WO2024050922A1 - 一种加氢精制催化剂及其制备方法、预硫化方法、开工方法 - Google Patents

一种加氢精制催化剂及其制备方法、预硫化方法、开工方法 Download PDF

Info

Publication number
WO2024050922A1
WO2024050922A1 PCT/CN2022/125379 CN2022125379W WO2024050922A1 WO 2024050922 A1 WO2024050922 A1 WO 2024050922A1 CN 2022125379 W CN2022125379 W CN 2022125379W WO 2024050922 A1 WO2024050922 A1 WO 2024050922A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
potassium
carrier
preparation
active component
Prior art date
Application number
PCT/CN2022/125379
Other languages
English (en)
French (fr)
Inventor
胡晓丽
谢元
孙利民
马萍
展学成
陈明林
郭大江
段宏昌
马好文
吕龙刚
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2024050922A1 publication Critical patent/WO2024050922A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Definitions

  • the invention belongs to the field of hydrorefining catalysts, and specifically relates to a hydrorefining catalyst and its preparation method, presulfidation method and start-up method.
  • Hydrofinishing technology is the main means to improve the quality of petrochemical products, and its core is hydrofinishing catalyst.
  • Hydrorefining catalysts are divided into supported and unsupported types. Supported catalysts are mainly used in industry today. Supported hydrorefining catalysts generally impregnate active metals (Mo, W, Ni, Co, etc.) onto the carrier. The active components of the catalyst prepared by the impregnation method are distributed on the inner and outer surfaces of the catalyst carrier, including deep internal voids and pores. on the inner surface.
  • active metals Mo, W, Ni, Co, etc.
  • the active metals of hydrorefining catalysts prepared by conventional methods are in the oxidized state, but in actual use, the substances that actually play a catalytic role are in the sulfurized state of the active components.
  • the hydrogenation catalyst needs to be activated by sulfidation before use, which is called presulfidation.
  • Presulfidation of the catalyst has an important impact on the performance of the catalyst and is an important treatment step before catalyst application.
  • the pre-sulfurization method of the catalyst can be divided into in-vessel pre-sulfurization and external pre-sulfurization according to the sulfur loading method.
  • In-vessel pre-sulfidation technology is to load the catalyst into the reactor and then perform sulfidation treatment.
  • the hydrogen sulfide required for the reaction is usually produced by decomposing a vulcanizing agent, and dimethyl disulfide (hereinafter referred to as DMDS) is usually used in industry.
  • DMDS dimethyl disulfide
  • the main sulfidation step is: in the state of hot hydrogen circulation (the reactor inlet temperature reaches 180°C), DMDS is gradually injected into the system, and then decomposes with hydrogen to release hydrogen sulfide gas, and then reacts with the oxidation state in the reactor The catalyst reacts and finally the sulfide catalyst is obtained.
  • the vulcanizing agent used is toxic and harmful and can easily cause environmental pollution; (2)
  • the device needs to be equipped with vulcanizing facilities and supporting pipelines that are only used during the start-up period; (3) During the vulcanization process There are potential safety and environmental risks in the device operating at high temperature, high pressure, and high H 2 S concentration.
  • external pre-vulcanization method came into being.
  • the advantages of external presulfidation technology are: (1) external presulfidation technology improves the utilization rate of active metal components of the hydrogenation catalyst and makes the catalyst more fully sulfurized; (2) external presulfidation technology can save start-up time and make the hydrogenation catalyst more fully sulfurized. The start-up process is more convenient; (3) The start-up site of the external pre-sulfurized catalyst avoids the use of toxic sulfides, and there is no need to install special sulfurization facilities.
  • CN112742487A discloses a method for starting a pre-sulfided hydrogenation catalyst.
  • the method includes: (1) uniformly mixing a sulfiding agent and an oxidized hydrogenation catalyst; (2) heat-treating the mixture of step (1); and adding the mixture containing phosphorus substance; (3) dry the material obtained in step (2) to obtain a pre-sulfurized catalyst; (4) load the pre-sulfurized catalyst in step (3) into the reactor and start wet activation.
  • CN104646034A relates to a method for preparing a sulfurized hydrorefining catalyst.
  • the carrier is impregnated with an impregnating solution, and then subjected to in-situ crystallization reaction and heat treatment to obtain a sulfide-type hydrorefining catalyst, wherein the impregnating solution contains inorganic active metals ammonium molybdate and/or ammonium tungstate, Ni and/or Co.
  • Salt precursor also contains vulcanizing agent, organic complexing agent and co-solvent.
  • CN109926101A discloses a method for starting operation of a sulfurized catalyst, which also includes a sulfurization method of an external pre-sulfurized hydrogenation catalyst.
  • the sulfurized catalyst composition includes: an oxidation state hydrogenation catalyst, solid sulfur, auxiliaries, organic compounds and Hydrazine hydrate.
  • ZL200810010245.7 discloses a hydrogenation catalyst pre-sulfidation method and a hydrogenation process start-up method.
  • the amount of sulfiding agent introduced into the presulfided part of the catalyst is much higher than the theoretical sulfur requirement of the active hydrogenation metal in the catalyst.
  • the presulfided hydrogenation catalyst and the non-presulfided hydrogenation catalyst are mixed or loaded in layers in the reactor. After startup activation, all catalysts are effectively sulfurized.
  • the catalyst may have uneven distribution of the sulfurized active phase.
  • CN103805235A relates to a wet start-up method of a hydrogenation device, a low-energy consumption hydrogenation process and hydrogenation equipment.
  • the reaction zone of the hydrogenation unit is filled with a sulfurized hydrogenation catalyst.
  • the start-up oil is first used to reach a certain temperature through heat exchange and passes through the catalyst bed.
  • the reaction heat during heat exchange and activation is used to make the catalyst bed reach 180 ⁇ 10°C or Above, a part of the gas with high olefin content is mixed into the circulating gas, and the reaction heat obtained from the olefin hydrogenation reaction is used to continue heating to 230 ⁇ 5°C for constant temperature activation.
  • the feed oil is replaced step by step. , using the reaction heat obtained from the hydrogenation reaction in the raw oil to continue to heat up, and finally adjusting the reaction temperature through the amount of cold hydrogen and a heat exchanger, and switching to normal production.
  • feed oil with high olefin content may lead to the formation of carbon deposits during the vulcanization process, competing for the space occupied by the active metals in the vulcanized state.
  • CN102051203A discloses a method for starting an external pre-sulfurized catalyst.
  • the method includes: during the wetting stage of the catalyst, starting oil and hydrogen are introduced from the bottom of the reactor. After the starting oil fills the reaction system, the system is closed-circuited and gradually heated up for activation. After the bed temperature reaches 280-320°C, the system is activated. Finish.
  • the catalyst is wetted by introducing start-up oil and hydrogen into the reactor from the bottom of the reactor. The catalyst is wetted more fully and thoroughly, which can effectively prevent the existence of "dry zone" in the catalyst bed, thereby making the catalyst more fully activated. .
  • the start-up method of the present invention has a simple process, convenient operation, and a more ideal activation effect than conventional methods, thereby helping to improve the activity of the catalyst.
  • CN111321001A discloses a start-up method of a hydrotreating catalyst, which specifically includes the following steps: (1) introducing start-up diesel into the sulfurized hydrotreating catalyst bed to wet the sulfurized hydrotreating catalyst, and the start-up diesel Contains phosphorus-containing organic matter; (2) When the starting diesel oil penetrates the catalyst bed, increase the reactor temperature to 300-400°C for 10min-120min; (3) Switch the feed oil to produce qualified products.
  • CN200710012674.3 mentions a gasoline hydrorefining start-up method.
  • the hydrodesulfurization catalyst is pre-sulfurized at a specific sulfurization temperature and time and then the raw materials are switched.
  • the process parameters are directly adjusted to conventional reaction conditions for selective refining of gasoline.
  • Hydrodesulfurization reaction The disadvantage of this method is that the stabilization time after switching raw materials is long.
  • the stabilization time is as long as 100 hours on a small evaluation device, and the efficiency in terms of experimental time is low. More importantly, it is well known that the poor quality of products due to unstable catalyst activity in the early stages of large-scale industrial installations will bring greater economic pressure to the company.
  • additives into the catalyst is one of the most common means to improve the activity of the hydrogenation catalyst.
  • Commonly used additives for hydrorefining catalysts include metals such as cobalt and nickel as the first additive and non-metals such as phosphorus and boron as the second additive.
  • the application of chelating agents in the preparation of active component solutions such as citric acid, phosphoric acid, ethylenediamine, ethylenediaminetetraacetic acid, ethylene glycol, etc., as complex components in the preparation process of hydrorefining catalysts, has achieved good results. Effect.
  • CN110479300A discloses a hydrogenation catalyst and its preparation method and application as well as a hydrogenation refining method.
  • the catalyst includes a carrier and active metal component A, active metal component B and organic chelating agent supported on the carrier. It is partially active.
  • Metal component B exists in the form of trisulfide, and the remaining active metal component B exists in the form of trioxide.
  • the atomic ratio of sulfur to active metal component B is 2.1-2.9, and the sulfidation degree of the catalyst is 40-85%.
  • the preparation method of the catalyst includes: (1) impregnating the carrier with solution C containing a Group VIII metal compound, a Group VIB metal compound and an organic chelating agent, and drying to obtain solid A; (2) using the solution containing an organic sulfur source D is brought into contact with solid A and then dried.
  • CN201110321357 discloses a hydrorefining catalyst sulfurization method. This method only introduces hydrogen sulfide and injects the sulfiding agent into the system at a higher temperature, which can avoid the low-temperature separate sulfurization of Co and/or Ni. Therefore, in the presence of higher temperature and hydrogen sulfide, Mo and/or W and Co and/or Ni are sulfided simultaneously to form a highly active Mo(W)-Co(Ni)-S active phase.
  • the preparation method includes: (1) using the impregnation method to load the water-soluble salt and organic complexing agent of the hydrogenation metal active component onto the carrier, and then drying, Roasting to obtain a semi-finished catalyst, the roasting conditions are such that based on the total amount of the semi-finished catalyst, the carbon content in the semi-finished catalyst is 0.03-0.5% by weight; (2) using a solution containing an organic complexing agent as the impregnating liquid, the step ( 1) The obtained semi-finished catalyst is impregnated and then dried without roasting; (3) the metal element as an auxiliary is loaded onto the carrier; wherein step (3) is before, during and after step (1) and after Perform any one or more of steps before step (2).
  • This patent uses a three-step impregnation method to prepare the catalyst, which consumes a lot of manpower and material resources and will cause a significant increase in the cost of catalyst preparation.
  • ZL91110935.8 discloses a method for preparing a cobalt-molybdenum hydrorefining catalyst.
  • cobalt acetate is dissolved in water and then ethylenediamine is added.
  • the molar ratio of cobalt acetate and ethylenediamine is 1:1.5-3 to form cobalt.
  • For a mixed solution of ethylenediamine add concentrated ammonia to the solution to adjust the pH to 12-14, then add ammonium molybdate to fully dissolve it to form a co-immersion solution containing cobalt and molybdenum metal.
  • the porous carrier is impregnated with this solution to prepare a catalyst.
  • the disadvantage of this method is that it needs to be calcined in an oxygen-free or micro-oxygen atmosphere to obtain the catalyst product.
  • US4409131 discloses a method for preparing a CoMo/NiMo catalyst, which is prepared by impregnating a carrier with a solution containing active components and ammonia water in one step. This method details the preparation process of the active component impregnating liquid. In the process of preparing the impregnating liquid , it is necessary to heat the mixture to promote the dissolution of the active ingredients.
  • US6013598 discloses a method for preparing a selective hydrodesulfurization catalyst.
  • the catalyst is composed of active components cobalt, molybdenum and carrier alumina. It is prepared by impregnating the carrier with an equal volume of an aqueous solution containing active components and adding citric acid.
  • the molybdenum oxide content of the catalyst obtained by this method can only reach a maximum of 10wt%.
  • ZL00130284.1 relates to a pyrolysis gasoline two-stage hydrorefining catalyst and its preparation method.
  • This method uses an alumina precursor, and when forming it, adds polymers and IV subgroup metals, and after drying and roasting, obtains a catalyst containing the fourth subgroup.
  • the carrier of subgroup IV metal is impregnated with an ammonia co-immersion solution containing active components of molybdenum, cobalt and nickel, and then dried and roasted to obtain a catalyst.
  • the addition of subgroup IV metal adjusts the acidity and alkalinity of the carrier and inhibits the coking and deactivation rate of the catalyst.
  • ZL99113281.5 relates to a distillate oil hydrorefining catalyst and its preparation method.
  • the catalyst uses alumina or silicon-containing alumina as a carrier, adds phosphorus additives, and uses W, Mo, and Ni as active components. Impregnation technology, the prepared co-immersion solution of W, Mo, Ni, and P is impregnated multiple times to finally prepare the catalyst.
  • ZL00122922.2 discloses a distillate oil hydrodesulfurization catalyst and a preparation method.
  • the catalyst uses alumina or silicon-containing alumina as a carrier, Mo-Ni as an active component, and adds a phosphorus additive.
  • Mo-Ni-P co-impregnation solution By using an alkaline Mo-Ni-P co-impregnation solution to co-impregnate the carrier in stages, and then co-impregnate the carrier in a step-by-step co-impregnation method, the patent uses two or more steps to prepare the catalyst.
  • CN94114194.2 discloses a hydrocarbon hydrodesulfurization catalyst and a preparation method.
  • the catalyst uses zinc oxide modified ⁇ -Al 2 O 3 as a carrier, cobalt and molybdenum as active components, and uses a cobalt and molybdenum co-immersion solution. Prepared in one dip.
  • the composition of the prepared catalyst is: CoO 1-10wt%, MoO 3 5-18wt%, ZnO 1-15wt%, and the balance is ⁇ -Al 2 O 3 .
  • the long-term stability operation effect of the catalyst needs further investigation.
  • the sulfur content loaded in the catalyst is generally determined according to the theoretical sulfur demand of the active metal in the catalyst.
  • the amount of sulfurizing agent introduced into the catalyst is generally 90-150 of the theoretical sulfur demand of all oxidation state hydrogenation catalysts. %.
  • the direct heating operation method is adopted.
  • the object of the present invention is to provide a hydrorefining catalyst and its preparation method, presulfidation method, and start-up method.
  • the catalyst has excellent hydrogenation performance while reducing the amount of sulfiding agent required for presulfidation treatment.
  • hydrogen sulfide emissions are significantly reduced, environmental pollution is reduced, production costs and operational safety risks are reduced.
  • the present invention provides a method for preparing a hydrorefining catalyst, wherein the preparation method includes: before impregnating the active component, the step of spraying the carrier with a potassium-containing spray liquid, and, The step of impregnating the sprayed carrier with potassium-containing active component impregnation liquid.
  • the spraying time is 1 min-20 min, more preferably 3 min-10 min.
  • the spraying process can be carried out using conventional spray equipment, such as agricultural high-voltage electric sprayers.
  • the potassium-containing spray liquid is made by dissolving a potassium-containing compound (such as an inorganic salt of potassium, potassium hydroxide, etc.) in deionized water.
  • a potassium-containing compound such as an inorganic salt of potassium, potassium hydroxide, etc.
  • the potassium-containing spray liquid is a potassium hydroxide solution.
  • the concentration of the potassium-containing spray liquid is 0.1%-5%, more preferably 0.5%-1%.
  • the volume of the potassium-containing spray liquid accounts for 1% of the total volume of the potassium-containing spray liquid and the potassium-containing active component impregnating liquid. -20%, more preferably 5%-10%.
  • the pH value of the potassium-containing spray liquid is 12.2-13.5.
  • the preparation method of the above-mentioned hydrorefining catalyst may include the following steps: spraying the carrier, primary aging, impregnation, secondary aging, drying, and roasting to obtain the catalyst in the oxidized state.
  • the catalyst prepared by the present invention contains potassium. Part of the potassium is introduced by pre-spraying the carrier, and part of the potassium is introduced by impregnating the carrier with an impregnating liquid containing active components of potassium. After spraying, the carrier needs to be aged, and then Perform dipping. That is, the preparation method also includes an aging step after spraying. Preferably, the aging time is 5 min-30 min, more preferably 10 min-20 min.
  • no drying is performed between the step of spraying the carrier with a potassium-containing spray liquid and the step of impregnating the sprayed carrier with a potassium-containing active component impregnating liquid. and roasting; that is, the sprayed carrier (after aging for an appropriate time) is directly prepared for subsequent catalyst preparation without drying and roasting.
  • the catalyst carrier is not particularly limited in the present invention.
  • the carrier is a high-temperature resistant inorganic oxide, such as one or a combination of two or more of alumina, silicon oxide, titanium oxide and zirconium oxide, and more preferably alumina.
  • the water absorption rate of the carrier is 80%-120%, more preferably 85%-110%.
  • a spray liquid such as potassium hydroxide solution
  • the pre-sprayed potassium-containing spray liquid causes the carrier to release part of the adsorption heat in advance, so that part of the adsorption heat of the catalyst carrier during the process of impregnating the active component is released in advance; on the other hand, the pre-sprayed potassium-containing spray liquid
  • the spray liquid changes the number and arrangement of hydroxyl groups on the surface of the catalyst carrier, improving the dispersion of the active components in the subsequent impregnation process; at the same time, the pre-sprayed potassium-containing spray liquid pre-occupies the carrier due to the capillary effect
  • the relatively deep pores allow for the formation of a gradient distribution during the subsequent impregnation and loading of the catalyst active components, and the active components are dispersed more efficiently and uniformly; in addition, the alkali metal potassium in the potassium-containing spray solution can interact with the carrier to reduce the The carrier surface is acidic.
  • the volume of the potassium-containing active component impregnation liquid is 1.05 ⁇ (1-V) ⁇ X ⁇ T-1.25 ⁇ (1-V) ⁇ X ⁇ T , preferably 1.10 ⁇ (1-V) ⁇
  • the volume fraction of the total volume of the potassium-containing spray liquid, X is the water absorption rate of the carrier, T is the mass of the carrier in grams, and the unit of the volume of the potassium-containing active component impregnating liquid is mL.
  • the potassium-containing active component impregnating liquid is prepared by the following steps: mixing ammonia water, polyamine complexing agent, and water to prepare a composite solvent, and mixing the active component and Potassium hydroxide is added to the composite solvent in a certain order to obtain a potassium-containing active component impregnation liquid.
  • the solvent used to dissolve the active component in the present invention is ammonia water added with a polyamine complexing agent.
  • this composite solvent can improve the solubility of the active component in ammonia water and reduce the amount of ammonia water; on the other hand, due to the polyamine
  • complexing agent can significantly improve the dispersion of the active components of the catalyst; in addition, potassium hydroxide makes the impregnation solution more alkaline, allowing the metal active components to better complex with the polyamine complexing agent and improving the impregnation solution.
  • the stability of the catalyst also plays a role in adjusting the acidity of the catalyst and improving the hydrogenation and refining performance of the catalyst.
  • the present invention does not impose special restrictions on the concentration of ammonia water used in preparing the potassium-containing active component impregnating solution. It is determined according to the amount of active components added so that each active component can be completely dissolved. At this time, the active component is complexed with the polyamine. The agent forms a more stable complex.
  • the potassium-containing active component impregnation liquid used in the present invention is an alkaline impregnation liquid
  • the prepared impregnation liquid is clear, stable, and has small surface tension and viscosity.
  • the polyamine complexing agent is one or a combination of two or more C2-C7 amine compounds, such as ethylenediaminetetraacetic acid, ethylenediamine, primary amines , one or a combination of two or more of secondary amines and tertiary amines, more preferably ethylenediamine.
  • C2-C7 amine compounds such as ethylenediaminetetraacetic acid, ethylenediamine, primary amines , one or a combination of two or more of secondary amines and tertiary amines, more preferably ethylenediamine.
  • the amount of polyamine complexing agent added changes according to the amount of active components.
  • the invention is not particularly limited. If the amount of polyamine complexing agent is too high, it will easily cause a large amount of organic matter to decompose during the roasting process. If it is too low, it will not be possible. It can achieve the effect of promoting the dissolution of active components and improving the dispersion of active components.
  • the potassium-containing active component impregnating liquid of the present invention can be prepared at normal temperature (normal temperature is generally defined as 10°C-30°C, preferably 15°C-25°C) and does not require a heating process.
  • the invention is particularly suitable for the preparation of catalysts with multiple active components and high active component content, especially the catalyst preparation method that uses one-step impregnation to load the active components onto the carrier, which can make the active components highly dispersed on the catalyst. , and effectively eliminate the B acid center on the catalyst and weaken the strong L acid center.
  • the catalyst is obtained through aging, drying, roasting and activation.
  • a potassium hydroxide solution of a certain concentration is used to treat the catalyst carrier While spraying heat, it can also modify the carrier. Aging, drying and roasting can be carried out in accordance with conventional methods in this field, and the present invention has no special requirements.
  • the potassium oxide content in the finally prepared catalyst is 0.3%-5%, preferably 0.5%-2.5%.
  • the active components of the catalyst are not particularly limited and can be determined according to the hydrogenation purpose, etc.
  • the active component is one or a combination of two or more of molybdenum, tungsten, cobalt and nickel.
  • the mass fraction of the active component is greater than or equal to 20%, wherein the active component is calculated as the oxide of the active component metal element , for example, molybdenum is measured as molybdenum trioxide, tungsten is measured as tungsten trioxide, cobalt is measured as cobalt oxide, and nickel is measured as nickel oxide.
  • molybdenum is added in the form of ammonium molybdate
  • tungsten can be added in the form of one or a combination of two or more of ammonium metatungstate, tungstic acid and other alkaline tungstates.
  • ammonium metatungstate preferably ammonium metatungstate
  • cobalt and nickel can be added in the form of one or more of their sulfates, halides, nitrates and acetates, preferably nitrates or/and acetates, nitric acid Salt and acetate have good solubility, which is beneficial to the distribution of active components on the carrier.
  • the invention also provides a hydrorefining catalyst, which is prepared by the above preparation method.
  • the distribution of active components in the hydrorefining catalyst presents a certain gradient.
  • the present invention also provides a pre-sulfurization method for the above-mentioned hydrorefining catalyst, wherein the amount of sulfurizing agent introduced during the pre-sulfurization process is 20-70% of the theoretical sulfur requirement of the hydrorefining catalyst, preferably 25-50% .
  • the theoretical sulfur requirement of the catalyst is the sulfur required when the active metal components on the hydrotreating catalyst in the oxidized state are completely converted into sulfides (Co 9 S 8 , MoS 2 , Ni 3 S 2 , WS 2, etc.) Amount, based on elemental sulfur.
  • the sulfur-containing compound is one or a combination of two of inorganic sulfur-containing compounds and organic sulfur-containing compounds; the inorganic sulfur-containing compound is one of carbon disulfide and ammonium sulfide.
  • the organic sulfur-containing compound is one or a combination of two kinds of monosulfide compounds and polysulfide compounds, preferably dimethyl disulfide, tert-butyl polysulfide, tert-nonyl polysulfide.
  • One or a combination of two or more of sulfur, thiourea, SZ-54 (manufactured by Lubrizol), mercaptan, thiophenol, and thioether are examples of sulfur, thiourea, SZ-54 (manufactured by Lubrizol), mercaptan, thiophenol, and thioether.
  • the pre-vulcanization further includes the step of adding a vulcanization aid.
  • a vulcanization aid By adding vulcanization aids during the pre-sulfurization process, it is beneficial to mix the vulcanizing agent and the oxidized hydrogenation catalyst evenly.
  • the vulcanization assistant is an organic solvent.
  • the vulcanization aid is one or a combination of two of hydrocarbon oils and organic carboxylic acid esters;
  • the hydrocarbon oils are gasoline, kerosene, diesel, kerosene, white oil,
  • the organic carboxylic acid ester is an organic carboxylic acid ester containing 6-60 carbon atoms, and is preferably one or a combination of two or more of fatty acid glycerides, animal oil, rapeseed oil, peanut oil, soybean oil, and cottonseed oil.
  • the dosage of the vulcanization aid is 0.5%-40% of the weight of the hydrorefining catalyst (ie, the oxidation state catalyst without pre-sulfidation), more preferably 3%-25% %.
  • the invention also provides an external pre-sulfidation hydrorefining catalyst, which is prepared by the above-mentioned pre-sulfidation method.
  • the content of sulfur element is 3.5-10wt% of the mass of the external presulfidation and hydrorefining catalyst, and more preferably is 4-7wt%.
  • the present invention also provides a start-up method for the above-mentioned external presulfidation and hydrorefining catalyst, which includes the following steps:
  • the presulfidation and hydrorefining catalyst provided by the invention can reduce the amount of sulfiding agent used in the presulfidation process outside the device, has a safe and stable start-up process, and has excellent catalyst performance. This may be because: the sulfurization of the catalyst plays an extremely important role in the performance of the catalyst.
  • the preparation method of the hydrorefining catalyst of the present invention helps to form the highly active phase type II active center of the catalyst. After sulfurization, the active phase The wafer has a more appropriate number of stacking layers and wafer length.
  • the preparation method of the hydrorefining catalyst of the present invention overcomes the impregnation effect and the clustering effect of active components caused by conventional impregnation methods, improves the loading effect of active metal components, and the active components are in the prepared hydrorefining catalyst.
  • a certain gradient is formed, which improves the dispersion of the active metal on the surface of the carrier and regulates the interaction between the active metal and the carrier, thus improving the hydrodesulfurization activity and stability of the catalyst.
  • the catalyst in the partially sulfurized state not only maintains The catalyst has excellent hydrorefining performance and unexpectedly reduces the amount of sulfiding agent required in the out-of-instrument pre-sulfurization process. During the use of the catalyst, the sulfides contained in the oil slowly release the catalyst performance.
  • Figure 1 is a diagram showing the SEM-EDS characterization results of the catalyst in Example 3.
  • Figure 2 is an HRTEM component distribution diagram of potassium in the catalyst in Example 3.
  • This embodiment provides a hydrorefining catalyst and its preparation method, presulfidation method and start-up method, which specifically include:
  • the carrier used in the experiment is a clover strip type ⁇ -Al 2 O 3 carrier with a specific surface area of 289m 2 /g, a pore volume of 0.63cm 3 /g, a strength of 154N/cm, and a water absorption rate of 115%.
  • step (3) Prepare a mixed solution of 5100ml ammonia and 390ml triethylenetetramine, add ammonium molybdate, stir and dissolve, then add nickel nitrate, ammonium metatungstate, and potassium hydroxide in sequence, add deionized water to adjust the volume of the solution to 11930ml, and immerse in
  • the pre-sprayed carrier obtained in step (2) was subjected to secondary aging for 4 hours, drying at 110°C for 3 hours, and roasting at 450°C for 4 hours to prepare catalyst C1.
  • the reactor device is airtight with nitrogen, replaced with hydrogen and airtight with hydrogen, and the airtightness is qualified;
  • the reactor inlet temperature is raised at a rate of 20°C/hour.
  • the catalyst bed temperature reaches 150°C, the temperature is kept constant for 5 hours; when the catalyst bed temperature reaches 185°C, the temperature is kept constant for 4 hours; when the catalyst bed temperature reaches 185°C, the temperature is kept constant for 4 hours;
  • the layer temperature reaches 280°C, the temperature is kept constant for 3 hours, and the catalyst sulfurization is completed;
  • This embodiment provides a hydrorefining catalyst and its preparation method, presulfidation method and start-up method, which specifically include:
  • the carrier used in the experiment is a clover strip type ⁇ -Al 2 O 3 carrier with a specific surface area of 281m 2 /g, a pore volume of 0.62cm 3 /g, a strength of 177N/cm, and a water absorption rate of 110%.
  • step ( 2) Prepare a mixed solution of 5200ml ammonia and 435g ethylenediaminetetraacetic acid, add nickel nitrate, stir and dissolve, then add ammonium molybdate, cobalt nitrate, and potassium hydroxide in sequence, add deionized water to adjust the volume of the solution to 11380ml, and immerse in step ( 2) On the obtained pre-spray carrier, perform secondary aging for 4.5 hours, drying at 100°C for 4 hours, and calcining at 480°C for 4 hours to prepare catalyst C2.
  • the reactor device is airtight with nitrogen, replaced with hydrogen and airtight with hydrogen, and the airtightness is qualified;
  • This embodiment provides a hydrorefining catalyst and its preparation method, presulfidation method and start-up method, which specifically include:
  • the carrier used in the experiment is a clover strip type ⁇ -Al 2 O 3 carrier with a specific surface area of 275m 2 /g, a pore volume of 0.62cm 3 /g, a strength of 156N/cm, and a water absorption rate of 105%.
  • step ( 2) Prepare a mixed solution of 5400ml ammonia and 600ml ethylenediamine, add ammonium molybdate, stir and dissolve, then add cobalt acetate, nickel nitrate, potassium hydroxide in sequence, add deionized water to adjust the volume of the solution to 11170ml, and immerse in step ( 2) On the obtained pre-spray carrier, perform secondary aging for 5 hours, drying at 120°C for 3 hours, and calcining at 500°C for 4 hours to prepare catalyst C3.
  • the reactor device is airtight with nitrogen, replaced with hydrogen and airtight with hydrogen, and the airtightness is qualified;
  • the reactor inlet temperature is raised at a rate of 15°C/hour.
  • the catalyst bed temperature reaches 150°C, the temperature is kept constant for 4 hours; when the catalyst bed temperature reaches 185°C, the temperature is kept constant for 6 hours; when the catalyst bed temperature reaches 185°C, the temperature is kept constant for 6 hours;
  • the layer temperature reaches 290°C, the temperature is kept constant for 2 hours, and the catalyst sulfurization is completed;
  • This embodiment provides a hydrorefining catalyst and its preparation method, presulfidation method and start-up method, which specifically include:
  • the carrier used in the experiment is a clover strip type ⁇ -Al 2 O 3 carrier with a specific surface area of 266m 2 /g, a pore volume of 0.61cm 3 /g, a strength of 169N/cm, and a water absorption rate of 100%.
  • step (3) Prepare a mixed solution of 5500ml ammonia and 420g ethylenediaminetetraacetic acid, add cobalt acetate, stir and dissolve, then add ammonium molybdate, nickel nitrate, potassium hydroxide in sequence, add deionized water to adjust the solution volume to 10700ml, and immerse in
  • the pre-sprayed carrier obtained in step (2) was subjected to secondary aging for 3 hours, drying at 100°C for 5 hours, and roasting at 420°C for 6 hours to prepare catalyst C4.
  • the reactor device is airtight with nitrogen, replaced with hydrogen and airtight with hydrogen, and the airtightness is qualified;
  • This embodiment provides a hydrorefining catalyst and its preparation method, presulfidation method and start-up method, which specifically include:
  • the carrier used in the experiment is a clover strip type ⁇ -Al 2 O 3 carrier, with a specific surface area of 254m 2 /g, a pore volume of 0.61cm 3 /g, a strength of 135N/cm, and a water absorption rate of 95%.
  • step ( 2) Prepare a mixed solution of 5600ml ammonia and 560g ethylenediamine, add ammonium molybdate, stir and dissolve, then add cobalt nitrate, nickel nitrate, and potassium hydroxide in sequence, add deionized water to adjust the volume of the solution to 10230ml, and immerse in step ( 2) On the obtained pre-spray carrier, perform secondary aging for 3.5 hours, drying at 110°C for 4 hours, and calcining at 520°C for 5 hours to prepare catalyst C5.
  • the reactor device is airtight with nitrogen, replaced with hydrogen and airtight with hydrogen, and the airtightness is qualified;
  • the reactor inlet temperature is raised at a rate of 20°C/hour.
  • the temperature is kept constant for 4 hours; when the catalyst bed temperature reaches 200°C, the temperature is kept constant for 5 hours; when the catalyst bed temperature reaches 200°C, the temperature is kept constant for 5 hours;
  • the layer temperature reaches 310°C, the temperature is kept constant for 5 hours, and the catalyst sulfurization is completed;
  • This embodiment provides a hydrorefining catalyst and its preparation method, presulfidation method and start-up method, which specifically include:
  • the carrier used in the experiment is a clover strip type ⁇ -Al 2 O 3 carrier, with a specific surface area of 239m 2 /g, a pore volume of 0.6cm 3 /g, a strength of 189N/cm, and a water absorption rate of 89%.
  • step ( 2) Prepare a mixed solution of 5800ml ammonia and 450g ethylenediamine, add ammonium molybdate, stir and dissolve, then add cobalt acetate, nickel nitrate, and potassium hydroxide in sequence, add deionized water to adjust the volume of the solution to 9320ml, and immerse in step ( 2) On the obtained pre-spray carrier, perform secondary aging for 2.5 hours, drying at 100°C for 5 hours, and calcining at 470°C for 5 hours to prepare catalyst C6.
  • the reactor device is airtight with nitrogen, replaced with hydrogen and airtight with hydrogen, and the airtightness is qualified;
  • the reactor inlet temperature is raised at a rate of 25°C/hour.
  • the temperature is kept constant for 4 hours; when the catalyst bed temperature reaches 210°C, the temperature is kept constant for 4 hours; when the catalyst bed temperature reaches 210°C, the temperature is kept constant for 4 hours;
  • the layer temperature reaches 320°C, and the temperature is kept constant for 6 hours, and the catalyst sulfurization is completed;
  • This embodiment provides a hydrorefining catalyst and its preparation method, presulfidation method and start-up method, which specifically include:
  • the carrier used in the experiment is a clover strip type ⁇ -Al 2 O 3 carrier, with a specific surface area of 223m 2 /g, a pore volume of 0.59cm 3 /g, a strength of 141N/cm, and a water absorption rate of 84%.
  • the reactor device is airtight with nitrogen, replaced with hydrogen and airtight with hydrogen, and the airtightness is qualified;
  • the reactor inlet temperature is raised at a rate of 15°C/hour.
  • the temperature is kept constant for 4 hours; when the catalyst bed temperature reaches 220°C, the temperature is kept constant for 8 hours; when the catalyst bed temperature reaches 220°C, the temperature is kept constant for 8 hours;
  • the layer temperature reaches 290°C, the temperature is kept constant for 3 hours, and the catalyst sulfurization is completed;
  • This comparative example provides a hydrorefining catalyst and its preparation method, presulfidation method and start-up method, specifically including:
  • the carrier used in the experiment is a clover strip type ⁇ -Al 2 O 3 carrier with a specific surface area of 289m 2 /g, a pore volume of 0.63cm 3 /g, a strength of 154N/cm, and a water absorption rate of 115%.
  • the reactor device is airtight with nitrogen, replaced with hydrogen and airtight with hydrogen, and the airtightness is qualified;
  • the reactor inlet temperature is raised at a rate of 20°C/hour.
  • the catalyst bed temperature reaches 150°C, the temperature is kept constant for 5 hours; when the catalyst bed temperature reaches 185°C, the temperature is kept constant for 4 hours; when the catalyst bed temperature reaches 185°C, the temperature is kept constant for 4 hours;
  • the layer temperature reaches 280°C, the temperature is kept constant for 3 hours, and the catalyst sulfurization is completed;
  • This comparative example provides a hydrorefining catalyst and its preparation method, presulfidation method and start-up method, specifically including:
  • the carrier used in the experiment is a clover strip type ⁇ -Al 2 O 3 carrier with a specific surface area of 275m 2 /g, a pore volume of 0.62cm 3 /g, a strength of 156N/cm, and a water absorption rate of 105%.
  • the reactor device is airtight with nitrogen, replaced with hydrogen and airtight with hydrogen, and the airtightness is qualified;
  • the reactor inlet temperature is raised at a rate of 15°C/hour.
  • the catalyst bed temperature reaches 150°C, the temperature is kept constant for 4 hours; when the catalyst bed temperature reaches 185°C, the temperature is kept constant for 6 hours; when the catalyst bed temperature reaches 185°C, the temperature is kept constant for 6 hours;
  • the layer temperature reaches 290°C, the temperature is kept constant for 2 hours, and the catalyst sulfurization is completed;
  • This comparative example provides a hydrorefining catalyst and its preparation method, presulfidation method and start-up method, specifically including:
  • the carrier used in the experiment is a clover strip type ⁇ -Al 2 O 3 carrier, with a specific surface area of 254m 2 /g, a pore volume of 0.61cm 3 /g, a strength of 135N/cm, and a water absorption rate of 95%.
  • the reactor device is airtight with nitrogen, replaced with hydrogen and airtight with hydrogen, and the airtightness is qualified;
  • the reactor inlet temperature is raised at a rate of 20°C/hour.
  • the temperature is kept constant for 4 hours; when the catalyst bed temperature reaches 200°C, the temperature is kept constant for 5 hours; when the catalyst bed temperature reaches 200°C, the temperature is kept constant for 5 hours;
  • the layer temperature reaches 310°C, the temperature is kept constant for 5 hours, and the catalyst sulfurization is completed;
  • This comparative example provides a hydrorefining catalyst and its preparation method, presulfidation method and start-up method, specifically including:
  • the carrier used in the experiment is a clover strip type ⁇ -Al 2 O 3 carrier, with a specific surface area of 223m 2 /g, a pore volume of 0.59cm 3 /g, a strength of 141N/cm, and a water absorption rate of 84%.
  • the reactor device is airtight with nitrogen, replaced with hydrogen and airtight with hydrogen, and the airtightness is qualified;
  • the reactor inlet temperature is raised at a rate of 15°C/hour.
  • the temperature is kept constant for 4 hours; when the catalyst bed temperature reaches 220°C, the temperature is kept constant for 8 hours; when the catalyst bed temperature reaches 220°C, the temperature is kept constant for 8 hours;
  • the layer temperature reaches 290°C, the temperature is kept constant for 3 hours, and the catalyst sulfurization is completed;
  • Table 1 lists the mass content of each component in the catalysts obtained in Examples 1-7 and Comparative Examples 1-4.
  • the element distribution analysis and characterization of the catalyst and the distribution of active components on the catalyst were investigated through SEM-EDS.
  • the contents of active components at different positions in the catalyst are shown in Table 2 below.
  • the SEM-EDS characterization results of the catalyst Cs3 in Example 3 are shown in Figure 1.
  • the catalyst contains Ni, Mo, Co, K elements, and also contains a small amount of Si and P; HRTEM of the potassium element of the catalyst Cs3 in Example 3
  • the component distribution is shown in Figure 2. K element can be observed and the distribution is relatively uniform.
  • the raw material is the first-stage hydrogenation product of the C6-C8 fraction of cracked gasoline.
  • the reaction process conditions are: reaction pressure 2.8MPa, liquid hourly volume space velocity 2.0h -1 , reaction temperature 240°C, and hydrogen-to-oil volume ratio 250:1.
  • the catalysts Cs3 and Ds2 prepared above were evaluated for 300 hours respectively.
  • the first-stage hydrogenation product of cracked gasoline was used as raw material.
  • the properties of the raw materials are shown in Table 3.
  • the catalyst evaluation was carried out on a 250ml adiabatic bed hydrogenation reaction device. The catalyst was loaded in the next two stages. , filling volume 150ml. Samples are taken every 12 hours to analyze the bromine value and sulfur content of the product.
  • the average data of the 300-hour evaluation of the catalyst are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

提供一种加氢精制催化剂及其制备方法、预硫化方法、开工方法。该催化剂的制备方法包括:在浸渍活性组分之前,采用含钾的喷淋液对载体进行喷淋的步骤,以及,以含钾的活性组分浸渍液对经过喷淋的载体进行浸渍的步骤。所得催化剂在减少预硫化处理所需硫化剂用量的同时具有优异的加氢性能,预硫化过程中能够大幅降低硫化氢的排放,减小环境污染,降低生产成本和操作安全风险。

Description

一种加氢精制催化剂及其制备方法、预硫化方法、开工方法 技术领域
本发明属于加氢精制催化剂领域,具体涉及一种加氢精制催化剂及其制备方法、预硫化方法、开工方法。
背景技术
加氢精制技术是改善石油化工产品质量的主要手段,其核心是加氢精制催化剂。加氢精制催化剂分为负载型和非负载型,现今工业上主要应用的是负载型催化剂。负载型加氢精制催化剂一般是将活性金属(Mo、W、Ni、Co等)浸渍到载体上,浸渍法制备的催化剂活性组分分布在催化剂载体的内外表面上,包括内部深处空隙和孔的内表面上。对于加氢精制催化剂制备方法的报道很多,主要围绕制备方法和过程研究、载体改性、助剂添加等方面展开。
常规方法制备的加氢精制催化剂活性金属为氧化态,而实际使用时真正起催化作用的物质为活性组分的硫化态。氧化态催化剂在使用前,其活性金属需转化为硫化态,催化剂有较高的催化活性。因此,加氢催化剂在使用前需经过硫化活化,称之为预硫化。催化剂的预硫化对催化剂的性能具有重要影响,是催化剂应用前的重要处理步骤。催化剂的预硫化方法按载硫的方式可分为器内预硫化和器外预硫化。
器内预硫化技术是将催化剂装入反应器后再进行硫化处理。反应所需的硫化氢通常用硫化剂分解来制取,工业上通常采用二甲基二硫(以下简称DMDS)。主要的硫化步骤为:在热氢循环的状态下(反应器入口温度达180℃),逐渐向系统中注入DMDS,然后与氢气发生分解反应,释放出硫化氢气体,再与反应器中氧化态的催化剂发生反应,最终得到硫化态的催化剂。该方法主要存在三个方面的问题:(1)使用的硫化剂有毒有害、易产生环境污染;(2)装置需配备仅在开工期间使用的硫化设施及配套管线等;(3)硫化过程中装置在高温、高压、高H 2S浓度存在安全环保隐患。
因而器外预硫化方法应运而生。器外预硫化技术的优势是:(1)器外预硫化技术使加氢催化剂活性金属组分的利用率提高,催化剂硫化得更充分;(2)器外预硫化技术可以节省开工时间,使开工过程更加便捷;(3)器外预硫化催化剂的开工现场避免了使用有毒的硫化物,而且也不需要安装专用的硫化设施。
CN112742487A公开了一种预硫化加氢催化剂的开工方法,方法包括:(1)将硫化剂与氧化态的加氢催化剂混合均匀;(2)将步骤(1)的混合物进行热处理;降温后加入含磷物质;(3)将步骤(2)所得物料干燥,得到预硫化催化剂;(4)将步骤(3) 预硫化催化剂装入反应器,进行湿法活化开工。
CN104646034A涉及一种硫化型加氢精制催化剂的制备方法。采用浸渍溶液浸渍载体,然后经原位晶化反应和热处理得硫化型加氢精制催化剂,其中,所述的浸渍溶液含有活性金属钼酸铵和/或钨酸铵、Ni和/或Co的无机盐前驱体,同时含有硫化剂、有机络合剂和助溶剂。
CN109926101A公开了一种硫化型催化剂的开工方法,还包括了器外预硫化加氢催化剂的硫化方法,所述硫化型催化剂组合物包括:氧化态加氢催化剂、固体硫、辅助物、有机化合物和水合肼。将硫化型加氢催化剂组合物装入反应器中,进行氮气气密,氮气气密合格后逐步引入氢气,进行氢气低压气密,低压气密合格后升温升压进行高压气密;高压气密合格后,调整压力至反应压力至硫化完成,最后调整温度至反应温度,进原料油开始进行加氢反应。
ZL200810010245.7公开了一种加氢催化剂预硫化方法及加氢工艺开工方法。催化剂预硫化过程中,预硫化的部分催化剂的硫化剂引入量大大高于催化剂中活性加氢金属的理论需硫量。预硫化的加氢催化剂与未预硫化的加氢催化剂混合或分层装填在反应器中,经过开工活化,使所有催化剂均进行有效的硫化处理。该催化剂硫化活性相可能存在分布不均的问题。
CN103805235A涉及一种加氢装置湿法开工方法、低能耗加氢工艺以及加氢设备。在加氢装置反应区内装填硫化型加氢催化剂,开工过程首先用开工油通过换热达到一定温度通过催化剂床层,利用换热和活化时的反应热使得催化剂床层达到180±10℃或以上,在循环气中掺混一部分烯烃含量高的气体,利用烯烃加氢反应得到的反应热继续升温至230±5℃恒温活化,温度至270±10℃或以上时,分步换进原料油,利用原料油中加氢反应得到反应热继续升温,最后通过冷氢量和换热器来调整反应温度,转入正常生产。但在较高温度条件下,高烯烃含量的原料油,可能会导致硫化过程中积碳的形成,竞争硫化态活性金属的占位。
CN102051203A公开了一种器外预硫化催化剂的开工方法。所述方法包括:在催化剂的润湿阶段,开工油和氢气由反应器底部引入,待开工油充满反应系统后,系统闭路循环,逐步升温活化,待床层温度达到280-320℃后,活化结束。本发明方法中催化剂润湿采用开工油和氢气从反应器底部引入反应器的方式,催化剂润湿更加充分彻底,能有效防止催化剂床层中“干区”的存在,从而使得催化剂的活化更加充分。本发明开工方法工艺简单,操作便捷,活化效果较常规方法更为理想,从而有利于提高催化剂的活 性。
CN111321001A公开一种加氢处理催化剂的开工方法,具体包括如下步骤:(1)向硫化后的加氢处理催化剂床层中引入开工柴油对硫化态的加氢处理催化剂进行润湿,所述开工柴油中含有含磷有机物;(2)当开工柴油穿透催化剂床层后,提高反应器温度到300-400℃进行处理10min-120min;(3)切换原料油,进行合格产品生产。
CN200710012674.3中提到一种汽油加氢精制开工方法,在特定的硫化温度和时间下对加氢脱硫催化剂进行预硫化后切换原料,并直接调整工艺参数至常规反应条件下进行汽油选择性加氢脱硫反应。该方法的不足之处在于切换原料后的稳定时间较长,该专利的具体实施例中,在小型评价装置上稳定时间长达100小时,实验时间方面的效率较低。更重要的是,众所周知,大型工业装置开工初期因为催化剂活性不稳定而造成的产品质量较差,会给企业带来较大的经济压力。
催化剂中引入助剂是提高加氢催化剂活性的最常用手段之一,加氢精制催化剂常用的助剂包括第一助剂钴、镍等金属和第二助剂磷、硼等非金属。同时,螯合剂等配制活性组分溶液过程作为络合组成的如柠檬酸、磷酸、乙二胺、乙二胺四乙酸、乙二醇等在加氢精制催化剂制备过程的应用,均取得了良好的效果。
CN110479300A公开了一种加氢催化剂及其制备方法和应用以及加氢精制的方法,该催化剂包括载体和负载在该载体上的活性金属组分A、活性金属组分B和有机螯合剂,部分活性金属组分B以三硫化物形式存在,剩余部分活性金属组分B以三氧化物形式存在,硫与活性金属组分B的原子比为2.1-2.9,催化剂的硫化度为40-85%。该催化剂的制备方法包括:(l)采用含有第VIII族金属化合物、第VIB族金属化合物和有机螯合剂的溶液C对载体进行浸渍,干燥得到固体A;(2)将含有有机硫源的溶液D与固体A接触,然后进行干燥。
CN201110321357公开了一种加氢精制催化剂硫化方法。该方法在较高温度下才向系统内引入硫化氢和注入硫化剂,可以避免Co和/或Ni的低温单独硫化,从而在较高温度和硫化氢存在的情况下,Mo和/或W与Co和/或Ni同时硫化形成高活性Mo(W)-Co(Ni)-S活性相。
ZL201510700293.9涉及一种加氢催化剂及其制备方法,该制备方法包括:(1)采用浸渍法将加氢金属活性组分的水溶性盐和有机络合剂负载到载体上,然后进行干燥、焙烧,得到半成品催化剂,所述焙烧条件使得以半成品催化剂的总量为基准,半成品催化剂中炭含量为0.03-0.5重量%;(2)以含有有机络合剂的溶液作为浸渍液,对步骤(1) 所得半成品催化剂进行浸渍,然后进行干燥且不进行焙烧;(3)将作为助剂的金属元素负载到载体上;其中,步骤(3)在步骤(1)之前、之中和之后且在步骤(2)之前的任意一个或多个进行。该专利采用三步浸渍法制备催化剂,耗费大量的人力物力,会造成催化剂制备成本的大幅增加。
ZL91110935.8公开了一种钴钼加氢精制催化剂的制备方法,该方法将乙酸钴溶于水后加入乙二胺,乙酸钴和乙二胺摩尔比为1:1.5-3,使其形成钴乙二胺的混合溶液,在溶液中加入浓氨水调节pH值为12-14后加入钼酸铵充分溶解,制成含有钴钼金属的共浸液,将多孔载体用此溶液浸渍后制备催化剂。该方法的缺点是需要在无氧或微氧气氛中焙烧得到催化剂产品。
US4409131公开了一种CoMo/NiMo催化剂的制备方法,其是由含有活性组分及氨水的溶液一步浸渍载体制得的,该方法详细介绍了活性组分浸渍液的配制过程,在配制浸渍液过程中,需要加热混合物促进活性组分的溶解。
US6013598公开了一种选择性加氢脱硫催化剂的制备方法,该催化剂由活性组分钴、钼及载体氧化铝组成,是由含有活性组分并添加柠檬酸的水溶液等体积浸渍载体制得,该方法得到的催化剂氧化钼含量最高只能达到10wt%。
ZL00130284.1涉及一种裂解汽油二段加氢精制催化剂及其制备方法,该方法用氧化铝前身物,在其成型时,加入高聚物、第Ⅳ副族金属,经干燥焙烧,得到含第Ⅳ副族金属的载体,使用含有钼、钴、镍活性组分的氨共浸液浸渍,再经过干燥焙烧得到催化剂。Ⅳ副族金属的加入调节了载体的酸碱性,抑制催化剂的结焦失活速度。
ZL99113281.5涉及一种馏分油加氢精制催化剂及其制备方法,该催化剂以氧化铝或含硅氧化铝为载体,添加磷助剂,以W、Mo、Ni为活性组分,采用分段共浸渍技术,将配制的W、Mo、Ni、P共浸液通过多次浸渍,最终制备得到催化剂。
ZL00122922.2公开了一种馏分油加氢脱硫催化剂及制备方法,该催化剂以氧化铝或含硅氧化铝为载体,以Mo-Ni为活性组分,添加磷助剂。通过采用碱性的Mo-Ni-P共浸液分段共浸载体,然后将共浸渍以分步共浸的方式浸渍载体,该专利采用二步或以上制备得到催化剂。
文献“Co-Mo-Ni-W/γ-Al 2O 3柴油加氢精制催化剂的研制(姚媛媛,张孔远等,工业催化,2008(02):18-22.)”考察了扩孔剂及焙烧温度对载体物化性能的影响和浸渍液的配制方法对其稳定性的影响。其公开的浸渍液的配制方法主要有两种,(1)低温法配制:①将去离子水和磷酸加热后加入碱式碳酸镍(或碱式碳酸钴)和三氧化钼,继续加 热搅拌至溶解,冷却至室温待用;②微热去离子水中加入偏钨酸铵和醋酸钴(或硝酸镍),搅拌溶解,冷却至室温待用;③将冷却的偏钨酸铵和醋酸钴(或硝酸镍)溶液和①中配制的镍(钴)钼磷溶液混合,搅拌均匀后定容待用。(2)高温法配制:将三氧化钼、磷酸和碱式碳酸镍(或碱式碳酸钴)溶于去离子水,加热搅拌使之完全溶解,然后加入偏钨酸铵及醋酸钴(或硝酸镍),继续加热搅拌,直至完全溶解为澄清溶液后定容待用。在配制浸渍溶液的过程中均需要加热,并加入无机酸。
CN94114194.2公开了一种烃类加氢脱硫催化剂及制备方法,该催化剂以氧化锌改性的γ-Al 2O 3作载体,以钴、钼为活性组分,采用钴、钼共浸液一次浸渍制备而成。制得的催化剂其组成为:CoO 1-10wt%,MoO 3 5-18wt%,ZnO 1-15wt%,余量为γ-Al 2O 3。但催化剂的长周期稳定性运行效果有待进一步考察。
负载型催化剂活性组分(尤其是活性组分含量高的条件下)较难在载体表面形成单层分散或达到分散阈值,活性组分与载体间相互作用的适宜程度是影响催化剂有效负载量的主要因素之一。一般而言,载体上活性组分的分散度越高,有效活性位数量越多,催化剂的活性就越高,但是还要综合考虑催化剂的长周期稳定性,因此,如何改善活性组分与载体的相互作用以增加活性组分在载体上的有效负载是加氢精制催化剂研发的重点。同时催化剂在预硫化过程中,催化剂中负载的硫含量一般按催化剂中活性金属的理论需硫量确定,催化剂中引入硫化剂的量一般为所有氧化态加氢催化剂理论需硫量的90-150%。开工时,采用直接升温的操作方式。
发明内容
为了解决上述问题,本发明的目的在于提供一种加氢精制催化剂及其制备方法、预硫化方法、开工方法,该催化剂在减少预硫化处理所需硫化剂用量的同时具有优异的加氢性能,开工的过程中大幅降低硫化氢的排放,减小环境污染,降低生产成本和操作安全风险。
为了达到上述目的,本发明提供了一种加氢精制催化剂的制备方法,其中,该制备方法包括:在浸渍活性组分之前,采用含钾的喷淋液对载体进行喷淋的步骤,以及,以含钾的活性组分浸渍液对经过喷淋的载体进行浸渍的步骤。
在上述加氢精制催化剂的制备方法中,优选地,所述喷淋的时间为1min-20min,更优选为3min-10min。喷淋过程可以采用常规的喷雾设备进行,例如农用高压电动喷雾器。
在上述加氢精制催化剂的制备方法中,优选地,所述含钾的喷淋液是将含钾的化合物(例如钾的无机盐、氢氧化钾等)溶于去离子水制成的。
在上述加氢精制催化剂的制备方法中,优选地,所述含钾的喷淋液为氢氧化钾溶液。
在上述加氢精制催化剂的制备方法中,优选地,所述含钾的喷淋液的浓度为0.1%-5%,更优选为0.5%-1%。
在上述加氢精制催化剂的制备方法中,优选地,所述含钾的喷淋液的体积占所述含钾的喷淋液与所述含钾的活性组分浸渍液的总体积的1%-20%,更优选5%-10%。
在上述加氢精制催化剂的制备方法中,优选地,所述含钾的喷淋液的pH值为12.2-13.5。
根据本发明的具体实施方案,优选地,上述加氢精制催化剂的制备方法可以包括以下步骤:喷淋载体、一次陈化、浸渍、二次陈化、干燥、焙烧,得到氧化态的催化剂。
本发明制备的催化剂中含有钾,其中,一部分钾以载体预喷淋的方式引入,一部分钾以用含有钾的活性组分浸渍液浸渍载体的方式引入,喷淋后载体需要经过陈化,再进行浸渍。即该制备方法还包括在喷淋之后进行陈化的步骤,优选地,所述陈化时间为5min-30min,更优选为10min-20min。
根据本发明的具体实施方案,优选地,采用含钾的喷淋液对载体进行喷淋的步骤与以含钾的活性组分浸渍液对经过喷淋的载体进行浸渍的步骤之间不进行干燥和焙烧;即经喷淋的载体(陈化适当时间之后),不经过干燥和焙烧,直接进行后续催化剂的制备。
本发明对催化剂的载体并不特别加以限制。根据本发明的具体实施方案,优选地,所述载体为耐高温无机氧化物,例如氧化铝、氧化硅、氧化钛和氧化锆中的一种或两种以上的组合,更优选为氧化铝。
根据本发明的具体实施方案,优选地,所述载体的吸水率为80%-120%,更优选为85%-110%。
发明人通过实验研究发现,负载型催化剂载体在活性组分浸渍液浸渍过程中会集中释放出大量的吸附热,影响后期活性组分的分散状态和催化剂的物化性能;通过预先采用含钾的喷淋液(例如氢氧化钾溶液)喷淋载体,而后采用活性组分浸渍液浸渍负载活性组分,不仅能够提高催化剂的加氢性能,而且能够有效地延长催化剂的寿命,其原因可能是:由于预先喷淋的含钾的喷淋液一方面使载体预先释放了部分吸附热,使催化剂载体在浸渍活性组分过程中的部分吸附热提前释放出来;另一方面,预先喷淋的含钾的喷淋液使催化剂载体表面的羟基数量和排布发生变化,提高了后续浸渍活性组分过程中活性组分的分散性;同时,预先喷淋的含钾的喷淋液由于毛细管效应预先占据载体相对较深的孔,使后续催化剂活性组分浸渍负载过程中形成梯度分布,活性组分分散更高效、 均匀;此外,含钾的喷淋液中的碱金属钾可与载体发生相互作用从而降低载体表面酸性。
在上述加氢精制催化剂的制备方法中,优选地,所述含钾的活性组分浸渍液的体积为1.05×(1-V)×X×T-1.25×(1-V)×X×T,优选为1.10×(1-V)×X×T-1.20×(1-V)×X×T,其中,V为所述含钾的喷淋液占所述含钾的活性组分浸渍液与所述含钾的喷淋液的总体积的体积分数,X为载体吸水率,T为载体质量克数,含钾的活性组分浸渍液的体积的单位为mL。
在上述加氢精制催化剂的制备方法中,优选地,含钾的活性组分浸渍液是通过以下步骤制备的:将氨水、多胺络合剂、水混合配制成复合溶剂,将活性组分和氢氧化钾按一定顺序加入复合溶剂中,得到含钾的活性组分浸渍液。本发明溶解活性组分用的溶剂是添加多胺络合剂的氨水,采用这种复合溶剂一方面能够提高活性组分在氨水中的溶解性、减少氨水的用量;另一方面,由于多胺络合剂的添加,能够明显提高催化剂活性组分的分散度;此外,氢氧化钾使浸渍液碱性增强,从而使金属活性组分更好地与多胺络合剂络合,提高浸渍溶液的稳定性,同时还起到调节催化剂酸性,提高催化剂加氢精制性能的作用。
本发明对配制含钾的活性组分浸渍液所用氨水浓度不做特别的限定,根据活性组分加入量确定,能使各活性组分完全溶解即可,此时活性组分与多胺络合剂形成较稳定的络合物。
根据本发明的具体实施方案,本发明采用的含钾的活性组分浸渍液为碱性浸渍液,所配制的浸渍液澄清、稳定,表面张力和粘稠度小。
根据本发明的具体实施方案,优选地,所述多胺络合剂为C2-C7的胺类化合物中的一种或两种以上的组合,例如乙二胺四乙酸、乙二胺、伯胺、仲胺和叔胺中的一种或两种以上的组合,更优选为乙二胺。
多胺络合剂的加入量根据活性组分的加入量的多少而变化,本发明并不特别加以限制,多胺络合剂加入量过高容易造成焙烧过程中大量有机物分解,过低则无法达到促进活性组分溶解、提高活性组分分散度的效果。
本发明的含钾的活性组分浸渍液在常温下(常温一般定义为10℃-30℃,优选为15℃-25℃)即可完成配制,不需要加热过程。本发明特别适用于多种活性组分、高活性组分含量催化剂的制备,尤其是采用一步浸渍将活性组分负载到载体上的催化剂制备方法,能够使活性组分在催化剂上呈高度分散状态,并有效消除催化剂上的B酸中心,减弱强L酸中心。
采用本发明的方法完成喷淋和活性组分溶液浸渍负载后,经陈化、干燥、焙烧、活化制得催化剂,其中,在浸渍活性组分之前,采用一定浓度的氢氧化钾溶液对催化剂载体进行喷淋放热的同时还能够起到对载体改性的作用。陈化、干燥、焙烧均可以按照本领域的常规方式进行,本发明并无特殊要求。最终制备得到催化剂中的氧化钾含量为0.3%-5%,优选为0.5%-2.5%。
根据本发明的具体实施方案,本发明对催化剂的活性组分并不特别加以限制,可以根据加氢用途等进行确定。优选地,所述活性组分为钼、钨、钴和镍中的一种或两种以上的组合。
根据本发明的具体实施方案,优选地,以载体总质量为100%计,所述活性组分的质量分数大于等于20%,其中,所述活性组分按活性组分金属元素的氧化物计算,例如钼以三氧化钼计、钨以三氧化钨计、钴以氧化钴计、镍以氧化镍计。
根据本发明的具体实施方案,优选地,钼以钼酸铵的形式加入,钨的加入方式可以是偏钨酸铵、钨酸和其他碱性钨酸盐中的一种或两种以上的组合,优选偏钨酸铵;钴和镍的形式加入可以是其硫酸盐、卤化物、硝酸盐和醋酸盐中的一种或两种以上的组合,优选硝酸盐或/和醋酸盐,硝酸盐、醋酸盐的溶解性好,有利于活性组分在载体上的分布。
本发明还提供了一种加氢精制催化剂,其是由上述制备方法制备的。
根据本发明的具体实施方案,活性组分在加氢精制催化剂中的分布呈现一定的梯度。
本发明还提供了上述加氢精制催化剂的预硫化方法,其中,预硫化过程中引入硫化剂的量为所述加氢精制催化剂的理论需硫量的20-70%,优选为25-50%。其中,催化剂理论需硫量为氧化态的加氢精制催化剂上的活性金属组分完全转化为硫化物(Co 9S 8、MoS 2、Ni 3S 2、WS 2等)时所需要的硫的量,以硫单质计。
根据本发明的具体实施方案,优选地,在上述预硫化方法中所述预硫化采用的硫化剂为单质硫和/或含硫化合物。
根据本发明的具体实施方案,优选地,所述含硫化合物为无机含硫化合物和有机含硫化合物中的一种或两种的组合;所述无机含硫化合物为二硫化碳、硫化铵中的一种或两种的组合,所述有机含硫化合物为单硫化合物和多硫化合物中的一种或两种的组合,优选为二甲基二硫、叔丁基多硫化物、叔壬基多硫、硫脲、SZ-54(生产厂家为路博润公司)、硫醇、硫酚、硫醚中的一种或两种以上的组合。
根据本发明的具体实施方案,优选地,所述预硫化还包括加入硫化助剂的步骤。通 过在进行预硫化的过程中加入硫化助剂,有利于硫化剂与氧化态加氢催化剂混合均匀。
根据本发明的具体实施方案,优选地,所述硫化助剂为有机溶剂。
根据本发明的具体实施方案,优选地,所述硫化助剂为烃油和有机羧酸酯中的一种或两种的组合;所述烃油为汽油、煤油、柴油、灯油、白油、工业豆油、润滑油基础油中的一种或两种以上的组合,优选为二次加工得到的烃油,其中,所述加工为催化裂化、热裂化中的一种或两种的组合工艺;所述有机羧酸酯为含有6-60个碳原子的有机羧酸酯类,优选为脂肪酸甘油酯、动物油、菜籽油、花生油、豆油、棉籽油中的一种或两种以上的组合。
根据本发明的具体实施方案,优选地,所述硫化助剂用量为加氢精制催化剂(即未进行预硫化时的氧化态催化剂)的重量的0.5%-40%,更优选为3%-25%。
本发明还提供了一种器外预硫化加氢精制催化剂,其是由上述预硫化方法制备的。
根据本发明的具体实施方案,优选地,在上述器外预硫化加氢精制催化剂中,硫元素的含量为器外预硫化加氢精制催化剂质量的3.5-10wt%,更优选为4-7wt%。
本发明还提供了上述器外预硫化加氢精制催化剂的开工方法,其包括以下步骤:
(1)将器外预硫化加氢精制催化剂催化剂装入反应器中;
(2)将反应器经氮气气密、氢气置换和氢气气密;
(3)在氢气循环下,以反应器入口温度15-25℃/小时的速度升温,当催化剂床层温度达到150-160℃时,恒温3-5小时;当催化剂床层温度达180-220℃时,恒温2-10h;当催化剂床层温度达260-320℃,恒温2-10h(优选为2-8h),催化剂硫化结束;
(4)调整系统工艺条件至反应条件,切换原料油进行操作,完成开工。
本发明所提供的预硫化加氢精制催化剂能够降低器外预硫化过程中的硫化剂用量,开工过程安全平稳,催化剂性能优异。这可能是由于:催化剂的硫化对于催化剂的性能起到了极其重要的作用,采用本发明的加氢精制催化剂的制备方法有助于形成催化剂高活性相态Ⅱ型活性中心,在硫化后其活性相晶片具有更加适当的堆垛层数和片晶长度。
本发明的加氢精制催化剂的制备方法克服了常规浸渍方法带来的浸渍效应和活性组分团簇作用,提高了活性金属组分的负载效应,活性组分在制备得到的加氢精制催化剂中形成了一定的梯度,提高了活性金属在载体表面的分散性,同时调节了活性金属与载体间的相互作用,从而提高了催化剂加氢脱硫活性和稳定性,部分硫化状态的催化剂,既保持了催化剂优异的加氢精制性能,同时意想不到地降低了器外预硫化过程中所需硫化剂的用量。在催化剂的使用过程中,油品中含有的硫化物使催化剂性能慢慢释放。
附图说明
图1为实施例3中催化剂的SEM-EDS表征结果图。
图2为实施例3中催化剂中钾的HRTEM组分分布图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种加氢精制催化剂及其制备方法、预硫化方法和开工方法,具体包括:
催化剂制备:
实验所用载体为三叶草条型γ-Al 2O 3载体,载体比表面积289m 2/g,孔容0.63cm 3/g,强度154N/cm,吸水率115%。
(1)首先配制氢氧化钾水溶液用于预喷淋处理:配制0.25%的氢氧化钾溶液497ml,得到喷淋液;
(2)称取氧化铝载体10kg,加入回转式浸渍锅中,采用上述配制好的氢氧化钾喷淋液对载体进行雾化喷淋处理,喷淋处理时间为2.5min,喷淋后一次陈化的放置时间为5min,得到预喷淋载体;
(3)配制5100ml氨水和390ml三乙撑四胺混合溶液,加入钼酸铵搅拌溶解后依次加入硝酸镍、偏钨酸铵、氢氧化钾,加入去离子水将溶液体积调整到11930ml,浸渍于步骤(2)所得预喷淋载体上,二次陈化4h,于110℃下干燥3小时,450℃焙烧4h,制得催化剂C1。
催化剂器外预硫化:
(1)将硫化剂(SZ-54,用量为催化剂C1理论需硫量的30%)、硫化助剂(汽油和豆油的重量比2:1的混合物,用量为催化剂C1重量的20%)混合均匀得预硫化原料;
(2)将催化剂C1放入回转式浸渍锅,预硫化原料采用喷淋方式与催化剂C1混合均匀,放置1h后,120℃处理2h,得到器外预硫化催化剂Cs1。
器外预硫化型催化剂开工方法:
(1)将器外预硫化型催化剂Cs1装入反应器中;
(2)将反应器装置经氮气气密、氢气置换和氢气气密,气密合格;
(3)在氢气循环下,以反应器入口温度20℃/小时的速度升温,当催化剂床层温度 达到150℃时,恒温5h;当催化剂床层温度达185℃时,恒温4h;当催化剂床层温度达280℃,恒温3h,催化剂硫化结束;
(4)调整系统工艺条件至反应条件,切换原料油进行正常操作。
实施例2
本实施例提供了一种加氢精制催化剂及其制备方法、预硫化方法和开工方法,具体包括:
催化剂制备:
实验所用载体为三叶草条型γ-Al 2O 3载体,载体比表面积281m 2/g,孔容0.62cm 3/g,强度177N/cm,吸水率110%。
(1)首先配制氢氧化钾水溶液用于预喷淋处理:配制0.5%的氢氧化钾溶液726ml,得到喷淋液;
(2)称取氧化铝载体10kg,加入回转式浸渍锅中,采用上述配制好的氢氧化钾喷淋液对载体进行雾化喷淋处理,喷淋处理时间为12min,喷淋后一次陈化的放置时间为7min,得到预喷淋载体;
(3)配制5200ml氨水和435g乙二胺四乙酸混合溶液,加入硝酸镍搅拌溶解后依次加入钼酸铵、硝酸钴、氢氧化钾,加入去离子水将溶液体积调整到11380ml,浸渍于步骤(2)所得预喷淋载体上,二次陈化4.5h,于100℃下干燥4小时,480℃焙烧4h,制得催化剂C2。
催化剂器外预硫化:
(1)将硫化剂(单质硫,用量为催化剂C2理论需硫量的35%)、硫化助剂(煤油,用量为催化剂C2重量的15%)混合均匀得预硫化原料;
(2)将催化剂C2放入回转式浸渍锅,预硫化原料采用喷淋方式与催化剂C2混合均匀,放置0.5h后,100℃处理2.5h,得到器外预硫化催化剂Cs2。
器外预硫化型催化剂开工方法:
(1)将器外预硫化型催化剂Cs2装入反应器中;
(2)将反应器装置经氮气气密、氢气置换和氢气气密,气密合格;
(3)在氢气循环下,以反应器入口温度25℃/小时的速度升温,当催化剂床层温度达到150℃时,恒温5h;当催化剂床层温度达180℃时,恒温3h;当催化剂床层温度达285℃,恒温4h,催化剂硫化结束;
(4)调整系统工艺条件至反应条件,切换原料油进行正常操作。
实施例3
本实施例提供了一种加氢精制催化剂及其制备方法、预硫化方法和开工方法,具体包括:
催化剂制备:
实验所用载体为三叶草条型γ-Al 2O 3载体,载体比表面积275m 2/g,孔容0.62cm 3/g,强度156N/cm,吸水率105%。
(1)首先配制氢氧化钾水溶液用于预喷淋处理:配制0.3%的氢氧化钾溶液588ml,得到喷淋液;
(2)称取氧化铝载体10kg,加入回转式浸渍锅中,采用上述配制好的氢氧化钾喷淋液对载体进行雾化喷淋处理,喷淋处理时间为3.5min,喷淋后一次陈化的放置时间为9min,得到预喷淋载体;
(3)配制5400ml的氨水和600ml乙二胺的混合溶液,加入钼酸铵搅拌溶解后依次加入乙酸钴、硝酸镍、氢氧化钾,加入去离子水将溶液体积调整到11170ml,浸渍于步骤(2)所得预喷淋载体上,二次陈化5h,于120℃下干燥3小时,500℃焙烧4h,制得催化剂C3。
催化剂器外预硫化:
(1)将硫化剂(SZ-54,用量为催化剂C3理论需硫量的40%)、硫化助剂(白油,用量为催化剂C3重量的18%)混合均匀得预硫化原料;
(2)将催化剂C3放入回转式浸渍锅,预硫化原料采用喷淋方式与催化剂C3混合均匀,放置1.5h后,90℃处理3h,得到器外预硫化催化剂Cs3。
器外预硫化型催化剂开工方法:
(1)将器外预硫化型催化剂Cs3装入反应器中;
(2)将反应器装置经氮气气密、氢气置换和氢气气密,气密合格;
(3)在氢气循环下,以反应器入口温度15℃/小时的速度升温,当催化剂床层温度达到150℃时,恒温4h;当催化剂床层温度达185℃时,恒温6h;当催化剂床层温度达290℃,恒温2h,催化剂硫化结束;
(4)调整系统工艺条件至反应条件,切换原料油进行正常操作。
实施例4
本实施例提供了一种加氢精制催化剂及其制备方法、预硫化方法和开工方法,具体包括:
催化剂制备:
实验所用载体为三叶草条型γ-Al 2O 3载体,载体比表面积266m 2/g,孔容0.61cm 3/g,强度169N/cm,吸水率100%。
(1)首先配制氢氧化钾水溶液用于预喷淋处理:配制2%的氢氧化钾溶液805ml,得到喷淋液;
(2)称取氧化铝载体10kg,加入回转式浸渍锅中,采用上述配制好的氢氧化钾喷淋液对载体进行雾化喷淋处理,喷淋处理时间为4min,喷淋后一次陈化的放置时间为12min,得到预喷淋载体;
(3)配制5500ml的氨水和420g乙二胺四乙酸的混合溶液,加入乙酸钴搅拌溶解后依次加入钼酸铵、硝酸镍、氢氧化钾,加入去离子水将溶液体积调整到10700ml,浸渍于步骤(2)所得预喷淋载体上,二次陈化3h,于100℃下干燥5小时,420℃焙烧6h,制得催化剂C4。
催化剂器外预硫化:
(1)将硫化剂(叔丁基多硫化物和SZ-54,两者硫质量比为1:2,用量为催化剂C4理论需硫量的50%)、硫化助剂(柴油,用量为催化剂C4重量的12%)混合均匀得预硫化原料;
(2)将催化剂C4放入回转式浸渍锅,预硫化原料采用喷淋方式与催化剂C4混合均匀,放置1h后,80℃处理4h,得到器外预硫化催化剂Cs4。
器外预硫化型催化剂开工方法:
(1)将器外预硫化型催化剂Cs4装入反应器中;
(2)将反应器装置经氮气气密、氢气置换和氢气气密,气密合格;
(3)在氢气循环下,以反应器入口温度15℃/小时的速度升温,当催化剂床层温度达到155℃时,恒温3h;当催化剂床层温度达190℃时,恒温4h;当催化剂床层温度达300℃,恒温4h,催化剂硫化结束;
(4)调整系统工艺条件至反应条件,切换原料油进行正常操作。
实施例5
本实施例提供了一种加氢精制催化剂及其制备方法、预硫化方法和开工方法,具体包括:
催化剂制备:
实验所用载体为三叶草条型γ-Al 2O 3载体,载体比表面积254m 2/g,孔容0.61cm 3/g, 强度135N/cm,吸水率95%。
(1)首先配制氢氧化钾水溶液用于预喷淋处理:配制0.8%的氢氧化钾溶液890ml,得到喷淋液;
(2)称取氧化铝载体10kg,加入回转式浸渍锅中,采用上述配制好的氢氧化钾喷淋液对载体进行雾化喷淋处理,喷淋处理时间为3min,喷淋后一次陈化的放置时间为15min,得到预喷淋载体;
(3)配制5600ml的氨水和560g乙二胺的混合溶液,加入钼酸铵搅拌溶解后依次加入硝酸钴、硝酸镍、氢氧化钾,加入去离子水将溶液体积调整到10230ml,浸渍于步骤(2)所得预喷淋载体上,二次陈化3.5h,于110℃下干燥4小时,520℃焙烧5h,制得催化剂C5。
催化剂器外预硫化:
(1)将硫化剂(硫醚和SZ-54,两者硫质量比为1:2,用量为催化剂C5理论需硫量的45%)、硫化助剂(柴油,用量为催化剂C5重量的10%)混合均匀得预硫化原料;
(2)将催化剂C5放入回转式浸渍锅,预硫化原料采用喷淋方式与催化剂C5混合均匀,放置2h后,85℃处理4h,得到器外预硫化催化剂Cs5。
器外预硫化型催化剂开工方法:
(1)将器外预硫化型催化剂Cs5装入反应器中;
(2)将反应器装置经氮气气密、氢气置换和氢气气密,气密合格;
(3)在氢气循环下,以反应器入口温度20℃/小时的速度升温,当催化剂床层温度达到160℃时,恒温4h;当催化剂床层温度达200℃时,恒温5h;当催化剂床层温度达310℃,恒温5h,催化剂硫化结束;
(4)调整系统工艺条件至反应条件,切换原料油进行正常操作。
实施例6
本实施例提供了一种加氢精制催化剂及其制备方法、预硫化方法和开工方法,具体包括:
催化剂制备:
实验所用载体为三叶草条型γ-Al 2O 3载体,载体比表面积239m 2/g,孔容0.6cm 3/g,强度189N/cm,吸水率89%。
(1)首先配制氢氧化钾水溶液用于预喷淋处理:配制0.6%的氢氧化钾溶液1270ml,得到喷淋液;
(2)称取氧化铝载体10kg,加入回转式浸渍锅中,采用上述配制好的氢氧化钾喷淋液对载体进行雾化喷淋处理,喷淋处理时间为5.5min,喷淋后一次陈化的放置时间为18min,得到预喷淋载体;
(3)配制5800ml的氨水和450g乙二胺的混合溶液,加入钼酸铵搅拌溶解后依次加入乙酸钴、硝酸镍、氢氧化钾,加入去离子水将溶液体积调整到9320ml,浸渍于步骤(2)所得预喷淋载体上,二次陈化2.5h,于100℃下干燥5小时,470℃焙烧5h,制得催化剂C6。
催化剂器外预硫化:
(1)将硫化剂(硫酚和SZ-54,两者硫质量比为1:2,用量为催化剂C6理论需硫量的55%)、硫化助剂(柴油,用量为催化剂C6重量的25%)混合均匀得预硫化原料;
(2)将催化剂C6放入回转式浸渍锅,预硫化原料采用喷淋方式与催化剂C6混合均匀,放置2h后,90℃处理3h,得到器外预硫化催化剂Cs6。
器外预硫化型催化剂开工方法:
(1)将器外预硫化型催化剂Cs6装入反应器中;
(2)将反应器装置经氮气气密、氢气置换和氢气气密,气密合格;
(3)在氢气循环下,以反应器入口温度25℃/小时的速度升温,当催化剂床层温度达到155℃时,恒温4h;当催化剂床层温度达210℃时,恒温4h;当催化剂床层温度达320℃,恒温6h,催化剂硫化结束;
(4)调整系统工艺条件至反应条件,切换原料油进行正常操作。
实施例7
本实施例提供了一种加氢精制催化剂及其制备方法、预硫化方法和开工方法,具体包括:
催化剂制备:
实验所用载体为三叶草条型γ-Al 2O 3载体,载体比表面积223m 2/g,孔容0.59cm 3/g,强度141N/cm,吸水率84%。
(1)首先配制氢氧化钾水溶液用于预喷淋处理:配制0.4%的氢氧化钾溶液1030ml,得到喷淋液;
(2)称取氧化铝载体10kg,加入回转式浸渍锅中,采用上述配制好的氢氧化钾喷淋液对载体进行雾化喷淋处理,喷淋处理时间为7.5min,喷淋后一次陈化的放置时间为22min,得到预喷淋载体;
(3)配制6000ml氨水和590ml三乙撑四胺混合溶液,加入偏钨酸铵搅拌溶解后依次加入硝酸镍、硝酸钴、氢氧化钾,加入去离子水将溶液体积调整到9200ml,浸渍于步骤(2)所得预喷淋载体上,二次陈化2h,于110℃下干燥4小时,500℃焙烧5h,制得催化剂C7。
催化剂器外预硫化:
(1)将硫化剂(单质硫和硫化铵,两者硫质量比为2:1,用量为催化剂C7理论需硫量的20%)、硫化助剂(豆油,用量为催化剂C7重量的3%)混合均匀得预硫化原料;
(2)将催化剂C7放入回转式浸渍锅,预硫化原料采用喷淋方式与催化剂C7混合均匀,放置1h后,100℃处理2h,得到器外预硫化催化剂Cs7。
器外预硫化型催化剂开工方法:
(1)将器外预硫化型催化剂Cs7装入反应器中;
(2)将反应器装置经氮气气密、氢气置换和氢气气密,气密合格;
(3)在氢气循环下,以反应器入口温度15℃/小时的速度升温,当催化剂床层温度达到160℃时,恒温4h;当催化剂床层温度达220℃时,恒温8h;当催化剂床层温度达290℃,恒温3h,催化剂硫化结束;
(4)调整系统工艺条件至反应条件,切换原料油进行正常操作。
对比例1
本对比例提供了一种加氢精制催化剂及其制备方法、预硫化方法和开工方法,具体包括:
催化剂制备:
实验所用载体为三叶草条型γ-Al 2O 3载体,载体比表面积289m 2/g,孔容0.63cm 3/g,强度154N/cm,吸水率115%。
配制5100ml氨水和390ml三乙撑四胺混合溶液,加入钼酸铵搅拌溶解后依次加入硝酸镍、偏钨酸铵、氢氧化钾,加入去离子水将溶液体积调整到11930ml,浸渍于10kg载体上,陈化4h,110℃下干燥3小时,450℃焙烧4h,制得催化剂D1。
催化剂器外预硫化:
(1)将硫化剂(SZ-54,用量为催化剂D1理论需硫量的30%)、硫化助剂(汽油和豆油的重量比2:1的混合物,用量为催化剂D1重量的20%)混合均匀得预硫化原料;
(2)将催化剂D1放入回转式浸渍锅,预硫化原料采用喷淋方式与催化剂D1混合 均匀,放置1h后,120℃处理2h,得到器外预硫化催化剂Ds1。
器外预硫化型催化剂开工方法:
(1)将器外预硫化型催化剂Ds1装入反应器中;
(2)将反应器装置经氮气气密、氢气置换和氢气气密,气密合格;
(3)在氢气循环下,以反应器入口温度20℃/小时的速度升温,当催化剂床层温度达到150℃时,恒温5h;当催化剂床层温度达185℃时,恒温4h;当催化剂床层温度达280℃,恒温3h,催化剂硫化结束;
(4)调整系统工艺条件至反应条件,切换原料油进行正常操作。
对比例2
本对比例提供了一种加氢精制催化剂及其制备方法、预硫化方法和开工方法,具体包括:
催化剂制备:
实验所用载体为三叶草条型γ-Al 2O 3载体,载体比表面积275m 2/g,孔容0.62cm 3/g,强度156N/cm,吸水率105%。
配制5400ml的氨水和600ml乙二胺的混合溶液,加入钼酸铵搅拌溶解后依次加入乙酸钴、硝酸镍、氢氧化钾,加入去离子水将溶液体积调整到11170ml,浸渍于10kg载体上,陈化5h,120℃下干燥3小时,500℃焙烧4h,制得催化剂D2。
催化剂器外预硫化:
(1)将硫化剂(SZ-54,用量为催化剂D2理论需硫量的40%)、硫化助剂(白油,用量为催化剂D2重量的18%)混合均匀得预硫化原料;
(2)将催化剂D2放入回转式浸渍锅,预硫化原料采用喷淋方式与催化剂D2混合均匀,放置1.5h后,90℃处理3h,得到器外预硫化催化剂Ds2。
器外预硫化型催化剂开工方法:
(1)将器外预硫化型催化剂Ds2装入反应器中;
(2)将反应器装置经氮气气密、氢气置换和氢气气密,气密合格;
(3)在氢气循环下,以反应器入口温度15℃/小时的速度升温,当催化剂床层温度达到150℃时,恒温4h;当催化剂床层温度达185℃时,恒温6h;当催化剂床层温度达290℃,恒温2h,催化剂硫化结束;
(4)调整系统工艺条件至反应条件,切换原料油进行正常操作。
对比例3
本对比例提供了一种加氢精制催化剂及其制备方法、预硫化方法和开工方法,具体包括:
催化剂制备:
实验所用载体为三叶草条型γ-Al 2O 3载体,载体比表面积254m 2/g,孔容0.61cm 3/g,强度135N/cm,吸水率95%。
配制5600ml的氨水和560g乙二胺的混合溶液,加入钼酸铵搅拌溶解后依次加入硝酸钴、硝酸镍、氢氧化钾,加入去离子水将溶液体积调整到10230ml,浸渍于10kg载体上,陈化3.5h,于110℃下干燥4小时,520℃焙烧5h,制得催化剂D3。
催化剂器外预硫化:
(1)将硫化剂(硫醚和SZ-54,两者硫质量比为1:2,用量为催化剂D3理论需硫量的45%)、硫化助剂(柴油,用量为催化剂D3重量的10%)混合均匀得预硫化原料;
(2)将催化剂D3放入回转式浸渍锅,预硫化原料采用喷淋方式与催化剂D3混合均匀,放置2h后,85℃处理4h,得到器外预硫化催化剂Ds3。
器外预硫化型催化剂开工方法:
(1)将器外预硫化型催化剂Ds3装入反应器中;
(2)将反应器装置经氮气气密、氢气置换和氢气气密,气密合格;
(3)在氢气循环下,以反应器入口温度20℃/小时的速度升温,当催化剂床层温度达到160℃时,恒温4h;当催化剂床层温度达200℃时,恒温5h;当催化剂床层温度达310℃,恒温5h,催化剂硫化结束;
(4)调整系统工艺条件至反应条件,切换原料油进行正常操作。
对比例4
本对比例提供了一种加氢精制催化剂及其制备方法、预硫化方法和开工方法,具体包括:
催化剂制备:
实验所用载体为三叶草条型γ-Al 2O 3载体,载体比表面积223m 2/g,孔容0.59cm 3/g,强度141N/cm,吸水率84%。
配制6000ml氨水和590ml三乙撑四胺混合溶液,加入偏钨酸铵搅拌溶解后依次加入硝酸镍、硝酸钴、氢氧化钾,加入去离子水将溶液体积调整到9200ml,浸渍于10kg载体上,陈化2h,于110℃下干燥4小时,500℃焙烧5h,制得催化剂D4。
催化剂器外预硫化:
(1)将硫化剂(单质硫和硫化铵,两者硫质量比为2:1,用量为催化剂D4理论需硫量的20%)、硫化助剂(豆油,用量为催化剂D4重量的3%)混合均匀得预硫化原料;
(2)将催化剂D4放入回转式浸渍锅,预硫化原料采用喷淋方式与催化剂D4混合均匀,放置1h后,100℃处理2h,得到器外预硫化催化剂Ds4。
器外预硫化型催化剂开工方法:
(1)将器外预硫化型催化剂Ds4装入反应器中;
(2)将反应器装置经氮气气密、氢气置换和氢气气密,气密合格;
(3)在氢气循环下,以反应器入口温度15℃/小时的速度升温,当催化剂床层温度达到160℃时,恒温4h;当催化剂床层温度达220℃时,恒温8h;当催化剂床层温度达290℃,恒温3h,催化剂硫化结束;
(4)调整系统工艺条件至反应条件,切换原料油进行正常操作。
表1列出了实施例1-7与对比例1-4所得催化剂中各组分的质量含量。
表1 催化剂中各组分质量含量
Figure PCTCN2022125379-appb-000001
通过SEM-EDS对催化剂进行元素分布分析表征及催化剂上活性组分的分布情况考察。催化剂中不同位置活性组分含量如下表2所示。实施例3中催化剂Cs3的SEM-EDS表征结果如图1所示,该催化剂含有Ni、Mo、Co、K元素,同时还含有少量的Si和P;实施例3中催化剂Cs3的钾元素的HRTEM组分分布如图2所示,可观测到K元素,且分布较均匀。
表2 催化剂不同位置活性组分金属含量占活性组分总含量的百分比(%)
Figure PCTCN2022125379-appb-000002
Figure PCTCN2022125379-appb-000003
由表2表征结果可以看出,采用本发明的加氢催化剂制备活性组分浓度分布更合理。
催化剂评价:
原料采用裂解汽油C6-C8馏分一段加氢产品,反应工艺条件为:反应压力2.8MPa,液时体积空速2.0h -1,反应温度240℃,氢油体积比250:1。
对上述制备的催化剂Cs3、Ds2分别进行300小时评价,采用裂解汽油一段加氢产品为原料,原料性质见表3,催化剂评价在250ml绝热床加氢反应装置上进行的,催化剂采用下两段装填,装填量150ml。每12小时取样分析产品溴价、硫含量。催化剂300小时评价的平均数据见表4。
表3 加氢原料油指标
Figure PCTCN2022125379-appb-000004
表4 催化剂Cs3、Ds2 300小时评价平均数据
Figure PCTCN2022125379-appb-000005
由表2表征结果可以看出,采用本发明制备的催化剂活性组分浓度分布更合理,从表4的评价结果来看,在相同的评价工艺条件下,采用本发明制备的催化剂的加氢产品的溴价、总硫相对较低,这充分说明了本发明的催化剂具有更好的加氢活性。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明权利要求的保护范围。

Claims (20)

  1. 一种加氢精制催化剂的制备方法,其中,该制备方法包括:在浸渍活性组分之前,采用含钾的喷淋液对载体进行喷淋的步骤,以及,以含钾的活性组分浸渍液对经过喷淋的载体进行浸渍的步骤;
    其中,所述含钾的喷淋液为氢氧化钾溶液;
    优选地,所述喷淋的时间为1min-20min,优选为3min-10min。
  2. 根据权利要求1所述的制备方法,其中,所述含钾的喷淋液的浓度为0.1%-5%,优选为0.5%-1%。
  3. 根据权利要求1或2所述的制备方法,其中,所述含钾的喷淋液的体积占所述含钾的喷淋液与所述含钾的活性组分浸渍液的总体积的1%-20%,优选为5%-10%。
  4. 根据权利要求1-3任一项所述的制备方法,其中,所述含钾的喷淋液的pH值为12.2-13.5。
  5. 根据权利要求1-4任一项所述的制备方法,其中,该制备方法还包括在喷淋之后进行陈化的步骤,优选地,所述陈化时间为5min-30min,更优选为10min-20min。
  6. 根据权利要求1-5任一项所述的制备方法,其中,采用含钾的喷淋液对载体进行喷淋的步骤与以含钾的活性组分浸渍液对经过喷淋的载体进行浸渍的步骤之间不进行干燥和焙烧。
  7. 根据权利要求1-6任一项所述的制备方法,其中,所述载体的吸水率为80%-120%,优选为85%-110%。
  8. 根据权利要求1-7任一项所述的制备方法,其中,所述载体为耐高温无机氧化物,优选为氧化铝、氧化硅、氧化钛、氧化锆中的一种或两种以上的组合,更优选为氧化铝载体。
  9. 根据权利要求1-8任一项所述的制备方法,其中,所述含钾的活性组分浸渍液的体积为1.05×(1-V)×X×T-1.25×(1-V)×X×T,优选为1.10×(1-V)×X×T-1.20×(1-V)×X×T;
    其中,V为所述含钾的喷淋液占所述含钾的活性组分浸渍液与所述含钾的喷淋液的总体积的体积分数,X为载体吸水率,T为载体质量克数;
    含钾的活性组分浸渍液的体积的单位为mL。
  10. 根据权利要求1-9任一项所述的制备方法,其中,所述含钾的活性组分浸渍液是通过以下步骤制备的:将氨水、多胺络合剂、水混合配制成复合溶剂,将活性组分和氢氧化钾加入复合溶剂中,得到含钾的活性组分浸渍液。
  11. 根据权利要求10所述的制备方法,其中,所述多胺络合剂为C2-C7的胺类化合物中的一种或两种以上的组合,优选为乙二胺四乙酸、乙二胺、伯胺、仲胺和叔胺中的一种或两种以上的组合,更优选为乙二胺。
  12. 根据权利要求10所述的制备方法,其中,所述活性组分为钼、钨、钴和镍中的一种或两种以上的组合;
    优选地,以载体总质量为100%计,所述活性组分的质量分数大于等于20%,其中,所述钼以三氧化钼计,钨以三氧化钨计,钴以氧化钴计,镍以氧化镍计;
    优选地,所述钼以钼酸铵的形式加入;
    优选地,所述钨以偏钨酸铵、钨酸和碱性钨酸盐中的一种或两种以上的组合的形式加入,更优选为偏钨酸铵;
    优选地,所述钴和镍以其硫酸盐、卤化物、硝酸盐和醋酸盐中的一种或两种以上的组合的形式加入,更优选为硝酸盐或/和醋酸盐。
  13. 一种加氢精制催化剂,其是由权利要求1-12任一项所述的制备方法制备的。
  14. 根据权利要求13所述的加氢精制催化剂,其中,该加氢精制催化剂的氧化钾含量为0.3%-5%,优选0.5%-2.5%。
  15. 权利要求13或14所述的加氢精制催化剂的预硫化方法,其中,预硫化过程中引入硫化剂的量为所述加氢精制催化剂的理论需硫量的20-70%,优选为25-50%。
  16. 根据权利要求15所述的预硫化方法,其中,所述预硫化采用的硫化剂为单质硫和/或含硫化合物;
    优选地,所述含硫化合物为无机含硫化合物和有机含硫化合物中的一种或两种的组合;所述无机含硫化合物为二硫化碳、硫化铵中的一种或两种的组合,所述有机含硫化合物为单硫化合物和多硫化合物中的一种或两种的组合,优选为二甲基二硫、叔丁基多硫化物、叔壬基多硫、硫脲、SZ-54、硫醇、硫酚、硫醚中的一种或两种以上的组合。
  17. 根据权利要求15或16所述的预硫化方法,其中,所述预硫化还包括加入硫化助剂的步骤;
    优选地,所述硫化助剂为有机溶剂;
    优选地,所述硫化助剂为烃油和有机羧酸酯中的一种或两种的组合,所述烃油为汽油、煤油、柴油、灯油、白油、工业豆油、润滑油基础油中的一种或两种以上的组合,优选为二次加工得到的烃油,其中,所述加工为催化裂化、热裂化中的一种或两种的组合工艺;所述有机羧酸酯为含有6-60个碳原子的有机羧酸酯类,优选为脂肪酸甘油酯、 动物油、菜籽油、花生油、豆油、棉籽油中的一种或两种以上的组合;
    优选地,所述硫化助剂的用量为所述加氢精制催化剂的重量的0.5%-40%,更优选为3%-25%。
  18. 一种器外预硫化加氢精制催化剂,其是由权利要求15-17任一项所述的预硫化方法制备的。
  19. 根据权利要求18所述的器外预硫化加氢精制催化剂,其中,在该器外预硫化催化剂中,硫元素的含量为器外预硫化加氢精制催化剂的质量的3.5-10wt%,优选为4-7wt%。
  20. 权利要求18或19所述的器外预硫化加氢精制催化剂的开工方法,其包括以下步骤:
    (1)将所述器外预硫化加氢精制催化剂催化剂装入反应器中;
    (2)将反应器经氮气气密、氢气置换和氢气气密;
    (3)在氢气循环下,以反应器入口温度15-25℃/小时的速度升温,当催化剂床层温度达到150-160℃时,恒温3-5小时;当催化剂床层温度达180-220℃时,恒温2-10h;当催化剂床层温度达260-320℃,恒温2-10h,催化剂硫化结束;
    (4)调整系统工艺条件至反应条件,切换原料油进行操作,完成开工。
PCT/CN2022/125379 2022-09-09 2022-10-14 一种加氢精制催化剂及其制备方法、预硫化方法、开工方法 WO2024050922A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211100436.9 2022-09-09
CN202211100436.9A CN117680158A (zh) 2022-09-09 2022-09-09 一种加氢精制催化剂及其制备方法、预硫化方法、开工方法

Publications (1)

Publication Number Publication Date
WO2024050922A1 true WO2024050922A1 (zh) 2024-03-14

Family

ID=90127100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125379 WO2024050922A1 (zh) 2022-09-09 2022-10-14 一种加氢精制催化剂及其制备方法、预硫化方法、开工方法

Country Status (2)

Country Link
CN (1) CN117680158A (zh)
WO (1) WO2024050922A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051730A1 (fr) * 1999-02-26 2000-09-08 Japan Energy Corporation Catalyseur pour le traitement par hydrodesulfuration, procede de traitement par hydrodesulfuration et procede de preparation du catalyseur
CN101279296A (zh) * 2007-04-04 2008-10-08 中国石油化工股份有限公司 一种硫化型催化剂及其制备方法
CN102166521A (zh) * 2010-02-25 2011-08-31 中国石油天然气股份有限公司 一种加氢精制催化剂制备方法
CN106867576A (zh) * 2017-03-17 2017-06-20 钦州学院 一种汽油的加氢脱硫方法
CN107185536A (zh) * 2017-06-02 2017-09-22 钦州学院 一种二烯烃加氢的催化剂及制备方法
CN111250101A (zh) * 2018-11-30 2020-06-09 中国石油天然气股份有限公司 非贵金属负载型加氢催化剂及其制备方法
CN111939921A (zh) * 2019-05-17 2020-11-17 中海石油炼化有限责任公司 一种加氢处理催化剂及其制备方法和应用
CN115845866A (zh) * 2021-09-23 2023-03-28 中国石油天然气股份有限公司 一种加氢精制催化剂制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051730A1 (fr) * 1999-02-26 2000-09-08 Japan Energy Corporation Catalyseur pour le traitement par hydrodesulfuration, procede de traitement par hydrodesulfuration et procede de preparation du catalyseur
CN101279296A (zh) * 2007-04-04 2008-10-08 中国石油化工股份有限公司 一种硫化型催化剂及其制备方法
CN102166521A (zh) * 2010-02-25 2011-08-31 中国石油天然气股份有限公司 一种加氢精制催化剂制备方法
CN106867576A (zh) * 2017-03-17 2017-06-20 钦州学院 一种汽油的加氢脱硫方法
CN107185536A (zh) * 2017-06-02 2017-09-22 钦州学院 一种二烯烃加氢的催化剂及制备方法
CN111250101A (zh) * 2018-11-30 2020-06-09 中国石油天然气股份有限公司 非贵金属负载型加氢催化剂及其制备方法
CN111939921A (zh) * 2019-05-17 2020-11-17 中海石油炼化有限责任公司 一种加氢处理催化剂及其制备方法和应用
CN115845866A (zh) * 2021-09-23 2023-03-28 中国石油天然气股份有限公司 一种加氢精制催化剂制备方法

Also Published As

Publication number Publication date
CN117680158A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
JP5501483B2 (ja) 水素化精製触媒の製造方法
CN101722055B (zh) 硫化型催化剂的制备方法
CN106669855B (zh) 一次成型的硫化型加氢催化剂的制备方法
CN103769198B (zh) 一种硫化型加氢裂化催化剂的制备方法
JP5086344B2 (ja) 水素化触媒組成物ならびにその調製方法およびその使用
CN108067271B (zh) 硫化型加氢催化剂的制备方法
CN103769197B (zh) 一种硫化型加氢裂化催化剂的制法
CN104841458A (zh) 一种负载型硫化态加氢催化剂及其制备方法
CN103769200A (zh) 一种制备硫化型加氢裂化催化剂的方法
WO2024050922A1 (zh) 一种加氢精制催化剂及其制备方法、预硫化方法、开工方法
CN109926100B (zh) 一种硫化型加氢催化剂的开工方法
CN109772387B (zh) 一种加氢处理催化剂及其制备方法
CN103769169A (zh) 一种硫化型加氢处理催化剂的制备方法
CN109569662B (zh) 硫化型加氢催化剂及其制备方法和应用
CN115845866A (zh) 一种加氢精制催化剂制备方法
CN103769199B (zh) 硫化型加氢裂化催化剂的制备方法
CN114173923A (zh) 在用于磺化处理的制备中催化剂组合物的器外调节
CN110508294B (zh) 加氢催化剂制备方法和由该方法制备的加氢催化剂及应用
CN111298811B (zh) 绿色环保型预硫化重整预加氢催化剂及其制备方法与应用
CN109772400B (zh) 一种加氢处理催化剂及其制备方法和应用
CN102836727A (zh) 一种具有高脱氮和脱芳烃活性加氢催化剂的制备方法
CN118165758A (zh) 一种催化裂解汽油加氢精制方法
CN111375429A (zh) 一种硫化型加氢催化剂制备方法
CN109926097B (zh) 一种硫化型加氢催化剂组合物及其制备方法
CN111378489B (zh) 一种加氢装置的开工方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957888

Country of ref document: EP

Kind code of ref document: A1