WO2024048371A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2024048371A1
WO2024048371A1 PCT/JP2023/030170 JP2023030170W WO2024048371A1 WO 2024048371 A1 WO2024048371 A1 WO 2024048371A1 JP 2023030170 W JP2023030170 W JP 2023030170W WO 2024048371 A1 WO2024048371 A1 WO 2024048371A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
conductor
semiconductor element
electrode
semiconductor device
Prior art date
Application number
PCT/JP2023/030170
Other languages
English (en)
French (fr)
Inventor
充季 川野
信之 加藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024048371A1 publication Critical patent/WO2024048371A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/14Soldering, e.g. brazing, or unsoldering specially adapted for soldering seams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the disclosure in this specification relates to a semiconductor device.
  • Patent Document 1 discloses a semiconductor device including a semiconductor element that constitutes an upper arm of an upper and lower arm circuit, and a semiconductor element that constitutes a lower arm.
  • the contents of the prior art documents are incorporated by reference as explanations of technical elements in this specification.
  • the conductor connected to the main electrode on the low potential side of the semiconductor element constituting the upper arm and the conductor connected to the main electrode on the high potential side of the semiconductor element constituting the lower arm are soldered. It is equipped with a joint conductor that connects through. The joint area of the solder joint of the joint conductor is small.
  • a Ni layer is provided on the joint conductor in order to suppress the progression of EM at the solder joint portion of the joint conductor.
  • EM is an abbreviation for ElectroMigration.
  • semiconductor devices are required to be further downsized and have larger currents. In other words, further improvements are required to extend the EM life. Further improvements in semiconductor devices are required from the above-mentioned viewpoints and from other viewpoints not mentioned.
  • the present disclosure has been made in view of such problems, and aims to provide a semiconductor device that can improve the EM life.
  • the semiconductor device which is one of the disclosures, is It has a signal pad and an upper electrode, which is the main electrode, on the upper surface, and the main electrode is on the lower surface, which is the opposite surface in the thickness direction from the upper surface, and has a larger area than the upper electrode when viewed in plan from the thickness direction.
  • a plurality of semiconductor elements each having a lower electrode; a plurality of conductors electrically connected to the main electrode via solder;
  • the plurality of semiconductor elements include a first semiconductor element that constitutes the upper arm of the upper and lower arm circuits, and a first semiconductor element that constitutes the lower arm of the upper and lower arm circuits, and one semiconductor element that is perpendicular to the plate thickness direction so that the upper surfaces are on the same side in the plate thickness direction.
  • the plurality of conductors include a first upper conductor connected to an upper electrode of the first semiconductor element via a first upper solder, and a first lower conductor connected to a lower electrode of the first semiconductor element via a first lower solder. a second upper conductor connected to the upper electrode of the second semiconductor element via the second upper solder; and a second lower conductor connected to the lower electrode of the second semiconductor element via the second lower solder.
  • each solder contains Cu and Sn,
  • Each of the connection targets of each solder has a Ni layer,
  • the particle size of at least one of the first upper solder, the second upper solder, and the relay solder is smaller than the particle size of the first lower solder and the second lower solder.
  • the current density in the first upper solder, the second upper solder, and the relay solder is higher than the current density in the first lower solder and the second lower solder.
  • the grain size of at least one of the first upper solder, the second upper solder, and the relay solder, which have a high current density is smaller than the grain size of the first lower solder and the second lower solder. This makes it possible to slow down the disappearance of the Ni layer due to EM. As a result, it is possible to provide a semiconductor device that can improve the EM life.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle drive system to which a semiconductor device according to a first embodiment is applied.
  • FIG. 1 is a plan view showing a semiconductor device according to a first embodiment.
  • 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 3 is a sectional view taken along the line IV-IV in FIG. 2.
  • FIG. 3 is a plan view with the sealing body omitted.
  • FIG. 3 is a plan view in which a heat sink on the emitter electrode side is omitted. It is a figure showing an output current and a return current.
  • 4 is an enlarged cross-sectional view of region VIII in FIG. 3.
  • FIG. FIG. 3 is an enlarged cross-sectional view of the vicinity of the solder joint surface of the joint.
  • FIG. 7 is an enlarged cross-sectional view of the vicinity of the solder joint surface of the joint in the semiconductor device according to the second embodiment.
  • FIG. 7 is a plan view showing a heat sink including a joint portion in a semiconductor device according to a third embodiment.
  • 15 is an enlarged view of region XV in FIG. 14.
  • FIG. 7 is a cross-sectional view showing a solder joint structure of a joint portion in a semiconductor device according to a fourth embodiment. It is a sectional view showing a modification.
  • the semiconductor device of this embodiment is applied, for example, to a power conversion device for a moving object that uses a rotating electric machine as a drive source.
  • mobile objects include electric vehicles such as electric vehicles (BEV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV), flying vehicles such as electric vertical takeoff and landing aircraft and drones, ships, construction machinery, and agricultural machinery.
  • BEV electric vehicles
  • HEV hybrid vehicles
  • PHEV plug-in hybrid vehicles
  • flying vehicles such as electric vertical takeoff and landing aircraft and drones, ships, construction machinery, and agricultural machinery.
  • a vehicle drive system 1 includes a DC power source 2, a motor generator 3, and a power converter 4.
  • the DC power supply 2 is a DC voltage source composed of a rechargeable and dischargeable secondary battery.
  • the secondary battery is, for example, a lithium ion battery or a nickel metal hydride battery.
  • the motor generator 3 is a three-phase AC rotating electric machine.
  • the motor generator 3 functions as a driving source for the vehicle, that is, an electric motor.
  • the motor generator 3 functions as a generator during regeneration.
  • Power conversion device 4 performs power conversion between DC power supply 2 and motor generator 3 .
  • the power conversion device 4 includes a power conversion circuit. As shown in FIG. 1, the power conversion device 4 includes a smoothing capacitor 5 and an inverter 6 that is a power conversion circuit.
  • the smoothing capacitor 5 mainly smoothes the DC voltage supplied from the DC power supply 2.
  • the smoothing capacitor 5 is connected to a P line 7 which is a power line on the high potential side and an N line 8 which is a power line on the low potential side.
  • the P line 7 is connected to the positive pole of the DC power supply 2
  • the N line 8 is connected to the negative pole of the DC power supply 2.
  • a positive terminal of the smoothing capacitor 5 is connected to a P line 7 between the DC power supply 2 and the inverter 6.
  • the negative electrode is connected to the N line 8 between the DC power supply 2 and the inverter 6.
  • Smoothing capacitor 5 is connected in parallel to DC power supply 2 .
  • the inverter 6 is a DC-AC conversion circuit. Inverter 6 converts the DC voltage into three-phase AC voltage and outputs it to motor generator 3 according to switching control by a control circuit (not shown). Thereby, the motor generator 3 is driven to generate a predetermined torque. During regenerative braking of the vehicle, the inverter 6 converts the three-phase AC voltage generated by the motor generator 3 in response to the rotational force from the wheels into a DC voltage under switching control by the control circuit, and outputs the DC voltage to the P line 7. In this way, the inverter 6 performs bidirectional power conversion between the DC power supply 2 and the motor generator 3.
  • the inverter 6 is configured with three-phase upper and lower arm circuits 9.
  • the upper and lower arm circuits 9 are sometimes referred to as legs.
  • the upper and lower arm circuits 9 each have an upper arm 9H and a lower arm 9L.
  • the upper arm 9H and the lower arm 9L are connected in series between the P line 7 and the N line 8, with the upper arm 9H on the P line 7 side.
  • a connection point between upper arm 9H and lower arm 9L is connected to a corresponding phase winding 3a of motor generator 3 via output line 10.
  • Inverter 6 has six arms. At least a portion of each of the P line 7, the N line 8, and the output line 10 is constituted by a conductive member such as a bus bar.
  • each arm includes an IGBT 11 that is a switching element and a diode 12 for freewheeling.
  • IGBT is an abbreviation for Insulated Gate Bipolar Transistor.
  • an n-channel type IGBT 11 is used.
  • the diode 12 is connected in antiparallel to the corresponding IGBT 11.
  • the collector of the IGBT 11 is connected to the P line 7.
  • the emitter of the IGBT 11 is connected to the N line 8.
  • the emitter of the IGBT 11 in the upper arm 9H and the collector of the IGBT 11 in the lower arm 9L are connected to each other.
  • the anode of the diode 12 is connected to the emitter of the corresponding IGBT 11, and the cathode is connected to the collector.
  • the power conversion device 4 may further include a converter as a power conversion circuit.
  • a converter is a DC-DC conversion circuit that converts DC voltage to DC voltages of different values.
  • a converter is provided between DC power supply 2 and smoothing capacitor 5.
  • the converter includes, for example, a reactor and the above-mentioned upper and lower arm circuits 9. According to this configuration, it is possible to raise and lower the voltage.
  • the power conversion device 4 may include a filter capacitor that removes power supply noise from the DC power supply 2.
  • a filter capacitor is provided between the DC power supply 2 and the converter.
  • the power conversion device 4 may include a drive circuit for switching elements that constitute the inverter 6 and the like.
  • the drive circuit supplies a drive voltage to the gate of the IGBT 11 of the corresponding arm based on a drive command from the control circuit.
  • the drive circuit drives the corresponding IGBT 11 by applying a drive voltage, that is, turns it on and turns it off.
  • a drive circuit is sometimes referred to as a driver.
  • the power conversion device 4 may include a control circuit for switching elements.
  • the control circuit generates a drive command for operating the IGBT 11 and outputs it to the drive circuit.
  • the control circuit generates a drive command based on a torque request input from a host ECU (not shown) and signals detected by various sensors.
  • Various sensors include, for example, a current sensor, a rotation angle sensor, and a voltage sensor.
  • the current sensor detects the phase current flowing through the winding 3a of each phase.
  • the rotation angle sensor detects the rotation angle of the rotor of the motor generator 3.
  • the voltage sensor detects the voltage across the smoothing capacitor 5.
  • the control circuit outputs, for example, a PWM signal as a drive command.
  • the control circuit includes, for example, a processor and a memory.
  • ECU is Electronic It is an abbreviation of Control Unit.
  • PWM is an abbreviation for Pulse Width Modulation.
  • FIG. 2 is a plan view showing the semiconductor device 20.
  • FIG. 2 is a top plan view of the semiconductor device 20.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 2.
  • FIG. 5 is a diagram in which the sealing body 30 is omitted from FIG. 2.
  • FIG. 6 is a diagram in which the heat sink 50 on the emitter electrode 42 side is omitted from FIG.
  • the thickness direction of the semiconductor element is referred to as the Z direction.
  • One direction perpendicular to the Z direction is defined as the X direction.
  • the direction perpendicular to both the Z direction and the X direction is defined as the Y direction.
  • the planar shape is the shape viewed from the Z direction, in other words, the shape along the XY plane defined by the X direction and the Y direction. Further, a planar view from the Z direction may be simply referred to as a planar view.
  • the semiconductor device 20 includes a sealing body 30, a semiconductor element 40, heat sinks 50 and 60, a conductive spacer 70, joints 80 to 82, and an external connection terminal 90. ing.
  • the semiconductor device 20 further includes bonding wires 97 and solder 100.
  • the semiconductor device 20 constitutes the upper and lower arm circuit 9 for one phase described above.
  • the sealing body 30 seals some of the other elements constituting the semiconductor device 20. The remaining parts of the other elements are exposed outside the sealing body 30.
  • the sealing body 30 is made of resin, for example.
  • An example of the resin is an epoxy resin.
  • the sealing body 30 is molded from resin by, for example, a transfer molding method. Such a sealing body 30 is sometimes referred to as a sealing resin body, a mold resin, a resin molded body, or the like.
  • the sealing body 30 may be formed using gel, for example. The gel is filled (arranged) in opposing areas of the heat sinks 50 and 60, for example.
  • the sealing body 30 has a substantially rectangular shape in plan view.
  • the sealing body 30 has one surface 30a and a back surface 30b, which is a surface opposite to the one surface 30a in the Z direction, as a surface forming an outline.
  • One surface 30a and back surface 30b are, for example, substantially flat surfaces.
  • It also has side surfaces 30c, 30d, 30e, and 30f that are continuous with the one surface 30a and the back surface 30b.
  • the side surface 30c is a surface from which the main terminals 91 to 93 of the external connection terminal 90 protrude.
  • the side surface 30d is a surface opposite to the side surface 30c in the Y direction.
  • the side surface 30d is a surface from which the signal terminal 94 projects.
  • the side surfaces 30e and 30f are surfaces from which the external connection terminal 90 does not protrude.
  • the side surface 30e is a surface opposite to the side surface 30f in the X direction.
  • the semiconductor element 40 includes a semiconductor substrate 41, an emitter electrode 42, a collector electrode 43, and a pad 44.
  • the semiconductor element 40 is sometimes referred to as a semiconductor chip.
  • the semiconductor substrate 41 is made of a material such as silicon (Si) or a wide bandgap semiconductor having a wider bandgap than silicon, and has a vertical element formed thereon. Examples of wide bandgap semiconductors include silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), and diamond.
  • the vertical element is configured to allow a main current to flow in the thickness direction of the semiconductor substrate 41 (semiconductor element 40), that is, in the Z direction.
  • the vertical elements of this embodiment are the IGBT 11 and the diode 12 that constitute one arm.
  • the vertical element is an IGBT in which diodes 12 are connected in antiparallel, that is, an RC-IGBT. RC is an abbreviation for Reverse Conducting.
  • the vertical element is a heating element that generates heat when energized.
  • a gate electrode (not shown) is formed on the semiconductor substrate 41.
  • the gate electrode has, for example, a trench structure.
  • the semiconductor substrate 41 has a substantially rectangular planar shape.
  • the emitter electrode 42 which is one of the main electrodes, is arranged on one surface of the semiconductor substrate 41.
  • a collector electrode 43 which is another main electrode, is arranged on the back surface of the semiconductor substrate 41.
  • One surface of the semiconductor substrate 41 is a surface of the main surface of the semiconductor substrate 41 that is on the one surface 30a side of the sealing body 30 in the thickness direction.
  • the back surface of the semiconductor substrate 41 is the surface of the main surface of the semiconductor substrate 41 that is on the back surface 30b side of the sealing body 30 in the semiconductor substrate 41 in the thickness direction.
  • a current flows between the main electrodes, that is, between the emitter electrode 42 and the collector electrode 43.
  • the emitter electrode 42 also serves as an anode electrode of the diode 12.
  • the collector electrode 43 also serves as the cathode electrode of the diode 12.
  • the collector electrode 43 is formed on almost the entire back surface of the semiconductor substrate 41.
  • the emitter electrode 42 is formed on a portion of one surface of the semiconductor substrate 41. That is, in plan view, the collector electrode 43 has a larger area than the emitter electrode 42.
  • the emitter electrode 42 corresponds to the upper electrode
  • the collector electrode 43 corresponds to the lower electrode.
  • the emitter electrode 42 has a Ni layer formed using a material whose main component is Ni (nickel).
  • the emitter electrode 42 of this embodiment is formed using a material whose main component is Al (aluminum), and includes an Al layer and a Ni layer stacked on the Al layer.
  • the collector electrode 43 also has an Al layer and a Ni layer.
  • the pad 44 is a signal electrode.
  • the pad 44 is formed on one surface of the semiconductor substrate 41 in a region different from the region where the emitter electrode 42 is formed.
  • the pad 44 is formed at the end opposite to the region where the emitter electrode 42 is formed in the Y direction.
  • the pad 44 is provided in parallel with the emitter electrode 42 in the Y direction.
  • the number of pads 44 is not particularly limited.
  • Pad 44 includes at least a pad for a gate electrode.
  • the semiconductor element 40 has five pads 44. Specifically, it has a gate electrode, an emitter potential detection, a cathode potential detection of a temperature-sensitive diode (not shown) included in the semiconductor element 40, an anode potential detection, and a current sensing.
  • the five pads 44 are lined up along the X direction.
  • the semiconductor device 20 includes two semiconductor elements 40. Specifically, it includes a semiconductor element 40H that constitutes an upper arm 9H, and a semiconductor element 40L that constitutes a lower arm 9L.
  • the semiconductor element 40H is sometimes referred to as a first semiconductor element, an upper arm element, or the like.
  • the semiconductor element 40L is sometimes referred to as a second semiconductor element, a lower arm element, or the like.
  • the semiconductor elements 40H and 40L have similar specifications, that is, they are common members.
  • Semiconductor elements 40H and 40L are lined up in the X direction.
  • the semiconductor elements 40H and 40L are arranged at substantially the same position in the Z direction.
  • the semiconductor elements 40H and 40L are arranged so that their surfaces, that is, their emitter electrodes 42 are located on the same side in the Z direction.
  • the heat sink 50 is electrically connected to the emitter electrode 42 and provides a wiring function.
  • heat sink 60 is electrically connected to collector electrode 43 and provides a wiring function.
  • the heat sinks 50 and 60 provide a heat dissipation function for dissipating heat generated by the semiconductor element 40.
  • the heat sinks 50 and 60 are sometimes referred to as wiring members, conductive members, heat radiating members, and the like.
  • the heat sinks 50 and 60 are arranged to sandwich the semiconductor element 40 in the Z direction.
  • the heat sinks 50 and 60 are arranged so that at least a portion thereof faces each other in the Z direction.
  • the heat sinks 50 and 60 enclose the semiconductor element 40 in a plan view.
  • the heat sinks 50 and 60 are metal plates made of a metal with good conductivity such as Cu or Cu alloy.
  • the metal plate is provided, for example, as part of a lead frame.
  • the heat sinks 50 and 60 have a Ni layer formed by plating or the like on their surfaces.
  • the heat sinks 50 and 60 have a Ni layer on at least the solder joint surface.
  • the wiring member instead of the heat sinks 50 and 60, a substrate having metal bodies arranged on both sides of an insulating base material such as ceramic or resin may be used.
  • the metal body on the semiconductor element 40 side corresponds to a conductor to be soldered, that is, an upper conductor and a lower conductor.
  • the metal body on the semiconductor element 40 side has a Ni layer on the surface.
  • the heat sink 50 has a facing surface 50a that is a surface on the semiconductor element 40 side, and a back surface 50b that is a surface opposite to the facing surface 50a.
  • the heat sink 60 also has a facing surface 60a and a back surface 60b.
  • the back surfaces 50b and 60b of the heat sinks 50 and 60 are exposed from the sealing body 30, respectively.
  • the back surfaces 50b and 60b are sometimes referred to as heat radiation surfaces, exposed surfaces, and the like.
  • the back surface 50b of the heat sink 50 is substantially flush with the one surface 30a of the sealing body 30.
  • the back surface 60b of the heat sink 60 is substantially flush with the back surface 30b of the sealing body 30.
  • the semiconductor device 20 includes two heat sinks 50. Specifically, it includes a heat sink 50H that constitutes the upper arm 9H and a heat sink 50L that constitutes the lower arm 9L.
  • the heat sink 50H corresponds to the first main body of the first upper conductor
  • the heat sink 50L corresponds to the second main body of the second upper conductor.
  • the heat sinks 50H and 50L have a substantially rectangular planar shape.
  • the heat sinks 50H and 50L are arranged in the X direction.
  • the heat sinks 50H and 50L have substantially the same thickness and are arranged at substantially the same position in the Z direction.
  • the heat sinks 50H and 50L include the corresponding semiconductor elements 40 and conductive spacers 70 in plan view.
  • Grooves 51 for accommodating overflowing solder are formed in the opposing surfaces 50a of each of the heat sinks 50H and 50L. Groove 51 surrounds the solder joint on opposing surface 50a.
  • the groove 51 is formed, for example, in an annular shape.
  • the back surfaces 50b of the heat sinks 50H and 50L exposed from the sealing body 30 are aligned in the X direction.
  • the semiconductor device 20 includes two heat sinks 60. Specifically, it includes a heat sink 60H that constitutes the upper arm 9H and a heat sink 60L that constitutes the lower arm 9L.
  • the heat sink 60H corresponds to the first lower conductor
  • the heat sink 60L corresponds to the second lower conductor.
  • the heat sinks 60H and 60L have a substantially rectangular shape in plan.
  • the heat sinks 60H and 60L are arranged in the X direction.
  • the heat sinks 60H and 60L have substantially the same thickness and are arranged at substantially the same position in the Z direction.
  • the heat sinks 60H and 60L include corresponding semiconductor elements 40 in a plan view.
  • the back surfaces 60b of the heat sinks 60H and 60L exposed from the sealing body 30 are aligned in the X direction.
  • the conductive spacer 70 is interposed between the semiconductor element 40 and the heat sink 50 in the Z direction.
  • the conductive spacer 70 provides a spacer function to ensure a predetermined distance between the semiconductor element 40 and the heat sink 50.
  • the conductive spacer 70 ensures a height for electrically connecting the corresponding signal terminal 94 to the pad 44 of the semiconductor element 40 .
  • the conductive spacer 70 is located in the middle of the electrical and thermal conduction path between the emitter electrode 42 of the semiconductor element 40 and the heat sink 50, and provides a wiring function and a heat dissipation function.
  • the conductive spacer 70 constitutes an upper conductor together with the heat sink 50.
  • the conductive spacer 70 is a metal member made of a metal with good electrical conductivity and thermal conductivity, such as Cu.
  • the conductive spacer 70 is sometimes referred to as a terminal, a terminal block, a metal block, or the like.
  • the conductive spacer 70 has a Ni layer formed by plating or the like on its surface.
  • the conductive spacer 70 has a Ni layer on at least the solder joint surface.
  • the conductive spacer 70 of this embodiment is a columnar body having a substantially rectangular planar shape and having substantially the same size as the emitter electrode 42 in plan view.
  • the semiconductor device 20 includes two conductive spacers 70. Specifically, it includes a conductive spacer 70H that constitutes an upper arm 9H and a conductive spacer 70L that constitutes a lower arm 9L.
  • the conductive spacer 70H corresponds to a first spacer portion of the first upper conductor
  • the conductive spacer 70L corresponds to a second spacer portion of the second upper conductor.
  • the joint parts 80 to 82 connect the elements that make up the upper and lower arm circuit 9.
  • the joints 80 to 82 connect the elements constituting the semiconductor device 20.
  • the joints 80 to 82 are metal members made of a metal with good electrical conductivity and thermal conductivity, such as Cu.
  • the joint parts 80 to 82 have a Ni layer formed by plating or the like on their surfaces.
  • the joints 80 to 82 have a Ni layer on at least the solder joint surfaces.
  • the joint portion 80 is connected to the heat sink 60L.
  • the thickness of the joint portion 80 is thinner than the heat sink 60L.
  • the joint portion 80 is, for example, substantially flush with the opposing surface 60a of the heat sink 60L, and continues to the opposing surface (side surface) of the heat sink 60H.
  • the joint portion 80 has two bent portions and has a substantially crank shape in the ZX plane.
  • the joint portion 80 is covered by the sealing body 30.
  • the joint portion 80 may be continuously and integrally provided with respect to the heat sink 60L, or may be provided as a separate member and connected by bonding.
  • the joint portion 80 of this embodiment is provided integrally with the heat sink 60L as a part of the lead frame.
  • the Ni layer is continuously and integrally provided to the heat sink 60L and the joint portion 80.
  • the joint parts 81 and 82 are connected to the corresponding heat sinks 50.
  • the joint portion 81 is connected to the heat sink 50H.
  • the joint portion 82 is connected to the heat sink 50L.
  • the thickness of the joint parts 81 and 82 is thinner than that of the corresponding heat sink 50.
  • the joint parts 81 and 82 are covered with the sealing body 30.
  • the joint parts 81 and 82 may be connected by being continuously provided integrally with the heat sink 50, or may be provided as separate members and connected by joining.
  • the joint parts 81 and 82 of this embodiment are provided integrally with the corresponding heat sinks 50H and 50L.
  • the joint parts 81 and 82 extend in the X direction from the mutually opposing side surfaces of the heat sinks 50H and 50L.
  • the Ni layer is continuously and integrally provided to the heat sink 50H and the joint portion 81.
  • the Ni layer is continuously and integrally provided to the heat sink 50L and the joint portion 82.
  • the heat sink 50H including the joint portion 81 and the heat sink 50L including the joint portion 82 are common members.
  • the arrangement of the heat sink 50H including the joint portion 81 and the heat sink 50L including the joint portion 82 is two-fold symmetrical with respect to the Z axis as the rotation axis.
  • Solder is interposed between the opposing surfaces of the joint portion 80 and the joint portion 81 to form a solder joint.
  • the joint parts 81 and 82 are arranged between the heat sinks 50H and 50L in plan view.
  • the joint parts 81 and 82 are arranged in the Y direction between the heat sinks 50H and 50L.
  • a groove 83 is formed in the joint surfaces of the joint parts 81 and 82 to accommodate overflowing solder.
  • the groove 83 is formed in an annular shape so as to surround the solder joint.
  • the groove 83 is formed, for example, by press working.
  • the joint parts 80 and 81 correspond to a joint conductor and a first joint conductor.
  • the joint portion 82 corresponds to a second joint conductor.
  • the external connection terminal 90 is a terminal for electrically connecting the semiconductor device 20 to external equipment.
  • the external connection terminal 90 is formed using a metal material with good conductivity, such as copper.
  • the external connection terminal 90 is, for example, a plate material.
  • the external connection terminal 90 is sometimes called a lead.
  • the external connection terminal 90 includes main terminals 91 , 92 , 93 and a signal terminal 94 .
  • the main terminals 91 , 92 , and 93 are external connection terminals 90 electrically connected to the main electrodes of the semiconductor element 40 .
  • the main terminal 91 is electrically connected to the collector electrode 43 of the semiconductor element 40H.
  • Main terminal 91 is electrically connected to the positive terminal of smoothing capacitor 5 .
  • the main terminal 91 is sometimes referred to as a P terminal, a high potential power supply terminal, or the like.
  • the main terminal 91 is connected to the collector electrode 43 of the semiconductor element 40H via the heat sink 60H.
  • the main terminal 91 is connected to one end of the heat sink 60H in the Y direction.
  • the thickness of the main terminal 91 is thinner than the heat sink 60H.
  • the main terminal 91 is connected to the heat sink 60H, for example, so as to be substantially flush with the opposing surface 60a.
  • the main terminal 91 may be continuously and integrally provided with respect to the heat sink 60H, or may be provided as a separate member and connected by bonding.
  • the main terminal 91 of this embodiment is provided integrally with the heat sink 60H as part of the lead frame.
  • the main terminal 91 extends from the heat sink 60H in the Y direction and projects outward from the side surface 30c of the sealing body 30.
  • the main terminal 91 has a bent part in the middle of the portion covered by the sealing body 30, and protrudes from near the center in the Z direction on the side surface 30c.
  • the main terminal 92 is electrically connected to the emitter electrode 42 of the semiconductor element 40L.
  • Main terminal 92 is electrically connected to the negative terminal of smoothing capacitor 5 .
  • the main terminal 92 is sometimes referred to as an N terminal, a low potential power supply terminal, or the like.
  • the main terminal 92 is connected to the emitter electrode 42 of the semiconductor element 40L via the joint portion 82, the heat sink 50L, and the conductive spacer 70L.
  • the main terminal 92 extends in the Y direction and protrudes outside the sealing body 30 from the same side surface 30c as the main terminal 91.
  • the main terminal 92 has a connecting portion 920 with the joint portion 82 near one end in the Y direction. A portion of the main terminal 92 including the connection portion 920 is covered by the sealing body 30, and the remaining portion protrudes from the sealing body 30.
  • the connecting portion 920 is thicker than the portion protruding from the sealing body 30.
  • the plate thickness of the connecting portion 920 is, for example, approximately the same thickness as the heat sink 50L.
  • the main terminal 92 also has a bent portion like the main terminal 91, and protrudes from near the center in the Z direction on the side surface 30c.
  • the main terminal 92 has a Ni layer formed by plating or the like on its surface.
  • the main terminal 92 has a Ni layer at least on the solder joint surface of the connecting portion 920 .
  • the main terminal 93 is connected to the connection point between the upper arm 9H and the lower arm 9L.
  • the main terminal 93 is electrically connected to the emitter electrode 42 of the semiconductor element 40H and the collector electrode 43 of the semiconductor element 40L.
  • Main terminal 93 is electrically connected to winding 3 a of the corresponding phase of motor generator 3 .
  • the main terminal 93 is sometimes referred to as an output terminal, an AC terminal, an O terminal, or the like.
  • the main terminal 93 is electrically connected to the emitter electrode 42 of the semiconductor element 40H via the heat sink 60L, the joints 80 and 81, the heat sink 50H, and the conductive spacer 70H.
  • the main terminal 93 is connected to the collector electrode 43 of the semiconductor element 40L via the heat sink 60L.
  • the main terminal 93 is connected to one end of the heat sink 60L in the Y direction.
  • the thickness of the main terminal 93 is thinner than the heat sink 60L.
  • the main terminal 93 is connected to the heat sink 60L, for example, so as to be substantially flush with the opposing surface 60a.
  • the main terminal 93 may be continuously and integrally provided with respect to the heat sink 60L, or may be provided as a separate member and connected by bonding.
  • the main terminal 93 of this embodiment is provided integrally with the heat sink 60L as a part of the lead frame.
  • the main terminal 93 extends from the heat sink 60L in the Y direction, and protrudes outside the sealing body 30 from the same side surface 30c as the main terminal 91.
  • the main terminal 93 also has a bent portion like the main terminal 91, and protrudes from near the center in the Z direction on the side surface 30c.
  • the three main terminals 91 to 93 are arranged in the order of main terminal 91, main terminal 92, and main terminal 93 in the X direction.
  • the signal terminals 94 are electrically connected to the corresponding pads 44 of the semiconductor element 40.
  • the signal terminal 94 of this embodiment is electrically connected to the pad 44 via a bonding wire 97.
  • the signal terminal 94 extends in the Y direction and projects outward from the side surface 30d of the sealing body 30.
  • the semiconductor device 20 includes five signal terminals 94 for one semiconductor element 40, that is, a total of ten signal terminals 94.
  • the plurality of signal terminals 94 are arranged in line in the X direction.
  • the signal terminal 94 is configured, for example, on a common lead frame with the heat sink 60 and the main terminals 91 to 93.
  • the semiconductor device 20 is equipped with a hanging lead 95.
  • the heat sink 60 (60H, 60L), the joint portion 81, the main terminals 91 to 93, and the signal terminal 94 are configured in a lead frame that is a common member.
  • the lead frame is a irregularly shaped strip with partially different thicknesses.
  • the signal terminal 94 is supported by a hanging lead 95 via a tie bar (not shown) before being cut. Unnecessary parts of the lead frame, such as the tie bars and the outer peripheral frame, are cut (removed) after the sealing body 30 is molded.
  • the semiconductor device 20 includes a plurality of solders 100 for connecting elements.
  • Solder 100 includes solders 101H, 101L, 102H, 102L, 103H, 103L, 104, and 105.
  • Solder 101H is interposed between emitter electrode 42 of semiconductor element 40H and conductive spacer 70H, and joins emitter electrode 42 and conductive spacer 70H.
  • Solder 102H is interposed between conductive spacer 70H and heat sink 50H, and joins conductive spacer 70H and heat sink 50H.
  • Solders 101H and 102H correspond to the first upper solder.
  • Solder 103H is interposed between collector electrode 43 of semiconductor element 40H and heat sink 60H, and joins collector electrode 43 and heat sink 60H.
  • Solder 103H corresponds to the first lower solder.
  • solder 101L is interposed between the emitter electrode 42 of the semiconductor element 40L and the conductive spacer 70L, and joins the emitter electrode 42 and the conductive spacer 70L.
  • Solder 102L is interposed between conductive spacer 70L and heat sink 50L, and joins conductive spacer 70L and heat sink 50L.
  • Solders 101L and 102L correspond to second upper solder.
  • the solder 103L is interposed between the collector electrode 43 of the semiconductor element 40L and the heat sink 60L, and joins the collector electrode 43 and the heat sink 60L.
  • the solder 103L corresponds to the second lower solder.
  • solders 101H and 101L are sometimes referred to as on-device solder.
  • the solders 102H and 102L are sometimes referred to as solder on the spacer.
  • Solders 103H and 103L are sometimes referred to as under-element solder.
  • the solder 104 electrically connects the heat sink 50H and the heat sink 60L together with the joint parts 80 and 81.
  • the solder 104 of this embodiment is interposed between the joint part 80 connected to the heat sink 60L and the joint part 81 connected to the heat sink 50H, and joins the joint parts 80 and 81.
  • the solder 104 corresponds to a relay solder, a first relay solder.
  • Solder 105 electrically connects heat sink 50L and main terminal 92 together with joint portion 82 .
  • the solder 105 of this embodiment is interposed between the joint part 82 connected to the heat sink 50L and the connection part 920 of the main terminal 92, and joins the joint part 82 and the main terminal 92.
  • Solder 105 corresponds to second relay solder.
  • Each of the plurality of solders 100 contains Cu and Sn.
  • the solder 100 is, for example, a multi-component lead-free solder containing Cu, Bi, Sb, etc., with the remainder being Sn.
  • the thickness of each solder 100 is, for example, about 100 ⁇ m.
  • the sealing body 30 includes a plurality of semiconductor elements 40, a portion of each of the heat sinks 50, a portion of each of the heat sinks 60, a conductive spacer 70, a portion of each of the joints 80 to 82, main terminals 91 to 93, and a portion of each of the signal terminals 94. , integrally sealed.
  • the semiconductor element 40 is arranged between the heat sinks 50 and 60 in the Z direction.
  • the semiconductor element 40 is sandwiched between heat sinks 50 and 60 that are arranged opposite to each other. Thereby, the heat of the semiconductor element 40 can be radiated to both sides in the Z direction.
  • the semiconductor device 20 has a double-sided heat dissipation structure.
  • the back surface 50b of the heat sink 50 is substantially flush with the one surface 30a of the sealing body 30.
  • the back surface 60b of the heat sink 60 is substantially flush with the back surface 30b of the sealing body 30. Since the back surfaces 50b and 60b are exposed surfaces, heat dissipation can be improved.
  • an Au layer may be provided on the above-mentioned Ni layer by plating or the like.
  • Au suppresses oxidation of Ni and improves wettability with solder. Since Au diffuses into the solder during soldering, it exists in the state before bonding and does not exist in the bonded state.
  • FIG. 7 shows, as an example, the output current and return current regarding the semiconductor element 40H on the upper arm 9H side.
  • the output current is shown by a dashed arrow
  • the return current is shown by a dashed-dotted arrow.
  • the output current flows during IGBT operation.
  • the output current on the upper arm 9H side flows from the main terminal 91 to the motor generator 3 via the IGBT 11 of the semiconductor element 40H and the main terminal 93.
  • main terminal 91 P terminal
  • heat sink 60H ⁇ semiconductor element 40H IGBT11
  • Freewheeling current flows when the diode operates.
  • the return current on the upper arm 9H side flows in the opposite direction to the output current, that is, from the main terminal 93 to the DC power supply 2 side via the diode 12 of the semiconductor element 40H and the main terminal 91.
  • the main terminal 93 (O terminal) ⁇ heat sink 60L ⁇ joint part 80 ⁇ joint part 81 ⁇ heat sink 50H ⁇ conductive spacer 70H ⁇ semiconductor element 40H (diode 12) It flows through the path of ⁇ heat sink 60H ⁇ main terminal 91 (P terminal).
  • the output current flows along a path from the main terminal 93 to the IGBT 11 of the semiconductor element 40L to the main terminal 92.
  • the return current flows along a path from the main terminal 92 to the diode 12 of the semiconductor element 40L to the main terminal 93.
  • FIG. 8 is a cross-sectional view showing the joint structure of the joint parts 80 and 81 in the semiconductor device 20 according to this embodiment.
  • FIG. 8 is an enlarged cross-sectional view of region VIII indicated by a dashed line in FIG. 3.
  • FIG. 8 For convenience, the wire piece 120 is not shown in FIG. 8 .
  • FIG. 9 is a cross-sectional view showing the wire piece 120 provided on the surface of the joint portion 80. In FIG. 9, the alloy layer 110 is omitted for convenience.
  • FIG. 10 is a sectional view showing a reference example.
  • FIG. 10 corresponds to FIG. 8. In the reference example, the reference numeral of each element is such that r is added to the end of the reference numeral of the related element of the semiconductor device 20.
  • the joint portion 80 has a Cu-based base material 800 and a Ni layer 801 provided on the base material 800.
  • the joint portion 81 also has a Cu base material 810 and a Ni layer 811 provided on the base material 810.
  • the Ni layers 801 and 811 are NiP formed by electroless plating.
  • the Ni layers 801 and 811 are Ni plating films containing P.
  • the semiconductor device 20 includes an alloy layer 110 interposed between the Ni layer 801 and the solder 104, and an alloy layer 111 interposed between the Ni layer 801 and the solder 104. Alloy layers 110, 111 are sometimes referred to as IMC. IMC is an abbreviation for Intermetallic Compound. The alloy layers 110, 111 are formed during solder bonding. Alloy layers 110 and 111 contain Ni, Cu, and Sn. The composition of the alloy layers 110 and 111 is, for example, (Ni—Cu) 3 Sn 4 .
  • the semiconductor device 20 further includes P-rich layers 802 and 812.
  • P-rich layer 802 is formed on the surface of Ni layer 801.
  • P-rich layer 812 is formed on the surface of Ni layer 811.
  • the P-rich layers 802 and 812 are formed by partially diffusing Ni in the Ni layers 801 and 811 to the solder 104 side during bonding.
  • the P-rich layers 802 and 812 are layers richer in P than the Ni layers 801 and 811 (NiP).
  • the composition of the P-rich layers 802 and 812 is, for example, Ni 3 P.
  • At least one of the joint parts 80, 81 has a plurality of wire pieces 120 on the solder joint surface.
  • the wire piece 120 is a small piece of bonding wire.
  • the wire piece 120 is sometimes referred to as a protrusion or stud bond.
  • Wire piece 120 is placed within solder 104 .
  • a plurality of wire pieces 120 are distributed within the solder 104. By appropriately setting the height of the wire piece 120, it is also possible to guarantee the minimum thickness of the solder 104.
  • the plurality of wire pieces 120 are fixed (bonded) to a first opposing surface, which is one of the opposing surfaces constituting the solder joint, and protrude toward a second opposing surface, which is the other opposing surface.
  • a wire piece 120 is provided on the solder joint surface of the joint portion 80.
  • the wire pieces 120 are provided, for example, at a predetermined pitch.
  • the surface of the joint portion 80 has an uneven shape.
  • the solder 104 begins to grow in grains starting from the wire piece 120 when the solder 104 solidifies. Grain boundaries 106 are formed by collision of adjacent grains. The crystal grains grow starting from a corner of the wire piece 120, for example, an upper corner. Therefore, the particle size of the solder 104 is smaller than, for example, the particle size of the solders 103H and 103L. As described above, the thickness of the solder 104 is about 100 ⁇ m. The particle size of the solder 104 is smaller than the thickness of the solder 104, that is, 100 ⁇ m.
  • the particle size of the solder 104 is not controlled.
  • the particle size of the solder 104r is approximately 100 ⁇ m. Only one or two crystal grains of the solder 104r exist in the thickness direction (Z direction) of the solder 104.
  • wire pieces 120 are not placed on solders 103H and 103L among the plurality of solders 100.
  • the particle diameters of the solders 103H and 103L are the same as those of the comparative example shown in FIG.
  • the particle size of the solder 103H and 103L is larger than that of the solder 104 on which the wire piece 120 is placed.
  • FIG. 11 is a reference diagram showing the mechanism of EM progression. Also in FIG. 11, the reference numeral of each element is such that r is added to the end of the reference numeral of the related element of the semiconductor device 20. In the example shown in the reference diagram, the particle size of the solder 104r is not controlled, similar to the configuration shown in FIG. The other configurations are the same as the semiconductor device 20 of this embodiment.
  • FIG. 11 shows the initial stage before energization.
  • An alloy layer 110r is interposed between the Ni layer 801r and the solder 104r. Furthermore, a P-rich layer 802r is formed on the surface of the Ni layer 801r.
  • 2nd, 3rd, and 4th in FIG. 11 indicate when the output current is applied.
  • the dashed arrow indicates the direction in which electrons (e-) flow.
  • Cu of the alloy layer 110r moves (diffuses) toward the joint portion 81r.
  • metal such as Cu is ionized and moves toward the joint portion 81r.
  • the alloy layer 110r gradually becomes thinner and disappears as shown at 3rd in FIG. 11.
  • Ni in the Ni layer 801r moves (diffuses) toward the joint part 81r due to the movement of electrons, the Ni layer 801r decreases, and the P-rich layer 802r decreases. To increase. Then, as shown at 4th in FIG. 11, the Ni layer 801r disappears, and the P-rich layer 802r reaches the base material 800r. In other words, the P-rich layer 802r replaces the Ni layer 801r.
  • the adhesion deteriorates and, for example, voids occur. Furthermore, cracks occur along the interface starting from the voids. Furthermore, cracks may also occur in the P-rich layer 802r.
  • the particle size of the solder 104r is large. There are few grain boundaries in the Cu movement path. Therefore, Cu in the alloy layer 110r is likely to move as electrons move.
  • the particle size of the solder 104 at the junction of the joint parts 80 and 81 where the current density is high is smaller than the particle size of the solder 103H and 103L, which do not control the solder particle size. . Therefore, Cu in the alloy layers 110 and 111 is difficult to move as electrons move. In other words, the alloy layers 110 and 111 are difficult to disappear. It takes longer for the alloy layers 110 and 111 to disappear. This delays the time when the Ni layers 801 and 811 become P-rich layers 802 and 812 and begin to decrease. It takes a long time for the Ni layers 801 and 811 to disappear.
  • the area of the collector electrode 43 which is the main electrode on the high potential side, is larger than the area of the emitter electrode 42, which is the main electrode on the low potential side. Furthermore, because of the miniaturization of the semiconductor device 20, it is difficult to increase the area of the solder joints of the joints 80 and 81 and the solder joint of the joint 82. As a result, in the semiconductor device 20 constituting the upper and lower arm circuit 9 for one phase, the current density of the solders 101H, 101L, 102H, 102L, 104, and 105 becomes higher than the current density of the solders 103H and 103L.
  • EM tends to progress at the joints of the solders 101H, 101L, 102H, 102L, 104, and 105 among the plurality of solders 100.
  • EM is difficult to progress at the joint between the solders 103H and 103L.
  • the particle size of the solder 104 (relay solder, first relay solder) is smaller than the particle size of the solders 103H and 103L (first lower solder and second lower solder).
  • Solder 104 has more grain boundaries 106 between connection targets. The grain boundaries 106 inhibit the movement of Cu. Therefore, Cu in the alloy layers 110 and 111 is difficult to move as electrons move. Therefore, the time required for the alloy layers 110 and 111 to disappear can be lengthened. Furthermore, the time required for the Ni layers 801 and 811 to disappear can be lengthened. As described above, the EM life can be improved.
  • the current density of the semiconductor device 20, that is, the current density of the current-carrying path connected to the main electrode, is maximum at the solder joints of the joints 80 and 81, for example.
  • the particle size of the solder 104 is made small, the EM life can be improved.
  • the effect of the particle size of the solder 104 has been confirmed through trial production. It was confirmed that by reducing the grain size of the solder 104, the disappearance of the alloy layers 110 and 111 was slowed down, that is, the progress of EM could be slowed down. At this time, Ni layers 801 and 811 were formed by electroless NiP plating. The composition of the alloy layers 110 and 111 was (Ni—Cu) 3 Sn 4 .
  • the joint portion 80 has a plurality of wire pieces 120 on the solder joint surface.
  • Solder 104 solidifies starting from wire piece 120 .
  • the wire piece 120 is the starting point for solidification.
  • a wire piece 120 may be provided on the solder joint surface of the joint portion 81. This also causes the solder 104 to solidify starting from the wire piece 120 and become small particles.
  • a wire piece 120 may be provided in each of the joint parts 80 and 81. In other words, it may be provided for at least one of the connection targets.
  • solder 104 is shown as a small particle solder with a small particle size, the present invention is not limited to this. At least one of the plurality of solders 100 other than solders 103H and 103L can be used as the small-grain solder.
  • the solder 105 may be small-grain solder.
  • the particle size of the solder 105 can be made smaller than the particle size of the solders 103H and 103L. Thereby, progress of EM at the joint of the solder 105 can be suppressed.
  • the solders 101H and 101L may be small-grain solder.
  • the particle size of the solder 101H, 101L can be made smaller than the particle size of the solder 103H, 103L. Thereby, it is possible to suppress the progress of EM at the joint between the solders 101H and 101L. This is effective in reducing the size of the semiconductor element 40.
  • the solders 102H and 102L may be small-grain solder.
  • the particle size of the solder 102H, 102L can be made smaller than the particle size of the solder 103H, 103L. Thereby, it is possible to suppress the progress of EM at the joint between the solders 102H and 102L. Similar to reducing the size of the solder particles 101H and 101L, this is effective in reducing the size of the semiconductor element 40.
  • the arrangement of the plurality of wire pieces 120 is not particularly limited.
  • a plurality of wire pieces 120 may be provided at a portion of the solder joint surface of the conductive spacer 70 that overlaps with the vicinity of the center of the semiconductor element 40. EM progresses as the temperature becomes higher and the current density becomes higher.
  • EM progresses as the temperature becomes higher and the current density becomes higher.
  • a plurality of wire pieces 120 may be provided on the solder joint surface of the conductive spacer 70 at portions that overlap with the four corners of the emitter electrode 42. The temperature at the four corners is low and the solder solidifies easily. This can promote particle size reduction.
  • the arrangement of the wire pieces 120 shown in FIG. 12 is not limited to the conductive spacer 70.
  • the emitter electrode 42 may be provided near the center of the element or may be provided at the four corners. In the heat sink 50, it may be provided in a portion that overlaps with the vicinity of the element center, or may be provided in a portion that overlaps with the four corners.
  • the present invention is not limited to this.
  • the heat sink 50 may be provided with a protrusion that provides a spacer function.
  • the heat sink 50 corresponds to the upper conductor.
  • Top solder is interposed between emitter electrode 42 and heat sink 50 and joins emitter electrode 42 and heat sink 50 together.
  • a plurality of wire pieces 120 may be provided on the solder joint surface of the emitter electrode 42 and/or the heat sink 50 to refine the top solder.
  • the present invention is not limited to this.
  • the heat sink 50L, the joint portion 82, and the main terminal 92 may be continuously and integrally provided.
  • the semiconductor device 20 may be configured without the solder 105.
  • the semiconductor device 20 includes two joint parts 80 and 81 for connecting the upper arm 9H and the lower arm 9L
  • the present invention is not limited to this. Only one of the joint parts 80 and 81 may be provided.
  • a configuration may be adopted in which only the joint portion 80 is provided, and the joint portion 80 is connected to the heat sink 50H via the solder 104.
  • a configuration may be adopted in which only the joint portion 81 is provided, and the joint portion 81 is connected to the heat sink 60L via the solder 104.
  • This embodiment is a modification based on the previous embodiment, and the description of the previous embodiment can be used.
  • multiple pieces of wire were provided as starting points for solidification.
  • an uneven oxide film may be provided by laser irradiation.
  • FIG. 13 is a cross-sectional view showing the uneven oxide film 803 provided on the surface of the joint portion 80 in the semiconductor device 20 according to this embodiment.
  • FIG. 13 corresponds to FIG. 9.
  • the P-rich layer 802 and the alloy layer 110 are omitted for convenience.
  • the joint portion 80 includes a base material 800 and a Ni layer 801 provided on the surface of the base material 800. As shown in FIG. 13, the joint portion 80 further includes an uneven oxide film 803 provided on the Ni layer 801. The uneven oxide film 803 is dispersedly formed at a plurality of locations on the solder joint surface of the joint portion 80 by irradiating the Ni layer 801 with a laser beam.
  • the uneven oxide film 803 is an oxide film containing Ni as a main component.
  • 80% is NI 2 O 3
  • 10% is NiO
  • 10% is Ni.
  • the recess 801a on the surface of the Ni layer 801 is formed by irradiation with pulsed laser light. One recess 801a is formed for each pulse.
  • the uneven oxide film 803 is formed by melting and vaporizing the surface layer portion of the Ni layer 801 by irradiating it with laser light, and then depositing it.
  • the uneven oxide film 803 is an oxide film derived from the Ni layer 801.
  • the uneven oxide film 803 is an oxide film of metal (Ni), which is the main component of the Ni layer 801 .
  • the uneven oxide film 803 is formed to follow the unevenness of the surface of the Ni layer 801 having the recesses 801a. On the surface of the uneven oxide film 803, unevenness is formed at a pitch finer than the width of the recess 801a. That is, very fine irregularities (roughened portions) are formed.
  • the pulsed laser beam is adjusted to have an energy density of greater than 0 J/cm 2 and less than 100 J/cm 2 and a pulse width of 1 ⁇ sec or less.
  • a YAG laser, a YVO 4 laser, a fiber laser, or the like can be used.
  • the energy density is 1 J/cm 2 or more.
  • the Ni layer 801 can be processed even at about 5 J/cm 2 , for example.
  • the oxide film (uneven oxide film 803) has lower wettability to solder than a metal film. Since the uneven oxide film 803 has fine unevenness on its surface, the contact area with the solder becomes small, and a portion of the solder becomes spherical due to surface tension. In other words, the contact angle is large and the wettability to solder is low.
  • the uneven oxide film 803 has low wettability with respect to the solder 104. Therefore, as shown in FIG. 13, voids 121 are formed so as to cover the uneven oxide film 803. A void 121 is formed around the uneven oxide film 803. In the semiconductor device 20, a plurality of voids 121 exist near the solder joint surface of the joint portion 80. The other configurations are the same as those described in the preceding embodiment.
  • a plurality of voids 121 originating from the uneven oxide film 803 exist within the solder 104 .
  • the void 121 is the starting point of solidification.
  • the present invention is not limited thereto.
  • the conductors to be connected it can be provided on other conductors other than the heat sink 60.
  • an uneven oxide film may be provided on the solder joint surface of the joint portion 81.
  • An uneven oxide film may be provided on each of the joint portions 80 and 81.
  • An uneven oxide film may be provided on the solder joint surface of the heat sink 50.
  • An uneven oxide film may be provided on the solder joint surface of the conductive spacer 70.
  • the arrangement of the uneven oxide film is not particularly limited. They may be distributed at a predetermined pitch. As shown in FIG. 12, the heat sink 50 or the conductive spacer 70 may be provided in a portion that overlaps with the vicinity of the center of the element, or may be provided in a portion that overlaps with the four corners.
  • solder particle size was reduced by providing wire pieces and uneven oxide films.
  • unevenness may be provided at the inner circumferential end of the groove for accommodating overflowing solder.
  • FIG. 14 is a plan view showing the heat sink 50H including the joint portion 81 in the semiconductor device 20 according to the present embodiment.
  • FIG. 14 is a plan view seen from the facing surface 50a side.
  • FIG. 15 is an enlarged view of region XV indicated by a dashed line in FIG. 14.
  • FIG. 15 shows the solder 104 placed on the joint portion 81. In FIG. 15, only part of the grain boundary 106 is shown.
  • the joint portion 81 is continuously and integrally provided with the heat sink 50H.
  • the heat sink 50H has a groove 51.
  • the joint portion 81 has a groove 83.
  • the inner peripheral end 830 of the groove 83 has a continuous uneven shape.
  • the joint portion 81 has an uneven portion 831 at the inner peripheral end 830 of the groove 83 .
  • the uneven portion 831 is provided over the entire length of the groove 83.
  • the solder 104 grows in grains during solidification, starting from the recesses and/or projections of the uneven portion 831 provided at the inner peripheral end 830 of the groove 83. Since the crystal grains in the solder 104 grow from the irregularities as starting points, they become smaller.
  • the other configurations are the same as those described in the preceding embodiment.
  • the inner peripheral end 830 of the groove 83 that accommodates the overflowing solder 104 has a continuous uneven shape.
  • the uneven portion 831 is the starting point of solidification.
  • the uneven portion 831 is provided over the entire length of the groove 83
  • the present invention is not limited to this.
  • the uneven portion 831 may be provided on at least a portion of the entire length of the groove 83 .
  • the grain size of the solder 104 can be made smaller than the grain size of the solders 103H and 103L.
  • the joint portion 82 will also have an uneven portion 831 at the inner peripheral end 830 of the groove 83.
  • the solder 105 can also be made smaller in size.
  • the uneven portion 831 may be provided at the inner peripheral end of the groove 51 of the heat sink 50. It may be provided at the inner peripheral end of the groove 51 of the heat sink 50H, or may be provided at the inner peripheral end of the groove 51 of the heat sink 50L. An uneven portion may be provided in each of the grooves 51 and 83.
  • FIG. 16 is a cross-sectional view showing the joint structure of the joint parts 80 and 81 in the semiconductor device 20 according to the present embodiment.
  • FIG. 16 corresponds to FIG. 8.
  • conductive balls 122 are added to the solder 104.
  • the ball 122 has Ni or Cu as its main component.
  • Such a ball 122 is sometimes referred to as a Ni ball or a Cu ball.
  • the solder 104 grows grains starting from the balls 122 during solidification. Since the ball 122 is the starting point, the crystal grains of the solder 104 are smaller than in a configuration in which the ball 122 is not added.
  • the other configurations are the same as those described in the preceding embodiment.
  • ⁇ Summary of the fourth embodiment> According to the configuration described in this embodiment, it is possible to achieve the same effects as the configuration described in the preceding embodiment. Specifically, balls 122 are added to the solder 104. When the solder 104 solidifies, grains grow starting from the balls 122. The ball 122 is the starting point of solidification. By providing the balls 122, the particle size of the solder 104 can be made smaller than the particle size of the solders 103H and 103L, and the EM life can be improved.
  • the effect of the ball 122 has also been confirmed in a prototype. It was confirmed that the particle size of the solder 104 was reduced by adding the balls 122. Furthermore, it was confirmed that the disappearance of the alloy layers 110 and 111 was slowed down, that is, the progress of EM could be slowed down. At this time, Ni layers 801 and 811 were formed by electroless NiP plating. The composition of the alloy layers 110 and 111 was (Ni—Cu) 3 Sn 4 .
  • the solder 104 may have a multilayer structure, and the occupancy rate of the balls 122 per unit volume may vary depending on the layer.
  • the solder 104 has a first layer 104a and a second layer 104b.
  • the first layer 104a is a layer on the joint portion 80 side
  • the second layer 104b is a layer on the joint portion 81 side.
  • FIG. 17 corresponds to FIG. 16.
  • grain boundaries 106 are omitted for convenience.
  • the occupation rate of the balls 122 in the first layer 104a is higher than the occupation rate of the balls 122 in the second layer 104b.
  • the first layer 104a has more balls 122 than the second layer 104b.
  • the occupation rate of the balls 122 in the first layer 104a can be made higher than the occupation rate of the balls 122 in the second layer 104b. Good too. Both the amount and diameter of the balls may be varied.
  • the occupation rate of the balls 122 in the second layer 104b may be higher than the occupation rate of the balls 122 in the first layer 104a.
  • the two-layer structure of the solder 104 can be realized, for example, by arranging two layers of solder foil with different ball contents. Alternatively, three layers of solder foil without balls may be stacked, and the amount and/or diameter of the balls 122 disposed between the solder foils may be varied.
  • the number of layers of solder 104 is not limited to two layers. It may have three or more layers.
  • the ball 122 may be placed on at least one of the plurality of solders 100 other than the solders 103H and 103L.
  • Spatial relative terms such as “in”, “out”, “behind”, “below”, “low”, “above”, “high” etc. refer to a single element or feature as illustrated. It is used herein to facilitate descriptions that describe relationships to other elements or features. Spatially relative terms may be intended to encompass different orientations of the device during use or operation in addition to the orientation depicted in the figures. For example, when the device in the figures is turned over, elements described as being “below” or “beneath” other elements or features are oriented “above” the other elements or features. Thus, the term “bottom” can encompass both orientations, top and bottom. The device may be oriented in other directions (rotated 90 degrees or other orientations) and the spatially relative descriptors used in this specification shall be interpreted accordingly. .
  • the vehicle drive system 1 is not limited to the above configuration.
  • one motor generator 3 is provided, the present invention is not limited to this.
  • a plurality of motor generators may be provided.
  • the power conversion device 4 includes the inverter 6 as a power conversion section, the present invention is not limited to this.
  • a configuration may include a plurality of inverters.
  • the configuration may include at least one inverter and a converter. It may also include only a converter.
  • the switching element is not limited to the IGBT 11.
  • a MOSFET may be used.
  • MOSFET is an abbreviation for Metal Oxide Semiconductor Field Effect Transistor.
  • the source electrode corresponds to the upper electrode
  • the drain electrode corresponds to the lower electrode.
  • a parasitic diode body diode
  • an external diode may be used.
  • the semiconductor device 20 may include a plurality of semiconductor elements 40 forming each arm. That is, a plurality of semiconductor elements 40H may be connected in parallel to each other to form one arm 9H, and a plurality of semiconductor elements 40L may be connected to each other in parallel to form one arm 9L.
  • the present invention is not limited to this. At least one of the back surfaces 50b and 60b may be covered with the sealing body 30. At least one of the back surfaces 50b and 60b may be covered with an insulating member (not shown) that is separate from the sealing body 30.
  • the semiconductor device 20 may be configured without the sealing body 30.
  • the semiconductor device 20 includes the sealing body 30, the semiconductor device 20 is not limited to this. It is also possible to adopt a configuration in which the sealing body 30 is excluded.
  • ⁇ Technical philosophy 1> It has a signal pad and an upper electrode which is a main electrode on the upper surface, and a main electrode is on the lower surface which is the opposite surface in the plate thickness direction from the upper surface, and the area when viewed from the plate thickness direction is the upper electrode.
  • the plurality of semiconductor elements constitute a first semiconductor element (40H) constituting an upper arm (9H) of the upper and lower arm circuit (9) and a lower arm (9L) of the upper and lower arm circuit, and are arranged in the thickness direction.
  • the plurality of conductors include a first upper conductor (50H, 70H) connected to the upper electrode of the first semiconductor element via a first upper solder (101H, 102H), and a lower electrode of the first semiconductor element.
  • Each solder contains Cu and Sn, Each of the solder connection targets has a Ni layer (801, 811), A semiconductor device, wherein a grain size of at least one of the first upper solder, the second upper solder, and the relay solder is smaller than the grain size of the first lower solder and the second lower solder.
  • the first upper conductor has a first body portion (50H) and a first spacer portion (70H) interposed between the upper electrode of the first semiconductor element and the first body portion
  • the second upper conductor has a second body portion (50L) and a second spacer portion (70L) interposed between the upper electrode of the second semiconductor element and the second body portion
  • the first upper solder is interposed between the upper electrode of the first semiconductor element and the first spacer portion, and between the first spacer portion and the first body portion
  • the second upper solder is interposed between the upper electrode of the second semiconductor element and the second spacer part, and between the second spacer part and the second main body part.
  • the joint conductor is a first joint conductor that connects the first upper conductor and the second lower conductor via a first relay solder that is the relay solder
  • the plurality of conductors include a main terminal (92) and a second joint conductor (82) that connects the second upper conductor and the main terminal via a second relay solder (105),
  • a solidification starting point for reducing the particle size is provided inside the small-grain solder, which is the solder smaller in particle size than the first lower solder and the second lower solder, or on the surface of the object to be connected with the small-grain solder.
  • the semiconductor device according to any one of Technical Ideas 1 to 3.
  • the conductor to which the small-grain solder is connected has an uneven oxide film (803) on the Ni layer, the main component of which is Ni and whose surface is continuously uneven;
  • the semiconductor device according to technical idea 4 wherein the starting point is a void (121) covering the uneven oxide film.
  • the conductor to which the small grain solder is connected has a groove (83) for accommodating overflowing solder,
  • the inner peripheral end of the groove has a continuous uneven shape,
  • the semiconductor device according to technical idea 4 wherein the starting point is a concave portion and/or a convex portion at an inner peripheral end of the groove.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一相分の上下アーム回路を構成する半導体装置は、はんだ(104)を介して接続された継手部(80、81)を備える。半導体素子の主電極に電気的に接続された複数のはんだのそれぞれは、CuおよびSnを含む。各はんだの接続対象のそれぞれは、Ni層を有する。はんだ(104)はCuおよびSnを含み、継手部(80、81)はNi層(801、811)を有する。はんだ(104)の粒径は、コレクタ電極を接続対象とするはんだの粒径よりも小さい。

Description

半導体装置 関連出願の相互参照
 この出願は、2022年9月2日に日本に出願された特許出願第2022-140168号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 この明細書における開示は、半導体装置に関する。
 特許文献1は、上下アーム回路の上アームを構成する半導体素子と、下アームを構成する半導体素子を備えた半導体装置を開示している。先行技術文献の記載内容は、この明細書における技術的要素の説明として、参照により援用される。
特開2016-92166号公報
 上記した半導体装置は、上アームを構成する半導体素子の低電位側の主電極に接続された導体と、下アームを構成する半導体素子の高電位側の主電極に接続された導体とを、はんだを介して接続する継手導体を備える。継手導体のはんだ接合部の接合面積は小さい。特許文献1では、継手導体のはんだ接合部のEM進行を抑制するために、継手導体にNi層を設けている。EMは、ElectroMigrationの略称である。
 カーボンニュートラルが提唱され、車両のEV化が進む中で、半導体装置にはさらなる小型化、大電流化が求められている。つまり、EM寿命を向上するためのさらなる改善が求められている。上述の観点において、または言及されていない他の観点において、半導体装置にはさらなる改良が求められている。
 本開示はこのような課題に鑑みてなされたものであり、EM寿命を向上できる半導体装置を提供することを目的とする。
 開示のひとつである半導体装置は、
 上面に信号用のパッドと主電極である上部電極を有し、上面とは板厚方向において反対の面である下面に主電極であり、板厚方向から平面視した面積が上部電極よりも大きい下部電極を有する複数の半導体素子と、
 はんだを介して主電極に電気的に接続された複数の導体と、を備え、
 複数の半導体素子は、上下アーム回路の上アームを構成する第1半導体素子と、上下アーム回路の下アームを構成し、板厚方向において上面が同じ側となるように板厚方向に直交する一方向において第1半導体素子と並んで配置された第2半導体素子と、を含み、
 複数の導体は、第1半導体素子の上部電極に第1上部はんだを介して接続された第1上部導体と、第1半導体素子の下部電極に第1下部はんだを介して接続された第1下部導体と、第2半導体素子の上部電極に第2上部はんだを介して接続された第2上部導体と、第2半導体素子の下部電極に第2下部はんだを介して接続された第2下部導体と、第1上部導体と第2下部導体とを中継はんだを介して接続する継手導体と、を含み、
 各はんだは、CuおよびSnを含み、
 各はんだの接続対象のそれぞれは、Ni層を有し、
 第1上部はんだ、第2上部はんだ、および中継はんだの少なくともひとつの粒径が、第1下部はんだおよび第2下部はんだの粒径よりも小さい。
 上部電極が下部電極よりも小さく、継手導体を備える構成の場合、第1上部はんだ、第2上部はんだ、中継はんだにおける電流密度は、第1下部はんだおよび第2下部はんだにおける電流密度よりも高くなる。開示の半導体装置によれば、電流密度が高い第1上部はんだ、第2上部はんだ、および中継はんだの少なくともひとつの粒径が、第1下部はんだおよび第2下部はんだの粒径よりも小さい。これにより、EMによるNi層の消失を遅くすることができる。この結果、EM寿命を向上できる半導体装置を提供することができる。
 この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態の部分との対応関係を例示的に示すものであって、技術的範囲を限定することを意図するものではない。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。
第1実施形態に係る半導体装置が適用される車両の駆動システムの概略構成を示す図である。 第1実施形態に係る半導体装置を示す平面図である。 図2のIII-III線に沿う断面図である。 図2のIV-IV線に沿う断面図である。 封止体を省略した平面図である。 エミッタ電極側のヒートシンクを省略した平面図である。 出力電流および還流電流を示す図である。 図3の領域VIIIを拡大した断面図である。 継手部のはんだ接合面付近を拡大した断面図である。 参考例を示す断面図である。 EM進行のメカニズムを示す参考図である。 変形例を示す平面図である。 第2実施形態に係る半導体装置において、継手部のはんだ接合面付近を拡大した断面図である。 第3実施形態に係る半導体装置において、継手部を含むヒートシンクを示す平面図である 図14の領域XVを拡大した図である。 第4実施形態に係る半導体装置において、継手部のはんだ接合構造を示す断面図である。 変形例を示す断面図である。
 以下、図面に基づいて複数の実施形態を説明する。なお、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。
 本実施形態の半導体装置は、たとえば、回転電機を駆動源とする移動体の電力変換装置に適用される。移動体は、たとえば、電気自動車(BEV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)などの電動車両、電動垂直離着陸機やドローンなどの飛行体、船舶、建設機械、農業機械である。以下では、車両に適用される例について説明する。
 (第1実施形態)
 先ず、図1に基づき、車両の駆動システム1の概略構成について説明する。
 <車両の駆動システム>
 図1に示すように、車両の駆動システム1は、直流電源2と、モータジェネレータ3と、電力変換装置4を備えている。
 直流電源2は、充放電可能な二次電池で構成された直流電圧源である。二次電池は、たとえばリチウムイオン電池、ニッケル水素電池である。モータジェネレータ3は、三相交流方式の回転電機である。モータジェネレータ3は、車両の走行駆動源、すなわち電動機として機能する。モータジェネレータ3は、回生時に発電機として機能する。電力変換装置4は、直流電源2とモータジェネレータ3との間で電力変換を行う。
 <電力変換装置>
 次に、図1に基づき、電力変換装置4の回路構成について説明する。電力変換装置4は、電力変換回路を備えている。図1に示すように電力変換装置4は、平滑コンデンサ5と、電力変換回路であるインバータ6を備えている。
 平滑コンデンサ5は、主として、直流電源2から供給される直流電圧を平滑化する。平滑コンデンサ5は、高電位側の電力ラインであるPライン7と低電位側の電力ラインであるNライン8とに接続されている。Pライン7は直流電源2の正極に接続され、Nライン8は直流電源2の負極に接続されている。平滑コンデンサ5の正極は、直流電源2とインバータ6との間において、Pライン7に接続されている。同じく負極は、直流電源2とインバータ6との間において、Nライン8に接続されている。平滑コンデンサ5は、直流電源2に並列に接続されている。
 インバータ6は、DC-AC変換回路である。インバータ6は、図示しない制御回路によるスイッチング制御にしたがって、直流電圧を三相交流電圧に変換し、モータジェネレータ3へ出力する。これにより、モータジェネレータ3は、所定のトルクを発生するように駆動する。インバータ6は、車両の回生制動時、車輪からの回転力を受けてモータジェネレータ3が発電した三相交流電圧を、制御回路によるスイッチング制御にしたがって直流電圧に変換し、Pライン7へ出力する。このように、インバータ6は、直流電源2とモータジェネレータ3との間で双方向の電力変換を行う。
 インバータ6は、三相分の上下アーム回路9を備えて構成されている。上下アーム回路9は、レグと称されることがある。上下アーム回路9は、上アーム9Hと、下アーム9Lをそれぞれ有している。上アーム9Hと下アーム9Lは、上アーム9HをPライン7側として、Pライン7とNライン8との間で直列接続されている。上アーム9Hと下アーム9Lとの接続点は、出力ライン10を介して、モータジェネレータ3における対応する相の巻線3aに接続されている。インバータ6は、6つのアームを有している。Pライン7、Nライン8、および出力ライン10それぞれの少なくとも一部は、たとえばバスバーなどの導電部材により構成されている。
 各アームを構成する素子は、スイッチング素子であるIGBT11と、還流用のダイオード12を備えている。IGBTは、Insulated Gate Bipolar Transistorの略称である。本実施形態では、nチャネル型のIGBT11を採用している。ダイオード12は、対応するIGBT11に対して逆並列に接続されている。上アーム9Hにおいて、IGBT11のコレクタが、Pライン7に接続されている。下アーム9Lにおいて、IGBT11のエミッタが、Nライン8に接続されている。そして、上アーム9HにおけるIGBT11のエミッタと、下アーム9LにおけるIGBT11のコレクタが相互に接続されている。ダイオード12のアノードは対応するIGBT11のエミッタに接続され、カソードはコレクタに接続されている。
 電力変換装置4は、電力変換回路として、コンバータをさらに備えてもよい。コンバータは、直流電圧を異なる値の直流電圧に変換するDC-DC変換回路である。コンバータは、直流電源2と平滑コンデンサ5との間に設けられる。コンバータは、たとえばリアクトルと、上記した上下アーム回路9を備えて構成される。この構成によれば、昇降圧が可能である。電力変換装置4は、直流電源2からの電源ノイズを除去するフィルタコンデンサを備えてもよい。フィルタコンデンサは、直流電源2とコンバータとの間に設けられる。
 電力変換装置4は、インバータ6などを構成するスイッチング素子の駆動回路を備えてもよい。駆動回路は、制御回路の駆動指令に基づいて、対応するアームのIGBT11のゲートに駆動電圧を供給する。駆動回路は、駆動電圧の印加により、対応するIGBT11を駆動、すなわちオン駆動、オフ駆動させる。駆動回路は、ドライバと称されることがある。
 電力変換装置4は、スイッチング素子の制御回路を備えてもよい。制御回路は、IGBT11を動作させるための駆動指令を生成し、駆動回路に出力する。制御回路は、図示しない上位ECUから入力されるトルク要求、各種センサにて検出された信号に基づいて、駆動指令を生成する。各種センサとして、たとえば電流センサ、回転角センサ、電圧センサがある。電流センサは、各相の巻線3aに流れる相電流を検出する。回転角センサは、モータジェネレータ3の回転子の回転角を検出する。電圧センサは、平滑コンデンサ5の両端電圧を検出する。制御回路は、駆動指令として、たとえばPWM信号を出力する。制御回路は、たとえばプロセッサとメモリを備えて構成されている。ECUは、Electronic
 Control Unitの略称である。PWMは、Pulse Width Modulationの略称である。
 <半導体装置>
 次に、図2~図6に基づき、半導体装置20の概略構成について説明する。図2は、半導体装置20を示す平面図である。図2は、半導体装置20の上面視平面図である。図3は、図2のIII-III線に沿う断面図である。図4は、図2のIV-IV線に沿う断面図である。図5は、図2に対して封止体30を省略した図である。図6は、図5に対してエミッタ電極42側のヒートシンク50を省略した図である。
 半導体装置を構成する要素の一部について、符号末尾に上アーム9H側を示す「H」を付与し、下アーム9L側を示す「L」を付与している。要素の他の一部について、便宜上、上アーム9Hと下アーム9Lとで共通の符号を付与している。
 以下において、半導体素子(半導体基板)の板厚方向をZ方向とする。Z方向に直交する一方向をX方向とする。Z方向およびX方向の両方向に直交する方向をY方向とする。特に断わりのない限り、Z方向から平面視した形状、換言すればX方向およびY方向により規定されるXY面に沿う形状を平面形状とする。また、Z方向からの平面視を、単に平面視と示すことがある。
 図2~図6に示すように、半導体装置20は、封止体30と、半導体素子40と、ヒートシンク50、60と、導電スペーサ70と、継手部80~82と、外部接続端子90を備えている。半導体装置20は、さらにボンディングワイヤ97と、はんだ100を備えている。半導体装置20は、上記した一相分の上下アーム回路9を構成する。
 封止体30は、半導体装置20を構成する他の要素の一部を封止している。他の要素の残りの部分は、封止体30の外に露出している。封止体30は、たとえば樹脂を材料とする。樹脂の一例は、エポキシ系樹脂である。封止体30は、樹脂を材料として、たとえばトランスファモールド法により成形されている。このような封止体30は、封止樹脂体、モールド樹脂、樹脂成形体などと称されることがある。封止体30は、たとえばゲルを用いて形成されてもよい。ゲルは、たとえばヒートシンク50、60の対向領域に充填(配置)される。
 図2~図4に示すように、封止体30は平面略矩形状をなしている。封止体30は、外郭をなす表面として、一面30aと、Z方向において一面30aとは反対の面である裏面30bを有している。一面30aおよび裏面30bは、たとえば略平坦な面である。また、一面30aおよび裏面30bに連なる側面30c、30d、30e、30fを有している。側面30cは、外部接続端子90のうち、主端子91~93が突出する面である。側面30dは、Y方向において側面30cとは反対の面である。側面30dは、信号端子94が突出する面である。側面30e、30fは、外部接続端子90が突出していない面である。側面30eは、X方向において側面30fとは反対の面である。
 半導体素子40は、半導体基板41と、エミッタ電極42と、コレクタ電極43と、パッド44を備えている。半導体素子40は、半導体チップと称されることがある。半導体基板41は、シリコン(Si)、シリコンよりもバンドギャップが広いワイドバンドギャップ半導体などを材料とし、縦型素子が形成されてなる。ワイドバンドギャップ半導体としては、たとえばシリコンカーバイド(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)、ダイヤモンドがある。
 縦型素子は、半導体基板41(半導体素子40)の板厚方向、すなわちZ方向に主電流を流すように構成されている。本実施形態の縦型素子は、ひとつのアームを構成するIGBT11およびダイオード12である。縦型素子は、ダイオード12が逆並列に接続されたIGBT、つまりRC-IGBTである。RCは、Reverse Conductingの略称である。縦型素子は、通電により発熱する発熱素子である。半導体基板41には、図示しないゲート電極が形成されている。ゲート電極は、たとえばトレンチ構造をなしている。
 半導体基板41は、平面略矩形状をなしている。主電極のひとつであるエミッタ電極42は、半導体基板41の一面上に配置されている。主電極の他のひとつであるコレクタ電極43は、半導体基板41の裏面上に配置されている。半導体基板41の一面は、半導体基板41の主面のうち、板厚方向において封止体30の一面30a側の面である。半導体基板41の裏面は、半導体基板41の主面のうち、板厚方向において半導体基板41において封止体30の裏面30b側の面である。
 IGBT11がオンすることで、主電極間、つまりエミッタ電極42とコレクタ電極43との間に、電流(主電流)が流れる。エミッタ電極42は、ダイオード12のアノード電極を兼ねている。コレクタ電極43は、ダイオード12のカソード電極を兼ねている。コレクタ電極43は、半導体基板41の裏面のほぼ全体に形成されている。エミッタ電極42は、半導体基板41の一面の一部分に形成されている。つまり平面視において、コレクタ電極43は、エミッタ電極42よりも面積が大きい。エミッタ電極42が上部電極に相当し、コレクタ電極43が下部電極に相当する。
 エミッタ電極42は、Ni(ニッケル)を主成分とする材料を用いて形成されたNi層を有している。本実施形態のエミッタ電極42は、Al(アルミニウム)を主成分とする材料を用いて形成されAl層と、Al層上に積層されたNi層を有している。コレクタ電極43も、エミッタ電極42同様、Al層と、Ni層を有している。
 パッド44は、信号用の電極である。パッド44は、半導体基板41の一面において、エミッタ電極42の形成領域とは異なる領域に形成されている。パッド44は、Y方向において、エミッタ電極42の形成領域とは反対側の端部に形成されている。パッド44は、Y方向においてエミッタ電極42と並んで設けられている。パッド44の個数は特に限定されない。パッド44は、ゲート電極用のパッドを少なくとも含む。
 一例として半導体素子40は、5つのパッド44を有している。具体的には、ゲート電極用、エミッタ電位の検出用、半導体素子40が備える図示しない感温ダイオードのカソード電位検出用、同じくアノード電位検出用、電流センス用を有している。5つのパッド44は、X方向に沿って並んでいる。
 半導体装置20は、2つの半導体素子40を備えている。具体的には、上アーム9Hを構成する半導体素子40Hと、下アーム9Lを構成する半導体素子40Lを備えている。半導体素子40Hは、第1半導体素子、上アーム素子などと称されることがある。半導体素子40Lは、第2半導体素子、下アーム素子などと称されることがある。半導体素子40H、40Lは、互いに同様の仕様、つまり共通部材である。半導体素子40H、40Lは、X方向に並んでいる。半導体素子40H、40Lは、Z方向において互いにほぼ同じ位置に配置されている。半導体素子40H、40Lは、一面同士、つまりエミッタ電極42同士が、Z方向において同じ側に位置するように配置されている。
 ヒートシンク50は、エミッタ電極42に電気的に接続され、配線機能を提供する。同様に、ヒートシンク60は、コレクタ電極43に電気的に接続され、配線機能を提供する。ヒートシンク50、60は、半導体素子40の生じた熱を放熱する放熱機能を提供する。このためヒートシンク50、60は、配線部材、導電部材、放熱部材などと称されることがある。ヒートシンク50、60は、Z方向において、半導体素子40を挟むように配置されている。ヒートシンク50,60は、Z方向において互いに少なくとも一部が対向するように配置されている。ヒートシンク50、60は、平面視において半導体素子40を内包している。
 ヒートシンク50、60は、Cu、Cu合金などの導電性が良好な金属を材料とする金属板である。金属板は、たとえばリードフレームの一部として提供される。ヒートシンク50、60は、表面に、めっき処理などにより形成されたNi層を有している。ヒートシンク50、60は、Ni層を、少なくともはんだ接合面に有している。
 配線部材としては、ヒートシンク50、60に代えて、セラミックや樹脂などの絶縁基材の両面に金属体が配置された基板を採用してもよい。この場合、半導体素子40側の金属体がはんだ接合される導体、つまり上部導体や下部導体に相当する。半導体素子40側の金属体は、表面にNi層を有する。
 ヒートシンク50は、半導体素子40側の面である対向面50aと、対向面50aとは反対の面である裏面50bを有している。同様に、ヒートシンク60も、対向面60aと裏面60bを有している。ヒートシンク50、60それぞれの裏面50b、60bは、封止体30から露出している。裏面50b、60bは、放熱面、露出面などと称されることがある。ヒートシンク50の裏面50bは、封止体30の一面30aと略面一である。ヒートシンク60の裏面60bは、封止体30の裏面30bと略面一である。
 半導体装置20は、2つのヒートシンク50を備えている。具体的には、上アーム9Hを構成するヒートシンク50Hと、下アーム9Lを構成するヒートシンク50Lを備えている。ヒートシンク50Hが第1上部導体の第1本体部に相当し、ヒートシンク50Lが第2上部導体の第2本体部に相当する。
 図5に示すように、ヒートシンク50H、50Lは、平面略矩形状をなしている。ヒートシンク50H、50Lは、X方向に並んでいる。図3および図4に示すように、ヒートシンク50H、50Lは、互いにほぼ同じ厚みを有し、Z方向において互いにほぼ同じ位置に配置されている。ヒートシンク50H、50Lは、平面視において対応する半導体素子40および導電スペーサ70を内包している。ヒートシンク50H、50Lそれぞれの対向面50aには、溢れたはんだを収容する溝51が形成されている。溝51は、対向面50aにおいてはんだ接合部を取り囲んでいる。溝51は、たとえば環状に形成されている。封止体30から露出するヒートシンク50H、50Lの裏面50bは、X方向に並んでいる。
 半導体装置20は、2つのヒートシンク60を備えている。具体的には、上アーム9Hを構成するヒートシンク60Hと、下アーム9Lを構成するヒートシンク60Lを備えている。ヒートシンク60Hが第1下部導体に相当し、ヒートシンク60Lが第2下部導体に相当する。
 図6に示すように、ヒートシンク60H、60Lは、平面略矩形状をなしている。ヒートシンク60H、60Lは、X方向に並んでいる。図3および図4に示すように、ヒートシンク60H、60Lは、互いにほぼ同じ厚みを有し、Z方向において互いにほぼ同じ位置に配置されている。ヒートシンク60H、60Lは、平面視において対応する半導体素子40を内包している。封止体30から露出するヒートシンク60H、60Lの裏面60bは、X方向に並んでいる。
 導電スペーサ70は、Z方向において半導体素子40とヒートシンク50との間に介在している。導電スペーサ70は、半導体素子40とヒートシンク50との間に所定の間隔を確保するスペーサ機能を提供する。たとえば導電スペーサ70は、半導体素子40のパッド44に、対応する信号端子94を電気的に接続するための高さを確保する。導電スペーサ70は、半導体素子40のエミッタ電極42とヒートシンク50との電気伝導、熱伝導経路の途中に位置し、配線機能および放熱機能を提供する。導電スペーサ70は、ヒートシンク50とともに上部導体を構成する。
 導電スペーサ70は、Cuなどの導電性、熱伝導性が良好な金属を材料とする金属部材である。導電スペーサ70は、ターミナル、ターミナルブロック、金属ブロック体などと称されることがある。導電スペーサ70は、表面に、めっき処理などにより形成されたNi層を有している。導電スペーサ70は、Ni層を、少なくともはんだ接合面に有している。本実施形態の導電スペーサ70は、平面視においてエミッタ電極42とほぼ同じ大きさを有する平面略矩形状の柱状体である。
 半導体装置20は、2つの導電スペーサ70を備えている。具体的には、上アーム9Hを構成する導電スペーサ70Hと、下アーム9Lを構成する導電スペーサ70Lを備えている。導電スペーサ70Hが第1上部導体の第1スペーサ部に相当し、導電スペーサ70Lが第2上部導体の第2スペーサ部に相当する。
 継手部80~82は、上下アーム回路9を構成する要素間をつないでいる。継手部80~82は、半導体装置20を構成する要素間をつないでいる。継手部80~82は、Cuなどの導電性、熱伝導性が良好な金属を材料とする金属部材である。継手部80~82は、表面に、めっき処理などにより形成されたNi層を有している。継手部80~82は、Ni層を、少なくともはんだ接合面に有している。
 図3および図6に示すように、継手部80は、ヒートシンク60Lに連なっている。継手部80の厚みは、ヒートシンク60Lよりも薄い。継手部80は、たとえばヒートシンク60Lの対向面60aと略面一の状態で、ヒートシンク60Hとの対向面(側面)に連なっている。継手部80は、2つの屈曲部を有することで、ZX平面において略クランク状をなしている。継手部80は、封止体30によって覆われている。
 継手部80は、ヒートシンク60Lに対して連続して一体的に設けられることで連なってもよいし、別部材として設けられ、接合により連なってもよい。本実施形態の継手部80は、リードフレームの一部として、ヒートシンク60Lと一体的に設けられている。Ni層は、ヒートシンク60Lおよび継手部80に対して、連続して一体的に設けられている。
 図3、図4、および図5に示すように、継手部81、82は、対応するヒートシンク50に連なっている。継手部81は、ヒートシンク50Hに連なっている。継手部82は、ヒートシンク50Lに連なっている。継手部81、82の厚みは、対応するヒートシンク50よりも薄い。継手部81、82は、封止体30によって覆われている。
 継手部81、82は、ヒートシンク50に対して連続して一体的に設けられることで連なってもよいし、別部材として設けられ、接合により連なってもよい。本実施形態の継手部81、82は、対応するヒートシンク50H、50Lに対して一体的に設けられている。継手部81、82は、ヒートシンク50H、50Lの互いに対向する側面から、X方向に延びている。Ni層は、ヒートシンク50Hおよび継手部81に対して、連続して一体的に設けられている。Ni層は、ヒートシンク50Lおよび継手部82に対して、連続して一体的に設けられている。
 一例として継手部81を含むヒートシンク50Hと継手部82を含むヒートシンク50Lは、共通部材である。継手部81を含むヒートシンク50Hと、継手部82を含むヒートシンク50Lとの配置は、Z軸を回転軸とする2回対称となっている。継手部80と継手部81との対向面間にはんだが介在し、はんだ接合部が形成されている。図5に示すように継手部81、82は、平面視においてヒートシンク50H、50Lの間に配置されている。継手部81、82は、ヒートシンク50H、50Lの間で、Y方向に並んでいる。
 継手部81、82の接合面には、溢れたはんだを収容する溝83が形成されている。溝83は、はんだ接合部を取り囲むように環状に形成されている。溝83は、たとえばプレス加工により形成されている。継手部80、81が、継手導体、第1継手導体に相当する。継手部82が、第2継手導体に相当する。
 外部接続端子90は、半導体装置20を外部機器と電気的に接続するための端子である。外部接続端子90は、銅などの導電性が良好な金属材料を用いて形成されている。外部接続端子90は、たとえば板材である。外部接続端子90は、リードと称されることがある。外部接続端子90は、主端子91、92、93と、信号端子94を備えている。主端子91、92、93は、半導体素子40の主電極に電気的に接続された外部接続端子90である。
 図5および図6に示すように、主端子91は、半導体素子40Hのコレクタ電極43に電気的に接続されている。主端子91は、平滑コンデンサ5の正極端子に電気的に接続される。主端子91は、P端子、高電位電源端子などと称されることがある。主端子91は、ヒートシンク60Hを介して、半導体素子40Hのコレクタ電極43に接続されている。主端子91は、ヒートシンク60HにおけるY方向の一端に連なっている。主端子91の厚みは、ヒートシンク60Hよりも薄い。主端子91は、たとえば対向面60aと略面一となるように、ヒートシンク60Hに連なっている。主端子91は、ヒートシンク60Hに対して連続して一体的に設けられることで連なってもよいし、別部材として設けられ、接合により連なってもよい。
 本実施形態の主端子91は、リードフレームの一部として、ヒートシンク60Hと一体的に設けられている。主端子91は、ヒートシンク60HからY方向に延び、封止体30の側面30cから外部に突出している。主端子91は、封止体30により覆われる部分の途中に屈曲部を有し、側面30cにおいてZ方向の中央付近から突出している。
 図5および図6に示すように、主端子92は、半導体素子40Lのエミッタ電極42に電気的に接続されている。主端子92は、平滑コンデンサ5の負極端子に電気的に接続される。主端子92は、N端子、低電位電源端子などと称されることがある。主端子92は、継手部82、ヒートシンク50L、および導電スペーサ70Lを介して、半導体素子40Lのエミッタ電極42に接続されている。主端子92は、Y方向に延び、主端子91と同じ側面30cから封止体30の外に突出している。
 主端子92は、Y方向の一端付近に継手部82との接続部920を有している。主端子92のうち、接続部920を含む一部分が封止体30により覆われ、残りの部分が封止体30から突出している。接続部920は、封止体30から突出した部分よりも板厚が厚い。接続部920の板厚は、たとえばヒートシンク50Lとほぼ同じ厚みである。主端子92も、主端子91同様に屈曲部を有し、側面30cにおいてZ方向の中央付近から突出している。主端子92は、表面に、めっき処理などにより形成されたNi層を有している。主端子92は、Ni層を、少なくとも接続部920のはんだ接合面に有している。
 主端子93は、上アーム9Hと下アーム9Lとの接続点に接続されている。主端子93は、半導体素子40Hのエミッタ電極42および半導体素子40Lのコレクタ電極43に電気的に接続されている。主端子93は、モータジェネレータ3の対応する相の巻線3aに電気的に接続される。主端子93は、出力端子、交流端子、O端子などと称されることがある。主端子93は、ヒートシンク60L、継手部80、81、ヒートシンク50H、導電スペーサ70Hを介して、半導体素子40Hのエミッタ電極42に電気的に接続されている。主端子93は、ヒートシンク60Lを介して、半導体素子40Lのコレクタ電極43に接続されている。
 主端子93は、ヒートシンク60LにおけるY方向の一端に連なっている。主端子93の厚みは、ヒートシンク60Lよりも薄い。主端子93は、たとえば対向面60aと略面一となるように、ヒートシンク60Lに連なっている。主端子93は、ヒートシンク60Lに対して連続して一体的に設けられることで連なってもよいし、別部材として設けられ、接合により連なってもよい。
 本実施形態の主端子93は、リードフレームの一部として、ヒートシンク60Lと一体的に設けられている。主端子93は、ヒートシンク60LからY方向に延び、主端子91と同じ側面30cから封止体30の外に突出している。主端子93も、主端子91同様に屈曲部を有し、側面30cにおいてZ方向の中央付近から突出している。3本の主端子91~93は、X方向において主端子91、主端子92、主端子93の順に並んでいる。
 信号端子94は、半導体素子40の対応するパッド44に電気的に接続されている。本実施形態の信号端子94は、ボンディングワイヤ97を介してパッド44に電気的に接続されている。信号端子94は、Y方向に延び、封止体30の側面30dから外部に突出している。半導体装置20は、ひとつの半導体素子40に対して5本の信号端子94、つまり計10本の信号端子94を備えている。複数の信号端子94は、X方向に並んで配置されている。信号端子94は、たとえばヒートシンク60および主端子91~93と共通のリードフレームに構成されている。
 なお、半導体装置20は、吊りリード95を備えている。ヒートシンク60(60H、60L)と、継手部81と、主端子91~93と、信号端子94は、共通部材であるリードフレームに構成される。リードフレームは、部分的に厚みが異なる異形条である。信号端子94は、カット前の状態で、図示しないタイバーを介して吊りリード95に支持される。タイバーや外周フレームなど、リードフレームの不要部分は、封止体30の成形後にカット(除去)されている。
 半導体装置20は、要素間を接続するための複数のはんだ100を備えている。はんだ100は、はんだ101H、101L、102H、102L、103H、103L、104、105を含んでいる。はんだ101Hは、半導体素子40Hのエミッタ電極42と導電スペーサ70Hとの間に介在し、エミッタ電極42と導電スペーサ70Hとを接合している。はんだ102Hは、導電スペーサ70Hとヒートシンク50Hとの間に介在し、導電スペーサ70Hとヒートシンク50Hとを接合している。はんだ101H、102Hが、第1上部はんだに相当する。はんだ103Hは、半導体素子40Hのコレクタ電極43とヒートシンク60Hとの間に介在し、コレクタ電極43とヒートシンク60Hとを接合している。はんだ103Hが、第1下部はんだに相当する。
 はんだ101Lは、半導体素子40Lのエミッタ電極42と導電スペーサ70Lとの間に介在し、エミッタ電極42と導電スペーサ70Lとを接合している。はんだ102Lは、導電スペーサ70Lとヒートシンク50Lとの間に介在し、導電スペーサ70Lとヒートシンク50Lとを接合している。はんだ101L、102Lが、第2上部はんだに相当する。はんだ103Lは、半導体素子40Lのコレクタ電極43とヒートシンク60Lとの間に介在し、コレクタ電極43とヒートシンク60Lとを接合している。はんだ103Lが、第2下部はんだに相当する。
 なお、はんだ101H、101Lは、素子上はんだと称されることがある。はんだ102H、102Lは、スペーサ上はんだと称されることがある。はんだ103H、103Lは、素子下はんだと称されることがある。
 はんだ104は、継手部80、81とともに、ヒートシンク50Hとヒートシンク60Lとを電気的に接続する。本実施形態のはんだ104は、ヒートシンク60Lに連なる継手部80と、ヒートシンク50Hに連なる継手部81との間に介在し、継手部80、81を接合している。はんだ104が、中継はんだ、第1中継はんだに相当する。はんだ105は、継手部82とともに、ヒートシンク50Lと主端子92とを電気的に接続する。本実施形態のはんだ105は、ヒートシンク50Lに連なる継手部82と、主端子92の接続部920との間に介在し、継手部82と主端子92を接合している。はんだ105が、第2中継はんだに相当する。
 複数のはんだ100のそれぞれは、CuおよびSnを含む。はんだ100は、一例としてCu、Bi、Sbなどを含み、残部がSnからなる多元系の鉛フリーはんだである。各はんだ100の厚みは、たとえば100μm程度である。
 上記したように、半導体装置20では、封止体30によって一相分の上下アーム回路9を構成する複数の半導体素子40が封止されている。封止体30は、複数の半導体素子40、ヒートシンク50それぞれの一部、ヒートシンク60それぞれの一部、導電スペーサ70、継手部80~82、主端子91~93および信号端子94それぞれの一部を、一体的に封止している。
 半導体素子40は、Z方向においてヒートシンク50、60の間に配置されている。半導体素子40は、対向配置されたヒートシンク50、60によって挟まれている。これにより、半導体素子40の熱を、Z方向において両側に放熱することができる。半導体装置20は、両面放熱構造をなしている。ヒートシンク50の裏面50bは、封止体30の一面30aと略面一となっている。ヒートシンク60の裏面60bは、封止体30の裏面30bと略面一となっている。裏面50b、60bが露出面であるため、放熱性を高めることができる。
 なお、上記したNi層上に、めっき処理などによってAu層を設けてもよい。Auは、たとえば、Niの酸化を抑制してはんだとの濡れ性を向上する。Auは、はんだ付け時にはんだ中に拡散するため、接合前の状態で存在し、接合した状態で存在しない。
 <出力電流と還流電流>
 次に、図7に基づき、出力電流および還流電流について説明する。図7は、一例として上アーム9H側の半導体素子40Hに関する出力電流と還流電流を示している。図7では、出力電流を破線の矢印で示し、還流電流を一点鎖線の矢印で示している。
 出力電流(主電流)は、IGBT動作時に流れる。上アーム9H側の出力電流は、主端子91から、半導体素子40HのIGBT11、および主端子93を介して、モータジェネレータ3に流れる。具体的には、図7に破線の矢印で示すように、主端子91(P端子)→ヒートシンク60H→半導体素子40H(IGBT11)→導電スペーサ70H→ヒートシンク50H→継手部81→継手部80→ヒートシンク60L→主端子93(O端子)の経路で流れる。
 還流電流は、ダイオード動作時に流れる。上アーム9H側の還流電流は、出力電流と逆向き、つまり主端子93から、半導体素子40Hのダイオード12、および主端子91を介して直流電源2側に流れる。具体的には、図7に一点鎖線の矢印で示すように、主端子93(O端子)→ヒートシンク60L→継手部80→継手部81→ヒートシンク50H→導電スペーサ70H→半導体素子40H(ダイオード12)→ヒートシンク60H→主端子91(P端子)の経路で流れる。
 なお、下アーム9L側についても同様である。出力電流は、主端子93→半導体素子40LのIGBT11→主端子92の経路で流れる。還流電流は、主端子92→半導体素子40Lのダイオード12→主端子93の経路で流れる。
 <接合構造およびはんだの粒径>
 次に、図8~図10に基づき、接合構造およびはんだ粒径について説明する。図8は、本実施形態に係る半導体装置20において、継手部80、81の接合構造を示す断面図である。図8は、図3に一点鎖線で示す領域VIIIを拡大した断面図である。便宜上、図8では、ワイヤ片120を省略して図示している。図9は、継手部80の表面に設けたワイヤ片120を示す断面図である。図9では、便宜上、合金層110を省略している。図10は、参考例を示す断面図である。図10は、図8に対応している。参考例では、各要素の符号を、半導体装置20の関連する要素の符号の末尾にrを付加したものとしている。
 図8に示すように継手部80は、Cu系の母材800と、母材800上に設けられたNi層801を有している。同様に、継手部81も、Cu系の母材810と、母材810上に設けられたNi層811を有している。一例としてNi層801、811は、無電解めっき法により成膜されたNiPである。Ni層801、811は、Pを含むNiめっき膜である。
 半導体装置20は、Ni層801とはんだ104との間に介在する合金層110と、Ni層801とはんだ104との間に介在する合金層111を備えている。合金層110、111は、IMCと称されることがある。IMCは、Intermetallic Compoundの略称である。合金層110、111は、はんだ接合時に形成される。合金層110、111は、Ni、Cu、およびSnを含む。合金層110、111の組成は、たとえば(Ni-Cu)Snである。
 半導体装置20は、さらにPリッチ層802、812を備えている。Pリッチ層802は、Ni層801の表面に形成されている。Pリッチ層812は、Ni層811の表面に形成されている。Pリッチ層802、812は、接合時にNi層801、811のNiの一部がはんだ104側に拡散することで形成される。Pリッチ層802、812は、Ni層801、811(NiP)よりもPがリッチな層である。Pリッチ層802、812の組成は、たとえばNiPである。
 図9に示すように、継手部80、81の少なくともひとつは、はんだ接合面に、複数のワイヤ片120を有している。ワイヤ片120は、ボンディングワイヤの小片部である。ワイヤ片120は、突起部、スタッドボンディングと称されることがある。ワイヤ片120は、はんだ104内に配置されている。複数のワイヤ片120が、はんだ104内において分散配置されている。ワイヤ片120の高さを適宜設定することで、はんだ104の最低厚を保証することも可能である。複数のワイヤ片120は、はんだ接合部を構成する対向面のひとつである第1対向面に固定(接合)され、対向面の他のひとつである第2対向面に向けて突起している。一例として本実施形態では、継手部80のはんだ接合面に、ワイヤ片120が設けられている。ワイヤ片120は、たとえば所定ピッチで設けられている。
 ワイヤ片120を有することで、継手部80の表面は凹凸形状をなしている。はんだ104は、ワイヤ片120を起点として、はんだ104の凝固時に粒成長し始める。隣接する粒が衝突することで、粒界106が形成される。結晶粒は、ワイヤ片120の角部、たとえば上端の角部を起点として成長する。このため、はんだ104の粒径は、たとえばはんだ103H、103Lの粒径よりも小さい。上記したようにはんだ104の厚みは、100μm程度である。はんだ104の粒径は、はんだ104の厚み、つまり100μmよりも小さい。
 図10に示す比較例では、継手部80r、81rのはんだ接合面に、ワイヤ片を設けていない。つまり、はんだ104の粒径を制御していない。その他の構成については、本実施形態の半導体装置20と同様である。このような場合、はんだ104rの粒径は、100μm程度となる。はんだ104rの結晶粒は、はんだ104の厚み方向(Z方向)において、1個または2個存在する程度である。
 本実施形態では、複数のはんだ100のうち、はんだ103H、103Lにワイヤ片120が配置されない。はんだ103H、103Lの粒径は、図10に示した比較例と同等である。はんだ103H,103Lの粒径は、ワイヤ片120が配置されたはんだ104よりも粒径が大きい。
 <EM>
 次に、図11に基づき、EM(エレクトロマイグレーション)について説明する。図11は、EM進行のメカニズムを示す参考図である。図11でも、各要素の符号を、半導体装置20の関連する要素の符号の末尾にrを付加したものとしている。参考図に示す例では、図10に示した構成同様、はんだ104rの粒径制御を行っていない。その他の構成については、本実施形態の半導体装置20と同様である。
 図11の1stは、通電前の初期段階を示している。Ni層801rとはんだ104rとの間には、合金層110rが介在している。また、Ni層801rの表面には、Pリッチ層802rが形成されている。
 図11の2nd、3rd、および4thは、出力電流の印加時を示している。破線矢印は電子(e-)の流れる方向を示している。図11の2ndに示すように、電子の移動にともなって合金層110rのCuなどが継手部81r側に移動(拡散)する。具体的には、Cuなどの金属がイオン化し、継手部81r側に移動する。これにより合金層110rは徐々に薄くなり、図11の3rdに示すように消失する。
 合金層110rが消失すると、図11の3rdに示すように、電子の移動にともなってNi層801rのNiが継手部81r側に移動(拡散)し、Ni層801rが減少、Pリッチ層802rが増加する。そして、図11の4thに示すように、Ni層801rが消失し、Pリッチ層802rが母材800rに到達する。つまり、Pリッチ層802rがNi層801rに置き換わる。
 Pリッチ層802rが母材800rに到達した後、さらに経過すると密着性が低下し、たとえばボイドが生じる。また、ボイドを起点として、界面に沿うクラックが生じる。また、Pリッチ層802rにもクラックが生じ得る。
 上記したように、はんだ粒径を制御しない構成(図10参照)では、はんだ104rの粒径が大きい。Cuの移動経路に粒界が少ない。このため、電子の移動にともなって合金層110rのCuが移動し易い。
 なお、出力電流の例を示したが、還流電流の場合にも同様である。還流電流の印加時には、まず継手部81r側の合金層111rが消失し、次いでPリッチ層812rがNi層811rに置き換わる。Pリッチ層812rが母材810rに到達した後、さらに経過すると密着性が低下し、たとえばボイドやクラックが生じる。はんだ104rの粒径が大きいため、電子の移動にともなって合金層111rのCuが移動し易い。
 一方、本実施形態の構成(図8参照)では、電流密度が高い継手部80、81の接合部におけるはんだ104の粒径が、はんだ粒径を制御しないはんだ103H、103Lの粒径よりも小さい。このため、電子の移動にともなって合金層110、111のCuが移動し難い。つまり、合金層110、111が消失し難い。合金層110、111が消失するまでにかかる時間が長くなる。これにより、Ni層801、811がPリッチ層802、812になって減少し始める時間が遅くなる。Ni層801、811が消失するまでにかかる時間が長くなる。
 <第1実施形態のまとめ>
 平面視において、高電位側の主電極であるコレクタ電極43の面積は、低電位側の主電極であるエミッタ電極42の面積よりも大きい。また、半導体装置20の小型化のため、継手部80、81のはんだ接合部や継手部82のはんだ接合部の面積を大きくとることが困難である。これにより、一相分の上下アーム回路9を構成する半導体装置20においては、はんだ101H、101L、102H、102L、104、105の電流密度が、はんだ103H、103Lの電流密度よりも高くなる。つまり、複数のはんだ100のうち、はんだ101H、101L、102H、102L、104、105の接合部において、EMが進行しやすい。複数のはんだ100のうち、はんだ103H、103Lの接合部において、EMが進行し難い。
 一例として本実施形態では、はんだ104(中継はんだ、第1中継はんだ)の粒径が、はんだ103H、103L(第1下部はんだおよび第2下部はんだ)の粒径よりも小さい。はんだ104のほうが、接続対象間において粒界106が多い。粒界106は、Cuの移動を阻害する。このため、電子の移動にともなって合金層110、111のCuが移動し難い。よって、合金層110、111が消失するまでにかかる時間を長くすることができる。また、Ni層801、811が消失するまでにかかる時間を長くすることができる。以上より、EM寿命を向上することができる。
 半導体装置20の電流密度、つまり主電極に連なる通電経路の電流密度は、たとえば継手部80、81のはんだ接合部において最大となる。本実施形態では、はんだ104の粒径を小さくするため、EM寿命を向上することができる。
 なお、はんだ104の粒径の効果については、試作にて確認済みである。はんだ104の粒径を小さくすることで、合金層110、111の消失が遅くなる、つまりEMの進行を遅くできることを確認できた。このとき、無電解NiPめっきによりNi層801、811を形成した。合金層110、111の組成は、(Ni-Cu)Snであった。
 本実施形態では、継手部80は、はんだ接合面に複数のワイヤ片120を有している。はんだ104は、ワイヤ片120を起点として凝固する。ワイヤ片120は、凝固の起点部である。ワイヤ片120を設けることで、はんだ104の粒径を小さくし、EM寿命を向上することができる。
 <変形例>
 ワイヤ片120を継手部80に設ける例を示したが、これに限定されない。ワイヤ片120を継手部81のはんだ接合面に設けてもよい。これによっても、ワイヤ片120を起点にはんだ104が凝固し、小粒化する。継手部80、81のそれぞれにワイヤ片120を設けてもよい。つまり、接続対象の少なくともひとつに設ければよい。
 粒径の小さい小粒はんだとして、はんだ104の例を示したがこれに限定されない。小粒はんだとして、複数のはんだ100のうち、はんだ103H、103Lを除いたほかのはんだの少なくともひとつを採用することができる。
 たとえば、はんだ105を小粒はんだとしてもよい。継手部82および/または主端子92の接続部920のはんだ接合面に複数のワイヤ片120を設けることで、はんだ105の粒径をはんだ103H、103Lの粒径よりも小さくすることができる。これにより、はんだ105の接合部でEMが進行するのを抑制することができる。
 たとえば、はんだ101H、101Lを小粒はんだとしてもよい。エミッタ電極42および/または導電スペーサ70のはんだ接合面に複数のワイヤ片120を設けることで、はんだ101H、101Lの粒径をはんだ103H、103Lの粒径よりも小さくすることができる。これにより、はんだ101H、101Lの接合部でEMが進行するのを抑制することができる。半導体素子40の小型化において有効である。
 たとえば、はんだ102H、102Lを小粒はんだとしてもよい。導電スペーサ70および/またはヒートシンク50のはんだ接合面に複数のワイヤ片120を設けることで、はんだ102H、102Lの粒径をはんだ103H、103Lの粒径よりも小さくすることができる。これにより、はんだ102H、102Lの接合部でEMが進行するのを抑制することができる。はんだ101H、101Lの小粒化同様、半導体素子40の小型化において有効である。
 複数のワイヤ片120の配置は特に限定されない。たとえば図12に示すように、複数のワイヤ片120を、導電スペーサ70のはんだ接合面において半導体素子40の中心付近と重なる部分に設けてもよい。EMは、温度が高いほど、電流密度が高いほど進行する。平面視において素子中心付近と重なる部分にワイヤ片120を設けることで、温度が高くなる部分において確実に小粒化することができる。よって、EMの進行を抑制することができる。また、複数のワイヤ片120を、導電スペーサ70のはんだ接合面において、エミッタ電極42の四隅と重なる部分に設けてもよい。四隅は、温度が低く、はんだが凝固しやすい。これにより、小粒化を促進できる。
 図12に示すワイヤ片120の配置は、導電スペーサ70に限定されない。エミッタ電極42において、素子中心付近に設けてもよいし、四隅に設けてもよい。ヒートシンク50において、素子中心付近と重なる部分に設けてもよいし、四隅と重なる部分に設けてもよい。
 半導体装置20が導電スペーサ70を備える例を示したが、これに限定されない。導電スペーサ70に代えて、ヒートシンク50にスペーサ機能を提供する凸部を設けてもよい。この場合、ヒートシンク50が上部導体に相当する。上部はんだが、エミッタ電極42とヒートシンク50との間に介在し、エミッタ電極42とヒートシンク50とを接合する。上部はんだを細粒化するために、エミッタ電極42および/またはヒートシンク50のはんだ接合面に、複数のワイヤ片120を設けてもよい。
 半導体装置20が継手部82を備える例を示したが、これに限定されない。ヒートシンク50L、継手部82、および主端子92が、連続して一体的に設けられてもよい。つまり半導体装置20が、はんだ105を備えない構成としてもよい。
 半導体装置20が、上アーム9Hと下アーム9Lとを接続するために2つの継手部80、81を備える例を示したが、これに限定されない。継手部80、81の一方のみを備えてもよい。たとえば継手部80のみを備え、継手部80がはんだ104を介してヒートシンク50Hに接続される構成としてもよい。継手部81のみを備え、継手部81がはんだ104を介してヒートシンク60Lに接続される構成としてもよい。
 (第2実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例であり、先行実施形態の記載を援用できる。先行実施形態では、凝固の起点部として複数のワイヤ片を設けた。これに代えて、レーザ照射による凹凸酸化膜を設けてもよい。
 <凹凸酸化膜>
 図13は、本実施形態に係る半導体装置20において、継手部80の表面に設けた凹凸酸化膜803を示す断面図である。図13は、図9に対応している。図13では、便宜上、Pリッチ層802および合金層110を省略している。
 上記したように、継手部80は、母材800と、母材800の表面上に設けられたNi層801を有している。図13に示すように、継手部80はNi層801上に設けられた凹凸酸化膜803をさらに有している。凹凸酸化膜803は、Ni層801にレーザ光を照射することで、継手部80のはんだ接合面において、複数箇所に分散形成されている。
 凹凸酸化膜803は、Niを主成分とする酸化物の膜である。たとえば、凹凸酸化膜803を構成する成分のうち、80%がNI、10%がNiO、10%がNiとなっている。
 Ni層801の表面の凹部801aは、パルス発振のレーザ光の照射により形成される。1パルスごとに、ひとつの凹部801aが形成される。凹凸酸化膜803は、レーザ光の照射により、Ni層801の表層部分が溶融、気化し、蒸着することで形成される。凹凸酸化膜803は、Ni層801由来の酸化膜である。凹凸酸化膜803は、Ni層801の主成分の金属(Ni)の酸化物の膜である。凹凸酸化膜803は、凹部801aを有するNi層801の表面の凹凸に倣って形成されている。凹凸酸化膜803の表面には、凹部801aの幅よりも細かいピッチで凹凸が形成されている。すなわち、非常に微細な凹凸(粗化部)が形成されている。
 パルス発振のレーザ光は、エネルギー密度が0J/cmより大きく100J/cm以下で、パルス幅が1μ秒以下となるように調整される。この条件を満たすには、YAGレーザ、YVOレーザ、ファイバレーザなどを採用することができる。たとえばYAGレーザの場合、エネルギー密度が1J/cm以上であればよい。無電解Niめっきの場合、たとえば5J/cm程度でもNi層801を加工することができる。
 <ボイド>
 酸化膜(凹凸酸化膜803)は、金属膜に較べて、はんだに対する濡れ性が低い。凹凸酸化膜803は、表面に微細な凹凸を有しているため、はんだとの接触面積が小さくなり、はんだの一部は表面張力によって球状になる。つまり接触角が大きくなり、はんだに対する濡れ性が低い。
 上記したように凹凸酸化膜803は、はんだ104に対する濡れ性が低い。このため、図13に示すように、凹凸酸化膜803を覆うようにボイド121が形成される。ボイド121は、凹凸酸化膜803の周囲に形成される。半導体装置20において、継手部80のはんだ接合面近傍には、複数のボイド121が存在する。その他の構成については、先行実施形態に記載の構成と同様である。
 <第2実施形態のまとめ>
 本実施形態に記載の構成によれば、先行実施形態に記載の構成と同等の効果を奏することができる。具体的には、はんだ104内に、凹凸酸化膜803由来の複数のボイド121が存在する。はんだ104は、凝固する際に、ボイド121を起点として粒成長する。ボイド121は、凝固の起点部である。凹凸酸化膜803、ひいてはボイド121を設けることで、はんだ104の粒径をはんだ103H、103Lの粒径よりも小さくし、EM寿命を向上することができる。
 <変形例>
 凹凸酸化膜803を継手部80に設ける例を示したが、これに限定されない。接続対象である導体のうち、ヒートシンク60を除いた他の導体に設けることができる。たとえば、凹凸酸化膜を継手部81のはんだ接合面に設けてもよい。継手部80、81のそれぞれに凹凸酸化膜を設けてもよい。凹凸酸化膜をヒートシンク50のはんだ接合面に設けてもよい。凹凸酸化膜を導電スペーサ70のはんだ接合面に設けてもよい。
 凹凸酸化膜の配置は特に限定されない。所定ピッチで分散配置してもよい。図12に示したように、ヒートシンク50や導電スペーサ70において、素子中心付近と重なる部分に設けてもよいし、四隅と重なる部分に設けてもよい。
 (第3実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例であり、先行実施形態の記載を援用できる。先行実施形態では、ワイヤ片や凹凸酸化膜を設けることで、はんだ粒径を小さくした。これに代えて、溢れたはんだを収容する溝の内周端に凹凸を設けてもよい。
 図14は、本実施形態に係る半導体装置20において、継手部81を含むヒートシンク50Hを示す平面図である。図14は、対向面50a側から見た平面図である。図15は、図14に一点鎖線で示す領域XVを拡大した図である。図15では、継手部81上に配置されたはんだ104を示している。図15では、粒界106について一部のみを示している。
 先行実施形態同様、継手部81は、ヒートシンク50Hに対して連続して一体的に設けられている。図14に示すように、ヒートシンク50Hは溝51を有している。また、継手部81は、溝83を有している。図15に示すように、平面視において、溝83の内周端830は、連続する凹凸状をなしている。継手部81は、溝83の内周端830に凹凸部831を有している。一例として凹凸部831は、溝83の全長にわたって設けられている。
 はんだ104は、溝83の内周端830に設けられた凹凸部831の凹部および/または凸部を起点に、凝固時において粒成長する。このように凹凸を起点として成長するため、はんだ104において結晶粒は小さくなる。その他の構成については、先行実施形態に記載の構成と同様である。
 <第3実施形態のまとめ>
 本実施形態に記載の構成によれば、先行実施形態に記載の構成と同等の効果を奏することができる。具体的には、溢れたはんだ104を収容する溝83の内周端830が、連続する凹凸状をなしている。はんだ104は、凝固する際に、内周端830の凹凸を起点として粒成長する。凹凸部831は、凝固の起点部である。溝83の内周端830を凹凸状にすることで、はんだ104の粒径をはんだ103H、103Lの粒径よりも小さくし、EM寿命を向上することができる。
 凹凸部831を、溝83の全長にわたって設ける例を示したが、これに限定されない。凹凸部831は、溝83の全長のうち、少なくとも一部に設けられればよい。溝83の内周端830の少なくとも一部を凹凸状とすることで、はんだ104の粒径をはんだ103H、103Lの粒径よりも小さくすることができる。
 なお、継手部81を含むヒートシンク50Hと、継手部82を含むヒートシンク50Lとが共通部材の場合には、継手部82も、溝83の内周端830に凹凸部831を有することになる。この場合、はんだ105についても小粒化することができる。
 <変形例>
 凹凸部831を溝83に設ける例を示したが、これに限定されない。凹凸部を、ヒートシンク50の溝51の内周端に設けてもよい。ヒートシンク50Hの溝51の内周端に設けてもよいし、ヒートシンク50Lの溝51の内周端に設けてもよい。溝51、溝83のそれぞれに凹凸部を設けてもよい。
 (第4実施形態)
 この実施形態は、先行する実施形態を基礎的形態とする変形例であり、先行実施形態の記載を援用できる。先行実施形態では、はんだの接続対象の工夫により、はんだの粒径を小さくした。これに代えて、はんだの工夫により、はんだの粒径を小さくしてもよい。
 図16は、本実施形態に係る半導体装置20において、継手部80、81の接合構造を示す断面図である。図16は、図8に対応している。
 図16に示すように、はんだ104には、導電性のボール122が添加されている。ボール122は、NiまたはCuを主成分とする。このようなボール122は、Niボール、Cuボールと称されることがある。ボール122の径を適宜設定することで、たとえばはんだ104の最低厚を保証することが可能である。
 ボール122が存在することで、はんだ104は、凝固時においてボール122を起点に粒成長する。ボール122を起点とするため、ボール122が添加されない構成に較べて、はんだ104の結晶粒は小さくなる。その他の構成については、先行実施形態に記載の構成と同様である。
 <第4実施形態のまとめ>
 本実施形態に記載の構成によれば、先行実施形態に記載の構成と同等の効果を奏することができる。具体的には、はんだ104にボール122が添加されている。はんだ104は、凝固する際に、ボール122を起点として粒成長する。ボール122は、凝固の起点部である。ボール122を設けることで、はんだ104の粒径をはんだ103H、103Lの粒径よりも小さくし、EM寿命を向上することができる。
 なお、ボール122の効果についても試作にて確認済みである。ボール122を添加することで、はんだ104の粒径が小さくなることを確認できた。また、合金層110、111の消失が遅くなる、つまりEMの進行を遅くできることを確認できた。このとき、無電解NiPめっきによりNi層801、811を形成した。合金層110、111の組成は、(Ni-Cu)Snであった。
 <変形例>
 はんだ104を多層構造とし、単位体積当たりのボール122の占有率を層によって異ならせてもよい。図17に示す例では、はんだ104が、第1層104aと、第2層104bを有している。第1層104aは継手部80側の層であり、第2層104bは継手部81側の層である。図17は、図16に対応している。図17では、便宜上、粒界106を省略している。
 図17に示す例では、第1層104aにおけるボール122の占有率は、第2層104bにおけるボール122の占有率よりも高い。第1層104aのほうが、第2層104bよりもボール122の量が多い。このような構成とすると、第2層104bの粒径を小さくしつつ、第1層104aの粒径をさらに小さくすることができる。よって、出力電流によりEMが進行しやすい構成において、EM寿命を向上することができる。
 なお、第1層104aと第2層104bとで、ボール122の径を異ならせることで、第1層104aにおけるボール122の占有率を、第2層104bにおけるボール122の占有率より高くしてもよい。ボールの量および径の両方を異ならせてもよい。
 第2層104bにおけるボール122の占有率を、第1層104aにおけるボール122の占有率より高くしてもよい。このような構成とすると、第1層104aの粒径を小さくしつつ、第2層104bの粒径をさらに小さくすることができる。よって、還流電流によりEMが進行しやすい構成において、EM寿命を向上することができる。
 はんだ104の二層構造は、たとえばボール含有率の異なるはんだ箔を二層配置することで実現可能である。これに代えて、ボールなしのはんだ箔を三層積層し、はんだ箔間のそれぞれに配置するボール122の量および/または径を異ならせてもよい。はんだ104の層数は、2層に限定されない。3層以上でもよい。
 はんだ104にボール122が配置される例を示したが、これに限定されない。ボール122は、複数のはんだ100のうち、はんだ103H、103Lを除いた他のはんだの少なくともひとつに配置され得る。
 (他の実施形態)
 この明細書および図面等における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。たとえば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものと解されるべきである。
 明細書および図面等における開示は、請求の範囲の記載によって限定されない。明細書および図面等における開示は、請求の範囲に記載された技術的思想を包含し、さらに請求の範囲に記載された技術的思想より多様で広範な技術的思想に及んでいる。よって、請求の範囲の記載に拘束されることなく、明細書および図面等の開示から、多様な技術的思想を抽出することができる。
 ある要素または層が「上にある」、「連結されている」、「接続されている」または「結合されている」と言及されている場合、それは、他の要素、または他の層に対して、直接的に上に、連結され、接続され、または結合されていることがあり、さらに、介在要素または介在層が存在していることがある。対照的に、ある要素が別の要素または層に「直接的に上に」、「直接的に連結されている」、「直接的に接続されている」または「直接的に結合されている」と言及されている場合、介在要素または介在層は存在しない。要素間の関係を説明するために使用される他の言葉は、同様のやり方で(例えば、「間に」対「直接的に間に」、「隣接する」対「直接的に隣接する」など)解釈されるべきである。この明細書で使用される場合、用語「および/または」は、関連する列挙されたひとつまたは複数の項目に関する任意の組み合わせ、およびすべての組み合わせを含む。
 空間的に相対的な用語「内」、「外」、「裏」、「下」、「低」、「上」、「高」などは、図示されているような、ひとつの要素または特徴の他の要素または特徴に対する関係を説明する記載を容易にするためにここでは利用されている。空間的に相対的な用語は、図面に描かれている向きに加えて、使用または操作中の装置の異なる向きを包含することを意図することができる。例えば、図中の装置をひっくり返すと、他の要素または特徴の「下」または「真下」として説明されている要素は、他の要素または特徴の「上」に向けられる。したがって、用語「下」は、上と下の両方の向きを包含することができる。この装置は、他の方向に向いていてもよく(90度または他の向きに回転されてもよい)、この明細書で使用される空間的に相対的な記述子はそれに応じて解釈される。
 車両の駆動システム1は、上記した構成に限定されない。たとえば、モータジェネレータ3をひとつ備える例を示したが、これに限定されない。複数のモータジェネレータを備えてもよい。電力変換装置4が、電力変換部としてインバータ6を備える例を示したが、これに限定されない。たとえば、複数のインバータを備える構成としてもよい。すくなくともひとつのインバータと、コンバータを備える構成としてもよい。コンバータのみを備えてもよい。
 スイッチング素子は、IGBT11に限定されない。たとえばMOSFETを採用してもよい。MOSFETは、Metal Oxide Semiconductor Field Effect Transistorの略称である。nチャネル型のMOSFETの場合、ソース電極が上部電極に相当し、ドレイン電極が下部電極に相当する。MOSFETの場合、還流用のダイオードとして寄生ダイオード(ボディダイオード)を用いてもよいし、外付けのダイオードを用いてもよい。
 半導体装置20が、各アームを構成する半導体素子40をひとつのみ備える例を示したが、これに限定されない。半導体装置20が、各アームを構成する半導体素子40を複数備えてもよい。つまり、複数の半導体素子40Hが互いに並列接続されてひとつのアーム9Hを構成し、複数の半導体素子40Lが互いに並列接続されてひとつのアーム9Lを構成してもよい。
 ヒートシンク50、60の裏面50b、60bが、封止体30から露出する例を示したが、これに限定されない。裏面50b、60bの少なくとも一方が、封止体30によって覆われた構成としてもよい。裏面50b、60bの少なくとも一方が、封止体30とは別の図示しない絶縁部材によって覆われた構成としてもよい。半導体装置20が封止体30を備えない構成としてもよい。
 半導体装置20が、封止体30を備える例を示したが、これに限定されない。封止体30を排除した構成としてもよい。
 (技術的思想の開示)
 この明細書は、以下に列挙する複数の項に記載された複数の技術的思想を開示している。いくつかの項は、後続の項において先行する項を択一的に引用する多項従属形式(a multiple dependent form)により記載されている場合がある。さらに、いくつかの項は、他の多項従属形式の項を引用する多項従属形式(a multiple dependent form referring to another multiple dependent form)により記載されている場合がある。これらの多項従属形式で記載された項は、複数の技術的思想を定義している。
 <技術的思想1>
 上面に信号用のパッドと主電極である上部電極を有し、前記上面とは板厚方向において反対の面である下面に主電極であり、前記板厚方向から平面視した面積が前記上部電極よりも大きい下部電極を有する複数の半導体素子(40)と、
 はんだを介して前記主電極に電気的に接続された複数の導体(50、60、70、80、81、82、92)と、を備え、
 前記複数の半導体素子は、上下アーム回路(9)の上アーム(9H)を構成する第1半導体素子(40H)と、前記上下アーム回路の下アーム(9L)を構成し、前記板厚方向において前記上面が同じ側となるように前記板厚方向に直交する一方向において前記第1半導体素子と並んで配置された第2半導体素子(40L)と、を含み、
 前記複数の導体は、前記第1半導体素子の上部電極に第1上部はんだ(101H、102H)を介して接続された第1上部導体(50H、70H)と、前記第1半導体素子の下部電極に第1下部はんだ(103H)を介して接続された第1下部導体(60H)と、前記第2半導体素子の上部電極に第2上部はんだ(101L、102L)を介して接続された第2上部導体(50L、70L)と、前記第2半導体素子の下部電極に第2下部はんだ(103L)を介して接続された第2下部導体(60L)と、前記第1上部導体と前記第2下部導体とを中継はんだ(104)を介して接続する継手導体(80、81)と、を含み、
 各はんだは、CuおよびSnを含み、
 各はんだの接続対象のそれぞれは、Ni層(801、811)を有し、
 前記第1上部はんだ、前記第2上部はんだ、および前記中継はんだの少なくともひとつの粒径が、前記第1下部はんだおよび前記第2下部はんだの粒径よりも小さい、半導体装置。
 <技術的思想2>
 前記第1上部導体は、第1本体部(50H)と、前記第1半導体素子の上部電極と前記第1本体部との間に介在する第1スペーサ部(70H)と、を有し、
 前記第2上部導体は、第2本体部(50L)と、前記第2半導体素子の上部電極と前記第2本体部との間に介在する第2スペーサ部(70L)と、を有し、
 前記第1上部はんだは、前記第1半導体素子の上部電極と前記第1スペーサ部との間、および、前記第1スペーサ部と前記第1本体部との間にそれぞれ介在し、
 前記第2上部はんだは、前記第2半導体素子の上部電極と前記第2スペーサ部との間、および、前記第2スペーサ部と前記第2本体部との間にそれぞれ介在している、技術的思想1に記載の半導体装置。
 <技術的思想3>
 前記継手導体は、前記中継はんだである第1中継はんだを介して前記第1上部導体と前記第2下部導体とを接続する第1継手導体であり、
 前記複数の導体は、主端子(92)と、前記第2上部導体と前記主端子とを第2中継はんだ(105)を介して接続する第2継手導体(82)と、を含み、
 前記第2中継はんだの粒径が、前記第1下部はんだおよび前記第2下部はんだの粒径よりも小さい、技術的思想1または技術的思想2に記載の半導体装置。
 <技術的思想4>
 前記第1下部はんだおよび前記第2下部はんだの粒径よりも小さい前記はんだである小粒はんだの内部、もしくは、前記小粒はんだの接続対象の表面に、粒径を小さくするための凝固の起点部を有する、技術的思想1~3いずれかひとつに記載の半導体装置。
 <技術的思想5>
 前記起点部は、前記小粒はんだ内に配置され、前記小粒はんだの接続対象の表面に固定された複数のワイヤ片(120)である、技術的思想4に記載の半導体装置。
 <技術的思想6>
 前記小粒はんだの接続対象である前記導体は、前記Ni層上に、Niを主成分とし、表面が連続して凹凸をなす凹凸酸化膜(803)を有し、
 前記起点部は、前記凹凸酸化膜を覆うボイド(121)である、技術的思想4に記載の半導体装置。
 <技術的思想7>
 前記小粒はんだの接続対象である前記導体は、溢れたはんだを収容する溝(83)を有し、
 前記溝の内周端は、連続する凹凸状をなしており、
 前記起点部は、前記溝の内周端の凹部および/または凸部である、技術的思想4に記載の半導体装置。
 <技術的思想8>
 前記小粒はんだには、導電性のボール(122)が添加されており、
 前記起点部は、前記ボールである、技術的思想4に記載の半導体装置。
 <技術的思想9>
 前記ボールは、NiまたはCuを含む、技術的思想8に記載の半導体装置。

Claims (9)

  1.  上面に信号用のパッドと主電極である上部電極を有し、前記上面とは板厚方向において反対の面である下面に主電極であり、前記板厚方向から平面視した面積が前記上部電極よりも大きい下部電極を有する複数の半導体素子(40)と、
     はんだを介して前記主電極に電気的に接続された複数の導体(50、60、70、80、81、82、92)と、を備え、
     前記複数の半導体素子は、上下アーム回路(9)の上アーム(9H)を構成する第1半導体素子(40H)と、前記上下アーム回路の下アーム(9L)を構成し、前記板厚方向において前記上面が同じ側となるように前記板厚方向に直交する一方向において前記第1半導体素子と並んで配置された第2半導体素子(40L)と、を含み、
     前記複数の導体は、前記第1半導体素子の上部電極に第1上部はんだ(101H、102H)を介して接続された第1上部導体(50H、70H)と、前記第1半導体素子の下部電極に第1下部はんだ(103H)を介して接続された第1下部導体(60H)と、前記第2半導体素子の上部電極に第2上部はんだ(101L、102L)を介して接続された第2上部導体(50L、70L)と、前記第2半導体素子の下部電極に第2下部はんだ(103L)を介して接続された第2下部導体(60L)と、前記第1上部導体と前記第2下部導体とを中継はんだ(104)を介して接続する継手導体(80、81)と、を含み、
     各はんだは、CuおよびSnを含み、
     各はんだの接続対象のそれぞれは、Ni層(801、811)を有し、
     前記第1上部はんだ、前記第2上部はんだ、および前記中継はんだの少なくともひとつの粒径が、前記第1下部はんだおよび前記第2下部はんだの粒径よりも小さい、半導体装置。
  2.  前記第1上部導体は、第1本体部(50H)と、前記第1半導体素子の上部電極と前記第1本体部との間に介在する第1スペーサ部(70H)と、を有し、
     前記第2上部導体は、第2本体部(50L)と、前記第2半導体素子の上部電極と前記第2本体部との間に介在する第2スペーサ部(70L)と、を有し、
     前記第1上部はんだは、前記第1半導体素子の上部電極と前記第1スペーサ部との間、および、前記第1スペーサ部と前記第1本体部との間にそれぞれ介在し、
     前記第2上部はんだは、前記第2半導体素子の上部電極と前記第2スペーサ部との間、および、前記第2スペーサ部と前記第2本体部との間にそれぞれ介在している、請求項1に記載の半導体装置。
  3.  前記継手導体は、前記中継はんだである第1中継はんだを介して前記第1上部導体と前記第2下部導体とを接続する第1継手導体であり、
     前記複数の導体は、主端子(92)と、前記第2上部導体と前記主端子とを第2中継はんだ(105)を介して接続する第2継手導体(82)と、を含み、
     前記第2中継はんだの粒径が、前記第1下部はんだおよび前記第2下部はんだの粒径よりも小さい、請求項1に記載の半導体装置。
  4.  前記第1下部はんだおよび前記第2下部はんだの粒径よりも小さい前記はんだである小粒はんだの内部、もしくは、前記小粒はんだの接続対象の表面に、粒径を小さくするための凝固の起点部を有する、請求項1~3いずれか1項に記載の半導体装置。
  5.  前記起点部は、前記小粒はんだ内に配置され、前記小粒はんだの接続対象の表面に固定された複数のワイヤ片(120)である、請求項4に記載の半導体装置。
  6.  前記小粒はんだの接続対象である前記導体は、前記Ni層上に、Niを主成分とし、表面が連続して凹凸をなす凹凸酸化膜(803)を有し、
     前記起点部は、前記凹凸酸化膜を覆うボイド(121)である、請求項4に記載の半導体装置。
  7.  前記小粒はんだの接続対象である前記導体は、溢れたはんだを収容する溝(83)を有し、
     前記溝の内周端は、連続する凹凸状をなしており、
     前記起点部は、前記溝の内周端の凹部および/または凸部である、請求項4に記載の半導体装置。
  8.  前記小粒はんだには、導電性のボール(122)が添加されており、
     前記起点部は、前記ボールである、請求項4に記載の半導体装置。
  9.  前記ボールは、NiまたはCuを含む、請求項8に記載の半導体装置。
PCT/JP2023/030170 2022-09-02 2023-08-22 半導体装置 WO2024048371A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-140168 2022-09-02
JP2022140168A JP2024035598A (ja) 2022-09-02 2022-09-02 半導体装置

Publications (1)

Publication Number Publication Date
WO2024048371A1 true WO2024048371A1 (ja) 2024-03-07

Family

ID=90099672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030170 WO2024048371A1 (ja) 2022-09-02 2023-08-22 半導体装置

Country Status (2)

Country Link
JP (1) JP2024035598A (ja)
WO (1) WO2024048371A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115268A1 (ja) * 2011-02-25 2012-08-30 千住金属工業株式会社 パワーデバイス用のはんだ合金と高電流密度のはんだ継手
JP2014082526A (ja) * 2014-01-29 2014-05-08 Hitachi Metals Ltd 電子機器の製造方法
JP2016092166A (ja) * 2014-11-04 2016-05-23 トヨタ自動車株式会社 半導体装置とその製造方法
WO2021085216A1 (ja) * 2019-10-29 2021-05-06 三菱電機株式会社 半導体装置、電力変換装置、および半導体装置の製造方法
JP2021145081A (ja) * 2020-03-13 2021-09-24 日立Astemo株式会社 半導体装置の製造方法および半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115268A1 (ja) * 2011-02-25 2012-08-30 千住金属工業株式会社 パワーデバイス用のはんだ合金と高電流密度のはんだ継手
JP2014082526A (ja) * 2014-01-29 2014-05-08 Hitachi Metals Ltd 電子機器の製造方法
JP2016092166A (ja) * 2014-11-04 2016-05-23 トヨタ自動車株式会社 半導体装置とその製造方法
WO2021085216A1 (ja) * 2019-10-29 2021-05-06 三菱電機株式会社 半導体装置、電力変換装置、および半導体装置の製造方法
JP2021145081A (ja) * 2020-03-13 2021-09-24 日立Astemo株式会社 半導体装置の製造方法および半導体装置

Also Published As

Publication number Publication date
JP2024035598A (ja) 2024-03-14

Similar Documents

Publication Publication Date Title
JP4239580B2 (ja) 半導体装置
JP7005449B2 (ja) 半導体装置、電力変換装置、半導体装置の製造方法、および、電力変換装置の製造方法
JP2007184525A (ja) 電子機器装置
JP6972432B1 (ja) 半導体パッケージ、半導体装置および電力変換装置
CN112582356A (zh) 半导体器件
JP6244272B2 (ja) 半導体装置
WO2022024567A1 (ja) 半導体装置
JP5948106B2 (ja) パワー半導体モジュール及びそれを用いた電力変換装置
WO2024048371A1 (ja) 半導体装置
WO2020174584A1 (ja) 半導体装置、半導体装置の製造方法および電力変換装置
JP2011023748A (ja) 電子機器装置
JP7452233B2 (ja) 半導体装置および電力変換装置
JP2022152703A (ja) 半導体装置
WO2024004683A1 (ja) 半導体装置
JP7363682B2 (ja) 半導体装置
WO2024062845A1 (ja) 半導体装置
US20230016437A1 (en) Semiconductor device
JP2023170769A (ja) 半導体装置
US20240079383A1 (en) Semiconductor device
JP2023168060A (ja) 半導体装置およびその製造方法
JP2023183160A (ja) 半導体装置およびその製造方法
JP6885522B1 (ja) 半導体装置、電力変換装置および半導体装置の製造方法
JP2023078915A (ja) 半導体装置およびその製造方法
WO2023002795A1 (ja) 半導体装置
JP7439653B2 (ja) 半導体装置及び電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860134

Country of ref document: EP

Kind code of ref document: A1