WO2024055568A1 - 太阳电池的制备方法及太阳电池 - Google Patents

太阳电池的制备方法及太阳电池 Download PDF

Info

Publication number
WO2024055568A1
WO2024055568A1 PCT/CN2023/085087 CN2023085087W WO2024055568A1 WO 2024055568 A1 WO2024055568 A1 WO 2024055568A1 CN 2023085087 W CN2023085087 W CN 2023085087W WO 2024055568 A1 WO2024055568 A1 WO 2024055568A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
electrode layer
conductive
conductive material
cell according
Prior art date
Application number
PCT/CN2023/085087
Other languages
English (en)
French (fr)
Inventor
张海川
秦浩
石建华
付昊鑫
孟凡英
刘正新
Original Assignee
通威太阳能(成都)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(成都)有限公司 filed Critical 通威太阳能(成都)有限公司
Publication of WO2024055568A1 publication Critical patent/WO2024055568A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials

Definitions

  • the present invention relates to the technical field of solar cells, and in particular to a method for preparing a solar cell and a solar cell.
  • the solar cell substrate for generating photogenerated carriers in addition to the solar cell substrate for generating photogenerated carriers, it also includes a grid electrode for exporting electrons to an external circuit.
  • the contact resistance between the grid electrode and the solar cell substrate at the bottom directly affects the efficiency of the solar cell and is a factor that must be considered in the practical application of solar cells.
  • Heterojunction with Intrinsic Thinfilm is a solar cell with great application prospects.
  • the temperature for preparing the gate line electrode cannot be too high. Therefore, the gate electrodes of heterojunction solar cells are usually prepared by using conductive pastes that can be cured at lower temperatures. The contact resistance between this conductive paste and the cell substrate with a textured structure is large, which leads to a reduction in the solar cell fill factor.
  • a method for preparing a solar cell including the following steps:
  • the conductive material in the first conductive paste is a spherical conductive material
  • a second conductive paste is printed on the first electrode layer, and the solvent in the second conductive paste is removed to form a second electrode layer;
  • the conductive material in the second conductive paste includes sheet-shaped conductive material and Spherical conductive material;
  • the first electrode layer and the second electrode layer are cured.
  • the average particle size of the spherical conductive material is 0.5 ⁇ m ⁇ 5 ⁇ m.
  • the average particle size of the spherical conductive material is 1 ⁇ m to 5 ⁇ m, and the average particle size of the sheet-like conductive material is 3 ⁇ m to 10 ⁇ m.
  • the mass ratio of the spherical conductive material and the sheet-like conductive material is 1:(1 ⁇ 2).
  • the thickness of the first electrode layer formed is controlled to be 5 ⁇ m ⁇ 10 ⁇ m.
  • the thickness of the second electrode layer formed is controlled to be 10 ⁇ m ⁇ 30 ⁇ m.
  • a first silk screen is used to print the first conductive paste.
  • the screen opening width of the first screen printing screen is 18 ⁇ m ⁇ 22 ⁇ m.
  • a second silk screen is used to print the second conductive paste.
  • the screen opening width of the first screen printing screen is smaller than the screen opening width of the second screen printing screen, and the printing area of the second conductive paste includes the first screen printing screen. A printed area of conductive paste.
  • the screen opening width of the second screen printing screen is 22 ⁇ m ⁇ 26 ⁇ m.
  • the conductive material of the first conductive paste is silver powder.
  • the conductive material in the second conductive paste is silver powder.
  • the solar cell substrate includes a silicon wafer as a substrate, and the solar cell substrate further includes front-side intrinsic amorphous silicon passivation stacked sequentially on the front side of the substrate. layer, a front-side doped amorphous silicon passivation layer and a front-side transparent conductive film, and a back-side intrinsic amorphous silicon passivation layer, a back-side doped amorphous silicon passivation layer and a back-side layer arranged on the back side of the substrate in sequence.
  • Transparent conductive film, the front transparent conductive film and the back transparent conductive film have a pyramid-shaped suede structure, and the first electrode layer is prepared on the front transparent conductive film and/or the back transparent conductive film .
  • the present disclosure also provides a solar cell, including a solar cell substrate, a first electrode layer provided on the solar cell substrate, and a second electrode layer provided on the first electrode layer;
  • the conductive material in the first electrode layer is a spherical conductive material
  • the conductive material in the second electrode layer includes sheet-shaped conductive material and spherical conductive material.
  • the average particle size of the spherical conductive material is 0.5 ⁇ m ⁇ 5 ⁇ m.
  • the average particle size of the spherical conductive material is 1 ⁇ m ⁇ 5 ⁇ m, and the average particle size of the sheet-like conductive material is 3 ⁇ m ⁇ 10 ⁇ m.
  • the mass ratio of the spherical conductive material and the sheet-like conductive material is 1:(1 ⁇ 2).
  • the thickness of the first electrode layer is 5 ⁇ m ⁇ 10 ⁇ m.
  • the thickness of the second electrode layer is 10 ⁇ m ⁇ 30 ⁇ m.
  • the conductive material of the first electrode layer is silver powder.
  • the conductive material in the second electrode layer is silver powder.
  • the solar cell substrate includes a silicon wafer as a substrate, and the solar cell substrate further includes front-side intrinsic amorphous silicon passivation stacked sequentially on the front side of the substrate. layer, a front-side doped amorphous silicon passivation layer and a front-side transparent conductive film, and a back-side intrinsic amorphous silicon passivation layer, a back-side doped amorphous silicon passivation layer and a back-side layer arranged on the back side of the substrate in sequence.
  • Transparent conductive film, the front transparent conductive film and the back transparent conductive film have a pyramid-shaped suede structure, and the first electrode layer is prepared on the front transparent conductive film and/or the back transparent conductive film .
  • Figure 1 shows a method for manufacturing a solar cell in one embodiment of the present disclosure
  • FIG. 2 shows a schematic structural diagram of the solar cell substrate provided in step S1 in the preparation method of Figure 1;
  • FIG. 3 shows a schematic structural diagram of the device prepared in step S2 in the preparation method of Figure 1;
  • Figure 4 shows a schematic structural diagram of the device prepared in step S3 in the preparation method of Figure 1;
  • the sum of the parts of each component in the composition may be 100 parts by weight.
  • the basis of the percentages (including weight percentages) of the present invention are the total weight of the composition.
  • wt% in this article means mass percentage, and “at%” means atomic percentage.
  • each reaction step may be carried out in the order stated in the text, or may not be carried out in the order stated in the text.
  • other steps may be included between each reaction step, and the order of the reaction steps may be appropriately exchanged. This is something that technicians can determine based on conventional knowledge and experience.
  • the reaction methods herein are carried out sequentially.
  • One embodiment of the present disclosure provides a method for preparing a solar cell, which includes the following steps:
  • the conductive material in the first conductive paste is a spherical conductive material
  • the conductive materials in the second conductive paste include sheet-shaped conductive materials and spherical conductive materials
  • the first electrode layer and the second electrode layer are cured.
  • the first conductive slurry in this embodiment includes a solvent, a conductive material and a solid Chemical materials, conductive materials and curable materials are dispersed in a solvent.
  • the conductive material in the first conductive slurry is powdery conductive material.
  • the curable material can fix the powdery conductive material after curing to form a first electrode layer stably attached to the solar cell substrate.
  • the second conductive paste in this embodiment also includes a solvent, a conductive material, and a curable material.
  • the solar cell substrate refers to the partial structure of the solar cell that has not yet formed a grid electrode on its surface.
  • the solar cell substrate in this embodiment has an uneven texture structure on its surface.
  • the first conductive paste is directly printed on the texture structure.
  • the low-temperature conductive slurry commonly used in this field usually includes both smaller spherical conductive materials and larger sheet conductive materials.
  • the sheet conductive materials not only assist in maintaining the overall shape of the electrode during the electrode forming process, but also can Increase the conductivity of printed electrodes.
  • the inventor of the present disclosure found after research that although the sheet-shaped conductive material plays a very important role in the slurry, due to its large size, more pores will be generated when in contact with the suede structure, which also leads to The contact resistance between the electrode and the solar cell substrate becomes larger.
  • the preparation method of the solar cell in this embodiment includes the following steps: first, a first conductive paste whose conductive material is a spherical conductive material is printed on the solar cell substrate, and then a second conductive paste including a sheet-like conductive material and a spherical conductive material is printed, and finally the first conductive paste and the second conductive paste are cured.
  • the spherical conductive material in the first conductive paste can be fully embedded in the depression of the velvet structure on the surface of the solar cell substrate, which makes the contact between the first electrode layer and the solar cell substrate more sufficient, thereby effectively reducing the contact resistance.
  • a second electrode layer including a sheet-like conductive material and a spherical conductive material is printed on the first electrode layer to ensure the conductivity and structure of the first electrode layer and the second electrode layer as a whole.
  • the preparation method of the solar cell can effectively reduce the contact resistance between the electrode and the solar cell substrate while ensuring the overall conductivity and structural stability of the electrode.
  • the filling factor of the solar cell has also been significantly improved.
  • Figure 1 shows the specific preparation steps of a solar cell preparation method.
  • Step S1 Provide a solar cell substrate.
  • the surface of the solar cell substrate has a concave-convex textured structure, and the first electrode layer is formed on the surface with the textured structure.
  • the solar cell substrate may be a silicon heterojunction solar cell substrate.
  • the present disclosure provides Figure 2, which shows a specific structural schematic diagram of a silicon heterojunction solar cell substrate.
  • the heterojunction solar cell substrate includes a substrate 100, a front intrinsic amorphous silicon passivation layer 111, a front doped amorphous silicon passivation layer 112, a front transparent conductive film 113, a back intrinsic Amorphous silicon passivation layer 121, backside doped amorphous silicon passivation layer 122 and backside transparent conductive film 123.
  • the substrate 100 has a front side and a back side.
  • the front side intrinsic amorphous silicon passivation layer 111, the front side doped amorphous silicon passivation layer 112 and the front side transparent conductive film 113 are sequentially stacked on the front side of the substrate 100.
  • the back side has a front side and a back side.
  • the amorphous silicon passivation layer 121, the back doped amorphous silicon passivation layer 122 and the back transparent conductive film 123 are sequentially stacked on the back side of the substrate 100.
  • the front-side doped amorphous silicon passivation layer 112 and the back-side doped amorphous silicon passivation layer 122 have different doping types.
  • the substrate 100 in the solar cell substrate has a textured structure.
  • the textured structure can reduce the reflection of light on the surface of the substrate 100 and enhance the absorption of light by the substrate 100 .
  • the film layer structure stacked on the substrate 100 is modeled on the substrate 100 on the solar cell substrate. Therefore, the outermost front transparent conductive film 113 and the back transparent conductive film 123 also have similar textures. structure.
  • the solar cell substrate may be a sheet produced in a previous process in the solar cell production process, or may be a commercially available solar cell substrate that has not yet been formed with a grid electrode.
  • Step S2 Print a first conductive paste on the solar cell substrate.
  • the conductive material in the first conductive paste is the first spherical conductive material 210.
  • the solvent in the first conductive paste is removed to form a first electrode layer.
  • printing is performed on at least one surface of the front transparent conductive film 113 and the back transparent conductive film 123 .
  • the substrate 100 in the solar cell substrate is a silicon wafer, and the silicon wafer has a textured surface with a pyramid structure.
  • the conductive material in the first conductive paste only includes the first spherical conductive material 210 and does not contain sheet-shaped conductive material.
  • the spherical conductive material can be embedded in the depressions of the textured structure, so the contact with the textured structure is more complete.
  • the spherical conductive material refers to a smooth curved surface structure.
  • the spherical conductive material can be a regular sphere or ellipsoid, or other irregular material with a smooth curved surface.
  • the spherical conductive material is in a regular spherical shape.
  • the first spherical conductive material 210 is a metallic material.
  • the first spherical conductive material 210 is spherical silver powder.
  • the conductive material in the first conductive paste may also be conductive copper powder or carbon powder.
  • the average particle size of the first spherical conductive material 210 is 0.5 ⁇ m ⁇ 5 ⁇ m.
  • the average particle size of the first spherical conductive material 210 is 1 ⁇ m ⁇ 3 ⁇ m. Controlling the average particle size of the first spherical conductive material 210 between 0.5 ⁇ m and 5 ⁇ m, corresponding to the size of the textured structure, can allow the spherical conductive material to be more fully embedded in the depressions of the textured structure on the solar cell substrate, improving the first The electrical conductivity between the electrode layer and the solar cell substrate.
  • the thickness of the formed first electrode layer is controlled to be 5 ⁇ m ⁇ 10 ⁇ m.
  • the thickness of the formed first electrode layer is controlled to be 5 ⁇ m to 7 ⁇ m. Since the first electrode layer protrudes from the solar cell substrate, it is difficult for the first spherical conductive materials 210 to support each other to form a stable layered structure.
  • the thickness of the formed first electrode layer is controlled to be 5 ⁇ m to 10 ⁇ m, which can maintain the temporary stability of the layered structure as much as possible and prevent the overall structure of the first electrode layer from collapsing.
  • the first conductive paste is printed on the solar cell substrate
  • a first silk screen printing screen can be used to print the first conductive paste.
  • the first screen printing screen for screen printing the first electrode layer has a slit-shaped screen opening for leaking the first conductive paste.
  • the screen opening width of the first screen printing screen is 18 ⁇ m to 22 ⁇ m.
  • the method of removing the solvent in the first conductive slurry may be drying, and the drying temperature may be appropriately selected according to the solvent in the first conductive slurry.
  • the curable material in the first conductive slurry should be controlled not to solidify. If the first electrode layer is solidified before the second electrode layer is formed, the spherical conductive material therein will be pulverized, making it difficult to form.
  • the curable material in the first conductive paste is a thermally curable material.
  • the temperature of the drying is controlled to be lower than the curing temperature of the curable material in the first conductive slurry, so as to avoid solidification of the curable material while removing the solvent.
  • the drying temperature is controlled to be 120°C to 160°C, and the drying time is controlled to last for 5 min to 15 min.
  • step S2 the preliminary preparation of the first electrode layer with sufficient electrical contact with the transparent conductive film on the surface of the solar cell substrate can be completed.
  • the conductive material in the first electrode layer is spherical, the conductivity between particles is relatively poor, and it is difficult for a single first electrode layer to form a stable layered structure, which makes a single first electrode layer unsuitable. for grid electrodes that are actually available for use.
  • the solar cell preparation method further includes the following steps.
  • Step S3 Print a second conductive paste on the first electrode layer.
  • the conductive material in the second conductive paste includes a sheet conductive material 320 and a second spherical conductive material 310. Remove the solvent in the second conductive paste to form second electrode layer.
  • the second electrode layer is formed on the first electrode layer, and the second electrode layer and the first electrode layer together form the gate electrode of the solar cell.
  • the conductive material in the second conductive paste includes a sheet-shaped conductive material 320 and a second spherical conductive material 310.
  • the second conductive paste is formed on the first electrode layer.
  • One of the functions is to use the sheet-shaped conductive material 320 to form the second conductive paste on the first electrode layer.
  • the combination of the conductive material 320 and the second spherical conductive material 310 makes the final overall electrode itself have higher conductivity, reducing the negative impact of the first electrode layer on the conductivity of the electrode; another effect is through the second electrode layer
  • the sheet-shaped conductive material 320 prevents the overall structure of the first electrode layer from collapsing and dispersing, and maintains the overall stability of the electrode while increasing the thickness of the electrode.
  • the mass ratio of the second spherical conductive material 310 and the sheet-like conductive material 320 is 1:(1 ⁇ 2).
  • the average particle size of the second spherical conductive material 310 is 1 ⁇ m to 5 ⁇ m, and the average particle size of the sheet conductive material 320 is 3 ⁇ m to 10 ⁇ m.
  • the sheet-shaped conductive material 320 and the second spherical conductive material 310 may be independently selected from metal conductive materials.
  • the sheet-shaped conductive material 320 and the second spherical conductive material 310 in the second conductive paste are made of the same material as the first spherical conductive material 210 .
  • the sheet-shaped conductive material 320 and the second spherical conductive material 310 in the second conductive paste are both conductive silver powder.
  • the thickness of the second electrode layer formed is controlled to be 10 ⁇ m ⁇ 30 ⁇ m.
  • a second silk screen is used to print the second conductive paste, and the printing area of the second conductive paste includes the first Printed area of conductive paste.
  • the width of the printed area of the second conductive paste is wider than the width of the printed area of the first conductive paste.
  • the screen opening width of the second screen printing screen is 22 ⁇ m ⁇ 26 ⁇ m.
  • the method of removing the solvent in the second conductive slurry may be drying, and the drying temperature may be appropriately selected according to the solvent in the second conductive slurry.
  • the curable material in the second conductive paste when the solvent in the second conductive paste is removed, can be controlled not to be cured.
  • the curable material in the second conductive paste is a thermally curable material.
  • the temperature of the drying is controlled to be lower than the curing temperature of the curable material in the second conductive slurry, so as to avoid solidification of the curable material while removing the solvent.
  • the drying temperature is controlled to be 120°C to 160°C, and the drying time is controlled to last for 5 min to 15 min.
  • the second electrode layer can be prepared on the first electrode layer to further increase the overall thickness of the electrode and make the electrode have higher conductivity and structural stability.
  • Step S4 solidify the first electrode layer and the second electrode layer.
  • solidifying the first electrode layer and the second electrode layer can further maintain the long-term structural stability of the first electrode layer and the second electrode layer.
  • the curable material in the first electrode layer is a thermosetting material
  • the curable material in the second electrode layer is also a thermosetting material
  • the temperature for curing the first electrode layer and the second electrode layer is heating curing.
  • the temperature of the heating and curing can be controlled to be 160°C to 200°C.
  • the preparation of the solar cell can be completed.
  • the present disclosure also provides a solar cell, which can be composed of the above-mentioned solar cell
  • the pool was prepared by the preparation method.
  • an embodiment of a solar cell provided by the present disclosure includes a solar cell substrate, a first electrode layer disposed on the solar cell substrate, and a second electrode layer disposed on the first electrode layer;
  • the conductive material in the first electrode layer is a first spherical conductive material 210;
  • the conductive material in the second electrode layer includes a sheet-shaped conductive material 320 and a second spherical conductive material 310.
  • the conductive material in the first electrode layer is spherical, the first spherical conductive material 210 is embedded in the textured structure on the surface of the solar cell substrate, and the contact is more complete. Therefore, the electrical connection between the first electrode layer and the solar cell substrate is Better contact performance.
  • the conductive material in the second electrode layer includes sheet-shaped conductive material 320 and second spherical conductive material 310, which can maintain the overall conductive performance and structural stability of the first electrode layer and the second electrode layer, and form a conductive material for practical use. of electrodes.
  • test examples and comparative examples are also provided for reference.
  • Various embodiments of the present invention and their advantages will also be apparent from the descriptions and performance results of the following specific test examples and comparative examples. In each of the following test examples and comparative examples,
  • the solar cell substrate used in the following embodiments and comparative examples is a heterojunction solar cell substrate, which includes an N-type silicon substrate with a pyramid-shaped textured surface.
  • the front surface of the N-type silicon substrate is laminated with front-side substrates in sequence. It consists of an amorphous silicon layer, an N-type doped amorphous silicon layer and a front transparent conductive film.
  • a back intrinsic amorphous silicon layer, a P-type doped amorphous silicon layer and a back transparent conductive film are sequentially stacked. Conductive film.
  • a first conductive silver paste is screen-printed on the grid electrode areas on the front and back sides of the heterojunction solar cell substrate.
  • the silver powder in the first conductive silver paste is spherical silver powder with an average particle size of 2 ⁇ m.
  • the opening width of the first screen printing screen used is 20 ⁇ m. After screen printing, it is dried in an environment of 150°C for 10 minutes to remove the solvent in the first conductive silver paste to form a first electrode layer with a thickness of about 6 ⁇ m.
  • the second conductive silver paste includes spherical silver powder and flake silver powder with a mass ratio of 1:1.5.
  • the amount used for screen printing is The opening width of the second screen printing screen is 24 ⁇ m, and the screen printing area is 2 ⁇ m wider on both sides than the area when screen printing the first conductive silver paste. After screen printing, it is dried in an environment of 150°C for 10 minutes to remove the second conductive silver paste.
  • the solvent in the film forms a second electrode layer with a thickness of about 24 ⁇ m.
  • the heterojunction solar cell substrate is placed in an environment of 180°C for curing treatment.
  • a first conductive silver paste is screen-printed on the grid electrode areas on the front and back sides of the heterojunction solar cell substrate.
  • the silver powder in the first conductive silver paste is spherical silver powder with an average particle size of 4 ⁇ m.
  • the first conductive silver paste used for screen printing is The opening width of the screen printing screen is 20 ⁇ m. After screen printing, it is dried in an environment of 150°C for 10 minutes to remove the solvent in the first conductive silver paste to form a first electrode layer with a thickness of about 6 ⁇ m.
  • the second conductive silver paste includes spherical silver powder and flake silver powder with a mass ratio of 1:1.5.
  • the amount used for screen printing is The opening width of the second screen printing screen is 24 ⁇ m, and the screen printing area is 2 ⁇ m wider on both sides than the area when screen printing the first conductive silver paste. After screen printing, it is dried in an environment of 150°C for 10 minutes to remove the second conductive silver paste.
  • the solvent in the film forms a second electrode layer with a thickness of about 24 ⁇ m.
  • the heterojunction solar cell substrate is placed in an environment of 180°C for curing treatment.
  • a first conductive silver paste is screen-printed on the grid electrode areas on the front and back sides of the heterojunction solar cell substrate.
  • the silver powder in the first conductive silver paste is spherical silver powder with an average particle size of 2 ⁇ m.
  • the first conductive silver paste used for screen printing is The opening width of the screen printing screen is 20 ⁇ m. After screen printing, it is dried in an environment of 150°C. For 10 minutes, remove the solvent from the first conductive silver paste to form a first electrode layer with a thickness of about 12 ⁇ m.
  • the second conductive silver paste includes spherical silver powder and flake silver powder with a mass ratio of 1:1.5.
  • the amount used for screen printing is The opening width of the second screen printing screen is 24 ⁇ m, and the screen printing area is 2 ⁇ m wider on both sides than the area when screen printing the first conductive silver paste.
  • After screen printing it is dried in an environment of 150°C for 10 minutes to remove the second conductive silver paste.
  • the solvent in the film forms a second electrode layer with a thickness of about 18 ⁇ m.
  • the heterojunction solar cell substrate is placed in an environment of 180°C for curing treatment.
  • a first conductive silver paste is screen-printed on the grid electrode areas on the front and back sides of the heterojunction solar cell substrate.
  • the silver powder in the first conductive silver paste is spherical silver powder with an average particle size of 2 ⁇ m.
  • the first conductive silver paste used for screen printing is The opening width of the screen printing screen is 20 ⁇ m. After screen printing, it is dried in an environment of 150°C for 10 minutes to remove the solvent in the first conductive silver paste to form a first electrode layer with a thickness of about 6 ⁇ m.
  • the second conductive silver paste includes spherical silver powder and flake silver powder with a mass ratio of 2:1.
  • the amount used for screen printing is The opening width of the second screen printing screen is 24 ⁇ m, and the screen printing area is 2 ⁇ m wider on both sides than the area when screen printing the first conductive silver paste.
  • After screen printing it is dried in an environment of 150°C for 10 minutes to remove the second conductive silver paste.
  • the solvent in the film forms a second electrode layer with a thickness of about 24 ⁇ m.
  • the heterojunction solar cell substrate is placed in an environment of 180°C for curing treatment.
  • the second conductive silver paste includes spherical silver powder and flake silver powder with a mass ratio of 1:1.5.
  • the amount used for screen printing is The opening width of the second screen printing screen is 24 ⁇ m, and the screen printing area is 2 ⁇ m wider on both sides than the area when screen printing the first conductive silver paste. After screen printing, it is dried in an environment of 150°C for 10 minutes to remove the second screen printing screen.
  • the solvent in the conductive silver paste forms a second electrode layer with a thickness of approximately 24 ⁇ m.
  • the heterojunction solar cell substrate is placed in an environment of 180°C for curing treatment.
  • a first conductive silver paste is screen-printed on the grid electrode areas on the front and back sides of the heterojunction solar cell substrate.
  • the silver powder in the first conductive silver paste is spherical silver powder with an average particle size of 2 ⁇ m.
  • the first conductive silver paste used for screen printing is The opening width of the screen printing screen is 20 ⁇ m. After screen printing, it is dried in an environment of 150°C for 10 minutes to remove the solvent in the first conductive silver paste.
  • the heterojunction solar cell substrate is placed in an environment of 180°C for curing treatment.
  • Test Test the contact resistance between the solar cell electrodes prepared in the above examples and comparative examples and the battery substrate, and test the tensile force of the electrodes. The results can be seen in Table 1.
  • Example 1 the contact resistance and grid line resistance of Example 1 are significantly smaller than Comparative Examples 1 and 2, indicating that the solar cell preparation method provided by the present disclosure can effectively reduce the contact resistance and grid line resistance. This is mainly due to Benefit from the synergistic effect between the first conductive paste and the second conductive paste in this preparation method.
  • Comparative Example 1 only uses the second conductive paste to prepare the gate line electrode, and its contact resistance is significantly lower than that of Example 1. This is mainly because Example 1 first uses the first conductive paste to prepare the first electrode layer. , which can significantly reduce the contact resistance. Although Comparative Example 2 also uses the first conductive slurry to prepare the first electrode layer, the reduction in contact resistance is significantly lower than that of Example 1. This is mainly because Comparative Example 2 only uses the first conductive slurry to prepare the electrode. The electrode structure composed of spherical conductive materials is unstable, causing the electrode to disperse easily after preparation and thus cannot fully Fills into the recesses of the suede structure. Embodiment 1 further disposes a second conductive paste on the first electrode layer, which can maintain the overall structure of the spherical conductive material in the first electrode layer, thereby further reducing the contact resistance.

Abstract

本公开提供了一种太阳电池的制备方法,其包括如下步骤:于太阳电池基片上印刷第一导电浆料,去除第一导电浆料中的溶剂以形成第一电极层;第一导电浆料中的导电材料为球状导电材料;于第一电极层上印刷第二导电浆料,去除第二导电浆料中的溶剂以形成第二电极层;第二导电浆料中的导电材料包括片状导电材料和球状导电材料;使第一电极层和第二电极层固化。

Description

太阳电池的制备方法及太阳电池
本申请要求于2022年9月14日提交中国专利局、申请号为202211116337X、公开名称为“太阳电池的制备方法及太阳电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及太阳电池技术领域,特别是涉及一种太阳电池的制备方法及太阳电池。
背景技术
对于太阳电池来说,其中除了用于产生光生载流子的太阳电池基片之外,还包括用于将电子导出至外电路的栅线电极。栅线电极与其底部的太阳电池基片之间的接触电阻直接影响着太阳电池的效率,是太阳电池的实际应用中必须考虑的一个因素。
异质结太阳电池(Heterojunction with Intrinsic Thinfilm,HJT)是极具应用前景的一种太阳电池。为了保持其中钝化层的钝化效果,制备栅线电极的温度不能过高。因此异质结太阳电池的栅线电极通常采用在较低温度下即可发生固化的导电浆料制备。这种导电浆料与呈绒面结构的电池基片之间的接触电阻较大,这导致太阳电池填充因子的降低。
发明内容
有鉴于此,为了降低导电浆料与电池基片之间的接触电阻,进而提高太阳电池的填充因子,有必要提供一种太阳电池的制备方法。
根据本公开的一些实施例,提供了一种太阳电池的制备方法,包括如下步骤:
于太阳电池基片上印刷第一导电浆料,去除所述第一导电浆料中的溶剂以形成第一电极层;所述第一导电浆料中的导电材料为球状导电材料;
于所述第一电极层上印刷第二导电浆料,去除所述第二导电浆料中的溶剂以形成第二电极层;所述第二导电浆料中的导电材料包括片状导电材料和球状导电材料;
使所述第一电极层和所述第二电极层固化。
在本公开的一些实施例中,在所述第一导电浆料中,所述球状导电材料的平均粒径为0.5μm~5μm。
在本公开的一些实施例中,在所述第二导电浆料中,所述球状导电材料的平均粒径为1μm~5μm,所述片状导电材料的平均粒径为3μm~10μm。
在本公开的一些实施例中,在所述第二导电浆料中,所述球状导电材料和所述片状导电材料的质量比为1:(1~2)。
在本公开的一些实施例中,控制形成的所述第一电极层的厚度为5μm~10μm。
在本公开的一些实施例中,控制形成的所述第二电极层的厚度为10μm~30μm。
在本公开的一些实施例中,在于太阳电池基片上印刷第一导电浆料的步骤中,采用第一丝印网版印刷所述第一导电浆料。
在本公开的一些实施例中,所述第一丝印网版的网版开口宽度为18μm~22μm。
在本公开的一些实施例中,在于所述第一电极层上印刷第二导电浆料的步骤中,采用第二丝印网版印刷所述第二导电浆料。
在本公开的一些实施例中,所述第一丝印网版的网版开口宽度小于所述第二丝印网版的网版开口宽度,且所述第二导电浆料的印刷区域包含所述第一导电浆料的印刷区域。
在本公开的一些实施例中,所述第二丝印网版的网版开口宽度为22μm~26μm。
在本公开的一些实施例中,所述第一导电浆料的导电材料为银粉。
在本公开的一些实施例中,所述第二导电浆料中的导电材料为银粉。
在本公开的一些实施例中,所述太阳电池基片包括作为衬底的硅片,所述太阳电池基片还包括依次层叠设置于所述衬底正面上的正面本征非晶硅钝化层、正面掺杂非晶硅钝化层和正面透明导电薄膜,以及依次层叠设置于所述衬底背面上的背面本征非晶硅钝化层、背面掺杂非晶硅钝化层和背面透明导电薄膜,所述正面透明导电薄膜和所述背面透明导电薄膜具有金字塔状的绒面结构,所述第一电极层被制备于所述正面透明导电薄膜和/或所述背面透明导电薄膜上。
进一步地,本公开还提供了一种太阳电池,包括太阳电池基片、设置于所述太阳电池基片上的第一电极层和设置于所述第一电极层上的第二电极层;
所述第一电极层中的导电材料为球状导电材料;
所述第二电极层中的导电材料包括片状导电材料和球状导电材料。
在本公开的一些实施例中,在所述第一电极层中,所述球状导电材料的平均粒径为0.5μm~5μm。
在本公开的一些实施例中,在所述第二电极层中,所述球状导电材料的平均粒径为1μm~5μm,所述片状导电材料的平均粒径为3μm~10μm。
在本公开的一些实施例中,在所述第二导电层中,所述球状导电材料和所述片状导电材料的质量比为1:(1~2)。
在本公开的一些实施例中,所述第一电极层的厚度为5μm~10μm。
在本公开的一些实施例中,所述第二电极层的厚度为10μm~30μm。
在本公开的一些实施例中,所述第一电极层的导电材料为银粉。
在本公开的一些实施例中,所述第二电极层中的导电材料为银粉。
在本公开的一些实施例中,所述太阳电池基片包括作为衬底的硅片,所述太阳电池基片还包括依次层叠设置于所述衬底正面上的正面本征非晶硅钝化层、正面掺杂非晶硅钝化层和正面透明导电薄膜,以及依次层叠设置于所述衬底背面上的背面本征非晶硅钝化层、背面掺杂非晶硅钝化层和背面透明导电薄膜,所述正面透明导电薄膜和所述背面透明导电薄膜具有金字塔状的绒面结构,所述第一电极层被制备于所述正面透明导电薄膜和/或所述背面透明导电薄膜上。
本公开的一个或多个实施例的细节在下面的附图和描述中提出。本公开的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
图1示出了本公开一个实施例中的太阳电池的制备方法;
图2示出了图1的制备方法中步骤S1提供的太阳电池基片的结构示意图;
图3示出了图1的制备方法中步骤S2制备的器件结构示意图;
图4示出了图1的制备方法中步骤S3制备的器件结构示意图;
其中,各附图标记及其含义如下:
100、衬底;111、正面本征非晶硅钝化层;112、正面掺杂非晶硅钝化层;113、正面透明导电薄膜;121、背面本征非晶硅钝化层;122、背面掺杂非晶硅钝化层;123、背面透明导电薄膜;210、第一球状导电材料;310、第二球状导电材料;320、片状导电材料。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描 述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合,本文所使用的“多”包括两个或两个以上的项目。
在本发明中,如果没有相反的说明,组合物中各组分的份数之和可以为100重量份。如果没有特别指出,本发明的百分数(包括重量百分数)的基准都是组合物的总重量,另,本文中的“wt%”表示质量百分数,“at%”表示原子百分数。
在本文中,除非另有说明,各个反应步骤可以按照文中顺序进行,也可以不按文中顺序进行。例如,各个反应步骤之间可以包含其他步骤,而且反应步骤之间也可以适当调换顺序。这是技术人员根据常规知识和经验可以确定的。优选地,本文中的反应方法是顺序进行的。
本公开的一个实施例提供了一种太阳电池的制备方法,其包括如下步骤:
于太阳电池基片上印刷第一导电浆料,去除第一导电浆料中的溶剂以形成第一电极层;第一导电浆料中的导电材料为球状导电材料;
于第一电极层上印刷第二导电浆料,去除第二导电浆料中的溶剂以形成第二电极层;第二导电浆料中的导电材料包括片状导电材料和球状导电材料;
使第一电极层和第二电极层固化。
可以理解,该实施例中的第一导电浆料中包括溶剂、导电材料以及可固 化材料,导电材料和可固化材料分散于溶剂中。第一导电浆料中的导电材料为粉体状导电材料。可固化材料在固化之后能够固定粉体状的导电材料,以形成稳定附着于太阳电池基片上的第一电极层。该实施例中的第二导电浆料也包括溶剂、导电材料以及可固化材料。
可以理解,太阳电池基片指的是还未在表面形成有栅线电极的太阳电池的部分结构。该实施例中的太阳电池基片表面上具有凹凸起伏的绒面结构。第一导电浆料直接印刷于绒面结构上。
本领域通常采用的低温导电浆料中通常同时包括尺寸较小的球状导电材料和尺寸较大的片状导电材料,片状导电材料不仅在电极成型的过程中辅助保持电极的整体形状,还能够增加印刷后电极的导电性。本公开的发明人经过研究后发现,虽然片状导电材料在浆料中发挥了非常重要的作用,但是也由于其尺寸较大,与绒面结构接触时会产生较多的孔隙,这也导致了电极与太阳电池基片之间的接触电阻变大。
该实施例中的太阳电池的制备方法包括如下步骤:先于太阳电池基片上印刷导电材料为球状导电材料的第一导电浆料,再印刷包括片状导电材料和球状导电材料的第二导电浆料,最终将第一导电浆料和第二导电浆料进行固化处理。其中,第一导电浆料中的球状导电材料能够充分嵌入太阳电池基片表面的绒面结构的凹陷处,这使得第一电极层与太阳电池基片之间的接触更为充分,因而能够有效降低接触电阻。之后在第一电极层上印刷包括片状导电材料和球状导电材料的第二电极层,用于保证第一电极层和第二电极层整体电极的电导率和结构。相较于现有技术,该太阳电池的制备方法能够在保证电极整体的电导率以及结构稳定的情况下,有效降低了电极与太阳电池基片之间的接触电阻。对应地,太阳电池的填充因子也得到了明显的提高。
为了便于理解上述实施例中的太阳电池的制备方法,本公开提供了图1, 其示出了一种太阳电池的制备方法的具体制备步骤。
步骤S1,提供太阳电池基片。
其中,该太阳电池基片的表面上具有凹凸状的绒面结构,第一电极层形成于具有绒面结构的表面上。
在该实施例的一些具体示例中,该太阳电池基片可以是硅异质结太阳电池基片。本公开提供了图2,其示出了一种硅异质结太阳电池基片的具体结构示意图。
参照图2所示,该异质结太阳电池基片包括衬底100、正面本征非晶硅钝化层111、正面掺杂非晶硅钝化层112、正面透明导电薄膜113、背面本征非晶硅钝化层121、背面掺杂非晶硅钝化层122和背面透明导电薄膜123。其中,衬底100具有正面和背面,正面本征非晶硅钝化层111、正面掺杂非晶硅钝化层112和正面透明导电薄膜113依次层叠设置于衬底100的正面上,背面本征非晶硅钝化层121、背面掺杂非晶硅钝化层122和背面透明导电薄膜123依次层叠设置于衬底100的背面上。正面掺杂非晶硅钝化层112与背面掺杂非晶硅钝化层122的掺杂类型不同。
其中,该太阳电池基片中的衬底100上具有绒面结构,绒面结构能够降低衬底100表面光线的反射、增强衬底100对于光线的吸收。对应地,层叠设置于衬底100上的膜层结构仿形于该太阳电池基片上的衬底100,因此,位于最外侧的正面透明导电薄膜113和背面透明导电薄膜123也具有相似的绒面结构。
可选地,该太阳电池基片可以是太阳电池的生产工艺中于在先制程中生产的片材,也可以是市售的还未形成有栅线电极的太阳电池基片。
步骤S2,于太阳电池基片上印刷第一导电浆料,第一导电浆料中的导电材料为第一球状导电材料210,去除第一导电浆料中的溶剂,形成第一电极层。
其中,在于太阳电池极片上印刷第一导电浆料的步骤中,在正面透明导电薄膜113和背面透明导电薄膜123中的至少一个表面印刷。
在该实施例的一些具体示例中,该太阳电池基片中的衬底100为硅片,硅片上具有金字塔结构的绒面。
参照图3所示,第一导电浆料中的导电材料仅包括第一球状导电材料210,不含有片状的导电材料。当第一导电浆料被印刷于具有绒面结构的太阳电池基片表面上时,球状导电材料能够嵌入绒面结构的凹陷中,因此与绒面结构之间的接触更为充分。
可以理解,球状导电材料指的是表面结构为光滑曲面。球状导电材料可以是规整的圆球或椭球,也可以是不规则的其他表面为光滑曲面的材料。在该实施例的一些具体示例中,球状导电材料为规整的球状。
在该实施例的一些具体示例中,第一球状导电材料210为金属材料。可选地,第一球状导电材料210为球状银粉。在该实施例的其他一些示例中,第一导电浆料中的导电材料也可以是导电铜粉或碳粉等。
在该实施例的一些具体示例中,第一球状导电材料210的平均粒径为0.5μm~5μm。可选地,第一球状导电材料210的平均粒径为1μm~3μm。控制第一球状导电材料210的平均粒径在0.5μm~5μm之间,对应于绒面结构的尺寸,能够使得球状导电材料更充分地嵌入太阳电池基片上绒面结构的凹陷处,提高第一电极层与太阳电池基片之间的电导率。
在该实施例的一些具体示例中,控制形成的第一电极层的厚度为5μm~10μm。可选地,控制形成的第一电极层的厚度为5μm~7μm。由于第一电极层凸出于太阳电池基片,第一球状导电材料210难以彼此支撑形成稳定的层状结构。控制形成的第一电极层的厚度为5μm~10μm,能够尽可能保持层状结构的暂时稳定,避免第一电极层整体的结构崩塌。
在该实施例的一些具体示例中,在于太阳电池基片上印刷第一导电浆 料的步骤中,可以采用第一丝印网版印刷第一导电浆料。可以理解,用于丝印第一电极层的第一丝印网版上具有用于供第一导电浆料漏出的狭缝状网版开口。可选地,第一丝印网版的网版开口宽度为18μm~22μm。
在该实施例的一些具体示例中,去除第一导电浆料中的溶剂的方式可以是烘干,烘干的温度可以根据第一导电浆料中的溶剂进行适当选取。
可以理解,在去除第一导电浆料中的溶剂时,应该控制第一导电浆料中的可固化材料不发生固化。若第一电极层在未形成第二电极层之间就发生固化,则其中的球状导电材料会发生粉化的情况,难以成型。
在该实施例的一些具体示例中,第一导电浆料中的可固化材料为热固化材料。在烘干去除第一导电浆料中的溶剂的步骤中,控制烘干的温度低于第一导电浆料中可固化材料的固化温度,以在去除溶剂的同时避免可固化材料的固化。
可选地,在去除第一导电浆料中的溶剂的步骤中,控制烘干温度为120℃~160℃,控制烘干时间持续5min~15min。
通过步骤S2,能够完成在太阳电池基片表面初步制备与透明导电薄膜之间电接触较为充分的第一电极层。但是由于第一电极层中的导电材料呈球状,颗粒之间的导电性相对较差,同时单独的第一电极层也难以形成稳定的层状结构,这使得单一的第一电极层并不适用于可供实际使用的栅线电极。为了在提高电极与太阳电池基片之间的电接触性能的同时,形成可供使用的栅线电极,该太阳电池的制备方法还包括如下步骤。
步骤S3,于第一电极层上印刷第二导电浆料,第二导电浆料中的导电材料包括片状导电材料320和第二球状导电材料310,去除第二导电浆料中的溶剂,形成第二电极层。
其中,第二电极层形成于第一电极层上,第二电极层与第一电极层共同构成太阳电池的栅线电极。
参照图4所示,第二导电浆料中的导电材料包括片状导电材料320和第二球状导电材料310,将第二导电浆料形成于第一电极层上,其中一个作用是通过片状导电材料320和第二球状导电材料310的搭配,使得最终形成的整体电极本身具有更高的导电性能,降低第一电极层对电极导电性能的负面影响;另一个作用是通过第二电极层中的片状导电材料320,避免第一电极层的整体结构崩塌分散,在增高电极厚度的同时维持电极整体的稳定。
在该实施例的一些具体示例中,在第二导电浆料中,第二球状导电材料310和片状导电材料320的质量比为1:(1~2)。通过控制片状导电材料320和球状导电材料的质量比,能够进一步改善第一电极层的成型情况及电导率,并保持电极整体的结构稳定。
在该实施例的一些具体示例中,第二导电浆料中,第二球状导电材料310的平均粒径为1μm~5μm,片状导电材料320的平均粒径为3μm~10μm。
在该实施例的一些具体示例中,在第二导电浆料中,片状导电材料320和第二球状导电材料310可以分别独立地选自金属导电材料。可选地,第二导电浆料中的片状导电材料320和第二球状导电材料310与第一球状导电材料210的材质相同。例如,第二导电浆料中的片状导电材料320和第二球状导电材料310均为导电银粉。
在该实施例的一些具体示例中,控制形成的第二电极层的厚度为10μm~30μm。
在该实施例的一些具体示例中,在于第一电极层上印刷第二导电浆料的步骤中,采用第二丝印网版印刷第二导电浆料,第二导电浆料的印刷区域包含第一导电浆料的印刷区域。可选地,第二导电浆料的印刷区域的宽度比第一导电浆料的印刷区域更宽。通过设置第二导电浆料的印刷区域更宽,能够在第一导电浆料的两侧也形成有第二导电浆料,能够防止第一导电浆料 中的球状导电材料在干燥及固化后向两侧的崩塌分散。
在该实施例的一些具体示例中,第二丝印网版的网版开口宽度为22μm~26μm。
在该实施例的一些具体示例中,去除第二导电浆料中的溶剂的方式可以是烘干,烘干的温度可以根据第二导电浆料中的溶剂进行适当选取。
在该实施例的一些具体示例中,在去除第二导电浆料中的溶剂时,可以控制第二导电浆料中的可固化材料不发生固化。可选地,第二导电浆料中的可固化材料为热固化材料。在烘干去除第二导电浆料中的溶剂的步骤中,控制烘干的温度低于第二导电浆料中可固化材料的固化温度,以在去除溶剂的同时避免可固化材料的固化。
在该实施例的一些具体示例中,在去除第二导电浆料中的溶剂的步骤中,控制烘干温度为120℃~160℃,控制烘干时间持续5min~15min。
通过步骤S3,能够完成在第一电极层上制备第二电极层,以进一步增高电极整体的厚度,并使得电极具有更高的导电性以及结构稳定性。
步骤S4,使第一电极层和第二电极层固化。
其中,使第一电极层和第二电极层固化,能够进一步保持第一电极层和第二电极层的长久的结构稳定性。
在该实施例的一些具体示例中,第一电极层中的可固化材料为热固化材料,第二电极层中的可固化材料也为热固化材料,使第一电极层和第二电极层固化的温度为加热固化。
在该实施例的一些具体示例中,在加热固化时,可以控制加热固化的温度为160℃~200℃。
可以理解,使第一电极层与第二电极层完全固化之后,即可完成该太阳电池的制备。
进一步地,本公开还提供了一种太阳电池,该太阳电池可由上述太阳电 池的制备方法制备得到。
参照图4所示,本公开提供的一种太阳电池的实施例中,包括太阳电池基片、设置于太阳电池基片上的第一电极层和设置于第一电极层上的第二电极层;第一电极层中的导电材料为第一球状导电材料210;第二电极层中的导电材料包括片状导电材料320和第二球状导电材料310。
由于第一电极层中的导电材料呈球状,第一球状导电材料210嵌入太阳电池基片表面的绒面结构中,接触更为充分,因此该第一电极层与太阳电池基片之间的电接触性能更好。进一步地,第二电极层中的导电材料包括片状导电材料320和第二球状导电材料310,能够保持第一电极层和第二电极层整体的导电性能和结构稳定性,形成可供实际使用的电极。
为了更易于理解及实现本发明,以下还提供了如下较易实施的、更为具体详细的试验例及对比例作为参考。通过下述具体试验例和对比例的描述及性能结果,本发明的各实施例及其优点也将显而易见。在以下各试验例与对比例中,
如无特殊说明,以下各实施例和对比例所用的原材料皆可从市场上常规购得。
以下各实施例和对比例中所用的太阳电池基片为异质结太阳电池基片,其包括具有金字塔状绒面的N型硅衬底,N型硅衬底正面上依次层叠设置有正面本征非晶硅层、N型掺杂非晶硅层、正面透明导电薄膜,N型硅衬底背面上依次层叠设置有背面本征非晶硅层、P型掺杂非晶硅层和背面透明导电薄膜。
实施例1
提供异质结太阳电池基片;
在异质结太阳电池基片的正面和背面上的栅线电极区域丝印第一导电银浆,第一导电银浆中的银粉均为平均粒径为2μm的球状银粉,丝印时所 用的第一丝印网版的开口宽度为20μm,丝印后置于150℃的环境中烘干10min,去除第一导电银浆中的溶剂,形成第一电极层,其厚度约为6μm。
在异质结太阳电池基片的正面和背面上的第一电极层上丝印第二导电银浆,第二导电银浆包括质量比为1:1.5的球状银粉和片状银粉,丝印时所用的第二丝印网版的开口宽度为24μm,且丝印区域比丝印第一导电银浆时的区域的两侧各宽2μm,丝印后置于150℃的环境中烘干10min,去除第二导电银浆中的溶剂,形成第二电极层,其厚度约为24μm。
将异质结太阳电池基片置于180℃的环境中进行固化处理。
实施例2
提供异质结太阳电池基片;
在异质结太阳电池基片的正面和背面上的栅线电极区域丝印第一导电银浆,第一导电银浆中的银粉均为平均粒径为4μm的球状银粉,丝印时所用的第一丝印网版的开口宽度为20μm,丝印后置于150℃的环境中烘干10min,去除第一导电银浆中的溶剂,形成第一电极层,其厚度约为6μm。
在异质结太阳电池基片的正面和背面上的第一电极层上丝印第二导电银浆,第二导电银浆包括质量比为1:1.5的球状银粉和片状银粉,丝印时所用的第二丝印网版的开口宽度为24μm,且丝印区域比丝印第一导电银浆时的区域的两侧各宽2μm,丝印后置于150℃的环境中烘干10min,去除第二导电银浆中的溶剂,形成第二电极层,其厚度约为24μm。
将异质结太阳电池基片置于180℃的环境中进行固化处理。
实施例3
提供异质结太阳电池基片;
在异质结太阳电池基片的正面和背面上的栅线电极区域丝印第一导电银浆,第一导电银浆中的银粉均为平均粒径为2μm的球状银粉,丝印时所用的第一丝印网版的开口宽度为20μm,丝印后置于150℃的环境中烘干 10min,去除第一导电银浆中的溶剂,形成第一电极层,其厚度约为12μm。
在异质结太阳电池基片的正面和背面上的第一电极层上丝印第二导电银浆,第二导电银浆包括质量比为1:1.5的球状银粉和片状银粉,丝印时所用的第二丝印网版的开口宽度为24μm,且丝印区域比丝印第一导电银浆时的区域的两侧各宽2μm,丝印后置于150℃的环境中烘干10min,去除第二导电银浆中的溶剂,形成第二电极层,其厚度约为18μm。
将异质结太阳电池基片置于180℃的环境中进行固化处理。
实施例4
提供异质结太阳电池基片;
在异质结太阳电池基片的正面和背面上的栅线电极区域丝印第一导电银浆,第一导电银浆中的银粉均为平均粒径为2μm的球状银粉,丝印时所用的第一丝印网版的开口宽度为20μm,丝印后置于150℃的环境中烘干10min,去除第一导电银浆中的溶剂,形成第一电极层,其厚度约为6μm。
在异质结太阳电池基片的正面和背面上的第一电极层上丝印第二导电银浆,第二导电银浆包括质量比为2:1的球状银粉和片状银粉,丝印时所用的第二丝印网版的开口宽度为24μm,且丝印区域比丝印第一导电银浆时的区域的两侧各宽2μm,丝印后置于150℃的环境中烘干10min,去除第二导电银浆中的溶剂,形成第二电极层,其厚度约为24μm。
将异质结太阳电池基片置于180℃的环境中进行固化处理。
对比例1
提供异质结太阳电池基片;
在异质结太阳电池基片的正面和背面上的第一电极层上丝印第二导电银浆,第二导电银浆包括质量比为1:1.5的球状银粉和片状银粉,丝印时所用的第二丝印网版的开口宽度为24μm,且丝印区域比丝印第一导电银浆时的区域的两侧各宽2μm,丝印后置于150℃的环境中烘干10min,去除第二 导电银浆中的溶剂,形成第二电极层,其厚度约为24μm。
将异质结太阳电池基片置于180℃的环境中进行固化处理。
对比例2
提供异质结太阳电池基片;
在异质结太阳电池基片的正面和背面上的栅线电极区域丝印第一导电银浆,第一导电银浆中的银粉均为平均粒径为2μm的球状银粉,丝印时所用的第一丝印网版的开口宽度为20μm,丝印后置于150℃的环境中烘干10min,去除第一导电银浆中的溶剂。
将异质结太阳电池基片置于180℃的环境中进行固化处理。
测试:测试上述各实施例和对比例制备的太阳电池电极与电池基片之间的接触电阻,并测试电极的拉力情况,结果可见于表1。
表1
参照表1所示,实施例1的接触电阻和栅线电阻明显均小于对比例1和对比例2,说明本公开提供的太阳电池的制备方法能够有效降低接触电阻和栅线电阻,这主要得益于该制备方法中第一导电浆料和第二导电浆料之间的搭配协同作用。
其中,对比例1仅采用第二导电浆料制备栅线电极,其接触电阻显著低于实施例1的接触电阻,这主要是因为实施例1先采用了第一导电浆料制备第一电极层,能够使得接触电阻发生明显降低。对比例2虽然也采用了第一导电浆料制备第一电极层,但是其接触电阻的降低幅度明显低于实施例1,这主要是因为对比例2仅采用第一导电浆料制备电极,仅由球状导电材料构成的电极结构不稳定,导致电极在制备后容易分散,因而无法充分 填充至绒面结构的凹陷中。实施例1进一步在第一电极层上设置了第二导电浆料,能够保持第一电极层中球状导电材料的整体结构,因而进一步降低了接触电阻。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (23)

  1. 一种太阳电池的制备方法,其特征在于,包括如下步骤:
    于太阳电池基片上印刷第一导电浆料,去除所述第一导电浆料中的溶剂以形成第一电极层;所述第一导电浆料中的导电材料为球状导电材料;
    于所述第一电极层上印刷第二导电浆料,去除所述第二导电浆料中的溶剂以形成第二电极层;所述第二导电浆料中的导电材料包括片状导电材料和球状导电材料;
    使所述第一电极层和所述第二电极层固化。
  2. 根据权利要求1所述的太阳电池的制备方法,在所述第一导电浆料中,所述球状导电材料的平均粒径为0.5μm~5μm。
  3. 根据权利要求2所述的太阳电池的制备方法,在所述第二导电浆料中,所述球状导电材料的平均粒径为1μm~5μm,所述片状导电材料的平均粒径为3μm~10μm。
  4. 根据权利要求1~3任一项所述的太阳电池的制备方法,在所述第二导电浆料中,所述球状导电材料和所述片状导电材料的质量比为1:(1~2)。
  5. 根据权利要求1~4任一项所述的太阳电池的制备方法,控制形成的所述第一电极层的厚度为5μm~10μm。
  6. 根据权利要求1~5任一项所述的太阳电池的制备方法,控制形成的所述第二电极层的厚度为10μm~30μm。
  7. 根据权利要求1~6任一项所述的太阳电池的制备方法,在于太阳电池基片上印刷第一导电浆料的步骤中,采用第一丝印网版印刷所述第一导电浆料。
  8. 根据权利要求7所述的太阳电池的制备方法,所述第一丝印网版的网版开口宽度为18μm~22μm。
  9. 根据权利要求7~8任一项所述的太阳电池的制备方法,在于所述第一电极层上印刷第二导电浆料的步骤中,采用第二丝印网版印刷所述第二导电浆料。
  10. 根据权利要求9所述的太阳电池的制备方法,所述第一丝印网版的网版开口宽度小于所述第二丝印网版的网版开口宽度,且所述第二导电浆料的印刷区域包含所述第一导电浆料的印刷区域。
  11. 根据权利要求9~10任一项所述的太阳电池的制备方法,所述第二丝印网版的网版开口宽度为22μm~26μm。
  12. 根据权利要求1~11任一项所述的太阳电池的制备方法,所述第一导电浆料的导电材料为银粉。
  13. 根据权利要求1~12任一项所述的太阳电池的制备方法,所述第二导电浆料中的导电材料为银粉。
  14. 根据权利要求1~13任一项所述的太阳电池的制备方法,所述太阳电池基片包括作为衬底的硅片,所述太阳电池基片还包括依次层叠设置于所述衬底正面上的正面本征非晶硅钝化层、正面掺杂非晶硅钝化层和正面透明导电薄膜,以及依次层叠设置于所述衬底背面上的背面本征非晶硅钝化层、背面掺杂非晶硅钝化层和背面透明导电薄膜,所述正面透明导电薄膜和所述背面透明导电薄膜具有金字塔状的绒面结构,所述第一电极层被制备于所述正面透明导电薄膜和/或所述背面透明导电薄膜上。
  15. 一种太阳电池,包括太阳电池基片、设置于所述太阳电池基片上的第一电极层和设置于所述第一电极层上的第二电极层;
    所述第一电极层中的导电材料为球状导电材料;
    所述第二电极层中的导电材料包括片状导电材料和球状导电材料。
  16. 根据权利要求15所述的太阳电池,在所述第一电极层中,所述球状导电材料的平均粒径为0.5μm~5μm。
  17. 根据权利要求16所述的太阳电池,在所述第二电极层中,所述球状导电材料的平均粒径为1μm~5μm,所述片状导电材料的平均粒径为3μm~10μm。
  18. 根据权利要求15~17任一项所述的太阳电池,在所述第二电极层中,所述球状导电材料和所述片状导电材料的质量比为1:(1~2)。
  19. 根据权利要求15~18任一项所述的太阳电池,所述第一电极层的厚度 为5μm~10μm。
  20. 根据权利要求15~19任一项所述的太阳电池,所述第二电极层的厚度为10μm~30μm。
  21. 根据权利要求15~20任一项所述的太阳电池,所述第一电极层的导电材料为银粉。
  22. 根据权利要求15~21任一项所述的太阳电池,所述第二电极层中的导电材料为银粉。
  23. 根据权利要求15~22任一项所述的太阳电池,所述太阳电池基片包括作为衬底的硅片,所述太阳电池基片还包括依次层叠设置于所述衬底正面上的正面本征非晶硅钝化层、正面掺杂非晶硅钝化层和正面透明导电薄膜,以及依次层叠设置于所述衬底背面上的背面本征非晶硅钝化层、背面掺杂非晶硅钝化层和背面透明导电薄膜,所述正面透明导电薄膜和所述背面透明导电薄膜具有金字塔状的绒面结构,所述第一电极层被制备于所述正面透明导电薄膜和/或所述背面透明导电薄膜上。
PCT/CN2023/085087 2022-09-14 2023-03-30 太阳电池的制备方法及太阳电池 WO2024055568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211116337.XA CN116014035A (zh) 2022-09-14 2022-09-14 太阳电池的制备方法及太阳电池
CN202211116337.X 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024055568A1 true WO2024055568A1 (zh) 2024-03-21

Family

ID=86025597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085087 WO2024055568A1 (zh) 2022-09-14 2023-03-30 太阳电池的制备方法及太阳电池

Country Status (2)

Country Link
CN (1) CN116014035A (zh)
WO (1) WO2024055568A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170031439A (ko) * 2015-09-11 2017-03-21 주식회사 엘지화학 음극 활물질 입자의 형상이 상이한 활물질층들을 포함하는 이차전지용 음극의 제조 방법
CN109801735A (zh) * 2018-12-24 2019-05-24 上海银浆科技有限公司 一种异质结电池低温银浆及制备方法
CN112054070A (zh) * 2020-07-27 2020-12-08 隆基绿能科技股份有限公司 一种硅异质结太阳能电池及其制作方法
CN113013294A (zh) * 2021-02-26 2021-06-22 江苏润阳悦达光伏科技有限公司 一种基于多次印刷的hjt异质结电池及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8419981B2 (en) * 2010-11-15 2013-04-16 Cheil Industries, Inc. Conductive paste composition and electrode prepared using the same
KR20120084870A (ko) * 2011-01-21 2012-07-31 엘지전자 주식회사 태양전지 및 그 제조 방법
CN113257456A (zh) * 2021-05-12 2021-08-13 浙江奕成科技有限公司 一种异质结太阳能电池用低成本导电浆料及其制备方法
CN114975669A (zh) * 2022-05-30 2022-08-30 通威太阳能(金堂)有限公司 太阳电池及制备方法、发电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170031439A (ko) * 2015-09-11 2017-03-21 주식회사 엘지화학 음극 활물질 입자의 형상이 상이한 활물질층들을 포함하는 이차전지용 음극의 제조 방법
CN109801735A (zh) * 2018-12-24 2019-05-24 上海银浆科技有限公司 一种异质结电池低温银浆及制备方法
CN112054070A (zh) * 2020-07-27 2020-12-08 隆基绿能科技股份有限公司 一种硅异质结太阳能电池及其制作方法
CN113013294A (zh) * 2021-02-26 2021-06-22 江苏润阳悦达光伏科技有限公司 一种基于多次印刷的hjt异质结电池及其制备方法

Also Published As

Publication number Publication date
CN116014035A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
TWI254322B (en) Conductive paste, method for manufacturing solar battery, and solar battery
CN107887588B (zh) 一种纳米硫颗粒/二维层状碳化钛复合材料的制备方法和应用
CN105098138B (zh) 锂离子电池用负极片及其制备方法
CN106654232A (zh) 一种二次金属锂电池负极用层状复合物的制备方法
CN110603648A (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
CN110993891A (zh) 一种含硅负极片、其制备方法及锂离子电池
WO2019019409A1 (zh) 锂合金-骨架碳复合材料及其制备方法、负极和二次电池
WO2023231434A1 (zh) 太阳电池及制备方法、发电装置
CN112993228A (zh) 一种氧化锌包覆硅负极材料的制备工艺
CN104638253A (zh) 一种作为锂离子电池负极的Si@C-RG核壳结构复合材料的制备方法
CN112041994A (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
CN104659333A (zh) 锂离子二次电池Mg2Si/SiOx/C复合负极材料膜电极的制备方法
CN101840953A (zh) 一种制备表面混合调制晶硅太阳能电池的方法
TWI390755B (zh) 太陽能電池的製造方法
WO2024055568A1 (zh) 太阳电池的制备方法及太阳电池
CN104638248A (zh) 一种石墨烯/铅化合物复合材料的制备方法
CN104269532B (zh) 一种石墨烯基高容量镍氢动力电池负极的制备方法
CN105958074B (zh) 一种石墨烯复合导电剂及其锂离子电池
CN110534745B (zh) 一种碳量子点/sp复合导电剂及其制备方法、应用
CN117095852A (zh) 一种导电浆料与太阳能电池及其制备方法
CN103928684B (zh) 改性锂离子电池石墨负极材料及其制备方法
CN111063805A (zh) 一种有机-无机钙钛矿太阳能电池及制备和回收方法
CN108183211B (zh) 一种包埋富铝纳米颗粒的复合硅粉及其制备方法和应用
CN216488096U (zh) 异质结电池及光伏组件
CN113471422B (zh) 一种利用硅废料制备镓掺杂纳米硅颗粒的方法