21と第二接着層71の界面より剥離する。これによって、図107に示されるように、第一面101側に第一配線層21、第二面102側に第二配線層22が形成された状態のガラス基板10が得られる。
 第二支持体70を第二配線層22から剥離するにあたっては、第二接着層71に使用した材料に応じて、UV光の照射、加熱処理、物理剥離等から使用材料に応じた剥離方式を適宜選択することができる。また、第一配線層21と第二接着層71との接合面に、第二接着層71の残差が生じる場合、プラズマ洗浄、超音波洗浄、水洗、アルコールを使用した溶剤洗浄などを行ってもよい。
[第一配線層および第二配線層の形成]
 続いて、図108を参照して、ガラス基板10に形成される第一配線層21および第二配線層22の形成について説明する。図108は、第一配線層21および第二配線層22を形成する工程を示す図である。貫通電極11が形成されたガラス基板10に対し、第一面101に第一配線層21を形成し、第二面102に第二配線層22を形成する。第一配線層21および第二配線層22の形成工程において、最初に、感光性のレジストまたはドライフィルムレジストによってパターンを有するマスクを形成した後に、電解めっき処理によって配線を形成する。その後、物理密着処理、もしくは、化学的な密着処理を施した後に、絶縁樹脂層25を積層する。導通電極31については、レーザ加工等によって絶縁樹脂層25に孔を形成した後に、無電解めっき、もしくは、スパッタリングによる蒸着処理によって金属皮膜を形成する。上記金属皮膜にレジストを用いてパターンを有するマスクを形成し、電解めっきによって形成した孔に導電体を充填する。その後、マスクおよび余分の金属皮膜を除去する。上記工程は必要な層数に応じて複数回繰り返すことで、第一配線層21および第二配線層22が形成される。なお、第一配線層21および第二配線層22は多層配線基板1の反りを抑制するために、同じ層数であることが望ましい。第一配線層21および第二配線層22の層厚が異なる場合は、第一配線層21と第二配線層22に層数を変えても構わない。多層配線基板の用途に応じて、第一配線層21の層数および第二配線層22の層数は適宜設定してよい。
<第二実施形態(付記2)>
 図109は、半導体素子100とBGA(Ball Grid Array:ボールグリッドアレイ)基板90のインターポーザ基板として、多層配線基板1を用いる場合を示す図である。図110は、図109の場合の断面を示す図である。また、図111は、通信用の電子デバイスに多層配線基板1および半導体素子100が用いられる場合を示す図である。図112は、図111の場合の断面を示す図である。電子デバイスとしては、層厚が800μm以下のものが用いられる。
 上記電子デバイスは、貫通電極の伝送特性の影響によって、適応用途が限られており、本発明のガラス基板を用いた多層配線基板を使用することで電子デバイスの高周波数帯領域での適応が可能となる。
<作用・効果>
 以上、本発明によれば、良好な伝送特性および高い信頼性を備えた貫通電極を形成することが可能なガラス基板およびそのようなガラス基板を備えた多層配線基板を得るが可能となる。
(他の実施態様)
 本開示は、次の態様も含む。
(態様1(付記2))
 第一面と第二面を有し、前記第一面から前記第二面まで貫通する少なくとも1つの貫通孔を備えるガラス基板であって、
 前記貫通孔の側面は、
 前記第一面から距離0%以上10%未満の範囲において、側面の角度は4°以上7°以下の範囲となり、断面視において、前記貫通孔の側面を左側面および右側面とした場合、左側面の傾斜角度と右側面の傾斜角度の差が1.0°以下であり、
 前記第一面から距離10%以上100%以下の範囲において、側面の角度は-7°以上-15°以下の範囲となり、左側面の傾斜角度と右側面の傾斜角度の差が1.0°以下となる、
ガラス基板。
(態様2(付記2))
 態様1に記載のガラス基板であって、
 前記貫通孔の側面は、前記第一面からの距離1%から距離5%以下の範囲に傾斜角度が変化する変曲点を有する、ガラス基板。
(態様3(付記2))
 態様1または2に記載のガラス基板であって、
 前記貫通孔では、第二面側の開口径Φ2と、第一面側の開口径Φ1の関係が、Φ1/Φ2≧0.4以上となる、ガラス基板。
(態様4(付記2))
 請求項1から3のいずれか1つに記載のガラス基板であって、
  前記ガラス基板の厚さ方向における前記貫通孔の裁断面における側面形状の
 分散粗さが1,000nm以下かつ凹凸巾が1,500nm以下である、ことを特徴とするガラス基板。
(態様5(付記2))
 態様1から4のいずれか1つに記載のガラス基板であって、
 前記分散粗さは、前記側面の輪郭データに基づいて粗さ曲線を抽出し、前記粗さ曲線に設定区間を設定し、前記設定区間において式1によって算出された算術平均粗さであり、
 前記凹凸巾は、前記設定区間において、最も高い部分と最も低い部の間の差である、ガラス基板。
Figure JPOXMLDOC01-appb-M000027
(態様6(付記2))
 態様1から5のいずれか1つに記載のガラス基板であって、
 前記ガラス基板のSiO比率は55質量%以上81質量%以下の範囲となる、ガラス基板。
(態様7(付記2))
 態様1から6のいずれか1つ記載のガラス基板を含む多層配線基板であって、
 前記多層配線基板に搭載される電子デバイスの層厚は800μm以下であり、
 前記多層配線基板の厚みは100μm以上かつ400μm以下となる、ことを特徴とする多層配線基板。
(態様8(付記2))
 態様1から7のいずれか1に記載のガラス基板の製造方法であって、
 ガラス基板に対して、貫通孔形成予定部にレーザを照射する第1の工程、
 レーザ照射された前記ガラス基板をエッチングし、貫通孔を形成する第2の工程
 を有するガラス基板の製造方法。
(態様9(付記2))
 態様8に記載のガラス基板の製造方法であって、
 前記第2の工程は、レーザ照射された前記ガラス基板をエッチング液中に浸漬し、前記エッチング液において噴流の方向を切り替えるエッチング処理を行い、貫通孔を形成する工程である、ガラス基板の製造方法。
(態様10(付記2))
 態様8または9に記載のガラス基板の製造方法であって、
 前記第2の工程は、レーザ照射された前記ガラス基板にエッチング液を噴射し、前記ガラス基板または前記エッチング液の噴射口のいずれかを揺動させるエッチング処理を行い、貫通孔を形成する工程である、ガラス基板の製造方法。
(態様11(付記2))
 態様8から10のいずれか1つに記載のガラス基板の製造方法であって、
 前記第1の工程において、照射されるレーザは、レーザ発振波長が1064nm、532nm、または355nmのうちのいずれかの波長でありかつパルス幅が25ピコ秒以下である、ガラス基板の製造方法。
(態様12(付記2))
 態様8から11のいずれか1つに記載のガラス基板の製造方法であって、
 前記第1の工程において、前記レーザ照射周辺部に発生するマイクロクラックの最大長さが5μmである、ガラス基板の製造方法。
(態様13(付記2))
 態様8から12のいずれか1つに記載のガラス基板の製造方法であって、
 前記第2の工程において、フッ酸を0.2質量%以上20.0質量%以下の範囲とし、硝酸を4.0質量%以上25.0質量%以下の範囲とし、フッ酸および硝酸以外の無機酸を0.5質量%以上11.0質量%以下の範囲として含有するエッチング液が用いられる、ガラス基板の製造方法。
1:多層配線基板、10:ガラス基板、11:貫通電極、12:貫通孔、21:第一配線層、22:第二配線層、25:絶縁樹脂層、31:導通電極、50:半導体素子用接合パッド、54:基板用接合パッド、61:第一接着層、62:第一支持体、63:積層構造体、65:レーザ改質部、70:第二支持体、71:第二接着層、90:BGA基板、100:半導体素子、101:ガラス基板10の第一面、102:ガラス基板10の第二面、TC:貫通孔の中心線、ss:貫通孔の側面との接線

Claims (10)

  1.  第一面と第二面を有し、前記第一面から前記第二面まで貫通する少なくとも1つの貫通孔を備えるガラス基板であって、
     前記ガラス基板の厚さ方向における前記貫通孔の裁断面における側面形状の
     分散粗さが1,000nm以下かつ凹凸巾が1,500nm以下である、ことを特徴とするガラス基板。
  2.  請求項1に記載のガラス基板であって、
     前記分散粗さは、前記側面の輪郭データに基づいて粗さ曲線を抽出し、前記粗さ曲線に設定区間を設定し、前記設定区間において式1によって算出された算術平均粗さであり、
     前記凹凸巾は、前記設定区間において、最も高い部分と最も低い部の間の差である、ガラス基板。
    Figure JPOXMLDOC01-appb-M000001
  3.   第一面と第二面を有し、前記第一面から前記第二面まで貫通する少なくとも1つの貫通孔を備えるガラス基板であって、
     前記ガラス基板の厚さ方向における前記貫通孔の裁断面の倍率1000倍のSEM画像において、前記貫通孔の側壁面内に、前記第一面と略平行な方向に延びる稜線が複数視認でき、前記第一面と垂直な方向における稜線と稜線の間隔が15.5μm以下である、ガラス基板。
  4.  請求項1から3のいずれか1項に記載のガラス基板であって、
     前記ガラス基板のSiO比率は55質量%以上81質量%以下の範囲となる、ガラス基板。
  5.  請求項1から3のいずれか1項に記載のガラス基板を含む多層配線基板であって、
     前記多層配線基板に搭載される電子デバイスの層厚は800μm以下であり、
     前記多層配線基板の厚みは100μm以上400μm以下の範囲となる、多層配線基板。
  6.  請求項1に記載のガラス基板の製造方法であって、
     ガラス基板に対して、貫通孔形成予定部にレーザを照射する第1の工程、
     レーザ照射された前記ガラス基板をエッチングし、貫通孔を形成する第2の工程
     を有するガラス基板の製造方法。
  7.  請求項6に記載のガラス基板の製造方法であって、
     前記第1の工程において、照射されるレーザは、レーザ発振波長が1064nm、532nm、または355nmのうちのいずれかの波長でありかつパルス幅が25ピコ秒以下である、ガラス基板の製造方法。
  8.  請求項6に記載のガラス基板の製造方法であって、
     前記第1の工程において、前記レーザ照射周辺部に発生するマイクロクラックの最大長さが5μmである、ガラス基板の製造方法。
  9.  請求項6に記載のガラス基板の製造方法であって、
     前記第2の工程において、エッチングレートを変更した複数回のエッチングが行われる、ガラス基板の製造方法。
  10.  請求項6に記載のガラス基板の製造方法であって、
     前記第2の工程において、フッ酸を0.2質量%以上20.0質量%以下の範囲とし、硝酸を4.0質量%以上25.0質量%以下の範囲とし、フッ酸および硝酸以外の無機酸を0.5質量%以上11.0質量%以下の範囲として含有するエッチング液が用いられる、ガラス基板の製造方法。
PCT/JP2023/029922 2022-09-30 2023-08-21 ガラス基板、多層配線基板、およびガラス基板の製造方法 WO2024070319A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-157968 2022-09-30
JP2022158002A JP2024051702A (ja) 2022-09-30 2022-09-30 ガラス基板、多層配線基板、およびガラス基板の製造方法
JP2022157982A JP2024051691A (ja) 2022-09-30 2022-09-30 ガラス基板、多層配線基板、およびガラス基板の製造方法
JP2022-158002 2022-09-30
JP2022157968A JP2024051679A (ja) 2022-09-30 2022-09-30 ガラス基板、多層配線基板、およびガラス基板の製造方法
JP2022-157982 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070319A1 true WO2024070319A1 (ja) 2024-04-04

Family

ID=90477323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029922 WO2024070319A1 (ja) 2022-09-30 2023-08-21 ガラス基板、多層配線基板、およびガラス基板の製造方法

Country Status (1)

Country Link
WO (1) WO2024070319A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019530629A (ja) * 2016-09-08 2019-10-24 コーニング インコーポレイテッド 形態的属性を備えた孔を有する物品及びその製作方法
WO2019235617A1 (ja) * 2018-06-08 2019-12-12 凸版印刷株式会社 ガラスデバイスの製造方法、及びガラスデバイス
JP2020070206A (ja) * 2018-10-30 2020-05-07 Agc株式会社 孔を有するガラス基板の製造方法、およびアニール用ガラス積層体
WO2020129553A1 (ja) * 2018-12-19 2020-06-25 日本板硝子株式会社 微細構造付ガラス基板及び微細構造付ガラス基板の製造方法
WO2021141720A1 (en) * 2020-01-06 2021-07-15 Corning Incorporated Method of metalizing a glass article
WO2022196510A1 (ja) * 2021-03-15 2022-09-22 日本電気硝子株式会社 ガラス基板、貫通孔形成用ガラス原板及びガラス基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019530629A (ja) * 2016-09-08 2019-10-24 コーニング インコーポレイテッド 形態的属性を備えた孔を有する物品及びその製作方法
WO2019235617A1 (ja) * 2018-06-08 2019-12-12 凸版印刷株式会社 ガラスデバイスの製造方法、及びガラスデバイス
JP2020070206A (ja) * 2018-10-30 2020-05-07 Agc株式会社 孔を有するガラス基板の製造方法、およびアニール用ガラス積層体
WO2020129553A1 (ja) * 2018-12-19 2020-06-25 日本板硝子株式会社 微細構造付ガラス基板及び微細構造付ガラス基板の製造方法
WO2021141720A1 (en) * 2020-01-06 2021-07-15 Corning Incorporated Method of metalizing a glass article
WO2022196510A1 (ja) * 2021-03-15 2022-09-22 日本電気硝子株式会社 ガラス基板、貫通孔形成用ガラス原板及びガラス基板の製造方法

Similar Documents

Publication Publication Date Title
CN110709987B (zh) 包含具有几何属性的过孔的制品及其制造方法
US10790209B2 (en) Wiring circuit substrate, semiconductor device, method of producing the wiring circuit substrate, and method of producing the semiconductor device
EP3220417A1 (en) Wiring circuit board, semiconductor device, wiring circuit board manufacturing method, and semiconductor device manufacturing method
TWI761852B (zh) 貫通電極基板及其製造方法、以及安裝基板
JP6672859B2 (ja) 配線回路基板用のコア基板の製造方法、配線回路基板の製造方法、および半導体装置の製造方法
CN106664795B (zh) 结构体及其制造方法
US20240021439A1 (en) Wiring board manufacturing method and wiring board
WO2024070319A1 (ja) ガラス基板、多層配線基板、およびガラス基板の製造方法
WO2024070321A1 (ja) ガラス基板、多層配線基板、およびガラス基板の製造方法
WO2024070320A1 (ja) ガラス基板、多層配線基板、およびガラス基板の製造方法
KR20090074456A (ko) Mems프로브 카드용 다층 박막 기판의 제조 방법
JP2024051679A (ja) ガラス基板、多層配線基板、およびガラス基板の製造方法
WO2024070322A1 (ja) ガラス基板、多層配線基板、ガラス基板の製造方法
JP7163069B2 (ja) 貫通電極基板及びその製造方法
WO2023171240A1 (ja) ガラス基板、貫通電極、多層配線基板、およびガラス基板の製造方法
WO2024004566A1 (ja) ガラスコア積層構造体およびガラスコア積層構造体の製造方法
WO2024062808A1 (ja) 配線基板
WO2023090197A1 (ja) 配線基板及びその製造方法
JP2024006905A (ja) 多層配線基板、多層配線基板の製造方法、および母材基板
WO2024106066A1 (ja) 配線基板及び配線基板の製造方法
WO2022173057A1 (ja) 貫通電極基板
KR100636780B1 (ko) 글래스 기판을 이용한 패키징 제조방법 및 그 방법으로제조된 패키징 기판
JP2021022651A (ja) 配線基板の製造方法、配線基板形成用基板、配線基板中間品、配線基板および素子付配線基板
JP2024009740A (ja) 多層配線基板およびその製造方法
JP2023009615A (ja) 貫通電極基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871561

Country of ref document: EP

Kind code of ref document: A1