WO2024055489A1 - 电源电路、电源电压的提供方法及存储器 - Google Patents

电源电路、电源电压的提供方法及存储器 Download PDF

Info

Publication number
WO2024055489A1
WO2024055489A1 PCT/CN2023/070525 CN2023070525W WO2024055489A1 WO 2024055489 A1 WO2024055489 A1 WO 2024055489A1 CN 2023070525 W CN2023070525 W CN 2023070525W WO 2024055489 A1 WO2024055489 A1 WO 2024055489A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
temperature
temperature coefficient
power supply
positive temperature
Prior art date
Application number
PCT/CN2023/070525
Other languages
English (en)
French (fr)
Inventor
张鑫鑫
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2024055489A1 publication Critical patent/WO2024055489A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation

Definitions

  • the present disclosure relates to the field of semiconductor circuit design, and in particular to a power supply circuit, a method for providing a power supply voltage, and a memory.
  • the output voltage of the power supply circuit is usually set to be constant.
  • a separate detection circuit is designed for detection and a control signal is output based on the detection results. This approach results in a generally complex circuit structure and high power consumption.
  • An embodiment of the present disclosure provides a power supply circuit, including: a temperature sensing module configured to generate a positive temperature coefficient voltage based on a reference signal, and the voltage value of the positive temperature coefficient voltage is positively correlated with the temperature; a judgment module, Connect the temperature sensing module and be configured to generate a driving signal based on the comparison result of the temperature reference voltage and the positive temperature coefficient voltage.
  • the voltage value of the temperature reference voltage is the same as the voltage value of the positive temperature coefficient voltage at the preset temperature; the power supply module is connected
  • the judgment module and the temperature sensing module are configured to judge according to the driving signal to provide the first internal power supply voltage or the temperature control voltage, and the voltage value of the temperature control voltage is the same as the voltage value of the positive temperature coefficient voltage.
  • the temperature sensing module includes: a sensing unit configured to generate a positive temperature coefficient voltage based on the reference signal; a generating unit connected to the judgment module and the sensing unit, driven based on the driving signal, configured to generate a positive temperature coefficient voltage based on the reference signal The voltage generates the temperature control voltage.
  • the positive temperature coefficient voltage includes: a first positive temperature coefficient voltage and a second positive temperature coefficient voltage, and the voltage value of the first positive temperature coefficient voltage is greater than the voltage value of the second positive temperature coefficient voltage; the judgment module is configured to, based on the temperature The comparison result between the reference voltage and the second positive temperature coefficient voltage generates a driving signal, and the voltage value of the temperature reference voltage is the same as the voltage value of the second positive temperature coefficient voltage at the preset temperature.
  • the sensing unit includes: a first amplifier, the negative input terminal is used to receive the reference signal; a first PMOS tube, the gate is connected to the output terminal of the first amplifier, the source receives the second internal power supply voltage, and the drain serves as the third An output terminal outputs a first positive temperature coefficient voltage, and the voltage value of the second internal power supply voltage is greater than the voltage value of the first internal power supply voltage; the first voltage dividing resistor has a first end connected to the first output end and a second end serving as the second The output terminal outputs a second positive temperature coefficient voltage; the second voltage dividing resistor has a first terminal connected to the second output terminal and a second terminal connected to the positive input terminal of the first amplifier; the temperature control subcircuit is connected to the second voltage dividing resistor between the second end and the ground end, used to adjust the current flowing through the temperature control subcircuit according to changes in temperature.
  • the sensing unit also includes: a first switching transistor, with a gate used to receive an enable signal, a source receiving a second internal power supply voltage, and a drain connected to the output end of the first amplifier; a second switching transistor, with a gate used to receive To receive the enable signal, it is connected in series between the temperature control subcircuit and the ground terminal.
  • the temperature control subcircuit includes: at least one second PMOS transistor, the source of each second PMOS transistor is connected to the second end of the second voltage dividing resistor, the drain and the gate are short-circuited, and coupled to the ground terminal.
  • the temperature control subcircuit also includes: a gating circuit provided between each second PMOS tube and the second end of the second voltage dividing resistor; the gating circuit is turned on based on different selection signals.
  • channel width to length ratios of different second PMOS transistors are different from each other.
  • the judgment module includes: a comparator, one input terminal is used to receive the temperature reference voltage, the other input terminal is used to receive the positive temperature coefficient voltage, and the output terminal is used to output the driving signal.
  • the generation unit includes: a second amplifier, the negative input terminal is used to receive a positive temperature coefficient voltage; a third PMOS tube, the gate is connected to the output terminal of the second amplifier, the source receives the second internal power supply voltage, and the drain is connected The non-inverting input terminal of the second amplifier; the drain of the third PMOS tube is also connected to the first terminal of the load resistor for outputting the temperature control voltage; the second terminal of the load resistor is connected to the ground terminal.
  • the generation unit also includes: a third switching transistor, with a gate used to receive a driving signal, a source receiving a second internal power supply voltage, and a drain connected to the output terminal of the second amplifier; a fourth switching transistor connected in series with the load resistor. The second terminal and the ground terminal, and the gate receives the driving signal.
  • the preset temperature is 50°C.
  • Another embodiment of the present disclosure also provides a method for providing a power supply voltage, which is applied to the power supply circuit provided in the above embodiment, including: obtaining a positive temperature coefficient voltage; based on the comparison result of the positive temperature coefficient voltage and the temperature reference voltage, determining whether to provide In the power supply voltage mode, the voltage value of the temperature reference voltage is the same as the voltage value of the positive temperature coefficient voltage at the preset temperature; among them, if the positive temperature coefficient voltage is greater than the temperature reference voltage, the temperature control voltage is generated based on the positive temperature coefficient voltage, and based on The temperature control voltage provides a power supply voltage, and if the positive temperature coefficient voltage is less than or equal to the temperature reference voltage, the power supply voltage is provided based on the first internal power supply voltage.
  • the method of providing the power supply voltage also includes: obtaining the first positive temperature coefficient voltage and the second positive temperature coefficient voltage based on the positive temperature coefficient voltage; and determining the method of providing the power supply voltage based on the comparison result of the positive temperature coefficient voltage and the temperature reference voltage, Including: based on the comparison result of the second positive temperature coefficient voltage and the temperature reference voltage, determining the method of providing the power supply voltage, the voltage value of the temperature reference voltage is the same as the voltage value of the second positive temperature coefficient voltage at the preset temperature; wherein, if the first If the second positive temperature coefficient voltage is greater than the temperature reference voltage, the temperature control voltage is generated based on the first positive temperature coefficient voltage, and the power supply voltage is provided based on the temperature control voltage. If the second positive temperature coefficient voltage is less than or equal to the temperature reference voltage, the temperature control voltage is generated based on the first positive temperature coefficient voltage.
  • the internal supply voltage provides the supply voltage.
  • Another embodiment of the present disclosure also provides a memory, including the power circuit provided in the above embodiment.
  • Figure 1 is a schematic diagram of the curve relationship between temperature-substrate voltage-leakage of PMOS components
  • Figure 2 is a schematic structural diagram of a power circuit provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a temperature sensing module provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic diagram of the temperature-threshold voltage curve relationship of PMOS with different channel width to length ratios
  • Figure 8 is a schematic structural diagram of a judgment module provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic structural diagram of a generation unit provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a method for providing a power supply voltage according to another embodiment of the present disclosure.
  • the PMOS components in the chip are set in the N-type substrate, and the leakage is mainly through channel leakage and junction leakage.
  • the channel leakage and junction leakage of PMOS components are related to temperature, and within a certain temperature range, the leakage of PMOS components is small, but when it exceeds a certain temperature, the leakage increases with the temperature.
  • the leakage increases more obviously; in addition, the leakage can be reduced by increasing the substrate potential of the PMOS element. As the substrate potential increases, the leakage at high temperature decreases.
  • An embodiment of the present disclosure provides a power supply circuit that can dynamically adjust the voltage generated with the temperature.
  • the power supply circuit can provide a fixed voltage.
  • the power circuit can provide a fixed voltage.
  • the power circuit can be used to provide voltage to the substrate of the PMOS element, thereby reducing channel leakage and junction leakage of the corresponding PMOS element, thereby improving PMOS element performance.
  • Figure 1 is a schematic diagram of the curve relationship between the temperature of the PMOS element - substrate voltage - leakage size.
  • Figure 2 is a schematic structural diagram of the power supply circuit provided in this embodiment.
  • Figures 3 to 5 are several temperature sensing modules provided in this embodiment.
  • Figure 6 is a schematic structural diagram of the temperature-threshold voltage curve relationship of PMOS elements with different aspect ratios.
  • Figure 7 is a schematic structural diagram of the judgment module provided in this embodiment.
  • Figure 8 is a schematic structural diagram of the voltage generation module provided in this embodiment. Structural diagram, the power supply circuit provided in this embodiment is described in detail below in conjunction with the accompanying drawings, as follows:
  • the power circuit includes:
  • the temperature sensing module 101 is configured to generate a positive temperature coefficient voltage based on the reference signal, and the voltage value of the positive temperature coefficient voltage is positively correlated with the temperature.
  • the judgment module 102 is connected to the temperature sensing module 101 and is configured to generate a driving signal based on a comparison result between the temperature reference voltage and the positive temperature coefficient voltage, where the voltage value of the temperature reference voltage is the same as the voltage value of the positive temperature coefficient voltage at the preset temperature.
  • the temperature reference voltage is generated based on the bandgap voltage of the memory. Since the bandgap voltage is not affected by the memory temperature, the temperature reference voltage remains unchanged.
  • the preset temperature is used to represent the threshold value at which leakage increases more obviously and less obviously as the temperature rises, that is, when the actual temperature of the MOS element is higher than At the preset temperature, the increase in leakage is more obvious.
  • the preset temperature of the MOS component corresponding to Figure 1 is 50°C; that is, at In this embodiment, the preset temperature is set to 50°C as an example.
  • the value of the preset temperature can be reasonably set based on the actual temperature-leakage curve of the MOS component.
  • the power supply module 103, the connection judgment module 102 and the temperature sensing module 101 are configured to provide the first internal power supply voltage or the temperature control voltage according to the driving signal judgment, the voltage value of the temperature control voltage and the voltage of the positive temperature coefficient voltage. The values are the same.
  • the driving signal generated by the judgment module 102 is used to instruct the power supply module 103 to provide a temperature control voltage; if the temperature reference voltage is greater than the positive temperature coefficient voltage, the driving signal generated by the judgment module 102 is used.
  • the power supply module 103 is instructed to provide the first internal power supply voltage.
  • the “first internal power supply voltage” is provided by the internal power supply voltage Vcc in the memory.
  • the positive temperature coefficient voltage is greater than the temperature reference voltage, that is, the current temperature of the PMOS component is higher than the preset temperature. Based on the content of Figure 1, it can be seen that as the temperature increases at this time, the leakage of the PMOS component increases significantly.
  • the power supply voltage is provided to the substrate of the PMOS element based on the temperature control voltage, and the voltage value of the temperature control voltage is the same as the voltage value of the positive temperature coefficient voltage. The voltage value of the positive temperature coefficient voltage increases with the increase of temperature.
  • the substrate voltage of the PMOS element is dynamically adjusted with the temperature, thereby reducing the channel leakage and junction leakage of the PMOS element to improve the performance of the PMOS element; if the temperature reference voltage is greater than the positive temperature coefficient voltage, that is, the current temperature of the PMOS element is lower than the preset Temperature, based on the contents of Figure 1, it can be seen that as the temperature increases at this time, the leakage of the PMOS element does not change significantly, and the power supply voltage is directly provided to the substrate of the PMOS element based on the first internal power supply voltage, which does not affect the normal operation of the PMOS element, and Reduce the power consumption of the power circuit.
  • the temperature sensing module 101 includes: a sensing unit 104 configured to generate a positive temperature coefficient voltage based on a reference signal; a generating unit 105.
  • the connection determination module 102 and the sensing unit 104 are driven based on the driving signal and are configured to generate a temperature control voltage based on the positive temperature coefficient voltage.
  • the temperature reference voltage of the judgment module 102 is generated based on the band gap voltage, and the band gap voltage of a general memory is 1.2V, and the voltage value of the positive temperature coefficient voltage generated by the temperature sensing module 101 may be greater than 1.2V.
  • the positive temperature coefficient voltage includes: a first positive temperature coefficient voltage and a second positive temperature coefficient voltage, and the voltage value of the first positive temperature coefficient voltage is greater than the voltage of the second positive temperature coefficient voltage. value.
  • the voltage value of the positive temperature coefficient voltage is equal to the voltage value of the first positive temperature coefficient voltage, and the second positive temperature coefficient voltage is obtained based on the voltage division of the first positive temperature coefficient voltage; at this time, the judgment module 102 is configured to, based on the temperature
  • the comparison structure between the reference voltage and the second positive temperature coefficient voltage generates a driving signal.
  • the voltage value of the temperature reference voltage is the same as the voltage value of the second positive temperature coefficient voltage at the preset temperature.
  • the first positive temperature coefficient voltage is divided by design.
  • the second positive temperature coefficient voltage and then compare the second positive temperature coefficient voltage with the temperature reference voltage to determine whether the current temperature is higher than the preset temperature, and the resistance of the voltage dividing resistor can be adjusted to make the second positive temperature coefficient
  • the voltage value of the voltage is less than 1.2V, thereby simplifying the design of the judgment module 102 .
  • this embodiment provides several implementation methods, specifically as follows:
  • the sensing unit 104 includes:
  • the first amplifier 201, negative input terminal - is used to receive the reference signal.
  • the first PMOS transistor QP1 has a gate connected to the output terminal of the first amplifier 201, a source receiving the second internal power supply voltage Vdd, and a drain serving as the first output terminal to output the first positive temperature coefficient voltage.
  • the “second internal power supply voltage” is provided by the internal power supply voltage Vdd in the memory, and the voltage value of the internal power supply voltage Vdd in the memory is greater than the internal power supply voltage.
  • the voltage value of voltage Vcc is provided by the internal power supply voltage Vdd in the memory, and the voltage value of the internal power supply voltage Vdd in the memory is greater than the internal power supply voltage. The voltage value of voltage Vcc.
  • the first voltage dividing resistor Rf1 has a first terminal connected to the first output terminal and a second terminal serving as a second output terminal to output a second positive temperature coefficient voltage.
  • the first terminal of the second voltage dividing resistor Rf2 is connected to the second output terminal, and the second terminal is connected to the positive input terminal + of the first amplifier 201 .
  • the temperature control subcircuit 301 is connected between the second end of the second voltage dividing resistor Rf2 and the ground terminal GND, and is used to adjust the current flowing through the temperature control subcircuit 301 according to changes in temperature.
  • the temperature control subcircuit 301 includes at least one second PMOS tube.
  • the drain of each second PMOS tube is connected to the second end of the second voltage dividing resistor Rf2.
  • the drain and the gate are short-circuited, and the coupling is connected to the ground. GND.
  • the positive input voltage of the positive input terminal + at this time is:
  • Vfb first positive temperature coefficient voltage
  • Ignd output current of temperature control sub-circuit 301) * R1 + Vds (1)
  • the determination module 102 generates a driving signal based on a comparison result between the temperature reference voltage and the second positive temperature coefficient voltage, where the voltage value of the temperature reference voltage is the same as the voltage value of the second positive temperature coefficient voltage at the preset temperature.
  • the temperature sensing module 101 directly outputs a positive temperature coefficient voltage
  • the judgment module 102 generates a driving signal based on the comparison result of the temperature reference voltage and the positive temperature coefficient voltage, and the voltage of the temperature reference voltage is The value is the same as the voltage value of the positive temperature coefficient voltage at the preset temperature; that is, the sensing circuit 104 does not include the second voltage dividing resistor Rf2.
  • the positive input voltage of the positive input terminal + at this time is:
  • Vfb positive temperature coefficient voltage
  • Vbp_ref positive temperature coefficient voltage
  • the temperature control subcircuit 301 includes a plurality of second PMOS transistors.
  • the temperature control subcircuit 301 also includes: each second PMOS transistor and a second voltage divider.
  • a strobe circuit is disposed between the second ends of the resistor Rf2, and the strobe circuit is turned on based on different selection signals.
  • the gating circuit includes a gate connected in series between the second PMOS tube and the second end of the second voltage dividing resistor Rf2; in specific applications, the corresponding selectors can be turned on based on different selection signals. , or the same selector can be turned on based on different bits in a multi-bit selection signal to realize the selection of the temperature control transistor and the temperature control sub-transistor.
  • the threshold voltage Vth varies with the channel width to length ratio W/L. Specifically, to a certain extent, the smaller the channel width W, the greater the threshold voltage Vth of the PMOS tube; the smaller the channel length L, the smaller the threshold voltage Vth of the PMOS tube; if the channel width W and the channel length L To a certain extent, the threshold voltage Vth of the PMOS tube no longer changes with the change of the channel width-to-length ratio W/L.
  • Different second PMOS transistors are selected through the gating circuit to form a temperature control sub-circuit, thereby adjusting the extent to which the output current of the temperature control sub-circuit 301 changes with temperature based on the channel width-to-length ratio of the selected second PMOS transistor.
  • the channel width to length ratios between different second PMOS transistors are different from each other.
  • the sensing unit 104 also includes: a first switching transistor K1, the gate is used to receive the enable signal, the source receives the second internal power supply voltage, and the drain is connected to the third An output terminal of amplifier 201.
  • the gate of the second switching transistor K2 is used to receive the enable signal and is connected in series between the temperature control sub-circuit 301 and the ground terminal GND.
  • the first switching transistor K1 and the second switching transistor K2 drive the first amplifier 201 based on the enable signal, so that the sensing unit 104 is only based on The enable signal is turned on to achieve flexibility in driving the temperature sensing module 101 and save energy consumption.
  • the first switching transistor K1 when the enable signal is high level, the first switching transistor K1 is turned off and the second switching transistor K2 is turned on. At this time, the temperature sensing module 101 starts to work; in addition, in some cases In this embodiment, the first switching transistor K1 and the second switching transistor K2 can also be controlled based on different enable signals. This embodiment does not limit the number of enable signals.
  • the judgment module 102 includes a comparator 203, one input terminal is used to receive the temperature reference voltage, and the other input terminal is used to receive the positive temperature coefficient voltage, The output terminal is used to output drive signals.
  • the positive phase input terminal + of the judgment module 102 receives a positive temperature coefficient voltage
  • the negative phase input terminal - receives a temperature reference voltage
  • the voltage value of the temperature reference voltage is the same as the voltage value of the positive temperature coefficient voltage at the preset temperature
  • the positive input port of the judgment module 102 receives a temperature reference voltage, and the negative input port receives a positive temperature coefficient voltage, when the positive temperature coefficient voltage is greater than the temperature reference voltage, that is, the current temperature of the memory is greater than the preset temperature, the driving signal generated at this time is low level; when the positive temperature coefficient voltage is less than the temperature reference voltage, that is, the current temperature of the memory is less than the preset temperature, the driving signal generated at this time is high level.
  • the above description of the comparator 203 is based on the positive temperature coefficient voltage as an example. Based on the foregoing discussion, it can be seen that the judgment module 102 can also compare based on the second positive temperature coefficient voltage and the temperature reference voltage to generate a driver. signal, at this time, the voltage value of the temperature reference voltage is the same as the voltage value of the second positive temperature coefficient voltage at the preset temperature. Based on the above description of the judgment module 102, the positive temperature coefficient voltage is replaced with the second positive temperature coefficient voltage, and The value of the temperature reference voltage can be adjusted accordingly, which will not be described in detail in this embodiment.
  • the generation unit 105 includes: a second amplifier 202, a negative input terminal - used to receive a positive temperature coefficient voltage; a third PMOS tube QP3, whose gate is connected to the second amplifier 202 The output terminal of voltage, the second end of the load resistor R2 is connected to the ground terminal GND.
  • the temperature control voltage generated by the generation unit 105 based on the positive temperature coefficient voltage has the same voltage value as the temperature control voltage.
  • the generating unit 105 generates the temperature control voltage based on the first positive temperature coefficient voltage.
  • the generation unit 105 further includes: a third switching transistor K3, with a gate for receiving the driving signal, a source for receiving the second internal power supply voltage, and a drain connected to the output end of the second amplifier 202; a fourth switch The transistor K4 is connected in series to the second terminal of the load resistor R2 and the ground terminal GND, and its gate receives the driving signal.
  • the third switching transistor K3 and the fourth switching transistor K4 drive the second amplifier 202 based on the driving signal, so that the generating unit 105 conducts the generating unit 105 based on the driving signal only. Through, the stability of the working sequence of the power circuit is achieved.
  • the generation unit 105 starts to work.
  • the positive temperature coefficient voltage is greater than the temperature reference voltage, or the second positive temperature coefficient voltage is greater than the temperature reference voltage.
  • the driving signal input to the generating unit 105 is high level, which can be achieved by adjusting the input voltages of the positive and negative input terminals of the comparator 203, or by connecting a comparator to the input terminal of the comparator 203.
  • the power circuit mentioned in this embodiment can be used to provide substrate voltage to the PMOS element.
  • the positive temperature coefficient voltage increases with the temperature to dynamically adjust the substrate voltage of the PMOS element with the temperature, thereby reducing the channel leakage and junction leakage of the PMOS element to improve the performance of the PMOS element; if the temperature reference voltage is greater than the positive Temperature coefficient voltage, that is, the current temperature of the PMOS element is lower than the preset temperature. Based on the content of Figure 1, it can be seen that as the temperature increases at this time, the leakage of the PMOS element does not change significantly, and is directly provided to the substrate of the PMOS element based on the first internal power supply voltage. The power supply voltage does not affect the normal operation of PMOS components and reduces the power consumption of the power circuit.
  • this disclosure specifically describes how to adjust the substrate voltage of the PMOS element based on temperature, thereby reducing the leakage of the PMOS element, based on the schematic diagram of the leakage of the PMOS element changing with temperature.
  • Those skilled in the art can, based on the content of this disclosure, Combined with the schematic diagram of the leakage of NMOS elements changing with temperature, a technical solution is derived on how to adjust the substrate voltage of NMOS based on temperature, thereby reducing the leakage of NMOS elements; however, whether it is to supply power to the substrate of PMOS elements or to NMOS elements,
  • the substrate is used for power supply, and the core power supply circuit and the power supply circuit of the present disclosure should all fall within the protection scope of the present disclosure.
  • Another embodiment of the present disclosure provides a method for providing a power supply voltage, which is applied to the power supply circuit provided in the above embodiment to dynamically adjust the power supply voltage with temperature.
  • FIG. 10 is a schematic flowchart of the method for providing the power supply voltage provided by this embodiment.
  • the method for providing the power supply voltage provided by this embodiment will be described in detail below with reference to the accompanying drawings, as follows:
  • the supply voltage method includes:
  • Step 401 Obtain the positive temperature coefficient voltage.
  • the positive temperature coefficient voltage is obtained based on the turned-on power circuit, where the voltage value of the positive temperature coefficient voltage is positively correlated with the temperature. Specifically, based on the example of FIG. 1 , it can be seen that the higher the temperature, the greater the voltage value of the positive temperature coefficient voltage, and the lower the temperature, the smaller the voltage value of the positive temperature coefficient voltage.
  • Step 402 Based on the comparison result of the positive temperature coefficient voltage and the temperature reference voltage, determine the method of providing the power supply voltage.
  • the voltage value of the temperature reference voltage is the same as the voltage value of the positive temperature coefficient voltage at the preset temperature.
  • the temperature control voltage is generated based on the positive temperature coefficient voltage, and the power supply voltage is provided based on the temperature control voltage. If the positive temperature coefficient voltage is less than or equal to the temperature reference voltage, the temperature control voltage is generated based on the first internal voltage. Supply voltage supplies the supply voltage.
  • the method of providing the power supply voltage further includes: step 502, obtaining a second positive temperature coefficient voltage based on the positive temperature coefficient voltage.
  • step 402 includes: based on the second positive temperature coefficient voltage and the temperature reference voltage. Compare the results and determine the method of supplying the supply voltage.
  • the voltage value of the temperature reference voltage is the same as the voltage value of the second positive temperature coefficient voltage at the preset temperature.
  • the temperature control voltage is generated based on the first positive temperature coefficient voltage, and the power supply voltage is provided based on the temperature control voltage. If the second positive temperature coefficient voltage is less than or equal to the temperature reference voltage , then the supply voltage is provided based on the first internal supply voltage.
  • the temperature reference voltage of the judgment module 102 is generated based on the band gap voltage, and the band gap voltage of a general memory is 1.2V, and the voltage value of the positive temperature coefficient voltage generated by the temperature sensing module 101 may be greater than 1.2V.
  • the positive temperature coefficient voltage includes: a first positive temperature coefficient voltage and a second positive temperature coefficient voltage, and the voltage value of the first positive temperature coefficient voltage is greater than the voltage of the second positive temperature coefficient voltage. value.
  • the voltage value of the positive temperature coefficient voltage is equal to the voltage value of the first positive temperature coefficient voltage, and the second positive temperature coefficient voltage is obtained based on the voltage division of the first positive temperature coefficient voltage; at this time, the judgment module 102 is configured to, based on the temperature
  • the comparison structure between the reference voltage and the second positive temperature coefficient voltage generates a driving signal.
  • the voltage value of the temperature reference voltage is the same as the voltage value of the second positive temperature coefficient voltage at the preset temperature.
  • the first positive temperature coefficient voltage is divided by design.
  • the second positive temperature coefficient voltage and then compare the second positive temperature coefficient voltage with the temperature reference voltage to determine whether the current temperature is higher than the preset temperature, and the resistance of the voltage dividing resistor can be adjusted to make the second positive temperature coefficient
  • the voltage value of the voltage is less than 1.2V, thereby simplifying the design of the judgment module 102 .
  • Another embodiment of the present disclosure provides a memory, including the power supply circuit provided in the above embodiment.
  • the power circuit provided in the above embodiment can provide a substrate voltage for a PMOS element to dynamically adjust the substrate voltage of the PMOS element with temperature, thereby Reduce the channel leakage and junction leakage of the corresponding PMOS components, thereby improving the performance of the PMOS components.
  • the positive temperature coefficient voltage is greater than the temperature reference voltage, that is, the current temperature of the PMOS element is higher than the preset temperature. At this time, as the temperature increases, the leakage of the PMOS element increases significantly. At this time, the leakage of the PMOS element increases based on the temperature control voltage.
  • the substrate of the PMOS element provides a power supply voltage, and the voltage value of the temperature control voltage is the same as the voltage value of the positive temperature coefficient voltage. The voltage value of the positive temperature coefficient voltage increases as the temperature increases to dynamically adjust the PMOS element with the temperature.
  • the substrate voltage thereby reducing the channel leakage and junction leakage of the PMOS element to improve the performance of the PMOS element; if the temperature reference voltage is greater than the positive temperature coefficient voltage, that is, the current temperature of the PMOS element is lower than the preset temperature.
  • the power supply voltage is directly provided to the substrate of the PMOS element based on the first internal power supply voltage, which does not affect the normal operation of the PMOS element and reduces the power consumption of the power circuit. .
  • the memory may be a memory unit or device based on a semiconductor device or component.
  • the memory device may be a volatile memory such as dynamic random access memory DRAM, synchronous dynamic random access memory SDRAM, double data rate synchronous dynamic random access memory DDR SDRAM, low power double data rate synchronous dynamic random access memory Access memory LPDDR SDRAM, graphics double data rate synchronous dynamic random access memory GDDR SDRAM, double data rate type dual synchronous dynamic random access memory DDR2 SDRAM, double data rate type triple synchronous dynamic random access memory DDR3 SDRAM, dual Double data rate fourth generation synchronous dynamic random access memory DDR4 SDRAM, thyristor random access memory TRAM, etc.; or it can be a non-volatile memory, such as phase change random access memory PRAM, magnetic random access memory MRAM, resistive random access memory Access memory RRAM, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

一种电源电路、电源电压的提供方法及存储器,涉及半导体电路设计领域,电源电路包括: 温度感测模块(101),被配置为基于参考信号生成正温度系数电压,正温度系数电压的电压值大小与温度的大小呈正相关;判断模块(102),连接温度感测模块(101),被配置为基于温度参考电压和正温度系数电压的比较结果生成驱动信号,温度参考电压的电压值与预设温度下正温度系数电压的电压值相同;电源提供模块(103),连接判断模块(102)和温度感测模块(101),被配置为根据驱动信号判断,以提供第一内部电源电压或温控电压,温控电压的电压值与正温度系数电压的电压值相同,以随着温度动态调节MOS的衬底电压。

Description

电源电路、电源电压的提供方法及存储器
交叉引用
本公开要求于2022年09月16日递交的名称为“电源电路、电源电压的提供方法及存储器”、申请号为202211133232.5的中国专利申请的优先权,其通过引用被全部并入本公开。
技术领域
本公开涉及半导体电路设计领域,特别涉及一种电源电路、电源电压的提供方法及存储器。
背景技术
在芯片设计中,通常将电源电路的输出电压设置为恒定。在需要根据温度对电源进行控制的场合,单独设计检测电路进行检测,并根据检测结果输出控制信号。这种方式导致电路结构通常较为复杂,而且功耗较大。
在芯片体积减小需求日益增加的今天,简化芯片中的电路设计,成为本领域急需解决的问题。
发明内容
本公开一实施例提供了一种电源电路,包括:温度感测模块,被配置为,基于参考信号生成正温度系数电压,正温度系数电压的电压值大小与温度的大小呈正相关;判断模块,连接温度感测模块,被配置为,基于温度参考电压和正温度系数电压的比较结果生成驱动信号,温度参考电压的电压值与预设温度下正温度系数电压的电压值相同;电源提供模块,连接判断模块和温度感测模块,被配置为,根据驱动信号判断,以提供第一内部电源电压或温控电压,温控电压的电压值与正温度系数电压的电压值相同。
另外,温度感测模块,包括:感测单元,被配置为,基于参考信号生成正温度系数电压;生成单元,连接判断模块和感测单元,基于驱动信号驱动,被配置为,基于正温度系数电压生成温控电压。
另外,正温度系数电压包括:第一正温度系数电压和第二正温度系数电压,第一正温度系数电压的电压值大于第二正温度系数电压的电压值;判断模块被配置为,基于温度参考电压和第二正温度系数电压的比较结果生成驱动信号,温度参考电压的电压值与预设温度下第二正温度系数电压的电压值相同。
另外,感测单元,包括:第一放大器,负相输入端用于接收参考信号;第一PMOS管,栅极连接第一放大器的输出端,源极接收第二内部电源电压,漏极作为第一输出端输出第一正温度系数电压,第二内部电源电压的电压值大于第一内部电源电压的电压值;第一分压电阻,第一端连接第一输出端,第二端作为第二输出端输出第二正温度系数电压;第二分压电阻,第一端连接第二输出端,第二端连接第一放大器的正相输入端;温控子电路,连接于第二分压电阻的第二端和接地端之间,用于根据温度的变化调节流经温控子电路的电流大小。
另外,感测单元,还包括:第一开关晶体管,栅极用于接收使能信号,源极接收第二内部电源电压,漏极连接第一放大器的输出端;第二开关晶体管,栅极用于接收使能信号,串联于温控子电路和接地端之间。
另外,温控子电路,包括:至少一个第二PMOS管,每一第二PMOS管的源极连接 第二分压电阻的第二端,漏极与栅极短接,且耦接接地端。另外,温控子电路,还包括:每一第二PMOS管与第二分压电阻的第二端之间设置有一选通电路;选通电路基于不同的选择信号导通。
另外,不同第二PMOS管之间的沟道宽长比互不相同。
另外,判断模块,包括:比较器,一输入端用于接收温度参考电压,另一输入端用于接收正温度系数电压,输出端用于输出驱动信号。
另外,生成单元,包括:第二放大器,负相输入端用于接收正温度系数电压;第三PMOS管,栅极连接第二放大器的输出端,源极接收第二内部电源电压,漏极连接的第二放大器的正相输入端;第三PMOS管的漏极还连接负载电阻的第一端,用于输出温控电压;负载电阻的第二端连接接地端。
另外,生成单元,还包括:第三开关晶体管,栅极用于接收驱动信号,源极接收第二内部电源电压,漏极连接第二放大器的输出端;第四开关晶体管,串联于负载电阻的第二端和接地端,且栅极接收驱动信号。
另外,预设温度为50℃。
本公开另一实施例还提供了一种电源电压的提供方法,应用于上述实施例提供的电源电路,包括:获取正温度系数电压;基于正温度系数电压和温度参考电压的比较结果,判断提供电源电压的方式,温度参考电压的电压值与预设温度下正温度系数电压的电压值相同;其中,若正温度系数电压大于温度参考电压,则基于正温度系数电压生成温控电压,并基于温控电压提供电源电压,若正温度系数电压小于或等于温度参考电压,则基于第一内部电源电压提供电源电压。
另外,电源电压的提供方法还包括:基于正温度系数电压获取第一正温度系数电压和第二正温度系数电压;基于正温度系数电压和温度参考电压的比较结果,判断提供电源电压的方式,包括:基于第二正温度系数电压和温度参考电压的比较结果,判断提供电源电压的方式,温度参考电压的电压值与预设温度下第二正温度系数电压的电压值相同;其中,若第二正温度系数电压大于温度参考电压,则基于第一正温度系数电压生成温控电压,并基于温控电压提供电源电压,若第二正温度系数电压小于或等于温度参考电压,则基于第一内部电源电压提供电源电压。
本公开又一实施例还提供了一种存储器,包括上述实施例提供的电源电路。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,除非有特别申明,附图中的图不构成比例限制;为了更清楚地说明本公开实施例或传统技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为PMOS元件的温度-衬底电压-漏电大小的曲线关系示意图;
图2为本公开一实施例提供的电源电路的结构示意图;
图3为本公开一实施例提供的温度感测模块的结构示意图;
图4~图6为本公开一实施例提供的几种感测单元的结构示意图;
图7为不同沟道宽长比PMOS的温度-阈值电压大小的曲线关系示意图;
图8为本公开一实施例提供的判断模块的结构示意图;
图9为本公开一实施例提供的生成单元的结构示意图;
图10为本公开另一实施例提供的电源电压的提供方法的流程示意图。
具体实施方式
对于芯片中的PMOS元件而言,PMOS元件设置在N型衬底中,漏电主要通过沟道漏电和结漏电。参考图1,PMOS元件在不同衬底电压下,沟道漏电和结漏电的大小均与温度相关,且在一定温度范围内,PMOS元件的漏电较小,但当超过一定温度后,随着温度升高,漏电增加较为明显;另外,通过提高PMOS元件的衬底电位可以减小漏电,随着衬底电位的升高,高温下的漏电减小。
本公开一实施例提供了一种电源电路,可以随着温度动态调节生成电压,在温度低于预设温度时,该电源电路可以提供固定电压,当温度大于预设温度是,该电源电路可以提供随温度变化而变化的电压,该电源电路可以用于向PMOS元件的衬底提供电压,从而能够减小相应PMOS元件的沟道漏电和结漏电,从而提高PMOS元件性能。
本领域的普通技术人员可以理解,在本公开各实施例中,为了使读者更好地理解本公开而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本公开所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本公开的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合,相互引用。
图1为PMOS元件的温度-衬底电压-漏电大小的曲线关系示意图,图2为本实施例提供的电源电路的结构示意图,图3~图5为本实施例提供的几种温度感测模块的结构示意图,图6为不同宽长比PMOS元件的温度-阈值电压大小的曲线关系示意图,图7为本实施例提供的判断模块的结构示意图,图8为本实施例提供的电压生成模块的结构示意图,以下结合附图对本实施例提供的电源电路进行详细说明,具体如下:
参考图2,电源电路,包括:
温度感测模块101,被配置为,基于参考信号生成正温度系数电压,正温度系数电压的电压值大小与温度的大小呈正相关。
具体地,结合图1的示例可知,温度越高,正温度系数电压的电压值越大,温度越低,正温度系数电压的电压值越小。
判断模块102,连接温度感测模块101,被配置为,基于温度参考电压和正温度系数电压的比较结果生成驱动信号,温度参考电压的电压值与预设温度下正温度系数电压的电压值相同。
在具体的应用中,温度参考电压基于存储器的带隙电压生成,由于带隙电压不受存储器温度的影响,从而保证温度参考电压保持不变。
另外,对于上述提及的“预设温度”,在本实施例中,预设温度用于表征随着温度升高,漏电增加较为明显和不明显的阈值,即当MOS元件的实际温度高于预设温度,漏电增加较为明显,当MOS元件的实际温度不高于预设温度,漏电增加不明显;结合图1的示例可知,图1对应的MOS元件的预设温度为50℃;即在本实施例中,将预设温度设置为50℃为例进行举例说明,在具体应用中,可以基于MOS元件的实际温度-漏电曲线,合理设置预设温度的值。
电源提供模块103,连接判断模块102和温度感测模块101,被配置为,根据驱动信 号判断,以提供第一内部电源电压或温控电压,温控电压的电压值与正温度系数电压的电压值相同。
具体地,若正温度系数电压大于温度参考电压,判断模块102生成的驱动信号用于指示电源提供模块103提供温控电压;若温度参考电压大于正温度系数电压,判断模块102生成的驱动信号用于指示电源提供模块103提供第一内部电源电压。
对于上述提及的“第一内部电源电压”,在一些实施例中,“第一内部电源电压”通过存储器中的内部电源电压Vcc提供。
对于上述提及的电源电路,若正温度系数电压大于温度参考电压,即PMOS元件当前温度高于预设温度,基于图1内容可知,此时随温度升高,PMOS元件的漏电增加较为明显,此时基于温控电压向PMOS元件的衬底提供电源电压,而温控电压的电压值与正温度系数电压的电压值相同,正温度系数电压的电压值大小随温度升高而增大,以随着温度动态调节PMOS元件的衬底电压,从而减小PMOS元件的沟道漏电和结漏电,以提高PMOS元件性能;若温度参考电压大于正温度系数电压,即PMOS元件当前温度低于预设温度,基于图1内容可知,此时随温度升高,PMOS元件的漏电变化不明显,直接基于第一内部电源电压向PMOS元件的衬底提供电源电压,并不影响PMOS元件的正常工作,并减小电源电路的功耗。
对于本实施例提供的温度感测模块101,在一些实施例中,参考图3,温度感测模块101,包括:感测单元104,被配置为,基于参考信号生成正温度系数电压;生成单元105,连接判断模块102和感测单元104,基于驱动信号驱动,被配置为,基于正温度系数电压生成温控电压。
基于前文内容可知,在具体应用中,判断模块102的温度参考电压基于带隙电压生成,而一般存储器的带隙电压为1.2V作为,而温度感测模块101生成的正温度系数电压的电压值会可能大于1.2V,在一些实施例中,正温度系数电压包括:第一正温度系数电压和第二正温度系数电压,且第一正温度系数电压的电压值大于第二正温度系数的电压值。具体地,正温度系数电压的电压值与第一正温度系数电压的电压值相等,第二正温度系数电压基于第一正温度系数电压分压获取;此时判断模块102被配置为,基于温度参考电压和第二正温度系数电压的比较结构生成驱动信号,温度参考电压的电压值与预设温度下第二正温度系数电压的电压值相同,通过设计对第一正温度系数电压进行分压获取第二正温度系数电压,然后通过第二正温度系数电压与温度参考电压比较以判断当前温度是否高于预设温度,且可以通过分压电阻的阻值调节,以使第二正温度系数电压的电压值小于1.2V,从而简化判断模块102的设计。
参考图4~图6,对于感测单元104,本实施例提供了几种实现方式,具体如下:
在一个例子中,参考图4,感测单元104,包括:
第一放大器201,负相输入端-用于接收参考信号。
第一PMOS管QP1,栅极连接第一放大器201的输出端,源极接收第二内部电源电压Vdd,漏极作为第一输出端输出第一正温度系数电压。
对于上述提及的“第二内部电源电压”,在一些实施例中,“第二内部电源电压”通过存储器中的内部电源电压Vdd提供,而存储器中的内部电源电压Vdd的电压值大于内部电源电压Vcc的电压值。
第一分压电阻Rf1,第一端连接第一输出端,第二端作为第二输出端输出第二正温度系数电压。
第二分压电阻Rf2,第一端连接第二输出端,第二端连接第一放大器201的正相输入端+。
温控子电路301,连接于第二分压电阻Rf2的第二端和接地端GND之间,用于根据温度的变化调节流经温控子电路301的电流大小。
具体地,温控子电路301包括至少一个第二PMOS管,每一第二PMOS管的漏极连接第二分压电阻Rf2的第二端,漏极与栅极短接,且藕接接地端GND。
对于本示例中的第一放大器201而言,此时正相输入端+的正相输入电压为:
Vfb(第一正温度系数电压)=Ignd(温控子电路301的输出电流)*R1+Vds     (1)
对于第二PMOS管而言:Vds=Vgs       (2)
Figure PCTCN2023070525-appb-000001
结合(1)~(3)式可得:
Figure PCTCN2023070525-appb-000002
而Vbp_ref1(第一正温度系数电压)=Ignd*(Rf1+Rf2)+Vfb       (5)
Vbp_ref2(第二正温度系数电压)=Rf2*Vbp_ref1/(Rf1+Rf2)         (6)
对于PMOS而言,温度越高,阈值电压Vth越小,即第二PMOS管的阈值电压Vth随着温度升高而减小;对于第一放大器201,根据放大器虚短虚断的特性,第一放大器201正相输入端+和负相输入端-的输入电源相同,而负相输入端-输入的参考电压不变,即正相输入端+输入端的正相输入电压Vfb不变,基于(4)式可知,当Vth减小,Vfb不变时,Ignd需要相应增大,结合(5)式内容可知,当Ignd增大,Vbp_ref1增大,即随着温度升高,温度感测模块101生成的第一正温度系数电压的电压值增大,基于(6)式可知,第二正温度系数电压为第一正温度系数电压基于第一分压电阻Rf1和第二分压电阻Rf2分压后获取,第二正温度系数电压的电压值小于第一正温度系数电压的电压值。
在本示例中,判断模块102基于温度参考电压和第二正温度系数电压的比较结果生成驱动信号,温度参考电压的电压值与预设温度下第二正温度系数电压的电压值相同。
在另一个例子中,参考图5,在本示例中,温度感测模块101直接输出正温度系数电压,判断模块102基于温度参考电压和正温度系数电压的比较结果生成驱动信号,温度参考电压的电压值与预设温度下正温度系数电压的电压值相同;即感测电路104中不包括第二分压电阻Rf2。
对于本示例中的第一放大器201而言,此时正相输入端+的正相输入电压为:
Vfb(正温度系数电压)=Ignd(温控子电路301的输出电流)*R1+Vds      (1)
对于第二PMOS管而言:Vds=Vgs          (2)
Figure PCTCN2023070525-appb-000003
结合(1)~(3)式可得:
Figure PCTCN2023070525-appb-000004
而Vbp_ref(正温度系数电压)=Ignd*Rf1+Vfb        (7)
对于PMOS而言,温度越高,阈值电压Vth越小,即第二PMOS管的阈值电压Vth随着温度升高而减小;对于第一放大器201,根据放大器虚短虚断的特性,第一放大器201 正相输入端+和负相输入端-的输入电源相同,而负相输入端-输入的参考电压不变,即正相输入端+输入端的正相输入电压Vfb不变,基于(4)式可知,当Vth减小,Vfb不变时,Ignd需要相应增大,结合(7)式内容可知,当Ignd增大,Vbp_ref增大,即随着温度升高,温度感测模块101生成的正温度系数电压的电压值增大。
在又一个例子中,参考图6,在本示例中,温控子电路301包括多个第二PMOS管,相应地,温控子电路301还包括:每一第二PMOS管与第二分压电阻Rf2的第二端之间设置有一选通电路,选通电路基于不同选择信号导通。
具体地,选通电路包括串联于第二PMOS管连接第二分压电阻Rf2的第二端之间的选通器;在具体的应用中,可以基于不同的选择信号分别导通相应的选择器,也可以基于一个多位选择信号中不同的比特位分辨导通相同的选择器,来实现温控晶体管和温控子晶体管的选择。
参考图7可知,对于不同沟道宽长比的PMOS管,阈值电压Vth随沟道宽长比W/L变化的幅度不同。具体地,在一定程度上,沟道宽W越小,PMOS管的阈值电压Vth越大;沟道长L越小,PMOS管的阈值电压Vth越小;若沟道宽W和沟道长L大到一定程度,PMOS管的阈值电压Vth不再随着沟道宽长比W/L的变化而变化。
通过选通电路选择不同第二PMOS管构成温控子电路,从而基于选择的第二PMOS管的沟道宽长比调整温控子电路301的输出电流随温度变化的程度。
在一些实施例中,不同第二PMOS管之间的沟道宽长比互不相同。
需要说明的是,温控子电路301中包含多个第二PMOS管的方案同样适用于图5的示例中,本实施例不再赘述。
继续参考图4~图6,在一些实施例中,感测单元104,还包括:第一开关晶体管K1,栅极用于接收使能信号,源极接收第二内部电源电压,漏极连接第一放大器201的输出端。第二开关晶体管K2,栅极用于接收使能信号,串联与温控子电路301和接地端GND之间。通过在感测单元104的电路中涉及第一开关晶体管K1和第二开关晶体管K2,第一开关晶体管K1和第二开关晶体管K2基于使能信号驱动第一放大器201,使得感测单元104仅基于使能信号导通,实现了驱动温度感测模块101的灵活性,节省能耗。
对于上述提及的“使能信号”,当使能信号为高电平时,第一开关晶体管K1关断,第二开关晶体管K2导通,此时温度感测模块101开始工作;另外,在一些实施例中,第一开关晶体管K1和第二开关晶体管K2的还可以基于不同的使能信号进行控制,本实施例不对使能信号的数量进行限定。
对于本实施例提供的判断模块102,在一些实施例中,参考图8,判断模块102包括比较器203,一输入端用于接收温度参考电压,另一输入端用于接收正温度系数电压,输出端用于输出驱动信号。
具体地,若判断模块102正相输入端+接收正温度系数电压,负相输入端-接收温度参考电压,此时温度参考电压的电压值与预设温度下正温度系数电压的电压值相同,当正温度系数电压大于温度参考电压,即存储器当前温度大于预设温度,此时产生的驱动信号为高电平;当正温度系数电压小于温度参考电压,即存储器当前温度小于预设温度,此时产生的驱动信号为低电平。若判断模块102正相输入端口+接收温度参考电压,负相输入端-接收正温度系数电压,当正温度系数电压大于温度参考电压,即存储器当前温度大于预设温度,此时产生的驱动信号为低电平;当正温度系数电压小于温度参考电压,即存储器当前温度小于预设温度,此时产生的驱动信号为高电平。
需要说明的是,上述对于比较器203的说明基于正温度系数电压为例进行举例说明,基于前文的论述可知,判断模块102还可以基于第二正温度系数电压和温度参考电压进行比较以生成驱动信号,此时温度参考电压的电压值与预设温度下第二正温度系数电压的电压值相同,基于上述对判断模块102的说明,将正温度系数电压替换为第二正温度系数电压,将温度参考电压的值相应进行调整即可,本实施例不再赘述。
对于本实施例提供的生成单元105,参考图9,生成单元105包括:第二放大器202,负相输入端-用于接收正温度系数电压;第三PMOS管QP3,栅极连接第二放大器202的输出端,源极接收第二内部电源电压,漏极连接第二放大器202的正相输入端+;第三PMOS管QP3的漏极还连接负载电阻R2的第一端,用于输出温控电压,负载电阻R2的第二端连接接地端GND。
具体地,对于生成单元105,基于第二放大器202虚短虚断的特性可知,生成单元105基于正温度系数电压生成的温控电压,正温度系数电压的电压值与温控电压的电压值相同。
相应地,对于判断模块102基于第二正温度系数电压与温度参考电压比较生成驱动信号的方案,此时生成单元105基于第一正温度系数电压生成温控电压。
在一些实施例中,生成单元105还包括:第三开关晶体管K3,栅极用于将接收驱动信号,源极接收第二内部电源电压,漏极连接第二放大器202的输出端;第四开关晶体管K4,串联于负载电阻R2的第二端和接地端GND,且栅极接收驱动信号。
通过在生成单元105的电路中涉及第三开关晶体管K3和第四开关晶体管K4,第三开关晶体管K3和第四开关晶体管K4基于驱动信号驱动第二放大器202,使得生成单元105仅基于驱动信号导通,实现了电源电路工作时序的稳定性。
具体地,基于图9的电路设置,当驱动信号为高电平时,生成单元105开始工作,对于判断模块102,即正温度系数电压大于温度参考电压,或者第二正温度系数电压大于温度参考电压时,输入到生成单元105的驱动信号为高电平,可以通过调整比较器203正相输入端和负相输入端的输入电压,或在比较器203的输入端连接比较器等不同方式实现。对于本实施例提及的电源电路,可以用于向PMOS元件提供衬底电压,基于图1内容可知,若正温度系数电压大于温度参考电压,即PMOS元件当前温度高于预设温度,此时随温度升高,PMOS元件的漏电增加较为明显,此时基于温控电压向PMOS元件的衬底提供电源电压,而温控电压的电压值与正温度系数电压的电压值相同,正温度系数电压的电压值大小随温度升高而增大,以随着温度动态调节PMOS元件的衬底电压,从而减小PMOS元件的沟道漏电和结漏电,以提高PMOS元件性能;若温度参考电压大于正温度系数电压,即PMOS元件当前温度低于预设温度,基于图1内容可知,此时随温度升高,PMOS元件的漏电变化不明显,直接基于第一内部电源电压向PMOS元件的衬底提供电源电压,并不影响PMOS元件的正常工作,并减小电源电路的功耗。
需要说明的是,本公开结合PMOS元件的漏电随温度变化的示意图,具体描述如何基于温度调节PMOS元件的衬底电压,从而减小PMOS元件的漏电;本领域技术人员可以基于本公开的内容,结合NMOS元件的漏电随温度变化是示意图,得出如何基于温度调节NMOS的衬底电压,从而减小NMOS元件的漏电的技术方案;但是,无论是对PMOS元件的衬底进行供电还是对NMOS元件的衬底进行供电,核心供电电路涉及本公开的供电电路皆应该属于本公开的保护范围内。
需要说明的是,上述实施例所提供的电源电路中所揭露的特征,在不冲突的情况下可以任意组合,可以得到新的电源电路实施例。
本公开另一实施例提供一种电源电压的提供方法,应用于上述实施例提供的电源电路, 以随着温度动态调节电源电压。
图10为本实施例提供的电源电压的提供方法的流程示意图,以下结合附图对本实施例提供的电源电压的提供方法进行详细说明,具体如下:
参考图10,电源电压的提供方法,包括:
步骤401,获取正温度系数电压。
具体地,基于导通后的电源电路获取正温度系数电压,其中,正温度系数电压的电压值大小与温度的大小呈正相关。具体地,结合图1的示例可知,温度越高,正温度系数电压的电压值越大,温度越低,正温度系数电压的电压值越小。
步骤402,基于正温度系数电压和温度参考电压的比较结果,判断提供电源电压的方式。
其中,温度参考电压的电压值与预设温度下正温度系数电压的电压值相同。
具体地,若正温度系数电压大于温度参考电压,则基于正温度系数电压生成温控电压,并基于温控电压提供电源电压,若正温度系数电压小于或等于温度参考电压,则基于第一内部电源电压提供电源电压。
在一些实施例中,电源电压的提供方法,还包括:步骤502,基于正温度系数电压获取第二正温度系数电压,此时,步骤402包括:基于第二正温度系数电压和温度参考电压的比较结果,判断提供电源电压的方式。
其中,温度参考电压的电压值与预设温度下第二正温度系数电压的电压值相同。
具体地,若第二正温度系数电压大于温度参考电压,则基于第一正温度系数电压生成温控电压,并基于温控电压提供电源电压,若第二正温度系数电压小于或等于温度参考电压,则基于第一内部电源电压提供电源电压。
基于前文内容可知,在具体应用中,判断模块102的温度参考电压基于带隙电压生成,而一般存储器的带隙电压为1.2V作为,而温度感测模块101生成的正温度系数电压的电压值会可能大于1.2V,在一些实施例中,正温度系数电压包括:第一正温度系数电压和第二正温度系数电压,且第一正温度系数电压的电压值大于第二正温度系数的电压值。具体地,正温度系数电压的电压值与第一正温度系数电压的电压值相等,第二正温度系数电压基于第一正温度系数电压分压获取;此时判断模块102被配置为,基于温度参考电压和第二正温度系数电压的比较结构生成驱动信号,温度参考电压的电压值与预设温度下第二正温度系数电压的电压值相同,通过设计对第一正温度系数电压进行分压获取第二正温度系数电压,然后通过第二正温度系数电压与温度参考电压比较以判断当前温度是否高于预设温度,且可以通过分压电阻的阻值调节,以使第二正温度系数电压的电压值小于1.2V,从而简化判断模块102的设计。
需要说明的是,上述实施例所提供的电源电压的提供方法中所揭露的特征,在不冲突的情况下可以任意组合,可以得到新的电源电压的提供方法实施例。
本公开又一实施例提供一种存储器,包括上述实施例提供的电源电路,上述实施例提供的电源电路可以为PMOS元件提供衬底电压,以随着温度动态调节PMOS元件的衬底电压,从而减小相应PMOS元件的沟道漏电和结漏电,从而提高PMOS元件性能。
具体地,对于电源电路,若正温度系数电压大于温度参考电压,即PMOS元件当前温度高于预设温度,此时随温度升高,PMOS元件的漏电增加较为明显,此时基于温控电压向PMOS元件的衬底提供电源电压,而温控电压的电压值与正温度系数电压的电压值相同, 正温度系数电压的电压值大小随温度升高而增大,以随着温度动态调节PMOS元件的衬底电压,从而减小PMOS元件的沟道漏电和结漏电,以提高PMOS元件性能;若温度参考电压大于正温度系数电压,即PMOS元件当前温度低于预设温度,基于图1内容可知,此时随温度升高,PMOS元件的漏电变化不明显,直接基于第一内部电源电压向PMOS元件的衬底提供电源电压,并不影响PMOS元件的正常工作,并减小电源电路的功耗。
在一些例子中,存储器可以是基于半导体装置或组件的存储单元或装置。例如,存储器装置可以是易失性存储器,例如动态随机存取存储器DRAM、同步动态随机存取存储器SDRAM、双倍数据速率同步动态随机存取存储器DDR SDRAM、低功率双倍数据速率同步动态随机存取存储器LPDDR SDRAM、图形双倍数据速率同步动态随机存取存储器GDDR SDRAM、双倍数据速率类型双同步动态随机存取存储器DDR2 SDRAM、双倍数据速率类型三同步动态随机存取存储器DDR3 SDRAM、双倍数据速率第四代同步动态随机存取存储器DDR4 SDRAM、晶闸管随机存取存储器TRAM等;或者可以是非易失性存储器,例如相变随机存取存储器PRAM、磁性随机存取存储器MRAM、电阻式随机存取存储器RRAM等。
本领域的普通技术人员可以理解,上述各实施例是实现本公开的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本公开的精神和范围。

Claims (15)

  1. 一种电源电路,其中,包括:
    温度感测模块,被配置为,基于参考信号生成正温度系数电压,所述正温度系数电压的电压值大小与温度的大小呈正相关;
    判断模块,连接所述温度感测模块,被配置为,基于温度参考电压和所述正温度系数电压的比较结果生成驱动信号,所述温度参考电压的电压值与预设温度下所述正温度系数电压的电压值相同;
    电源提供模块,连接所述判断模块和所述温度感测模块,被配置为,根据所述驱动信号判断,以提供第一内部电源电压或温控电压,所述温控电压的电压值与所述正温度系数电压的电压值相同。
  2. 根据权利要求1所述的电源电路,所述温度感测模块,包括:
    感测单元,被配置为,基于参考信号生成正温度系数电压;
    生成单元,连接所述判断模块和所述感测单元,基于所述驱动信号驱动,被配置为,基于所述正温度系数电压生成所述温控电压。
  3. 根据权利要求2所述的电源电路,包括:
    所述正温度系数电压包括:第一正温度系数电压和第二正温度系数电压,所述第一正温度系数电压的电压值大于所述第二正温度系数电压的电压值;
    所述判断模块被配置为,基于温度参考电压和所述第二正温度系数电压的比较结果生成驱动信号,所述温度参考电压的电压值与预设温度下所述第二正温度系数电压的电压值相同。
  4. 根据权利要求3所述的电源电路,所述感测单元,包括:
    第一放大器,负相输入端用于接收所述参考信号;
    第一PMOS管,栅极连接所述第一放大器的输出端,源极接收第二内部电源电压,漏极作为第一输出端输出所述第一正温度系数电压,所述第二内部电源电压的电压值大于所述第一内部电源电压的电压值;
    第一分压电阻,第一端连接所述第一输出端,第二端作为第二输出端输出所述第二正温度系数电压;
    第二分压电阻,第一端连接所述第二输出端,第二端连接所述第一放大器的正相输入端;
    温控子电路,连接于所述第二分压电阻的第二端和接地端之间,用于根据温度的变化调节流经所述温控子电路的电流大小。
  5. 根据权利要求4所述的电源电路,所述感测单元,还包括:
    第一开关晶体管,栅极用于接收使能信号,源极接收所述第二内部电源电压,漏极连接所述第一放大器的输出端;
    第二开关晶体管,栅极用于接收所述使能信号,串联于所述温控子电路和所述接地端之间。
  6. 根据权利要求4所述的电源电路,所述温控子电路,包括:
    至少一个第二PMOS管,每一所述第二PMOS管的源极连接所述第二分压电阻的第二端,漏极与栅极短接,且耦接所述接地端。
  7. 根据权利要求6所述的电源电路,所述温控子电路,还包括:
    每一所述第二PMOS管与所述第二分压电阻的第二端之间设置有一选通电路;
    所述选通电路基于不同的选择信号导通。
  8. 根据权利要求7所述的电源电路,不同所述第二PMOS管之间的沟道宽长比互不相同。
  9. 根据权利要求1所述的电源电路,所述判断模块,包括:比较器,一输入端用于接收所述温度参考电压,另一输入端用于接收所述正温度系数电压,输出端用于输出所述驱动信号。
  10. 根据权利要求2所述的电源电路,所述生成单元,包括:
    第二放大器,负相输入端用于接收所述正温度系数电压;
    第三PMOS管,栅极连接所述第二放大器的输出端,源极接收第二内部电源电压,漏极连接所述的第二放大器的正相输入端;
    所述第三PMOS管的漏极还连接负载电阻的第一端,用于输出所述温控电压;
    所述负载电阻的第二端连接接地端。
  11. 根据权利要求10所述的电源电路,所述生成单元,还包括:
    第三开关晶体管,栅极用于接收所述驱动信号,源极接收所述第二内部电源电压,漏极连接所述第二放大器的输出端;
    第四开关晶体管,串联于所述负载电阻的第二端和所述接地端,且栅极接收所述驱动信号。
  12. 根据权利要求1所述的电源电路,所述预设温度为50℃。
  13. 一种电源电压的提供方法,应用于与权利要求1~12任一项所述的电源电路,其中,包括:
    获取正温度系数电压;
    基于所述正温度系数电压和温度参考电压的比较结果,判断提供电源电压的方式,所述温度参考电压的电压值与预设温度下所述正温度系数电压的电压值相同;
    其中,若所述正温度系数电压大于所述温度参考电压,则基于所述正温度系数电压生成温控电压,并基于所述温控电压提供所述电源电压,若所述正温度系数电压小于或等于所述温度参考电压,则基于第一内部电源电压提供所述电源电压。
  14. 根据权利要求13所述的电源电压的提供方法,还包括:
    基于所述正温度系数电压获取第一正温度系数电压和第二正温度系数电压;
    所述基于所述正温度系数电压和温度参考电压的比较结果,判断提供电源电压的方式,包括:基于所述第二正温度系数电压和所述温度参考电压的比较结果,判断提供所述电源电压的方式,所述温度参考电压的电压值与预设温度下所述第二正温度系数电压的电压值相同;
    其中,若所述第二正温度系数电压大于所述温度参考电压,则基于所述第一正温度系数电压生成温控电压,并基于所述温控电压提供所述电源电压,若所述第二正温度系数电压小于或等于所述温度参考电压,则基于第一内部电源电压提供所述电源电压。
  15. 一种存储器,其中,包括权利要求1~12任一项所述的电源电路。
PCT/CN2023/070525 2022-09-16 2023-01-04 电源电路、电源电压的提供方法及存储器 WO2024055489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211133232.5 2022-09-16
CN202211133232.5A CN117762181A (zh) 2022-09-16 2022-09-16 电源电路、电源电压的提供方法及存储器

Publications (1)

Publication Number Publication Date
WO2024055489A1 true WO2024055489A1 (zh) 2024-03-21

Family

ID=90274183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070525 WO2024055489A1 (zh) 2022-09-16 2023-01-04 电源电路、电源电压的提供方法及存储器

Country Status (2)

Country Link
CN (1) CN117762181A (zh)
WO (1) WO2024055489A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010026709A (ko) * 1999-09-08 2001-04-06 윤종용 기준 전압 발생 회로
CN101013331A (zh) * 2006-12-28 2007-08-08 东南大学 输出电压可调式cmos基准电压源
CN102880220A (zh) * 2011-07-12 2013-01-16 联咏科技股份有限公司 温度系数电流触发产生器及温度系数电流触发产生模块
CN106873704A (zh) * 2017-02-21 2017-06-20 深圳市爱协生科技有限公司 基准电压源及其正温度系数电压生成电路
CN111708400A (zh) * 2020-06-30 2020-09-25 深圳市芯天下技术有限公司 一种具有温度系数并温度系数可调的参考电压电路
CN212872583U (zh) * 2020-06-02 2021-04-02 芯海科技(深圳)股份有限公司 电压基准电路及测量设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010026709A (ko) * 1999-09-08 2001-04-06 윤종용 기준 전압 발생 회로
CN101013331A (zh) * 2006-12-28 2007-08-08 东南大学 输出电压可调式cmos基准电压源
CN102880220A (zh) * 2011-07-12 2013-01-16 联咏科技股份有限公司 温度系数电流触发产生器及温度系数电流触发产生模块
CN106873704A (zh) * 2017-02-21 2017-06-20 深圳市爱协生科技有限公司 基准电压源及其正温度系数电压生成电路
CN212872583U (zh) * 2020-06-02 2021-04-02 芯海科技(深圳)股份有限公司 电压基准电路及测量设备
CN111708400A (zh) * 2020-06-30 2020-09-25 深圳市芯天下技术有限公司 一种具有温度系数并温度系数可调的参考电压电路

Also Published As

Publication number Publication date
CN117762181A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
US6424178B1 (en) Method and system for controlling the duty cycle of a clock signal
US7420857B2 (en) Semiconductor integrated circuit and leak current reducing method
US7642843B2 (en) Reference voltage generating circuit and semiconductor integrated circuit device
US4584492A (en) Temperature and process stable MOS input buffer
US7525379B2 (en) Low voltage CMOS differential amplifier
KR930010524B1 (ko) 전류 미러회로를 갖는 구동회로를 구비한 반도체집적회로장치
JPH0770216B2 (ja) 半導体集積回路
JP2011096950A (ja) 半導体装置、センスアンプ回路、半導体装置の制御方法及びセンスアンプ回路の制御方法
KR20100085427A (ko) 반도체 메모리 장치의 내부전압 발생회로
US20110069574A1 (en) Semiconductor memory device
JPH0224282Y2 (zh)
US20060192606A1 (en) Forward biasing protection circuit
WO2024055489A1 (zh) 电源电路、电源电压的提供方法及存储器
US20050218983A1 (en) Differential amplifier
KR0140124B1 (ko) 반도체 메모리 장치의 전원 전압 검출회로
JP3146829B2 (ja) 半導体集積回路
US8222952B2 (en) Semiconductor device having a complementary field effect transistor
JPH1116370A (ja) データ判定回路およびデータ判定方法
CN114637367A (zh) 一种芯片内部低压电源产生电路
KR20070056444A (ko) 반도체 메모리 장치의 입력 버퍼
US6774665B2 (en) Cascode SSTL output buffer using source followers
US7486140B2 (en) Differential amplifier
US20070229139A1 (en) Level shifter circuit with a wide operating voltage range
US7869285B2 (en) Low voltage operation bias current generation circuit
KR20080098572A (ko) 반도체 메모리 장치의 내부 전원 전압 발생 회로

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864234

Country of ref document: EP

Kind code of ref document: A1