WO2024050945A1 - 复合铜基集流体及其制备方法、电池电极、锂离子电池 - Google Patents

复合铜基集流体及其制备方法、电池电极、锂离子电池 Download PDF

Info

Publication number
WO2024050945A1
WO2024050945A1 PCT/CN2022/128600 CN2022128600W WO2024050945A1 WO 2024050945 A1 WO2024050945 A1 WO 2024050945A1 CN 2022128600 W CN2022128600 W CN 2022128600W WO 2024050945 A1 WO2024050945 A1 WO 2024050945A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
current collector
layer
based current
composite
Prior art date
Application number
PCT/CN2022/128600
Other languages
English (en)
French (fr)
Inventor
易典
王荣福
Original Assignee
深圳市汉嵙新材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汉嵙新材料技术有限公司 filed Critical 深圳市汉嵙新材料技术有限公司
Publication of WO2024050945A1 publication Critical patent/WO2024050945A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery technology, and in particular to a composite copper-based current collector and a preparation method thereof, a battery electrode, and a lithium-ion battery.
  • the current collectors of commercialized lithium-ion batteries are mainly conductive metal foils, such as copper foil and aluminum foil.
  • Copper foil is generally used as the negative electrode current collector of lithium-ion batteries.
  • the density of copper is 8.6g/cm 3 and that of aluminum is 2.70g/cm 3 .
  • Copper foil and aluminum foil usually occupy 15% to 50% of the total mass of lithium-ion batteries.
  • the current collector is usually an inactive component, so reducing the mass proportion of the current collector in the battery is beneficial to improving the overall specific energy of the battery.
  • the current collector plays a key role in the electron transmission and mechanical support of the electrode material, reducing the quality of the current collector often means a decrease in its conductive performance and mechanical strength.
  • the mass ratio of the current collector is usually difficult to determine. be effectively reduced.
  • researchers in this field are also trying to study some new lightweight current collectors, such as foam metal current collectors and carbon material current collectors.
  • these current collectors usually suffer from poor mechanical properties or poor chemical stability to varying degrees.
  • a method for preparing a composite copper-based current collector includes the following steps:
  • the copper nanowire dispersion is sprayed on the copper base layer, and the dispersant is solidified and sublimated by freeze-drying to remove the dispersant in the copper porous layer to form a copper porous layer with a porous structure;
  • a reinforcing material is deposited on the copper porous layer by co-sputtering, and the reinforcing material includes chromium and nickel.
  • the copper-based layer is disposed on a polymer film, and a flame retardant material is disposed in the polymer film.
  • the copper-based layer is disposed on the polymer film by including the following steps:
  • oxygen-containing plasma to treat the polymer film, grafting hydrophilic functional groups on the surface of the polymer film; and depositing the copper base layer on the surface of the polymer film.
  • the flame retardant material includes triphenyl phosphate, trimethyl phosphate, tris(2,3-dichloropropyl) phosphate, triethyl phosphate, butylphenyl phosphate and One or more polyphosphates.
  • the reinforcing material further includes at least one of silicon and aluminum.
  • the overall thickness of the deposited reinforcement material ranges from 500 nm to 2 ⁇ m.
  • the thickness of the copper base layer ranges from 500 nm to 3 ⁇ m.
  • the diameter of the copper nanowire is below 500 nm.
  • a composite copper-based current collector is prepared by a preparation method including the following steps:
  • the copper nanowire dispersion is sprayed on the copper base layer, and the dispersant is solidified and sublimated by freeze-drying to remove the dispersant in the copper porous layer to form a copper porous layer with a porous structure;
  • a reinforcing material is deposited on the copper porous layer by co-sputtering, and the reinforcing material includes chromium and nickel.
  • the copper-based layer is disposed on a polymer film, and a flame retardant material is disposed in the polymer film.
  • the copper-based layer is disposed on the polymer film by including the following steps:
  • oxygen-containing plasma to treat the polymer film, grafting hydrophilic functional groups on the surface of the polymer film; and depositing the copper base layer on the surface of the polymer film.
  • the flame retardant material includes triphenyl phosphate, trimethyl phosphate, tris(2,3-dichloropropyl) phosphate, triethyl phosphate, butylphenyl phosphate and One or more polyphosphates.
  • the reinforcing material further includes at least one of silicon and aluminum.
  • the overall thickness of the deposited reinforcement material ranges from 500 nm to 2 ⁇ m.
  • the thickness of the copper base layer ranges from 500 nm to 3 ⁇ m.
  • the diameter of the copper nanowire is below 500 nm.
  • a battery electrode which includes an electrode active material and the composite copper-based current collector described in the above embodiments.
  • the battery electrode further includes an induced deposition layer
  • the electrode active material includes a black phosphorus film
  • the induced deposition layer is located on the composite copper-based current collector
  • the induced deposition layer includes A phosphorus-containing alloy used to induce the deposition of the black phosphorus film
  • the black phosphorus film is formed on the induced deposition layer by magnetron sputtering
  • the black phosphorus film covers the composite copper-based current collector.
  • a lithium ion battery which includes a positive electrode, a separator and a negative electrode, the positive electrode and the negative electrode are arranged oppositely, and the separator is arranged between the positive electrode and the negative electrode.
  • the positive electrode and the negative electrode is the battery electrode described in the above embodiment.
  • Figure 1 shows a schematic diagram of the steps of a preparation method of a composite copper-based current collector provided by the present disclosure
  • Figure 2 shows a schematic structural diagram of a composite copper-based current collector provided by the present disclosure
  • each reaction step may be carried out in the order stated in the text, or may not be carried out in the order stated in the text.
  • other steps may be included between each reaction step, and the order of the reaction steps may be appropriately exchanged. This is something that technicians can determine based on conventional knowledge and experience.
  • a method for preparing a composite copper-based current collector includes the following steps: dispersing copper nanowires in a dispersant to form a copper nanowire dispersion; spraying the copper nanowire dispersion On the copper base layer, the dispersant is solidified and sublimated by freeze-drying, and the dispersant in the copper porous layer is removed to form a copper porous layer with a porous structure; reinforcing materials are deposited on the copper porous layer by co-sputtering. Reinforcement materials include chromium and nickel.
  • the copper base layer may be an independent copper base layer or a copper film pre-prepared on the supporting base.
  • the copper base layer is used to support the copper nanowires disposed above it, and on the other hand, it is also used to assist in exporting electrons from the copper porous layer to the external circuit.
  • freeze-drying can remove the dispersant originally located between adjacent copper nanowires, but freeze-drying will not cause significant changes in the overall structure of the copper porous layer. After the dispersant is removed, holes in the copper porous layer are formed in part of the space originally occupied by the dispersant, thereby forming a copper porous layer with a porous structure.
  • the copper foil in traditional technology is a relatively dense copper metal film, and its overall mass is heavier.
  • the foam metal current collector only changes the dense foil material into a porous material, and its mechanical properties are also relatively poor.
  • carbon material current collectors have the advantage of being lightweight, carbon materials mainly rely on intermolecular forces to support each other, and there is also the problem of poor mechanical properties.
  • many various composite materials also have the problem of not being resistant to corrosion and easy peeling between composite materials.
  • the copper base layer and the copper porous layer with porous structure have a larger contact area than the copper foil, thus ensuring the electronic conduction of the active material.
  • the porous copper layer temporarily fixed by freeze-drying has poor mechanical properties.
  • reinforcing materials including chromium and nickel are co-sputteringly deposited on the copper porous layer to form a nickel-chromium alloy layer covering the porous structure surface of the copper porous layer, providing higher mechanical strength and hardness to stabilize the copper base layer and Mechanical properties of the overall copper porous layer.
  • the density of nickel-chromium is lower than that of copper.
  • FIG. 1 shows an embodiment of the preparation method of the composite copper-based current collector, including steps S1 to S4.
  • Step S1 Provide a copper base layer.
  • the copper base layer can be an independent layered copper material, or it can be a copper film layer provided on a certain base.
  • the copper base layer has a thickness of 500 nm to 3 ⁇ m.
  • the thickness of the copper base layer is 500 nm, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, or a range between any two of the above thicknesses.
  • a copper-based layer is disposed on a polymer film with a flame retardant material disposed therein.
  • the polymer film can support the copper base layer and make the composite copper-based current collector have a certain degree of toughness.
  • the density of the polymer film is much lower than that of copper, which can significantly reduce the quality of the composite copper-based current collector at the same thickness.
  • arranging flame-retardant materials in the polymer film can also increase the fire safety of the current collector, which is especially suitable for application scenarios of large-capacity lithium-ion batteries.
  • the thickness of the polymer film ranges from 2 ⁇ m to 10 ⁇ m.
  • the flame retardant material may be selected from phosphorus-based flame retardants.
  • the flame retardant material includes one of triphenyl phosphate, trimethyl phosphate, tris(2,3-dichloropropyl) phosphate, triethyl phosphate, butylphenyl phosphate and polyphosphate. or more.
  • the copper-based layer is disposed on the polymer film by including the following steps: treating the polymer film with oxygen-containing plasma, grafting hydrophilic functional groups on the surface of the polymer film; and, on the polymer film A copper base layer is deposited on the film surface.
  • oxygen-containing plasma to treat the surface of the polymer film
  • hydrophilic functional groups can be grafted on the surface of the polymer film to increase the adhesion of the subsequently prepared copper-based layer on the surface of the polymer film and avoid the polymerization of the copper-based layer as much as possible. The film surface peels off.
  • the copper-based layer may be deposited by magnetron sputtering.
  • the deposition gas pressure in the magnetron sputtering deposition chamber is controlled to be below 10 -7 Torr, and the power of the sputtering target is 200W to 500W.
  • Step S2 Prepare a copper porous layer with a porous structure on the copper base layer.
  • the method of preparing a copper porous layer with a porous structure includes: dispersing copper nanowires in a dispersant to form a copper nanowire dispersion; and spraying the copper nanowire dispersion on a copper base layer and freeze-drying it.
  • the dispersant is solidified and sublimated, and the dispersant in the copper porous layer is removed to form a copper porous layer with a porous structure.
  • the diameter of the copper nanowires is below 500 nm.
  • the diameter of the copper nanowire is 20nm ⁇ 200nm.
  • the diameter of the copper nanowire is 20nm, 50nm, 80nm, 100nm, 150nm, 200nm, or a range between the diameters thereof.
  • the dispersant may include water.
  • the freeze-drying method basically does not affect the relative position between the copper nanowires and their overall physical structure, and causes holes between the copper nanowires to form a porous structure.
  • the temperature of the dispersant can be controlled to be lowered to below -20°C, so that the dispersant solidifies to form tiny ice crystals.
  • the current collector structure including the copper porous layer can be placed in a vacuum chamber, and the air pressure in the vacuum chamber is controlled to be below 100 Pa.
  • the overall thickness of the copper porous layer ranges from 2 ⁇ m to 10 ⁇ m. It can be understood that when forming the copper porous layer, the thickness of the copper porous layer can be controlled by controlling the amount of sprayed copper nanowire dispersion, or by multiple freeze-drying and multiple spraying of copper nanowire dispersion. A thicker copper porous layer was obtained.
  • the method of spraying the copper nanowire dispersion may be blade coating, casting, inkjet printing, etc., as long as a layer of copper nanowire dispersion film can be formed on the copper base layer.
  • a layer of copper porous layer can be formed on the copper base layer through freeze-drying. Since the copper porous layer has a porous structure, and the copper nanowires can sufficiently conduct electrons, the introduction of the copper porous layer can ensure the conductive performance. In this case, the density of the composite current collector is significantly reduced.
  • the copper nanowires in the copper porous layer have a hole structure between them, and there is a lack of sufficient interaction force between the copper nanowires. Therefore, although the introduction of the copper porous layer can significantly reduce the density of the composite current collector, it also brings about the problem of poor mechanical properties and is not suitable for the preparation of current collectors. In order to overcome this problem, the preparation method of the composite copper-based current collector in this embodiment also includes step S3.
  • Step S3 deposit reinforcing material on the copper porous layer.
  • reinforcing materials include chromium and nickel.
  • the reinforcement material is deposited on the copper porous layer by co-sputtering deposition.
  • Chromium and nickel are simultaneously deposited on the copper porous layer by co-sputtering deposition, so that the reinforcing material at least partially forms a reinforcing material layer on the copper porous layer.
  • nickel atoms and chromium atoms deposited by co-sputtering will first nucleate on the surface of the copper nanowires and gradually form a nickel-chromium alloy film layer during the deposition process. Then, as the deposition proceeds, the nickel-chromium alloy film layers on the surface layers of the multiple copper nanowires are connected to form a nickel-chromium alloy layer that entirely covers the surface of the copper porous layer. Moreover, nickel atoms and chromium atoms may also be deposited on the copper base layer at the bottom through the copper porous layer with porous structure.
  • the overall thickness of the deposited reinforcement material ranges from 500 nm to 2 ⁇ m.
  • the overall thickness of the deposited reinforcement material is 500 nm, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, or a range in between.
  • the gas pressure of the deposition chamber is controlled to be below 10 -7 Torr, and the power of the sputtering target is 200W to 500W.
  • the reinforcement material further includes at least one of silicon and aluminum.
  • the reinforced material layer can also be corrosion-resistant while ensuring the mechanical properties of the reinforced material.
  • the mass ratio of chromium and nickel in the reinforcing material is 1:1 ⁇ 1:5.
  • a step of annealing the reinforcing material is also included to improve the lattice defects in the reinforcing material layer and improve the toughness of the reinforcing material layer, thereby making the prepared composite copper
  • the base current collector has better mechanical properties.
  • nickel atoms and chromium atoms have high energy and can be embedded into the crystal lattice of the surface layer of copper nanowires, making the bonding force between the copper nanowires and the nickel-chromium alloy film layer stronger. .
  • the overall mechanical strength and hardness of the nickel-chromium alloy layer is relatively high, which can effectively stabilize the overall mechanical properties of the copper base layer and copper porous layer.
  • the nickel-chromium alloy layer also has high conductivity.
  • the nickel-chromium alloy layer prepared by co-sputtering has good contact with the copper porous layer.
  • the introduced nickel-chromium alloy layer does not significantly affect the conductivity of the copper porous layer and copper base layer. properties, so the prepared composite copper-based current collector still has good electrical conductivity.
  • Another embodiment of the present disclosure also provides a composite copper-based current collector, which is prepared by the preparation method of the composite copper-based current collector in the above embodiment.
  • the composite copper-based current collector of this embodiment includes a copper base layer 110 , a copper porous layer 120 and a reinforcing material layer 140 .
  • the copper porous layer 120 has a porous structure, and the copper porous layer 120 is disposed on the copper base layer 110 .
  • the reinforcing material layer 140 includes nickel-chromium alloy, and the reinforcing material layer 140 entirely covers the copper porous layer 120 and the copper base layer 110 .
  • the thickness of the copper base layer 110 is 500 nm ⁇ 3 ⁇ m.
  • the composite copper current collector further includes a polymer film 130, the copper base layer 110 is disposed on the polymer film 130, and a flame retardant material is disposed in the polymer film 130.
  • polymer film 130 has a thickness of 2 ⁇ m to 10 ⁇ m.
  • the copper porous layer 120 includes copper nanowires and porous structures located between the copper nanowires.
  • the diameter of the copper nanowire is below 500nm. Further optionally, the diameter of the copper nanowire is 20 nm to 200 nm.
  • the overall thickness of copper porous layer 120 ranges from 2 ⁇ m to 10 ⁇ m.
  • the overall thickness of the reinforcement material layer 140 is 500 nm to 2 ⁇ m.
  • the reinforcement material further includes at least one of silicon and aluminum.
  • the mass ratio of chromium and nickel in the reinforcing material is 1:1 ⁇ 1:5.
  • the copper porous layer 120 is prepared according to step S2 in the above embodiment, and the reinforcing material layer 140 is prepared according to step S3 in the above embodiment.
  • a copper porous layer 120 is further provided on the copper base layer 110
  • a reinforcing material layer 140 is further provided on the copper porous layer 120 .
  • Another aspect of the present disclosure also provides a battery electrode, which includes an electrode active material and a composite copper-based current collector as in the above embodiment.
  • the electrode active material is a negative active material of a lithium ion battery
  • the battery electrode is a negative electrode
  • the electrode active material in the battery electrode includes a black phosphorus film
  • the battery electrode further includes an induced deposition layer.
  • the induced deposition layer is located on the composite copper-based current collector.
  • the induced deposition layer includes a phosphorus-containing alloy used to induce the deposition of a black phosphorus film.
  • the black phosphorus film is formed on the induced deposition layer by magnetron sputtering.
  • the black phosphorus film covers the composite copper. base current collector.
  • an induced deposition layer for inducing black phosphorus deposition is further provided on the composite copper-based current collector.
  • a black phosphorus thin film is formed on the surface of the induced deposition layer by magnetron sputtering to form a thin film grown directly on the surface of the current collector.
  • the black phosphorus film grown by magnetron sputtering is relatively complete and has pores.
  • the electron transport capability inside the layered black phosphorus film grown directly on the current collector is stronger, ensuring the electron conductivity inside the black phosphorus film.
  • the electrical contact area between the entire black phosphorus film and the current collector is larger, ensuring the electronic conductivity between the black phosphorus film and the current collector.
  • the copper-based layer in the composite copper-based current collector is provided on the polymer film, and the polymer film is provided with a flame retardant material, which can Ensure the safety of battery electrodes as much as possible. Therefore, the battery electrode can not only reduce the mass proportion of the current collector, but also improve the safety of the battery electrode while increasing the specific energy.
  • the induced deposition layer is used as the growth nucleation substrate of the black phosphorus film.
  • the phosphorus atoms are bombarded from the phosphorus target, they contact the induced deposition layer and perform epitaxial growth with the induced deposition layer as the core.
  • the exposed crystal face in the material of the induced deposition layer should match one crystal face of the black phosphorus to facilitate the epitaxial growth of the black phosphorus film.
  • the black phosphorus film has a thickness of 1 ⁇ m to 50 ⁇ m.
  • the thickness of the black phosphorus film formed by deposition can be controlled to be 2 ⁇ m to 30 ⁇ m.
  • the surface of the black phosphorus film also has laser ablation holes.
  • black phosphorus in the ablated parts can be removed in a directional manner. It is highly controllable, causes limited damage to the black phosphorus film, and is sufficient to further form larger pores on the surface of the black phosphorus film to accommodate volume changes. , to accommodate the volume change of the black phosphorus film during the charge and discharge process.
  • the present disclosure also provides a method for preparing the above-mentioned battery electrode, which includes the following steps:
  • An induced deposition layer is formed on the composite copper-based current collector; the current collector with the induced deposition layer is placed in a magnetron sputtering chamber, and a black phosphorus film is deposited on the induced deposition layer through magnetron sputtering.
  • a step of using a laser to ablate partial areas on the black phosphorus film is further included.
  • the present disclosure also provides a lithium-ion battery, which includes a positive electrode, a separator and a negative electrode.
  • the positive electrode and the negative electrode are arranged oppositely, the separator is arranged between the positive electrode and the negative electrode, and the negative electrode is the battery negative electrode of the above embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本公开提供了一种复合铜基集流体及其制备方法、电池电极及锂离子电池。该复合铜基集流体的制备方法包括如下步骤:将铜纳米线分散于分散剂中,形成铜纳米线分散液;将铜纳米线分散液喷涂于铜基层(110)上,通过冷冻干燥的方式使分散剂凝固并升华,去除铜多孔层中的分散剂,形成具有多孔结构的铜多孔层(120);在铜多孔层上通过共溅射的方式沉积增强材料,增强材料包括铬和镍。

Description

复合铜基集流体及其制备方法、电池电极、锂离子电池
本申请要求于2022年9月8日提交中国专利局、申请号为202211096929X、发明名称为“复合铜基集流体及其制备方法、电池电极、锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电池技术领域,特别是涉及一种复合铜基集流体及其制备方法、电池电极、锂离子电池。
背景技术
目前商业化的锂离子电池的集流体主要是导电金属箔材,例如铜箔和铝箔,其中铜箔一般被用作锂离子电池的负极集流体。铜的密度为8.6g/cm 3,铝的密度为2.70g/cm 3,铜箔和铝箔通常要占据锂离子电池总质量的15%~50%。集流体通常是非活性成分,因此降低集流体在电池中的质量占比有利于提高电池的总体比能量。但是又由于集流体在电极材料的电子传输和机械支撑方面发挥着关键作用,降低集流体的质量往往也意味着其导电性能的下降和机械强度的下降,因此集流体的质量占比通常也难以得到有效的降低。目前本领域的研究人员也在尝试研究一些新的轻质集流体,例如泡沫金属集流体和碳材料集流体等。然而这些集流体通常在不同程度上存在机械性能较差或化学稳定性差的问题。
发明内容
根据本公开的一些实施例,一种复合铜基集流体的制备方法,包括如下步骤:
将铜纳米线分散于分散剂中,形成铜纳米线分散液;
将所述铜纳米线分散液喷涂于铜基层上,通过冷冻干燥的方式使所述分散剂凝固并升华,去除所述铜多孔层中的分散剂,形成具有多孔结构的铜多孔层;
在所述铜多孔层上通过共溅射的方式沉积增强材料,所述增强材料包括铬和镍。
在本公开的一些实施例中,所述铜基层设置于聚合物膜上,所述聚合物膜中设置有阻燃材料。
在本公开的一些实施例中,所述铜基层通过包括如下步骤的方式设置于所述聚合物膜上:
采用含氧等离子体处理所述聚合物膜,在所述聚合物膜表面嫁接亲水性官能团;及,在所述聚合物膜表面沉积所述铜基层。
在本公开的一些实施例中,所述阻燃材料包括磷酸三苯酯、磷酸三甲酯、磷酸三(2,3-二氯丙基)酯、磷酸三乙酯、丁苯系磷酸酯和聚磷酸盐中的一种或多种。
在本公开的一些实施例中,所述增强材料还包括硅和铝中的至少一种。
在本公开的一些实施例中,沉积的增强材料的整体厚度为500nm~2μm。
在本公开的一些实施例中,所述铜基层的厚度为500nm~3μm。
在本公开的一些实施例中,所述铜纳米线的直径在500nm以下。
根据本公开的又一些实施例,一种复合铜基集流体,由包括如下步骤的制备方法制备得到:
将铜纳米线分散于分散剂中,形成铜纳米线分散液;
将所述铜纳米线分散液喷涂于铜基层上,通过冷冻干燥的方式使所述分散剂凝固并升华,去除所述铜多孔层中的分散剂,形成具有多孔结构的铜多孔层;
在所述铜多孔层上通过共溅射的方式沉积增强材料,所述增强材料包括铬和镍。
在本公开的一些实施例中,所述铜基层设置于聚合物膜上,所述聚合物膜中设置有阻燃材料。
在本公开的一些实施例中,所述铜基层通过包括如下步骤的方式设置于所述聚合物膜上:
采用含氧等离子体处理所述聚合物膜,在所述聚合物膜表面嫁接亲水性官能团;及,在所述聚合物膜表面沉积所述铜基层。
在本公开的一些实施例中,所述阻燃材料包括磷酸三苯酯、磷酸三甲酯、磷酸三(2,3-二氯丙基)酯、磷酸三乙酯、丁苯系磷酸酯和聚磷酸盐中的一种或多种。
在本公开的一些实施例中,所述增强材料还包括硅和铝中的至少一种。
在本公开的一些实施例中,沉积的增强材料的整体厚度为500nm~2μm。
在本公开的一些实施例中,所述铜基层的厚度为500nm~3μm。
在本公开的一些实施例中,所述铜纳米线的直径在500nm以下。
根据本公开的又一些实施例,还提供了一种电池电极,其包括电极活性物质和上述实施例中所述的复合铜基集流体。
在本公开的一些实施例中,所述电池电极还包括诱导沉积层,所述电极活性物质包括黑磷薄膜,所述诱导沉积层位于所述复合铜基集流体上,所述诱导沉积层包括用于诱导所述黑磷薄膜沉积的含磷合金,所述黑磷薄膜以磁控溅射的方式形成于所述诱导沉积层上,所述黑磷薄膜覆盖所述复合铜基集流体。
根据本公开的又一些实施例,还提供了一种锂离子电池,其包括正极、隔膜与负极,所述正极与所述负极相对设置,所述隔膜设置于所述正极和所述负极之间,所述正极和所述负极中的至少一个为上述实施例所述的电池 电极。
本公开的一个或多个实施例的细节在下面的附图和描述中提出。本公开的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明本申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1示出了本公开提供的一种复合铜基集流体的制备方法的步骤示意图;
图2示出了本公开提供的一种复合铜基集流体的结构示意图;
其中,各附图标记及其含义如下:
110、铜基层;120、铜多孔层;130、聚合物膜;140、增强材料层。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。文中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合,本文所使用的“多”包括两个或两个以上的项目。
在本文中,除非另有说明,各个反应步骤可以按照文中顺序进行,也可以不按文中顺序进行。例如,各个反应步骤之间可以包含其他步骤,而且反应步骤之间也可以适当调换顺序。这是技术人员根据常规知识和经验可以确定的。
根据本公开的一些实施例,提供了一种复合铜基集流体的制备方法,其包括如下步骤:将铜纳米线分散于分散剂中,形成铜纳米线分散液;将铜纳米线分散液喷涂于铜基层上,通过冷冻干燥的方式使分散剂凝固并升华,去除铜多孔层中的分散剂,形成具有多孔结构的铜多孔层;在铜多孔层上通过共溅射的方式沉积增强材料,增强材料包括铬和镍。
可以理解,铜基层可以是独立的铜基层,也可以是预先制备于支撑基底上的铜膜。铜基层一方面用于支撑设置于其上方的铜纳米线,另一方面也用于辅助将铜多孔层的电子导出至外电路。
可以理解,通过冷冻干燥的方式,能够使得原本位于相邻的铜纳米线之间的分散剂被去除,而冷冻干燥的方式并不会导致铜多孔层整体的结构发生显著改变。分散剂去除后,原本由分散剂占据的部分空间就形成了铜多孔层中的孔洞,以形成具有多孔结构的铜多孔层。
传统技术中的铜箔是较为密实的铜金属薄膜,其整体质量较重。目前新研发的一些集流体中,泡沫金属集流体仅仅是将密实的箔材改为了多孔材料,其机械性也相对变差。碳材料集流体虽然具有质轻的优点,但碳材料之间主要依靠分子间作用力彼此支撑,也存在机械性能较差的问题。另外,许多各种各样的复合材料还存在不耐腐蚀、复合材料之间容易剥离的问题。
本公开上述实施例提供的复合铜基集流体的制备方法中,铜基层及多孔结构的铜多孔层相较于铜箔拥有更大的接触面积,因而能够保证活性物质的电子导通,但是通过冷冻干燥的方式暂时固定的铜多孔层的机械性能很差。进一步在铜多孔层上共溅射沉积包括铬和镍的增强材料,能够形成包 覆于铜多孔层的多孔结构表面的镍铬合金层,提供较高的机械强度和硬度,以稳定铜基层和铜多孔层整体的机械性能。并且镍铬的密度低于铜,结合铜多孔层中的多孔结构,能够在保证集流体整体的显著降低该复合铜基集流体的整体重量,以形成满足实际需求的轻质复合铜基集流体。
为了便于理解本公开提供的的复合铜基集流体的制备方法,参照图1所示,其示出了该复合铜基集流体的制备方法的一个实施例,包括步骤S1~步骤S4。
步骤S1,提供铜基层。
其中,铜基层可以是独立的层状铜材,也可以是设置于某一基底上的铜膜层。
在该实施例的一些示例中,铜基层的厚度为500nm~3μm。例如,铜基层的厚度为500nm、1μm、1.5μm、2μm、2.5μm、3μm,或上述任两个厚度之间的范围。
在该实施例的一些示例中,铜基层设置于聚合物膜上,聚合物膜中设置有阻燃材料。通过在聚合物膜上设置铜基层,一方面聚合物膜能够起到支撑铜基层的作用,并且使得复合铜基集流体具有一定的韧性。另一方面聚合物膜的密度远低于铜,能够在相同厚度的情况下显著降低复合铜基集流体的质量。再一方面,于聚合物膜中设置阻燃材料,还能够起到增加集流体的防火安全性,特别适用于大容量锂离子电池的应用场景。
在该实施例的一些示例中,聚合物膜的厚度为2μm~10μm。
在该实施例的一些示例中,阻燃材料可以选自磷系阻燃剂。可选地,阻燃材料包括磷酸三苯酯、磷酸三甲酯、磷酸三(2,3-二氯丙基)酯、磷酸三乙酯、丁苯系磷酸酯和聚磷酸盐中的一种或多种。
在该实施例的一些示例中,铜基层通过包括如下步骤的方式设置于聚合物膜上:采用含氧等离子体处理聚合物膜,在聚合物膜表面嫁接亲水性官 能团;及,在聚合物膜表面沉积铜基层。其中,通过采用含氧等离子体处理聚合物膜的表面,能够在聚合物膜表面嫁接亲水性官能团,以增加后续制备的铜基层在聚合物膜表面的附着力,尽可能避免铜基层从聚合物膜表面脱落。
在该实施例的一些示例中,沉积铜基层的方式可以是磁控溅射。在磁控溅射的制备工艺中,可选地,控制磁控溅射沉积腔室中的沉积气压在10 -7Torr以下,溅射靶材的功率为200W~500W。
步骤S2,在铜基层上制备具有多孔结构的铜多孔层。
其中,制备具有多孔结构的铜多孔层的方式包括:将铜纳米线分散于分散剂中,形成铜纳米线分散液;及,将铜纳米线分散液喷涂于铜基层上,通过冷冻干燥的方式使分散剂凝固并升华,去除铜多孔层中的分散剂,形成具有多孔结构的铜多孔层。
在该实施例的一些示例中,铜纳米线的直径在500nm以下。可选地,铜纳米线的直径为20nm~200nm。例如,铜纳米线的直径为20nm、50nm、80nm、100nm、150nm、200nm,或其中各直径之间的范围。
在该实施例的一些示例中,分散剂可以包括水。通过冷冻干燥的方式能够使铜纳米线之间的水先凝固形成微小的冰晶,再通过抽真空的方式使冰晶直接升华。冷冻干燥的方式基本不会影响铜纳米线之间的相对位置及其整体物理结构,并使得铜纳米线之间存在孔洞,形成多孔结构。在将分散剂进行冷冻处理的过程中,可以控制将分散剂的温度降低至-20℃以下,以使得分散剂凝固形成微小的冰晶。在将分散剂进行干燥处理的步骤中,可以将包括铜多孔层的集流体结构放置于真空腔室中,并控制真空腔室中的气压在100Pa以下。
在该实施例的一些示例中,铜多孔层的整体厚度为2μm~10μm。可以理解,在形成铜多孔层时,可以通过控制喷涂的铜纳米线分散液的量以控制铜 多孔层的厚度,或者是通过多次冷冻干燥及多次喷涂铜纳米线分散液的方式,以获得厚度较高的铜多孔层。
在该实施例的一些示例中,喷涂铜纳米线分散液的方式可以是刮涂、流延、喷墨打印等方式,只要能够在铜基层上形成一层铜纳米线分散液的膜即可。
通过冷冻干燥的方式能够在铜基层上形成一层铜多孔层,由于铜多孔层具有多孔结构,而铜纳米线能够起到足够的导通电子的作用,因此引入铜多孔层能够在保证导电性能的情况下,显著降低复合集流体的密度。铜多孔层中的铜纳米线之间具有孔洞结构,并且铜纳米线之间缺乏足够的作用力。因此铜多孔层的引入虽然能够显著降低复合集流体的密度,但是也同时带来了机械性能较差的问题,不适用于集流体的制备。为了克服该问题,该实施例中的复合铜基集流体的制备方法还包括步骤S3。
步骤S3,在铜多孔层上沉积增强材料。
其中,增强材料包括铬和镍。在铜多孔层上沉积增强材料的方式为共溅射沉积。通过共溅射沉积的方式将铬和镍同时沉积在铜多孔层上,以使得增强材料在铜多孔层上至少部分形成增强材料层。
其中,通过共溅射方式沉积的镍原子和铬原子会先在铜纳米线表面形核并在沉积过程中逐渐形成镍铬合金膜层。而后随着沉积的进行,多个铜纳米线表层上的镍铬合金膜层相连接并形成整体覆盖铜多孔层表面的镍铬合金层。并且,镍原子和铬原子还有可能通过多孔结构的铜多孔层,沉积至位于底部的铜基层上。
在该实施例的一些示例中,沉积的增强材料的整体厚度为500nm~2μm。例如,沉积的增强材料的整体厚度为500nm、1μm、1.5μm、2μm,或上述各厚度之间的范围。
在该实施例的一些示例中,控制沉积腔室气压在10 -7Torr以下,溅射靶 材的功率为200W~500W。
在该实施例的一些示例中,增强材料还包括硅和铝中的至少一种。通过设置硅和铝,能够在保证增强材料的力学性能的情况下,使得增强材料层还具有耐腐蚀的作用。
在该实施例的一些示例中,增强材料中铬和镍的质量比为1:1~1:5。
在该实施例的一些示例中,在沉积增强材料之后,还包括对增强材料进行退火处理的步骤,以改善增强材料层中的晶格缺陷,提高增强材料层的韧性,进而使得制备的复合铜基集流体具有更优的机械性能。
其中,在共溅射的过程中,镍原子和铬原子具有较高的能量,能够嵌入至铜纳米线表层的晶格中,使得铜纳米线与镍铬合金膜层之间的结合力较强。而镍铬合金层整体的机械强度和硬度较高,能够有效稳定铜基层和铜多孔层整体的机械性能。镍铬合金层还具有较高的导电性,共溅射制备的镍铬合金层与铜多孔层之间的接触良好,引入的镍铬合金层并不会显著影响铜多孔层和铜基层的导电性,因此制备的复合铜基集流体仍旧具有较好的导电性。
可以理解,通过步骤S1~S3,能够制备得到符合实际使用的复合铜基集流体。
本公开的又一实施例还提供了一种复合铜基集流体,该复合铜基集流体由上述实施例中的复合铜基集流体的制备方法制备得到。
参照图2所示,该实施例的复合铜基集流体包括铜基层110、铜多孔层120和增强材料层140。其中,铜多孔层120中具有多孔结构,铜多孔层120设置于铜基层110上。增强材料层140中包括镍铬合金,增强材料层140整体覆盖铜多孔层120和铜基层110。
在该实施例的一些示例中,铜基层110的厚度为500nm~3μm。
在该实施例的一些示例中,该复合铜集流体还包括聚合物膜130,铜基 层110设置于聚合物膜130上,聚合物膜130中设置有阻燃材料。
在该实施例的一些示例中,聚合物膜130的厚度为2μm~10μm。
在该实施例的一些示例中,铜多孔层120中包括铜纳米线以及位于铜纳米线之间的多孔结构。其中,可选地,铜纳米线的直径在500nm以下。进一步可选地,铜纳米线的直径为20nm~200nm。
在该实施例的一些示例中,铜多孔层120的整体厚度为2μm~10μm。
在该实施例的一些示例中,增强材料层140的整体厚度为500nm~2μm。
在该实施例的一些示例中,增强材料还包括硅和铝中的至少一种。
在该实施例的一些示例中,增强材料中铬和镍的质量比为1:1~1:5。
其中,制备铜多孔层120的方式按照上述实施例中的步骤S2进行制备,制备增强材料层140的方式按照上述实施例中的步骤S3进行制备。
本公开该实施例提供的复合铜基集流体中,在铜基层110上进一步设置了铜多孔层120,再于铜多孔层120上进一步设置了增强材料层140。通过设置铜多孔层120和铜基层110,能够降低该复合铜基集流体的整体重量,进一步设置增强材料层140能够保证铜基层110和铜多孔层120的整体力学性能稳定,以作为可供实际使用的复合铜基集流体。
本公开又一方面还提供了一种电池电极,该电池电极包括电极活性物质和如上述实施例中的复合铜基集流体。
在该实施例的一些示例中,电极活性物质为锂离子电池的负极活性物质,该电池电极为负极。
在该实施例的一些示例中,该电池电极中的电极活性物质包括黑磷薄膜,该电池电极还包括诱导沉积层。诱导沉积层位于复合铜基集流体上,诱导沉积层包括用于诱导黑磷薄膜沉积的含磷合金,黑磷薄膜以磁控溅射的方式形成于诱导沉积层上,黑磷薄膜覆盖复合铜基集流体。
该电池电极中,在复合铜基集流体上进一步设置有用于诱导黑磷沉积 的诱导沉积层,于诱导沉积层表面通过磁控溅射的方式形成黑磷薄膜,以形成直接生长于集流体表面的黑磷薄膜。磁控溅射生长的黑磷薄膜较为完整且存在孔隙。一方面,直接在集流体上生长的层状黑磷薄膜内部的电子传输能力更强,保证了黑磷薄膜内部的电子传导能力。再者,黑磷薄膜整体与集流体之间的电接触面积更大,保证了黑磷薄膜与集流体之间的电子传导能力。更重要的是,通过磁控溅射的工艺在诱导沉积层上生长的黑磷薄膜中具有存在空隙,从而使得制备的黑磷薄膜在保证完整的情况下又较为疏松,这些孔隙可以在一定程度上缓冲了黑磷薄膜在电化学反应中的体积变化,进一步减缓了由于反复的膨胀收缩而导致活性物质从集流体表面脱落的情况。
并且,由于该黑磷薄膜的比容量较高,在该实施例的一些示例中,复合铜基集流体中的铜基层设置于聚合物膜上,且聚合物膜中设置有阻燃材料,能够尽可能保证电池电极的安全性。因而,该电池电极不仅能够降低集流体的质量占比,还能够在提高比能量的同时,提高电池电极的安全性。
其中,诱导沉积层用于作为黑磷薄膜的生长形核基材,当磷原子从磷靶材上被轰击后接触到诱导沉积层并以诱导沉积层作为核心进行外延生长。可以理解,通常诱导沉积层的材料中暴露的晶面应与黑磷的一个晶面之间相匹配,以便于黑磷薄膜的外延生长。
在该实施例的一些示例中,黑磷薄膜的厚度为1μm~50μm。其中,可选地,可以控制沉积形成的黑磷薄膜的厚度为2μm~30μm。
在该实施例的一些示例中,黑磷薄膜表面还具有激光烧蚀孔。通过激光烧蚀的方法,能够定向去除被烧蚀部位的黑磷,其可控性强、对黑磷薄膜产生的损伤有限,并且足以在黑磷薄膜表面进一步形成容纳体积变化的较大的孔隙,以容纳黑磷薄膜在充放电过程中的体积变化。
本公开还提供了一种上述电池电极的制备方法,其包括如下步骤:
在复合铜基集流体上形成诱导沉积层;将形成有诱导沉积层的集流体 置于磁控溅射腔体中,通过磁控溅射的方式,于诱导沉积层上沉积形成黑磷薄膜。
在该实施例的一些示例中,在沉积形成黑磷薄膜之后,还包括:采用激光烧蚀黑磷薄膜上的部分区域的步骤。
本公开还提供了一种锂离子电池,其包括正极、隔膜与负极,正极与负极相对设置,隔膜设置于正极和负极之间,负极为上述实施例的电池负极。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种复合铜基集流体的制备方法,包括如下步骤:
    将铜纳米线分散于分散剂中,形成铜纳米线分散液;
    将所述铜纳米线分散液喷涂于铜基层上,通过冷冻干燥的方式使所述分散剂凝固并升华,去除所述铜多孔层中的分散剂,形成具有多孔结构的铜多孔层;
    在所述铜多孔层上通过共溅射的方式沉积增强材料,所述增强材料包括铬和镍。
  2. 根据权利要求1所述的复合铜基集流体的制备方法,所述铜基层设置于聚合物膜上,所述聚合物膜中设置有阻燃材料。
  3. 根据权利要求2所述的复合铜基集流体的制备方法,所述铜基层通过包括如下步骤的方式设置于所述聚合物膜上:
    采用含氧等离子体处理所述聚合物膜,在所述聚合物膜表面嫁接亲水性官能团;及,在所述聚合物膜表面沉积所述铜基层。
  4. 根据权利要求2所述的复合铜基集流体的制备方法,所述阻燃材料包括磷酸三苯酯、磷酸三甲酯、磷酸三(2,3-二氯丙基)酯、磷酸三乙酯、丁苯系磷酸酯和聚磷酸盐中的一种或多种。
  5. 根据权利要求1~4任一项所述的复合铜基集流体的制备方法,所述增强材料还包括硅和铝中的至少一种。
  6. 根据权利要求1~4任一项所述的复合铜基集流体的制备方法,沉积的增强材料的整体厚度为500nm~2μm。
  7. 根据权利要求1~4任一项所述的复合铜基集流体的制备方法,所述铜基层的厚度为500nm~3μm。
  8. 根据权利要求1~4任一项所述的复合铜基集流体的制备方法,所述铜纳米线的直径在500nm以下。
  9. 一种复合铜基集流体,由包括如下步骤的制备方法制备得到:
    将铜纳米线分散于分散剂中,形成铜纳米线分散液;
    将所述铜纳米线分散液喷涂于铜基层上,通过冷冻干燥的方式使所述分散剂凝固并升华,去除所述铜多孔层中的分散剂,形成具有多孔结构的铜多孔层;
    在所述铜多孔层上通过共溅射的方式沉积增强材料,所述增强材料包括铬和镍。
  10. 根据权利要求9所述的复合铜基集流体,所述铜基层设置于聚合物膜上,所述聚合物膜中设置有阻燃材料。
  11. 根据权利要求10所述的复合铜基集流体,所述铜基层通过包括如下步骤的方式设置于所述聚合物膜上:
    采用含氧等离子体处理所述聚合物膜,在所述聚合物膜表面嫁接亲水性官能团;及,在所述聚合物膜表面沉积所述铜基层。
  12. 根据权利要求10所述的复合铜基集流体,所述阻燃材料包括磷酸三苯酯、磷酸三甲酯、磷酸三(2,3-二氯丙基)酯、磷酸三乙酯、丁苯系磷酸酯和聚磷酸盐中的一种或多种。
  13. 根据权利要求9~12任一项所述的复合铜基集流体,所述增强材料还包括硅和铝中的至少一种。
  14. 根据权利要求9~12任一项所述的复合铜基集流体,沉积的增强材料的整体厚度为500nm~2μm。
  15. 根据权利要求9~12任一项所述的复合铜基集流体,所述铜基层的厚度为500nm~3μm。
  16. 根据权利要求9~12任一项所述的复合铜基集流体,所述铜纳米线的直径在500nm以下。
  17. 一种电池电极,其包括电极活性物质和权利要求9~16任一项所述的复合铜基集流体。
  18. 根据权利要求17所述的电池电极,所述电池电极还包括诱导沉积层,所述电极活性物质包括黑磷薄膜,所述诱导沉积层位于所述复合铜基集流体 上,所述诱导沉积层包括用于诱导所述黑磷薄膜沉积的含磷合金,所述黑磷薄膜以磁控溅射的方式形成于所述诱导沉积层上,所述黑磷薄膜覆盖所述复合铜基集流体。
  19. 一种锂离子电池,其包括正极、隔膜与负极,所述正极与所述负极相对设置,所述隔膜设置于所述正极和所述负极之间,所述正极和所述负极中的至少一个为权利要求17或18所述的电池电极。
PCT/CN2022/128600 2022-09-08 2022-10-31 复合铜基集流体及其制备方法、电池电极、锂离子电池 WO2024050945A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211096929.XA CN115172761B (zh) 2022-09-08 2022-09-08 复合铜基集流体及其制备方法、电池电极、锂离子电池
CN202211096929.X 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024050945A1 true WO2024050945A1 (zh) 2024-03-14

Family

ID=83482339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128600 WO2024050945A1 (zh) 2022-09-08 2022-10-31 复合铜基集流体及其制备方法、电池电极、锂离子电池

Country Status (2)

Country Link
CN (1) CN115172761B (zh)
WO (1) WO2024050945A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172761B (zh) * 2022-09-08 2022-11-22 深圳市汉嵙新材料技术有限公司 复合铜基集流体及其制备方法、电池电极、锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963266A (zh) * 2018-07-31 2018-12-07 邦泰宏图(深圳)科技有限责任公司 一种锂离子电池用的集流体及其制作方法
CN109560256A (zh) * 2018-11-29 2019-04-02 西交利物浦大学 铜硅复合负极片的制备方法及其应用
CN109638224A (zh) * 2018-11-29 2019-04-16 西交利物浦大学 铜碳硅复合负极片的制备方法及其应用
CN111180735A (zh) * 2019-05-31 2020-05-19 宁德时代新能源科技股份有限公司 负极集流体、负极极片及电化学装置
CN114156486A (zh) * 2021-10-29 2022-03-08 上海空间电源研究所 一种轻量阻燃型集流体及其制备方法、电极、电池
CN114975863A (zh) * 2022-08-01 2022-08-30 深圳市汉嵙新材料技术有限公司 黑磷负极、其制备方法及锂离子电池
CN115172761A (zh) * 2022-09-08 2022-10-11 深圳市汉嵙新材料技术有限公司 复合铜基集流体及其制备方法、电池电极、锂离子电池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968820B2 (en) * 2008-04-25 2015-03-03 Nanotek Instruments, Inc. Process for producing hybrid nano-filament electrodes for lithium batteries
US20100285358A1 (en) * 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
CN102360949B (zh) * 2011-09-14 2017-05-31 中国第一汽车股份有限公司 一种用于柔性固态超级电容器的集流体及其制备方法
CN103173996B (zh) * 2013-04-07 2015-03-11 浙江理工大学 表面取向生长纳米柱的韧性纳米纤维结构及其制备方法
KR101858933B1 (ko) * 2017-12-29 2018-05-17 서울대학교산학협력단 이종 금속 나노와이어 전극 및 이의 제조방법
CN110350200A (zh) * 2018-04-03 2019-10-18 山东玉皇盛世化工股份有限公司 一种锂离子电池用三维铜纳米线阵列集流体及其制备方法
CN111540610B (zh) * 2020-05-09 2021-03-02 中南大学 一种用于超级电容器的电极材料及其制备方法和用途
CN111600036A (zh) * 2020-06-01 2020-08-28 南开大学 一种用于锂金属电池集流体的三维多孔氧化铜改性铜箔及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963266A (zh) * 2018-07-31 2018-12-07 邦泰宏图(深圳)科技有限责任公司 一种锂离子电池用的集流体及其制作方法
CN109560256A (zh) * 2018-11-29 2019-04-02 西交利物浦大学 铜硅复合负极片的制备方法及其应用
CN109638224A (zh) * 2018-11-29 2019-04-16 西交利物浦大学 铜碳硅复合负极片的制备方法及其应用
CN111180735A (zh) * 2019-05-31 2020-05-19 宁德时代新能源科技股份有限公司 负极集流体、负极极片及电化学装置
CN114156486A (zh) * 2021-10-29 2022-03-08 上海空间电源研究所 一种轻量阻燃型集流体及其制备方法、电极、电池
CN114975863A (zh) * 2022-08-01 2022-08-30 深圳市汉嵙新材料技术有限公司 黑磷负极、其制备方法及锂离子电池
CN115172761A (zh) * 2022-09-08 2022-10-11 深圳市汉嵙新材料技术有限公司 复合铜基集流体及其制备方法、电池电极、锂离子电池

Also Published As

Publication number Publication date
CN115172761A (zh) 2022-10-11
CN115172761B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
TWI689128B (zh) 用於改良的鋰金屬循環的介面層
US8828481B2 (en) Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
CN111430684B (zh) 复合负极及其制备方法和应用
WO2002021627A2 (en) Thin film battery and method of manufacture
WO2024050945A1 (zh) 复合铜基集流体及其制备方法、电池电极、锂离子电池
CN104488118A (zh) 导电构件、电极、二次电池、电容器以及导电构件和电极的制造方法
CN108336293B (zh) 一种锂电池的负极结构以及制备该负极结构的方法
CN110444751B (zh) Li-Si-N纳米复合薄膜及其制备方法、负极结构及锂电池
Wen et al. A bidirectional growth mechanism for a stable lithium anode by a platinum nanolayer sputtered on a polypropylene separator
CN114944470B (zh) 锂金属复合材料及其改性材料以及它们的制法和应用
CN109449406B (zh) 一种多层级结构SiOx负极材料及其制备方法和应用
US20200381715A1 (en) Composite material and preparation method thereof
CN109473629A (zh) 复合锂负极及其制备方法与锂离子电池
WO2021068575A1 (zh) 一种金属负极电池的改性隔膜、制备方法及应用
JP2018527693A (ja) ナノ構造化層の製造方法
WO2020119528A1 (zh) 复合负极片及其制备方法和应用
CN112072118A (zh) 锂金属负极复合集流体及其制备方法、锂离子电池
WO2024026909A1 (zh) 黑磷负极、其制备方法及锂离子电池
CN113782749B (zh) 一种全固态电池用负极、其制备方法和全固态电池
CN108899470A (zh) 一种Li-S电池正极片夹层结构及其制备方法
WO2022047737A1 (zh) 锂金属负极复合集流体及其制备方法、锂离子电池
CN115668538A (zh) 用于制造利用锂和包含无机固体电解质的网的能量存储装置的方法
CN108110222A (zh) 一种基于锂电池的多层金属-碳负极的制备方法
CN110660948A (zh) 一种隔离膜及其制备方法和含有该隔离膜的电化学装置
KR102637877B1 (ko) 그래핀 전처리 기재를 이용한 리튬메탈 배터리 음극재 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957909

Country of ref document: EP

Kind code of ref document: A1