WO2014194833A1 - 异质结太阳能电池及其制备方法 - Google Patents

异质结太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2014194833A1
WO2014194833A1 PCT/CN2014/079208 CN2014079208W WO2014194833A1 WO 2014194833 A1 WO2014194833 A1 WO 2014194833A1 CN 2014079208 W CN2014079208 W CN 2014079208W WO 2014194833 A1 WO2014194833 A1 WO 2014194833A1
Authority
WO
WIPO (PCT)
Prior art keywords
tco
gate
solar cell
heterojunction solar
substrate
Prior art date
Application number
PCT/CN2014/079208
Other languages
English (en)
French (fr)
Inventor
李锋
杨伟光
王建明
张雷
李高非
胡志岩
熊景峰
Original Assignee
英利能源(中国)有限公司
英利集团有限公司
保定嘉盛光电科技有限公司
河北流云新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英利能源(中国)有限公司, 英利集团有限公司, 保定嘉盛光电科技有限公司, 河北流云新能源科技有限公司 filed Critical 英利能源(中国)有限公司
Publication of WO2014194833A1 publication Critical patent/WO2014194833A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the field of solar cells, and in particular to a heterojunction solar cell and a method of fabricating the same.
  • BACKGROUND With the development of technology, the photovoltaic industry has gradually entered people's lives, especially the solar cells have been widely promoted and applied.
  • Solar cells can be classified into homojunction solar cells and heterojunction solar cells according to their matrix materials.
  • a homojunction solar cell is a solar cell made of crystalline silicon as a basic material
  • a heterojunction solar cell is an amorphous silicon/crystalline silicon film formed by preparing an amorphous or nanocrystalline film on a crystalline silicon substrate by a thin film process.
  • the solar cell is a basic structure.
  • Heterojunction solar cells have become a very important technology in the field of solar cells due to their high efficiency, low process temperature, and insignificant photo-induced degradation effects.
  • a structure of a heterojunction solar cell is shown in FIG. 1, taking an n-type heterojunction solar cell as an example, which includes an n-type substrate (Nc-Si) 10', at n The front and back sides of the substrate 10' are respectively plated with hydrogenated amorphous silicon (a-Si:H(i)) 20', and hydrogen is formed on the front side of the n-type substrate 10'.
  • a-Si:H(i) hydrogenated amorphous silicon
  • Type hydrogenated amorphous silicon (a-Si:H(p)) 30' hydrogenation on the back side of the n-type substrate 10', forming n-type hydrogenated amorphous silicon (a-Si:H (on the amorphous silicon 20') n + p 40', a transparent conductive film (TCO) 50' is plated on the outside of the P-type hydrogenated amorphous silicon 30' and the n-type hydrogenated amorphous silicon 40' by PVD, and then on the outside of the transparent conductive film 50' The gate 60' is formed.
  • the formation position "outside” refers to the side of the material layer away from the n-type substrate.
  • the metal gate material penetrates the anti-reflection film (usually the anti-reflection film is a SiNx film), and the silicon is formed into a contact region to form a gate electrode. 1 given
  • the emitter p-type hydrogenated amorphous silicon in Fig. 1
  • the amorphous silicon material has a high square resistance, so that the carriers cannot be directly Export, but need to use TCO to lead out.
  • the gate 60' is located on the TCO 50' to form a direct contact, wherein the contact area is the interface portion where the bottom of the gate 60' is in contact with the TCO 50'.
  • the gate needs to be placed on the TCO material layer. This causes a contact resistance between the gate and the TCO, which has a large influence on the fill factor. Reduce the photoelectric conversion efficiency of the heterojunction cell. Reducing the contact resistance of the gate and TCO is critical to improving the conversion efficiency of the heterojunction cell.
  • the contact resistance can be lowered by lowering the contact barrier of the gate/TCO and improving the contact characteristics of the paste.
  • the present invention is directed to a heterojunction solar cell and a method of fabricating the same to improve the photoelectric conversion efficiency of a heterojunction solar cell.
  • a heterojunction solar cell including a TCO, and a gate formed on the TCO, the gate portion extending into the TCO is provided.
  • the gate has a structure in which one end is wide and one end is narrow, and the wide end of the gate extends into the TCO. Further, in the above heterojunction solar cell, the gate has a trapezoidal structure. Further, in the heterojunction solar cell, a height ratio of a first portion extending into the TC0 in the gate to a second portion outside the TC0 is 1/1000 to 1/100. Further, the ratio between the height of the first portion of the gate and the thickness of the TC0 in the heterojunction solar cell is 0.1 to 0.9.
  • the heterojunction solar cell comprises a substrate, the TC0 is disposed on the front side and/or the back side of the substrate, and the gate is located on a side of the TC0 away from the substrate.
  • a method of fabricating a heterojunction solar cell comprising: providing a substrate; forming a TC0 over the substrate; and forming a gate on the TC0, forming a gate on the TC0 In the step, the gate portion extends into TC0.
  • the step of forming a gate on the TC0 in the above preparation method includes: etching a recess on the TC0; forming a gate in the recess to extend the gate portion into the TC0.
  • the TC0 includes the first TC0 and the second TC0, forming TC0 over the substrate, and the gate formed on the TC0 includes: forming a first TC0 on the substrate; on the first TC0 Forming a gate; and forming a second TC0 around the gate on the first TC0 to extend the gate portion into the TC0.
  • TC0 is formed on the front surface and/or the back surface of the substrate, and the gate electrode is formed on
  • FIG. 1 is a schematic structural view of a heterojunction solar cell in the prior art
  • FIG. 2 is a schematic structural view of a heterojunction solar cell according to an embodiment of the present invention
  • FIG. 4a illustrates an amorphous doped layer and a first TCO on the front side of a substrate in a method of fabricating a heterojunction solar cell according to an embodiment of the present invention
  • Schematic diagram of the structure of the rear substrate FIG. 4b shows a schematic structural view of the base after forming the gate on the first TCO on the basis of FIG. 4a
  • FIG. 4c shows the first TCO on the basis of FIG. 4b
  • a schematic diagram of the structure of the substrate after the gate forms a second TCO.
  • such a heterojunction solar cell structure includes a TCO 50, and a gate 60 formed on the TCO 50, wherein the gate 60 extends at least partially into the TCO 50.
  • the above described solution provided by the present invention is an improvement over the relative structure of the TCO 50 and the gate 60 in the heterojunction solar cell structure.
  • Those skilled in the art will be able to rationally apply the relative structure of such TCO 50 and gate 60 to a heterojunction solar cell structure.
  • a common n-type heterojunction solar cell structure including an n-type substrate (Nc-Si) 10, the front and back sides of the n-type substrate 10 are respectively plated to have a good passivation effect, and the minority is adjusted.
  • the gate 60 on the front and/or back side of the heterojunction solar cell extends at least partially into the TCO 50 to form the technical solution protected by the present invention.
  • a common P-type heterojunction solar cell has the same structure as the above-mentioned n-type heterojunction solar cell, and only P-type hydrogenated amorphous silicon (a-Si:H(p)) 30 becomes n-type hydrogenated.
  • a-Si:H(n + )) 40 becomes p-type hydrogenated amorphous silicon (a-Si:H(p + )) ).
  • the material of the amorphous doped layer 30 in the above heterojunction solar cell structure includes, but is not limited to, amorphous silicon, amorphous silicon carbide, amorphous hydrogenated silicon, microcrystalline silicon, microcrystalline silicon carbide, and doped.
  • a metal compound material such as cadmium telluride or the like is preferably hydrogenated amorphous silicon.
  • the heterojunction solar cell provided by the present invention increases the contact area of the gate and the TCO by extending the gate portion into the inside of the TCO, and reduces the contact resistance; meanwhile, the lateral contact between the gate and the TCO is The carrier transport is improved to some extent, thereby increasing the filling factor of the solar cell and improving the energy conversion efficiency of the battery.
  • the structure of the gate electrode 60 is not limited to a square shape.
  • the gate electrode 60 has a structure in which one end is wide and one end is narrow, and the wide end of the gate electrode 60 is extended into the TCO.
  • the structure of the gate 60 is such that the one end is wide and the end is narrow, which is beneficial to increase the contact surface of the gate 60 and the TCO 50 while maintaining the volume of the gate 60, thereby increasing the contact area between the gate 60 and the TCO 50.
  • the contact resistance is reduced.
  • the gate 60 has a trapezoidal structure.
  • the gate 60 is disposed in a trapezoidal structure with respect to the gate 60 having a square structure, and the contact surface of the gate 60 and the TCO can be significantly increased, thereby Increasing the contact area of the gate and the TCO reduces the contact resistance, thereby improving the energy conversion efficiency of the solar cell.
  • the gate 60 is extended into the TCO 50, and the height of the extended portion thereof is not mandatory. As long as the TCO exists between the gate 60 and the amorphous doped layer, the gate is preferably used.
  • the height ratio of the first portion of the pole 60 extending into the TCO to the second portion located outside the TCO is 1/1000 to 1/100. Setting the ratio of the two within this range can be advantageous for improving the collection efficiency of carriers.
  • the gate 60 is extended into the TCO 50, and there is no specific requirement for the ratio between the height of the extended portion and the thickness of the TCO, as long as the gate 60 and the amorphous doped layer are ensured. It is sufficient to have a TCO therebetween, and it is preferred that the ratio between the height of the first portion of the gate 60 and the thickness of the TCO is 0.1 to 0.9. Setting the ratio of the two to this range is advantageous for improving the FF.
  • the structure of the above heterojunction solar cell provided by the present invention has the ability to prepare a heterojunction solar cell having the same structure as the heterojunction solar cell described above.
  • a preferred method of preparing a heterojunction solar cell is provided in the present invention, as shown in FIG. 3, which includes providing a substrate 10 on which a TCO 50 is formed; and on the TCO 50 A step of forming a gate, wherein in the step of forming the gate 60 on the TCO 50, the gate 60 partially extends into the TCO 50.
  • the method provided by the present application is a new method proposed in order to adapt to the structure in which the gate 60 partially extends into the TCO based on the existing method of preparing the heterojunction solar cell.
  • the method comprises the steps of: providing an n-type substrate 10, respectively plating a hydrogenated amorphous silicon 20 on the front and back sides of the n-type substrate 10, at n Hydrogenation of the front side of the substrate 10, the P-type hydrogenated amorphous silicon 30 is formed on the amorphous silicon 20, and the n-type hydrogenated amorphous silicon 40 is formed on the hydrogenated surface of the n-type substrate 10'.
  • the outer side of the P-type hydrogenated amorphous silicon 30 and the n-type hydrogenated amorphous silicon 40 is plated with a transparent conductive film (TCO) 50, and then the gate 60 is formed on the side of the TCO 50 remote from the substrate 10.
  • TCO transparent conductive film
  • the method provided by the present application is based on the above preparation method, and the steps of forming a transparent conductive film (TCO) 50 on the front and/or back side of the heterojunction solar cell and forming the gate 60 are improved to make the gate
  • the pole 60 portion extends into the TCO 50 to form the technical solution protected by the present invention.
  • the step of forming the gate 60 on the TCO 50 includes: etching a trench on the TCO 50; forming a gate 60 in the recess to make the gate 60 portion Extend into the TCO50.
  • the purpose of extending the portion of the gate 60 into the TCO 50 can be achieved by simply providing a groove on the TCO 50.
  • the operation steps are simple, applicable, and suitable for mass production.
  • the method of etching the groove may be dry etching, wet etching or dry-wet mixing etching, and the TCO50 step may be performed by physical vapor deposition (PVD), chemical vapor deposition (CVD), and plasma chemical vapor.
  • PECVD Deposition method
  • the step of forming the gate electrode 60 can be formed by screen printing, stencil printing, electroplating, ink jet printing or the like.
  • in the method for preparing the heterojunction solar cell preferably, as shown in the variation diagram of the substrate in the method for preparing a heterojunction solar cell as shown in FIGS.
  • the TCO50 The first TCO layer 51 and the second TC052 are included, the TCO 50 is formed over the substrate 10, and the gate 60 formed on the TCO 50 includes: forming a first TC051 over the substrate 10; forming a gate on the first TC051 60; On the first TC051, a second TC052 having an upper surface lower than the upper surface of the gate 60 is formed around the gate 60 to partially extend the gate 60 into the TCO 50.
  • the first TC051 and the second TC052 are prepared in a sequential step by dividing the TCO 50 into a first TC051 and a second TC052 to form a portion for extending the portion of the gate 60 into the TCO 50.
  • This method step is more controllable, and there is no particular requirement for the preparation of the gate 60, and it is easier to fabricate a gate structure having a wide end and a narrow end.
  • the first TCO and the second TCO may be made of the same material or different materials according to actual conditions.
  • the steps of forming the first TC051 and the second TC052 may be performed by physical vapor deposition (PVD), chemical vapor deposition (CVD), and plasma chemical vapor deposition (PECVD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • PECVD plasma chemical vapor deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供一种异质结太阳能电池及其制备方法。其中异质结太阳能电池包括TCO(50),以及形成在TCO(50)上的栅极(60),栅极(60)部分延伸进入TCO(50)中。异质结太阳能电池的制备方法,包括:提供衬底(10),在衬底(10)上方形成TCO(50);以及在TCO(50)上形成栅极(60),在TCO(50)上形成栅极(60)的步骤中,栅极(60)部分延伸进入TCO(50)中。通过将栅极(60)部分延伸进入TCO(50)的内部,增加栅极(60)和TCO(50)的接触面积,减小了接触电阻;同时,通过栅极(60)与TCO(50)之间的测向接触在一定程度上改善了载流子输运,进而提高了太阳能电池的填充因子,提升电池的能量转化效率。

Description

异质结太阳能电池及其制备方法 技术领域 本发明涉及太阳能电池领域, 具体而言, 涉及一种异质结太阳能电池及其制备方 法。 背景技术 随着技术的发展, 光伏行业逐渐进入人们的生活, 特别是太阳能电池得到了广泛 的推广应用。 太阳能电池按其基质材料可以分为同质结太阳能电池和异质结太阳能电 池。 同质结太阳能电池是以晶硅为基本材料制成的太阳能电池, 而异质结太阳能电池 是通过薄膜工艺在晶体硅衬底上制备非晶、纳米晶薄膜形成的非晶硅 /晶硅异质结为基 本结构的太阳能电池。 异质结太阳能电池由于其具有高效、 工艺温度低, 光生衰退效 应不明显等优点成为当前太阳能电池领域非常重要的一项技术。 如图 1所示, 在图 1中给出了一种异质结太阳能电池的结构, 以 n型异质结太阳 能电池为例, 其包括 n型衬底 (N-c-Si)lO' , 在 n型衬底 10'正面和背面分别镀有氢化本 证非晶硅 (a-Si:H(i)) 20', 在 n型衬底 10'正面的氢化本证非晶硅 20'上形成 P型氢化 非晶硅 (a-Si:H(p)) 30', 在 n型衬底 10'背面的氢化本证非晶硅 20'上形成 n型氢化非 晶硅 (a-Si:H(n+p 40', 在 P型氢化非晶硅 30'和 n型氢化非晶硅 40'的外侧通过 PVD 的方法镀上透明导电薄膜 (TCO) 50', 然后在透明导电薄膜 50'的外侧形成栅极 60'。 其中形成位置 "外侧"是指材料层远离 n型衬底的一侧。 在同质结太阳能电池中由于不存在非晶硅材料, 其在制备栅极的过程中, 通常是 通过在高温环境下烧结浆料, 通过玻璃粉的作用, 使金属栅极材料穿透减反射膜 (通 常减反射膜为 SiNx膜)、 腐蚀硅形成接触区进而形成栅极。 而在上述图 1所给出的异 质结太阳能电池中, 由于发射极 (图 1中 p型氢化非晶硅) 采用的是非晶硅材料, 这 种非晶硅材料具有较高的方阻, 使得其中载流子不能直接导出,而是需要使用 TCO来 引出。 为了保证非晶硅材料中载流子的顺利导出, 在异质结太阳能电池中需要在发射 极上方设置 TCO,再将栅极设置在 TCO上。如图 1所示此时,栅极 60'坐落在 TCO50' 上, 形成直接的接触, 其中接触面积就是栅极 60'底部与 TCO50'接触的界面部分。 鉴于上述原因, 在异质结太阳能电池中, 栅极需要设置在 TCO材料层上。这就使 得栅极和 TCO之间产生接触电阻,这部分接触电阻会对填充因子产生很大影响,进而 降低异质结电池的光电转化效率。降低栅极和 TCO的接触电阻对提升异质结电池的转 化效率至关重要。 为了降低栅极和 TCO的接触电阻, 有研究指出可以通过降低栅极 /TCO的接触势 垒和改善浆料的接触特性来降低接触电阻。如改善 TCO的功函数,增强浆料的导电性, 使用高固含量的浆料; 另外优化浆料中金属颗粒的尺寸, 优化浆料中的玻璃粉, 粘合 剂等以增加浆料和 TCO接触的金属颗粒数量等方法来改善栅极 /TCO接触电阻。 上述方法随着技术的进步已经发展到一定的程度, 而且限于浆料本身的发展, 其 改善空间主要依赖于浆料供应商, 从电池研究的角度无法再进一步深入。 发明内容 本发明旨在提供一种异质结太阳能电池及其制备方法, 以提高异质结太阳能电池 的光电转化效率。 为了实现上述目的, 根据本发明的一个方面, 提供了一种异质结太阳能电池, 包 括 TCO, 以及形成在 TCO上的栅极, 栅极部分延伸进入 TCO中。 进一步地, 上述异质结太阳能电池中栅极具有一端宽一端窄的结构, 栅极的宽端 延伸进入 TCO中。 进一步地, 上述异质结太阳能电池中栅极呈梯形结构。 进一步地, 上述异质结太阳能电池中栅极中延伸进入 TC0 中的第一部分与位于 TC0外部的第二部分的高度比为 1/1000〜1/100。 进一步地,上述异质结太阳能电池中栅极中第一部分的高度与 TC0的厚度之间的 比值为 0.1〜0.9。 进一步地, 上述异质结太阳能电池中异质结太阳能电池包括衬底, TC0设置在衬 底的正面和 /或背面, 栅极位于 TC0远离衬底的一侧。 同时, 根据本发明的另一方面, 提供了一种异质结太阳能电池的制备方法, 包括: 提供衬底; 在衬底上方形成 TC0; 以及在 TC0上形成栅极, 在 TC0上形成栅极的步 骤中, 栅极部分延伸进入 TC0中。 进一步地, 上述制备方法中在 TC0上形成栅极的步骤包括: 在 TC0上刻蚀形成 凹槽; 在凹槽中形成栅极, 以使栅极部分延伸进入 TC0中。 进一步地, 上述制备方法中 TC0包括第一 TC0和第二 TC0, 在衬底上方形成 TC0, 以及在 TC0上形成的栅极的步骤包括: 在衬底上形成第一 TC0; 在第一 TC0 上形成栅极; 以及在第一 TC0上, 围绕栅极形成第二 TC0, 以使栅极部分延伸进入 TC0中。 进一步地, 上述制备方法中 TC0形成在衬底的正面和 /或背面上方, 栅极形成在
TC0远离衬底的一侧上, 并朝向衬底的方向部分延伸进入 TC0中。 本发明的有益效果: 本发明中异质结太阳能电池及其制备方法, 通过将栅极部分 延伸进入 TCO的内部, 增加栅极和 TCO的接触面积, 减小了接触电阻; 同时, 通过 栅极与 TCO之间的侧向接触在一定程度上改善了载流子输运,进而提高了太阳能电池 的填充因子, 提升电池的能量转化效率。 附图说明 构成本申请的一部分的说明书附图用来提供对本发明的进一步理解, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1示出了现有技术中异质结太阳能电池的结构示意图; 图 2示出了根据本发明实施例的异质结太阳能电池的结构示意图; 图 3示出了根据本发明实施例的异质结太阳能电池制备方法的流程示意图; 图 4a 示出了根据本发明实施例中的异质结太阳能电池的制备方法中在衬底正面 的非晶掺杂层和第一 TCO后基体的结构示意图; 图 4b示出了在图 4a的基础上在第一 TCO上形成栅极后基体的结构示意图;以及 图 4c示出了在图 4b的基础上在第一 TCO上, 围绕栅极形成第二 TCO后基体的 结构示意图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 为了降低如背景技术部分所提及的栅极和 TCO的接触电阻,以提高太阳能电池的 能量转化效率,本发明的发明人提供了一种新型异质结太阳能电池结构,如图 2所示, 在一种实施方式中, 这种异质结太阳能电池结构, 包括 TCO50, 以及形成在 TCO50 上的栅极 60, 其中, 栅极 60至少部分延伸进入 TCO50中。 本发明所提供的上述方案是对异质结太阳能电池结构中 TCO50和栅极 60的相对 结构进行的一种改进。 本领域技术人员能够将这种 TCO50和栅极 60的相对结构合理 地运用到异质结太阳能电池结构中。 在一种常见的 n型异质结太阳能电池结构中, 包括 n型衬底 (N-c-Si)10, 在 n型衬 底 10 正面和背面分别镀有起到良好地钝化效果, 调高少子寿命的氢化本证非晶硅 (a-Si:H(i)) 20, 在 n型衬底 10正面的氢化本证非晶硅 20上形成 P型氢化非晶硅 (a-Si:H(p)) 30, 在 n型衬底 10背面的氢化本证非晶硅 20上形成 n型氢化非晶硅 (a-Si:H(n+)) 40, 在 P型氢化非晶硅 30和 n型氢化非晶硅 40的外侧通过 PVD的方 法镀上透明导电薄膜 (TCO) 50, 然后在透明导电薄膜 50的远离衬底 10的一侧形成 栅极 60。 在本发明中, 位于该异质结太阳能电池正面和 /或背面的栅极 60至少部分延 伸进入 TCO50中, 以形成本发明所保护的技术方案。 同样的, 一种常见的 P型异质结太阳能电池与上述 n型异质结太阳能电池结构相 同, 仅是 P型氢化非晶硅 (a-Si:H(p)) 30变为 n型氢化非晶硅 (a-Si:H(n)), n型氢化 非晶硅 (a-Si:H(n+)) 40变为 p型氢化非晶硅 (a-Si:H(p+))。 在上述异质结太阳能电池结构中非晶掺杂层 30的材料包括但不限于非晶硅,非晶 碳化硅, 非晶氢化硅, 微晶硅, 微晶碳化硅, 以及能实现掺杂的金属化合物材料, 如 碲化镉等, 其优选为氢化非晶硅。 本发明所提供的异质结太阳能电池通过将栅极部分延伸进入 TCO的内部,增加栅 极和 TCO的接触面积, 减小了接触电阻; 同时, 通过栅极与 TCO之间的侧向接触在 一定程度上改善了载流子输运, 进而提高了太阳能电池的填充因子, 提升电池的能量 转化效率。 在上述异质结太阳能电池中, 栅极 60的结构不限于为方形, 优选地, 该栅极 60 具有一端宽一端窄的结构, 且将栅极 60的宽端延伸进入 TCO中。将栅极 60设置为这 种一端宽一端窄的结构, 有利于在保持栅极 60 体积不变的情况下, 增加栅极 60 与 TCO50的接触面, 进而增加栅极 60和 TCO50的接触面积, 减小了接触电阻。 更为优 选地, 该栅极 60具有梯形结构。在栅极 60延伸进入 TCO50中的第一部分的高度相同 的情况下, 相对于具有方形结构的栅极 60, 将栅极 60设置为梯形结构, 能够明显增 加栅极 60与 TCO的接触面, 进而增加栅极和 TCO的接触面积, 减小了接触电阻, 进 而提高太阳能电池的能量转化效率。 在上述异质结太阳能电池中, 将栅极 60延伸进入 TCO50, 对其延伸部分的高度 并没有强制性的规定, 只要保证栅极 60与非晶掺杂层之间存在 TCO就可以, 优选栅 极 60中延伸进入 TCO中的第一部分与位于 TCO外部的第二部分的高度比为 1/1000〜 1/100。 将两者比例设定在该范围内能够有利于提高载流子的收集效率。 在上述异质结太阳能电池中, 将栅极 60向 TCO50中延伸, 对其延伸部分的高度 与 TCO的厚度之间的比值也没有特定的要求, 只要保证栅极 60与非晶掺杂层之间存 在 TCO就可以,优选栅极 60中第一部分的高度与 TCO的厚度之间的比值为 0.1〜0.9。 将两者比值设定在该范围内有利于改善 FF。 本发明所提供的上述异质结太阳能电池的结构, 本领域技术人员有能力制备出与 上述异质结太阳能电池结构相同的异质结太阳能电池。 为了简化制备流程, 在本发明 中给出了一种优选的异质结太阳能电池的制备方法,如图 3所示,其包括提供衬底 10, 在衬底 10上形成 TCO50; 以及在 TCO50上形成栅极的步骤, 其中, 在 TCO50上形 成栅极 60的步骤中, 栅极 60部分延伸进入 TCO50中。 本申请所提供的方法是在现有的异质结太阳能电池的制备方法的基础上为了适应 栅极 60部分延伸进入 TCO中的结构所提出的新方法。 本领域技术人员在本申请的教 导下, 有能力合理地将本申请所提供的方法应用到相应的异质结太阳能电池的制备方 法。 在一种常见的 n型异质结太阳能电池的制备方法中, 包括以下步骤: 提供 n型衬 底 10,在 n型衬底 10正面和背面分别镀设氢化本证非晶硅 20,在 n型衬底 10正面的 氢化本证非晶硅 20上形成 P型氢化非晶硅 30,在 n型衬底 10'背面的氢化本证非晶硅 20上形成 n型氢化非晶硅 40,在 P型氢化非晶硅 30和 n型氢化非晶硅 40的外侧镀上 透明导电薄膜 (TCO) 50, 然后在 TCO50的远离衬底 10的一侧形成栅极 60。 本申请 所提供的方法在上述制备方法的基础上,对形成位于该异质结太阳能电池正面和 /或背 面的透明导电薄膜 (TCO) 50以及形成栅极 60的步骤进行了改进, 以使得栅极 60部 分延伸进入 TCO50中, 以形成本发明所保护的技术方案。 在上述异质结太阳能电池的制备方法中, 优选地, 在 TCO50上形成栅极 60的步 骤包括: 在 TCO50上刻蚀形成凹槽; 在凹槽中形成栅极 60, 以使栅极 60部分延伸进 入 TCO50中。在这种方法中通过简单地在 TCO50上设置凹槽即可实现将栅极 60部分 延伸进入 TCO50中的目的, 操作步骤简单, 适用, 适于大规模生产。 其中刻蚀凹槽的 方法可以采用干法刻蚀、湿法刻蚀或者干湿法混合刻蚀,形成 TCO50步骤可以通过物 理气相沉积法(PVD)、化学气相沉积法(CVD)以及等离子化学气相沉积法(PECVD ) 等方式沉积方法。 形成栅极 60的步骤可以通过丝网印刷, 模板印刷, 电镀, 喷墨印刷 等方法进行成型。 在一种具体的实施方式中, 在上述异质结太阳能电池的制备方法中, 优选地, 如 图 4a至 4c所给出的异质结太阳能电池的制备方法中基体的变化图所示, TCO50包括 第一 TCO层 51和第二 TC052,在衬底 10上方形成 TCO50, 以及在 TCO50上形成的 栅极 60的步骤包括: 在衬底 10上方形成第一 TC051 ; 在第一 TC051上形成栅极 60; 以在第一 TC051上, 围绕栅极 60形成上表面低于栅极 60上表面的第二 TC052, 以 使栅极 60部分延伸进入 TCO50中。 在这种方法中通过将 TCO50分为第一 TC051和 第二 TC052, 将第一 TC051和第二 TC052分先后步骤制备进而形成将栅极 60部分 延伸进入 TCO50中的目的。 这种方法步骤可控性更高, 且对栅极 60的制备没有特别 的要求, 能够更容易制作出一端宽一端窄的栅极结构。 其中第一 TCO和第二 TCO可 以采用相同的材料或者根据实际情况采用不同的材料。形成第一 TC051和第二 TC052 步骤均可以通过物理气相沉积法 (PVD)、 化学气相沉积法 (CVD) 以及等离子化学 气相沉积法 (PECVD) 等方式沉积方法。 本发明中异质结太阳能电池及其制备方法具有如下优势:
( 1 )通过将栅极部分延伸进入 TCO的内部, 增加栅极和 TCO的接触面积, 减小 了接触电阻;
(2) 通过栅极与 TCO之间的侧向接触在一定程度上改善了载流子输运, 进而提 高了太阳能电池的填充因子, 提升电池的能量转化效率。 (3 ) 制备方法简单, 容易操作, 适于大规模生产。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种异质结太阳能电池, 包括 TC0 ( 50), 以及形成在所述 TC0 ( 50) 上的栅 极 (60), 其特征在于, 所述栅极 (60) 部分延伸进入所述 TCO ( 50) 中。
2. 根据权利要求 1所述的异质结太阳能电池, 其特征在于, 所述栅极 (60) 具有 一端宽一端窄的结构, 所述栅极 (60) 的宽端延伸进入所述 TCO ( 50) 中。
3. 根据权利要求 2所述的异质结太阳能电池, 其特征在于, 所述栅极 (60) 呈梯 形结构。
4. 根据权利要求 1至 3中任一项所述的异质结太阳能电池, 其特征在于, 所述栅 极(60) 中延伸进入所述 TCO ( 50) 中的第一部分与位于所述 TCO ( 50)外部 的第二部分的高度比为 1/1000〜1/100。
5. 根据权利要求 4所述的异质结太阳能电池, 其特征在于, 所述栅极 (60) 中所 述第一部分的高度与所述 TCO ( 50) 的厚度之间的比值为 0.1〜0.9。
6. 根据权利要求 1至 5中任一项所述的异质结太阳能电池, 其特征在于, 所述异 质结太阳能电池包括衬底 (10), 所述 TCO ( 50) 设置在所述衬底 (10) 的正 面和 /或背面, 所述栅极位于所述 TCO ( 50) 远离所述衬底 (10) 的一侧。
7. 一种异质结太阳能电池的制备方法, 包括:
提供衬底 (10);
在所述衬底上方形成 TCO ( 50); 以及
在所述 TCO ( 50) 上形成栅极 (60),
其特征在于,在所述 TCO ( 50)上形成栅极(60)的步骤中,所述栅极(60) 部分延伸进入所述 TCO ( 50) 中。
8. 根据权利要求 7所述的制备方法, 其特征在于, 在所述 TCO ( 50)上形成栅极
(60) 的步骤包括:
在所述 TCO ( 50) 上刻蚀形成凹槽;
在所述凹槽中形成所述栅极(60), 以使所述栅极(60)部分延伸进入所述 TCO ( 50) 中。
9. 根据权利要求 7所述的制备方法, 其特征在于, 所述 TCO (50)包括第一 TCO
(51) 和第二 TCO (52), 在所述衬底上方形成 TCO (50), 以及在所述 TCO (50) 上形成的栅极 (60) 的步骤包括:
在所述衬底上形成所述第一 TCO (51);
在所述第一 TCO (51) 上形成所述栅极 (60); 以及
在所述第一 TCO (51)上, 围绕所述栅极(60)形成所述第二 TCO (52), 以使所述栅极 (60) 部分延伸进入所述 TCO (50) 中。
10. 根据权利要求 7至 9中任一项所述的制备方法, 其特征在于, 所述 TCO (50) 形成在所述衬底的正面和 /或背面上方, 所述栅极形成在所述 TCO (50)远离所 述衬底 (10) 的一侧上, 并朝向所述衬底的方向部分延伸进入所述 TCO (50) 中。
PCT/CN2014/079208 2013-06-08 2014-06-05 异质结太阳能电池及其制备方法 WO2014194833A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310228162.6 2013-06-08
CN201310228162.6A CN103346172B (zh) 2013-06-08 2013-06-08 异质结太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2014194833A1 true WO2014194833A1 (zh) 2014-12-11

Family

ID=49280957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079208 WO2014194833A1 (zh) 2013-06-08 2014-06-05 异质结太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN103346172B (zh)
WO (1) WO2014194833A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346172B (zh) * 2013-06-08 2016-03-02 英利集团有限公司 异质结太阳能电池及其制备方法
CN103531647B (zh) * 2013-10-25 2015-11-25 英利集团有限公司 异质结太阳能电池及其制备方法
CN103730520B (zh) * 2013-12-23 2017-03-01 友达光电股份有限公司 太阳能电池
CN111129179A (zh) * 2019-12-31 2020-05-08 晋能光伏技术有限责任公司 一种异质结电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290457A (zh) * 2011-08-31 2011-12-21 厦门大学 一种场效应太阳能电池
CN102812558A (zh) * 2010-02-09 2012-12-05 陶氏环球技术有限责任公司 具有改善的屏障膜粘附的抗湿光伏器件
CN103346172A (zh) * 2013-06-08 2013-10-09 英利集团有限公司 异质结太阳能电池及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433784B1 (en) * 1998-02-26 2002-08-13 Learn2 Corporation System and method for automatic animation generation
CN102064216A (zh) * 2010-11-22 2011-05-18 晶澳(扬州)太阳能科技有限公司 一种新型晶体硅太阳电池及其制作方法
CN102169909A (zh) * 2011-03-04 2011-08-31 中山大学 一种具有低串联电阻的晶体硅太阳电池及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102812558A (zh) * 2010-02-09 2012-12-05 陶氏环球技术有限责任公司 具有改善的屏障膜粘附的抗湿光伏器件
CN102290457A (zh) * 2011-08-31 2011-12-21 厦门大学 一种场效应太阳能电池
CN103346172A (zh) * 2013-06-08 2013-10-09 英利集团有限公司 异质结太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN103346172A (zh) 2013-10-09
CN103346172B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN110071182B (zh) 一种多层隧道结的钝化太阳能电池及制备方法
CN110707159A (zh) 一种正背面全面积接触钝化的p型晶硅太阳电池及其制备方法
CN103996746B (zh) 一种可量产的perl晶体硅太阳电池的制作方法
EP2387079A2 (en) Solar cell with metal grid
JP5424800B2 (ja) デュアルドーピングを備えたヘテロ接合光電池及びその製造方法
CN102263157A (zh) 具有氧化物隧穿结的太阳能电池
EP1938391A2 (en) Nanostructure and photovoltaic cell implementing same
CN105185866A (zh) 一种高效钝化接触晶体硅太阳电池的制备方法
CN202363468U (zh) 点接触背发射极异质结太阳电池
CN107275432B (zh) 一种晶体硅太阳能电池及其制备方法
CN102184975A (zh) 一种能增加光电转换效率的薄膜太阳能电池及其制造方法
CN103985778B (zh) 具有选择性发射极的异质结太阳能电池及其制备方法
CN102938429A (zh) 一种减反射异质结太阳能电池及其制备方法
WO2014194833A1 (zh) 异质结太阳能电池及其制备方法
CN103646983A (zh) 背发射极对称异质结太阳电池及其制备方法
CN103219413A (zh) 一种石墨烯径向异质结太阳能电池及其制备方法
CN103730532A (zh) 掺氢晶化硅钝化的异质结太阳能电池
CN204315587U (zh) 基于GaN纳米线阵列的太阳能电池
CN104134706B (zh) 一种石墨烯硅太阳电池及其制作方法
CN203871345U (zh) 掺氢晶化硅钝化的异质结太阳能电池
CN103227247A (zh) 一种高效晶体硅异质结太阳能电池的制备方法
CN205564764U (zh) 一种背面钝化接触电池结构
CN204315603U (zh) 一种背面抛光晶硅太阳能电池
CN102738289A (zh) 异质结太阳能电池及其制作方法
US20180240920A1 (en) Solar cell, method for manufacturing the same, and electrical equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14808137

Country of ref document: EP

Kind code of ref document: A1