WO2024055749A1 - 一种正极材料及包括该正极材料的正极片和电池 - Google Patents

一种正极材料及包括该正极材料的正极片和电池 Download PDF

Info

Publication number
WO2024055749A1
WO2024055749A1 PCT/CN2023/108433 CN2023108433W WO2024055749A1 WO 2024055749 A1 WO2024055749 A1 WO 2024055749A1 CN 2023108433 W CN2023108433 W CN 2023108433W WO 2024055749 A1 WO2024055749 A1 WO 2024055749A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode material
positive electrode
mol
battery
material according
Prior art date
Application number
PCT/CN2023/108433
Other languages
English (en)
French (fr)
Inventor
叶孔强
曾家江
李素丽
刘何丽
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2024055749A1 publication Critical patent/WO2024055749A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure belongs to the field of battery technology, and specifically relates to a cathode material, a cathode sheet and a battery including the cathode material.
  • the capacity of the positive electrode material plays a vital role in the capacity of lithium-ion batteries.
  • an important way is to increase its charge and discharge voltage.
  • the positive electrode material will face a series of unfavorable changes such as unstable crystal structure, rapid capacity decay and greatly reduced cycle performance. Therefore, it is a very critical task to develop a lithium-ion battery positive electrode material with high specific capacity, high voltage platform, good cycle performance and stable interface under high voltage.
  • the present disclosure provides a cathode material, a cathode sheet and a battery including the cathode material.
  • the cathode material has high specific capacity, good interface stability and cycle stability under high voltage.
  • the use of the cathode material can improve the gram capacity, cycle performance, rate performance and energy density of the battery.
  • a cathode material is a lithium transition metal oxide including Co, A element and optionally M element, the A element includes at least one of B and P, the M element includes Al, At least one of Mg, Ti, Mn, Te, Ni, W, Nb, Zr, La and Y; the molar amount of the A element in the unit mole of the cathode material is n A , and the mole of the Co element in the unit mole of the cathode material.
  • the amount is n Co
  • the molar amount of the M element per unit mole of the cathode material is n M
  • the ratio of n A and n Co+ n M is 0 ⁇ n A /(n Co+ n M ) ⁇ 0.05.
  • the optional means may or may not be selected.
  • the ratio of n A to n Co + n M is 0.002, 0.005, 0.008, 0.010, 0.012, 0.015, 0.018, 0.020, 0.022, 0.024, 0.025, 0.026, 0.028, 0.030, 0.032, 0.034, 0.035, 0.036, 0.038, 0.04, 0.042, 0.043, 0.045, 0.046, 0.048 or 0.04 9.
  • the molar amount n A of the element A in a unit mole of the cathode material is 0 mol ⁇ n A ⁇ 0.05 mol.
  • n A is 0.001 mol, 0.002 mol, 0.003 mol, 0.004 mol, 0.005 mol, 0.006 mol.
  • the molar amount n M of the M element per unit mole of the cathode material is 0 mol ⁇ n M ⁇ 0.1 mol, for example, n M is 0.001 mol, 0.002 mol, 0.003 mol, 0.004 mol, 0.005 mol, 0.006 mol.
  • the cathode material further includes Li element, and the molar amount n Li of the Li element per unit mole of the cathode material is 0.7 mol ⁇ n Li ⁇ 1 mol, for example, n Li is 0.72 mol, 0.75 mol, 0.77 mol , 0.78mol, 0.80mol, 0.82mol, 0.85mol, 0.86mol, 0.88mol, 0.89mol, 0.90mol, 0.92mol, 0.94mol, 0.95mol, 0.96mol, 0.98mol or 0.99mol.
  • the cathode material further includes Na element, and the molar amount n Na of the Na element per unit mole of the cathode material is 0 mol ⁇ n Na ⁇ 0.03 mol, for example, n Na is 0.001 mol, 0.002 mol, 0.003 mol. , 0.004mol, 0.005mol, 0.006mol, 0.007mol, 0.008mol, 0.010mol, 0.012mol, 0.015mol, 0.018mol, 0.020mol, 0.022mol, 0.024mol, 0.025mol, 0.026mol or 0.028mol.
  • the chemical formula of the cathode material is: Li x Na y Co 1-ab A a M b O 2 , 0.7 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.03, 0 ⁇ a ⁇ 0.05, 0 ⁇ b ⁇ 0.1, and 0 ⁇ a/1-a ⁇ 0.05, where A and M are defined as above.
  • the cathode material has an O2 phase stacking structure and belongs to the P63mc space group.
  • the cathode material has a polycrystalline morphology or has a single crystalline morphology.
  • the median particle diameter of the cathode material is 15 ⁇ m to 20 ⁇ m, such as 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m or 20 ⁇ m.
  • the A element is selected from at least one of B and P, preferably B.
  • the B element and the P element have a fluxing effect, making the morphology of the cathode material into a large particle size single crystal or polycrystalline spherical morphology.
  • the B element can make the structure of the cathode material more stable and can stabilize the charge and discharge process.
  • the interface between the cathode material and the electrolyte is beneficial to improving the cycle performance of the battery.
  • B and P elements can significantly increase the gram capacity and compaction density of the cathode material, which is beneficial to improving the energy density and rate performance of the battery.
  • the morphology of the cathode material can be controlled; wherein, when the element A is a B element or a B element and a P element, the cathode material The morphology of the material is a single crystal morphology; when the element A does not include element B, the morphology of the cathode material is a polycrystalline morphology.
  • the median particle size of the cathode material can be controlled to be 15-20 ⁇ m, which can improve the electrochemical kinetic performance and rate performance during the charge and discharge process. And reduce the polarization phenomenon, so that the battery has higher gram capacity, Coulombic efficiency, rate performance and cycle performance.
  • the cathode materials include, but are not limited to, Li 0.72 Na 0.02 Co 0.958 B 0.03 Al 0.012 O 2 , Li 0.74 Na 0.018 Co 0.985 P 0.003 Al 0.012 O 2 , Li 0.76 Na 0.018 Co 0.95 B 0.02 P 0.004 Al 0.026 O 2 and Li 0.78 Na 0.018 Co 0.961 B 0.02 P 0.004 Mg 0.015 O 2 .
  • the present disclosure also provides a method for preparing the above-mentioned cathode material, which method includes the following steps:
  • step (1) the specific steps of the coprecipitation reaction in step (1) include:
  • the soluble Co salt is one or more of cobalt sulfate, cobalt nitrate, cobalt chloride and cobalt acetate;
  • the soluble salt containing M element is a nitrate containing M element. , one or more of sulfate, chloride and acetate.
  • the solvent for the co-precipitation reaction is one or more of deionized water, methanol and ethanol.
  • the precipitating agent used for the coprecipitation reaction is one or more of NaOH, KOH, Na 2 CO 3 , K 2 CO 3 , NaHCO 3 and KHCO 3 . It should be noted that before adding the precipitant to the mixed solution, the precipitant can be pre-prepared to obtain a precipitant solution.
  • the solvent used to prepare the precipitant solution can be deionized water, methanol and ethanol. one or more of them.
  • the molar concentration of the precipitant solution is 0.1 mol/L ⁇ 3 mol/L, more preferably 1 mol/L ⁇ 3 mol/L.
  • the complexing agent used for the co-precipitation reaction is one or more of ammonia water, ammonium carbonate and ammonium bicarbonate. It should be noted that before adding the complexing agent to the mixed solution, the complexing agent can be prepared to obtain a complexing agent solution.
  • the solvent used to prepare the complexing agent solution can be deionized water, One or more of methanol and ethanol.
  • step (1) the temperature of the coprecipitation reaction is 25°C to 85°C; the time of the coprecipitation reaction is 24h to 36h.
  • the Na source is one or more of Na 2 CO 3 , NaOH, Na 2 O and NaCl.
  • step (2) the (Co 1-b M b ) 3 O 4 , the Na source and the A element-containing
  • the molar ratio of Na, Co and A in the compound is (0.7 ⁇ 1):(1-ba):a, where 0 ⁇ a ⁇ 0.05, 0 ⁇ b ⁇ 0.1, preferably, the molar ratio of Na to Co is ( 0.72 ⁇ 0.76):1.
  • the sintering temperature is 750°C to 950°C, more preferably 800°C to 900°C; the sintering time is 20h to 40h, more preferably 24h to 36h.
  • the Li source is one or more of LiOH, LiCl and LiNO3 .
  • step (3) the number of times of washing and the detergent used are not particularly limited. They only need to be selected according to needs, as long as the salt on the surface of the product can be removed.
  • the washing The agent is deionized water.
  • the cathode material can have the specific chemical composition described in the present disclosure. and structure, which can greatly improve the electrochemical performance of the cathode material, as well as improve the gram capacity, cycle performance, rate performance and energy density of lithium-ion batteries.
  • the present disclosure also provides a positive electrode sheet, which includes the above-mentioned positive electrode material.
  • the present disclosure also provides a battery, which includes the above-mentioned positive electrode material, or the battery includes the above-mentioned positive electrode sheet.
  • the charging cut-off voltage of the battery is greater than or equal to 4.5V.
  • the cathode material provided by the present disclosure has good structural stability, and the battery composed of it has excellent cycle performance.
  • the cathode material provided by the present disclosure can directionally control the morphology of the cathode material and increase the compaction density of the cathode material, thereby increasing the energy density of the cathode sheet.
  • the A-O bond formed by the doping element A and the oxygen atoms in the crystal can improve the stability of oxygen in the cathode material, making the cathode material have a higher gram capacity and voltage platform.
  • Figure 1 shows an SEM image of the cathode material of Example 1.
  • Figure 2 shows an SEM image of the cathode material of Example 4.
  • Figure 3 shows an SEM image of the cathode material of Example 7.
  • Figure 4 shows an SEM image of the cathode material of Comparative Example 1.
  • the cathode materials prepared in the above examples and comparative examples belong to the P63mc space group and have an O2 phase stacking structure.
  • buttons 2032 to study the electrochemical properties of the cathode material.
  • the preparation method of the button batteries is as follows:
  • the positive electrode sheet uses NMP as the solvent. According to the mass ratio of 97:1.5:1.5, the positive electrode active material (the positive electrode material prepared in the examples and comparative examples), the conductive agent SuperP and the binder polyvinylidene fluoride PVDF are placed in a degassing machine. Stir evenly to prepare a positive electrode slurry with a solid content of 70%, and evenly coat the positive electrode slurry on the surface of the aluminum foil, bake it in a 100°C vacuum oven for 12 hours, and then roll and cut to obtain the positive electrode sheet.
  • the performance testing process of the button battery produced above is as follows;
  • the test temperature is 25°C.
  • the rate performance test is carried out in the first 5 cycles.
  • a 50-cycle cycle performance test was performed at a charge-discharge rate of 0.5C and a voltage range of 3.0V to 4.55V.
  • Capacity retention rate (%) of a lithium-ion battery after 50 cycles discharge capacity of the 55th cycle/discharge capacity of the 6th cycle ⁇ 100%.
  • Comparative analysis of the data in Table 1 shows that Comparative Examples 1-2 are only doped with M elements, such as Al and Mg. Under high voltage ( ⁇ 4.5V), the capacity, rate performance and cycle performance of Comparative Examples 1-2 are better than Examples 1 to 9 are poor, indicating that the doping of B and P can improve the gram capacity, rate performance and cycle stability of the cathode material. Among them, the co-doping effect of B and P is the best, indicating that B and P have a synergistic effect. And the doping amount of B and P cannot be too much, otherwise the capacity, rate performance and cycle performance of the cathode material will be greatly reduced. This is because too much A element will make the structure of the cathode material unstable, resulting in excessive irreversible capacity. Reduced cycle performance.
  • Example 1 From the electron microscope pictures of Example 1, Example 4, Example 7 and Comparative Example 1, it can be seen that the morphology of the cathode material containing B doping is single crystal morphology, and the cathode material not containing B element is polycrystalline morphology, indicating that During the sintering process, the fluxing effect of B element has a great influence on the morphology of the material. After changing from polycrystalline morphology to single crystal morphology, the compaction density of the material will also increase, which can increase the energy density of lithium-ion batteries. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种正极材料及包括该正极材料的正极片和电池。通过控制正极材料中的掺杂元素A的种类和掺杂量,可以定向控制正极材料的形貌,提高正极材料的压实密度,从而提高正极片的能量密度;此外,掺杂元素A与氧原子形成的A-O键,可以提高正极材料中的氧的稳定性,使得正极材料具有较高的克容量和电压平台。

Description

一种正极材料及包括该正极材料的正极片和电池 技术领域
本公开属于电池技术领域,具体涉及一种正极材料及包括该正极材料的正极片和电池。
背景技术
随着锂离子电池技术的发展和进步,对其容量提出了越来越高的要求。在锂离子电池的组成中,正极材料容量的高低,对锂离子电池的容量起着至关重要的作用。为了提高锂离子电池的容量,一个重要的途径就是提高其充放电电压,但是随着电压的提高,正极材料会面临晶体结构不稳定、容量快速衰减和循环性能大幅降低等一系列不好的变化。因此,开发出一种具有高比容量、高电压平台、循环性能好且在高电压下界面稳定的锂离子电池正极材料是一个非常关键的任务。
发明内容
针对背景技术中存在的问题,本公开提供一种的正极材料及包括该正极材料的正极片和电池。所述正极材料在高电压下具有高比容量、良好的界面稳定性以及循环稳定性,使用该正极材料能够提高电池的克容量、循环性能、倍率性能和能量密度。
本公开的目的是通过如下技术方案实现的:
一种正极材料,所述正极材料为包括Co、A元素以及可选地包括M元素的锂过渡金属氧化物,所述A元素包括B和P中的至少一种,所述M元素包括Al、Mg、Ti、Mn、Te、Ni、W、Nb、Zr、La和Y中的至少一种;单位摩尔正极材料中所述A元素的摩尔量为nA,单位摩尔正极材料中Co元素的摩尔量为nCo,单位摩尔正极材料中所述M元素的摩尔量为nM,所述nA和nCo+nM的比值为0<nA/(nCo+nM)<0.05。
在一些实施例中,所述可选地为可以选择,也可以不选择。
在一些实施例中,所述nA和nCo+nM的比值为0.002、0.005、0.008、0.010、0.012、 0.015、0.018、0.020、0.022、0.024、0.025、0.026、0.028、0.030、0.032、0.034、0.035、0.036、0.038、0.04、0.042、0.043、0.045、0.046、0.048或0.049。
在一些实施例中,单位摩尔正极材料中所述A元素的摩尔量nA为0mol<nA<0.05mol,例如nA为0.001mol、0.002mol、0.003mol、0.004mol、0.005mol、0.006mol、0.007mol、0.008mol、0.010mol、0.012mol、0.015mol、0.018mol、0.020mol、0.022mol、0.024mol、0.025mol、0.026mol、0.028mol、0.030mol、0.032mol、0.034mol、0.035mol、0.036mol、0.038mol、0.04mol、0.042mol、0.043mol、0.045mol、0.046mol、0.048mol或0.049mol。
在一些实施例中,单位摩尔正极材料中所述M元素的摩尔量nM为0mol≤nM<0.1mol,例如nM为0.001mol、0.002mol、0.003mol、0.004mol、0.005mol、0.006mol、0.007mol、0.008mol、0.010mol、0.012mol、0.015mol、0.018mol、0.020mol、0.022mol、0.024mol、0.025mol、0.026mol、0.028mol、0.030mol、0.032mol、0.034mol、0.035mol、0.04mol、0.045mol、0.05mol、0.055mol、0.06mol、0.065mol、0.07mol、0.075mol、0.08mol、0.085mol、0.09mol或0.095mol。
在一些实施例中,所述正极材料进一步包括Li元素,单位摩尔正极材料中所述Li元素的摩尔量nLi为0.7mol<nLi<1mol,例如nLi为0.72mol、0.75mol、0.77mol、0.78mol、0.80mol、0.82mol、0.85mol、0.86mol、0.88mol、0.89mol、0.90mol、0.92mol、0.94mol、0.95mol、0.96mol、0.98mol或0.99mol。
在一些实施例中,所述正极材料进一步包括Na元素,单位摩尔正极材料中所述Na元素的摩尔量nNa为0mol<nNa<0.03mol,例如nNa为0.001mol、0.002mol、0.003mol、0.004mol、0.005mol、0.006mol、0.007mol、0.008mol、0.010mol、0.012mol、0.015mol、0.018mol、0.020mol、0.022mol、0.024mol、0.025mol、0.026mol或0.028mol。
在一些实施例中,所述正极材料的化学式为:LixNayCo1-a-bAaMbO2,0.7<x<1,0<y<0.03,0<a<0.05,0≤b<0.1,且0<a/1-a<0.05,其中A和M的定义如上所述。
在一些实施例中,所述正极材料具有O2相堆积结构,属于P63mc空间群。
在一些实施例中,所述正极材料具有多晶形貌或具有单晶形貌。
在一些实施例中,所述正极材料的中值粒径为15μm~20μm,例如为15μm、16μm、17μm、18μm、19μm或20μm。
在一些实施例中,所述A元素选自B和P中的至少一种,优选为B。B元素和P元素具有助熔作用,使正极材料的形貌为大粒径的单晶或多晶球形形貌,特别地,B元素可以使得正极材料的结构更加稳定,能够稳定充放电过程中正极材料与电解液之间的界面,有利于改善电池的循环性能。同时,B元素和P元素可以显著地增加正极材料的克容量和压实密度,有利于提高电池的能量密度和倍率性能。
在一些实施例中,通过控制所述A元素的种类和掺杂量,可以控制所述正极材料的形貌;其中,当所述元素A为B元素或B元素和P元素时,所述正极材料的形貌为单晶形貌;当所述元素A不包括B元素时,所述正极材料的形貌为多晶形貌。
在一些实施例中,通过控制所述元素A的种类和掺杂量,可以控制所述正极材料的中值粒径为15~20μm,可以提高充放电过程中电化学动力学性能和倍率性能,并减小极化现象,使电池具有较高的克容量、库伦效率、倍率性能和循环性能。
在一些实施例中,所述正极材料包括但不限于Li0.72Na0.02Co0.958B0.03Al0.012O2、Li0.74Na0.018Co0.985P0.003Al0.012O2、Li0.76Na0.018Co0.95B0.02P0.004Al0.026O2和Li0.78Na0.018Co0.961B0.02P0.004Mg0.015O2
本公开还提供上述正极材料的制备方法,所述方法包括以下步骤:
(1)将可溶性Co盐和可选地含有M元素的可溶性盐采用共沉淀的方法制得共沉淀物,并将共沉淀物进行烧结,得到含有M元素掺杂的(Co1-bMb)3O4,其中0≤b<0.1;
(2)按照化学计量比将(Co1-bMb)3O4、Na源和含有A元素的化合物的混合物在空气氛围下烧结,得到NamCo1-a-bAaMb,其中,0.7<m<1;
(3)将NamCo1-a-bAaMb与Li源按照质量比1:(1.5~5)的比例混合,并加入10~40倍重量的去离子水,在100℃~200℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到所述正极材料。
具体地,步骤(1)中共沉淀反应的具体步骤包括:
将可溶性Co盐以及可选地含有M元素的可溶性盐按照Co元素与M元素的摩尔比为(1-b):b的比例混合,加入溶剂中,得到混合溶液;
将沉淀剂和络合剂加入所述混合溶液,得到反应溶液,并调节所述反应溶液的pH至6~8,使所述反应溶液在预定的温度和搅拌速率下进行共沉淀反应,得到共沉淀物。
进一步地,步骤(1)中,所述可溶性Co盐为硫酸钴、硝酸钴、氯化钴以及醋酸钴中的一种或多种;所述含有M元素的可溶性盐为含有M元素的硝酸盐、硫酸盐、氯化盐以及醋酸盐中的一种或多种。
进一步地,步骤(1)中,共沉淀反应的溶剂为去离子水、甲醇以及乙醇中的一种或多种。
进一步地,步骤(1)中,用于共沉淀反应的沉淀剂为NaOH、KOH、Na2CO3、K2CO3、NaHCO3及KHCO3中的一种或多种。需要说明的是,在将所述沉淀剂加入所述混合溶液之前,可以将所述沉淀剂预配制得到沉淀剂溶液,用于配制所述沉淀剂溶液的溶剂可以为去离子水、甲醇以及乙醇中的一种或多种。
进一步地,所述沉淀剂溶液的摩尔浓度为0.1mol/L~3mol/L,更优选为1mol/L~3mol/L。
进一步地,步骤(1)中,用于共沉淀反应的络合剂为氨水、碳酸铵和碳酸氢铵中的一种或多种。需要注意的是,在将所述络合剂加入所述混合溶液之前,可以将所述络合剂配制得到络合剂溶液,用于配制所述络合剂溶液的溶剂可以为去离子水、甲醇以及乙醇中的一种或多种。
进一步地,步骤(1)中,所述共沉淀反应的温度为25℃~85℃;所述共沉淀反应的时间为24h~36h。
进一步地,步骤(2)中,所述Na源为Na2CO3、NaOH、Na2O和NaCl中的一种或多种。
进一步地,步骤(2)中,所述(Co1-bMb)3O4、所述Na源和所述含有A元素的 化合物按照Na、Co和A的摩尔比为(0.7~1):(1-b-a):a,其中,0<a<0.05,0≤b<0.1,优选地,Na与Co的摩尔比值为(0.72~0.76):1。
进一步地,步骤(2)中,所述烧结的温度为750℃~950℃,更优选为800℃~900℃;所述烧结的时间为20h~40h,更优选为24h~36h。
进一步地,步骤(3)中,所述Li源为LiOH、LiCl和LiNO3中的一种或多种。
需要说明的是,步骤(3)中,所述洗涤的次数及所用的洗涤剂没有特别的限制,只需要根据需求进行选择,只要能将产物中表面的盐除去即可,例如,所述洗涤剂为去离子水。
本公开的正极材料的制备过程中,通过对反应物的种类、共沉淀反应的参数、产物元素的种类和掺杂量等进行综合地调控,可以使正极材料具有本公开所述的特定化学组成和结构,能够大幅度提高正极材料的电化学性能,以及提高锂离子电池的克容量、循环性能、倍率性能及能量密度。
本公开还提供一种正极片,所述正极片包括上述正极材料。
本公开还提供一种电池,所述电池包括上述的正极材料,或者所述电池包括上述的正极片。
根据本公开的实施方式,所述电池的充电截止电压大于等于4.5V。
本公开的有益效果:
(1)本公开提供的正极材料的结构稳定性好,组成的电池具有优异的循环性能。
(2)本公开提供的正极材料通过控制掺杂元素A的种类和掺杂量,一方面可以定向控制所述正极材料的形貌,提高正极材料的压实密度,从而提高正极片的能量密度;另一方面掺杂元素A与晶体中氧原子形成的A-O键,可以提高正极材料中的氧稳定性,使得正极材料具有较高的克容量和电压平台。
附图说明
图1所示为实施例1的正极材料的SEM图。
图2所示为实施例4的正极材料的SEM图。
图3所示为实施例7的正极材料的SEM图。
图4所示为对比例1的正极材料的SEM图。
具体实施方式
下文将结合具体实施例对本公开做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本公开,而不应被解释为对本公开保护范围的限制。凡基于本公开上述内容所实现的技术均涵盖在本公开旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
实施例1
(1)将硫酸钴和硫酸铝按照Co元素和Al元素的摩尔比为0.97:0.03的比例混合并加入去离子水,得到混合溶液;将沉淀剂氢氧化钠和络合剂氨水加入混合溶液,得到反应溶液,通入氨水调节反应溶液的pH值为7.5,使反应溶液在搅拌下进行共沉淀反应,得到共沉淀物;将共沉淀物至于700℃下进行烧结,得到(Co0.97Al0.03)3O4粉料;
(2)将(Co0.97Al0.03)3O4、Na2CO3和H3BO3按照Co、Na和B的摩尔比为0.955:0.72:0.015进行混合,得到混合物粉料,将混合物粉料在空气氛围下,900℃烧结36h,得到Na0.72Co0.955B0.015Al0.03O2
(3)将Na0.72Co0.955B0.015Al0.03O2与LiOH按照质量比为1:2.5混合,并加入20倍重量的去离子水,在120℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到正极材料Li0.9Na0.02Co0.955B0.015Al0.03O2
实施例2
(1)同实施例1;
(2)将(Co0.97Al0.03)3O4、Na2CO3和H3BO3按照Co、Na和B的摩尔比为0.95:0.74:0.02进行混合,得到混合物粉料,将混合物粉料在空气氛围下,900℃烧结36h,得到Na0.74Co0.95B0.02Al0.03O2
(3)将Na0.74Co0.95B0.02Al0.03O2与LiOH按照质量比1:2.5比例混合,并加入20 倍重量的去离子水,在120℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到正极材料Li0.93Na0.015Co0.95B0.02Al0.03O2
实施例3
(1)同实施例1;
(2)将(Co0.97Al0.03)3O4、Na2CO3和H3BO3按照Co、Na和B的摩尔比为0.945:0.76:0.025进行混合,得到混合物粉料,将混合物粉料在空气氛围下,900℃烧结36h,得到Na0.76Co0.945Al0.03B0.025O2
(3)将Na0.76Co0.945Al0.03B0.025O2与LiOH按照质量比1:2.5比例混合,并加入20倍重量的去离子水,在120℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到正极材料Li0.93Na0.015Co0.945B0.025Al0.03O2
实施例4
(1)将硫酸钴和硫酸镁按照Co元素和Mg元素的摩尔比为0.97:0.0015的比例混合并加入去离子水,得到混合溶液;将沉淀剂氢氧化钠和络合剂氨水加入混合溶液,得到反应溶液,通入氨水调节反应溶液的pH值为7.5,使反应溶液在搅拌下进行共沉淀反应,得到共沉淀物;将共沉淀物至于700℃下进行烧结,得到(Co0.97Mg0.0015)3O4粉料;
(2)将(Co0.97Mg0.0015)3O4、NaOH和Na4P2O7按照Co、Na和P的摩尔比为0.983:0.72:0.002进行混合,得到混合物粉料,将混合物粉料在空气氛围下,900℃烧结36h,得到Na0.72Co0.983Mg0.0015P0.002O2
(3)将Na0.72Co0.983Mg0.0015P0.002O2与LiCl按照质量比1:2.5比例混合,并加入20倍重量的去离子水,在120℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到正极材料Li0.91Na0.018Co0.983P0.002Mg0.015O2
实施例5
(1)同实施例4;
(2)将(Co0.97Mg0.0015)3O4、NaOH和Na4P2O7按照Co、Na和P的摩尔比为0.9825:0.74:0.0025进行混合,得到混合物粉料,将混合物粉料在空气氛围下,900℃烧结36h,得到Na0.74Co0.9825Mg0.0015P0.0025O2
(3)将Na0.74Co0.9825Mg0.0015P0.0025O2与LiCl按照质量比1:2.5比例混合,并加入20倍重量的去离子水,在120℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到正极材料Li0.94Na0.016Co0.9825P0.0025Mg0.015O2
实施例6
(1)同实施例4;
(2)将(Co0.97Mg0.0015)3O4、NaCl和Na4P2O7按照Co、Na和P的摩尔比为0.982:0.76:0.003进行混合,得到混合物粉料,将混合物粉料在空气氛围下,900℃烧结36h,得到Na0.76Co0.982Mg0.0015P0.003O2
(3)将Na0.76Co0.982Mg0.0015P0.003O2与LiCl按照质量比1:2.5比例混合,并加入20倍重量的去离子水,在120℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到正极材料Li0.96Na0.014Co0.982P0.003Mg0.015O2
实施例7
(1)将硫酸钴和硫酸铝按照Co元素和Al元素的摩尔比为0.97:0.02的比例混合并加入去离子水,得到混合溶液;将沉淀剂氢氧化钠和络合剂氨水加入混合溶液,得到反应溶液,通入氨水调节反应溶液的pH值为7.5,使反应溶液在搅拌下进行共沉淀反应,得到共沉淀物;将共沉淀物至于700℃下进行烧结,得到(Co0.97Al0.02)3O4粉料;
(2)将(Co0.97Al0.02)3O4、NaCl、H3BO3和Na4P2O7按照Co、Na、B和P的摩尔比为0.955:0.72:0.022:0.003进行混合,得到混合物粉料,将混合物粉料在空气氛围下,900℃烧结36h,得到Na0.72Co0.955B0.022P0.003Al0.02O2
(3)将Na0.72Co0.955B0.022P0.003Al0.02O2与Li源(LiOH和LiNO3的重量比为8:2)按照质量比1:2.5比例混合,并加入20倍重量的去离子水,在120℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到正极材料Li0.92Na0.02Co0.955B0.022P0.003Al0.02O2
实施例8
(1)同实施例7;
(2)将(Co0.97Al0.02)3O4、NaCl、H3BO3和Na4P2O7按照Co、Na、B和P的摩尔比为0.945:0.74:0.032:0.003进行混合,得到混合物粉料,将混合物粉料在空气氛围下,900℃烧结36h,得到Na0.74Co0.945B0.032P0.003Al0.02O2
(3)将Na0.74Co0.945B0.032P0.003Al0.02O2与Li源(LiOH和LiNO3的重量比为8:2)按照质量比1:2.5比例混合,并加入20倍重量的去离子水,在120℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到正极材料Li0.94Na0.018Co0.945B0.032P0.003Al0.02O2
实施例9
(1)同实施例7;
(2)将(Co0.97Al0.02)3O4、NaCl、H3BO3和Na4P2O7混合物按照Co、Na、B和P的摩尔比为0.935:0.76:0.04:0.005进行混合,得到混合物粉料,将混合物粉料在空气氛围下,900℃烧结36h,得到Na0.76Co0.935B0.04P0.005Al0.02O2
(3)将Na0.76Co0.935B0.04P0.005Al0.02O2与Li源(LiOH和LiNO3的重量比为8:2)按照质量比1:2.5比例混合,并加入20倍重量的去离子水,在120℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到正极材料Li0.96Na0.016Co0.935B0.04P0.005Al0.02O2
对比例1
(1)同实施例1;
(2)将(Co0.97Al0.03)3O4和Na2CO3按照Co和Na的摩尔比为0.97:0.72进行混合,得到混合物粉料,将混合物粉料在空气氛围下,900℃烧结36h,得到Na0.72Co0.97Al0.03O2
(3)将Na0.72Co0.97Al0.03O2与LiOH按照质量比1:2.5比例混合,并加入20倍重量的去离子水,在120℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到正极材料Li0.9Na0.02Co0.97Al0.03O2
对比例2
(1)同实施例4;
(2)将(Co0.97Mg0.0015)3O4和Na2CO3按照Co和Na的摩尔比为0.985:0.72进行混合,得到混合物粉料,将混合物粉料在空气氛围下,900℃烧结36h,得到Na0.72Co0.985Mg0.0015O2
(3)将Na0.72Co0.985Mg0.0015O2与LiOH按照质量比1:2.5比例混合,并加入20倍重量的去离子水,在120℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到正极材料Li0.91Na0.018Co0.985Mg0.015O2
对比例3
(1)同实施例7;
(2)将(Co0.97Al0.02)3O4、Na2CO3、H3BO3和Na4P2O7按照Co、Na、B和P的摩尔比为0.91:0.72:0.05:0.02进行混合,得到混合物粉料,将混合物粉料在空气氛围下,900℃烧结36h,得到Na0.72Co0.91B0.05P0.02Al0.02O2
(3)将Na0.72Co0.91B0.05P0.02Al0.02O2与LiOH按照质量比1:2.5比例混合,并加入20倍重量的去离子水,在120℃下进行离子交换反应,反应完后将反应产物洗涤和烘干得到正极材料Li0.92Na0.02Co0.91B0.05P0.02Al0.02O2
上述实施例和对比例制备的正极材料属于P63mc空间群,具有O2相堆积结构。
上述实施例和对比例均采用CR2032型纽扣电池研究所述正极材料的电化学性能,所述纽扣电池的制备方法如下:
正极片采用NMP作为溶剂,按照质量比97:1.5:1.5,将正极活性物质(实施例和对比例制备的正极材料)、导电剂SuperP和粘结剂聚偏氟乙烯PVDF,在脱泡机中搅拌均匀,配制成固含量为70%的正极浆料,并将该正极浆料均匀涂覆在铝箔表面,置于100℃真空烘箱烘烤12h,然后辊压、裁切,得到正极片。
在手套箱中将该正极片和锂片负极,PP/PE/PP三层隔膜,使用1mol/L LiPF6/(EC+DEC)电解液(体积比1:1),组装成纽扣电池进行电化学测试。
上述制得的纽扣电池的性能测试过程如下;
测试温度为25℃,在电压区间3.0V~4.5V的条件下,前面5圈先进行倍率性能测试,充电时,以0.1C恒流充电至电压为4.5V,放电时,在4.5V恒压下,分别以 0.1C、0.2C、0.5C、1C和2C倍率进行放电。然后在充放电倍率为0.5C,电压区间3.0V~4.55V的条件下进行50圈循环性能测试。锂离子电池循环50圈后的容量保持率(%)=第55圈循环的放电容量/第6圈的放电容量×100%。
表1实施例和对比例的正极材料及纽扣电池的性能测试结果
对比分析表1中的数据可见,对比例1-2仅掺杂M元素,例如Al和Mg,在高电压(≥4.5V)下,对比例1-2的容量、倍率性能和循环性能都比实施例1~9差,说明B和P的掺杂能提高正极材料的克容量、倍率性能和循环稳定性。其中,B和P共掺杂的效果最好,说明B和P具有协同效果。且B和P的掺杂量不能过多,否则正极材料的容量、倍率性能和循环性能都会大幅降低,这是因为A元素过多后,正极材料的结构不稳定,造成不可逆容量的过大,循环性能下降。
从实施例1、实施例4、实施例7和对比例1的电镜图片可知,含有B掺杂的正极材料形貌为单晶形貌,不含B元素的正极材料为多晶形貌,说明在烧结过程中,B元素的助熔作用对材料的形貌影响很大,从多晶形貌变成单晶形貌后材料的压实密度也会增加,从而可以提升锂离子电池的能量密度。
以上,对本公开的实施方式进行了说明。但是,本公开不限定于上述实施方式。凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包括在本公开的保护范围之内。

Claims (15)

  1. 一种正极材料,所述正极材料为包括Co、A元素以及可选地包括M元素的锂过渡金属氧化物,所述A元素选自B和P中的至少一种,所述M元素包括Al、Mg、Ti、Mn、Te、Ni、W、Nb、Zr、La和Y中的至少一种;单位摩尔正极材料中所述A元素的摩尔量为nA,单位摩尔正极材料中Co元素的摩尔量为nCo,单位摩尔正极材料中所述M元素的摩尔量为nM,所述nA和nCo+nM的比值为0<nA/(nCo+nM)<0.05。
  2. 根据权利要求1所述正极材料,其特征在于,单位摩尔正极材料中所述A元素的摩尔量nA为0mol<nA<0.05mol。
  3. 根据权利要求1或2所述的正极材料,其特征在于,单位摩尔正极材料中所述M元素的摩尔量nM为0mol≤nM<0.1mol。
  4. 根据权利要求1-3任一项所述正极材料,其特征在于,所述正极材料进一步包括Li元素,单位摩尔正极材料中所述Li元素的摩尔量nLi为0.7mol<nLi<1mol。
  5. 根据权利要求1-4任一项所述正极材料,其特征在于,所述正极材料进一步包括Na元素,单位摩尔正极材料中所述Na元素的摩尔量nNa为0mol<nNa<0.03mol。
  6. 根据权利要求1-5任一项所述正极材料,其特征在于,所述正极材料的化学式为:LixNayCo1-a-bAaMbO2,0.7<x<1,0<y<0.03,0<a<0.05,0≤b<0.1,且0<a/1-a<0.05。
  7. 根据权利要求1-6任一项所述正极材料,其特征在于,所述正极材料具有O2相堆积结构,属于P63mc空间群。
  8. 根据权利要求1-7任一项所述正极材料,其特征在于,所述正极材料具有多晶形貌或具有单晶形貌。
  9. 根据权利要求1-8任一项所述正极材料,其特征在于,所述M元素选自Al和Mg中的至少一种。
  10. 根据权利要求1-9任一项所述正极材料,其特征在于,所述正极材料的中值粒径为15μm~20μm。
  11. 根据权利要求1-10任一项所述的正极材料,其特征在于,所述A元 素选自B和P中的至少一种;
    优选地,所述A元素为B。
  12. 根据权利要求1-10任一项所述的正极材料,其特征在于,所述A元素为B和P;
    优选地,B和P的摩尔量的比值为(7.3-10.7):1。
  13. 一种正极片,其特征在于,所述正极片包括权利要求1-12任一项所述正极材料。
  14. 一种电池,其特征在于,所述电池包括权利要求1-12任一项所述的正极材料,或者所述电池包括权利要求13所述的正极片。
  15. 根据权利要求14所述的电池,其特征在于,所述电池的充电截止电压大于等于4.5V。
PCT/CN2023/108433 2022-09-13 2023-07-20 一种正极材料及包括该正极材料的正极片和电池 WO2024055749A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211112059.0 2022-09-13
CN202211112059.0A CN117747808A (zh) 2022-09-13 2022-09-13 一种正极材料及包括该正极材料的正极片和电池

Publications (1)

Publication Number Publication Date
WO2024055749A1 true WO2024055749A1 (zh) 2024-03-21

Family

ID=90274193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108433 WO2024055749A1 (zh) 2022-09-13 2023-07-20 一种正极材料及包括该正极材料的正极片和电池

Country Status (2)

Country Link
CN (1) CN117747808A (zh)
WO (1) WO2024055749A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518912A (zh) * 2013-07-11 2016-04-20 株式会社三德 用于非水电解质二次电池的正极活性材料以及使用所述正极活性材料的正极和二次电池
WO2018025795A1 (ja) * 2016-08-04 2018-02-08 株式会社三徳 非水電解質二次電池用正極活物質、並びに該正極活物質を使用した正極及び二次電池
CN112670492A (zh) * 2020-12-23 2021-04-16 宁德新能源科技有限公司 正极材料及其制备方法以及电化学装置
CN114678528A (zh) * 2021-12-07 2022-06-28 北京当升材料科技股份有限公司 钴酸锂正极材料及其制备方法与应用
CN116093271A (zh) * 2022-11-01 2023-05-09 珠海冠宇电池股份有限公司 一种正极材料及包括该正极材料的正极片和电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518912A (zh) * 2013-07-11 2016-04-20 株式会社三德 用于非水电解质二次电池的正极活性材料以及使用所述正极活性材料的正极和二次电池
WO2018025795A1 (ja) * 2016-08-04 2018-02-08 株式会社三徳 非水電解質二次電池用正極活物質、並びに該正極活物質を使用した正極及び二次電池
CN112670492A (zh) * 2020-12-23 2021-04-16 宁德新能源科技有限公司 正极材料及其制备方法以及电化学装置
CN114678528A (zh) * 2021-12-07 2022-06-28 北京当升材料科技股份有限公司 钴酸锂正极材料及其制备方法与应用
CN116093271A (zh) * 2022-11-01 2023-05-09 珠海冠宇电池股份有限公司 一种正极材料及包括该正极材料的正极片和电池

Also Published As

Publication number Publication date
CN117747808A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
JP5137414B2 (ja) 非水電解液二次電池用正極活物質およびその製造方法、ならびに、該正極活物質を用いた非水電解液二次電池
KR101587293B1 (ko) 비수전해액 이차 전지용 Li-Ni계 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
KR101989633B1 (ko) Li-Ni 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
JP4574877B2 (ja) リチウム二次電池用正極活物質及びその製造方法
JP4266525B2 (ja) リチウム二次電池用正極活物質及びその製造方法
WO2020143531A1 (zh) 正极活性材料及其制备方法、钠离子电池和包含钠离子电池的装置
JP5987401B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法および二次電池
CN109721109A (zh) 一种锂电池用镍钴锰三元正极材料前驱体及其制备方法和制备得到的正极材料
CN111689528B (zh) 一种三元材料前驱体及其制备方法和用途
JP7398015B2 (ja) 単結晶形多元正極材料、その製造方法及び使用
JP2015529943A (ja) リチウム過剰正極材料、リチウム電池正極、およびリチウム電池
KR20220061231A (ko) 리튬 망간 리치 재료, 이의 제조 방법 및 응용
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
CN113540466B (zh) 一种金属硼化物与硼酸盐复合包覆改性的镍钴锰三元材料前驱体及其制备方法
CN111115713A (zh) 一种LaMnO3包覆富锂锰基正极材料及其制备方法
WO2023093187A1 (zh) 一种钠离子电池正极材料及其制备方法和应用
WO2024087387A1 (zh) 二次电池及用电设备
CN113825725B (zh) 非水电解质二次电池用正极活性物质及非水电解质二次电池用正极
JP2011249293A (ja) リチウム遷移金属化合物及びその製造方法、並びにリチウムイオン電池
CN116014104A (zh) 富锂镍系正极材料及其制备方法、正极片与二次电池
CN111082042A (zh) 锂离子电池用三元正极材料微米单晶结构及其制备方法
CN113363477B (zh) 一种多层包覆三元正极材料的制备方法
CN112186166B (zh) 一种钼/钴氧化物-碳复合材料及其制备方法、锂离子电池负极极片和锂离子电池
WO2024066809A1 (zh) 正极材料及其制备方法、正极极片、二次电池和电子设备
WO2024060548A1 (zh) 一种铁包覆硼掺杂的高镍正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864484

Country of ref document: EP

Kind code of ref document: A1