WO2024049263A1 - 전기분해 셀용 유로 플레이트 및 이를 포함하는 전기분해 셀 - Google Patents

전기분해 셀용 유로 플레이트 및 이를 포함하는 전기분해 셀 Download PDF

Info

Publication number
WO2024049263A1
WO2024049263A1 PCT/KR2023/013049 KR2023013049W WO2024049263A1 WO 2024049263 A1 WO2024049263 A1 WO 2024049263A1 KR 2023013049 W KR2023013049 W KR 2023013049W WO 2024049263 A1 WO2024049263 A1 WO 2024049263A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
electrolysis cell
supply
plate
path plate
Prior art date
Application number
PCT/KR2023/013049
Other languages
English (en)
French (fr)
Inventor
박준호
임예훈
장정기
노태민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230115367A external-priority patent/KR20240031925A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2024049263A1 publication Critical patent/WO2024049263A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms

Definitions

  • the present invention relates to a flow path plate for an electrolysis cell and an electrolysis cell including the same.
  • One aspect of the present invention is to provide a flow path plate for an electrolysis cell that can improve mass transfer characteristics and cell performance efficiency and an electrolysis cell including the same.
  • the flow path plate for an electrolysis cell is a flow path plate for an electrolysis cell that faces an electrode that causes an electrochemical reaction, and includes a supply side flow path portion formed with a plurality of branched flow paths for supplying raw material fluid, and the supply side flow path. It includes a channel part where the part and one side are connected to form a plurality of channels through which the supplied raw material fluid moves, wherein the supply-side flow path part is provided with a plurality of flow path blocks, and the branch flow path flows through the plurality of flow blocks. is branched into a plurality of branches, and each width of the branch flow paths branched into a plurality of branches may be uniform.
  • the electrolysis cell according to the embodiment of the present invention may include a flow path plate for an electrolysis cell according to the embodiment of the present invention and the electrode facing the flow path plate.
  • the flow path is branched to have a uniform branch flow path width through a plurality of flow path blocks in the supply side flow path portion where a plurality of branched flow paths for supplying the raw material fluid are formed. Accordingly, the raw material fluid can be supplied to flow uniformly through a plurality of channels of the channel portion through which the raw material fluid moves.
  • the flow of the reactant fluid is improved, improving the mass transfer characteristics required for the electrochemical reaction, optimizing performance efficiency, and improving durability by preventing local deterioration.
  • FIG. 1 is a side view exemplarily showing an electrolysis cell according to an embodiment of the present invention.
  • Figure 2 is a plan view illustrating a flow path plate for an electrolysis cell according to a first embodiment of the present invention.
  • Figure 3 is an enlarged plan view showing a portion of the supply side flow path portion in the flow path plate for an electrolysis cell according to the first embodiment of the present invention.
  • Figure 4 is a plan view illustrating a flow path plate for an electrolysis cell according to a second embodiment of the present invention.
  • Figure 5 is an enlarged plan view showing a portion of the supply side flow path portion in the flow path plate for an electrolysis cell according to the second embodiment of the present invention.
  • Figure 6 is a plan view illustrating a flow path plate for an electrolysis cell according to a third embodiment of the present invention.
  • Figure 7 is an enlarged plan view showing a portion of the supply side flow path portion in the flow path plate for an electrolysis cell according to the third embodiment of the present invention.
  • Figure 8 is an image showing the flow rate distribution in the flow path plate for an electrolysis cell according to Comparative Example 1.
  • Figure 9 is an image showing the flow velocity distribution in the flow path plate for an electrolysis cell according to Preparation Example 1.
  • Figure 10 is an image showing the flow rate distribution in the flow path plate for electrolysis cell according to Preparation Example 2.
  • Figure 11 is an image showing the flow rate distribution in the flow path plate for an electrolysis cell according to Preparation Example 3.
  • Figure 1 is a side view exemplarily showing an electrolysis cell according to an embodiment of the present invention
  • Figure 2 is a plan view exemplarily showing a flow path plate for an electrolysis cell according to a first embodiment of the present invention
  • Figure 3 is a view showing the present invention. This is an enlarged plan view showing a portion of the supply side flow path portion of the flow path plate for an electrolysis cell according to the first embodiment of the invention.
  • the flow path plate 100 for an electrolysis cell according to the first embodiment of the present invention is a flow path plate 100 for an electrolysis cell facing an electrode E that causes an electrochemical reduction reaction. ), and includes a supply side flow path portion 120 for supplying the raw material fluid, and a channel portion 130 in which a plurality of channels 131 (Channel) through which the supplied raw material fluid moves are formed.
  • the flow path plate 100 for an electrolysis cell according to the first embodiment of the present invention may include a manifold inlet 110, a discharge side flow path portion 140, and a manifold outlet 150.
  • the supply side flow path portion 120 may be formed with a plurality of branched flow paths 123 that supply raw material fluid.
  • the raw material fluid may include carbon dioxide (CO2) and an electrolyte solution.
  • the electrolyte solution may include water (H2O).
  • the supply side passage portion 120 is provided with a plurality of passage blocks 121, and the branch passage 123 may be branched into a plurality of passages through the plurality of passage blocks 121. That is, the flow path that supplies raw material fluid through the plurality of flow path blocks 121 may form a branch flow path 123 branched into a plurality of branches.
  • the widths (W1, W2) of the plurality of branch passages 123 may be uniform.
  • “uniform” means that the difference between the widths W1 and W2 of the plurality of branched passageways 123 is constant. That is, the widths W1 and W2 of the plurality of branch passages 123 of the supply-side passage portion 120 may be the same.
  • the width (W1) of the branch passages (123) located on both sides of the supply-side passage portion (120) can be formed to be the same as the width (W2) of the remaining branch passages (123) of the supply-side passage portion (120).
  • indented grooves 120a are formed on both sides of the supply-side flow path 120, and the width W1 of the branch flow path 123 located on both sides of the supply-side flow path 320 is the supply side flow path. It can be formed to be the same as the width W12 of the remaining branch passage 123 of the portion 120.
  • the plurality of branch flow paths 123 may be part of the flow path facing the channel portion 130.
  • widths (W1, W2) of the plurality of branch passages 123 branched from the supply-side passage portion 120 through the plurality of passage blocks 121 may be, for example, 0.25 to 1 mm.
  • the number of branch passages 123 of the supply-side passage portion 120 may correspond to the number of channels 131.
  • the positions of the plurality of branch flow paths 123 of the supply-side flow path portion 120 and the positions of the plurality of channels 131 of the channel portion 130 may be provided to correspond to each other. That is, for example, referring to FIG. 2, the plurality of branch passages 123 and the plurality of channels 131 may be located on the same line in the vertical direction.
  • the plurality of flow blocks 121 may have a circular or non-circular cross section. At this time, the plurality of flow blocks 121 may be specifically formed to have a circular cross-section, for example.
  • One side of the channel portion 130 may be connected to the supply side flow path portion 120 to form a plurality of channels 131 through which the supplied raw material fluid, carbon dioxide, and electrolyte solution move.
  • the channel portion 130 faces the electrode E, and a plurality of channels 131 are formed on the surface of the channel portion 130 facing the electrode E, so that the raw material flows through the plurality of channels 131.
  • the fluid comes into contact with the electrode (E) and an electrochemical reaction occurs at the electrode (E).
  • the channel unit 130 may have a plurality of channels 131 formed in a straight line so that the raw material fluid moves in a straight direction from one side where the supply-side flow path unit 120 is located to the other side.
  • a plurality of channel protrusions 131a may be formed in a straight line to form a straight channel 131. That is, the channel protrusion 131a protrudes in the direction of the electrode E, but, referring to FIG. 2, may extend in the vertical direction to form a channel 131, which is a passage through which fluid moves in the vertical direction.
  • the width WC1 of the channel 131 may be larger than the widths W1 and W2 of the plurality of branch passages 123 of the supply side passage portion 120.
  • the width WC1 of the channel 131 may be, for example, 0.5 to 2 mm.
  • the area of the channel portion 130 may be, for example, 100 cm 2 or more.
  • the manifold inlet 110 is connected to the supply side flow path 120, and raw material fluid can flow in.
  • the supply side passage portion 120 may supply the raw material fluid flowing in from the manifold inlet 110.
  • the manifold inlet 110 may include one inlet hole.
  • the discharge-side flow path portion 140 may be connected to the other side of the channel portion 130 to form a plurality of flow paths through which reactants are discharged.
  • discharge-side flow path portion 140 may be provided with a discharge-side flow path block 141 that branches out into multiple flow paths.
  • the discharge-side flow path portion 140 may be formed in a shape corresponding to the shape of the supply-side flow path portion 120. That is, the branched flow path shape of the discharge-side flow path portion 140 may be the same as the branched flow path shape of the supply-side flow path portion 120.
  • the manifold outlet 150 is connected to the discharge side flow path 140 so that reactants can be discharged.
  • the reactant may be carbon monoxide (CO) or ethylene (C2H4).
  • the manifold outlet 150 may include one discharge hole.
  • the flow path plate 100 for an electrolysis cell is a flow path plate 100 for an electrolysis cell facing the electrode E, and has a plurality of branched flow paths for supplying raw material fluid.
  • a branch passage 123 is formed to have a uniform passage width through a plurality of passage blocks 121, thereby forming a channel portion 130 through which the raw material fluid moves.
  • the raw material fluid can be supplied to flow uniformly through the plurality of channels 131. Accordingly, the fluid flow of reactants is improved, improving the mass transfer characteristics required for electrochemical reactions, optimizing performance efficiency, and improving durability by preventing local deterioration.
  • Figure 4 is a plan view illustrating a flow path plate for an electrolysis cell according to a second embodiment of the present invention
  • Figure 5 is an enlarged view of a part of the supply side flow path portion in the flow path plate for an electrolysis cell according to a second embodiment of the present invention. This is the floor plan shown.
  • the flow path plate 200 for an electrolysis cell according to the second embodiment of the present invention is a flow path plate 200 for an electrolysis cell facing the electrode E that causes an electrochemical reduction reaction.
  • a flow path plate 200 for an electrolysis cell facing the electrode (E) that causes an electrochemical reduction reaction a supply side flow path portion 220 for supplying the raw material fluid, and a plurality of channels through which the supplied raw material fluid moves ( 131) includes a formed channel portion 130.
  • the flow path plate 200 for an electrolysis cell according to the second embodiment of the present invention may include a manifold inlet 110, a discharge side flow path portion 240, and a manifold outlet 150.
  • the flow path plate 200 for an electrolysis cell according to an embodiment of the present invention has a branched flow path shape from the supply side flow path portion 220 to the flow path blocks 221 and 222. There is a difference. Therefore, this embodiment omits or briefly describes content that overlaps with the above-described embodiment, and focuses on the differences.
  • the supply side flow path portion 220 may be formed with a plurality of branched flow paths 223 that supply raw material fluid.
  • the raw material fluid may include carbon dioxide (CO2) and an electrolyte solution.
  • the electrolyte solution may include water (H2O).
  • the supply side passage portion 220 is provided with a plurality of passage blocks 221 and 222, and the branch passage 223 may be branched into a plurality of passages through the plurality of passage blocks 221 and 222.
  • the widths W23 and W24 of the plurality of branch passages 223 may be uniform. That is, the widths W23 and W24 of the plurality of branch passages 223 of the supply-side passage portion 220 may be the same.
  • the plurality of branched flow passages 223 may be portions of the flow passages facing the channel portion 130.
  • the plurality of flow blocks 221 and 222 may have a circular or non-circular cross section.
  • the plurality of flow blocks 221 and 222 may be specifically formed to have a circular cross-section, for example.
  • the plurality of euroblocks 221 and 222 may be arranged in a plurality of rows.
  • the plurality of euroblocks 221 and 222 arranged in a plurality of rows may be arranged to be staggered from row to row.
  • the plurality of flow blocks 221 and 222 are arranged in a plurality of rows, and the rows are staggered, so that fluid flow distribution can be more easily achieved.
  • the plurality of branch flow paths 223 are branch flow paths 223 in which the flow is distributed by the flow path blocks 221 in the row adjacent to the channel portion 130 in the flow path blocks 221 and 222 arranged in a plurality of rows.
  • the branched branch flow path 223 may be a flow path that is finally distributed by the flow path block 221 located in the row closest to the channel unit 130, which is the last row in a plurality of rows.
  • the number of branch passages 223 of the supply side passage portion 220 may be greater than the number of channels 131, but the flow passage for the electrolysis cell according to the second embodiment of the present invention
  • the plate 200 is not necessarily limited here.
  • the plurality of euroblocks 221 and 222 arranged in a plurality of rows may be arranged in two rows, for example.
  • the plurality of euroblocks 221 and 222 arranged in two rows are staggered from row to row, but may be arranged in a zigzag shape.
  • the row closest to the channel part 130 is called row 1
  • the row close to the manifold inlet 110 is called row 2.
  • the spacing between the plurality of flow blocks 221 located in each row may be the same, and the spacing between the plurality of flow blocks 222 positioned in the second row may be the same.
  • the spacing between the plurality of flow blocks 221 located in the first row and the spacing between the plurality of flow blocks 222 positioned in the second row may be equal to each other. Accordingly, it is possible to more easily distribute the flow of fluid evenly.
  • the widths W21 and W22 of the passage 224 distributed by the plurality of passage blocks 222 located in the second row may be the same.
  • the width W21 of the passage located on both sides of the supply-side passage portion 220 is the width W22 of the remaining passages. can be formed in the same way.
  • One side of the channel portion 130 may be connected to the supply side flow path portion 220 to form a plurality of channels 131 through which the supplied raw material fluid, carbon dioxide, and electrolyte solution move.
  • the channel portion 130 faces the electrode E, and a plurality of channels 131 are formed on the surface of the channel portion 130 facing the electrode E, so that the raw material flows through the plurality of channels 131.
  • the fluid comes into contact with the electrode (E) and an electrochemical reaction occurs at the electrode (E).
  • the channel portion 130 may have a plurality of channels 131 formed in a straight line so that the raw material fluid moves in a straight direction from one side where the supply-side passage portion 220 is located to the other side.
  • the width WC2 of the channel 131 may be larger than the widths W23 and W24 of the plurality of branch passages 223 of the supply-side passage portion 220.
  • the manifold inlet 110 is connected to the supply side flow path 220, and raw material fluid can flow in.
  • the supply side passage portion 220 may supply the raw material fluid flowing in from the manifold inlet 110.
  • the manifold inlet 110 may include one inlet hole.
  • the discharge side passage portion 240 may be connected to the other side of the channel portion 130 to form a plurality of passages through which reactants are discharged.
  • the discharge-side flow path portion 240 may be formed in a shape corresponding to the shape of the supply-side flow path portion 220.
  • the manifold outlet 150 is connected to the discharge side flow path 240 so that reactants can be discharged.
  • the reactant may be carbon monoxide (CO) or ethylene (C2H4).
  • the manifold outlet 150 may include one discharge hole.
  • Figure 6 is a plan view illustrating a flow path plate for an electrolysis cell according to a third embodiment of the present invention
  • Figure 7 is an enlarged view of a part of the supply side flow path portion in the flow path plate for an electrolysis cell according to a third embodiment of the present invention. This is the floor plan shown.
  • the flow path plate 300 for an electrolysis cell according to the third embodiment of the present invention is a flow path plate 300 for an electrolysis cell facing an electrode (E) that causes an electrochemical reduction reaction. ), and includes a supply side flow path portion 320 for supplying the raw material fluid, and a channel portion 130 in which a plurality of channels 131 through which the supplied raw material fluid moves are formed.
  • the flow path plate 300 for an electrolysis cell according to the third embodiment of the present invention may include a manifold inlet 110, a discharge side flow path portion 340, and a manifold outlet 150.
  • the flow path plate 300 for an electrolysis cell according to the third embodiment of the present invention has a flow path block ( 321), there is a difference in the form of Euro branching. Therefore, this embodiment omits or briefly describes content that overlaps with the above-described embodiments, and focuses on the differences.
  • the supply side flow path portion 320 may be formed with a plurality of branched flow paths 323 that supply raw material fluid.
  • the raw material fluid may include carbon dioxide (CO2) and an electrolyte solution.
  • the electrolyte solution may include water (H2O).
  • the supply side passage portion 320 is provided with a plurality of passage blocks 321, and the branch passage 323 may be branched into a plurality of passages through the plurality of passage blocks 321.
  • the widths (W31 and W32) of the plurality of branch passages 323 may be uniform. That is, the widths W31 and W32 of the plurality of branch passages 323 of the supply-side passage portion 320 may be the same.
  • indented grooves 320a are formed on both sides of the supply-side flow path 320, and the width W31 of the branch flow path 323 located on both sides of the supply-side flow path 320 is the supply side flow path. It can be formed to be the same as the width W32 of the remaining branch passage 323 of the portion 320.
  • the plurality of branched flow passages 323 may be portions of the flow passages facing the channel portion 130.
  • the plurality of flow blocks 321 may have a circular or non-circular cross section.
  • the plurality of flow blocks 321 may be specifically formed, for example, in a diamond shape among non-circular shapes.
  • One side of the channel portion 130 may be connected to the supply side flow path portion 320 to form a plurality of channels 131 through which the supplied raw material fluid, carbon dioxide, and electrolyte solution move.
  • the channel portion 130 faces the electrode E, and a plurality of channels 131 are formed on the surface of the channel portion 130 facing the electrode E, so that the flow flows through the plurality of channels 131.
  • the raw material fluid comes into contact with the electrode (E) and an electrochemical reaction occurs at the electrode (E).
  • the channel portion 130 may have a plurality of channels 131 formed in a straight line so that the raw material fluid moves in a straight direction from one side where the supply-side flow path portion 320 is located to the other side.
  • the width (WC3) of the channel 131 may be larger or smaller than the widths (W31, W32) of the plurality of branch passages 323 of the supply-side passage portion 320, but the third channel of the present invention
  • the flow path plate 300 for an electrolysis cell according to the embodiment is not necessarily limited here.
  • the manifold inlet 110 is connected to the supply side flow path 320, and raw material fluid can flow in. At this time, the supply side passage portion 320 may supply the raw material fluid flowing in from the manifold inlet 110.
  • the manifold inlet 110 may include one inlet hole.
  • the discharge-side flow path portion 340 may be connected to the other side of the channel portion 130 to form a plurality of flow paths through which reactants are discharged.
  • the discharge-side flow path portion 340 may be formed in a shape corresponding to the shape of the supply-side flow path portion 320. That is, the discharge-side flow path portion 340 may have the same flow path shape as that of the supply-side flow path portion 320.
  • the manifold outlet 150 is connected to the discharge side flow path 340 so that reactants can be discharged.
  • the reactant may be carbon monoxide (CO) or ethylene (C2H4).
  • the manifold outlet 150 may include one discharge hole.
  • an electrolysis cell (Cell) 1000 includes a flow path plate 100 and an electrode (E) facing the flow path plate 100.
  • the flow path plate 100 is a flow path plate 100 for an electrolysis cell facing the electrode E that causes an electrochemical reduction reaction, and includes a supply side flow path portion 120 that supplies the raw material fluid, and the supplied raw material fluid moves. It includes a channel portion 130 in which a plurality of channels 131 are formed.
  • the flow path plate 100 may include a manifold inlet 110, a discharge side flow path portion 140, and a manifold outlet 150.
  • the electrolysis cell 1000 according to an embodiment of the present invention may further include an ion exchange membrane (I).
  • the electrolysis cell 1000 according to an embodiment of the present invention relates to an electrolysis cell 1000 including a flow path plate for an electrolysis cell according to the above-described first to third embodiments. Therefore, in this embodiment, content that overlaps with the embodiments of the flow path plate for an electrolysis cell according to the above-described first to third embodiments is omitted or briefly described, and the description is focused on the differences.
  • the electrode E may face the flow path plate 100 to cause an electrochemical reduction reaction.
  • the electrode E can, for example, electrolyze carbon dioxide (CO2) into carbon monoxide (CO) or ethylene (C2H4).
  • the electrode E may include an anode A and a cathode C.
  • the supply side flow path portion 120 may be formed with a plurality of branch flow paths 123 that supply raw material fluid.
  • the raw material fluid may include carbon dioxide (CO2) and an electrolyte solution.
  • the electrolyte solution may include water (H2O).
  • the supply side passage portion 120 is provided with a plurality of passage blocks 121, and the branch passage 123 may be branched into a plurality of passages through the plurality of passage blocks 121.
  • the widths (W1, W2) of the plurality of branch passages 123 may be uniform. That is, the widths W1 and W2 of the plurality of branch passages 123 of the supply-side passage portion 120 may be the same.
  • the plurality of branched flow passages 123 may be portions of the flow passages facing the channel portion 130.
  • One side of the channel portion 130 may be connected to the supply side flow path portion 120 to form a plurality of channels 131 through which the supplied raw material fluid, carbon dioxide, and electrolyte solution move.
  • the channel portion 130 faces the electrode E, and a plurality of channels 131 are formed on the surface of the channel portion 130 facing the electrode E, so that the flow flows through the plurality of channels 131.
  • the raw material fluid comes into contact with the electrode (E) and an electrochemical reaction occurs at the electrode (E).
  • the area of the channel portion 130 may be, for example, 100 cm 2 or more. Therefore, the electrolysis cell 1000 according to an embodiment of the present invention may have an active area of 100 cm 2 or more.
  • a plurality of flow path plates 100 may be provided to face the anode (A) and cathode (C), respectively.
  • the plurality of flow path plates 100 may include a first flow path plate (P1) facing the anode (A) and a second flow path plate (P2) facing the cathode (C).
  • the flow path plates (100, 200, 300) for electrolysis cells according to the above-described first to third embodiments may be composed of at least one of the first flow path plate (P1) and the second flow path plate (P2).
  • the flow path plates (100, 200, 300) for electrolysis cells according to the above-described first to third embodiments may be the first flow path plate (P1), but the present invention is not necessarily limited thereto.
  • An ion exchange membrane (I) (IEM) may be positioned between the anode (A) and the cathode (C).
  • the ion exchange membrane (I) allows ions to move between the anode (A) and the cathode (C).
  • the electrolysis cell 1000 is stacked in that order: a first flow path plate (P1), anode (A), ion exchange membrane (I), cathode (C), and second flow path plate (P2). It can be.
  • a flow path plate for an electrolysis cell that electrolyzes carbon dioxide (CO2) through an electrochemical reduction reaction was manufactured.
  • a flow path plate was provided to face the electrode where the electrochemical reduction reaction occurs.
  • the flow plate has a supply side flow path in which the flow path for supplying carbon dioxide and electrolyte is branched into multiple flow paths through a plurality of flow blocks, and one side is connected to the supply side flow path, so that the supplied carbon dioxide and electrolyte are moved. It was manufactured to include a channel portion in which a channel was formed. At this time, the width of each branched channel was manufactured to be uniform.
  • the flow path plate is connected to the supply side flow path, a manifold inlet through which carbon dioxide and electrolyte flows in, a discharge side flow path connected to the other side of the channel section to form a plurality of branch flow paths through which reactants are discharged, and a discharge side flow path. It was manufactured to further include a connected manifold outlet.
  • the cross section of the channel block is formed in a circular shape, and the number and position of the plurality of branched flow paths in the supply side flow path are manufactured to correspond to the number and position of the plurality of channels in the channel part.
  • a plurality of flow paths were provided in two rows, except that the flow blocks located between the rows and rows were staggered, and the number of branch flow paths in the supply side flow path was greater than the number of channels in the channel part.
  • a flow plate for the digestion cell was prepared.
  • the cross-section of the flow block is diamond-shaped, the number of branch flow paths in the supply-side flow path is formed to be less than the number of channels in the channel part, and the width of the branch flow paths located on both sides of the supply-side flow path is formed to be the same as the width of the remaining branch flow paths in the supply-side flow path.
  • a flow path plate for an electrolysis cell was manufactured in the same manner as Preparation Example 1, except that indented grooves were formed on both sides of the supply side flow path as much as possible.
  • the cross section of the flow block is diamond-shaped, the number of branch flow paths in the supply side flow path is less than the number of channels in the channel part, and each width of the multiple branch flow paths is formed unevenly, with the branch flow paths located on both sides of the supply side flow path.
  • a flow path plate for an electrolysis cell was manufactured in the same manner as Preparation Example 1, except that the width was formed to be larger than the width of the remaining branch flow paths of the supply side flow path portion.
  • Figure 8 is an image showing the flow velocity distribution in the flow path plate for an electrolysis cell according to Comparative Example 1
  • Figure 9 is an image showing the flow velocity distribution in the flow path plate for an electrolysis cell according to Preparation Example 1
  • Figure 10 is an image showing the flow velocity distribution in the flow path plate for an electrolysis cell according to Preparation Example 2. This is an image showing the flow velocity distribution in the flow path plate for an electrolysis cell
  • Figure 11 is an image showing the flow velocity distribution in the flow path plate for an electrolysis cell according to Preparation Example 3.
  • Figures 8 to 8 show the flow rate distribution of the fluid from the process of introducing the fluid of carbon dioxide and electrolyte into the manifold inlet of the flow plate for the electrolysis cell according to Comparative Example 1 and Preparation Examples 1 to 3 and discharging it through the discharge port.
  • the image is shown in Fig. 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

본 발명은 전기분해 셀용 유로 플레이트 및 이를 포함하는 전기분해 셀에 관한 것으로서, 본 발명에 따른 전기분해 셀용 유로 플레이트는, 전기화학적 반응을 일으키는 전극과 대면되는 전기분해 셀용 유로 플레이트로서, 원료 유체를 공급하는 다수개로 분기된 분기유로가 형성된 공급측 유로부, 및 상기 공급측 유로부와 일측부가 연결되어, 공급되는 상기 원료 유체가 이동되는 다수개의 채널(Channel)이 형성된 채널부를 포함하며, 상기 공급측 유로부는 복수개의 유로블럭이 구비되고, 복수개의 상기 유로블럭을 통해 상기 분기유로가 다수개로 분기되며, 다수개로 분기된 상기 분기유로의 각 폭은 균일하다.

Description

전기분해 셀용 유로 플레이트 및 이를 포함하는 전기분해 셀
관련출원과의 상호인용
본 출원은 2022년 09월 01일자 한국특허출원 10-2022-0110644호 및 2023년 08월 31일자 한국특허출원 제10-2023-0115367호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전기분해 셀용 유로 플레이트 및 이를 포함하는 전기분해 셀에 관한 것이다.
이산화탄소(CO2)를 전기분해하여 CO 또는 에틸렌 등의 유용한 자원으로 전환하는 셀에 있어, 스케일 업을 위해 Stacking 이외에도 대면적화를 통해 활성면적을 일정 수준 이상 확보할 필요가 있다.
대면적 셀 설계 시에는 전체 활성 면적에 CO2 기체 및 전해액을 균일하게 공급할 수 있는 유로 구조 설계가 중요하다.
종래의 CO2 전기화학 전환 기술에 대한 연구는 대부분 소규모 셀에서의 성능 확보에 초점이 맞추어져 왔으며, 이러한 소규모 셀의 구보를 그대로 적용하여 셀의 활성면적을 증가시켰을 때, 대면적 셀의 효율이 소규모 셀 대비 저하될 수 있다.
본 발명의 하나의 관점은 물질 전달 특성 및 셀 성능 효율을 향상시킬 수 있는 전기분해 셀용 유로 플레이트 및 이를 포함하는 전기분해 셀을 제공하기 위한 것이다.
본 발명의 실시예에 따른 전기분해 셀용 유로 플레이트는 전기화학적 반응을 일으키는 전극과 대면되는 전기분해 셀용 유로 플레이트로서, 원료 유체를 공급하는 다수개로 분기된 분기유로가 형성된 공급측 유로부, 및 상기 공급측 유로부와 일측부가 연결되어, 공급되는 상기 원료 유체가 이동되는 다수개의 채널(Channel)이 형성된 채널부를 포함하며, 상기 공급측 유로부는 복수개의 유로블럭이 구비되고, 복수개의 상기 유로블럭을 통해 상기 분기유로가 다수개로 분기되며, 다수개로 분기된 상기 분기유로의 각 폭은 균일할 수 있다.
또한, 본 발명의 실시예에 따른 전기분해 셀은 상기 본 발명의 실시예에 따른 전기분해 셀용 유로 플레이트 및 상기 유로 플레이트와 대면되는 상기 전극을 포함할 수 있다.
본 발명에 따르면, 전극과 대면되는 전기분해 셀용 유로 플레이트에서, 원료 유체를 공급하는 다수개로 분기된 분기유로가 형성된 공급측 유로부에서 복수개의 유로블럭을 통해 균일한 분기유로의 폭을 갖도록 유로를 분기함에 따라, 원료 유체가 이동되는 채널부의 다수개의 채널(Channel)로 원료 유체가 균일하게 유동되도록 공급할 수 있다.
이에 따라, 반응물 유체의 흐름이 개선되어 전기화학 반응에 필요한 물질 전달 특성이 개선되고, 이를 통해 성능 효율을 최적화되며, 국부적인 열화를 방지하여 내구성이 향상된다.
도 1은 본 발명의 실시예에 따른 전기분해 셀을 예시적으로 나타낸 측면도이다.
도 2는 본 발명의 제1 실시예에 따른 전기분해 셀용 유로 플레이트를 예시적으로 나타낸 평면도이다.
도 3은 본 발명의 제1 실시예에 따른 전기분해 셀용 유로 플레이트에서 공급측 유로부의 일부를 확대하여 나타낸 평면도이다.
도 4는 본 발명의 제2 실시예에 따른 전기분해 셀용 유로 플레이트를 예시적으로 나타낸 평면도이다.
도 5는 본 발명의 제2 실시예에 따른 전기분해 셀용 유로 플레이트에서 공급측 유로부의 일부를 확대하여 나타낸 평면도이다.
도 6은 본 발명의 제3 실시예에 따른 전기분해 셀용 유로 플레이트를 예시적으로 나타낸 평면도이다.
도 7은 본 발명의 제3 실시예에 따른 전기분해 셀용 유로 플레이트에서 공급측 유로부의 일부를 확대하여 나타낸 평면도이다.
도 8은 비교예 1에 따른 전기분해 셀용 유로 플레이트에서 유속분포를 나타낸 이미지이다.
도 9는 제조예 1에 따른 전기분해 셀용 유로 플레이트에서 유속분포를 나타낸 이미지이다.
도 10은 제조예 2에 따른 전기분해 셀용 유로 플레이트에서 유속분포를 나타낸 이미지이다.
도 11은 제조예 3에 따른 전기분해 셀용 유로 플레이트에서 유속분포를 나타낸 이미지이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략하도록 한다.
제1 실시예에 따른 전기분해 셀용 유로 플레이트
도 1은 본 발명의 실시예에 따른 전기분해 셀을 예시적으로 나타낸 측면도이고, 도 2는 본 발명의 제1 실시예에 따른 전기분해 셀용 유로 플레이트를 예시적으로 나타낸 평면도이며, 도 3은 본 발명의 제1 실시예에 따른 전기분해 셀용 유로 플레이트에서 공급측 유로부의 일부를 확대하여 나타낸 평면도이다.
도 1 내지 도 3을 참고하면, 본 발명의 제1 실시예에 따른 전기분해 셀용 유로 플레이트(100)(Plate)는 전기화학적 환원 반응을 일으키는 전극(E)과 대면되는 전기분해 셀용 유로 플레이트(100)로서, 원료 유체를 공급하는 공급측 유로부(120), 및 공급되는 원료 유체가 이동되는 다수개의 채널(131)(Channel)이 형성된 채널부(130)를 포함한다. 또한, 본 발명의 제1 실시예에 따른 전기분해 셀용 유로 플레이트(100)는 매니폴드 유입구(110), 배출측 유로부(140), 및 매니폴드 배출구(150)를 포함할 수 있다.
보다 상세히, 본 발명의 제1 실시예에 따른 전기분해 셀용 유로 플레이트(100)에서 공급측 유로부(120)는 원료 유체를 공급하는 다수개로 분기된 분기유로(123)가 형성될 수 있다. 여기서, 원료 유체는 이산화탄소(CO2) 및 전해액을 포함할 수 있다. 이때, 전해액은 물(H2O)을 포함할 수 있다.
공급측 유로부(120)는 복수개의 유로블럭(121)이 구비되고, 복수개의 유로블럭(121)을 통해 분기유로(123)가 다수개로 분기될 수 있다. 즉, 복수개의 유로블럭(121)을 통해 원료 유체를 공급하는 통로인 유로가 다수개로 분기된 분기유로(123)를 형성할 수 있다.
그리고, 다수개로 분기된 분기유로(123)의 각 폭(W1,W2)은 균일할 수 있다. 여기서, "균일"이란 다수개로 분기된 분기유로(123)의 각 폭(W1,W2)이 서로 차이가 이 일정하다는 것을 의미한다. 즉, 공급측 유로부(120)의 분기된 다수개의 분기유로(123)의 폭(W1,W2)은 서로 동일할 수 있다. 특히, 공급측 유로부(120)의 양측부에 위치된 분기유로(123)의 폭(W1)은 공급측 유로부(120)의 나머지 분기유로(123)의 폭(W2)과 동일하게 형성시킬 수 있다. 여기서, 공급측 유로부(120)의 양측부에 내측으로 만입된 만입홈(120a)이 형성되어, 공급측 유로부(320)의 양측부에 위치된 분기유로(123)의 폭(W1)은 공급측 유로부(120)의 나머지 분기유로(123)의 폭(W12)과 동일하게 형성시킬 수 있다.
이때, 분기된 다수개의 분기유로(123)는 채널부(130)와 마주보는 유로 부분일 수 있다.
한편, 공급측 유로부(120)에서 복수개의 유로블럭(121)을 통해 분기된 다수개의 분기유로(123)의 폭(W1,W2)은 예를 들어 0.25 ~ 1 mm 일 수 있다.
공급측 유로부(120)의 분기된 다수개의 분기유로(123) 수는 다수개의 채널(131) 수에 대응될 수 있다.
공급측 유로부(120)의 분기된 다수개의 분기유로(123)의 위치와, 채널부(130)의 다수개의 채널(131)의 위치는 서로 대응되도록 구비될 수 있다. 즉, 예를 들어 도 2를 참고할 때, 다수개의 분기유로(123)와 다수개의 채널(131)은 상하 방향으로 동일 선상에 위치될 수 있다.
복수개의 유로블럭(121)은 예를 들어 단면이 원형 또는 비원형 형태로 형성될 수 있다. 이때, 복수개의 유로블럭(121)은 구체적으로 예를 들어 단면이 원형 형태로 형성될 수 있다.
채널부(130)는 공급측 유로부(120)와 일측부가 연결되어, 공급되는 원료 유체인 이산화탄소 및 전해액이 이동되는 다수개의 채널(131)이 형성될 수 있다.
채널부(130)는 전극(E)과 대면되되, 다수개의 채널(131)은 채널부(130)에서 전극(E)과 대면되는 면에 형성되어, 다수개의 채널(131)을 통해 유동되는 원료 유체가 전극(E)과 접촉되며 전극(E)에서 전기화학적 반응이 일어나게된다.
채널부(130)는 공급측 유로부(120)가 위치된 일측에서 타측으로 원료 유체가 직선방향으로 이동되도록 다수개의 채널(131)이 직선 형태로 형성될 수 있다.
이때, 복수개의 채널 돌기(131a)가 직선 형태로 형성되어, 직선 형태의 채널(131)을 형성할 수 있다. 즉, 전극(E) 방향으로 채널 돌기(131a)가 돌출되되, 도 2를 참고할 때 상하방향으로 연장되어 상하 방향으로 유체가 이동되는 통로인 채널(131)을 형성할 수 있다.
또한, 예를 들어 채널(131)의 폭(WC1)은 공급측 유로부(120)의 분기된 다수개의 분기유로(123)의 폭(W1,W2) 보다 클 수 있다.
아울러, 채널(131)의 폭(WC1)은 예를 들어 0.5 ~ 2mm 일 수 있다.
한편, 채널부(130)의 면적은 예를 들어 100cm2 이상일 수 있다.
매니폴드 유입구(110)는 공급측 유로부(120)와 연결되고, 원료 유체가 유입될 수 있다. 이때, 공급측 유로부(120)는 매니폴드 유입구(110)로부터 유입되는 원료 유체를 공급할 수 있다.
매니폴드 유입구(110)는 하나의 유입홀을 포함할 수 있다.
배출측 유로부(140)는 채널부(130)의 타측부와 연결되어 반응물이 배출되는 다수개의 유로가 형성될 수 있다.
또한, 배출측 유로부(140)는 유로를 다수개로 분기하는 배출측 유로블럭(141)이 구비될 수 있다.
아울러, 배출측 유로부(140)는 공급측 유로부(120)의 형태에 대응되는 형태로 형성될 수 있다. 즉, 배출측 유로부(140)는 유로의 분기 형태가 공급측 유로부(120)의 분기된 유로 형태와 동일할 수 있다.
매니폴드 배출구(150)는 배출측 유로부(140)와 연결되어 반응물이 배출될 수 있다.
여기서, 반응물은 일산화 탄소(CO) 또는 에틸렌(ethylene, C2H4) 등 일 수 있다.
매니폴드 배출구(150)는 하나의 배출홀을 포함할 수 있다.
상기와 같이 구성된 본 발명의 제1 실시예에 따른 전기분해 셀용 유로 플레이트(100)는 전극(E)과 대면되는 전기분해 셀용 유로 플레이트(100)로서, 원료 유체를 공급하는 다수개로 분기된 분기유로(123)가 형성된 공급측 유로부(120)에서 복수개의 유로블럭(121)을 통해 균일한 유로의 폭을 갖도록 분기된 분기유로(123)를 형성함에 따라, 원료 유체가 이동되는 채널부(130)의 다수개의 채널(131)로 원료 유체가 균일하게 유동되도록 공급할 수 있다. 이에 따라, 반응물의 유체 흐름이 개선되어 전기화학 반응에 필요한 물질 전달 특성이 개선되고, 이를 통해 성능 효율을 최적화되며, 국부적인 열화를 방지하여 내구성이 향상된다.
제2 실시예에 따른 전기분해 셀용 유로 플레이트
이하에서 본 발명의 제2 실시예에 따른 전기분해 셀용 유로 플레이트를 설명하기로 한다.
도 4는 본 발명의 제2 실시예에 따른 전기분해 셀용 유로 플레이트를 예시적으로 나타낸 평면도이고, 도 5는 본 발명의 제2 실시예에 따른 전기분해 셀용 유로 플레이트에서 공급측 유로부의 일부를 확대하여 나타낸 평면도이다.
도 1, 도 4 및 도 5를 참고하면, 본 발명의 제2 실시예에 따른 전기분해 셀용 유로 플레이트(200)는 전기화학적 환원 반응을 일으키는 전극(E)과 대면되는 전기분해 셀용 유로 플레이트(200)로서, 전기화학적 환원 반응을 일으키는 전극(E)과 대면되는 전기분해 셀용 유로 플레이트(200)로서, 원료 유체를 공급하는 공급측 유로부(220), 및 공급되는 원료 유체가 이동되는 다수개의 채널(131)이 형성된 채널부(130)를 포함한다. 또한, 본 발명의 제2 실시예에 따른 전기분해 셀용 유로 플레이트(200)는 매니폴드 유입구(110), 배출측 유로부(240), 및 매니폴드 배출구(150)를 포함할 수 있다.
본 발명의 실시예에 따른 전기분해 셀용 유로 플레이트(200)는 전술한 제1 실시예에 따른 전기분해 셀용 유로 플레이트와 비교할 때, 공급측 유로부(220)에서 유로블럭(221,222)으로 통한 유로 분기 형태에 차이가 있다. 따라서, 본 실시예는 전술한 실시예와 중복되는 내용은 생략하거나 간략히 기술하고, 차이점을 중심으로 기술하도록 한다.
보다 상세히, 본 발명의 제2 실시예에 따른 전기분해 셀용 유로 플레이트(200)에서 공급측 유로부(220)는 원료 유체를 공급하는 다수개로 분기된 분기유로(223)가 형성될 수 있다. 여기서, 원료 유체는 이산화탄소(CO2) 및 전해액을 포함할 수 있다. 이때, 전해액은 물(H2O)을 포함할 수 있다.
공급측 유로부(220)는 복수개의 유로블럭(221,222)이 구비되고, 복수개의 유로블럭(221,222)을 통해 분기유로(223)가 다수개로 분기될 수 있다. 이때, 다수개로 분기된 분기유로(223)의 각 폭(W23,W24)은 균일할 수 있다. 즉, 공급측 유로부(220)의 분기된 다수개의 분기유로(223)의 폭(W23,W24)은 서로 동일할 수 있다. 여기서, 분기된 다수개의 분기유로(223)는 채널부(130)와 마주보는 유로 부분일 수 있다.
복수개의 유로블럭(221,222)은 예를 들어 단면이 원형 또는 비원형 형태로 형성될 수 있다. 이때, 복수개의 유로블럭(221,222)은 구체적으로 예를 들어 단면이 원형 형태로 형성될 수 있다.
그리고, 복수개의 유로블럭(221,222)은 복수의 행으로 배열될 수 있다. 여기서, 복수의 행으로 배열된 복수개의 유로블럭(221,222)은 행과 행 사이가 서로 엇갈리게 배치될 수 있다. 이에 따라, 복수개의 유로블럭(221,222)이 복수의 행으로 배열되되, 행과 행 사이가 서로 엇갈리게 배치되어, 유체의 유동 분배가 보다 용이하게 이루어질 수 있다.
이때, 분기된 다수개의 분기유로(223)는 복수의 행으로 배열된 유로블럭(221,222)에서 채널부(130)와 인접한 행의 유로블럭(221)에 의해 유동이 분배되는 분기유로(223)일 수 있다. 즉, 분기된 분기유로(223)란 복수의 행에서 마지막 행인 채널부(130)와 가장 인접된 행에 위치된 유로블럭(221)에 의해 최종 분배되는 유로일 수 있다. 한편, 예를 들어 공급측 유로부(220)의 분기된 다수개의 분기유로(223) 수는 다수개의 채널(131) 수 보다 많게 구비될 수 있지만, 본 발명의 제2 실시예에 따른 전기분해 셀용 유로 플레이트(200)가 여기에 반드시 한정되는 것은 아니다.
또한, 복수의 행으로 배열된 복수개의 유로블럭(221,222)은 예를 들어 2행으로 배열될 수 있다. 여기서, 2행으로 배열된 복수개의 유로블럭(221,222)은 행과 행 사이가 서로 엇갈리게 배치되되, 지그재그(ZigZag) 형태로 배열될 수 있다.
한편, 복수개의 유로블럭(221,222) 2행으로 배열 시, 채널부(130)와 가까운 쪽의 행을 1행, 매니폴드 유입구(110)와 가까운 쪽의 행을 2행이라고 할 때, 1행에 위치된 복수개의 유로블럭(221) 사이의 간격은 동일하고, 2행에 위치된 복수개의 유로블럭(222) 사이의 간격이 동일하게 구비될 수 있다. 이때, 1행에 위치된 복수개의 유로블럭(221) 사이의 간격과, 2행에 위치된 복수개의 유로블럭(222) 사이의 간격은 서로 동일하게 구비될 수 있다. 이에 따라, 유체의 유동을 균일하게 분배하는 것이 보다 용이하게 이루어질 수 있다.
이때, 2행에 위치된 복수개의 유로블럭(222)에 의해 분배되는 유로(224)의 각 폭(W21,W22)은 서로 동일할 수 있다. 그리고, 2행에 위치된 복수개의 유로블럭(222)에 의해 분배되는 유로(224)에서 공급측 유로부(220)의 양측부에 위치된 유로의 폭(W21)은 나머지 유로의 폭(W22)과 동일하게 형성될 수 있다.
채널부(130)는 공급측 유로부(220)와 일측부가 연결되어, 공급되는 원료 유체인 이산화탄소 및 전해액이 이동되는 다수개의 채널(131)이 형성될 수 있다.
채널부(130)는 전극(E)과 대면되되, 다수개의 채널(131)은 채널부(130)에서 전극(E)과 대면되는 면에 형성되어, 다수개의 채널(131)을 통해 유동되는 원료 유체가 전극(E)과 접촉되며 전극(E)에서 전기화학적 반응이 일어나게된다.
채널부(130)는 공급측 유로부(220)가 위치된 일측에서 타측으로 원료 유체가 직선방향으로 이동되도록 다수개의 채널(131)이 직선 형태로 형성될 수 있다.
또한, 예를 들어 채널(131)의 폭(WC2)은 공급측 유로부(220)의 분기된 다수개의 분기유로(223)의 폭(W23,W24) 보다 클 수 있다.
매니폴드 유입구(110)는 공급측 유로부(220)와 연결되고, 원료 유체가 유입될 수 있다. 이때, 공급측 유로부(220)는 매니폴드 유입구(110)로부터 유입되는 원료 유체를 공급할 수 있다.
매니폴드 유입구(110)는 하나의 유입홀을 포함할 수 있다.
배출측 유로부(240)는 채널부(130)의 타측부와 연결되어 반응물이 배출되는 다수개의 유로가 형성될 수 있다.
배출측 유로부(240)는 공급측 유로부(220)의 형태에 대응되는 형태로 형성될 수 있다.
매니폴드 배출구(150)는 배출측 유로부(240)와 연결되어 반응물이 배출될 수 있다.
여기서, 반응물은 일산화 탄소(CO) 또는 에틸렌(ethylene, C2H4) 등 일 수 있다.
매니폴드 배출구(150)는 하나의 배출홀을 포함할 수 있다.
제3 실시예에 따른 전기분해 셀용 유로 플레이트
이하에서 본 발명의 제3 실시예에 따른 전기분해 셀용 유로 플레이트를 설명하기로 한다.
도 6은 본 발명의 제3 실시예에 따른 전기분해 셀용 유로 플레이트를 예시적으로 나타낸 평면도이고, 도 7은 본 발명의 제3 실시예에 따른 전기분해 셀용 유로 플레이트에서 공급측 유로부의 일부를 확대하여 나타낸 평면도이다.
도 1, 도 6 및 도 7을 참고하면, 본 발명의 제3 실시예에 따른 전기분해 셀용 유로 플레이트(300)는 전기화학적 환원 반응을 일으키는 전극(E)과 대면되는 전기분해 셀용 유로 플레이트(300)로서, 원료 유체를 공급하는 공급측 유로부(320), 및 공급되는 원료 유체가 이동되는 다수개의 채널(131)이 형성된 채널부(130)를 포함한다. 또한, 본 발명의 제3 실시예에 따른 전기분해 셀용 유로 플레이트(300)는 매니폴드 유입구(110), 배출측 유로부(340), 및 매니폴드 배출구(150)를 포함할 수 있다.
본 발명의 제3 실시예에 따른 전기분해 셀용 유로 플레이트(300)는 전술한 제1 실시예 및 제2 실시예에 따른 전기분해 셀용 유로 플레이트와 비교할 때, 공급측 유로부(320)에서 유로블럭(321)으로 통한 유로 분기 형태에 차이가 있다. 따라서, 본 실시예는 전술한 실시예들과 중복되는 내용은 생략하거나 간략히 기술하고, 차이점을 중심으로 기술하도록 한다.
보다 상세히, 본 발명의 제3 실시예에 따른 전기분해 셀용 유로 플레이트(300)에서 공급측 유로부(320)는 원료 유체를 공급하는 다수개로 분기된 분기유로(323)가 형성될 수 있다. 여기서, 원료 유체는 이산화탄소(CO2) 및 전해액을 포함할 수 있다. 이때, 전해액은 물(H2O)을 포함할 수 있다.
공급측 유로부(320)는 복수개의 유로블럭(321)이 구비되고, 복수개의 유로블럭(321)을 통해 분기유로(323)가 다수개로 분기될 수 있다. 이때, 다수개로 분기된 분기유로(323)의 각 폭(W31,W32)은 균일할 수 있다. 즉, 공급측 유로부(320)의 분기된 다수개의 분기유로(323)의 폭(W31,W32)은 서로 동일할 수 있다. 여기서, 공급측 유로부(320)의 양측부에 내측으로 만입된 만입홈(320a)이 형성되어, 공급측 유로부(320)의 양측부에 위치된 분기유로(323)의 폭(W31)은 공급측 유로부(320)의 나머지 분기유로(323)의 폭(W32)과 동일하게 형성시킬 수 있다.
여기서, 분기된 다수개의 분기유로(323)는 채널부(130)와 마주보는 유로 부분일 수 있다.
복수개의 유로블럭(321)은 예를 들어 단면이 원형 또는 비원형 형태로 형성될 수 있다. 이때, 복수개의 유로블럭(321)은 구체적으로 예를 들어 비원형 형태 중에서 마름모 형태로 형성될 수 있다.
채널부(130)는 공급측 유로부(320)와 일측부가 연결되어, 공급되는 원료 유체인 이산화탄소 및 전해액이 이동되는 다수개의 채널(131)이 형성될 수 있다.
또한, 채널부(130)는 전극(E)과 대면되되, 다수개의 채널(131)은 채널부(130)에서 전극(E)과 대면되는 면에 형성되어, 다수개의 채널(131)을 통해 유동되는 원료 유체가 전극(E)과 접촉되며 전극(E)에서 전기화학적 반응이 일어나게된다.
아울러, 채널부(130)는 공급측 유로부(320)가 위치된 일측에서 타측으로 원료 유체가 직선방향으로 이동되도록 다수개의 채널(131)이 직선 형태로 형성될 수 있다.
그리고, 예를 들어 채널(131)의 폭(WC3)은 공급측 유로부(320)의 분기된 다수개의 분기유로(323)의 폭(W31,W32) 보다 크거나 작을 수 있지만, 본 발명의 제3 실시예에 따른 전기분해 셀용 유로 플레이트(300)가 여기에 반드시 한정되는 것은 아니다.
매니폴드 유입구(110)는 공급측 유로부(320)와 연결되고, 원료 유체가 유입될 수 있다. 이때, 공급측 유로부(320)는 매니폴드 유입구(110)로부터 유입되는 원료 유체를 공급할 수 있다.
매니폴드 유입구(110)는 하나의 유입홀을 포함할 수 있다.
배출측 유로부(340)는 채널부(130)의 타측부와 연결되어 반응물이 배출되는 다수개의 유로가 형성될 수 있다.
아울러, 배출측 유로부(340)는 공급측 유로부(320)의 형태에 대응되는 형태로 형성될 수 있다. 즉, 배출측 유로부(340)는 유로 형태가 공급측 유로부(320)의 유로 형태와 동일할 수 있다.
매니폴드 배출구(150)는 배출측 유로부(340)와 연결되어 반응물이 배출될 수 있다.
여기서, 반응물은 일산화 탄소(CO) 또는 에틸렌(ethylene, C2H4) 등 일 수 있다.
매니폴드 배출구(150)는 하나의 배출홀을 포함할 수 있다.
실시예에 따른 전기분해 셀
이하에서 본 발명의 실시예에 따른 전기분해 셀을 설명하기로 한다.
도 1 내지 도 3을 참고하면, 본 발명의 실시예에 따른 전기분해 셀(Cell) (1000)은 유로 플레이트(100) 및 유로 플레이트(100)와 대면되는 전극(E)을 포함한다. 여기서, 유로 플레이트(100)는 전기화학적 환원 반응을 일으키는 전극(E)과 대면되는 전기분해 셀용 유로 플레이트(100)로서, 원료 유체를 공급하는 공급측 유로부(120), 및 공급되는 원료 유체가 이동되는 다수개의 채널(131)이 형성된 채널부(130)를 포함한다. 또한, 유로 플레이트(100)는 매니폴드 유입구(110), 배출측 유로부(140), 및 매니폴드 배출구(150)를 포함할 수 있다. 한편, 본 발명의 실시예에 따른 전기분해 셀(1000)은 이온 교환막(I)을 더 포함할 수 있다.
본 발명의 실시예에 따른 전기분해 셀(1000)은 전술한 제1 실시예 내지 제3 실시예에 따른 전기분해 셀용 유로 플레이트를 포함하는 전기분해 셀(1000)에 관한 것이다. 따라서, 본 실시예는 전술한 제1 실시예 내지 제3 실시예에 따른 전기분해 셀용 유로 플레이트 실시예들과 중복되는 내용은 생략하거나 간략히 기술하고, 차이점을 중심으로 기술하도록 한다.
보다 상세히, 전극(E)은 유로 플레이트(100)와 대면되어 전기화학적 환원 반응을 일으킬 수 있다. 이때, 전극(E)은 예를 들어 이산화탄소(CO2)를 전기 분해하여, 일산화 탄소(CO) 또는 에틸렌(ethylene, C2H4) 등으로 전기분해할 수 있다.
한편, 전극(E)은 애노드(A)(anode) 및 캐소드(C)(cathode)를 포함할 수 있다.
유로 플레이트(100)에서 공급측 유로부(120)는 원료 유체를 공급하는 다수개로 분기된 분기유로(123)가 형성될 수 있다. 여기서, 원료 유체는 이산화탄소(CO2) 및 전해액을 포함할 수 있다. 이때, 전해액은 물(H2O)을 포함할 수 있다. 공급측 유로부(120)는 복수개의 유로블럭(121)이 구비되고, 복수개의 유로블럭(121)을 통해 분기유로(123)가 다수개로 분기될 수 있다. 이때, 다수개로 분기된 분기유로(123)의 각 폭(W1,W2)은 균일할 수 있다. 즉, 공급측 유로부(120)의 분기된 다수개의 분기유로(123)의 폭(W1,W2)은 서로 동일할 수 있다. 여기서, 분기된 다수개의 분기유로(123)는 채널부(130)와 마주보는 유로 부분일 수 있다.
채널부(130)는 공급측 유로부(120)와 일측부가 연결되어, 공급되는 원료 유체인 이산화탄소 및 전해액이 이동되는 다수개의 채널(131)이 형성될 수 있다. 또한, 채널부(130)는 전극(E)과 대면되되, 다수개의 채널(131)은 채널부(130)에서 전극(E)과 대면되는 면에 형성되어, 다수개의 채널(131)을 통해 유동되는 원료 유체가 전극(E)과 접촉되며 전극(E)에서 전기화학적 반응이 일어나게된다.
한편, 채널부(130)의 면적은 예를 들어 100cm2 이상일 수 있다. 따라서, 본 발명의 실시예에 따른 전기분해 셀(1000)은 100cm2 이상의 활성면적을 가질 수 있다.
또한, 유로 플레이트(100)는 복수개로 구비되어, 각각 애노드(A) 및 캐소드(C)와 대면될 수 있다.
복수개의 유로 플레이트(100)는 애노드(A)와 대면되는 제1 유로 플레이트(P1) 및 캐소드(C)와 대면되는 제2 유로 플레이트(P2)를 포함할 수 있다.
여기서, 전술한 제1 실시예 내지 제3 실시예에 따른 전기분해 셀용 유로 플레이트(100,200,300)는 제1 유로 플레이트(P1) 또는 제2 유로 플레이트(P2) 중에서 적어도 하나 이상으로 구성될 수 있다. 이때, 구체적으로 예를 들어 전술한 제1 실시예 내지 제3 실시예에 따른 전기분해 셀용 유로 플레이트(100,200,300)는 제1 유로 플레이트(P1) 일 수 있지만, 본 발명이 여기에 반드시 한정되는 것은 아니며, 제2 유로 플레이트(P2), 또는 제1 유로 플레이트(P1) 및 제2 유로 플레이트(P2) 일 수 있다. (참조 도 2, 도 4, 및 도 6)
이온 교환막(I)(IEM, ion exchange membrane)은 애노드(A) 및 캐소드(C) 사이에 위치될 수 있다. 여기서, 이온 교환막(I)은 애노드(A) 및 캐소드(C) 사이의 이온이 이동될 수 있다.
한편, 본 발명의 실시예에 따른 전기분해 셀(1000)은 제1 유로 플레이트(P1), 애노드(A), 이온 교환막(I), 캐소드(C), 제2 유로 플레이트(P2) 순으로 적층될 수 있다.
< 제조예 1 >
이산화탄소(CO2)를 전기화학적 환원 반응을 통해 전기 분해하는 전기분해 셀용 유로 플레이트를 제조하였다. 그리고, 전기화학적 환원 반응이 일어나는 전극과 대면되도록 유로 플레이트를 구비하였다.
유로 플레이트는 이산화탄소 및 전해액을 공급하는 유로가 복수개의 유로블럭을 통해 다수개로 분기된 분기유로를 형성하는 공급측 유로부, 및 공급측 유로부와 일측부가 연결되어, 공급되는 이산화탄소 및 전해액이 이동되는 다수개의 채널(Channel)이 형성된 채널부를 포함하도록 제조하였다. 이때, 다수개로 분기된 분기유로의 각 폭은 균일하도록 제조하였다.
그리고, 유로 플레이트는 공급측 유로부와 연결되고, 이산화탄소 및 전해액이 유입되는 매니폴드 유입구, 채널부의 타측부와 연결되어 반응물이 배출되는 다수개의 분기유로가 형성된 배출측 유로부, 및 배출측 유로부와 연결된 매니폴드 배출구를 더 포함하도록 제조하였다.
한편, 유로블럭의 단면은 원형으로 형성되고, 공급측 유로부의 분기된 다수개의 분기유로 수 및 위치는 채널부에서 다수개의 채널 수 및 위치에 대응되도록 제조하였다.
< 제조예 2 >
복수개의 유로블럭을 2행으로 구비시키되, 행과 행사이에 위치된 유로 블록이 서로 엇갈리게 배치하고, 공급측 유로부의 분기유로 수는 채널 부의 채널 수 보다 많게 형성시킨 것을 제외하고 제조예 1과 동일하게 전기분해 셀용 유로 플레이트를 제조하였다.
< 제조예 3 >
유로블럭의 단면이 마름모 형태이고, 공급측 유로부의 분기유로 수는 채널 부의 채널 수 보다 적게 형성시키며, 공급측 유로부의 양측부에 위치된 분기유로의 폭이 공급측 유로부의 나머지 분기유로의 폭과 동일하게 형성되도록, 공급측 유로부의 양측부에 내측으로 만입된 만입홈을 형성시킨 것을 제외하고, 제조예 1과 동일하게 전기분해 셀용 유로 플레이트를 제조하였다.
< 비교예 1 >
유로블럭의 단면이 마름모 형태이고, 공급측 유로부의 분기유로 수는 채널 부의 채널 수 보다 적게 형성시키며, 다수개로 분기된 분기유로의 각 폭이 불균일하게 형성되되 공급측 유로부의 양측부에 위치된 분기유로의 폭이 공급측 유로부의 나머지 분기유로의 폭 보다 크게 형성된 것을 제외하고, 제조예 1과 동일하게 전기분해 셀용 유로 플레이트를 제조하였다.
< 실험예 1>
도 8은 비교예 1에 따른 전기분해 셀용 유로 플레이트에서 유속분포를 나타낸 이미지이고, 도 9는 제조예 1에 따른 전기분해 셀용 유로 플레이트에서 유속분포를 나타낸 이미지이며, 도 10은 제조예 2에 따른 전기분해 셀용 유로 플레이트에서 유속분포를 나타낸 이미지이고, 도 11은 제조예 3에 따른 전기분해 셀용 유로 플레이트에서 유속분포를 나타낸 이미지이다.
비교예 1, 및 제조예 1 내지 3에 따른 전기분해 셀용 유로 플레이트의 매니폴드 유입구로 이산화 탄소 및 전해액의 유체를 유입시켜, 배출측 배출구로 배출되는 과정까지의 유체의 유속 분포를 도 8 내지 도 11에 이미지로 나타내었다.
또한, 실험예 1에서 측정된 채널부에서의 유체 유량 편차는 하기 표 1에 나타내었다.
비교예 1 제조예 1 제조예 2 제조예 3
유량 편차 (%) 8.45 2.99 2.96 4.40
도 8에 나타난 비교예 1의 유로 플레이트의 채널부 유속분포 이미지를 볼 때, 양측 부분의 유속이 현저히 빠른 빗금 표시부분으로 나타나고, 나머지 부분에서 일부 유속이 상대적으로 느린 진한 회색으로 나타난 것으로부터, 채널부의 채널 간 유속이 비교예 1에서 현저히 불균일한 것을 알 수 있다. 반면, 도 9에 나타난 제조예 1의 유로 플레이트, 도 10에 나타난 제조예 2의 유로 플레이트, 및 도 11에 나타난 제조예 3의 유로 플레이트의 채널부 유속분포 이미지를 볼 때, 양측 부분과, 나머지 부분에서 유속이 연한 회색으로 균일하게 나타난 것으로부터, 채널부의 채널 간 유속이 제조예 1 내지 3에서 현저히 균일한 것을 알 수 있다. 따라서, 비교예 1에서 유로를 분기하는 유로블럭의 형상 및 배치가 불균일하여 양쪽 가장자리에 위치된 일부 채널로 유량이 편중된 것을 알 수 있고, 제조예 1 내지 3에서 유로를 분기하는 유로블럭의 형상 및 배치가 균일하여 일부 채널로 유량이 편중됨 없이 모든 채널의 유량이 균일한 것을 알 수 있다.
또한, 표 1을 참고할 때, 유량 편차(%)는 비교예 1에서 8.45로 나타나 편차가 많은 반면, 제조예 1에서 2.99, 제조예 2에서 2.96, 및 제조예 3에서 4.40로 나타나 편차가 현저히 적은 것을 알 수 있다.
따라서, 제조예 1 및 제조예 2의 경우 채널 간 유량 편차를 비교예 1 대비 74% 감소시킬 수 있고, 제조예 3 경우 48%를 개선할 수 있는 것을 알 수 있다.
결국, 제조예 1 내지 제조예 3에 따른 전기분해 셀용 유로 플레이트는 이산화탄소의 전기분해에 필요한 반응물 및 생성물의 유동 분배가 비교예 1에 따른 전기분해 셀용 유로 플레이트에 비해 현저히 개선된 것을 알 수 잇다.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명에 따른 후처리 장치는 이에 한정되지 않는다. 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 다양한 실시가 가능하다고 할 것이다.
또한, 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.
[부호의 설명]
100,200,300,500: 유로 플레이트
110: 매니폴드 유입구
120,220,320: 공급측 유로부
121,221,222,321: 유로블럭
123,223,323: 분기유로
130: 채널부
131: 채널
131a: 채널 돌기
140,240,340: 배출측 유로부
141,341: 배출측 유로블럭
150: 매니폴드 배출구
320a: 만입홈
1000: 전기분해 셀
A: 애노드
C: 캐소드
E: 전극
I: 이온 교환막
P1: 제1 유로 플레이트
P2: 제2 유로 플레이트

Claims (15)

  1. 전기화학적 반응을 일으키는 전극과 대면되는 전기분해 셀용 유로 플레이트로서,
    원료 유체를 공급하는 다수개로 분기된 분기유로가 형성된 공급측 유로부; 및
    상기 공급측 유로부와 일측부가 연결되어, 공급되는 상기 원료 유체가 이동되는 다수개의 채널(Channel)이 형성된 채널부를 포함하며,
    상기 공급측 유로부는 복수개의 유로블럭이 구비되고,
    복수개의 상기 유로블럭을 통해 상기 분기유로가 다수개로 분기되며,
    다수개로 분기된 상기 분기유로의 각 폭은 균일한 전기분해 셀용 유로 플레이트.
  2. 청구항 1에 있어서,
    상기 채널부는 상기 전극과 대면되되, 다수개의 상기 채널은 상기 채널부에서 상기 전극과 대면되는 면에 형성되어, 상기 다수개의 채널을 통해 유동되는 상기 원료 유체가 상기 전극과 접촉되며 상기 전극에서 전기화학적 반응이 일어나는 전기분해 셀용 유로 플레이트.
  3. 청구항 1에 있어서,
    상기 공급측 유로부의 분기된 다수개의 상기 분기유로 수는 다수개의 상기 채널 수에 대응되는 전기분해 셀용 유로 플레이트.
  4. 청구항 1에 있어서,
    상기 공급측 유로부의 분기된 다수개의 상기 분기유로의 위치와, 상기 채널부의 다수개의 상기 채널의 위치는 서로 대응되도록 구비되는 전기분해 셀용 유로 플레이트.
  5. 청구항 1에 있어서,
    복수개의 상기 유로블럭은 단면이 원형 형태로 형성되는 전기분해 셀용 유로 플레이트.
  6. 청구항 5에 있어서,
    복수개의 상기 유로블럭은 복수의 행으로 배열되고,
    복수의 행으로 배열된 복수개의 상기 유로블럭은 행과 행 사이가 서로 엇갈리게 배치되는 전기분해 셀용 유로 플레이트.
  7. 청구항 1에 있어서,
    복수개의 상기 유로블럭은 단면이 비원형 형태로 형성되는 전기분해 셀용 유로 플레이트.
  8. 청구항 1에 있어서,
    상기 공급측 유로부의 양측부에 위치된 분기유로의 폭은 상기 공급측 유로부의 나머지 분기유로의 폭과 동일하게 형성되는 전기분해 셀용 유로 플레이트.
  9. 청구항 1에 있어서,
    상기 공급측 유로부와 연결되고, 상기 원료 유체가 유입되는 매니폴드 유입구를 더 포함하고,
    상기 공급측 유로부는 상기 매니폴드 유입구로부터 유입되는 상기 원료 유체를 공급하는 전기분해 셀용 유로 플레이트.
  10. 청구항 1에 있어서,
    상기 채널부의 타측부와 연결되어 반응물이 배출되는 다수개의 분기유로가 형성된 배출측 유로부; 및
    상기 배출측 유로부와 연결된 매니폴드 배출구를 더 포함하는 전기분해 셀용 유로 플레이트.
  11. 청구항 10에 있어서,
    상기 배출측 유로부는 상기 공급측 유로부의 형태에 대응되는 형태로 형성되는 전기분해 셀용 유로 플레이트.
  12. 청구항 1에 있어서,
    상기 채널부는
    상기 공급측 유로부가 위치된 일측에서 타측으로 상기 원료 유체가 직선방향으로 이동되도록 다수개의 상기 채널이 직선 형태로 형성되는 전기분해 셀용 유로 플레이트.
  13. 청구항 1에 있어서,
    상기 원료 유체는 이산화탄소(CO2) 및 물(H2O)을 포함하는 전해액을 포함하여,
    상기 전극에서 상기 이산화탄소가 전기화학적 환원 반응을 통해 전기분해되는 전기분해 셀용 유로 플레이트.
  14. 청구항 1 내지 청구항 13 중 어느 한 항에 기재된 전기분해 셀용 유로 플레이트; 및
    상기 유로 플레이트와 대면되는 상기 전극을 포함하는 전기분해 셀.
  15. 청구항 14에 있어서,
    상기 전극은 애노드(anode) 및 캐소드(cathode)를 포함하고,
    상기 유로 플레이트는 복수개로 구비되어, 각각 상기 애노드 및 상기 캐소드와 대면되며,
    상기 애노드 및 상기 캐소드 사이에 위치되는 이온 교환막(IEM, ion exchange membrane)을 더 포함하는 전기분해 셀.
PCT/KR2023/013049 2022-09-01 2023-09-01 전기분해 셀용 유로 플레이트 및 이를 포함하는 전기분해 셀 WO2024049263A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220110644 2022-09-01
KR10-2022-0110644 2022-09-01
KR1020230115367A KR20240031925A (ko) 2022-09-01 2023-08-31 전기분해 셀용 유로 플레이트 및 이를 포함하는 전기분해 셀
KR10-2023-0115367 2023-08-31

Publications (1)

Publication Number Publication Date
WO2024049263A1 true WO2024049263A1 (ko) 2024-03-07

Family

ID=90098438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013049 WO2024049263A1 (ko) 2022-09-01 2023-09-01 전기분해 셀용 유로 플레이트 및 이를 포함하는 전기분해 셀

Country Status (1)

Country Link
WO (1) WO2024049263A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110132748A1 (en) * 2009-12-08 2011-06-09 Honda Motor Co., Ltd. Water electrolysis apparatus
KR20170035735A (ko) * 2015-09-23 2017-03-31 한국전력공사 고효율 염수 전기분해 장치
KR101773969B1 (ko) * 2016-11-11 2017-09-04 한국과학기술연구원 환원반응을 향상시키는 전기화학 반응 셀
KR20180130126A (ko) * 2017-05-29 2018-12-07 주식회사 두산 수전해 스택
CN216786268U (zh) * 2022-02-24 2022-06-21 青岛创启信德新能源科技有限公司 一种质子交换膜水电解槽

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110132748A1 (en) * 2009-12-08 2011-06-09 Honda Motor Co., Ltd. Water electrolysis apparatus
KR20170035735A (ko) * 2015-09-23 2017-03-31 한국전력공사 고효율 염수 전기분해 장치
KR101773969B1 (ko) * 2016-11-11 2017-09-04 한국과학기술연구원 환원반응을 향상시키는 전기화학 반응 셀
KR20180130126A (ko) * 2017-05-29 2018-12-07 주식회사 두산 수전해 스택
CN216786268U (zh) * 2022-02-24 2022-06-21 青岛创启信德新能源科技有限公司 一种质子交换膜水电解槽

Similar Documents

Publication Publication Date Title
WO2010114294A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2020059988A1 (ko) 발광 표시 장치의 제조 장치 및 제조 방법
WO2020159235A1 (ko) 전극 압연롤 세정장치 및 세정방법
WO2024049263A1 (ko) 전기분해 셀용 유로 플레이트 및 이를 포함하는 전기분해 셀
WO2017030414A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2014182088A1 (ko) 가스 공급 장치
WO2016043467A1 (en) Full front blowing type air conditioner
WO2024090756A1 (ko) 게이트 밸브 및 씰링 플레이트 체결 방법
WO2013012210A2 (ko) 기판 적재용 트레이
WO2015178717A1 (ko) 큐멘의 정제 장치 및 정제 방법
WO2011065776A2 (ko) 트레이와 이를 이용한 기판 처리 장치, 및 트레이의 제조 방법
WO2022173115A1 (ko) 변압기용 냉각 핀
WO2014109506A1 (ko) 반도체 기판
WO2022164132A1 (ko) 격막이 구비된 전해액 보정부를 포함하는 수전해 장치
WO2023224356A2 (ko) 배터리 모듈 및 배터리 팩
WO2022149764A1 (ko) 전극 슬러리의 유량 제어가 가능한 전극 슬러리 코팅 시스템 및 이를 이용한 전극 슬러리 코팅 방법
WO2021006584A1 (ko) 수처리 장치용 필터
WO2021015541A1 (en) Method of recovering unreacted ethylene in ethylene oligomerization process
WO2023224354A1 (ko) 배터리 팩
WO2022265188A1 (ko) 배터리 셀 유지 프레임
WO2022265189A1 (ko) 배터리 모듈을 갖는 배터리 시스템
WO2024053855A1 (ko) Oled 화소 증착을 위한 증착용 마스크
WO2023234706A1 (ko) 전극조립체 제조장치 및 제조방법
WO2022231196A1 (en) Filter for water treatment device
WO2017111374A1 (ko) 풋 프린트를 줄일 수 있는 인터백 타입의 증착 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860938

Country of ref document: EP

Kind code of ref document: A1