WO2017111374A1 - 풋 프린트를 줄일 수 있는 인터백 타입의 증착 시스템 - Google Patents

풋 프린트를 줄일 수 있는 인터백 타입의 증착 시스템 Download PDF

Info

Publication number
WO2017111374A1
WO2017111374A1 PCT/KR2016/014566 KR2016014566W WO2017111374A1 WO 2017111374 A1 WO2017111374 A1 WO 2017111374A1 KR 2016014566 W KR2016014566 W KR 2016014566W WO 2017111374 A1 WO2017111374 A1 WO 2017111374A1
Authority
WO
WIPO (PCT)
Prior art keywords
deposition
chamber
film
substrate
weight
Prior art date
Application number
PCT/KR2016/014566
Other languages
English (en)
French (fr)
Inventor
안경준
김찬호
정성훈
Original Assignee
(주) 에스엔텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160060857A external-priority patent/KR20170076535A/ko
Priority claimed from KR1020160060859A external-priority patent/KR20170084974A/ko
Application filed by (주) 에스엔텍 filed Critical (주) 에스엔텍
Publication of WO2017111374A1 publication Critical patent/WO2017111374A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a deposition system, and more particularly, when performing deposition in an inter-back type using a plurality of deposition chambers, the substrate can be continuously introduced and discharged, thereby providing a foot print.
  • the present invention relates to a deposition system capable of improving productivity by reducing the amount of.
  • the deposition system is a system for coating a thin film on the surface of a substrate and is also called a vacuum deposition system because it is generally performed in a vacuum.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the deposition system may include a batch type for fixing and depositing a substrate in a vacuum chamber and an inline type for transferring a substrate into a plurality of deposition chambers and stacking a plurality of layers of thin films.
  • a batch type for fixing and depositing a substrate in a vacuum chamber
  • an inline type for transferring a substrate into a plurality of deposition chambers and stacking a plurality of layers of thin films.
  • the inline type deposition system is efficient in stacking a plurality of thin films on a substrate by placing a plurality of vacuum chambers adjacent to each other on a line, sequentially transferring the substrate from the first vacuum chamber to the last vacuum chamber, and performing deposition. .
  • the deposition system of the in-line type transfers only one substrate and is deposited, thereby causing a problem of slow deposition rate.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a deposition system capable of increasing production while reducing footprint when depositing a plurality of deposition layers.
  • the present invention includes a plurality of deposition chambers sequentially connected to perform a deposition process, each of the deposition chambers is provided with a substrate transfer means for introducing or withdrawing the substrate to be deposited, Substrates are withdrawn from each deposition chamber and then another substrate is retracted to provide a deposition system wherein a plurality of substrates are deposited together by the deposition chambers.
  • the substrate is sequentially transferred to the deposition chambers, where the deposition process is performed, conveyed back to the first incoming deposition chamber and discharged.
  • the buffer chamber provided between each of the deposition chambers to replace the substrates in the adjacent deposition chamber with each other includes.
  • the buffer chamber can include at least two substrates loaded side by side, and includes substrate lifting means for raising or lowering the substrates to position them in and out of the deposition chamber.
  • each of the deposition chambers or within one of the adjacent deposition chambers the substrates are raised or lowered to position the substrate in and out of the deposition chamber so that the substrates are adjacent to each other.
  • Substrate lifting means are included to allow replacement. In this case, the buffer chamber may not be provided.
  • the substrate is selectively transferred to the deposition chambers to perform a deposition process, is provided adjacent to the deposition chambers, and can load at least two substrates side by side, and raise the substrates Or a lowering chamber which is lowered and positioned at a substrate entrance position of the deposition chamber.
  • a heating chamber for heating the substrate to remove moisture before the substrate is transferred to the deposition chambers.
  • a plasma processing chamber for performing a plasma treatment to remove the organic material of the substrate before the substrate is transferred to the deposition chambers.
  • a plasma processing chamber for performing a plasma treatment to remove the organic material of the substrate before the substrate is transferred to the deposition chambers.
  • the substrate is first introduced into the heating chamber and sequentially passed through the plasma processing chamber and the deposition chambers, and then conveyed back to the heating chamber and discharged.
  • the deposition chambers include a stainless film deposition chamber and a copper film deposition chamber, wherein the stainless film deposition chamber and the substrate inside the copper film deposition chamber are between the stainless film deposition chamber and the copper film deposition chamber. And a buffer chamber to replace each other, wherein the substrate is transferred to and processed in the order of the heating chamber, the plasma processing chamber, the stainless film deposition chamber, and the copper film deposition chamber, and after the copper film deposition in the copper film deposition chamber. And the stainless film deposition chamber, the plasma processing chamber, and the heating chamber are sequentially discharged.
  • the deposition chambers comprise a stainless film deposition chamber, a first copper film deposition chamber and a second copper film deposition chamber, between the stainless film deposition chamber and the first copper film deposition chamber and the first copper film deposition chamber.
  • the substrate is the heating chamber, the plasma processing chamber, the stainless film deposition chamber, the A first copper film deposition chamber, and a second copper film deposition chamber in order to be processed, and after the second copper film deposition in the second copper film deposition chamber, the first copper film deposition chamber, the stainless film deposition chamber, It is conveyed and discharged in order of the said plasma processing chamber and the said heating chamber.
  • the deposition chambers comprise a stainless film deposition chamber, a first copper film deposition chamber and a second copper film deposition chamber, between the stainless film deposition chamber and the first copper film deposition chamber and the first copper film deposition chamber.
  • the substrate is the heating chamber, the plasma processing chamber, the stainless film deposition chamber, the A first copper film deposition chamber, and a second copper film deposition chamber in order to be processed, and after the second copper film deposition in the second copper film deposition chamber, the first copper film deposition chamber, the stainless film deposition chamber,
  • the plasma processing chamber and the heating chamber are transported and discharged in order, and during the transfer, a second copper film is deposited in the second copper film deposition chamber.
  • a second stainless film is deposited in the stainless film deposition chamber.
  • the present invention further provides a substrate on which at least one stainless film and at least one copper film are deposited on the stainless film by using the deposition system.
  • the stainless film and the copper film functions as one electromagnetic shielding film.
  • the substrate is a film to which the sample to be deposited is attached (hereinafter referred to as 'sample attaching film'),
  • the deposition chamber has a sample holder for placing a predetermined coating layer on the sample by mounting the sample attachment film on the upper surface therein, installed in front of the deposition chamber, the sample attachment film is A weight which is placed on the upper edge of the sample attaching film before being introduced into the deposition chamber to press the sample attaching film toward the sample holder to be in close contact when the sample attaching film is placed on the sample holder.
  • weight stocker (bar) is loaded; includes.
  • the deposition chamber and the weight stocker, respectively, the sample attachment film is unidirectionally transferred from the weight stocker toward the deposition chamber, or from the weight stocker to the deposition chamber to deposit the coating layer. After the conveying means for conveying back to the weight stocker is provided.
  • the weight stocker is provided with a different weight of the sample attachment film is sequentially input to the deposition chamber, the weight mounting table for loading the weight to be placed on each sample attachment film side by side is provided .
  • the weight stocker is provided with a weight lifting means for raising and lowering the weight mounting table, the weight weight of the weight mounting table can be placed on the upper surface of the edge of the sample attachment film is injected.
  • the weight stocker has a vacuum chamber that accommodates the weight loading table and the weight lifting means therein and allow the weight to be placed on the upper surface of the edge of the sample attachment film in a vacuum atmosphere.
  • the internal temperature of the vacuum chamber is lower than the internal temperature of the deposition chamber.
  • the upper edge of the sample attachment film is attached to a frame-shaped support block for maintaining the shape of the sample attachment film, the weight is mounted on top of the support block.
  • the weight stocker is loaded with the weight on the upper or lower portion of the weight, the inner shield (Inner Shield) which is mounted on the upper edge of the sample attachment film with the weight more And the inner shield limits an area in which the deposition material scatters within the deposition chamber.
  • the inner shield Inner Shield
  • the sample holder is a top surface is curved.
  • the upper surface area of the sample holder is smaller than the area of the sample attachment film
  • the weight is spaced apart from the edge of the sample holder to press the sample attachment film from the top to the lower by the sample attachment film Make sure that it rests against the top of the sample holder.
  • the coating layer is formed by laminating a copper film or a stainless film or at least one copper film and a stainless film.
  • the coating layer serves as an electromagnetic shielding film.
  • the present invention has the following excellent effects.
  • the deposition can be carried out by reciprocating the plurality of deposition chambers in an inter-back type, even if a plurality of deposition layers are deposited on the substrate, the number of deposition chambers can be minimized. This has the advantage of reducing printing.
  • the substrate can be continuously introduced into the deposition chamber can be discharged in the inter-bag type, there is an advantage that can increase the yield.
  • the deposition system of the present invention by depositing a weight that adheres the film on the sample holder on the weight stocker outside the deposition chamber to lower the temperature of the weight to prevent damage or deformation of the film is deposited on the sample There is an advantage that can prevent the coating irregularity and coating defects.
  • the deposition system of the present invention when performing the deposition in the in-line method or inter-back method, it is possible to automatically lift the weight on the film one by one, there is an advantage that can improve the process automation and process speed.
  • the deposition system of the present invention it is possible to effectively remove the heat generated from the device by maximizing the adhesion between the device and the sample holder, or the device can be heated effectively in reverse, there is an advantage that can greatly improve the quality of the coating layer.
  • FIG. 1 shows a deposition system according to a first embodiment of the invention
  • FIG. 3 shows a deposition system according to a third embodiment of the present invention
  • FIG. 5 shows a deposition system according to a fifth embodiment of the present invention
  • FIG. 6 shows a deposition system according to a sixth embodiment of the present invention
  • FIG. 7 is a view for explaining a weight and a support block of a deposition system according to a sixth embodiment of the present invention.
  • FIG. 8 is a view for explaining a sample holder of the deposition system according to a sixth embodiment of the present invention.
  • FIG. 9 is a view showing another example of the sample holder of the deposition system according to the sixth embodiment of the present invention.
  • FIG. 11 is a view for explaining the coupling relationship between the inner shield, the weight stocker and the support block of the deposition system according to the seventh embodiment of the present invention.
  • first buffer chamber 210 elevating chamber
  • heating chamber 320 plasma processing chamber
  • weight stocker 611 weight
  • the deposition system 100 illustrates a deposition system according to a first embodiment of the present invention.
  • the deposition system 100 according to the first embodiment of the present invention includes a plurality of deposition chambers 110 and 120 sequentially connected to each other to perform a deposition process. It is made to include.
  • substrate transfer means 111 and 121 are provided in the deposition chambers 110 and 120 to introduce or withdraw the substrates 10, 11 and 12, respectively.
  • the substrate transport means (111, 121) may be provided with a roller or a conveyor.
  • targets 112 and 122 coated with a deposition material are provided inside the deposition chambers 110 and 120, and a thin film is deposited by physical vapor deposition by evaporation or deposition of the deposition material coated on the targets 112 and 122. Can be.
  • the targets 112 and 122 may be replaced with target electrodes for performing a chemical vapor deposition method.
  • the deposition material may not be coated on the outer surface of the electrode, and the deposition material may be formed by chemical reaction of the deposition gas introduced into the chamber. Deposited and coated.
  • the deposition chambers 110 and 120 may perform a deposition process by physical vapor deposition or chemical vapor deposition, respectively.
  • the deposition chambers 110 and 120 may be chambers that perform various known deposition processes such as ion plating deposition, and there is no particular limitation on the deposition method.
  • each of the deposition chambers 110 and 120 performs a deposition process after the substrate is introduced and the deposition process is performed, and then the substrate is discharged, and then another substrate is introduced.
  • the deposition chambers 110 and 120 may simultaneously perform deposition on different substrates 11 and 12.
  • the substrates 10, 11, and 12 are sequentially transferred to the deposition chambers 110 and 120, and a deposition process is performed, and the substrates are first transferred back to the first deposition chamber 110 into which the substrate is first introduced. It is discharged from the chamber 110.
  • the deposition system 100 according to the first embodiment of the present invention is transferred to an inter-back type that is conveyed and exited again at the position where the substrate is inserted, and at least once in the deposition chambers 110 and 120. Reciprocating transfer is carried out for deposition.
  • the deposition system 100 may further include a buffer chamber 130 between the deposition chambers 110 and 120 to transfer the substrate to the interback type.
  • the buffer chamber 130 functions to replace the substrates of the two adjacent deposition chambers 110 and 120 with each other, and at least two substrates may be spaced apart from each other in parallel to each other, and the substrate may be moved up and down.
  • Substrate lifting means 130 that can vary the loading position.
  • the substrate lifting means 130 includes at least two substrate transfer means (131a, 131b) capable of lifting up and down spaced parallel to each other and capable of transferring the substrate in the forward (a) or reverse (b). .
  • the substrate 11 in which deposition is completed in the first deposition chamber 110 and the substrate 12 in which deposition is completed in the second deposition chamber 120 are respectively performed.
  • the buffer is introduced into the buffer chamber 130 and loaded into different substrate transfer means 131a and 131b.
  • the substrate 11 having completed deposition in the first deposition chamber 110 is loaded on the first substrate transfer means 131a among the substrate transfer means 131a and 131b, and the substrate transfer means 131a and 131b. ) Is raised or lowered so that the substrate 12 on which deposition is completed in the second deposition chamber 120 may be discharged and loaded into the second substrate transfer means 131b.
  • the substrate 12 in which deposition is completed in the second deposition chamber 120 is loaded in the first substrate transfer means 131a
  • the substrate 11 in which deposition is completed in the first deposition chamber 110 is completed.
  • the second substrate transfer means (131b) can be loaded on the second substrate transfer means (131b).
  • the substrate transfer means 131a or 131b is moved up or down to place the substrate 11 on which deposition is completed in the first deposition chamber 110 at the entrance of the second deposition chamber 120, and then 2 is deposited into the deposition chamber 120, and again, the substrate 12 is completed in the second deposition chamber 120 is lifted or lowered to position the entrance of the first deposition chamber 110 to the first deposition To the chamber 120.
  • the substrate 12 in which deposition is completed in the second deposition chamber 120 is first introduced into the first deposition chamber 110, and then the substrate in which deposition is completed in the first deposition chamber 110 ( 11 may be introduced into the second deposition chamber 120.
  • the first deposition layer is deposited in the first deposition chamber 110, the second deposition layer is deposited in the second deposition chamber 120, and then the first deposition chamber 110 is formed. Since only two deposition chambers are required when re-depositing the same third deposition layer as the first deposition layer, the conventional inline deposition method can reduce the footprint compared to three deposition chambers. There is this.
  • FIG. 2 shows a deposition system according to a second embodiment of the present invention.
  • the deposition system 200 according to the second embodiment of the present invention includes a plurality of deposition chambers 110 and 120 and the deposition chambers (for example, a deposition process). Selective positioning of the substrate 10 at the entrance and exit of the 110, 120, the substrate is introduced into each of the deposition chamber (110, 120), or includes a lifting chamber 210 for loading the substrate discharged from the deposition chamber.
  • deposition chambers 110 and 120 are substantially the same as the deposition chambers 110 and 120 shown in the first embodiment of the present invention, description thereof is omitted.
  • FIG. 2 illustrates that the deposition chambers 110 and 120 are stacked in a vertical direction
  • the deposition chambers 110 and 120 may be disposed in a horizontal direction.
  • the inner space of the elevating chamber 210 is in communication with each entrance and exit of the deposition chambers (110, 120).
  • the entrances and exits of the deposition chambers 110 and 120 may be opened to the interior space of the elevation chamber 210.
  • the elevating chamber 210 includes a substrate elevating means 211 therein, and the substrate elevating means 211 includes at least two substrate transport means (211a, 211b) are provided side by side spaced apart from each other. .
  • the substrate transfer means (211a, 211b) can be moved up and down, the substrate 10 is introduced into each of the deposition chambers (110, 120), or the substrate 10 discharged from the deposition chambers (110, 120) Can be loaded and loaded.
  • the elevating chamber 210 has the same function as the buffer chamber 130 of the deposition system 100 according to the first embodiment of the present invention and is provided in the form of a cluster rather than an inline form. There is a difference.
  • a deposition system 300 according to a third embodiment of the present invention includes a plurality of deposition chambers 110 and 120 and between the deposition chambers 110 and 120. And a heating chamber 310 provided at a front end of the buffer chamber 130 and the deposition chambers 110 and 120 to remove moisture by heating the substrate 10 before the deposition layer is deposited on the substrate 10.
  • the heating chamber 310 is further added as compared with the deposition system 100 according to the first embodiment of the present invention.
  • the inside of the heating chamber 310 is provided with a substrate lifting means 311 for transferring the substrate 10 in an interback manner, the substrate lifting means 311 are at least two spaced apart from each other side by side Two substrate transfer means (311a, 311b).
  • the substrate elevating means 311 performs substantially the same function as the substrate elevating means 131 of the buffer chamber 130 of the deposition system 100 according to the first embodiment of the present invention, a detailed description thereof will be omitted. do.
  • a separate buffer chamber may be provided between the heating chamber 310 and the first deposition chamber 110 to lift and replace the substrate.
  • one substrate may be provided inside the heating chamber 310. Only conveying means may be provided.
  • the deposition system 300 may further include a plasma processing chamber 320 between the heating chamber 310 and the first deposition chamber 110.
  • the plasma processing chamber 320 serves to remove organic substances, impurities, and the like of the substrate 10 through plasma processing.
  • a substrate lifting means 321 may be provided in the plasma processing chamber 320 to transfer the substrate 10 in an interback manner, and the substrate lifting means 321 may be provided to be spaced apart from each other. At least two substrate transfer means 321a, 321b.
  • a separate buffer chamber may be provided between the plasma processing chamber 320 and the first deposition chamber 110 and between the plasma processing chamber 320 and the heating chamber 310, in this case,
  • the substrate elevating means 321 is not provided inside the plasma processing chamber 320, and only one substrate conveying means may be provided.
  • the first deposition chamber 110 may be provided as a stainless film deposition chamber
  • the second deposition chamber 120 may be provided as a copper film deposition chamber.
  • the substrate 10 is transferred to the heating chamber 310, the plasma processing chamber 320, the stainless film deposition chamber 110, and the copper film deposition chamber 120, and the stainless film and the copper film are sequentially.
  • the stainless film deposition chamber 110, the plasma processing chamber 320, and the heating chamber 310 are sequentially discharged.
  • the stainless film and the copper film may function as one electromagnetic shield (EMI) shielding film.
  • EMI electromagnetic shield
  • the deposition system 400 includes a heating chamber 310, a plasma processing chamber 320, and a stainless film deposition chamber.
  • the 110, the first buffer chamber 130, the first copper film deposition chamber 120, the second buffer chamber 420, and the second copper film deposition chamber 410 are sequentially connected.
  • the deposition system 400 according to the fourth embodiment of the present invention is one buffer chamber 420 and one copper in comparison with the deposition system 300 according to the third embodiment of the present invention illustrated in FIG. 3.
  • the film deposition chamber 410 is further added.
  • the substrate 10 may include the heating chamber 130, the plasma processing chamber 320, the stainless film deposition chamber 110, the first buffer chamber 130, and the first copper film deposition chamber 120. ),
  • the second buffer chamber 420, and the second copper film deposition chamber 410 are transferred and processed in order, and after the second copper film deposition in the second copper film deposition chamber 410, the second buffer.
  • a stainless film, a first copper film, and a second copper film are sequentially stacked on the upper surface of the substrate 10, which functions as one electromagnetic shielding film.
  • one layer of copper film may be further deposited in the first copper film deposition chamber 120, and one layer of stainless film may be deposited in the stainless film deposition chamber 110. May be further deposited.
  • a stainless film, a first copper film, a second copper film, a first copper film, and a stainless film are sequentially stacked on the substrate 10, which may function as one electromagnetic shielding film.
  • the electromagnetic shielding film may be deposited in several layers according to the allowable deposition temperature of the thickness substrate of the deposition layer.
  • FIG. 5 shows a deposition system according to a fifth embodiment of the present invention, in which the deposition system 500 according to the fifth embodiment of the present invention is adjacent to the deposition system 100 according to the first embodiment of the present invention.
  • a separate buffer chamber 130 is not provided to replace the substrates 11 and 12 between the deposition chambers 110 and 120, and the substrate elevates to the deposition chamber 110 of any one of the adjacent deposition chambers 110 and 120. Means 130 are provided.
  • base material lifting means 130 is substantially the same as the base material lifting means 130 of the buffer chamber 130 shown in FIG.
  • the substrate lifting means 130 may be provided in each of the adjacent deposition chambers (110, 120).
  • the deposition system 500 according to the fifth embodiment of the present invention can exclude the configuration of the buffer chamber 130 as compared with the deposition system 100 according to the first embodiment of the present invention, the footprint is further increased. There is an advantage to reduce.
  • FIG. 6 is a view showing a deposition system according to a sixth embodiment of the present invention
  • Figure 7 is a view for explaining a weight and a support block of the deposition system according to a sixth embodiment of the present invention
  • Figure 8 is a view of the present invention 9 is a view illustrating a sample holder of a deposition system according to a sixth embodiment
  • FIG. 9 is a view illustrating another example of the sample holder of the deposition system according to a sixth embodiment of the present invention.
  • the deposition system according to the sixth embodiment of the present invention further includes a weight stocker 610 in addition to the deposition chamber 100 in comparison with the deposition system 100 according to the first embodiment of the present invention. It is done by
  • the deposition chamber 100 is provided with a sample holder 123 that can mount the sample 20 in a position opposite to the target 122.
  • the substrate to be deposited (coated) in the deposition system according to the sixth embodiment of the present invention is a sample 20 such as an electric and electronic device.
  • the transfer means 121 for placing the sample 20 introduced into the deposition chamber 100 in the upper portion of the sample holder 123, or for transporting the sample 20 to the outside after the deposition process is finished. Hereinafter referred to as 'first transfer means', corresponding to the substrate transfer means 111 of FIG. 1).
  • the first transfer means 121 may transfer the sample 20 in the opposite direction to which the sample 20 is inserted (unidirectional transfer), and move the sample 20 in the direction in which the sample 20 is introduced. Can be conveyed (bidirectional feed).
  • the deposition chamber 100 may transfer the sample 20 in one direction and perform a deposition process in an in-line manner, transfer the sample 20 in both directions, and interback.
  • the deposition process may be performed in a -back manner.
  • a plurality of samples 20 are attached to one film 30 to be injected into the deposition chamber 100, and the sample 20 is attached to the sample holder 123 through the film 30. Is mounted.
  • the film 30 may be a polyimide film (PI film) as an adhesive film.
  • PI film polyimide film
  • sample holder 123 is a plate for positioning the film 30 (hereinafter, referred to as a “sample attaching film”) to which the sample 20 is attached in the deposition chamber 100. It may be fixed or reciprocated and may pass through the deposition chamber 100.
  • the sample holder 123 may allow the sample 10 to be deposited in a batch type within the deposition chamber 100, and the deposition may be performed in an in-line type. Can be performed.
  • the sample holder 123 has a curved surface having a predetermined curvature R on its upper surface, and has a flow passage 123b through which a cooling fluid or a heating fluid flows.
  • the sample holder 123 functions to position the sample 10 at a predetermined deposition position in the deposition chamber 100 and to control the temperature of the sample 10.
  • a cooling fluid flows through the flow path 123b to cool the sample 10, but a heating fluid may flow to heat the sample 10 to a predetermined deposition temperature in an initial deposition step.
  • the sample holder 123 may function as a cooling chuck or a heating chuck.
  • the upper surface of the sample holder 123 may be a surface of which at least a portion is a curved surface, for example, the vertical cross-section may be a surface of the top two corners rounded shape.
  • the vertical cross section of the sample holder 123 may be a surface including a bent line, for example, may be a polygon such as a triangle or a trapezoid.
  • the upper surface of the sample holder 123 is preferably a curved surface.
  • the upper surface of the sample holder 123 should be entirely covered by the sample attachment film 30, for this purpose, the width (w1) and the length (w2) of the sample holder 110 is the sample attachment film It should be less than the width and length of (30).
  • the upper surface area of the sample holder 123 should be smaller than the area of the sample attachment film 30.
  • a plurality of grooves G may be formed on the upper surface of the sample holder 123 at a predetermined depth.
  • grooves G may be connected to each other to communicate with each other and may be formed in a lattice shape as shown in FIG. 8.
  • the shape of the grooves (G) is not special control, it is sufficient if it is evenly spread throughout the upper surface of the sample holder 123, and communicate with each other.
  • an exhaust line may be formed in the sample holder 123 to exhaust the internal air of the groove G to the outside, and the exhaust line may be attached to the sample on the sample holder 123.
  • the film 30 When the film 30 is mounted, it exhausts the air of the groove (G) so that the sample attached film 30 is in close contact with the sample holder 123 serves to increase the thermal conductivity efficiency.
  • a buffer pad for adhesion of the sample attaching film 30 may be coated on the top surface of the sample holder 123, and the buffer pad may be a silicon pad.
  • the buffer pad may function as an insulating layer that insulates the sample 20 and the sample holder 123.
  • the upper surface 123a of the sample holder 123 is illustrated in FIG. 8 as a rectangle, the sample holder 123 may have a circular upper surface 123c as shown in FIG. 9.
  • the weight stocker 610 is installed at the front end of the deposition chamber 100 and first passes before the sample attachment film 30 is introduced into the deposition chamber 100.
  • the weight stocker 610 is in contact with the deposition chamber 100, but may be spaced a predetermined distance apart.
  • the inner spaces are in contact with each other with a door that communicates with each other.
  • the weight stocker 610 loads the weight 611, and raises the weight 611 on the upper edge of the sample attachment film 30.
  • the weight 611 is raised to press the upper edge of the sample attachment film 30 from the upper side to the lower direction, it can be produced in a frame shape.
  • weight 611 is shown as a rectangular frame in FIG. 7, when the sample attachment film 30 is circular, it may be manufactured as a ring-shaped frame.
  • the size of the weight 611 is also limited. In order to have a desired weight with a limited size, a metal of a specific gravity material must be used.
  • the weight 611 may be made of copper and may be made of stainless steel.
  • a frame-shaped support block 611a for maintaining the shape of the sample attaching film 30 may be attached to the upper edge of the sample attaching film 30, in this case, the weight 611. Is mounted on the upper surface of the support block 611a.
  • the weight stocker 610 may be provided with a weight mounting table 613 that can load a plurality of weights 611 in parallel with each other, the weight mounting table 613 is loaded weight
  • the weights 611 may be clamped or unclamped one by one.
  • weight stocker 610 raises and lowers the weight loading table 613 and moves the weight 611 to a position where it can be placed on the edge of the sample attachment film 30 to be injected.
  • Weight lifting means 614 may be further provided.
  • the sample attachment film 30 is sequentially added, the weight 611 up and down each time the sample attachment film 30 is injected. While moving to put the sample attached film 30 one by one.
  • the weight stocker 610 transfer means 612 hereinafter referred to as the "second transfer means” for transferring to the predetermined position for raising the weight 611, when the sample attachment film 30 is input
  • a vacuum chamber 615 for accommodating the weight loading table 613, the weight lifting means 614, and the second transfer means 612 therein.
  • the vacuum chamber 615 allows the weight 611 to be mounted on the sample attaching film 30 in a vacuum atmosphere, which is between or between the weight 611 and the sample attaching film 30. It prevents the remaining of air between the weight 611 and the support block 611a serves to increase the adhesion.
  • the internal temperature of the vacuum chamber 615 is lower than the internal temperature of the deposition chamber 100, it may be extremely room temperature.
  • the shape of the sample attaching film 30 may be prevented from being deformed or lost.
  • the sample 20 is attached to the film 30 and introduced into the vacuum chamber 615, the The second transfer means 612 transfers the sample attachment film 30 to a predetermined weight 611 loading position.
  • the weight lifting means 614 raises and lowers the weight mounting table 613 to raise the weight 611 on the upper edge of the sample attachment film 30.
  • the second transfer means 612 transfers the sample attaching film 30 on which the weight 611 is mounted, into the deposition chamber 100, and removes the inside of the deposition chamber 100. 1
  • the conveying means 121 receives the sample attaching film 30 and places it in a predetermined position.
  • the sample holder 123 is raised or the sample attachment film 30 is lowered so that the sample attachment film 30 is placed on the upper surface of the sample holder 123, and the weight 611 Presses the sample attaching film 30 toward the sample holder 123 so that the sample attaching film 30 is in close contact with the sample holder 123.
  • power is applied to the target 122, and the deposition material 122a is scattered to form a coating layer on the sample 20.
  • the sample attaching film 30 moves the sample attaching film 30 outside or adjacent to the deposition chamber 100 in an inline or inter-back manner by the first transfer means 121. Discharge to another deposition chamber.
  • the coating layer may be a copper layer or a stainless layer or a coating layer in which at least one copper layer and a stainless layer are stacked on each other, and the coating layer may function as an electromagnetic shielding layer of the sample.
  • the deposition system according to an embodiment of the present invention may be a deposition system capable of performing an electromagnetic shielding coating on a sample which is an electronic device.
  • Figure 11 is a view for explaining the coupling relationship between the inner shield, weight stocker and support block of the deposition system according to a seventh embodiment of the present invention to be.
  • the deposition system 700 according to the seventh embodiment of the present invention has a weight on the weight stocker 610 in comparison with the deposition system 600 according to the sixth embodiment of the present invention.
  • an inner shield 616 is further loaded.
  • the inner shield 615 is shown to be mounted on the upper portion of the weight 611, but may be located below the weight 611, in this case, the weight 611 is The upper portion of the inner shield 616 is mounted and loaded.
  • the weight 611 is mounted on the support block 611a of the sample attachment film 30 to which the sample 20 is attached, as shown in FIG. 11, and the inner shield 615 is attached to the weight. 611 is put on.
  • weight 611 and the inner shield 615 may be manufactured integrally with each other, and may be manufactured and fastened to each other to be coupled to each other, or may be simply brought up in contact with each other.
  • the inner shield 615 when the inner shield 615 is inserted into the deposition chamber 100, the inner shield 615 is positioned between the target 122 and the sample holder 123, and between the target 122 and the sample holder 123. A portion of the area is blocked to limit the scattering area of the deposition material scattered from the target 122.
  • an open opening region 615a is present at a central portion of the inner shield 615, and a blind region for preventing deposition material from falling down around the opening region 615a. 615b is located.
  • the deposition material scattered from the target 122 may fall into the sample 20 through the opening region 615a, and the deposition material may not fall below the shielding region 615b and the shielding region ( It is deposited on the upper surface of 615b).
  • the weight lifting means 614 raises and lowers the weight loading table 613 to the weight edge 611 and the inner shield 616 on the upper edge of the sample attaching film 30. ) Together.
  • the second transfer means 612 transfers the sample attaching film 30 on which the weight 611 and the inner shield 616 are mounted, into the deposition chamber 100, and the deposition.
  • the first transfer means 121 in the chamber 100 receives the sample attachment film 30 and places it in a predetermined position.
  • the sample holder 123 is raised or the sample attachment film 30 is lowered so that the sample attachment film 30 is placed on the upper surface of the sample holder 123, and the weight 611 is The sample attaching film 20 is pressed toward the sample holder 123 so that the sample attaching film 20 is in close contact with the sample holder 123.
  • the inner shield 615 is divided into a deposition space 100a which is an upper space in which the target 122 is located and a non deposition space 100b which is a space in which the sample holder 123 is located.
  • the support block 611a and the weight 611 contact each other, and the weight 611 and the inner shield 616 contact each other, the support block 611a and the weight 611 contact each other.
  • the deposition material 122a is deposited only on the inner shield 616 and the film 30, and does not flow into the non-deposition space 100b.
  • a deposition system according to embodiments of the present invention can be used to coat an electromagnetic shielding layer on the outer surface of a sample, such as an electrical and electronic device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 증착 시스템에 관한 것으로, 보다 구체적으로는 복수의 증착 챔버를 이용하여 인터백(inter-back) 타입으로 증착을 수행할 때, 기재를 연속적으로 투입하고 배출할 수 있으므로 풋 프린트(foot print)를 줄여 생산성을 향상시킬 수 있는 증착 시스템에 관한 것이다.

Description

풋 프린트를 줄일 수 있는 인터백 타입의 증착 시스템
본 발명은 증착 시스템에 관한 것으로, 보다 구체적으로는 복수의 증착 챔버를 이용하여 인터백(inter-back) 타입으로 증착을 수행할 때, 기재를 연속적으로 투입하고 배출할 수 있으므로 풋 프린트(foot print)를 줄여 생산성을 향상시킬 수 있는 증착 시스템에 관한 것이다.
증착 시스템은 기재의 표면에 박막을 코팅하기 위한 시스템으로 일반적으로 진공속에서 이루어지므로 진공 증착 시스템이라고도 한다.
증착 방법은 크게 진공 속에서 타겟 물질을 비산시켜 기재에 표면에 퇴적함으로써 박막을 형성하는 물리 증착법(PVD:physical vapor deposition)과 원료가스를 열적 또는 전기적으로 여기시켜 반응물질을 기재상에 퇴적시켜 박막을 형성하는 화학 증착법(CVD: chemical vapor deposition)으로 구분된다.
한편, 증착 시스템은 진공 챔버 내부에 기재를 고정시켜 증착하는 배치 타입(Batch Type)과 기재를 복수의 증착 챔버 내부로 이송시켜가며 복수 층의 박막이 적층되게 하는 인라인 타입(Inline Type)으로 구성할 수 있다.
또한, 인라인 타입의 증착 시스템은 복수의 진공 챔버를 라인 상에 서로 인접하여 위치시키고 기재를 최초 진공 챔버에서 마지막 진공 챔버까지 순차적으로 이송시키며 증착을 수행하므로 기재상에 복수의 박막을 적층하는데 효율이다.
그러나 기재를 어느 한 방향으로만 이동시킬 수 있으므로, 동일한 재질의 박막을 복수 층으로 증착하기 위해서는 동일한 증착 공정을 수행하는 진공 챔버가 추가로 필요하며 이는 시스템 전체의 크기(풋 프린트:footprint)가 증가하는 문제점을 초래한다.
또한, 인라인 타입의 증착 시스템은 하나의 기재만을 이송하며 증착하므로 증착속도가 느린 문제점이 있다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로 본 발명의 목적은 복수의 증착 층을 증착할 때, 풋 프린트를 줄이면서도 생산량은 증가시킬 수 있는 증착 시스템을 제공하는 것이다.
상기의 목적을 달성하기 위하여 본 발명은 순차로 연결되어 증착 공정을 수행하는 복수 개의 증착 챔버를 포함하고, 상기 각 증착 챔버들 내부에는 증착 대상인 기재를 인입하거나 인출하기 위한 기재 이송 수단이 구비되며, 상기 각 증착 챔버에서 기재가 인출되면 이어서 다른 기재가 인입되어 복수의 기재들이 상기 증착 챔버들에 의해 함께 증착되는 것을 특징으로 하는 증착 시스템을 제공한다.
바람직한 실시예에 있어서, 상기 기재는 상기 증착 챔버들에 순차로 이송되면서 증착 공정이 수행되고, 최초 인입된 제1 증착 챔버로 다시 반송되어 배출된다.
바람직한 실시예에 있어서, 상기 증착 챔버들의 각 사이에 구비되어 이웃한 증착 챔버 내부의 기재를 서로 교체해주는 버퍼 챔버;를 포함한다.
바람직한 실시예에 있어서, 상기 버퍼 챔버는 적어도 두 개의 기재를 나란하게 적재할 수 있고, 상기 기재들을 상승 또는 하강시켜 증착 챔버의 기재 출입위치에 위치시키는 기재 승강 수단을 포함한다.
바람직한 실시예에 있어서, 상기 증착 챔버들 각각 또는 이웃한 증착 챔버들 중 어느 하나의 증착 챔버 내부에는 상기 기재들을 상승 또는 하강시켜 증착 챔버의 기재 출입위치에 위치시켜 이웃한 증착 챔버들 간에 기재를 서로 교체할 수 있게 하는 기재 승강 수단이 포함된다. 이 경우 상기 버퍼 챔버가 구비되지 않을 수 있다.
바람직한 실시예에 있어서, 상기 기재는 상기 증착 챔버들에 선택적으로 이송되어 증착 공정이 수행되고, 상기 증착 챔버들에 인접하여 구비되며, 적어도 두 개의 기재를 나란하게 적재할 수 있고, 상기 기재들을 상승 또는 하강시켜 증착 챔버의 기재 출입위치에 위치시키는 승강 챔버;를 포함한다.
바람직한 실시예에 있어서, 상기 증착 챔버들로 기재가 이송되기 전에 기재를 가열하여 수분을 제거하는 가열 챔버;를 더 포함한다.
바람직한 실시예에 있어서, 상기 증착 챔버들로 기재가 이송되기 전에 기재의 유기물을 제거하기 위해 플라즈마 처리를 수행하는 플라즈마 처리 챔버;를 더 포함한다.
바람직한 실시예에 있어서, 상기 증착 챔버들로 기재가 이송되기 전에 기재의 유기물을 제거하기 위해 플라즈마 처리를 수행하는 플라즈마 처리 챔버;를 더 포함한다.
바람직한 실시예에 있어서, 상기 기재는 상기 가열 챔버로 최초 인입되어 상기 플라즈마 처리 챔버 및 상기 증착 챔버들을 순차적으로 거친 후, 다시 상기 가열 챔버로 반송되어 배출된다.
바람직한 실시예에 있어서, 상기 증착 챔버들은 스테인레스막 증착 챔버와 구리막 증착 챔버를 포함하고, 상기 스테인레스막 증착 챔버와 상기 구리막 증착 챔버 사이에는 상기 스테인레스막 증착 챔버와 상기 구리막 증착 챔버 내부의 기재를 서로 교체해주는 버퍼 챔버가 구비되며, 상기 기재는 상기 가열 챔버, 상기 플라즈마 처리 챔버, 상기 스테인레스막 증착 챔버, 상기 구리막 증착 챔버 순으로 이송되며 처리되고, 상기 구리막 증착 챔버에서 구리막 증착 후에, 상기 스테인레스막 증착 챔버, 상기 플라즈마 처리 챔버, 상기 가열 챔버 순으로 반송되어 배출된다.
바람직한 실시예에 있어서, 상기 증착 챔버들은 스테인레스막 증착 챔버, 제1 구리막 증착 챔버 및 제2 구리막 증착 챔버를 포함하고, 상기 스테인레스막 증착 챔버와 상기 제1 구리막 증착 챔버 사이 및 상기 제1 구리막 증착 챔버와 상기 제2 구리막 증착 챔버 사이에는 이웃한 증착 챔버 내부의 기재를 서로 교체해주는 버퍼 챔버가 구비되며, 상기 기재는 상기 가열 챔버, 상기 플라즈마 처리 챔버, 상기 스테인레스막 증착 챔버, 상기 제1 구리막 증착 챔버, 상기 제2 구리막 증착 챔버 순으로 이송되며 처리되고, 상기 제2 구리막 증착 챔버에서 제2 구리막 증착 후에, 상기 제1 구리막 증착 챔버, 상기 스테인레스막 증착 챔버, 상기 플라즈마 처리 챔버, 상기 가열 챔버 순으로 반송되어 배출된다.
바람직한 실시예에 있어서, 상기 증착 챔버들은 스테인레스막 증착 챔버, 제1 구리막 증착 챔버 및 제2 구리막 증착 챔버를 포함하고, 상기 스테인레스막 증착 챔버와 상기 제1 구리막 증착 챔버 사이 및 상기 제1 구리막 증착 챔버와 상기 제2 구리막 증착 챔버 사이에는 이웃한 증착 챔버 내부의 기재를 서로 교체해주는 버퍼 챔버가 구비되며, 상기 기재는 상기 가열 챔버, 상기 플라즈마 처리 챔버, 상기 스테인레스막 증착 챔버, 상기 제1 구리막 증착 챔버, 상기 제2 구리막 증착 챔버 순으로 이송되며 처리되고, 상기 제2 구리막 증착 챔버에서 제2 구리막 증착 후에, 상기 제1 구리막 증착 챔버, 상기 스테인레스막 증착 챔버, 상기 플라즈마 처리 챔버, 상기 가열 챔버 순으로 반송되어 배출되며, 반송시 상기 제2 구리막 증착 챔버에서 제2 구리막이 증착되고, 상기 스테인레스막 증착 챔버에서 제2 스테인레스막이 증착된다.
또한, 본 발명은 상기 증착 시스템을 이용하여 적어도 하나의 스테인레스막과 상기 스테인레스막 상부에 적어도 하나의 구리막이 증착된 기재를 더 제공한다.
바람직한 실시예에 있어서, 상기 스테인레스막과 상기 구리막은 하나의 전자파 차폐막으로 기능한다.
상기 기재는 증착 대상인 샘플이 부착된 필름(이하, '샘플 부착 필름'이라 함)이고,
바람직한 실시예에 있어서, 상기 증착 챔버는 내부에 상면에 상기 샘플 부착 필름을 거치하여 상기 샘플에 소정의 코팅층이 증착되게 하는 샘플 거치대를 갖고, 상기 증착 챔버들의 전단에 설치되고, 상기 샘플 부착 필름이 상기 증착 챔버로 투입되기 전에 상기 샘플 부착 필름의 상면 가장자리에 올려져 상기 샘플 부착 필름이 상기 샘플 거치대상에 올려졌을 때, 상기 샘플 부착 필름을 상기 샘플 거치대를 향해 가압하여 밀착되게 하는 무게추(weight bar)가 적재된 무게추 스토커(stocker);를 포함한다.
바람직한 실시예에 있어서, 상기 증착 챔버와 상기 무게추 스토커에는 각각 상기 샘플 부착 필름을 상기 무게추 스토커에서 상기 증착 챔버 방향으로 단방향 이송하거나, 상기 무게추 스토커에서 상기 증착 챔버로 이송하여 상기 코팅층의 증착 후 다시 상기 무게추 스토커로 반송하는 이송 수단이 구비된다.
바람직한 실시예에 있어서, 상기 무게추 스토커에는 서로 다른 샘플 부착 필름이 순차적으로 투입되어 상기 증착 챔버로 이송되며, 각 샘플 부착 필름에 올려질 무게추를 나란하게 적재할 수 있는 무게추 적재대가 구비된다.
바람직한 실시예에 있어서, 상기 무게추 스토커에는 상기 무게추 적재대를 승하강하여, 상기 무게추 적재대의 무게추를 투입되는 샘플 부착 필름의 가장자리 상면에 올려놓을 수 있는 무게추 승하강수단이 구비된다.
바람직한 실시예에 있어서, 상기 무게추 스토커는 내부에 상기 무게추 적재대와 상기 무게추 승하강수단을 내부에 수용하고 진공 분위기에서 상기 무게추가 상기 샘플 부착 필름의 가장자리 상면에 올려지게 하는 진공 챔버를 포함한다.
바람직한 실시예에 있어서, 상기 진공 챔버의 내부온도는 상기 증착 챔버의 내부온도보다 낮다.
바람직한 실시예에 있어서, 상기 샘플 부착 필름의 상면 가장자리에는 상기 샘플 부착 필름의 형태를 유지하기 위한 프레임 형상의 지지 블럭이 부착되고, 상기 무게추는 상기 지지 블럭의 상부에 올려진다.
바람직한 실시예에 있어서, 상기 무게추 스토커에는 상기 무게추의 상부 또는 하부에 상기 무게추와 함께 적재되며, 상기 무게추와 함께 상기 샘플 부착 필름의 상면 가장자리에 올려지는 이너 쉴드(Inner Shield)가 더 구비되고, 상기 이너 쉴드는 상기 증착 챔버 내부에서 증착 물질이 비산하는 영역을 제한한다.
바람직한 실시예에 있어서, 상기 샘플 거치대는 상면이 곡면이다.
바람직한 실시예에 있어서, 상기 샘플 거치대의 상면 면적은 상기 샘플 부착 필름의 면적보다 작고, 상기 무게추는 상기 샘플 거치대의 모서리에서 이격되어 상기 샘플 부착 필름을 상부에서 하부로 가압함으로써 상기 샘플 부착 필름이 상기 샘플 거치대의 상면에 밀착되게 한다.
바람직한 실시예에 있어서, 상기 코팅층은 구리막이나 스테인레스막 또는 적어도 하나의 구리막과 스테인레스막이 적층되어 형성된다.
바람직한 실시예에 있어서, 상기 코팅층은 전자파 차폐막으로 기능한다.
본 발명은 다음과 같은 우수한 효과를 가진다.
본 발명의 증착 시스템에 의하면, 복수의 증착 챔버를 인터백(inter-back) 타입으로 왕복 이송하며 증착을 수행할 수 있으므로 기재에 복수의 증착 층을 증착하더라도 증착 챔버의 개수는 최소화할 수 있어 풋 프린트를 줄일 수 있는 장점이 있다.
또한, 본 발명의 증착 시스템에 의하면, 증착 챔버에 연속적으로 기재를 투입하여 인터백 타입으로 배출할 수 있으므로 생산량을 증가시킬 수 있는 장점이 있다.
또한, 본 발명의 증착 시스템에 의하면, 필름을 샘플 거치대 상에 밀착시키는 무게추를 증착 챔버 외부의 무게추 스토커에 적재함으로써 무게추의 온도를 하강시켜 필름의 손상이나 변형을 방지함으로써 샘플에 증착되는 코팅층의 불균일 및 코팅불량을 방지할 수 있는 장점이 있다.
또한, 본 발명의 증착 시스템에 의하면, 인라인 방식이나 인터백 방식으로 증착을 수행할 때, 필름에 무게추를 하나씩 자동으로 올려줄 수 있으므로 공정의 자동화 및 공정 속도를 향상시킬 수 있는 장점이 있다.
또한, 본 발명의 증착 시스템에 의하면, 소자와 샘플 거치대 간의 밀착력을 극대화하여 소자에서 발생하는 열을 효과적으로 제거하거나 역으로 소자를 효과적으로 가열할 수 있으므로 코팅층의 품질을 매우 향상시킬 수 있는 장점이 있다.
도 1은 본 발명의 제1 실시예에 따른 증착 시스템을 보여주는 도면,
도 2는 본 발명의 제2 실시예에 따른 증착 시스템을 보여주는 도면,
도 3은 본 발명의 제3 실시예에 따른 증착 시스템을 보여주는 도면,
도 4는 본 발명의 제4 실시예에 따른 증착 시스템을 보여주는 도면,
도 5는 본 발명의 제5 실시예에 따른 증착 시스템을 보여주는 도면,
도 6은 본 발명의 제6 실시예에 따른 증착 시스템을 보여주는 도면,
도 7은 본 발명의 제6 실시예에 따른 증착 시스템의 무게추와 지지 블럭을 설명하기 위한 도면,
도 8은 본 발명의 제6 실시예에 따른 증착 시스템의 샘플 거치대를 설명하기위한 도면,
도 9는 본 발명의 제6 실시예에 따른 증착 시스템의 샘플 거치대의 다른 예를 보여주는 도면,
도 10은 본 발명의 제7 실시예에 따른 증착 시스템을 보여주는 도면,
도 11은 본 발명의 제7 실시예에 따른 증착 시스템의 이너 쉴드, 무게추 스토커 및 지지 블럭간의 결합 관계를 설명하기 위한 도면이다.
[부호의 설명]
100,200,300,400,500,600,700:증착 시스템
110:스테인레스막 증착 챔버 120:제1 구리막 증착 챔버
130:제1 버퍼 챔버 210:승강 챔버
310:가열 챔버 320:플라즈마 처리 챔버
410:제2 구리막 증착 챔버 420:제2 버퍼 챔버
610:무게추 스토커 611:무게추
616:이너 쉴드
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.
이하, 첨부한 도면에 도시된 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.
그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나타낸다.
[제1 실시예]
도 1은 본 발명의 제1 실시예에 따른 증착 시스템을 보여주는 것으로 본 발명의 제1 실시예에 따른 증착 시스템(100)은 서로 순차로 연결되어 증착 공정을 수행하는 복수 개의 증착 챔버(110,120)를 포함하여 이루어진다.
또한, 상기 증착 챔버들(110,120) 내부에는 기재(10,11,12)를 인입하거나 인출하기 위한 기재 이송 수단(111,121)이 각각 구비된다.
또한, 상기 각 기재 이송 수단(111,121)은 롤러나 컨베이어로 구비될 수 있다.
또한, 상기 증착 챔버들(110,120)의 내부에는 증착 물질이 코팅된 타겟(Target)(112,122)이 구비되며, 상기 타겟(112,122)에 코팅된 증착 물질이 비산되거나 증발하여 물리 증착법으로 박막이 증착될 수 있다.
그러나 상기 타겟(112,122)은 화학 증착법을 수행하기 위한 타겟 전극으로 대체될 수 있으며, 이 경우 전극의 외면에는 증막 물질이 코팅되지 않고, 챔버의 내부로 유입된 성막가스의 화학반응에 의해 증착 물질이 퇴적되어 코팅된다.
즉, 상기 증착 챔버들(110,120)은 각각 물리 증착법 또는 화학 증착법으로 증착 공정을 수행할 수 있다.
또한, 상기 증착 챔버들(110,120)은 이온 플레이팅 증착 등 공지된 다양한 증착 공정을 수행하는 챔버일 수 있으며, 증착 방법에는 특별한 제약이 없다.
또한, 상기 각 증착 챔버(110,120)는 기재가 인입되어 증착 공정 수행 후, 기재가 배출되면 이어서 다른 기재가 인입되어 증착 공정을 수행한다.
즉, 상기 증착 챔버(110,120)들은 동시에 서로 다른 기재(11,12)에 증착 공정을 수행할 수 있다.
이는, 종래의 인라인 타입이 하나의 기재만을 이송하며 증착하는 방법과 비교하여 생산성을 높일 수 있는 효과가 있다.
또한, 상기 기재들(10,11,12)은 상기 증착 챔버들(110,120)에 순차적으로 이송되면서 증착 공정이 수행되고 기재가 최초로 투입된 제1 증착 챔버(110)로 다시 반송되어, 상기 제1 증착 챔버(110)에서 배출된다.
즉, 본 발명의 제1 실시예에 따른 증착 시스템(100)은 기재가 들어간 위치에서 다시 반송되어 빠져나오는 인터백(inter-back) 타입으로 이송되며, 상기 증착 챔버들(110,120)에 적어도 1회 왕복 이송되어 증착이 수행된다.
또한, 본 발명의 제1 실시예에 따른 증착 시스템(100)은 기재를 인터백 타입으로 이송하기 위해 상기 증착 챔버들(110,120) 사이에 버퍼 챔버(130)가 더 구비될 수 있다.
또한, 상기 버퍼 챔버(130)는 이웃한 두 증착 챔버(110,120)의 기재를 서로 교체해주는 기능을 하며, 내부에 적어도 두 개의 기재를 서로 나란하게 이격하여 적재할 수 있고, 기재를 상하로 이동시켜 적재 위치를 가변할 수 있는 기재 승강 수단(130)을 포함한다.
또한, 상기 기재 승강 수단(130)은 서로 나란하게 이격되어 상하로 승강가능하고 기재를 순방향(a) 또는 역방향(b)으로 이송할 수 있는 적어도 두 개의 기재 이송 수단(131a,131b)을 포함한다.
또한, 상기 기재 승강 수단(130)의 동작을 간단히 살펴보면, 먼저, 제1 증착 챔버(110)에서 증착이 완료된 기재(11)와 제2 증착 챔버(120)에서 증착이 완료된 기재(12)가 각각 서로 다른 시간에 상기 버퍼 챔버(130)로 인입되어 서로 다른 기재 이송 수단(131a,131b)에 적재된다.
이때, 상기 제1 증착 챔버(110)에서 증착이 완료된 기재(11)가 상기 기재 이송 수단(131a,131b) 중, 제1 기재 이송 수단(131a)에 적재되고, 상기 기재 이송 수단(131a,131b)들이 상승 또는 하강하여 상기 제2 증착 챔버(120)에서 증착이 완료된 기재(12)가 제2 기재 이송 수단(131b)으로 배출되어 적재될 수 있다.
그러나 역으로 상기 제2 증착 챔버(120)에서 증착이 완료된 기재(12)가 상기 제1 기재 이송 수단(131a)에 적재된 후, 상기 제1 증착 챔버(110)에서 증착이 완료된 기재(11)가 상기 제2 기재 이송 수단(131b)에 적재될 수 있음은 물론이다.
다음, 상기 기재 이송 수단(131a,131b)이 승강 또는 하강하여 상기 제1 증착 챔버(110)에서 증착이 완료된 기재(11)를 상기 제2 증착 챔버(120)의 출입구에 위치시킨 후, 상기 제2 증착 챔버(120)로 투입하고, 다시, 승강 또는 하강하여 상기 제2 증착 챔버(120)에서 증착이 완료된 기재(12)를 상기 제1 증착 챔버(110)의 출입구에 위치시켜 상기 제1 증착 챔버(120)로 투입한다.
그러나 역으로 상기 제2 증착 챔버(120)에서 증착이 완료된 기재(12)가 먼저, 상기 제1 증착 챔버(110)로 투입되고, 다음, 상기 제1 증착 챔버(110)에서 증착이 완료된 기재(11)가 상기 제2 증착 챔버(120)로 투입될 수 있음은 물론이다.
이러한 인터백 타입의 증착 방법은 상기 제1 증착 챔버(110)에서 제1 증착층을 증착하고, 상기 제2 증착 챔버(120)에서 제2 증착층을 증착한 후, 상기 제1 증착 챔버(110)에서 상기 제1 증착층과 동일한 제3 증착층을 다시 증착할 때 두 개의 증착 챔버만이 필요하므로, 종래의 인라인 방식의 증착 방법이 세 개의 증착 챔버가 필요한 것에 비해 풋 프린트를 줄일 수 있는 장점이 있다.
[제2 실시예]
도 2는 본 발명의 제2 실시예에 따른 증착 시스템을 보여주는 것으로 본 발명의 제2 실시예에 따른 증착 시스템(200)은 증착 공정을 수행하는 복수 개의 증착 챔버(110,120)와 상기 증착 챔버들(110,120)의 출입위치에 기재(10)를 선택적으로 위치시켜 기재를 상기 각 증착 챔버(110,120) 내부로 투입해주거나, 증착 챔버에서 배출되는 기재를 적재하는 승강 챔버(210)를 포함한다.
또한, 상기 증착 챔버들(110,120)은 본 발명의 제1 실시예에서 보인 증착 챔버들(110,120)과 실질적으로 동일하므로 설명은 생략한다.
또한, 도 2에서는 상기 증착 챔버들(110,120)이 세로방향으로 적재되어 있는 것으로 도시하였으나 가로방향으로 배치될 수도 있다.
또한, 상기 승강 챔버(210)의 내부 공간은 상기 증착 챔버들(110,120)의 각 출입구과 서로 연통되어 있다. 다시 말해서, 상기 각 증착 챔버들(110,120)의 출입구는 상기 승강 챔버(210)의 내부 공간으로 개방될 수 있다.
또한, 상기 승강 챔버(210)는 내부에 기재 승강 수단(211)을 포함하며, 상기 기재 승강 수단(211)은 서로 나란하게 이격되어 구비되는 적어도 두 개의 기재 이송 수단(211a,211b)를 포함한다.
또한, 상기 기재 이송 수단(211a,211b)은 상하로 승강이 가능하며, 기재(10)를 상기 각 증착 챔버들(110,120)로 투입해 주거나, 상기 증착 챔버들(110,120)에서 배출되는 기재(10)를 전달받아 적재할 수 있다.
즉, 상기 승강 챔버(210)는 본 발명의 제1 실시예에 따른 증착 시스템(100)의 버퍼 챔버(130)와 비교하여 기능은 동일하고 배치 형태가 인라인 형태가 아닌 클러스터(cluster) 형태로 구비되는데 차이가 있다.
[제3 실시예]
도 3은 본 발명의 제3 실시예에 따른 증착 시스템을 보여주는 것으로 본 발명의 제3 실시예에 따른 증착 시스템(300)은 복수 개의 증착 챔버(110,120), 상기 증착 챔버들(110,120) 사이에 구비되는 버퍼 챔버(130) 및 상기 증착 챔버(110,120)들의 전단에 구비되어 기재(10)에 증착층이 증착되기 전에 기재(10)를 가열하여 수분을 제거하는 가열 챔버(310)를 포함하여 이루어진다.
즉, 본 발명의 제3 실시예에 따른 증착 시스템(300)은 본 발명의 제1 실시예에 따른 증착 시스템(100)과 비교하여 상기 가열 챔버(310)가 더 추가된 형태이다.
또한, 상기 가열 챔버(310)의 내부에는 기재(10)를 인터백 방식으로 이송하기 위한 기재 승강 수단(311)이 구비되며, 상기 기재 승강 수단(311)은 서로 나란하게 이격되어 구비되는 적어도 두 개의 기재 이송 수단(311a,311b)을 포함한다.
또한, 상기 기재 승강 수단(311)은 본 발명의 제1 실시예에 따른 증착 시스템(100)의 버퍼 챔버(130)의 기재 승강 수단(131)과 실질적으로 동일한 기능을 수행하는 것으로 자세한 설명은 생략한다.
다만, 상기 가열 챔버(310)와 제1 증착 챔버(110) 사이에는 기재를 승강시켜 교체해 줄 수 있는 별도의 버퍼 챔버가 구비될 수 있으며, 이 경우, 상기 가열 챔버(310) 내부에는 하나의 기재 이송 수단만이 구비될 수 있다.
또한, 본 발명의 제3 실시예에 따른 증착 시스템(300)은 상기 가열 챔버(310)와 상기 제1 증착 챔버(110) 사이에 플라즈마 처리 챔버(320)를 더 포함할 수 있다.
또한, 상기 플라즈마 처리 챔버(320)는 플라즈마 처리를 통해 기재(10)의 유기물이나 불순물 등을 제거하는 역할을 한다.
또한, 상기 플라즈마 처리 챔버(320) 내부에는 기재(10)를 인터백 방식으로 이송하기 위한 기재 승강 수단(321)이 구비될 수 있으며, 상기 기재 승강 수단(321)은 서로 나란하게 이격되어 구비되는 적어도 두 개의 기재 이송 수단(321a,321b)을 포함한다.
다만, 상기 플라즈마 처리 챔버(320)와 상기 제1 증착 챔버(110) 사이, 상기 플라즈마 처리 챔버(320)와 상기 가열 챔버(310) 사이에 별도의 버퍼 챔버가 각각 구비될 수 있고, 이 경우, 상기 플라즈마 처리 챔버(320) 내부에는 상기 기재 승강 수단(321)이 구비되지 않고 하나의 기재 이송 수단만이 구비될 수 있다.
또한, 상기 증착 챔버들(110,120) 중, 제1 증착 챔버(110)는 스테인레스막 증착 챔버로 구비되고, 제2 증착 챔버(120)는 구리막 증착 챔버로 구비될 수 있다.
즉, 상기 기재(10)는 상기 가열 챔버(310), 상기 플라즈마 처리 챔버(320), 상기 스테인레스막 증착 챔버(110), 상기 구리막 증착 챔버(120) 순으로 이송되며 스테인레스막과 구리막이 순차로 적층되어 증착되고, 상기 구리막 증착 후에, 상기 스테인레스막 증착 챔버(110), 상기 플라즈마 처리 챔버(320), 상기 가열 챔버 순(310)으로 반송되어 배출된다.
또한, 상기 스테인레스막과 상기 구리막은 하나의 전자파(EMI:Electro Magnetic Interference) 차폐막으로 기능할 수 있다.
[제4 실시예]
도 4는 본 발명의 제4 실시예에 따른 증착 시스템을 보여주는 것으로, 본 발명의 제4 실시예에 따른 증착 시스템(400)은 가열 챔버(310), 플라즈마 처리 챔버(320), 스테인레스막 증착 챔버(110), 제1 버퍼 챔버(130), 제1 구리막 증착 챔버(120), 제2 버퍼 챔버(420) 및 제2 구리막 증착 챔버(410)가 순차로 연결되어 구성된다.
즉, 본 발명의 제4 실시예에 따른 증착 시스템(400)은 도 3에 도시한 본 발명의 제3 실시예에 따른 증착 시스템(300)과 비교하여 하나의 버퍼 챔버(420)와 하나의 구리막 증착 챔버(410)가 더 추가된 형태이다.
또한, 상기 기재(10)는 상기 가열 챔버(130), 상기 플라즈마 처리 챔버(320), 상기 스테인레스막 증착 챔버(110), 상기 제1 버퍼 챔버(130), 상기 제1 구리막 증착 챔버(120), 상기 제2 버퍼 챔버(420), 상기 제2 구리막 증착 챔버(410) 순으로 이송되어 처리되고, 상기 제2 구리막 증착 챔버(410)에서 제2 구리막 증착 후에, 상기 제2 버퍼 챔버(420), 상기 제1 구리막 증착 챔버(120), 상기 제1 버퍼 챔버(130), 상기 스테인레스막 증착 챔버(110), 상기 플라즈마 처리 챔버(320), 상기 가열 챔버(310) 순으로 반송되어 배출된다.
또한, 상기 기재(10)의 상면에는 스테인레스막, 제1 구리막, 제2 구리막이 순차적으로 적층되고 이는 하나의 전자파 차폐막으로 기능한다.
또한, 상기 기재(10)는 역방향으로 반송될 때, 상기 제1 구리막 증착 챔버(120)에서 한 층의 구리막이 더 증착될 수 있고, 상기 스테인레스막 증착 챔버(110)에서 한 층의 스테인레스막이 더 증착될 수 있다.
즉, 상기 기재(10)의 상부에는 스테인레스막, 제1 구리막, 제2 구리막, 제1 구리막, 스테인레스막이 순차적으로 적층되고 이는 하나의 전자파 차폐막으로 기능할 수 있다.
또한, 상기 전자파 차폐막은 증착층의 두께 기재의 허용 증착 온도에 따라 여러층으로 나누어 증착이 가능하다.
[제5 실시예]
도 5는 본 발명의 제5 실시예에 따른 증착 시스템을 보여주는 것으로 본 발명의 제5 실시예에 따른 증착 시스템(500)은 본 발명의 제1 실시예에 따른 증착 시스템(100)과 비교하여 이웃한 증착 챔버(110,120)들 간에 기재(11,12)를 교체하기 위해 별도의 버퍼 챔버(130)가 구비되지 않으며, 이웃한 증착 챔버(110,120)들 중 어느 하나의 증착 챔버(110)에 기재 승강 수단(130)이 구비된다.
또한, 상기 기재 승강 수단(130)은 도 1에 도시한 버퍼 챔버(130)의 기재 승강 수단(130)과 실질적으로 동일하므로 설명을 생략한다.
또한, 상기 기재 승강 수단(130)은 이웃한 증착 챔버(110,120) 각각에 구비될 수 있다.
즉, 본 발명의 제5 실시예에 따른 증착 시스템(500)은 본 발명의 제1 실시예에 따른 증착 시스템(100)과 비교하여 버퍼 챔버(130)의 구성을 제외할 수 있으므로 풋 프린트를 더욱 줄일 수 있는 장점이 있다.
[제6 실시예]
도 6은 본 발명의 제6 실시예에 따른 증착 시스템을 보여주는 도면, 도 7은 본 발명의 제6 실시예에 따른 증착 시스템의 무게추와 지지 블럭을 설명하기 위한 도면, 도 8은 본 발명의 제6 실시예에 따른 증착 시스템의 샘플 거치대를 설명하기위한 도면, 도 9는 본 발명의 제6 실시예에 따른 증착 시스템의 샘플 거치대의 다른 예를 보여주는 도면이다.
도 6를 참조하면, 본 발명의 제6 실시예에 따른 증착 시스템은 본 발명의 제1 실시예에 따른 증착 시스템(100)과 비교하여 증착 챔버(100) 이외에 무게추 스토커(610)를 더 포함하여 이루어진다.
또한, 상기 증착 챔버(100)는 타겟(122)에 대향하는 위치에 상기 샘플(20)을 거치할 수 있는 샘플 거치대(123)가 구비된다.
또한, 본 발명의 제6 실시예에 따른 증착 시스템에서 증착(코팅)의 대상이 되는 기재는 전기 전자 소자와 같은 샘플(20)이다.
또한, 상기 증착 챔버(100) 내부에는 투입되는 샘플(20)을 상기 샘플 거치대(123)의 상부에 위치시키거나, 증착 공정 종료 후 상기 샘플(20)을 외부로 이송하여 배출하는 이송 수단(121, 이하 '제1 이송수단'이라 함, 도 1의 기재 이송 수단(111)과 대응)이 구비된다.
또한, 상기 제1 이송수단(121)은 상기 샘플(20)이 투입된 반대 방향으로 샘플(20)을 이송할 수 있고(단방향 이송), 상기 샘플(20)이 투입된 방향으로 다시 샘플(20)을 반송할 수 있다(양방향 이송).
즉, 상기 증착 챔버(100)는 상기 샘플(20)을 단방향으로 이송하며 인라인(in-line) 방식으로 증착 공정을 수행할 수 있고, 상기 샘플(20)을 양방향으로 이송하며, 인터백(inter-back) 방식으로 증착 공정을 수행할 수 있다.
또한, 상기 샘플(20)은 하나의 필름(30) 상에 복수 개가 부착되어 상기 증착 챔버(100)로 투입되며, 상기 샘플(20)은 상기 필름(30)을 통해 상기 샘플 거치대(123)에 거치된다.
또한, 상기 필름(30)은 점착성 필름으로 폴리이미드 필름(polyimide film, PI film)일 수 있다.
또한, 상기 샘플 거치대(123)는 상기 샘플(20)이 부착된 필름(30, 이하, '샘플 부착 필름'이라 함)을 상기 증착 챔버(100) 내부에 위치시키기 위한 플레이트로써 증착 공정 중에 위치가 고정될 수도 있고, 왕복 이동할 수 있으며, 상기 증착 챔버(100) 내부를 통과하여 지나갈 수도 있다.
다시 말해서, 상기 샘플 거치대(123)는 상기 샘플(10)이 상기 증착 챔버(100) 내부에서 배치타입(batch type)으로 증착이 수행되게 할 수 있고, 인라인 타입(in-line type)으로 증착이 수행되게 할 수 있다.
더욱 자세하게는 도 8를 참조하면, 상기 샘플 거치대(123)는 상면이 소정의 곡률(R)을 갖는 곡면으로 이루어지고, 내부에는 냉각유체 또는 가열유체가 흐를 수 있는 유로(123b)가 구비된다.
즉, 상기 샘플 거치대(123)는 상기 샘플(10)을 상기 증착 챔버(100) 내부의 소정의 증착위치에 위치시키는 동시에 상기 샘플(10)의 온도 조절을 수행하는 기능을 한다.
일반적으로, 상기 유로(123b)에는 냉각 유체가 흘러 상기 샘플(10)을 냉각하는 기능을 수행하나, 증착 초기 단계에서 상기 샘플(10)을 소정의 증착 온도로 가열하기 위해 가열 유체가 흐를 수 있다.
즉, 상기 샘플 거치대(123)는 쿨링 척(cooling chuck) 또는 히팅 척(heating chuck)으로 기능할 수 있다.
또한, 상기 샘플 거치대(123)의 상면은 적어도 일부분이 곡면인 면일 수 있는데, 예를 들어, 세로 방향 단면이 직사각형에서 상단 두 모서리가 라운드진 형태의 면일 수 있다.
또한, 상기 샘플 거치대(123)의 세로 방향 단면은 절곡된 선을 포함하는 면일 수 있는데, 예를 들면, 삼각형 또는 사다리꼴 등의 다각형일 수 있다.
다만, 상기 샘플 부착 필름(30)의 밀착력을 극대화하기 위해서는 상기 샘플 거치대(123)의 상면은 곡면인 것이 바람직한다.
또한, 상기 샘플 거치대(123)의 상면은 상기 샘플 부착 필름(30)에 의해 전체가 덮여야 하며, 이를 위해, 상기 샘플 거치대(110)의 폭(w1)과 길이(w2)는 상기 샘플 부착 필름(30)의 폭과 길이보다 작아야 한다.
다시 말해서 상기 샘플 거치대(123)의 상면 면적은 상기 샘플 부착 필름(30)의 면적보다 작아야 한다.
또한, 상기 샘플 거치대(123)의 상면에는 소정의 깊이로 파인 복수의 그루브(G,groove)가 형성될 수 있다.
또한, 상기 그루브들(G)은 서로 연결되어 연통되며 도 8에 도시한 바와 같이 격자모양으로 형성될 수 있다.
그러나 상기 그루브들(G)의 모양은 특별한 제악이 없으며, 상기 샘플 거치대(123)의 상면 전체에 고루 퍼져 있고, 서로 연통되어 있다면 충분하다.
또한, 도시하지는 않았으나 상기 샘플 거치대(123)에는 상기 그루브(G)의 내부 공기를 외부로 배기할 수 있는 배기라인이 형성될 수 있고, 이 배기라인은 상기 샘플 거치대(123) 상에 상기 샘플 부착 필름(30)이 거치되었을 때, 상기 그루브(G)의 공기를 배기하여 상기 샘플 부착 필름(30)이 상기 샘플 거치대(123) 상에 밀착되게 하여 열전도효율을 높이는 역할을 한다.
또한, 상기 샘플 거치대(123)의 상면에는 상기 샘플 부착 필름(30)의 밀착을 위한 버퍼 패드(buffer pad)가 코팅될 수 있고, 상기 버퍼 패드는 실리콘 패드일 수 있다.
또한, 상기 버퍼 패드는 상기 샘플(20)과 상기 샘플 거치대(123) 간에 절연을 수행하는 절연층의 기능을 겸할 수 있다.
또한, 도 8에서는 상기 샘플 거치대(123)의 상면(123a)이 사각형인 것으로 도시하였으나 도 9에 도시한 바와 같이 상기 샘플 거치대(123)는 원형의 상면(123c)을 가질 수도 있다.
다시 도 6를 참조하면, 상기 무게추 스토커(610)는 상기 증착 챔버(100)의 전단에 설치되며, 상기 샘플 부착 필름(30)이 상기 증착 챔버(100)로 투입되기 전에 먼저 거친다.
또한, 도 6에서는 상기 무게추 스토커(610)가 상기 증착 챔버(100)와 접해 있는 것으로 도시하였으나 소정의 거리 이격될 수도 있다.
다만, 상기 샘플 부착 필름(30)을 인라인 또는 인터백 타입으로 이송하기 위해서는 내부공간을 서로 연통할 수 있는 도어를 사이에 두고 서로 접해 있는 것이 바람직하다.
또한, 상기 무게추 스토커(610)는 무게추(611)를 적재하며, 상기 샘플 부착 필름(30)의 상면 가장자리에 상기 무게추(611)를 올려준다.
또한, 도 7을 참조하면, 상기 무게추(611)는 상기 샘플 부착 필름(30)의 상면 가장자리를 상부에서 하부방향으로 가압하기 위해 올려지며, 프레임 형상으로 제작될 수 있다.
또한, 도 7에서는 상기 무게추(611)가 사각 프레임인 것으로 도시하였으나, 상기 샘플 부착 필름(30)이 원형일 경우 링형의 프레임으로 제작될 수 있다.
또한, 상기 필름(30)의 크기가 제한되므로 상기 무게추(611)의 크기도 제한되는데 제한된 크기로 원하는 무게를 갖기 위해서는 비중이 큰 재질의 금속을 사용하여야 한다.
바람직하게는 상기 무게추(611)의 재질은 구리재질로 제작할 수 있으며 스테인레스재질로 제작할 수도 있다.
또한, 상기 샘플 부착 필름(30)의 가장 자리 상면에는 상기 샘플 부착 필름(30)의 형상을 유지하기 위한 프레임 형상의 지지블럭(611a)이 부착될 수 있고, 이 경우, 상기 무게추(611)는 상기 지지블럭(611a)의 상면에 올려진다.
또한, 상기 무게추 스토커(610)에는 복수의 무게추(611)를 서로 나란하게 적재할 수 있는 무게추 적재대(613)가 구비될 수 있고, 상기 무게추 적재대(613)는 적재된 무게추(611)를 하나씩 클램핑(clamping) 또는 언클램핑(unclamping)할 수 있다.
또한, 상기 무게추 스토커(610)는 상기 무게추 적재대(613)를 상하로 승하강시키며 상기 무게추(611)를 투입되는 샘플 부착 필름(30)의 가장자리에 올려놓을 수 있는 위치로 이동시키는 무게추 승하강수단(614)이 더 구비될 수 있다.
또한, 상기 무게추 스토커(610)에는 인라인 또는 인터백 타입으로 공정을 진행될 때, 샘플 부착 필름(30)이 순차적으로 투입되는데 샘플 부착 필름(30)이 투입될 때마다 무게추(611)를 상하로 이동시키며 투입된 샘플 부착 필름(30)에 하나씩 올려준다.
또한, 상기 무게추 스토커(610)는 상기 샘플 부착 필름(30)이 투입되면 상기 무게추(611)를 올리기 위한 소정의 위치로 이송하는 이송수단(612, 이하, '제2 이송수단'이라 함)과 상기 무게추 적재대(613), 상기 무게추 승하강수단(614) 및 상기 제2 이송수단(612)을 내부에 수용하는 진공 챔버(615)를 더 포함한다.
또한, 상기 진공 챔버(615)는 상기 무게추(611)가 진공 분위기에서 상기 샘플 부착 필름(30)에 올려질 수 있게 하며, 이는 상기 무게추(611)와 상기 샘플 부착 필름(30) 간 또는 상기 무게추(611)와 상기 지지블럭(611a) 간에 공기의 잔존을 방지하여 밀착력을 높일 수 있는 역할을 한다.
또한, 상기 진공 챔버(615)의 내부 온도는 상기 증착 챔버(100)의 내부 온도보다 낮으며, 극단적으로 실온일 수 있다.
즉, 상기 무게추(611)의 온도 상승을 방지할 수 있으므로 상기 샘플 부착 필름(30)의 형상이 변형되거나 망실되는 것을 방지할 수 있다.
또한, 본 발명의 일 실시예에 따른 증착 시스템의 증착 공정을 간단히 살펴보면, (a) 먼저, 상기 필름(30) 상에 샘플(20)을 부착하여 상기 진공 챔버(615) 내부로 투입하고, 상기 제2 이송수단(612)은 상기 샘플 부착 필름(30)을 소정의 무게추(611) 로딩 위치로 이송한다.
(b) 다음, 상기 무게추 승하강수단(614)이 상기 무게추 적재대(613)를 승하강시켜 상기 샘플 부착 필름(30)의 상면 가장자리에 상기 무게추(611)를 올린다.
(c) 다음, 상기 제2 이송수단(612)은 상기 무게추(611)가 올려진 샘플 부착 필름(30)을 상기 증착 챔버(100) 내부로 이송하고, 상기 증착 챔버(100) 내부의 제1 이송수단(121)은 상기 샘플 부착 필름(30)을 받아 소정의 위치에 위치시킨다.
(d) 다음, 상기 샘플 거치대(123)가 상승하거나, 상기 샘플 부착 필름(30)이 하강하여 상기 샘플 부착 필름(30)이 상기 샘플 거치대(123) 상면에 올려지고, 상기 무게추(611)는 상기 샘플 부착 필름(30)을 상기 샘플 거치대(123)를 향해 가압하여, 상기 샘플 부착 필름(30)이 상기 샘플 거치대(123)에 밀착되게 한다. 다음, 상기 타겟(122)에 전원이 인가되고, 증착 물질(122a)이 비산하여 상기 샘플(20)에 코팅층이 형성된다. 다음, 코팅층의 형성이 완료되면 상기 샘플 부착 필름(30)은 상기 제1 이송수단(121)에 의해 인라인 또는 인터백 방식으로 상기 샘플 부착 필름(30)을 상기 증착 챔버(100)의 외부 또는 인접한 다른 증착 챔버로 배출한다.
한편, 상기 코팅층은 구리막이나 스테인레스막 또는 적어도 하나의 구리막과 스테인레스막이 서로 적층된 코팅층일 수 있고, 이 코팅층은 상기 샘플의 전자파 차폐막으로 기능할 수 있다.
즉, 본 발명의 일 실시예에 따른 증착 시스템은 전자 소자인 샘플에 전자파 차폐 코팅을 수행할 수 있는 증착 시스템일 수 있다.
[제7 실시예]
도 10은 본 발명의 제7 실시예에 따른 증착 시스템을 보여주는 도면, 도 11은 본 발명의 제7 실시예에 따른 증착 시스템의 이너 쉴드, 무게추 스토커 및 지지 블럭간의 결합 관계를 설명하기 위한 도면이다.
도 10을 참조하면, 본 발명의 제7 실시예에 따른 증착 시스템(700)은 본 발명의 제6 실시예에 따른 증착 시스템(600)과 비교하여 상기 무게추 스토커(610)에에 상기 무게추(611)와 함께 이너 쉴드(616,Inner Shield)가 더 적재된다.
또한, 상기 이너 쉴드(615)는 상기 무게추(611)의 상부에 올려져 적재되는 것을 도시하였으나 상기 무게추(611)의 하부에 위치할 수 있고, 이 경우, 상기 무게추(611)가 상기 이너 쉴드(616)의 상부에 올려져 적재된다.
또한, 상기 무게추(611)는 도 11에 도시한 바와 같이 샘플(20)이 부착된 샘플 부착 필름(30)의 지지 블럭(611a) 상에 올려지고, 상기 이너 쉴드(615)는 상기 무게추(611) 상에 올려진다.
또한, 상기 무게추(611)와 상기 이너 쉴드(615)는 서로 일체로 제작될 수 있고, 각각 제작되어 서로 체결되어 결합할 수 있으며, 단순히 접촉하여 올려질 수도 있다.
한편, 상기 이너 쉴드(615)는 상기 증착 챔버(100) 내부로 삽입되었을 때, 타겟(122)과 샘플 거치대(123) 사이에 위치하게 되며, 상기 타겟(122)과 상기 샘플 거치대(123) 사이 영역 중 일부 영역을 가로막아 상기 타겟(122)에서 비산하는 증착물질의 비산 영역을 제한한다.
또한, 도 11을 참조하면, 상기 이너 쉴드(615)의 중앙부분에는 개방된 개구영역(615a)이 존재하고, 상기 개구영역(615a)의 주변에는 증착물질이 아래로 낙하하는 것을 방지하는 가림영역(615b)이 위치한다.
즉, 상기 타겟(122)에서 비산하는 증착 물질은 상기 개구영역(615a)을 통해 샘플(20)로 낙하할 수 있으며, 상기 가림영역(615b) 하부로는 증착 물질이 낙하하지 못하고 상기 가림영역(615b)의 상면에 퇴적되게 된다.
다시 도 10을 참조하여 본 발명의 제7 실시예에 따른 증착 시스템(700)의 증착 공정을 간단히 살펴보면, (a)먼저, 상기 필름(30)의 가장자리 상면에 지지 블럭(611a)을 부착하고, 중앙 부분에 샘플(20)을 부착하여 상기 무게추 스토커(610)의 진공 챔버(615) 내부로 투입한다. 그러면, 상기 제2 이송수단(612)은 상기 샘플 부착 필름(30)을 소정의 무게추(611) 로딩 위치로 이송한다.
(b)다음, 상기 무게추 승하강수단(614)이 상기 무게추 적재대(613)를 승하강 시켜 상기 샘플 부착 필름(30)의 상면 가장자리에 상기 무게추(611)와 상기 이너 쉴드(616)을 함께 올린다.
(c)다음, 상기 제2 이송수단(612)은 상기 무게추(611)와 상기 이너 쉴드(616)가 올려진 샘플 부착 필름(30)을 상기 증착 챔버(100) 내부로 이송하고, 상기 증착 챔버(100) 내부의 제1 이송수단(121)은 상기 샘플 부착 필름(30)을 받아 소정의 위치에 위치시킨다.
(d)다음, 상기 샘플 거치대(123)가 상승하거나 상기 샘플 부착 필름(30)이 하강하여 상기 샘플 부착 필름(30)이 상기 샘플 거치대(123) 상면에 올려지고, 상기 무게추(611)는 상기 샘플 부착 필름(20)을 상기 샘플 거치대(123)를 향해 가압하여, 상기 샘플 부착 필름(20)이 상기 샘플 거치대(123)에 밀착되게 한다. 이때, 상기 이너 쉴드(615)를 기준으로, 상기 타겟(122)이 위치하는 상부 공간인 증착 공간(100a)과 상기 샘플 거치대(123)가 위치하는 공간인 비 증착 공간(100b)로 구획된다.
또한, 상기 지지 블럭(611a)과 상기 무게추(611)가 서로 맞닿아 있고, 상기 무게추(611)와 상기 이너 쉴드(616)가 서로 맞닿아 있으므로 상기 타겟(122)에 의해 상부에서 비산하는 증착물질(122a)은 상기 이너 쉴드(616)와 상기 필름(30)의 상부에만 퇴적되고, 상기 비 증착 공간(100b)으로 유입되지 않는다.
따라서, 증착이 필요없는 공간에 증착 물질이 비산하는 것을 방지할 수 있고, 이는 증착 챔버(100) 내부를 세정하는 클리닝 주기를 연장할 수 있으므로 가동률 증대에 따른 수율향상 효과가 있다.
본 발명의 실시예들에 따른 증착 시스템은 전기 전자 소자와 같은 샘플의 외면에 전자파 차폐층을 코팅하기 위해 이용될 수 있다.

Claims (28)

  1. 순차로 연결되어 증착 공정을 수행하는 복수 개의 증착 챔버를 포함하고,
    상기 각 증착 챔버들 내부에는 증착 대상인 기재를 인입하거나 인출하기 위한 기재 이송 수단이 구비되며, 상기 각 증착 챔버에서 기재가 인출되면 이어서 다른 기재가 인입되어 복수의 기재들이 상기 증착 챔버들에 의해 함께 증착되는 것을 특징으로 하는 증착 시스템.
  2. 제 1 항에 있어서,
    상기 기재는 상기 증착 챔버들에 순차로 이송되면서 증착 공정이 수행되고, 최초 인입된 제1 증착 챔버로 다시 반송되어 배출되는 것을 특징으로 하는 증착 시스템.
  3. 제 2 항에 있어서,
    상기 증착 챔버들의 각 사이에 구비되어 이웃한 증착 챔버 내부의 기재를 서로 교체해주는 버퍼 챔버;를 포함하는 것을 특징으로 하는 증착 시스템.
  4. 제 3 항에 있어서,
    상기 버퍼 챔버는 적어도 두 개의 기재를 나란하게 적재할 수 있고, 상기 기재들을 상승 또는 하강시켜 증착 챔버의 기재 출입위치에 위치시키는 기재 승강 수단을 포함하는 것을 특징으로 하는 증착 시스템.
  5. 제 1 항에 있어서,
    상기 증착 챔버들 각각 또는 이웃한 증착 챔버들 중 어느 하나의 증착 챔버 내부에는 상기 기재들을 상승 또는 하강시켜 증착 챔버의 기재 출입위치에 위치시켜 이웃한 증착 챔버들 간에 기재를 서로 교체할 수 있게 하는 기재 승강 수단이 포함되는 것을 특징으로 하는 증착 시스템.
  6. 제 1 항에 있어서,
    상기 기재는 상기 증착 챔버들에 선택적으로 이송되어 증착 공정이 수행되고,
    상기 증착 챔버들에 인접하여 구비되며, 적어도 두 개의 기재를 나란하게 적재할 수 있고, 상기 기재들을 상승 또는 하강시켜 증착 챔버의 기재 출입위치에 위치시키는 승강 챔버;를 포함하는 것을 특징으로 하는 증착 시스템.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 증착 챔버들로 기재가 이송되기 전에 기재를 가열하여 수분을 제거하는 가열 챔버;를 더 포함하는 것을 특징으로 하는 증착 시스템.
  8. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 증착 챔버들로 기재가 이송되기 전에 기재의 유기물을 제거하기 위해 플라즈마 처리를 수행하는 플라즈마 처리 챔버;를 더 포함하는 것을 특징으로 하는 증착 시스템.
  9. 제 7 항에 있어서,
    상기 증착 챔버들로 기재가 이송되기 전에 기재의 유기물을 제거하기 위해 플라즈마 처리를 수행하는 플라즈마 처리 챔버;를 더 포함하는 것을 특징으로 하는 증착 시스템.
  10. 제 9 항에 있어서,
    상기 기재는 상기 가열 챔버로 최초 인입되어 상기 플라즈마 처리 챔버 및 상기 증착 챔버들을 순차적으로 거친 후, 다시 상기 가열 챔버로 반송되어 배출되는 것을 특징으로 하는 증착 시스템.
  11. 제 9 항에 있어서,
    상기 증착 챔버들은 스테인레스막 증착 챔버와 구리막 증착 챔버를 포함하고, 상기 스테인레스막 증착 챔버와 상기 구리막 증착 챔버 사이에는 상기 스테인레스막 증착 챔버와 상기 구리막 증착 챔버 내부의 기재를 서로 교체해주는 버퍼 챔버가 구비되며,
    상기 기재는 상기 가열 챔버, 상기 플라즈마 처리 챔버, 상기 스테인레스막 증착 챔버, 상기 구리막 증착 챔버 순으로 이송되며 처리되고, 상기 구리막 증착 챔버에서 구리막 증착 후에, 상기 스테인레스막 증착 챔버, 상기 플라즈마 처리 챔버, 상기 가열 챔버 순으로 반송되어 배출되는 것을 특징으로 하는 증착 시스템.
  12. 제 9 항에 있어서,
    상기 증착 챔버들은 스테인레스막 증착 챔버, 제1 구리막 증착 챔버 및 제2 구리막 증착 챔버를 포함하고, 상기 스테인레스막 증착 챔버와 상기 제1 구리막 증착 챔버 사이 및 상기 제1 구리막 증착 챔버와 상기 제2 구리막 증착 챔버 사이에는 이웃한 증착 챔버 내부의 기재를 서로 교체해주는 버퍼 챔버가 구비되며,
    상기 기재는 상기 가열 챔버, 상기 플라즈마 처리 챔버, 상기 스테인레스막 증착 챔버, 상기 제1 구리막 증착 챔버, 상기 제2 구리막 증착 챔버 순으로 이송되며 처리되고, 상기 제2 구리막 증착 챔버에서 제2 구리막 증착 후에, 상기 제1 구리막 증착 챔버, 상기 스테인레스막 증착 챔버, 상기 플라즈마 처리 챔버, 상기 가열 챔버 순으로 반송되어 배출되는 것을 특징으로 하는 증착 시스템.
  13. 제 9 항에 있어서,
    상기 증착 챔버들은 스테인레스막 증착 챔버, 제1 구리막 증착 챔버 및 제2 구리막 증착 챔버를 포함하고, 상기 스테인레스막 증착 챔버와 상기 제1 구리막 증착 챔버 사이 및 상기 제1 구리막 증착 챔버와 상기 제2 구리막 증착 챔버 사이에는 이웃한 증착 챔버 내부의 기재를 서로 교체해주는 버퍼 챔버가 구비되며,
    상기 기재는 상기 가열 챔버, 상기 플라즈마 처리 챔버, 상기 스테인레스막 증착 챔버, 상기 제1 구리막 증착 챔버, 상기 제2 구리막 증착 챔버 순으로 이송되며 처리되고, 상기 제2 구리막 증착 챔버에서 제2 구리막 증착 후에, 상기 제1 구리막 증착 챔버, 상기 스테인레스막 증착 챔버, 상기 플라즈마 처리 챔버, 상기 가열 챔버 순으로 반송되어 배출되며, 반송시 상기 제2 구리막 증착 챔버에서 제2 구리막이 증착되고, 상기 스테인레스막 증착 챔버에서 제2 스테인레스막이 증착되는 것을 특징으로 하는 증착 시스템.
  14. 제 1 항 내지 제 6 항 중 어느 한 항의 증착 시스템을 이용하여 적어도 하나의 스테인레스막과 상기 스테인레스막 상부에 적어도 하나의 구리막이 증착된 기재.
  15. 제 14 항에 있어서,
    상기 스테인레스막과 상기 구리막은 하나의 전자파 차폐막으로 기능하는 것을 특징으로 하는 기재.
  16. 제 1 항에 있어서,
    상기 기재는 증착 대상인 샘플이 부착된 필름(이하, '샘플 부착 필름'이라 함)이고,
    상기 증착 챔버는 내부에 상면에 상기 샘플 부착 필름을 거치하여 상기 샘플에 소정의 코팅층이 증착되게 하는 샘플 거치대를 갖고,
    상기 증착 챔버들의 전단에 설치되고, 상기 샘플 부착 필름이 상기 증착 챔버로 투입되기 전에 상기 샘플 부착 필름의 상면 가장자리에 올려져 상기 샘플 부착 필름이 상기 샘플 거치대상에 올려졌을 때, 상기 샘플 부착 필름을 상기 샘플 거치대를 향해 가압하여 밀착되게 하는 무게추(weight bar)가 적재된 무게추 스토커(stocker);를 포함하는 것을 특징으로 하는 증착 시스템.
  17. 제 16 항에 있어서,
    상기 무게추 스토커에는 상기 샘플 부착 필름을 상기 무게추 스토커에서 상기 증착 챔버 방향으로 단방향 이송하거나, 상기 무게추 스토커에서 상기 증착 챔버로 이송하여 상기 코팅층의 증착 후 다시 상기 무게추 스토커로 반송하는 이송 수단이 구비되는 것을 특징으로 하는 증착 시스템.
  18. 제 17 항에 있어서,
    상기 무게추 스토커에는 서로 다른 샘플 부착 필름이 순차적으로 투입되어 상기 증착 챔버로 이송되며, 각 샘플 부착 필름에 올려질 무게추를 나란하게 적재할 수 있는 무게추 적재대가 구비되는 것을 특징으로 하는 증착 시스템.
  19. 제 18 항에 있어서,
    상기 무게추 스토커에는 상기 무게추 적재대를 승하강하여, 상기 무게추 적재대의 무게추를 투입되는 샘플 부착 필름의 가장자리 상면에 올려놓을 수 있는 무게추 승하강수단이 구비되는 것을 특징으로 하는 증착 시스템.
  20. 제 19 항에 있어서,
    상기 무게추 스토커는 내부에 상기 무게추 적재대와 상기 무게추 승하강수단을 내부에 수용하고 진공 분위기에서 상기 무게추가 상기 샘플 부착 필름의 가장자리 상면에 올려지게 하는 진공 챔버를 포함하는 것을 특징으로 하는 증착 시스템.
  21. 제 20 항에 있어서,
    상기 진공 챔버의 내부온도는 상기 증착 챔버의 내부온도보다 낮은 것을 특징으로 하는 증착 시스템.
  22. 제 16 항에 있어서,
    상기 샘플 부착 필름의 상면 가장자리에는 상기 샘플 부착 필름의 형태를 유지하기 위한 프레임 형상의 지지 블럭이 부착되고, 상기 무게추는 상기 지지 블럭의 상부에 올려지는 것을 특징으로 하는 증착 시스템.
  23. 제 16 항에 있어서,
    상기 무게추 스토커에는 상기 무게추의 상부 또는 하부에 상기 무게추와 함께 적재되며, 상기 무게추와 함께 상기 샘플 부착 필름의 상면 가장자리에 올려지는 이너 쉴드(Inner Shield)가 더 구비되고, 상기 이너 쉴드는 상기 증착 챔버 내부에서 증착 물질이 비산하는 영역을 제한하는 것을 특징으로 하는 증착 시스템.
  24. 제 16 항 내지 제 23 항 중 어느 한 항에 있어서,
    상기 샘플 거치대는 상면이 곡면인 것을 특징으로 하는 증착 시스템.
  25. 제 24 항에 있어서,
    상기 샘플 거치대의 상면 면적은 상기 샘플 부착 필름의 면적보다 작고, 상기 무게추는 상기 샘플 거치대의 모서리에서 이격되어 상기 샘플 부착 필름을 상부에서 하부로 가압함으로써 상기 샘플 부착 필름이 상기 샘플 거치대의 상면에 밀착되게 하는 것을 특징으로 하는 증착 시스템.
  26. 제 16 항 내지 제 23 항 중 어느 한 항에 있어서,
    상기 코팅층은 구리막이나 스테인레스막 또는 적어도 하나의 구리막과 스테인레스막이 적층되어 형성되는 것을 특징으로 하는 증착 시스템.
  27. 제 26 항에 있어서,
    상기 코팅층은 전자파 차폐막으로 기능하는 것을 특징으로 하는 증착 시스템.
  28. 제 16 항 내지 제 23 항 중 어느 한 항의 증착 시스템에 의해 코팅층이 증착된 소자.
PCT/KR2016/014566 2015-12-24 2016-12-13 풋 프린트를 줄일 수 있는 인터백 타입의 증착 시스템 WO2017111374A1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20150186350 2015-12-24
KR10-2015-0186350 2015-12-24
KR20160004073 2016-01-13
KR10-2016-0004073 2016-01-13
KR10-2016-0060857 2016-05-18
KR1020160060857A KR20170076535A (ko) 2015-12-24 2016-05-18 풋 프린트를 줄일 수 있는 인터백 타입의 증착 시스템
KR1020160060859A KR20170084974A (ko) 2016-01-13 2016-05-18 무게추 스토커를 갖는 증착 시스템 및 그 증착 시스템에 의해 코팅층이 증착된 소자
KR10-2016-0060859 2016-05-18

Publications (1)

Publication Number Publication Date
WO2017111374A1 true WO2017111374A1 (ko) 2017-06-29

Family

ID=59090768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014566 WO2017111374A1 (ko) 2015-12-24 2016-12-13 풋 프린트를 줄일 수 있는 인터백 타입의 증착 시스템

Country Status (1)

Country Link
WO (1) WO2017111374A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501002A (zh) * 2020-01-16 2020-08-07 浙江工业大学 一种便携式变温样品台装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131232A (ja) * 1997-10-31 1999-05-18 Anelva Corp トレイ搬送式成膜装置
KR100852983B1 (ko) * 2005-12-22 2008-08-19 어플라이드 매터리얼스 게엠베하 운트 컴퍼니 카게 기판 처리 장치 및 방법
KR20080086261A (ko) * 2007-03-22 2008-09-25 삼성에스디아이 주식회사 보호막층을 증착시키는 장치와, 이를 이용한 증착 방법
KR20110133690A (ko) * 2010-06-07 2011-12-14 (주)제이하라 연속 공정 수행이 가능한 플라즈마 반응장치
KR20150133076A (ko) * 2014-05-19 2015-11-27 주식회사 선익시스템 박막 증착 인라인 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131232A (ja) * 1997-10-31 1999-05-18 Anelva Corp トレイ搬送式成膜装置
KR100852983B1 (ko) * 2005-12-22 2008-08-19 어플라이드 매터리얼스 게엠베하 운트 컴퍼니 카게 기판 처리 장치 및 방법
KR20080086261A (ko) * 2007-03-22 2008-09-25 삼성에스디아이 주식회사 보호막층을 증착시키는 장치와, 이를 이용한 증착 방법
KR20110133690A (ko) * 2010-06-07 2011-12-14 (주)제이하라 연속 공정 수행이 가능한 플라즈마 반응장치
KR20150133076A (ko) * 2014-05-19 2015-11-27 주식회사 선익시스템 박막 증착 인라인 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501002A (zh) * 2020-01-16 2020-08-07 浙江工业大学 一种便携式变温样品台装置

Similar Documents

Publication Publication Date Title
US5352294A (en) Alignment of a shadow frame and large flat substrates on a support
WO2011132885A2 (en) Substrate processing apparatus
WO2018169250A1 (ko) 금속판, 증착용 마스크 및 이의 제조방법
WO2014073831A1 (ko) 기판 트레이 및 이를 포함하는 기판처리장치
WO2016021759A1 (ko) 반도체 패키지의 전자파 차폐를 위한 스퍼터링 장치 및 이를 포함한 인라인 스퍼터링 증착 시스템
WO2014109526A1 (ko) 반도체 웨이퍼의 연속 처리 장치 및 방법
KR20060033777A (ko) 기판 스테이지용 정전 척 및 그에 이용하는 전극 및 그들을구비한 처리 시스템
WO2020213836A1 (ko) Sic 엣지 링
WO2012087059A2 (en) Printed circuit board and method for manufacturing the same
WO2020226292A1 (ko) 적층 구조체, 이를 포함하는 연성동박적층필름, 및 상기 적층 구조체의 제작방법
WO2017111374A1 (ko) 풋 프린트를 줄일 수 있는 인터백 타입의 증착 시스템
WO2020045900A1 (ko) 마스크의 제조 방법, 마스크 및 프레임 일체형 마스크
WO2021091249A1 (ko) 반도체 공정 진단 센서 장치
WO2011065776A2 (ko) 트레이와 이를 이용한 기판 처리 장치, 및 트레이의 제조 방법
WO2019083261A1 (ko) 증착 장치
WO2021025460A1 (ko) 엘이디 스핀척
WO2011002204A2 (ko) 라미네이팅 시스템 및 방법
WO2012134082A2 (en) Plasma enhanced chemical vapor deposition apparatus and method for controlling the same
WO2020076021A1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
WO2013012210A2 (ko) 기판 적재용 트레이
WO2017030315A1 (ko) 증착 장치용 샘플 거치대 및 그 샘플 거치대를 갖는 증착 장치
WO2021206351A1 (ko) 기판 처리 장치 및 방법
WO2016186389A1 (ko) 유기 발광 소자의 인라인 제조 시스템과, 인라인 제조 방법과, 유기막 장치 및 도너 기판 세트
WO2013191469A1 (ko) 원자층 증착 장치
WO2017155249A1 (ko) 세라믹 기판 제조용 적층 시스템 및 이를 이용한 세라믹 기판의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/09/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16879241

Country of ref document: EP

Kind code of ref document: A1