WO2023231434A1 - 太阳电池及制备方法、发电装置 - Google Patents

太阳电池及制备方法、发电装置 Download PDF

Info

Publication number
WO2023231434A1
WO2023231434A1 PCT/CN2023/073936 CN2023073936W WO2023231434A1 WO 2023231434 A1 WO2023231434 A1 WO 2023231434A1 CN 2023073936 W CN2023073936 W CN 2023073936W WO 2023231434 A1 WO2023231434 A1 WO 2023231434A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
transparent conductive
solar cell
amorphous silicon
silicon layer
Prior art date
Application number
PCT/CN2023/073936
Other languages
English (en)
French (fr)
Inventor
陈周
Original Assignee
通威太阳能(金堂)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(金堂)有限公司 filed Critical 通威太阳能(金堂)有限公司
Publication of WO2023231434A1 publication Critical patent/WO2023231434A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the technical field of solar cells, and in particular to a solar cell, a preparation method, and a power generation device.
  • Heterojunction solar cells are a special PN junction, usually formed of amorphous silicon and crystalline silicon materials. Heterojunction solar cells have the advantages of high efficiency and high open circuit voltage, so they have good application prospects.
  • the manufacturing process of heterojunction solar cells usually includes steps such as texturing, amorphous silicon coating, transparent conductive layer coating, and screen printing grid electrodes.
  • the process temperature of these preparation processes generally does not exceed 400°C.
  • Silver has the highest electrical conductivity among metals and is therefore generally used as an electrode material.
  • the raw materials of the electrode include high-temperature silver paste and low-temperature silver paste.
  • High-temperature silver paste has good electrical conductivity, but it needs to be formed at a high temperature above 700°C, which will cause significant damage to the thin film of heterojunction solar cells. Therefore, the gate electrodes of heterojunction solar cells are usually made of low-temperature Silver paste is prepared.
  • Low-temperature silver paste includes spherical and flaky silver powder and organic resin for bonding.
  • a solar cell including: a battery substrate and a conductive layer; the conductive layer includes a first transparent conductive film, a silver electrode and a second transparent conductive film, the first transparent conductive film The film is disposed on the surface of the battery substrate, the silver electrode is disposed on a partial area of the first transparent conductive film, and the second transparent conductive film covers the silver electrode and the first transparent conductive film .
  • the total thickness of the first transparent conductive film and the second transparent conductive film is 70 nm to 100 nm.
  • the thickness of the first transparent conductive film is thicker than the thickness of the second transparent conductive film.
  • the thickness of the first transparent conductive film is 50 nm to 70 nm.
  • the thickness of the second transparent conductive film is 10 nm to 30 nm.
  • the battery substrate includes a silicon substrate layer, an intrinsic amorphous silicon layer and a doped amorphous silicon layer, and the intrinsic amorphous silicon layer is disposed on the silicon substrate layer,
  • the doped amorphous silicon layer is disposed on a side surface of the intrinsic amorphous silicon layer away from the silicon substrate layer, and the first transparent conductive film is disposed on a side surface of the doped amorphous silicon layer away from the silicon substrate layer.
  • the intrinsic amorphous silicon layer On one side of the intrinsic amorphous silicon layer.
  • the silver electrode contains silver powder, and the silver powder includes flake silver powder and spherical silver powder.
  • both the first transparent conductive film and the second transparent conductive film are doped indium oxide films, and the doped indium oxide films in the first transparent conductive film and the second transparent conductive film
  • the hetero elements are each independently selected from one or more of tin, tungsten, molybdenum, titanium, gallium, zinc, cerium and hydrogen.
  • the solar cell includes: a battery substrate and a conductive layer;
  • the conductive layer includes a first transparent conductive film, a silver electrode and a second transparent conductive film, the first transparent conductive film is disposed on the battery substrate On the surface, the silver electrode is disposed on a partial area of the first transparent conductive film, and the second transparent conductive film covers the silver electrode and the first transparent conductive film;
  • the preparation method of the solar cell includes the following steps:
  • the second transparent conductive film is deposited on a side surface of the first transparent conductive film away from the battery substrate.
  • a power generation device which includes a solar cell.
  • the solar cell includes: a battery substrate and a conductive layer; the conductive layer includes a first transparent conductive film, silver electrode and a second transparent conductive film, the first transparent conductive film is disposed on the surface of the battery substrate, the silver electrode is disposed on a partial area of the first transparent conductive film, the second transparent conductive film A thin film covers the silver electrode and the first transparent conductive film.
  • Figure 1 is a schematic structural diagram of a solar cell according to an embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of the conductive layer of the solar cell in Figure 1;
  • Figure 3 is a picture of the silver electrode in Comparative Example 1 taken under a scanning electron microscope.
  • a solar cell includes: a battery substrate and a conductive layer; the conductive layer includes a first transparent conductive film, a silver electrode and a second transparent conductive film, the first transparent conductive film
  • the silver electrode is disposed on the surface of the substrate, the silver electrode is disposed on a partial area of the first transparent conductive film, and the second transparent film covers the silver electrode and the first transparent conductive film.
  • the solar cell substrate includes a silicon substrate layer, an intrinsic amorphous silicon layer and a doped amorphous silicon layer.
  • the intrinsic amorphous silicon layer is disposed on the silicon substrate layer
  • the doped amorphous silicon layer is disposed on a side surface of the intrinsic amorphous silicon layer away from the silicon substrate layer
  • the conductive film is disposed on a side surface of the doped amorphous silicon layer away from the intrinsic amorphous silicon layer.
  • FIG. 1 shows a specific example of the solar cell in the above embodiment. for ease of understanding
  • the specific structure of the solar cell is shown in Figure 1.
  • the solar cell includes a cell substrate 100 and a conductive layer. It can be understood that the battery substrate 100 has a front side and a back side.
  • the above-mentioned conductive layer is provided on both the front side and the back side of the battery substrate 100, which are respectively referred to as the front conductive layer 200 and the back conductive layer 300.
  • the front conductive layer 200 includes a front first transparent conductive film 210, a front silver electrode 220 and a front second transparent conductive film 230.
  • the front first transparent conductive film 210 is disposed on the surface of the battery substrate 100, and the front silver electrode 220 is disposed on the front surface. In part of the first transparent conductive film 210 , the front second transparent conductive film 230 covers the front silver electrode 220 and the front first transparent conductive film 210 .
  • the back conductive layer 300 includes a first back transparent conductive film 310 , a back silver electrode 320 and a back second transparent conductive film 330 .
  • the first transparent conductive film 310 on the back is disposed on the surface of the battery substrate 100
  • the silver electrode 320 is disposed on a partial area of the first transparent conductive film 310 on the back
  • the second transparent conductive film 330 covers the silver electrode 320 and the second transparent conductive film 330 on the back.
  • the first transparent conductive film 310 on the back side In some other specific examples, only the front conductive layer 200 or the back conductive layer 300 can be provided, which can also play a role in improving the conductivity of the silver electrode. However, providing the front conductive layer 200 and the back conductive layer 300 at the same time can more significantly improve the conductivity of the silver electrode. Improve the overall fill factor of solar cells. For ease of explanation, the solar cell in FIG. 1 will be described below using the front conductive layer 200 as an example.
  • the back conductive layer 300 and the front conductive layer 200 may not be exactly the same, but may also have similar parameters.
  • the battery substrate 100 includes a silicon substrate layer, an intrinsic amorphous silicon layer and a doped amorphous silicon layer.
  • an intrinsic amorphous silicon layer and a doped amorphous silicon layer are provided on both the front and back sides of the silicon substrate layer, which are respectively referred to as the front intrinsic amorphous silicon layer 121 and the front doped amorphous silicon layer 121 .
  • the front-side intrinsic amorphous silicon layer 121 and the front-side doped amorphous silicon layer 122 are stacked on the front side of the silicon substrate layer in sequence.
  • the front-side first transparent conductive film 210 is stacked on the front side intrinsic amorphous silicon layer 121 .
  • the backside intrinsic amorphous silicon layer 131 and the backside doped amorphous silicon layer 132 are stacked on the backside of the silicon substrate layer in sequence, and the backside first transparent conductive film 310 is stacked on the backside intrinsic amorphous silicon layer 131 .
  • the doping type of the hybrid amorphous silicon layer 122 and the back doped amorphous silicon layer 132 are different.
  • the doping type of the front doped amorphous silicon layer 122 is n-type
  • the doping type of the back doped amorphous silicon layer is n-type.
  • the doping type of 132 is p-type.
  • the doping type of the silicon base layer 110 is the same as the doping type of the front-side doped amorphous silicon layer 122 .
  • the total thickness of the front first transparent conductive film 210 and the front second transparent conductive film 230 is 70 nm to 100 nm.
  • solar cells with this total thickness can basically maintain the same low reflectivity and current density, while also having the ability to reduce the silver electrode contact resistance and self-body resistance, improving the fill factor of the solar cell. , improve battery efficiency.
  • the front first transparent conductive film 210 is thicker than the front second transparent conductive film 230 .
  • the front first transparent conductive film 210 is mainly used to introduce carriers generated from the battery substrate 100 into the silver electrode.
  • a thicker film thickness is beneficial to reducing the volume resistance of the front first transparent conductive film 210 and promoting carrier collection.
  • the second transparent conductive film is mainly used to fill the pores inside the silver electrode and the partial gap on the outside between the silver electrode and the first transparent conductive film.
  • An appropriate film thickness is conducive to ensuring that the overall conductive layer has lower reflectivity and higher current density.
  • the thickness of the front first transparent conductive film 210 is 50 nm to 70 nm.
  • the thickness of the front first transparent conductive film 210 may be selected from 55 nm to 65 nm. Further, the thickness of the front first transparent conductive film 210 may be selected from 55 nm to 60 nm.
  • the thickness of the front second transparent conductive film 230 is 10 nm ⁇ 30 nm.
  • the thickness of the front second transparent conductive film 230 may be selected from 15 nm to 25 nm. Further, the thickness of the front second transparent conductive film 230 may be selected from 20 nm to 25 nm.
  • silver powder is included in the front silver electrode 220 .
  • the front silver electrode 220 may also include a binder, which is used to bond silver powders to each other and to the front first transparent conductive film 210 .
  • silver powder includes flake silver powder and spherical silver powder.
  • ball Silver powder can be in the shape of regular spheres, flat ellipsoids or other shapes similar to regular spheres.
  • the silver electrode formed by the low-temperature silver paste in the traditional technology is composed of silver powder particles, there are gaps between the silver powder particles, which results in the resistance of the silver electrode including silver powder being generally high.
  • FIG. 2 a more specific morphological diagram of the front conductive layer 200 in FIG. 1 is shown. There are gaps between the silver powder particles inside the front silver electrode 220, and there are also gaps between the contact interface between the front silver electrode 220 and the front first transparent conductive film 210 below.
  • the second transparent conductive film is disposed on the surface of the silver electrode, it can not only fill the gaps between the silver powder particles, but also fill the gaps outside the contact interface between the front silver electrode 220 and the front first transparent conductive film 210. Therefore, it can Significantly improve the overall conductivity of the conductive layer.
  • the front first transparent conductive film 210 and the front second transparent conductive film 230 are both doped indium oxide films.
  • the doping elements are each independently selected from one or more of tin, tungsten, molybdenum, titanium, gallium, zinc, cerium and hydrogen.
  • the first front transparent conductive film 210 and the front second transparent conductive film 230 are made of the same material, for example, both can be selected from tin-doped indium oxide.
  • the present invention also provides a preparation method for preparing the solar cell shown in Figure 1, which includes the following steps: depositing the first transparent conductive film on the battery substrate; Silk-printing conductive silver paste on part of the conductive film and shaping the conductive silver paste to prepare a silver electrode; depositing the second transparent conductive film on the surface of the first transparent conductive film away from the battery substrate .
  • the method of depositing the first transparent conductive film is a physical vapor deposition method or a rapid plasma deposition method.
  • the method of depositing the second transparent conductive film is a physical vapor deposition method or a rapid plasma deposition method.
  • the battery preparation method may include steps S1 to S7.
  • Step S1 Texturing and cleaning are performed on the silicon base layer. Texturing and cleaning on the silicon base layer can form a textured surface, which reduces the reflection of light by the silicon wafer, allowing more light to be absorbed and improving the efficiency of the solar cell.
  • the doping type of the silicon base layer is n-type doping.
  • Step S2 deposit a front intrinsic amorphous silicon layer on the front side of the silicon base layer, and deposit a back intrinsic amorphous silicon layer on the back side of the silicon base layer.
  • the specific deposition process can be controlled so that the thickness of the front intrinsic amorphous silicon layer and the back intrinsic amorphous silicon layer is 5 nm to 10 nm.
  • the method of depositing the front intrinsic amorphous silicon layer and the back intrinsic amorphous silicon layer may be selected from plasma enhanced chemical vapor deposition.
  • Step S3 deposit a front-side doped amorphous silicon layer on the front-side intrinsic amorphous silicon layer, and deposit a back-side doped amorphous silicon layer on the back-side intrinsic amorphous silicon layer.
  • the doping type of the front-side doped amorphous silicon layer is n-type
  • the doping type of the back-side doped amorphous silicon layer is p-type.
  • the method of depositing the front-side doped amorphous silicon layer and the back-side doped amorphous silicon layer may be selected from plasma enhanced chemical vapor deposition. By controlling the specific deposition process, the thickness of the front-side doped amorphous silicon layer and the back-side doped amorphous silicon layer is 5 nm to 10 nm.
  • Step S4 deposit a front first transparent conductive film on the front doped amorphous silicon layer, and deposit a back first transparent conductive film on the back doped amorphous silicon layer.
  • the method of depositing the first transparent conductive film on the front side and the first transparent conductive film on the back side can be selected from the physical vapor deposition method, and the target material can be selected from the indium tin oxide target material.
  • the thickness of the first transparent conductive film on the front side and the first transparent conductive film on the back side is 50 nm to 70 nm.
  • Step S5 Screen-print conductive silver paste on the first transparent conductive film on the front side and shape it to prepare a front silver electrode.
  • the silver electrode is usually only formed at a preset position on the transparent conductive film and exists in the shape of a grid line, so it is also called a grid line electrode.
  • Step S6 deposit a front second transparent conductive film on the front silver electrode, and deposit a front second transparent conductive film on the back silver electrode. Deposit a second transparent conductive film on the back side.
  • the method of depositing the second transparent conductive film on the front side and the second transparent conductive film on the back side can be selected from the physical vapor deposition method, and the target material can be selected from the indium tin oxide target material.
  • the thickness of the second transparent conductive film on the front and the second transparent conductive film on the back is 10 nm to 30 nm. It can be understood that the preparation of the conductive layer can be completed through steps S4 to S6.
  • the prepared solar cell after preparing the second transparent conductive film, can also be placed in a light recovery furnace for processing, and its performance can be tested.
  • Yet another embodiment of the present invention also provides a power generation device, which includes the solar cell in the above embodiment.
  • the conductive layer on the battery substrate is redesigned. Specifically, not only are the first transparent conductive film and silver electrode provided on the battery substrate, but a second transparent conductive film is also provided on the outer surface of the silver electrode. Experiments have proven that the introduction of the second transparent conductive film does not significantly affect the battery current density and reflectivity. At the same time, the atomic layer of the second transparent conductive film can fill the gap between the silver powder on the surface of the silver electrode, and the gap between the silver electrode and the third transparent conductive film. The gap between the first transparent conductive film can reduce the resistance of the silver electrode itself and the contact resistance between the silver electrode and the first transparent conductive film, ultimately increasing the fill factor of the solar cell.
  • N-type monocrystalline silicon wafer with a size of 166mm and a thickness of 150 ⁇ m is used as the silicon base layer, and is textured and cleaned.
  • the texture size is 2 ⁇ m-6 ⁇ m, and the light reflectivity is 8%-11%;
  • the front-side intrinsic amorphous silicon layer and Prepare a backside intrinsic amorphous silicon layer on the backside, with the thickness controlled at 5nm-10nm;
  • n-type amorphous silicon layer is deposited on the front through plasma-enhanced chemical vapor phase, and a p-type amorphous silicon layer is deposited on the back, with the thickness controlled at 5nm-10nm;
  • the first transparent conductive film layer on the front side is deposited on the front side by the physical vapor deposition method, with the thickness controlled at 55nm-60nm, and the first transparent conductive film layer on the back side is deposited on the back side, with the thickness controlled at 55nm-60nm;
  • a second transparent conductive film layer on the front side is deposited on the front side by a physical vapor deposition method, with the thickness controlled at 20nm-25nm, and a second transparent conductive film layer on the back side is deposited on the back side, with the thickness controlled at 20nm-25nm.
  • N-type monocrystalline silicon wafer with a size of 166mm and a thickness of 150 ⁇ m is used as the silicon base layer, and is textured and cleaned.
  • the texture size is 2 ⁇ m-6 ⁇ m, and the light reflectivity is 8%-11%;
  • the front intrinsic amorphous silicon layer is prepared on the front and the back intrinsic amorphous silicon layer is prepared on the back through plasma enhanced chemical vapor deposition method, with the thickness controlled at 5nm-10nm;
  • n-type amorphous silicon layer is deposited on the front through plasma-enhanced chemical vapor phase, and a p-type amorphous silicon layer is deposited on the back, with the thickness controlled at 5nm-10nm;
  • the front transparent conductive film is deposited on the front by physical vapor deposition, with the thickness controlled at 75nm ⁇ 85nm, and the back transparent conductive film is deposited on the back, with the thickness controlled at 75nm ⁇ 85nm;
  • the low-temperature silver paste is printed on the back through screen printing, and the low-temperature silver paste is solidified to form a front silver electrode and a back silver electrode.
  • the schematic diagram of the silver electrode formed by screen printing in Comparative Example 1 is shown in Figure 3. It can be clearly seen from Figure 3 that the silver electrode formed by low-temperature silver paste is formed by the accumulation of silver powder particles, including spherical silver powder particles and flaky silver powder particles. There are certain gaps between particles, which leads to the formation of low-temperature silver paste. The resistance of the silver electrode can reach more than three times that of the silver electrode formed by high-temperature silver paste.
  • Test example Put the solar cells prepared in Example 1 and Comparative Example 1 into a light recovery furnace for treatment.
  • the contact resistance Rs , open circuit voltage V oc , short circuit current I sc , fill factor FF and conversion efficiency E ta of the battery were tested.
  • the contact resistance is the resistance of the entire battery piece. The results can be seen in Table 1.
  • the resistance reduction of the grid line itself is higher than 17.6%, which shows that through the design of the conductive layer in Embodiment 1, the contact resistance of the solar cell is significantly reduced. Moreover, due to the reduction in contact resistance, compared with Comparative Example 1, the fill factor of the solar cell of Example 1 was increased by 0.54%, and the conversion efficiency was also increased by 0.101%. This shows that the solar cell of Example 1 can effectively improve the electrical conductivity between the gate electrode formed by the low-temperature silver paste and the transparent conductive film, thereby improving the conversion efficiency of the solar cell.

Abstract

本公开公开了一种异质结太阳电池,包括:电池基片(100)和导电层;导电层包括第一透明导电薄膜(210)、银电极(220)和第二透明导电薄膜(230),第一透明导电薄膜(210)设置于电池基片(100)的表面上,银电极(220)设置于第一透明导电薄膜(210)上的部分区域,第二透明导电薄膜(230)覆盖银电极(220)和第一透明导电薄膜(210)。

Description

太阳电池及制备方法、发电装置
本申请要求于2022年5月30日提交中国专利局、申请号为202210599711X、发明名称为“太阳电池及制备方法、发电装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及太阳电池技术领域,特别是涉及一种太阳电池及制备方法、发电装置。
背景技术
异质结太阳电池是一种特殊的PN结,通常由非晶硅和晶体硅材料形成。异质结太阳电池具有高效率、高开路电压等优点,因而具有较佳的应用前景。
异质结太阳电池的制程工序通常包括制绒、非晶硅镀膜、透明导电层镀膜和丝网印刷栅线电极等步骤,这些制备过程的工艺温度一般不会超过400℃。银在金属中具有最高的导电率,因而一般被用作电极的材料。在实际制备工艺中,电极的原料有高温银浆和低温银浆。高温银浆的导电性能较好,但需要在700℃以上的高温下成型,这会对异质结太阳电池的薄膜造成显著的损伤,所以异质结太阳电池的栅线电极通常都是采用低温银浆进行制备。低温银浆中包括球状和片状的银粉以及用于粘结的有机树脂。与高温银浆通过熔化烧结存在显著不同的是,低温银浆是通过树脂将银粉颗粒粘结到一起的,同时电极整体与透明导电薄膜之间也是通过树脂粘合的,因此电极自身的线电阻和其与透明导电薄膜之间的接触电阻都明显较高。这成为了影响异质结太阳电池效率的一个重要因素。
发明内容
根据本公开的一些实施例,提供了一种太阳电池,包括:电池基片和导电层;所述导电层包括第一透明导电薄膜、银电极和第二透明导电薄膜,所述第一透明导电薄膜设置于所述电池基片的表面上,所述银电极设置于所述第一透明导电薄膜上的部分区域,所述第二透明导电薄膜覆盖所述银电极和所述第一透明导电薄膜。
在本公开的一些实施例中,所述第一透明导电薄膜与所述第二透明导电薄膜的总厚度为70nm~100nm。
在本公开的一些实施例中,所述第一透明导电薄膜的厚度比所述第二透明导电薄膜的厚度厚。
在本公开的一些实施例中,所述第一透明导电薄膜的厚度为50nm~70nm。
在本公开的一些实施例中,所述第二透明导电薄膜的厚度为10nm~30nm。
在本公开的一些实施例中,所述电池基片包括硅基片层、本征非晶硅层和掺杂非晶硅层,所述本征非晶硅层设置于硅基片层上,所述掺杂非晶硅层设置于所述本征非晶硅层远离所述硅基片层的一侧表面上,所述第一透明导电薄膜设置于所述掺杂非晶硅层远离所述本征非晶硅层的一侧表面上。
在本公开的一些实施例中,所述银电极内具有银粉,所述银粉包括片状银粉和球状银粉。
在本公开的一些实施例中,所述第一透明导电薄膜和所述第二透明导电薄膜均为掺杂氧化铟薄膜,所述第一透明导电薄膜和所述第二透明导电薄膜中的掺杂元素各自独立地选自锡、钨、钼、钛、镓、锌、铈和氢中一种或多种。
进一步地,根据本公开的又一些实施例,还提供了一种太阳电池的制备 方法,所述太阳电池包括:电池基片和导电层;所述导电层包括第一透明导电薄膜、银电极和第二透明导电薄膜,所述第一透明导电薄膜设置于所述电池基片的表面上,所述银电极设置于所述第一透明导电薄膜上的部分区域,所述第二透明导电薄膜覆盖所述银电极和所述第一透明导电薄膜;
所述太阳电池的制备方法包括如下步骤:
在所述电池基片上沉积所述第一透明导电薄膜;
在所述第一透明导电薄膜的部分区域上丝印导电银浆,并使所述导电银浆成型,制备银电极;
在所述第一透明导电薄膜远离所述电池基片的一侧表面上沉积所述第二透明导电薄膜。
进一步地,根据本公开的又一些实施例,还提供了一种发电装置,其包括太阳电池,所述太阳电池包括:电池基片和导电层;所述导电层包括第一透明导电薄膜、银电极和第二透明导电薄膜,所述第一透明导电薄膜设置于所述电池基片的表面上,所述银电极设置于所述第一透明导电薄膜上的部分区域,所述第二透明导电薄膜覆盖所述银电极和所述第一透明导电薄膜。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
图1为根据本发明一实施例的太阳电池的结构示意图;
图2为图1中太阳电池的导电层的结构示意图;
图3为对比例1中银电极在扫描电子显微镜下拍摄的图片。
其中,附图中各附图标记及其含义如下:
100、电池基片;110、硅基底层;121、正面本征非晶硅层;122、正面掺杂非晶硅层;131、背面本征非晶硅层;132、背面掺杂非晶硅层;200、 正面导电层;210、正面第一透明导电薄膜;220、正面银电极;230、正面第二透明导电薄膜;300、背面导电层;310、背面第一透明导电薄膜;320、背面银电极;330、背面第二透明导电薄膜。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。文中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。本文所使用的“多”包括两个和多于两个的项目。本文所使用的“某数以上”应当理解为某数及大于某数的范围。
根据本发明的一个实施例,一种太阳电池,其包括:电池基片和导电层;所述导电层包括第一透明导电薄膜、银电极和第二透明导电薄膜,所述第一透明导电薄膜设置于所述基片表面,所述银电极设置于所述第一透明导电薄膜上的部分区域,所述第二透明薄膜覆盖所述银电极和所述第一透明导电薄膜。
在其中一个具体示例中,该太阳电池的电池基片包括硅基片层、本征非晶硅层和掺杂非晶硅层。本征非晶硅层设置于硅基片层上,所述掺杂非晶硅层设置于所述本征非晶硅层远离所述硅基片层的一侧表面上,所述第一透明导电薄膜设置于所述掺杂非晶硅层远离所述本征非晶硅层的一侧表面上。
图1示出了上述实施例中的太阳电池的一种具体示例。为了便于理解 该太阳电池的具体结构,请参照图1所示,该太阳电池包括电池基片100和导电层。可以理解,电池基片100具有正面和背面,在图1示出的具体示例中,电池基片100的正面和背面均设置有上述导电层,分别记为正面导电层200和背面导电层300。正面导电层200包括正面第一透明导电薄膜210、正面银电极220和正面第二透明导电薄膜230,正面第一透明导电薄膜210设置于电池基片100的表面上,正面银电极220设置于正面第一透明导电薄膜210上的部分区域,正面第二透明导电薄膜230覆盖所述正面银电极220和正面第一透明导电薄膜210。背面导电层300包括背面第一透明导电薄膜310、背面银电极320和背面第二透明导电薄膜330。背面第一透明导电薄膜310设置于电池基片100的表面上,背面银电极320设置于背面第一透明导电薄膜310上的部分区域,背面第二透明导电薄膜330覆盖所述背面银电极320和背面第一透明导电薄膜310。在其他的一些具体示例中,可以仅设置正面导电层200或背面导电层300,也能够起到提高银电极导电性的作用,但是同时设置正面导电层200和背面导电层300能够更为显著地提升太阳电池整体的填充因子。为了便于阐述,下文中仅以正面导电层200作为示例对图1中的太阳电池进行说明,背面导电层300与正面导电层200可以不完全相同,但也具有类似的各参数。
其中,电池基片100包括硅基片层、本征非晶硅层和掺杂非晶硅层。在图1示出的具体示例中,硅基片层的正面和背面均设置有本征非晶硅层和掺杂非晶硅层,分别记为正面本征非晶硅层121、正面掺杂非晶硅层122、背面本征非晶硅层131和背面掺杂非晶硅层132。正面本征非晶硅层121和正面掺杂非晶硅层122依次层叠设置于硅基片层的正面上,正面第一透明导电薄膜210层叠设置于正面本征非晶硅层121上。背面本征非晶硅层131和背面掺杂非晶硅层132依次层叠设置于硅基片层的背面上,背面第一透明导电薄膜310层叠设置于背面本征非晶硅层131上。可以理解,正面掺 杂非晶硅层122与背面掺杂非晶硅层132的掺杂类型不同,例如在图1中,正面掺杂非晶硅层122的掺杂类型为n型,背面掺杂非晶硅层132的掺杂类型为p型。进一步地,硅基底层110的掺杂类型与正面掺杂非晶硅层122的掺杂类型相同。
在图1示出的具体示例中,正面第一透明导电薄膜210与正面第二透明导电薄膜230的总厚度为70nm~100nm。相较于传统技术中的太阳电池,具有该总厚度的太阳电池能够基本保持相同的低反射率和电流密度,同时还具有降低银电极接触电阻和自身体电阻的能力,提升太阳电池的填充因子、提高电池效率。
在图1示出的具体示例中,正面第一透明导电薄膜210比正面第二透明导电薄膜230的厚度厚。正面第一透明导电薄膜210主要用于将从电池基片100中产生的载流子导入银电极中,更厚的薄膜厚度有利于降低正面第一透明导电薄膜210的体电阻,促进载流子的收集。第二透明导电薄膜主要用于填充银电极内部的孔隙以及银电极与第一透明导电薄膜之间靠外侧的部分间隙,适当的薄膜厚度有利于保证导电层整体具有较低的反射率和较高的电流密度。
在图1示出的具体示例中,正面第一透明导电薄膜210的厚度为50nm~70nm。例如,正面第一透明导电薄膜210的厚度可以选自55nm~65nm。进一步地,正面第一透明导电薄膜210的厚度可以选自55nm~60nm。
在图1示出的具体示例中,正面第二透明导电薄膜230的厚度为10nm~30nm。例如,正面第二透明导电薄膜230的厚度可以选自15nm~25nm。进一步地,正面第二透明导电薄膜230的厚度可以选自20nm~25nm。
在图1示出的具体示例中,正面银电极220中包括银粉。正面银电极220中还可以包括粘结剂,粘结剂用于将银粉之间、以及银粉与正面第一透明导电薄膜210粘结在一起。进一步地,银粉包括片状银粉和球状银粉。球 状银粉可以是规则的球状、也可以是扁的椭球状或是其他与规则球状相类似的形状。
由于传统技术中的低温银浆形成的银电极是由银粉颗粒组成的,银粉颗粒之间存在间隙,这导致包括银粉的银电极电阻通常较高。参照图2所示,其示出了图1中的正面导电层200更为具体的形貌示意图。其中在正面银电极220内部的银粉颗粒之间存在有间隙,同时正面银电极220与其下方的正面第一透明导电薄膜210的接触界面之间也存在间隙。而第二透明导电薄膜在设置于银电极表面时,不仅能够填充银粉颗粒之间的间隙,还能够填充至正面银电极220与正面第一透明导电薄膜210的接触界面靠外侧的间隙,因而能够明显提升导电层整体的导电性。
在图1示出的具体示例中,正面第一透明导电薄膜210和正面第二透明导电薄膜230均为掺杂氧化铟薄膜,正面第一透明导电薄膜210和正面第二透明导电薄膜230中的掺杂元素各自独立地选自锡、钨、钼、钛、镓、锌、铈和氢中一种或多种。较为优选地,正面第一透明导电薄膜210与正面第二透明导电薄膜230的材料相同,例如均可以选自掺锡的氧化铟。
进一步地,本发明还提供了一种用于制备图1所示的太阳电池的制备方法,其包括如下步骤:在所述电池基片上沉积所述第一透明导电薄膜;在所述第一透明导电薄膜的部分区域上丝印导电银浆并使所述导电银浆成型,制备银电极;在所述第一透明导电薄膜远离所述电池基片的一侧表面上沉积所述第二透明导电薄膜。
在该实施例的一个具体示例中,沉积所述第一透明导电薄膜的方法为物理气相沉积法或快速等离子体沉积法。
在该实施例的一个具体示例中,沉积所述第二透明导电薄膜的方法为物理气相沉积法或快速等离子体沉积法。
具体地,该电池的制备方法可以包括步骤S1~S7。
步骤S1,在硅基底层上进行制绒、清洗处理。在硅基底层上进行制绒、清洗处理能够形成绒面,降低硅片对光的反射,使得更多的光线能够被吸收,提供太阳电池的效率。其中,硅基底层的掺杂类型为n型掺杂。
步骤S2,在硅基底层的正面沉积正面本征非晶硅层,及在硅基底层的背面沉积背面本征非晶硅层。可以通过控制具体的沉积工艺,使得正面本征非晶硅层和背面本征非晶硅层的厚度为5nm~10nm。沉积正面本征非晶硅层和背面本征非晶硅层的方法可以选自等离子体增强化学气相沉积法。
步骤S3,在正面本征非晶硅层上沉积正面掺杂非晶硅层,在背面本征非晶硅层上沉积背面掺杂非晶硅层。其中,正面掺杂非晶硅层的掺杂类型为n型,背面掺杂非晶硅层的掺杂类型为p型。沉积正面掺杂非晶硅层和背面掺杂非晶硅层的方法可以选自等离子体增强化学气相沉积法。通过控制具体的沉积工艺,使得正面掺杂非晶硅层和背面掺杂非晶硅层的厚度为5nm~10nm。
可以理解,通过步骤S1~S3,可以制备得到所需的电池基片。而后需要在该电池基片上制备导电层。
步骤S4,在正面掺杂非晶硅层上沉积正面第一透明导电薄膜,在背面掺杂非晶硅层上沉积背面第一透明导电薄膜。沉积正面第一透明导电薄膜和背面第一透明导电薄膜的方法可以选自物理气相沉积法,靶材可以选自氧化铟锡靶材。通过控制具体的沉积工艺,使得正面第一透明导电薄膜和背面第一透明导电薄膜的厚度为50nm~70nm。
步骤S5,在正面第一透明导电薄膜丝网印刷导电银浆并使其成型,制备正面银电极,在第一透明导电薄膜丝网印刷导电银浆并使其成型,制备背面银电极。银电极通常只形成于透明导电薄膜上的预设位置上,并以栅线的形状存在,故也被称为栅线电极。
步骤S6,在正面银电极上沉积正面第二透明导电薄膜,在背面银电极 上沉积背面第二透明导电薄膜。沉积正面第二透明导电薄膜和背面第二透明导电薄膜的方法可以选自物理气相沉积法,靶材可以选自氧化铟锡靶材。通过控制具体的沉积工艺,使得正面第二透明导电薄膜和背面第二透明导电薄膜的厚度为10nm~30nm。可以理解,通过步骤S4~S6可以完成导电层的制备。
在其他的一些具体示例中,在制备完第二透明导电薄膜之后,还可以将制备的太阳电池置于光恢复炉中进行处理,并对其进行性能测试。
本发明的再一实施例还提供了一种发电装置,其包括上述实施例中的太阳电池。
传统的太阳电池都是在电池基片上沉积透明导电薄膜然后丝印银电极。上述太阳电池中重新设计了电池基片上的导电层,具体地,不仅在电池基片上设置了第一透明导电薄膜和银电极,还在银电极的外表面再次设置了第二透明导电薄膜。实验证明,第二透明导电薄膜的引入并不会明显影响电池电流密度和反射率,同时,第二透明导电薄膜的原子层能够填充至银电极表面银粉之间的间隙处,以及银电极与第一透明导电薄膜之间的间隙处,从而起到降低银电极自身电阻以及银电极与第一透明导电薄膜之间的接触电阻的作用,最终提升太阳电池的填充因子。
为了更易于理解及实现本发明,以下还提供了如下较易实施的、更为具体详细的实施例及对比例作为参考。通过下述具体实施例和对比例的描述及性能结果,本发明的各实施例及其优点也将显而易见。
如无特殊说明,以下各实施例所用的原材料皆可从市场上常规购得。
实施例1
以尺寸为166mm、厚度为150μm的N型单晶硅片作为硅基底层,进行制绒、清洗处理,绒面尺寸2μm-6μm,光线反射率为8%-11%;
通过等离子体增强化学气相沉积法分别在正面制备正面本征非晶硅层、 在背面制备背面本征非晶硅层,厚度控制在5nm-10nm;
通过等离子体增强化学气相在正面沉积n型非晶硅层,在背面沉积p型非晶硅层,厚度控制在5nm-10nm;
通过物理气相沉积法在正面沉积正面第一透明导电膜层,厚度控制在55nm-60nm,在背面沉积背面第一透明导电膜层,厚度控制在55nm-60nm;
通过丝网印刷在背面印刷低温银浆,并使低温银浆固化,形成正面银电极和背面银电极;
通过物理气相沉积法在正面沉积正面第二透明导电膜层,厚度控制在20nm-25nm,在背面沉积背面第二透明导电膜层,厚度控制在20nm-25nm。
对比例1
以尺寸为166mm、厚度为150μm的N型单晶硅片作为硅基底层,进行制绒、清洗处理,绒面尺寸2μm-6μm,光线反射率为8%-11%;
通过等离子体增强化学气相沉积法分别在正面制备正面本征非晶硅层、在背面制备背面本征非晶硅层,厚度控制在5nm-10nm;
通过等离子体增强化学气相在正面沉积n型非晶硅层,在背面沉积p型非晶硅层,厚度控制在5nm-10nm;
通过物理气相沉积法在正面沉积正面透明导电膜层,厚度控制在75nm~85nm,在背面沉积背面透明导电膜层,厚度控制在75nm~85nm;
通过丝网印刷在背面印刷低温银浆,并使低温银浆固化,形成正面银电极和背面银电极。
其中,对比例1丝网印刷形成的银电极的示意图如图3所示。根据图3可以明显看出,低温银浆形成的银电极由银粉颗粒堆积形成,其中包括球状的银粉颗粒和片状的银粉颗粒,在颗粒与颗粒之间存在一定空隙,这导致低温银浆形成的银电极电阻可以达到高温银浆形成的银电极电阻的三倍以上。
试验例:将实施例1和对比例1制备的太阳电池放入光恢复炉处理, 测试电池的接触电阻Rs、开路电压Voc、短路电流Isc、填充因子FF以及转换效率Eta,其中接触电阻为电池片整体的电阻,结果可见于表1。
表1
结合表1可以看出,实施例1与对比例1之间的开路电压基本不存在显著差别,电流密度出现微小下降,说明相较于对比例1,通过实施例1的方式将透明导电膜层分两次沉积并在中间设置银电极并不会导致太阳电池的开路电压和短路电流发生明显变化。于此同时,相较于对比例1,实施例1的太阳电池的接触电阻降低了0.36mΩ,降低幅度达到了17.6%,考虑到接触电阻不仅包括栅线本身的电阻,还包括电池片中硅片的电阻,因此栅线本身的电阻降低幅度还高于17.6%,这说明通过实施例1的导电层的设计,太阳电池的接触电阻得到了显著的降低。并且,得益于接触电阻的降低,相较于对比例1,实施例1的太阳电池的填充因子提高了0.54%,转换效率也提高了0.101%。这说明实施例1的太阳电池能够有效提高低温银浆形成的栅线电极与透明导电薄膜之间的导电性能,进而提高太阳电池的转换效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (26)

  1. 一种太阳电池,包括:电池基片和导电层;所述导电层包括第一透明导电薄膜、银电极和第二透明导电薄膜,所述第一透明导电薄膜设置于所述电池基片的表面上,所述银电极设置于所述第一透明导电薄膜上的部分区域,所述第二透明导电薄膜覆盖所述银电极和所述第一透明导电薄膜。
  2. 根据权利要求1所述的太阳电池,所述第一透明导电薄膜与所述第二透明导电薄膜的总厚度为70nm~100nm。
  3. 根据权利要求2所述的太阳电池,所述第一透明导电薄膜的厚度比所述第二透明导电薄膜的厚度厚。
  4. 根据权利要求3所述的太阳电池,所述第一透明导电薄膜的厚度为50nm~70nm。
  5. 根据权利要求3所述的太阳电池,所述第二透明导电薄膜的厚度为10nm~30nm。
  6. 根据权利要求1~5任一项所述的太阳电池,所述银电极内具有银粉,所述银粉包括片状银粉和球状银粉。
  7. 根据权利要求1~5任一项所述的太阳电池,所述电池基片包括硅基片层、本征非晶硅层和掺杂非晶硅层,所述本征非晶硅层设置于硅基片层上,所述掺杂非晶硅层设置于所述本征非晶硅层远离所述硅基片层的一侧表面上,所述第一透明导电薄膜设置于所述掺杂非晶硅层远离所述本征非晶硅层的一侧表面上。
  8. 根据权利要求1~5任一项所述的太阳电池,所述第一透明导电薄膜和所述第二透明导电薄膜均为掺杂氧化铟薄膜,所述第一透明导电薄膜和所述第二透明导电薄膜中的掺杂元素各自独立地选自锡、钨、钼、钛、镓、锌、铈和氢中一种或多种。
  9. 一种太阳电池的制备方法,所述太阳电池包括:电池基片和导电层;所述导电层包括第一透明导电薄膜、银电极和第二透明导电薄膜,所述第一透明 导电薄膜设置于所述电池基片的表面上,所述银电极设置于所述第一透明导电薄膜上的部分区域,所述第二透明导电薄膜覆盖所述银电极和所述第一透明导电薄膜;
    所述太阳电池的制备方法包括如下步骤:
    在所述电池基片上沉积所述第一透明导电薄膜;
    在所述第一透明导电薄膜的部分区域上丝印导电银浆,并使所述导电银浆成型,制备银电极;
    在所述第一透明导电薄膜远离所述电池基片的一侧表面上沉积所述第二透明导电薄膜。
  10. 根据权利要求9所述的太阳电池的制备方法,所述第一透明导电薄膜与所述第二透明导电薄膜的总厚度为70nm~100nm。
  11. 根据权利要求10所述的太阳电池,所述第一透明导电薄膜的厚度比所述第二透明导电薄膜的厚度厚。
  12. 根据权利要求11所述的太阳电池的制备方法,所述第一透明导电薄膜的厚度为50nm~70nm。
  13. 根据权利要求11所述的太阳电池的制备方法,所述第二透明导电薄膜的厚度为10nm~30nm。
  14. 根据权利要求9~13任一项所述的太阳电池的制备方法,所述银电极内具有银粉,所述银粉包括片状银粉和球状银粉。
  15. 根据权利要求9~13任一项所述的太阳电池的制备方法,所述电池基片包括硅基片层、本征非晶硅层和掺杂非晶硅层,所述本征非晶硅层设置于硅基片层上,所述掺杂非晶硅层设置于所述本征非晶硅层远离所述硅基片层的一侧表面上,所述第一透明导电薄膜设置于所述掺杂非晶硅层远离所述本征非晶硅层的一侧表面上。
  16. 根据权利要求9~13任一项所述的太阳电池的制备方法,所述第一透明导电薄膜和所述第二透明导电薄膜均为掺杂氧化铟薄膜,所述第一透明导电薄膜和所述第二透明导电薄膜中的掺杂元素各自独立地选自锡、钨、钼、钛、 镓、锌、铈和氢中一种或多种。
  17. 根据权利要求9~16任一项所述的太阳电池的制备方法,沉积所述第一透明导电薄膜的方法为物理气相沉积法或快速等离子体沉积法。
  18. 根据权利要求9~16任一项所述的太阳电池的制备方法,沉积所述第二透明导电薄膜的方法为物理气相沉积法或快速等离子体沉积法。
  19. 一种发电装置,包括太阳电池,所述太阳电池包括:电池基片和导电层;所述导电层包括第一透明导电薄膜、银电极和第二透明导电薄膜,所述第一透明导电薄膜设置于所述电池基片的表面上,所述银电极设置于所述第一透明导电薄膜上的部分区域,所述第二透明导电薄膜覆盖所述银电极和所述第一透明导电薄膜。
  20. 根据权利要求19所述的太阳电池,所述第一透明导电薄膜与所述第二透明导电薄膜的总厚度为70nm~100nm。
  21. 根据权利要求20所述的太阳电池,所述第一透明导电薄膜的厚度比所述第二透明导电薄膜的厚度厚。
  22. 根据权利要求21所述的太阳电池,所述第一透明导电薄膜的厚度为50nm~70nm。
  23. 根据权利要求21所述的太阳电池,所述第二透明导电薄膜的厚度为10nm~30nm。
  24. 根据权利要求19~23任一项所述的太阳电池,所述银电极内具有银粉,所述银粉包括片状银粉和球状银粉。
  25. 根据权利要求19~23任一项所述的太阳电池,所述电池基片包括硅基片层、本征非晶硅层和掺杂非晶硅层,所述本征非晶硅层设置于硅基片层上,所述掺杂非晶硅层设置于所述本征非晶硅层远离所述硅基片层的一侧表面上,所述第一透明导电薄膜设置于所述掺杂非晶硅层远离所述本征非晶硅层的一侧表面上。
  26. 根据权利要求19~23任一项所述的太阳电池,所述第一透明导电薄膜和所述第二透明导电薄膜均为掺杂氧化铟薄膜,所述第一透明导电薄膜和所 述第二透明导电薄膜中的掺杂元素各自独立地选自锡、钨、钼、钛、镓、锌、铈和氢中一种或多种。
PCT/CN2023/073936 2022-05-30 2023-01-31 太阳电池及制备方法、发电装置 WO2023231434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210599711.X 2022-05-30
CN202210599711.XA CN114975669A (zh) 2022-05-30 2022-05-30 太阳电池及制备方法、发电装置

Publications (1)

Publication Number Publication Date
WO2023231434A1 true WO2023231434A1 (zh) 2023-12-07

Family

ID=82957339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073936 WO2023231434A1 (zh) 2022-05-30 2023-01-31 太阳电池及制备方法、发电装置

Country Status (2)

Country Link
CN (1) CN114975669A (zh)
WO (1) WO2023231434A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114975669A (zh) * 2022-05-30 2022-08-30 通威太阳能(金堂)有限公司 太阳电池及制备方法、发电装置
CN116014035A (zh) * 2022-09-14 2023-04-25 中威新能源(成都)有限公司 太阳电池的制备方法及太阳电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229633A (ja) * 2013-05-17 2014-12-08 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール
CN105140311A (zh) * 2015-07-10 2015-12-09 福建铂阳精工设备有限公司 背电极及其制作方法和电池组件
CN108831967A (zh) * 2018-06-25 2018-11-16 张军 一种新型hit太阳能电池及其制备方法
CN110797428A (zh) * 2018-08-02 2020-02-14 君泰创新(北京)科技有限公司 异质结太阳能电池
CN110854218A (zh) * 2019-12-05 2020-02-28 通威太阳能(眉山)有限公司 栅线结构、太阳能电池片、叠瓦组件、印刷和制造方法
CN211828805U (zh) * 2020-05-13 2020-10-30 苏州阿特斯阳光电力科技有限公司 异质结太阳能电池片及光伏组件
CN114975669A (zh) * 2022-05-30 2022-08-30 通威太阳能(金堂)有限公司 太阳电池及制备方法、发电装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201724543A (zh) * 2015-12-18 2017-07-01 國家中山科學研究院 薄膜型太陽能電池
CN207977320U (zh) * 2018-05-22 2018-10-16 君泰创新(北京)科技有限公司 太阳能电池及光伏建筑一体化光伏组件
CN213988896U (zh) * 2020-11-11 2021-08-17 福建金石能源有限公司 一种转换效率高的异质结太阳能单面电池
CN112701181A (zh) * 2020-12-29 2021-04-23 晋能清洁能源科技股份公司 一种低电阻率异质结太阳能电池的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229633A (ja) * 2013-05-17 2014-12-08 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール
CN105140311A (zh) * 2015-07-10 2015-12-09 福建铂阳精工设备有限公司 背电极及其制作方法和电池组件
CN108831967A (zh) * 2018-06-25 2018-11-16 张军 一种新型hit太阳能电池及其制备方法
CN110797428A (zh) * 2018-08-02 2020-02-14 君泰创新(北京)科技有限公司 异质结太阳能电池
CN110854218A (zh) * 2019-12-05 2020-02-28 通威太阳能(眉山)有限公司 栅线结构、太阳能电池片、叠瓦组件、印刷和制造方法
CN211828805U (zh) * 2020-05-13 2020-10-30 苏州阿特斯阳光电力科技有限公司 异质结太阳能电池片及光伏组件
CN114975669A (zh) * 2022-05-30 2022-08-30 通威太阳能(金堂)有限公司 太阳电池及制备方法、发电装置

Also Published As

Publication number Publication date
CN114975669A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2023231434A1 (zh) 太阳电池及制备方法、发电装置
CN108987488B (zh) 硅异质结太阳电池及其制备方法
CN110707159A (zh) 一种正背面全面积接触钝化的p型晶硅太阳电池及其制备方法
TWI463682B (zh) 異質接面太陽能電池
TW201338184A (zh) 太陽能電池及其製造方法、及太陽能電池模組
WO2022142007A1 (zh) 高效异质结电池结构及其制备方法
CN101976710A (zh) 基于氢化微晶硅薄膜的晶体硅异质结太阳电池的制备方法
CN103199143B (zh) N型掺氢晶化硅钝化的异质结太阳能电池器件
CN102938429A (zh) 一种减反射异质结太阳能电池及其制备方法
CN104781445A (zh) 透明导电膜层叠体及其制造方法、以及薄膜太阳能电池及其制造方法
WO2022142343A1 (zh) 太阳能电池及其制备方法
TW201240123A (en) Method of manufacturing transparent conductive film, and method of manufacturing thin-film solar cell
CN218788382U (zh) 一种高效异质结太阳能电池
CN109638101A (zh) 双层非晶硅掺杂层太阳电池的发射极结构及其制备方法
TW201205843A (en) Wafer type solar cell and method for manufacturing the same
Lachenal et al. High efficiency silicon heterojunction solar cell activities in Neuchatel, Switzerland
WO2024060933A1 (zh) 太阳电池及其制备方法
WO2024060830A1 (zh) 太阳电池及其制备方法
CN114765235A (zh) 异质结太阳能电池及其制造方法
CN108735828A (zh) 一种异质结背接触太阳能电池及其制备方法
TW201236168A (en) Transparent conductive film laminate and method for manufacturing the same, and thin film solar cell and method for manufacturing the same
WO2024045597A1 (zh) 太阳电池及其制备方法
TW201521216A (zh) 光發電元件及其製造方法
WO2014194833A1 (zh) 异质结太阳能电池及其制备方法
WO2023202016A1 (zh) 导电层、太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814633

Country of ref document: EP

Kind code of ref document: A1