WO2024051442A1 - 一种用于制备聚(4-甲基-1-戊烯)的主催化剂及其应用 - Google Patents

一种用于制备聚(4-甲基-1-戊烯)的主催化剂及其应用 Download PDF

Info

Publication number
WO2024051442A1
WO2024051442A1 PCT/CN2023/112711 CN2023112711W WO2024051442A1 WO 2024051442 A1 WO2024051442 A1 WO 2024051442A1 CN 2023112711 W CN2023112711 W CN 2023112711W WO 2024051442 A1 WO2024051442 A1 WO 2024051442A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methyl
pentene
poly
molecular weight
Prior art date
Application number
PCT/CN2023/112711
Other languages
English (en)
French (fr)
Inventor
任鹤
王玉如
高宇新
何书艳
倪双阳
杨国兴
张瑞
赵兴龙
吴薇
韦德帅
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2024051442A1 publication Critical patent/WO2024051442A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64

Definitions

  • the embodiments of the present application relate to the technical field of olefin polymerization, and in particular to a main catalyst for preparing poly(4-methyl-1-pentene) and its application.
  • Poly(4-methyl-1-pentene) is a crystalline resin with a stereoregular structure. Its unique structure gives it excellent chemical resistance, mechanical properties, processability, and electrical insulation properties. , low dielectric properties, optical properties, breathable properties and easy peeling properties. Therefore, poly(4-methyl-1-pentene) has important uses in the fields of fiber materials, release materials, high-end medical materials and electronic materials.
  • Poly(4-methyl-1-pentene) is mainly prepared by catalyst-catalyzed homopolymerization of 4-methyl-1-pentene monomer. It is currently used to catalyze the polymerization of 4-methyl-1-pentene monomer.
  • catalyst systems There are three categories of catalyst systems: Ziegler-Natta catalysts, metallocene catalysts and late transition metal nickel-palladium catalysts.
  • the Ziegler-Natta catalyst can effectively catalyze the polymerization of 4-methyl-1-pentene to obtain a highly isotactic crystalline polymer.
  • the stereoregularity of the product can be adjusted by adding an external electron donor, making the polymer more
  • the isotacticity is greater than 95%, and the melting temperature reaches over 230°C.
  • the Ziegler-Natta catalyst has multiple active centers, and the molecular weight distribution of the resulting polymer is very broad, usually greater than 10, and the low molecular weight part has poor mechanical properties. , limiting its application in high-end fields.
  • Metallocene catalysts can also catalyze the polymerization of 4-methyl-1-pentene, but the structure of the metallocene catalyst has an important impact on the isotacticity of poly(4-methyl-1-pentene).
  • the currently reported C2 symmetrical titanium/zirconium catalyst can catalyze the polymerization of 4-methyl-1-pentene, and the regularity of the polymer can reach more than 90%. Since the metallocene catalyst has a single metal active center, its prepared The molecular weight distribution of poly(4-methyl-1-pentene) is narrow, usually below 3. However, the steric hindrance of metallocene catalysts is large, and the 4-methyl-1-pentene monomer with large steric hindrance is difficult to insert. The activity of metallocene catalysts in catalyzing 4-methyl-1-pentene is low and it is difficult to prepare it. Polymers with a molecular weight exceeding 100,000.
  • the late transition metal nickel-palladium catalyst has poor stereocontrol when used for the polymerization of 4-methyl-1-pentene, and cannot obtain highly regular poly(4-methyl-1-pentene).
  • the transition metal nickel-palladium catalyst has a chain walking process during the catalytic polymerization process, resulting in complex branching of the product.
  • the resulting polymer is an amorphous polymer, which is difficult to have practical commercial use.
  • the present application provides a main catalyst for preparing poly(4-methyl-1-pentene) and a preparation method thereof.
  • the main catalyst has high catalytic activity in the polymerization reaction of 4-methyl-1-pentene,
  • the poly(4-methyl-1-pentene) obtained by catalysis has the advantages of high molecular weight, narrow molecular weight distribution, and high isotacticity.
  • This application also provides a catalyst for preparing poly(4-methyl-1-pentene), which is obtained by compounding the above-mentioned main catalyst and an activator. Since the catalyst includes the above-mentioned main catalyst, it has high catalytic activity. , the poly(4-methyl-1-pentene) prepared by catalysis has the advantages of high molecular weight, narrow molecular weight distribution, and high isotacticity.
  • the present application also provides a method for preparing poly(4-methyl-1-pentene).
  • the method uses the above catalyst to catalyze the homopolymerization reaction of 4-methyl-1-pentene monomer to prepare poly(4-methyl-1-pentene). base-1-pentene), therefore the poly(4-methyl-1-pentene) prepared by this method has the advantages of high molecular weight, narrow molecular weight distribution, and high isotacticity.
  • a first aspect of the present application provides a main catalyst for preparing poly(4-methyl-1-pentene), the main catalyst having a structure shown in formula I:
  • R 1 is selected from hydrogen or phenyl. When R 1 is selected from phenyl, R 1 is fused with the naphthalene ring in formula I. Form anthracene ring; R 2 is selected from methyl or isopropyl.
  • the compound represented by formula I is a non-bridged imide hafnium amine complex.
  • This complex has small steric hindrance and is conducive to the preparation of large sterically hindered 4-methyl-1-pentene monomer.
  • Position insertion can enable the catalyst to obtain high catalytic activity and obtain high molecular weight poly(4-methyl-1-pentene).
  • the single metal active center of the complex can make the catalyst have higher selectivity, which is beneficial to obtain Poly(4-methyl-1-pentene) with narrow molecular weight distribution and high isotacticity.
  • the inventor's research found that when R 2 is selected from isopropyl, the main catalyst exhibits higher catalytic activity, and the poly(4-methyl-1-pentene) obtained by catalysis has a narrower molecular weight and higher of isoregulation.
  • a second aspect of the present application provides a method for preparing the above-mentioned main catalyst for preparing poly(4-methyl-1-pentene).
  • the preparation route of the method is as follows:
  • Specific steps include: 1) reacting methylglyoxal with 2,6-diisopropylaniline to obtain intermediate A; 2) reacting intermediate A with ⁇ -naphthylamine or ⁇ -anthracene amine to obtain intermediate B: 3) React intermediate B with R2 - substituted phenyllithium compound to obtain intermediate C; 4) React intermediate C with alkyllithium and hafnium tetrahalide in sequence to obtain intermediate D; 5) Make intermediate Body D reacts with methylmagnesium halide to obtain the main catalyst represented by formula I.
  • Steps 1) and 2) are to use an arylamine compound to condensate the aldehyde group and the carbonyl group in methylglyoxal, respectively, to obtain an asymmetric aryl-substituted diimine intermediate B.
  • step 3 The phenyllithium compound substituted by R2 is used as a nucleophile to perform nucleophilic addition to intermediate B to obtain the bridgehead-substituted iminoamine-based intermediate C, which is the ligand of the main catalyst; in step 4), alkyllithium Remove the proton on the secondary amine and react with hafnium tetrahalide to obtain the iminoamine hafnium halide intermediate D; in step 5), Grignard reaction occurs between intermediate D and methylmagnesium halide to obtain The main catalyst represented by formula I.
  • the alkyllithium in step 4) is preferably n-butyllithium
  • the hafnium tetrahalide is preferably hafnium tetrachloride
  • the methylmagnesium halide in step 5) is preferably methylmagnesium bromide.
  • step 1) The selection of specific reaction conditions from step 1) to step 5) is a routine method for those skilled in the art with organic synthesis foundation, and will not be described again here.
  • a third aspect of the application provides a catalyst for preparing poly(4-methyl-1-pentene), which catalyst includes the main catalyst and an activator provided by the first aspect of the application.
  • the catalyst includes the main catalyst provided in the first aspect of the application, it has high catalytic activity, and the poly(4-methyl-1-pentene) prepared by the catalysis has the advantages of high molecular weight, narrow molecular weight distribution, and high isotacticity. .
  • the activator of the present application is selected from the composition of triphenylcarbonium tetrakis(pentafluorobenzene)borate and alkyl aluminum.
  • the alkyl aluminum compound in the composition is preferably at least one of trimethylaluminum, triethylaluminum, and triisobutylaluminum.
  • the fourth aspect of the application provides a method for preparing poly(4-methyl-1-pentene).
  • the preparation method includes: using the catalyst provided in the third aspect of the application to catalyze 4-methyl-1-pentene mono The body is subjected to homopolymerization reaction to obtain the poly(4-methyl-1-pentene).
  • the catalyst of the present application has high catalytic activity and high selectivity in the homopolymerization reaction of 4-methyl-1-pentene, and the prepared poly(4-methyl-1-pentene) has both high molecular weight and narrow
  • the molecular weight distribution and high isotacticity show better mechanical properties and thermal stability, and have broader market application prospects.
  • the molar ratio of 4-methyl-1-pentene monomer to catalyst, the temperature of the homopolymerization reaction, the solvent and other conditions can be optimized to make the obtained poly(4-methyl-1 -pentene) has a higher molecular weight, narrower molecular weight distribution, and higher isotacticity.
  • the molar ratio of 4-methyl-1-pentene monomer to catalyst is preferably (100 ⁇ 400000):1, and further preferably (10000-100000):1;
  • the temperature of the homopolymerization reaction is 20 ⁇ 60°C;
  • the solvent for homopolymerization reaction is preferably 1,2-dichloroethane, chloroform, chlorobenzene, toluene, benzene, dichloroethane, One or more of toluene.
  • the prepared poly(4-methyl-1-pentene) can be achieved
  • the weight average molecular weight is ⁇ 500,000, further ranging from 500,000 to 1.63 million; the molecular weight distribution index is ⁇ 4, further ranging from 2.0 to 4.0; isotacticity ⁇ 95%; melting temperature ⁇ 230°C, further ranging from 230 to 240°C.
  • the main catalyst provided in this application is a non-bridged imine amine-based complex.
  • This complex has small steric hindrance and is conducive to the synthesis of large sterically hindered 4-methyl-1-pentene monomer.
  • Coordination insertion can enable the catalyst to obtain high catalytic activity and obtain high molecular weight poly(4-methyl-1-pentene).
  • the single metal active center of the complex can enable the catalyst to have higher selectivity and have It is beneficial to obtain poly(4-methyl-1-pentene) with narrow molecular distribution and high isotacticity.
  • the main catalyst of the present application is used in the catalytic system to catalyze the polymerization of 4-methyl-1-pentene monomer, and the poly(4-methyl-1-pentene) obtained by polymerization has both high molecular weight and narrow molecular weight distribution. , high isotacticity and high melting temperature, the resulting polymer has better mechanical properties and thermal stability, and has broader application prospects.
  • Figure 1 is a 13 C NMR pattern of poly(4-methyl-1-pentene) prepared in Example 1;
  • Figure 2 is a DSC curve diagram of poly(4-methyl-1-pentene) prepared in Example 1;
  • Figure 3 is a GPC curve of poly(4-methyl-1-pentene) prepared in Example 1.
  • catalytic activity mass of poly(4-methyl-1-pentene) (grams)/(main catalyst addition amount (mol) ⁇ reaction time (h) .
  • the weight average molecular weight and molecular weight distribution index of the poly(4-methyl-1-pentene) prepared in the following examples and comparative examples were measured using GPC.
  • the melting temperature of the poly(4-methyl-1-pentene) prepared in the following examples and comparative examples was measured using DSC thermal analysis.
  • the isotacticity of the poly(4-methyl-1-pentene) prepared in the following examples and comparative examples was measured using 13 C NMR.
  • the preparation process of the main catalyst, catalyst and poly(4-methyl-1-pentene) in this embodiment is as follows:
  • the preparation route is as follows:
  • Preparation steps include:
  • the characterization data of ligand L1 are:
  • the characterization data of main catalyst P1 are:
  • Compound P1 is used as the main catalyst, and the composition of triphenylcarbonium tetrakis(pentafluorophenyl)borate and triisobutylaluminum (molar ratio is 1:67) is used as the activator, and the activator is marked A3,
  • the main catalyst P1 and the activator A3 are compounded at a molar ratio of 1:1.5 to obtain the catalyst C1-3.
  • the specific steps include: continuously evacuating the Schlenk bottle equipped with a magnetic stirrer and baking and drying it with an infrared lamp for two hours. After natural cooling, replace nitrogen three times to normal pressure, and then add 7 mL of toluene and 3 mL of 4- to the Schlenk bottle in sequence. Methyl-1-pentene monomer was stirred in a water bath at a constant temperature of 40°C for half an hour. Then, 1 ⁇ mol of catalyst C1-3 (the molar ratio of 4-methyl-1-pentene monomer to catalyst C1-3 is 24000:1) was added to the system to initiate polymerization. After the polymerization reached 5 minutes, 10% hydrochloric acid-acidified ethanol solution was added. Terminate aggregation. The polymerization system was filtered, washed three times with ethanol, and dried under vacuum to constant weight to obtain poly(4-methyl-1-pentene).
  • the poly(4-methyl-1-pentene) prepared in Example 1 is characterized by data.
  • Figure 1 is a 13 C NMR chart of the poly(4-methyl-1-pentene) prepared in Example 1;
  • Figure 2 is a DSC curve of poly(4-methyl-1-pentene) prepared in Example 1;
  • Figure 3 is a GPC curve of poly(4-methyl-1-pentene) prepared in Example 1 Figure, through the analysis of Figures 1 to 3, it can be seen that the weight average molecular weight of the poly(4-methyl-1-pentene) prepared in Example 1 is 705kg/mol, the molecular weight distribution index is 2.3, and the melting temperature is 238 °C, isotacticity is 98%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the polymerization temperature is replaced from 40°C to 20°C.
  • the catalytic activity of catalyst C1-3 is 3.1kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 733kg/mol
  • the molecular weight distribution index is 4.0
  • the melting temperature is 240°C
  • the isotacticity is >99%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the polymerization temperature is replaced from 40°C to 60°C.
  • the catalytic activity of catalyst C1-3 is 6.5kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 821kg/mol
  • the molecular weight distribution is The number is 2.0
  • the melting temperature is 237°C
  • the isotacticity is 97%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1. The difference is that the 4-methyl-1-pentene monomer added in the homopolymerization reaction is 0.0125 mL. (The molar ratio of 4-methyl-1-pentene monomer to catalyst C1-3 is 100:1).
  • the catalytic activity of catalyst C1-3 is 4.8kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 501kg/mol
  • the molecular weight distribution index is 2.0
  • the melting temperature is 239°C
  • the isotacticity is 99%.
  • the preparation steps of poly(4-methyl-1-pentene) in this example are basically the same as those in Example 1. The difference is that the 4-methyl-1-pentene monomer added in the homopolymerization reaction is 0.125 mL. (The molar ratio of 4-methyl-1-pentene monomer to catalyst C1-3 is 1000:1).
  • the catalytic activity of catalyst C1-3 is 13.8kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 538kg/mol
  • the molecular weight distribution index is 2.2
  • the melting temperature is 239°C
  • the isotacticity is 99%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the 4-methyl-1-pentene monomer added in the homopolymerization reaction is 1 mL ( The molar ratio of 4-methyl-1-pentene monomer to catalyst C1-3 is 8000:1).
  • the catalytic activity of catalyst C1-3 is 9.2kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 686kg/mol
  • the molecular weight distribution index is 2.3
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the 4-methyl-1-pentene monomer added in the homopolymerization reaction is 5 mL ( The molar ratio of 4-methyl-1-pentene monomer to catalyst C1-3 is 40000:1).
  • the catalytic activity of catalyst C1-3 is 29.6kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 830kg/mol
  • the molecular weight distribution index is 2.7
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the polymerization solvent is replaced from toluene to benzene.
  • the catalytic activity of catalyst C1-3 is 8.3kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 811kg/mol
  • the molecular weight distribution index is 2.7
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the polymerization solvent is replaced from toluene to xylene.
  • the catalytic activity of catalyst C1-3 is 10.5kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 785kg/mol
  • the molecular weight distribution index is 2.7
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the polymerization solvent is replaced from toluene to 1,2-dichloroethane.
  • the catalytic activity of catalyst C1-3 is 12.1kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 738kg/mol
  • the molecular weight distribution The index is 2.6
  • the melting temperature is 237°C
  • the isotacticity is 97%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the polymerization solvent is replaced from toluene to chloroform.
  • the catalytic activity of catalyst C1-3 is 9.8kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 765kg/mol
  • the molecular weight distribution index is 2.6
  • the melting temperature is 237°C
  • the isotacticity is 97%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the polymerization solvent is replaced from toluene to chlorobenzene.
  • the catalytic activity of catalyst C1-3 is 10.9kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 857kg/mol
  • the molecular weight distribution index is 2.7
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the polymerization solvent is replaced from toluene to a mixed solvent of toluene and benzene with a volume ratio of 1:1. .
  • the catalytic activity of catalyst C1-3 is 7.8kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 778kg/mol
  • the molecular weight distribution index is 2.7
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the polymerization solvent is replaced from toluene to a mixture of toluene and xylene with a volume ratio of 1:1. Solvent.
  • the catalytic activity of catalyst C1-3 in the homopolymerization reaction is 8.7kg polymer/(mmol Hf ⁇ h), and the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 749kg/mol , the molecular weight distribution index is 2.7, the melting temperature is 238°C, and the isotacticity is 98%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the polymerization solvent is replaced from toluene to 1,2-dichloro with a volume ratio of 1:1. Mixed solvent of ethane and chloroform.
  • the catalytic activity of catalyst C1-3 is 7.1kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 794kg/mol
  • the molecular weight distribution index is 2.6
  • the melting temperature is 237°C
  • the isotacticity is 97%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the polymerization solvent is replaced from toluene to a mixture of chlorobenzene and benzene with a volume ratio of 1:1. Solvent.
  • the catalytic activity of catalyst C1-3 is 8.1kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 843kg/mol
  • the molecular weight distribution index is 2.7
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the main catalyst in this example is consistent with Example 1;
  • the catalyst in this embodiment is obtained by compounding the main catalyst P1 and the activator A3 at a molar ratio of 1:1, and the obtained catalyst is labeled catalyst C1-7;
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the catalyst C1-3 is replaced by the catalyst C1-7.
  • the catalytic activity of catalyst C1-7 is 6.8kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 688kg/mol
  • the molecular weight distribution is The number is 2.5
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the main catalyst in this example is consistent with Example 1;
  • the catalyst in this embodiment is obtained by compounding the main catalyst P1 and the activator A3 at a molar ratio of 1:3, and the obtained catalyst is labeled catalyst C1-8;
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the catalyst C1-3 is replaced by the catalyst C1-8.
  • the catalytic activity of catalyst C1-8 is 7.2kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 744kg/mol
  • the molecular weight distribution index is 2.6
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the main catalyst in this example is consistent with Example 1;
  • the catalyst in this embodiment is obtained by compounding the main catalyst P1 and the activator A3 at a molar ratio of 1:5, and the obtained catalyst is labeled catalyst C1-9;
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the catalyst C1-3 is replaced by the catalyst C1-9.
  • the catalytic activity of catalyst C1-9 is 8.8kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 798kg/mol
  • the molecular weight distribution index is 2.7
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the main catalyst in this example is consistent with Example 1;
  • the catalyst in this example uses compound P1 as the main catalyst, and a combination of triphenylcarbonium tetrakis(pentafluorophenyl)borate and triisobutylaluminum (molar ratio: 1:50) as the activator.
  • the activator is marked It is A4, and the main catalyst P1 and the activator A4 are compounded at a mass ratio of 1:1.5 to obtain the catalyst C1-4.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the catalyst C1-3 is replaced by the catalyst C1-4.
  • the catalytic activity of catalyst C1-4 is 8.3kg polymer/(mmol Hf ⁇ h).
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) was 667kg/mol, the molecular weight distribution index was 2.8, the melting temperature was 238°C, and the isotacticity was 98%.
  • the main catalyst in this example is consistent with Example 1;
  • the catalyst in this example uses compound P1 as the main catalyst, and a combination of triphenylcarbonium tetrakis(pentafluorophenyl)borate and triisobutylaluminum (molar ratio: 1:150) as the activator.
  • the activator is marked It is A5, and the main catalyst P1 and the activator A5 are compounded according to a mass ratio of 1:1.5 to obtain the catalyst C1-5.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the catalyst C1-3 is replaced by the catalyst C1-5.
  • the catalytic activity of catalyst C1-5 is 8.9kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 601kg/mol
  • the molecular weight distribution index is 3.0
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the main catalyst in this example is consistent with Example 1;
  • the catalyst in this example uses compound P1 as the main catalyst, and a combination of triphenylcarbonium tetrakis(pentafluorophenyl)borate and triisobutylaluminum (molar ratio: 1:300) as the activator.
  • the activator is marked It is A6, and the main catalyst P1 and the activator A6 are compounded at a mass ratio of 1:1.5 to obtain the catalyst C1-6.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the catalyst C1-3 is replaced by the catalyst C1-6.
  • the catalytic activity of catalyst C1-6 is 7.4kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 519kg/mol
  • the molecular weight distribution index is 3.5
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the main catalyst in this example is consistent with Example 1;
  • the catalyst in this example uses compound P1 as the main catalyst, and the composition of triphenylcarbonium tetrakis(pentafluorobenzene)borate and trimethylaluminum (molar ratio is 1:67) as the activator.
  • the activator is marked as A1, main catalyst P1 and activator A1 are compounded according to a mass ratio of 1:1.5 to obtain catalyst C1-1.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the catalyst C1-3 is replaced by the catalyst C1-1.
  • the catalytic activity of catalyst C1-1 is 7.8kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 556kg/mol
  • the molecular weight distribution index is 3.0
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the main catalyst in this example is consistent with Example 1;
  • the catalyst in this example uses compound P1 as the main catalyst, and the composition of triphenylcarbonium tetrakis(pentafluorobenzene)borate and triethylaluminum (molar ratio: 1:67) as the activator.
  • the activator is marked as A2, main catalyst P1 and activator A2 are compounded according to a mass ratio of 1:1.5 to obtain catalyst C1-2.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the catalyst C1-3 is replaced by the catalyst C1-2.
  • the catalytic activity of catalyst C1-2 is 9.4kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 618kg/mol
  • the molecular weight distribution index is 2.8
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the preparation process of the main catalyst, catalyst and poly(4-methyl-1-pentene) in this embodiment is as follows:
  • main catalyst P2 The structural formula of main catalyst P2 is as follows:
  • the preparation steps of the main catalyst P2 are basically the same as the preparation steps of the main catalyst P1 recorded in Example 1. The difference is that the 2-isopropylphenyllithium in step c is replaced by methylphenyllithium.
  • the characterization data of ligand L2 are:
  • the characterization data of main catalyst P2 are:
  • Compound P2 is used as the main catalyst, and the main catalyst P2 and the activator A3 are compounded at a molar ratio of 1:1.5 to obtain the catalyst C2-3.
  • the catalytic activity of catalyst C2-3 is 0.6kg polymer/(mmol Hf ⁇ h).
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) was 1634kg/mol, the molecular weight distribution index was 4.0, the melting temperature was 231°C, and the isotacticity was 95%.
  • the preparation process of the main catalyst, catalyst and poly(4-methyl-1-pentene) in this embodiment is as follows:
  • the structural formula of the main catalyst P3 is as follows:
  • the preparation steps of main catalyst P3 are basically the same as the preparation steps of main catalyst P1 described in Example 1, except that the naphthylamine in step b is replaced by anthracene amine.
  • step c The ligand obtained in step c is L3, the yield of step c is 87%, and the yield of step d is 59%.
  • the characterization data of ligand L3 are:
  • the characterization data of main catalyst P3 are:
  • Compound P3 is used as the main catalyst, and the main catalyst P3 and the activator A3 are compounded at a molar ratio of 1:1.5 to obtain the catalyst system C3-3.
  • the catalytic activity of catalyst C3-3 is 8.3kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 637kg/mol
  • the molecular weight distribution index is 3.0
  • the melting temperature is 236°C
  • the isotacticity is 97%.
  • the preparation process of the main catalyst, catalyst and poly(4-methyl-1-pentene) in this embodiment is as follows:
  • the structural formula of the main catalyst P4 is as follows:
  • main catalyst P4 The preparation steps of main catalyst P4 are basically the same as those of main catalyst P3 recorded in Example 26. The difference is that the 2-isopropylphenyllithium in step c is replaced by methylphenyllithium.
  • the product obtained in step c is For monomer L4, the yield in step c was 89% and in step d was 61%.
  • the characterization data of ligand L4 are:
  • the characterization data of main catalyst P4 are:
  • Compound P4 is used as the main catalyst, and the main catalyst P4 and the activator A3 are compounded at a molar ratio of 1:1.5 to obtain the catalyst system C4-3.
  • the catalytic activity of C4-3 is 0.4kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 1084kg/mol
  • the molecular weight distribution index is 3.8
  • melting temperature is 230°C
  • isotacticity is 95%.
  • the main catalyst in this example is consistent with Example 1;
  • the catalyst in this example uses compound P1 as the main catalyst, and a combination of triphenylcarbonium tetrakis(pentafluorophenyl)borate and triisobutylaluminum (molar ratio: 1:25) as the activator.
  • the activator is marked It is A4, and the main catalyst P1 and the activator A4 are compounded at a mass ratio of 1:1.5 to obtain the catalyst C1-10.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the catalyst C1-3 is replaced by the catalyst C1-10.
  • the catalytic activity of catalyst C1-10 is 9.5kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 345kg/mol
  • the molecular weight distribution index is 2.4
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the main catalyst in this example is consistent with Example 1;
  • the catalyst in this example uses compound P1 as the main catalyst, and a combination of triphenylcarbonium tetrakis(pentafluorophenyl)borate and triisobutylaluminum (molar ratio: 1:450) as the activator.
  • the activator is marked It is A6, and the main catalyst P1 and the activator A6 are compounded at a mass ratio of 1:1.5 to obtain the catalyst C1-11.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the catalyst C1-3 is replaced by the catalyst C1-11.
  • the catalytic activity of catalyst C1-11 is 6.9kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 402kg/mol
  • the molecular weight distribution index is 4.0
  • the melting temperature is 239°C
  • the isotacticity is 98%.
  • the main catalyst in this example is consistent with Example 1;
  • the catalyst in this embodiment is obtained by compounding the main catalyst P1 and the activator A3 at a molar ratio of 2:1, and the obtained catalyst is labeled catalyst C1-12;
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the catalyst C1-3 is replaced by the catalyst C1-12.
  • the catalytic activity of catalyst C1-12 is 2.9kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 348kg/mol
  • the molecular weight distribution index is 2.3
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the main catalyst in this example is consistent with Example 1;
  • the catalyst in this embodiment is obtained by compounding the main catalyst P1 and the activator A3 at a molar ratio of 1:7, and the obtained catalyst is labeled catalyst C1-13;
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the catalyst C1-3 is replaced by the catalyst C1-13.
  • the catalytic activity of catalyst C1-13 is 9.9kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 301kg/mol
  • the molecular weight distribution index is 3.0
  • the melting temperature is 238°C
  • the isotacticity is 98%.
  • the preparation steps of poly(4-methyl-1-pentene) in this embodiment are basically the same as those in Example 1, except that the 4-methyl-1-pentene monomer added in the homopolymerization reaction is 0.025 mL. (The molar ratio of 4-methyl-1-pentene monomer to catalyst C1-3 is 200:1).
  • the catalytic activity of catalyst C1-3 is 0.6kg polymer/(mmol Hf ⁇ h).
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) was 324kg/mol, the molecular weight distribution index was 2.0, the melting temperature was 234°C, and the isotacticity was 98%.
  • the preparation steps of poly(4-methyl-1-pentene) in this example are basically the same as those in Example 1. The difference is that the 4-methyl-1-pentene monomer added in the homopolymerization reaction is 7.5 mL. (The molar ratio of 4-methyl-1-pentene monomer to catalyst C1-3 is 60000:1).
  • the catalytic activity of catalyst C1-3 is 27.4kg polymer/(mmol Hf ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 940kg/mol
  • the molecular weight distribution index is 2.9
  • the melting temperature is 238°C
  • the isotacticity is 97%.
  • This comparative example uses a Ziegler-Natta catalyst (obtained commercially, product model: CS-2) to catalyze the homopolymerization of 4-methyl-1-pentene.
  • the specific steps are as follows:
  • the Schlenk bottle equipped with a magnetic stirrer was continuously evacuated and dried with an infrared lamp for two hours. After natural cooling, the nitrogen was replaced three times to normal pressure, and 7 mL of toluene and 3 mL of 4-methyl-1-pentene were added in sequence. and 500 ⁇ mol triethylaluminum, stir, and keep the temperature in a water bath at 40°C for half an hour. Add 20 mg of Ziegler-Natta catalyst into the reaction system and time it. After the polymerization reaches 2 hours, open the reaction bottle, add 10% hydrochloric acid acidified ethanol solution to terminate the polymerization, stir for 3 hours, filter, wash with ethanol three times, and dry in a vacuum. Dry to constant weight to obtain poly(4-methyl-1-pentene).
  • the catalytic activity of the Ziegler-Natta catalyst is 275g polymer/(mmol Ti ⁇ h), and the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 1004kg/mol.
  • the distribution index is 13.7, the melting temperature is 237°C, and the isotacticity is 96%.
  • a zirconocene catalyst is used to catalyze the homopolymerization reaction of 4-methyl-1-pentene.
  • the structural formula of the zirconocene catalyst is as follows:
  • the above catalyst can be prepared by referring to the method described in J. Mol. Catal. A 1996, 112: 37.
  • the specific steps of the homopolymerization reaction of this comparative example are: continuously evacuate the Schlenk bottle equipped with a magnetic stirrer and bake and dry it with an infrared lamp for two hours. After natural cooling, replace nitrogen three times to normal pressure, and add 7 mL of toluene in sequence. , 3mL of 4-methyl-1-pentene and 20mmol of methylaluminoxane (MAO), stir, and keep the temperature in a water bath at 40°C for half an hour. Add 10 ⁇ mol of zirconocene catalyst into the reaction system and time. After the polymerization reaches 7 h, the reaction bottle is opened and an ethanol solution acidified with 10% hydrochloric acid is added to terminate the polymerization. After stirring for 3 hours, filter, wash with ethanol three times, and vacuum dry to constant weight to obtain poly(4-methyl-1-pentene).
  • the catalytic activity of the zirconocene catalyst is 10.9g polymer/(mmol Zr ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 17kg/mol
  • the molecular weight distribution index is 2.9
  • melting temperature is 214°C
  • isotacticity is 90%.
  • a late transition metal nickel catalyst is used to catalyze the homopolymerization reaction of 4-methyl-1-pentene.
  • the structural formula of the catalyst is as follows:
  • the above catalyst can be prepared by referring to the method described in Macromolecules 2000, 33, 2320.
  • the specific steps of the homopolymerization reaction of this comparative example are: continuously evacuate the Schlenk bottle equipped with a magnetic stirrer and bake and dry it with an infrared lamp for two hours. After natural cooling, replace the nitrogen three times to Under normal pressure, add 7 mL of toluene, 3 mL of 4-methyl-1-pentene and 2.5 mmol of diethyl aluminum monochloride in sequence, stir, and keep the temperature at 40°C in a water bath for half an hour. Add 10 ⁇ mol of late transition metal nickel catalyst into the reaction system and time. After the polymerization reaches 1 hour, the reaction bottle is opened and an ethanol solution acidified with 10% hydrochloric acid is added to terminate the polymerization. After stirring for 3 hours, filter, wash with ethanol three times, and vacuum dry to constant weight to obtain poly(4-methyl-1-pentene).
  • the catalytic activity of the late transition metal nickel catalyst is 105g polymer/(mmol Ni ⁇ h)
  • the weight average molecular weight of the prepared poly(4-methyl-1-pentene) is 175kg/mol
  • the molecular weight distribution index is 1.5
  • the product is a random polymer
  • the isotacticity is less than 10%.
  • M in the catalyst activity units of Examples 1 to 33 is Hf
  • M in Comparative Example 1 M is Ti
  • M in Comparative Example 2 M is Zr
  • the poly(4-methyl-1-pentene) obtained by using the hafnium iminoamine type catalyst of the present application has higher catalytic activity than the Ziegler-Natta catalyst, and is more Narrow molecular weight distribution, showing higher catalytic activity compared to zirconocene catalysts
  • the prepared poly(4-methyl-1-pentene) has higher molecular weight and isotacticity, compared to late transition metal
  • the nickel catalyst showed higher catalytic activity, and the prepared polymer (4-methyl-1-pentene) had higher isotacticity.

Abstract

本申请提供一种用于制备聚(4-甲基-1-戊烯)的主催化剂及其应用。本申请用于制备聚(4-甲基-1-戊烯)的主催化剂具有式I所示的结构,式I中,R1选自氢或苯基,当R1选自苯基时,R1与式I中的苯环稠合形成蒽环;R2选自甲基或异丙基。本申请的主催化剂在应用于催化体系中用于催化4-甲基-1-戊烯的均聚反应时,催化剂表现出高催化活性,且制备得到的聚(4-甲基-1-戊烯)兼具高分子量,窄分子量分布以及高等规度,有广阔的市场化应用前景。

Description

一种用于制备聚(4-甲基-1-戊烯)的主催化剂及其应用
本申请要求于2022年09月08日提交中国专利局、申请号为202211099369.3、申请名称为“一种用于制备聚(4-甲基-1-戊烯)的主催化剂及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及烯烃聚合技术领域,尤其涉及一种用于制备聚(4-甲基-1-戊烯)的主催化剂及其应用。
背景技术
聚(4-甲基-1-戊烯)(PMP)是一种具有立体规整结构的结晶型树脂,其独特地结构使其具有优异的耐化学性能、机械性能、可加工性能、电器绝缘性能、低介电性能、光学性能、透气性能以及易剥离性能。因此,聚(4-甲基-1-戊烯)在纤维材料、离型材料、高端医疗材料以及电子材料领域都有着重要的用途。
聚(4-甲基-1-戊烯)主要是通过催化剂催化4-甲基-1-戊烯单体均聚制备得到,目前用于催化4-甲基-1-戊烯单体聚合的催化剂体系有三类:齐格勒-纳塔催化剂、茂金属催化剂和后过渡金属镍钯催化剂。
齐格勒-纳塔催化剂能够有效催化4-甲基-1-戊烯聚合,得到高等规结晶性的聚合物,此外,通过外加给电子体能够调节产物的立构规整性,使聚合物的等规度大于95%,熔融温度达到230℃以上,然而齐格勒-纳塔催化剂具有多活性中心,得到的聚合物的分子量分布非常宽,通常都大于10以上,低分子量部分的力学性能差,限制了其在高端领域中的应用。
茂金属催化剂也能够催化4-甲基-1-戊烯的聚合,但是茂金属催化剂的结构对聚(4-甲基-1-戊烯)的等规度有着重要的影响。目前报道的C2对称型的茂钛/锆催化剂能够催化4-甲基-1-戊烯聚合,聚合物的规整度也可达到90%以上,由于茂金属催化剂具有单金属活性中心,因此其制备得到的 聚(4-甲基-1-戊烯)的分子量分布都较窄,通常低于3。然而茂金属催化剂的空间位阻大,大位阻的4-甲基-1-戊烯单体难以插入,茂金属催化剂催化4-甲基-1-戊烯的活性较低,很难制备得到分子量超过10万的聚合物。
后过渡金属镍钯催化剂在用于4-甲基-1-戊烯的聚合时的立构控制性较差,无法得到高规整度的聚(4-甲基-1-戊烯),且后过渡金属镍钯催化剂在催化聚合过程中存在着链行走过程,导致产物支化复杂,得到的是一种非结晶性的聚合物,难以有实际的商业化用途。
因此,开发一种能够制备得到兼具高分子量、高等规度以及窄分子量聚(4-甲基-1-戊烯)的催化体系具有重要意义。
发明内容
本申请提供一种用于制备聚(4-甲基-1-戊烯)的主催化剂及其制备方法,该主催化剂在4-甲基-1-戊烯的聚合反应中具有高催化活性,催化得到的聚(4-甲基-1-戊烯)具有分子量高、分子量分布窄,等规度高的优势。
本申请还提供一种用于制备聚(4-甲基-1-戊烯)的催化剂,该催化剂由上述主催化剂与活化剂复配得到,由于该催化剂包括上述主催化剂,因此具有催化活性高,催化制备得到的聚(4-甲基-1-戊烯)具有分子量高、分子量分布窄,等规度高的优势。
本申请还提供一种聚(4-甲基-1-戊烯)的制备方法,该方法以上述催化剂催化4-甲基-1-戊烯单体进行均聚反应制备得到聚(4-甲基-1-戊烯),因此该方法制备得到的聚(4-甲基-1-戊烯)具有分子量高、分子量分布窄,等规度高的优势。
本申请第一方面提供一种用于制备聚(4-甲基-1-戊烯)的主催化剂,所述主催化剂具有式I所示的结构:
式I中,R1选自氢或苯基,当R1选自苯基时,R1与式I中的萘环稠合形 成蒽环;R2选自甲基或异丙基。
式I所示的化合物是一种非茂桥联亚胺胺基铪配合物,该配合物具有较小的位阻,有利于大位阻的4-甲基-1-戊烯单体的配位插入,能够使催化剂获得高的催化活性以及获得高分子量的聚(4-甲基-1-戊烯),同时该配合物单金属活性中心可使催化剂具有更高的选择性,有利于获得窄分子量分布以及高等规度的聚(4-甲基-1-戊烯)。
发明人研究发现,当R2选自异丙基时,该主催化剂表现出更高的催化活性,且催化得到的聚(4-甲基-1-戊烯)具有更窄的分子量和更高的等规度。
本申请第二方面提供一种上述用于制备聚(4-甲基-1-戊烯)的主催化剂的制备方法,该方法的制备路线如下所示:
具体步骤包括:1)使甲基乙二醛与2,6-二异丙基苯胺反应,得到中间体A;2)使中间体A与α-萘胺或α-蒽胺反应,得到中间体B:3)使中间体B与R2取代的苯基锂化合物反应,得到中间体C;4)使中间体C依次与烷基锂和四卤化铪反应,得到中间体D;5)使中间体D与甲基卤化镁反应,得到式I所示的主催化剂。
步骤1)和2)是分别采用芳基胺类化合物使甲基乙二醛中的醛基和羰基进行缩合反应,得到不对称芳基取代的二亚胺类中间体B,步骤3)中,R2取代的苯基锂化合物作为亲核试剂,对中间体B进行亲核加成,得到桥头取代的亚胺胺基中间体C,即主催化剂的配体;步骤4)中,烷基锂拔掉仲胺上的质子,再与四卤化铪反应,即可得到亚胺胺基卤化铪中间体D;步骤5)中,使中间体D与甲基卤化镁发生格氏反应,即可得到式I所示的主催化剂。
步骤4)中的烷基锂优选为正丁基锂,四卤化铪优选为四氯化铪,步骤5)中的甲基卤化镁优选为甲基溴化镁。
步骤1)至步骤5)的具体反应条件的选择,对于本领域具备有机合成基础的技术人员均属于常规手段,此处不再赘述。
本申请第三方面提供一种用于制备聚(4-甲基-1-戊烯)的催化剂,所述催化剂包括本申请第一方面提供的主催化剂和活化剂。
由于该催化剂包括本申请第一方面提供的主催化剂,因此具有催化活性高,催化制备得到的聚(4-甲基-1-戊烯)具有分子量高、分子量分布窄,等规度高的优势。
进一步的,本申请的活化剂选自三苯碳鎓四(五氟苯)硼酸盐和烷基铝的组合物。其中,从催化剂的活性、选择性以及成本等因素考虑,组合物中的烷基铝化合物优选为三甲基铝、三乙基铝、三异丁基铝中的至少一种。
此外,通过对组合物中的三苯碳鎓四(五氟苯)硼酸盐和烷基铝的摩尔比,以及主催化剂和助催化剂的摩尔比进行实验探索后发现,当组合物中的三苯碳鎓四(五氟苯)硼酸盐和烷基铝的摩尔比为1:(50~300),主催化剂和活化剂的摩尔比为1:(1~5)时,催化剂具有更高的催化活性,且制备得到的聚合物兼具更高的分子量,更窄的分子量分布以及更高的等规度。
本申请第四方面提供一种聚(4-甲基-1-戊烯)的制备方法,所述制备方法包括:采用本申请第三方面提供的催化剂催化4-甲基-1-戊烯单体进行均聚反应,得到所述聚(4-甲基-1-戊烯)。
本申请的催化剂在4-甲基-1-戊烯的均聚反应中具有高催化活性和高选择性,制备得到的聚(4-甲基-1-戊烯)兼具高分子量、窄的分子量分布以及高等规度,表现出更好的机械性能和热稳定性能,具有更为广阔的市场应用前景。
在上述均聚反应中,可以通过对4-甲基-1-戊烯单体与催化剂的摩尔比、均聚反应的温度、溶剂等条件进行优化以使获得的聚(4-甲基-1-戊烯)具有更高的分子量、更窄的分子量分布以及更高的等规度。
经过优化实验后发现,4-甲基-1-戊烯单体与催化剂的摩尔比优选为(100~400000):1,进一步优选为(10000-100000):1;均聚反应的温度为20~60℃;均聚反应的溶剂优选为1,2-二氯乙烷、氯仿、氯苯、甲苯、苯、二 甲苯中的一种或多种。
通过对均聚反应中4-甲基-1-戊烯单体与催化剂的摩尔比、聚合温度、聚合溶剂等因素进行控制,可实现制备得到的聚(4-甲基-1-戊烯)的重均分子量≥50万,进一步为50万~163万;分子量分布指数≤4,进一步为2.0~4.0;等规度≥95%;熔融温度≥230℃,进一步为230~240℃。
相比于现有技术,本申请至少具有以下有益效果:
1)本申请提供的主催化剂是一种非茂桥联亚胺胺基配合物,该配合物具有较小的位阻,有利于大位阻的4-甲基-1-戊烯单体的配位插入,能够使催化剂获得高的催化活性以及获得高分子量的聚(4-甲基-1-戊烯),同时该配合物的单金属活性中心可使催化剂具有更高的选择性,有利于获得窄分子分布以及高等规度的聚(4-甲基-1-戊烯)。
2)将本申请的主催化剂应用于催化体系中催化4-甲基-1-戊烯单体聚合,聚合得到的聚(4-甲基-1-戊烯)兼具高分子量、窄分子量分布、高等规度、高熔融温度,因而得到的聚合物具有更好的机械性能和热稳定性能,具有更为广阔的应用前景。
3)本申请提供的聚(4-甲基-1-戊烯)制备方法具有反应条件温和高效的优势。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1制备得到的聚(4-甲基-1-戊烯)的13C NMR图;
图2为实施例1制备得到的聚(4-甲基-1-戊烯)的DSC曲线图;
图3为实施例1制备得到的聚(4-甲基-1-戊烯)的GPC曲线图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申 请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合具体的实施例对本申请提供的用于制备聚(4-甲基-1-戊烯)的主催化剂及其应用进行进一步详细的说明。
需要说明的是,在下述实施例中,如无特殊说明,使用的原料均可通过商购或常规方法制备得到,未注明具体条件的实验方法均为本领域所熟知的常规方法和常规条件。
以下实施例与对比例的催化剂的催化活性计算公式为:催化活性=聚(4-甲基-1-戊烯)的质量(克)/(主催化剂加入量(mol)×反应时间(h)。
以下实施例与对比例制备得到的聚(4-甲基-1-戊烯)的重均分子量以及分子量分布指数均采用GPC进行测定。
以下实施例与对比例制备得到的聚(4-甲基-1-戊烯)的熔融温度均采用DSC热分析法进行测定。
以下实施例与对比例制备得到的聚(4-甲基1-戊烯)的等规度均采用13C NMR进行测定。
实施例1
本实施例的主催化剂、催化剂以及聚(4-甲基-1-戊烯)的制备过程如下:
1)主催化剂P1的制备
制备路线如下所示:
制备步骤包括:
a、在反应瓶中加入S1(甲基乙二醛)0.79g(11mmol)、50mL乙醇和催化量的甲酸,混合均匀,然后向反应瓶中缓慢滴加2,6-二异丙基苯胺1.77g(10mmol),滴加完毕后搅拌反应12h,将反应体系浓缩除去溶剂,浓缩物通过硅胶柱层析纯化(洗脱剂为体积比为50:1正己烷和乙酸乙酯的混合溶剂),得到化合物S2,产率为93%;
b、将化合物S20.93g(4mmol)溶于50mL甲苯中,再缓慢滴加α-萘胺0.72g(5mmol)和催化量的对甲苯磺酸,加热至回流,反应12h,冷却后浓缩除去溶剂,浓缩物通过柱层析纯化(洗脱剂为体积比为50:1正己烷和乙酸乙酯的混合溶剂),得到化合物S3,产率为89%;
c、在-40℃下,将化合物S31.78g(5mmol)溶解于无水乙醚中,缓慢滴加2-异丙基苯锂0.76g(6mmol)的乙醚溶液,滴加完毕后,将反应体系自然升至室温,反应过夜。TLC检测反应完成后,向反应体系中加入氯化铵的饱和溶液淬灭反应,用无水乙醚萃取3次,收集乙醚相,对乙醚相依次进行饱和食盐水洗涤、无水硫酸钠干燥、过滤、浓缩,得到浓缩物,浓缩物中加入乙醇重结晶,得到配体L1,产率为90%;
配体L1的表征数据为:
1H NMR(CD3Cl,400MHz):δ(ppm)8.44(d,1H,Nap-H),8.12-8.08(d,3H,Nap-H),7.97(d,1H,Nap-H),7.70-6.87(m,9H,Ar-H),6.71(s,1H,CNH),4.26(s,1H,NCH),3.67(sept,2H,CH(CH3)2),2.94(sept,1H,CH(CH3)2),1.78(d,6H,CH(CH3)2),1.19(d,6H,CH(CH3)2),1.13(s,3H,C-CH3),1.01(d,3H, CH(CH3)2),0.93(d,3H,CH(CH3)2).
Anal.Calcd for C34H40N2:C,85.67;H,8.46;N,5.88;Found:C,85.73;H,8.45;N,5.82
d、氮气氛围下,向干燥的Schlenk瓶中加入化合物S40.93g(2mmol),加入20mL的甲苯溶解,在-50℃下向Schlenk瓶中滴加正丁基锂溶液(1.5mL,1.6M),滴加完毕后,自然升温至室温,反应完毕,抽干溶剂,析出黄色粉末,用正己烷洗涤3次,抽干正己烷后,得到黄色锂盐配体,将黄色配体锂盐用甲苯溶解并转移至反应瓶中,将HfCl4 0.71g(2.2mmol)甲苯悬浊液也加入至反应瓶中,然后升温至120℃反应6小时,自然降温至室温,再放入低温浴中冷却至-40℃,然后再将MeMgBr(2.5mL,3M)缓慢滴入反应体系,滴加完毕后,自然升室温搅拌6h,过滤除去沉淀,然后用甲苯洗涤沉淀三次,合并滤液并减压蒸馏除去滤液中的溶剂得到固体,用正己烷洗涤固体三次,干燥后即得到主催化剂P1,黄色固体,产率为64%。
主催化剂P1的表征数据为:
1H NMR(C6D6,400MHz):δ(ppm)8.52(d,1H,Nap-H),8.26(d,1H,Nap-H),7.94(d,1H,Nap-H),7.73(d,1H,Nap-H),7.35-6.97(m,9H,Ar-H),4.42(s,1H,NCH),3.78(sept,1H,CH(CH3)2),3.02(sept,1H,CH(CH3)2),2.89(sept,1H,CH(CH3)2),1.35(d,3H,CH(CH3)2),1.31(d,3H,CH(CH3)2),1.21(d,3H,CH(CH3)2),1.17(s,3H,C-CH3),1.12(d,3H,CH(CH3)2),0.97(s,3H,Hf-CH3),0.73(d,3H,CH(CH3)2),0.66(s,3H,Hf-CH3),0.34(d,3H,CH(CH3)2).
MS-EI(m/z):684.3(M+).
Anal.Calcd for C36H44N2Hf:C,63.28;H,6.49;N,4.10;Found:C,63.32;H,6.44;N,4.03.
2)催化剂C1-3的制备
以化合物P1为主催化剂,以三苯碳鎓四(五氟苯)硼酸盐和三异丁基铝的组合物(摩尔比为1:67)为活化剂,并将活化剂标记为A3,使主催化剂P1与活性剂A3按照摩尔比为1:1.5复配得到催化剂C1-3。
3)聚(4-甲基-1-戊烯)的制备
具体步骤包括:将装有磁力搅拌子的Schlenk瓶连续抽真空并用红外灯烘烤干燥两个小时,自然冷却后,置换三次氮气至常压,然后向Schlenk瓶依次加入7mL甲苯、3mL的4-甲基-1-戊烯单体,用水浴恒温在40℃搅拌半个小时。随后将1μmol催化剂C1-3(4-甲基-1-戊烯单体与催化剂C1-3的摩尔比为24000:1)加入体系引发聚合,聚合达到5min后,加入10%盐酸酸化的乙醇溶液终止聚合。将聚合体系过滤,然后用乙醇洗涤三次,真空烘干至恒重,得到聚(4-甲基-1-戊烯)。
通过计算可知,上述均聚反应中催化剂C1-3的催化活性为14.5kg polymer/(mmol Hf·h)。
对实施例1制备得到的聚(4-甲基-1-戊烯)进行数据表征,图1为实施例1制备得到的聚(4-甲基-1-戊烯)的13C NMR图;图2为实施例1制备得到的聚(4-甲基-1-戊烯)的DSC曲线图;图3为实施例1制备得到的聚(4-甲基-1-戊烯)的GPC曲线图,通过对图1至图3的解析可知,实施例1制备得到的聚(4-甲基-1-戊烯)的重均分子量为705kg/mol,分子量分布指数为2.3,熔融温度为238℃,等规度为98%。
实施例2
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将聚合温度从40℃替换为20℃。
本实施例中催化剂C1-3的催化活性为3.1kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为733kg/mol,分子量分布指数为4.0,熔融温度为240℃,等规度为>99%。
实施例3
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将聚合温度从40℃替换为60℃。
本实施例中催化剂C1-3的催化活性为6.5kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为821kg/mol,分子量分布指 数为2.0,熔融温度为237℃,等规度为97%。
实施例4
实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,均聚反应中加入的4-甲基-1-戊烯单体为0.0125mL(4-甲基-1-戊烯单体与催化剂C1-3的摩尔比为100:1)。
本实施例中催化剂C1-3的催化活性为4.8kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为501kg/mol,分子量分布指数为2.0,熔融温度为239℃,等规度为99%。
实施例5
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,均聚反应中加入的4-甲基-1-戊烯单体为0.125mL(4-甲基-1-戊烯单体与催化剂C1-3的摩尔比为1000:1)。
本实施例中催化剂C1-3的催化活性为13.8kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为538kg/mol,分子量分布指数为2.2,熔融温度为239℃,等规度为99%。
实施例6
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,均聚反应中加入的4-甲基-1-戊烯单体为1mL(4-甲基-1-戊烯单体与催化剂C1-3的摩尔比为8000:1)。
本实施例中催化剂C1-3的催化活性为9.2kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为686kg/mol,分子量分布指数为2.3,熔融温度为238℃,等规度为98%。
实施例7
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,均聚反应中加入的4-甲基-1-戊烯单体为5mL(4-甲基-1-戊烯单体与催化剂C1-3的摩尔比为40000:1)。
本实施例中催化剂C1-3的催化活性为29.6kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为830kg/mol,分子量分布指数为2.7,熔融温度为238℃,等规度为98%。
实施例8
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将聚合溶剂从甲苯替换为苯。
本实施例中催化剂C1-3的催化活性为8.3kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为811kg/mol,分子量分布指数为2.7,熔融温度为238℃,等规度为98%。
实施例9
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将聚合溶剂从甲苯替换为二甲苯。
本实施例中催化剂C1-3的催化活性为10.5kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为785kg/mol,分子量分布指数为2.7,熔融温度为238℃,等规度为98%。
实施例10
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将聚合溶剂从甲苯替换为1,2-二氯乙烷。
本实施例中催化剂C1-3的催化活性为12.1kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为738kg/mol,分子量分布 指数为2.6,熔融温度为237℃,等规度为97%。
实施例11
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将聚合溶剂从甲苯替换为氯仿。
本实施例中催化剂C1-3的催化活性为9.8kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为765kg/mol,分子量分布指数为2.6,熔融温度为237℃,等规度为97%。
实施例12
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将聚合溶剂从甲苯替换为氯苯。
本实施例中催化剂C1-3的催化活性为10.9kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为857kg/mol,分子量分布指数为2.7,熔融温度为238℃,等规度为98%。
实施例13
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将聚合溶剂从甲苯替换为体积比为1:1的甲苯和苯的混合溶剂。
本实施例中催化剂C1-3的催化活性为7.8kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为778kg/mol,分子量分布指数为2.7,熔融温度为238℃,等规度为98%。
实施例14
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将聚合溶剂从甲苯替换为体积比为1:1的甲苯和二甲苯的混合 溶剂。
本实施例中均聚反应中催化剂C1-3的催化活性为8.7kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为749kg/mol,分子量分布指数为2.7,熔融温度为238℃,等规度为98%。
实施例15
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将聚合溶剂从甲苯替换为体积比为1:1的1,2-二氯乙烷和氯仿的混合溶剂。
本实施例中催化剂C1-3的催化活性为7.1kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为794kg/mol,分子量分布指数为2.6,熔融温度为237℃,等规度为97%。
实施例16
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将聚合溶剂从甲苯替换为体积比为1:1的氯苯和苯的混合溶剂。
本实施例中催化剂C1-3的催化活性为8.1kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为843kg/mol,分子量分布指数为2.7,熔融温度为238℃,等规度为98%。
实施例17
本实施例的主催化剂与实施例1一致;
本实施例的催化剂通过将主催化剂P1与活化剂A3按照摩尔比为1:1复配得到,得到的催化剂标记为催化剂C1-7;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C1-7。
本实施例中催化剂C1-7的催化活性为6.8kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为688kg/mol,分子量分布指 数为2.5,熔融温度为238℃,等规度为98%。
实施例18
本实施例的主催化剂与实施例1一致;
本实施例的催化剂通过将主催化剂P1与活化剂A3按照摩尔比为1:3复配得到,得到的催化剂标记为催化剂C1-8;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C1-8。
本实施例中催化剂C1-8的催化活性为7.2kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为744kg/mol,分子量分布指数为2.6,熔融温度为238℃,等规度为98%。
实施例19
本实施例的主催化剂与实施例1一致;
本实施例的催化剂通过将主催化剂P1与活化剂A3按照摩尔比为1:5复配得到,得到的催化剂标记为催化剂C1-9;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C1-9。
本实施例中催化剂C1-9的催化活性为8.8kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为798kg/mol,分子量分布指数为2.7,熔融温度为238℃,等规度为98%。
实施例20
本实施例的主催化剂与实施例1一致;
本实施例的催化剂以化合物P1为主催化剂,以三苯碳鎓四(五氟苯)硼酸盐和三异丁基铝的组合物(摩尔比为1:50)为活化剂,活化剂标记为A4,主催化剂P1与活化剂A4按照质量比为1:1.5复配得到催化剂C1-4。
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C1-4。
本实施例中催化剂C1-4的催化活性为8.3kg polymer/(mmol Hf·h),制 备得到的聚(4-甲基-1-戊烯)的重均分子量为667kg/mol,分子量分布指数为2.8,熔融温度为238℃,等规度为98%。
实施例21
本实施例的主催化剂与实施例1一致;
本实施例的催化剂以化合物P1为主催化剂,以三苯碳鎓四(五氟苯)硼酸盐和三异丁基铝的组合物(摩尔比为1:150)为活化剂,活化剂标记为A5,主催化剂P1与活化剂A5按照质量比为1:1.5复配得到催化剂C1-5。
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C1-5。
本实施例中催化剂C1-5的催化活性为8.9kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为601kg/mol,分子量分布指数为3.0,熔融温度为238℃,等规度为98%。
实施例22
本实施例的主催化剂与实施例1一致;
本实施例的催化剂以化合物P1为主催化剂,以三苯碳鎓四(五氟苯)硼酸盐和三异丁基铝的组合物(摩尔比为1:300)为活化剂,活化剂标记为A6,主催化剂P1与活化剂A6按照质量比为1:1.5复配得到催化剂C1-6。
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C1-6。
本实施例中催化剂C1-6的催化活性为7.4kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为519kg/mol,分子量分布指数为3.5,熔融温度为238℃,等规度为98%。
实施例23
本实施例的主催化剂与实施例1一致;
本实施例的催化剂以化合物P1为主催化剂,以三苯碳鎓四(五氟苯)硼酸盐和三甲基铝的组合物(摩尔比为1:67)为活化剂,活化剂标记为A1,主催化剂P1与活化剂A1按照质量比为1:1.5复配得到催化剂C1-1。
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C1-1。
本实施例中催化剂C1-1的催化活性为7.8kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为556kg/mol,分子量分布指数为3.0,熔融温度为238℃,等规度为98%。
实施例24
本实施例的主催化剂与实施例1一致;
本实施例的催化剂以化合物P1为主催化剂,以三苯碳鎓四(五氟苯)硼酸盐和三乙基铝的组合物(摩尔比为1:67)为活化剂,活化剂标记为A2,主催化剂P1与活化剂A2按照质量比为1:1.5复配得到催化剂C1-2。
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C1-2。
本实施例中催化剂C1-2的催化活性为9.4kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为618kg/mol,分子量分布指数为2.8,熔融温度为238℃,等规度为98%。
实施例25
本实施例的主催化剂、催化剂以及聚(4-甲基-1-戊烯)的制备过程如下:
1)主催化剂P2的制备
主催化剂P2的结构式如下:
主催化剂P2的制备步骤与实施例1中记载的主催化剂P1的制备步骤基本一致,不同之处在于,将步骤c中的2-异丙基苯锂替换为甲基苯锂,步骤c的产物为配体L2,步骤c的产率为91%,步骤d的产率为68%。
配体L2的结构式如下:
配体L2的表征数据为:
1H NMR(CD3Cl,400MHz):δ(ppm)8.24(d,1H,Nap-H),8.19-8.16(d,3H,Nap-H),8.00(d,1H,Nap-H),7.63-7.08(m,9H,Ar-H),6.80(s,1H,CNH),4.01(s,1H,NCH),3.77(sept,2H,CH(CH3)2),3.01(sept,1H,CH(CH3)2),2.96(d,3H,C(CH3)2).1.78(d,6H,CH(CH3)2),1.19(d,6H,CH(CH3)2),1.01(d,3H,CH(CH3)2).
Anal.Calcd for C32H36N2:C,85.67;H,8.09;N,6.24;Found:C,85.73;H,8.05;N,6.20.
主催化剂P2的表征数据为:
1H NMR(C6D6,400MHz):δ(ppm)8.42(d,1H,Nap-H),8.18(d,1H,Nap-H),8.05(d,1H,Nap-H),7.76(d,1H,Nap-H),7.41-6.99(m,9H,Ar-H),4.12(s,1H,NCH),3.12(sept,1H,CH(CH3)2),2.93(sept,1H,CH(CH3)2),2.37(s,3H,C-CH3),2.01(s,3H,NC-CH3),1.33(d,3H,CH(CH3)2),1.21(d,3H,CH(CH3)2),1.13(d,3H,CH(CH3)2),0.90(s,3H,Hf-CH3),0.87(d,3H,CH(CH3)2),0.78(s,3H,Hf-CH3).
MS-EI(m/z):656.27(M+).
Anal.Calcd for C34H40N2Hf:C,62.33;H,6.15;N,4.28;Found:C,62.40;H,6.12;N,4.25.
2)催化剂C2-3的制备
以化合物P2为主催化剂,将主催化剂P2与活性剂A3按照摩尔比为1:1.5复配得到催化剂C2-3。
3)聚(4-甲基-1-戊烯)的制备
具体步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C2-3。
本实施例中催化剂C2-3的催化活性为0.6kg polymer/(mmol Hf·h),制 备得到的聚(4-甲基-1-戊烯)的重均分子量为1634kg/mol,分子量分布指数为4.0,熔融温度为231℃,等规度为95%。
实施例26
本实施例的主催化剂、催化剂以及聚(4-甲基-1-戊烯)的制备过程如下:
1)主催化剂P3的制备
主催化剂P3的结构式如下:
主催化剂P3的制备步骤与实施例1中记载的主催化剂P1的制备步骤基本一致,不同之处在于,将步骤b中的萘胺替换为蒽胺。
步骤c得到的配体为L3,步骤c的产率为87%,步骤d的产率为59%。
配体L3的结构式如下:
配体L3的表征数据为:
1H NMR(C6D6,400MHz):δ(ppm)8.49(d,2H,An-H),8.21(d,2H,An-H),8.13(d,1H,An-H),7.68(d,1H,An-H),7.49-6.95(m,10H,Ar-H),6.02(s,1H,CNH),4.17(s,1H,NCH),3.42(sept,2H,CH(CH3)2),2.81(sept,1H,CH(CH3)2),1.79-1.71(d,6H,CH(CH3)2),1.23(d,6H,CH(CH3)2),1.06(s,3H,C-CH3),1.02(d,3H,CH(CH3)2),0.91(d,3H,CH(CH3)2).
Anal.Calcd for C38H42N2:C,86.64;H,8.04;N,5.32;Found:C,86.70;H, 8.07;N,5.35.
主催化剂P3的表征数据为:
1H NMR(CD3Cl,400MHz):δ(ppm)8.58(d,1H,An-H),8.41(d,1H,An-H),8.13(d,1H,An-H),8.02(d,1H,An-H),7.64(d,1H,An-H),7.49-6.84(m,10H,Ar-H),4.18(s,1H,NCH),3.16(sept,1H,CH(CH3)2),2.96(sept,1H,CH(CH3)2),2.84(sept,1H,CH(CH3)2),1.37(d,3H,CH(CH3)2),1.32(d,3H,CH(CH3)2),1.20(d,3H,CH(CH3)2),1.15(s,3H,C-CH3),1.11(d,3H,CH(CH3)2),0.90(s,3H,Hf-CH3),0.76(d,3H,CH(CH3)2),0.62(s,3H,Hf-CH3),0.29(d,3H,CH(CH3)2).
MS-EI(m/z):732.31(M+).
Anal.Calcd for C40H46N2Hf:C,65.52;H,6.32;N,3.82;Found:C,65.59;H,6.29;N,3.80.
2)催化剂C3-3的制备
以化合物P3为主催化剂,将主催化剂P3与活性剂A3按照摩尔比为1:1.5复配得到催化剂体系C3-3。
3)聚(4-甲基-1-戊烯)的制备
具体步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C3-3。
本实施例中催化剂C3-3的催化活性为8.3kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为637kg/mol,分子量分布指数为3.0,熔融温度为236℃,等规度为97%。
实施例27
本实施例的主催化剂、催化剂以及聚(4-甲基-1-戊烯)的制备过程如下:
1)主催化剂P4的制备
主催化剂P4的结构式如下:
主催化剂P4的制备步骤与实施例26中记载的主催化剂P3基本一致,不同之处在于,将步骤c中的2-异丙基苯锂替换为甲基苯锂,步骤c得到的产物为配体L4,步骤c的产率为89%,步骤d的产率为61%。
配体L4的结构式如下:
配体L4的表征数据为:
1H NMR(CD3Cl,400MHz):δ(ppm)8.47(d,2H,An-H),8.19(d,2H,An-H),8.09(d,1H,An-H),7.46(d,1H,An-H),7.40-6.65(m,10H,Ar-H),6.17(s,1H,CNH),3.99(s,1H,NCH),3.18(sept,2H,CH(CH3)2),2.41(s,3H,C-CH3),1.56-1.53(d,6H,CH(CH3)2),1.01(s,3H,C-CH3),0.97(d,3H,CH(CH3)2),0.87(d,3H,CH(CH3)2).
Anal.Calcd for C36H38N2:C,86.70;H,7.68;N,5.62;Found:C,86.74;H,7.66;N,5.59.
主催化剂P4的表征数据为:
1H NMR(C6D6,400MHz):δ(ppm)8.51(d,1H,An-H),8.38(d,1H,An-H),8.15(d,1H,An-H),7.98(d,1H,An-H),7.57(d,1H,An-H),7.45-6.96(m,10H,Ar-H),4.11(s,1H,NCH),3.21(sept,1H,CH(CH3)2),3.01(sept,1H,CH(CH3)2),2.41(s,3H,C-CH3),2.17(s,3H,NC-CH3),1.37(d,3H,CH(CH3)2),1.28(d,3H,CH(CH3)2),1.13(d,3H,CH(CH3)2),0.86(s,3H,Hf-CH3),0.81(d,3H,CH(CH3)2),0.71(s,3H,Hf-CH3).
MS-EI(m/z):706.28(M+).
Anal.Calcd for C38H42N2Hf:C,64.72;H,6.00;N,3.97;Found:C,64.80;H,6.04;N,4.02.
2)催化剂C4-3的制备
以化合物P4为主催化剂,主催化剂P4与活性剂A3按照摩尔比为1:1.5复配得到催化剂体系C4-3。
3)聚(4-甲基-1-戊烯)的制备
具体步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C4-3。
本实施例中C4-3的催化活性为0.4kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为1084kg/mol,分子量分布指数为3.8,熔融温度为230℃,等规度为95%。
实施例28
本实施例的主催化剂与实施例1一致;
本实施例的催化剂以化合物P1为主催化剂,以三苯碳鎓四(五氟苯)硼酸盐和三异丁基铝的组合物(摩尔比为1:25)为活化剂,活化剂标记为A4,主催化剂P1与活化剂A4按照质量比为1:1.5复配得到催化剂C1-10。
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C1-10。
本实施例中催化剂C1-10的催化活性为9.5kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为345kg/mol,分子量分布指数为2.4,熔融温度为238℃,等规度为98%。
实施例29
本实施例的主催化剂与实施例1一致;
本实施例的催化剂以化合物P1为主催化剂,以三苯碳鎓四(五氟苯)硼酸盐和三异丁基铝的组合物(摩尔比为1:450)为活化剂,活化剂标记为A6,主催化剂P1与活化剂A6按照质量比为1:1.5复配得到催化剂C1-11。
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C1-11。
本实施例中催化剂C1-11的催化活性为6.9kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为402kg/mol,分子量分布指数为4.0,熔融温度为239℃,等规度为98%。
实施例30
本实施例的主催化剂与实施例1一致;
本实施例的催化剂通过将主催化剂P1与活化剂A3按照摩尔比为2:1复配得到,得到的催化剂标记为催化剂C1-12;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C1-12。
本实施例中催化剂C1-12的催化活性为2.9kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为348kg/mol,分子量分布指数为2.3,熔融温度为238℃,等规度为98%。
实施例31
本实施例的主催化剂与实施例1一致;
本实施例的催化剂通过将主催化剂P1与活化剂A3按照摩尔比为1:7复配得到,得到的催化剂标记为催化剂C1-13;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,将催化剂C1-3替换为催化剂C1-13。
本实施例中催化剂C1-13的催化活性为9.9kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为301kg/mol,分子量分布指数为3.0,熔融温度为238℃,等规度为98%。
实施例32
实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,均聚反应中加入的4-甲基-1-戊烯单体为0.025mL(4-甲基-1-戊烯单体与催化剂C1-3的摩尔比为200:1)。
本实施例中催化剂C1-3的催化活性为0.6kg polymer/(mmol Hf·h),制 备得到的聚(4-甲基-1-戊烯)的重均分子量为324kg/mol,分子量分布指数为2.0,熔融温度为234℃,等规度为98%。
实施例33
本实施例主催化剂与催化剂制备均与实施例1一致;
本实施例聚(4-甲基-1-戊烯)的制备步骤与实施例1基本一致,不同之处在于,均聚反应中加入的4-甲基-1-戊烯单体为7.5mL(4-甲基-1-戊烯单体与催化剂C1-3的摩尔比为60000:1)。
本实施例中催化剂C1-3的催化活性为27.4kg polymer/(mmol Hf·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为940kg/mol,分子量分布指数为2.9,熔融温度为238℃,等规度为97%。
对比例1
本对比例采用齐格勒-纳塔催化剂(通过商购获得,商品型号为CS-2)催化4-甲基-1-戊烯的均聚反应,具体步骤如下:
将装有磁力搅拌子的Schlenk瓶连续抽真空并用红外灯烘烤干燥两个小时,自然冷却后,置换三次氮气至常压,依次加入的7mL甲苯、3mL的4-甲基-1-戊烯和500μmol三乙基铝,搅拌,用水浴恒温至40℃半个小时。将20mg的齐格勒-纳塔催化剂加入到反应体系内并计时,聚合达到2h后,打开反应瓶,加入10%盐酸酸化的乙醇溶液终止聚合,搅拌3h后过滤,用乙醇洗涤三次,真空烘干至恒重,得到聚(4-甲基-1-戊烯)。
本对比例中齐格勒-纳塔催化剂的催化活性为275g polymer/(mmol Ti·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为1004kg/mol,分子量分布指数为13.7,熔融温度为237℃,等规度为96%。
对比例2
本对比例采用茂锆催化剂催化4-甲基-1-戊烯的均聚反应,茂锆催化剂的结构式如下:
上述催化剂可参考文献J.Mol.Catal.A 1996,112:37记载的方法制备得到。
本对比例的均聚反应的具体步骤为:将装有磁力搅拌子的Schlenk瓶连续抽真空并用红外灯烘烤干燥两个小时,自然冷却后,置换三次氮气至常压,依次加入的7mL甲苯、3mL的4-甲基-1-戊烯和20mmol甲基铝氧烷(MAO),搅拌,用水浴恒温至40℃半个小时。将10μmol的茂锆催化剂加入到反应体系内并计时。聚合达到7h后,打开反应瓶,加入10%盐酸酸化的乙醇溶液终止聚合。搅拌3h后过滤,用乙醇洗涤三次,真空烘干至恒重,得到聚(4-甲基-1-戊烯)。
本对比例中茂锆催化剂的催化活性为10.9g polymer/(mmol Zr·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为17kg/mol,分子量分布指数为2.9,熔融温度为214℃,等规度为90%。
对比例3
本对比例采用后过渡金属镍催化剂催化4-甲基-1-戊烯的均聚反应,催化剂的结构式如下:
上述催化剂可可参考文献Macromolecules 2000,33,2320记载的方法制备得到。
本对比例的均聚反应的具体步骤为:将装有磁力搅拌子的Schlenk瓶连续抽真空并用红外灯烘烤干燥两个小时,自然冷却后,置换三次氮气至 常压,依次加入的7mL甲苯、3mL的4-甲基-1-戊烯和2.5mmol的一氯二乙基铝,搅拌,用水浴恒温至40℃半个小时。将10μmol的后过渡金属镍催化剂加入到反应体系内并计时。聚合达到1h后,打开反应瓶,加入10%盐酸酸化的乙醇溶液终止聚合。搅拌3h后过滤,用乙醇洗涤三次,真空烘干至恒重,得到聚(4-甲基1-戊烯)。
本对比例中后过渡金属镍催化剂的催化活性为105g polymer/(mmol Ni·h),制备得到的聚(4-甲基-1-戊烯)的重均分子量为175kg/mol,分子量分布指数为1.5,无熔融温度,产物是无规聚合物,等规度小于10%。
为方便对比,将以上实施例和对比例的制备得到的催化剂的催化活性以及制备得到的聚(4-甲基-1-戊烯)的重均分子量、分子量分布指数、熔融温度以及等规度等数值列至表1中。
表1中,实施例1至实施例33催化剂活性单位中的M为Hf,对比例1中,M为Ti,对比例2中,M为Zr,对比例3中,M为Ni。
表1

从表1可知,采用本申请的亚胺胺基铪类型的催化剂相比于齐格勒-纳塔催化剂催化得到的聚(4-甲基-1-戊烯)具有更高的催化活性,更窄的分子量分布,相比于茂锆催化剂表现出更高的催化活性,制备得到的聚(4-甲基-1-戊烯)具有更高的分子量和等规度,相比于后过渡金属镍催化剂表现出更高的催化活性,且制备得到的聚合物(4-甲基-1-戊烯)具有更高的等规度。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种用于制备聚(4-甲基-1-戊烯)的主催化剂,其中,所述主催化剂具有式I所示的结构:
    式I中,R1选自氢或苯基,当R1选自苯基时,R1与式I中的萘环稠合形成蒽环;R2选自甲基或异丙基。
  2. 一种权利要求1所述的用于制备聚(4-甲基-1-戊烯)的主催化剂的制备方法,其中,包括以下步骤:
    1)使甲基乙二醛与2,6-二异丙基苯胺反应,得到中间体A;
    2)使中间体A与α-萘胺或α-蒽胺反应,得到中间体B:
    3)使中间体B与2位R2取代的苯基锂化合物反应,得到中间体C;
    4)使中间体C依次与烷基锂和四卤化铪反应,得到中间体D;
    5)使中间体D与甲基卤化镁反应,得到式I所示的主催化剂。
  3. 根据权利要求2所述的用于制备聚(4-甲基-1-戊烯)的主催化剂的制备方法,其中,步骤4)中的烷基锂为正丁基锂;和/或,
    步骤4)中的四卤化铪为四氯化铪;和/或,
    步骤5)中的甲基卤化镁为甲基溴化镁。
  4. 一种用于制备聚(4-甲基-1-戊烯)的催化剂,其中,所述催化剂包括活化剂和权利要求1所述的主催化剂。
  5. 根据权利要求4所述的催化剂,其中,所述活化剂选自三苯碳鎓四(五氟苯)硼酸盐和烷基铝的组合物。
  6. 根据权利要求5所述的催化剂,其中,所述组合物中三苯碳鎓四(五氟苯)硼酸盐和所述烷基铝的摩尔比为1:(50~300)。
  7. 根据权利要求4-6任一项所述的催化剂,其中,所述主催化剂与所述活化剂的摩尔比为1:(1~5)。
  8. 一种聚(4-甲基-1-戊烯)的制备方法,其中,所述制备方法包括:采用权利要求5-7任一项所述的催化剂催化4-甲基-1-戊烯单体进行均聚反应,得到聚(4-甲基-1-戊烯)。
  9. 根据权利要求8所述的制备方法,其中,所述4-甲基-1-戊烯单体与所述催化剂的摩尔比为(100~400000):1。
  10. 根据权利要求9所述的制备方法,其中,所述4-甲基-1-戊烯单体与所述催化剂的摩尔比为(10000-100000):1。
  11. 根据权利要求8-10任一项所述的制备方法,其中,所述均聚反应的温度为20~60℃。
  12. 根据权利要求8-11任一项所述的制备方法,其中,所述聚(4-甲基-1-戊烯)的重均分子量≥50万,分子量分布指数≤4,等规度≥95%,熔融温度≥230℃。
  13. 根据权利要求12所述的制备方法,其中,所述聚(4-甲基-1-戊烯)的重均分子量为50万~163万,分子量分布指数为2.0~4.0,等规度≥95%,熔融温度为230~240℃。
PCT/CN2023/112711 2022-09-08 2023-08-11 一种用于制备聚(4-甲基-1-戊烯)的主催化剂及其应用 WO2024051442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211099369.3 2022-09-08
CN202211099369.3A CN117659239A (zh) 2022-09-08 2022-09-08 一种用于制备聚(4-甲基-1-戊烯)的主催化剂及其应用

Publications (1)

Publication Number Publication Date
WO2024051442A1 true WO2024051442A1 (zh) 2024-03-14

Family

ID=90075951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112711 WO2024051442A1 (zh) 2022-09-08 2023-08-11 一种用于制备聚(4-甲基-1-戊烯)的主催化剂及其应用

Country Status (2)

Country Link
CN (1) CN117659239A (zh)
WO (1) WO2024051442A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038628A2 (en) * 2000-11-07 2002-05-16 Symyx Technologies, Inc. Substituted pyridyl amine ligands, complexes and catalysts therefrom; processes for producing polyolefins therewith
CN1612902A (zh) * 2001-11-06 2005-05-04 陶氏环球技术公司 包含全同立构丙烯共聚物的膜
WO2008112133A2 (en) * 2007-03-13 2008-09-18 Cornell University Pyridlyamidohafnium catalyst precursors, active species from this and uses thereof to polymerize alkenes
CN102250152A (zh) * 2011-05-26 2011-11-23 中山大学 胺基亚胺镍乙烯聚合催化剂的制备方法和应用
CN113272310A (zh) * 2019-04-26 2021-08-17 Lg化学株式会社 配体化合物,过渡金属化合物和包含其的催化剂组合物
CN113527352A (zh) * 2020-04-17 2021-10-22 中国石油天然气股份有限公司 一种吡啶胺基铪化合物及其制备方法与应用
CN113527351A (zh) * 2020-04-16 2021-10-22 中国石油天然气股份有限公司 一种吡啶胺基铪化合物及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038628A2 (en) * 2000-11-07 2002-05-16 Symyx Technologies, Inc. Substituted pyridyl amine ligands, complexes and catalysts therefrom; processes for producing polyolefins therewith
CN1612902A (zh) * 2001-11-06 2005-05-04 陶氏环球技术公司 包含全同立构丙烯共聚物的膜
WO2008112133A2 (en) * 2007-03-13 2008-09-18 Cornell University Pyridlyamidohafnium catalyst precursors, active species from this and uses thereof to polymerize alkenes
CN102250152A (zh) * 2011-05-26 2011-11-23 中山大学 胺基亚胺镍乙烯聚合催化剂的制备方法和应用
CN113272310A (zh) * 2019-04-26 2021-08-17 Lg化学株式会社 配体化合物,过渡金属化合物和包含其的催化剂组合物
CN113527351A (zh) * 2020-04-16 2021-10-22 中国石油天然气股份有限公司 一种吡啶胺基铪化合物及其制备方法和应用
CN113527352A (zh) * 2020-04-17 2021-10-22 中国石油天然气股份有限公司 一种吡啶胺基铪化合物及其制备方法与应用

Also Published As

Publication number Publication date
CN117659239A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
Tomotsu et al. Syndiospecific polymerization of styrene
ES2922480T3 (es) Ligandos de metaloceno, compuestos de metaloceno y catalizadores de metaloceno, su síntesis y su uso para la polimerización de olefinas
JP2597375B2 (ja) ビニルシクロヘキサン系重合体およびその製造方法
Miyake et al. Highly isospecific polymerization of propylene with unsymmetrical metallocene catalysts
CN102250152B (zh) 胺基亚胺镍乙烯聚合催化剂的制备方法和应用
BRPI0518701B1 (pt) processos para a preparação de um sistema catalisador e para a polimerização de olefinas
CA2262396A1 (en) Supported catalyst system, method for the production and use thereof in olefin polymerization
US20130237719A1 (en) Preparation and Use of Tetrasubstituted Fluorenyl Catalysts for Polymerization of Olefins
US9828403B2 (en) Metallocene compounds, catalyst compositions comprising the same, and method for preparing olefin polymers using the same
JPH04275313A (ja) 芳香族ビニル化合物重合用触媒および芳香族ビニル化合物重合体の製造方法
WO2024051442A1 (zh) 一种用于制备聚(4-甲基-1-戊烯)的主催化剂及其应用
KR101712318B1 (ko) 메탈로센 이성질체 촉매 및 이를 이용하여 제조된 폴리올레핀 수지
US20040048737A1 (en) Novel multinuclear half metallocene catalyst and preparation of styrene polymer using the same
JP2837246B2 (ja) 新規なシンジオタクチックポリプロピレン
Lee et al. Ethylene-bridged pseudo-Cs symmetric ansa-zirconocene complexes: synthesis, structures and propylene polymerization behavior
US5914375A (en) Catalyst composition for preparing high-syndiotactivity polystyrene from styrene or other aryl ethylene monomers and processes using the same
WO2021083330A1 (zh) 胺基亚胺金属配合物及其制备方法和应用
Linh et al. Preparation of new dinuclear half-titanocene complexes with ortho-and meta-xylene linkages and investigation of styrene polymerization
JP2018509508A (ja) メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
JP3263141B2 (ja) スチレン系ブロック共重合体の製造方法
WO2020124556A1 (zh) 不对称(α-二亚胺)镍烯烃催化剂及其制备方法和应用
US6211106B1 (en) Groups IIA and IIIA based catalyst composition for preparing high-syndiotacticity polystyrene
CN117700585A (zh) 用于制备乙烯共聚改性的聚(4-甲基-1-戊烯)的主催化剂及其应用
WO2017054398A1 (zh) 一种球形负载型过渡金属催化剂
WO2023124965A1 (zh) 一种用于乙烯和甲基丙烯酸甲酯共聚的催化剂及其应用