WO2024048213A1 - 樹脂組成物及びその製造方法、並びに成形体 - Google Patents

樹脂組成物及びその製造方法、並びに成形体 Download PDF

Info

Publication number
WO2024048213A1
WO2024048213A1 PCT/JP2023/028827 JP2023028827W WO2024048213A1 WO 2024048213 A1 WO2024048213 A1 WO 2024048213A1 JP 2023028827 W JP2023028827 W JP 2023028827W WO 2024048213 A1 WO2024048213 A1 WO 2024048213A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
solvent
resin
carbon nanotubes
less
Prior art date
Application number
PCT/JP2023/028827
Other languages
English (en)
French (fr)
Inventor
慶久 武山
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2024048213A1 publication Critical patent/WO2024048213A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a resin composition, a method for producing the same, and a molded article.
  • Carbon nanotubes (hereinafter sometimes referred to as "CNTs") have excellent electrical conductivity, thermal conductivity, sliding properties, mechanical properties, etc., so their application to a wide range of uses is being considered. Therefore, in recent years, by taking advantage of the excellent properties of CNT and compositing resin materials and CNT, we are providing composite resin materials that have both the properties of resin such as workability and strength, and the properties of CNT such as conductivity. The technology is being developed.
  • Patent Document 1 describes manufacturing a composite material using a mixture of carbon nanotubes, polyhydric alcohol, and thermoplastic resin.
  • Patent Document 2 describes manufacturing a composite material using carbon nanotubes, a thermoplastic resin, and a solvent.
  • an object of the present invention is to provide a resin composition and a method for producing the same that can achieve both high levels of conductivity and cleanliness.
  • Another object of the present invention is to provide a molded article that is excellent in both electrical conductivity and cleanliness.
  • the present invention aims to advantageously solve the above-mentioned problems.
  • the resin composition of the present invention is a resin composition containing a resin, carbon nanotubes, and a solvent, and the resin composition includes a resin, a carbon nanotube, and a solvent.
  • the distance Ra of the Hansen solubility parameter between the resins is 2.0 or more and 4.5 or less, and the carbon purity of the carbon nanotubes is 94.0% by mass or more.
  • a resin composition that satisfies these attributes can have both high levels of conductivity and cleanliness.
  • the "Hansen solubility parameter distance Ra" between the solvent and the resin can be measured by the method described in the Examples of this specification.
  • the carbon nanotubes include single-walled carbon nanotubes.
  • a resin composition that satisfies these attributes has even better electrical conductivity.
  • the content ratio of the carbon nanotubes is preferably 0.1% by mass or more and less than 4.0% by mass. If the content of carbon nanotubes is within the above range, the resin composition can have even better conductivity and cleanliness.
  • the content ratio of the solvent is preferably 100 ppm or less. If the content ratio of the solvent is 100 ppm or less, the cleanliness of the resin composition can be made even more excellent.
  • the content rate of the solvent in the resin composition can be measured by the method described in Examples.
  • the resin comprises a fluoropolymer, polycarbonate, polyetherimide, polyetheretherketone, polyethersulfone, and , at least one type of alicyclic structure-containing polymer.
  • the resin is any of the resins listed above, the resin composition can have even better conductivity and cleanliness.
  • the present invention aims to advantageously solve the above problems, and the method for producing a resin composition of the present invention includes a method for producing a resin composition containing a resin, carbon nanotubes, and a solvent.
  • the method comprises: preparing a mixture containing the resin, the carbon nanotubes, and the solvent, wherein the proportion of the solvent in the mixture is 0.1% by mass or more and 20% by mass or less, and the ratio of the solvent to the carbon nanotubes on a mass basis is A mixing step of preparing the amount of the solvent to be 1.0 times or more and 7.0 times or less, a kneading step of kneading the mixture, and a solvent for obtaining a resin composition by removing the solvent from the mixture.
  • the kneading step and the solvent removal step may proceed simultaneously during a part of the duration of these steps, and in the solvent removal step, the proportion of the solvent in the resin composition is 100 ppm or less. According to such a method for producing a resin composition of the present invention, the resin composition of the present invention described in any one of [1] to [5] above can be efficiently produced.
  • the method for producing a resin composition described in [6] above includes an impregnation step of impregnating the carbon nanotubes with the solvent prior to the mixing step. By performing such an impregnation step, the conductivity of the resulting resin composition can be further improved.
  • the present invention aims to advantageously solve the above problems, and the molded article of the present invention comprises the resin composition according to any one of [1] to [5] above. It is characterized by being molded. Such a molded body has excellent conductivity and cleanliness.
  • the molded article described in [8] above may be a member for semiconductor manufacturing.
  • Such semiconductor manufacturing members have excellent conductivity and cleanliness.
  • the semiconductor manufacturing member in this specification means a member used in a semiconductor manufacturing process.
  • the present invention it is possible to provide a resin composition and a method for producing the same that can achieve both high levels of conductivity and cleanliness. Further, according to the present invention, a molded article having excellent conductivity and cleanliness can be provided.
  • the resin composition of the present invention is used for producing the molded article of the present invention. Moreover, according to the method for producing a resin composition of the present invention, the resin composition of the present invention can be efficiently produced.
  • the resin composition of the present invention is a resin composition containing a resin, carbon nanotubes, and a solvent. More specifically, the Hansen solubility parameter distance Ra between the solvent and the resin contained in the resin composition is 2.0 or more and 4.5 or less, and the carbon purity of the carbon nanotubes is 94.0% by mass or more. It is characterized by A resin composition that satisfies these characteristics can have both high levels of conductivity and cleanliness.
  • the resin contained in the resin composition of the present invention includes at least one of a fluoropolymer, a polycarbonate, a polyetherimide, a polyetheretherketone, a polyethersulfone, and an alicyclic structure-containing polymer.
  • a fluoropolymer a polycarbonate
  • a polyetherimide a polyetheretherketone
  • a polyethersulfone a polyethersulfone
  • an alicyclic structure-containing polymer examples include resin.
  • fluororesins and alicyclic structure-containing polymers are preferred from the viewpoint of heat resistance and chemical resistance.
  • fluororesin examples include, but are not limited to, polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene (modified PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene/hexafluoroethylene.
  • Fluoropropylene copolymer (FEP) ethylene/tetrafluoroethylene copolymer (ETFE), ethylene/chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), and Examples include polyvinyl fluoride (PVF).
  • tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA) can be preferably used.
  • polystyrene resin polystyrene resin
  • polyetherimide polyether ether ketone
  • polyether sulfone commercially available products or synthetic products can be used without particular limitation.
  • the alicyclic structure-containing polymer is a polymer containing repeating units having an alicyclic structure.
  • the alicyclic structure-containing polymer either a polymer having an alicyclic structure in the main chain or a polymer having an alicyclic structure in the side chain can be used, but resin compositions, etc. From the viewpoint of exhibiting excellent mechanical strength and heat resistance, a polymer having an alicyclic structure in the main chain is preferable. Note that the alicyclic structure-containing polymers may be used alone or in combination of two or more in any ratio.
  • alicyclic structure examples include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure.
  • cycloalkane structures and cycloalkene structures are preferable, and cycloalkane structures are more preferable, from the viewpoint of exhibiting excellent mechanical strength and heat resistance in resin compositions and the like.
  • the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, and 30 or less per alicyclic structure.
  • the number is preferably 20 or less, and more preferably 15 or less. If the number of carbon atoms constituting the alicyclic structure is within the above-mentioned range, excellent mechanical strength and heat resistance can be exhibited while ensuring moldability of the resin composition.
  • the proportion of repeating units having an alicyclic structure in the alicyclic structure-containing polymer may be more than 50% by mass, with the total repeating units constituting the alicyclic structure-containing polymer being 100% by mass. It is preferably 55% by mass or more, more preferably 70% by mass or more, particularly preferably 90% by mass or more, and 100% by mass or less. If the proportion of repeating units having an alicyclic structure in the alicyclic structure-containing polymer is more than 50% by mass, the heat resistance of the resin composition and the like can be improved.
  • alicyclic structure-containing polymers Specific examples of the alicyclic structure-containing polymer include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, and vinyl alicyclic hydrocarbon polymers. Among these, norbornene polymers are preferred from the viewpoint of exhibiting excellent transparency while ensuring moldability of the resin composition.
  • the norbornene polymer for example, a ring-opened polymer of a monomer having a norbornene structure, a ring-opened copolymer of a monomer having a norbornene structure and any monomer, or a hydrogenated product thereof;
  • examples include an addition polymer of a monomer having a norbornene structure, an addition copolymer of a monomer having a norbornene structure and any monomer, or a hydride thereof.
  • monomers with a norbornene structure are preferred.
  • Examples of monomers having a norbornene structure include bicyclo[2.2.1]hept-2-ene (common name: norbornene), tricyclo[4.3.0.1 2,5 ]dec-3,7 -diene (common name: dicyclopentadiene), 7,8-benzotricyclo[4.3.0.1 2,5 ]dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo[4.4. 0.1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene), and derivatives of these compounds (eg, those having a substituent on the ring).
  • examples of the substituent that these compounds have on the ring include an alkyl group, an alkylene group, and a polar group.
  • Polar groups include heteroatoms and groups containing heteroatoms.
  • examples of the heteroatom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Groups containing heteroatoms include carboxyl groups, carbonyloxycarbonyl groups (carboxylic anhydride groups), epoxy groups, hydroxyl groups, oxy groups, ester groups, silanol groups, silyl groups, amino groups, nitrile groups, and sulfonic acid groups. Examples include groups.
  • a plurality of these substituents may be the same or different and may be bonded to the ring.
  • the monomers having a norbornene structure may be used alone or in combination of two or more in any ratio.
  • Any monomer capable of ring-opening copolymerization or addition copolymerization with the monomer having the norbornene structure described above is not particularly limited, and for example, those listed in International Publication No. 2015/098750 can be used. can.
  • the monocyclic olefin polymer, cyclic conjugated diene polymer, and vinyl alicyclic hydrocarbon polymer are not particularly limited, and for example, those listed in International Publication No. 2015/098750 are used. be able to.
  • the method for preparing the alicyclic structure-containing polymer is not particularly limited, and any known method can be used.
  • a polymer having a norbornene structure can be prepared by ring-opening polymerization or addition polymerization of a monomer composition containing at least the monomer having a norbornene structure described above, and optionally hydrogenating the monomer composition. .
  • the carbon nanotubes (CNTs) contained in the resin composition of the present invention are not particularly limited, and single-walled carbon nanotubes and/or multi-walled carbon nanotubes can be used. ) is preferably contained as a main component. Components other than single-walled CNTs that can be included in CNTs include multi-walled carbon nanotubes (multi-walled CNTs).
  • the ratio of single-walled CNTs to the total mass of CNTs is preferably 50% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and 100% by mass It may be %.
  • the conductivity of the resin composition can be further improved.
  • the CNTs include multilayer CNTs
  • the number of layers of the multilayer CNTs is preferably 5 or less.
  • the carbon purity of the CNTs needs to be 94.0% by mass or more, preferably 95.0% by mass or more, and more preferably 99.0% by mass or more.
  • the upper limit of the carbon purity of CNT is not particularly limited, and may be, for example, less than 99.9999%. Further, the carbon purity of CNTs can be measured by the method described in Examples.
  • the BET specific surface area of the CNTs is preferably 250 m 2 /g or more, more preferably 500 m 2 /g or more, even more preferably 600 m 2 /g or more, and 1600 m 2 /g or less. It is preferably 1200 m 2 /g or less, more preferably 1000 m 2 /g or less, and may be 800 m 2 /g or less.
  • the "BET specific surface area” refers to the nitrogen adsorption specific surface area measured using the BET (Brunauer-Emmett-Teller) method.
  • CNTs are not particularly limited, and can be manufactured using known CNT synthesis methods such as arc discharge method, laser ablation method, and chemical vapor deposition method (CVD method). Specifically, CNTs are synthesized by chemical vapor deposition (CVD), for example, by supplying a raw material compound and a carrier gas onto a base material having a catalyst layer for carbon nanotube production on its surface.
  • CVD chemical vapor deposition
  • the method in accordance with the method (super growth method; see International Publication No. 2006/011655) in which the catalytic activity of the catalyst layer is dramatically improved by the presence of a small amount of oxidizing agent (catalyst activating material) in the system. , can be manufactured efficiently.
  • the t-plot obtained from the adsorption isotherm of the CNTs exhibits an upwardly convex shape.
  • the t-plot which shows an upwardly convex shape, shows that in regions where the average thickness t of the nitrogen gas adsorption layer is small, the plot is located on a straight line passing through the origin, but as t becomes larger, the plot is located on the straight line.
  • the position is shifted downward from the A CNT having such a t-plot shape has a large ratio of internal specific surface area to the total specific surface area of the CNT, indicating that a large number of openings are formed in the CNT.
  • the bending point of the t-plot of CNT is preferably in a range that satisfies 0.2 ⁇ t(nm) ⁇ 1.5, and should be in a range that satisfies 0.45 ⁇ t(nm) ⁇ 1.5. is more preferable, and even more preferably in the range of 0.55 ⁇ t(nm) ⁇ 1.0. CNTs whose t-plot inflection point falls within this range are less likely to aggregate in a dispersion liquid when such CNTs are used to prepare a dispersion liquid.
  • the "position of the bending point" is the intersection of the approximate straight line A in the process (1) described above and the approximate straight line B in the process (3) described above.
  • the ratio of the internal specific surface area S2 to the total specific surface area S1 (S2/S1) of the CNTs obtained from the t-plot is 0.05 or more and 0.30 or less. CNTs whose S2/S1 value falls within this range are more difficult to agglomerate in the dispersion when such CNTs are used to prepare a carbon nanotube dispersion.
  • the total specific surface area S1 and internal specific surface area S2 of CNT can be determined from the t-plot. Specifically, first, the total specific surface area S1 can be determined from the slope of the approximate straight line in step (1), and the external specific surface area S3 can be determined from the slope of the approximate straight line in step (3). Then, by subtracting the external specific surface area S3 from the total specific surface area S1, the internal specific surface area S2 can be calculated.
  • Measurement of the adsorption isotherm of CNTs, creation of a t-plot, and calculation of the total specific surface area S1 and internal specific surface area S2 based on the analysis of the t-plot can be carried out using, for example, the commercially available measuring device "BELSORP”. (registered trademark)-mini” (manufactured by Nippon Bell Co., Ltd.).
  • the average diameter of the CNTs is preferably 1 nm or more, preferably 60 nm or less, more preferably 30 nm or less, and even more preferably 10 nm or less. Further, the average length of the CNTs is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, even more preferably 80 ⁇ m or more, preferably 600 ⁇ m or less, and preferably 500 ⁇ m or less. The thickness is more preferably 400 ⁇ m or less.
  • the carbon nanotubes may be in the form of CNT aggregates.
  • the CNT in the form of a CNT aggregate for example, a CNT aggregate that satisfies at least one of the conditions (1) to (3) described below can be used.
  • CNT aggregate used when forming the resin composition, it is preferable to use a CNT aggregate that satisfies at least one of the following conditions (1) to (3).
  • the plasmon resonance of the carbon nanotube dispersion There is at least one peak based on the wave number in the range of more than 300 cm ⁇ 1 and less than 2000 cm ⁇ 1 .
  • the pore distribution curve showing the relationship between pore diameter and Log differential pore volume obtained based on the Barrett-Joyner-Halenda method from the adsorption isotherm of liquid nitrogen at 77K. The maximum peak is in the range of pore diameters of more than 100 nm and less than 400 nm.
  • At least one peak in the two-dimensional spatial frequency spectrum of the electron microscope image of the carbon nanotube aggregate exists in the range of 1 ⁇ m ⁇ 1 to 100 ⁇ m ⁇ 1 .
  • Condition (1) is ⁇ In the spectrum obtained by Fourier transform infrared spectroscopy of a carbon nanotube dispersion obtained by dispersing carbon nanotube aggregates so that the bundle length is 10 ⁇ m or more, the carbon nanotube dispersion is There is at least one peak based on plasmon resonance in the wave number range of more than 300 cm -1 and less than 2000 cm -1 .
  • strong absorption characteristics in the far infrared region have been widely known as optical properties of CNTs. Such strong absorption characteristics in the far-infrared region are thought to be due to the diameter and length of CNTs.
  • the relationship between the peak based on plasmon resonance of CNTs and the length of CNTs please refer to the non-patent literature (T. Morimoto et. al., “Length-Dependent Plasmon Resonance in Single-Walled Carbon Nanotubes”, pp 9897-9904, Vol. 8, No. 10, ACS NANO, 2014).
  • the peak based on the plasmon resonance of CNT exists in a wave number range of more than 300 cm -1 and less than 2000 cm -1 , and more than 500 cm -1 wave number. It is more preferable that the wave number exists in the range of 2000 cm ⁇ 1 or less, and even more preferably that the wave number exists in the range of 700 cm ⁇ 1 or more and 2000 cm ⁇ 1 or less.
  • the sharp peak near the wave number 840 cm -1 is caused by the C-H out-of-plane bending vibration; the sharp peak near the wave number 1300 cm -1 is caused by the epoxy three-membered ring stretching vibration; the wave number 1700 cm
  • the upper limit for determining the presence or absence of a peak based on plasmon resonance of the CNT dispersion under condition (1) is set to 2000 -1 cm or less. It can be said.
  • condition (1) when acquiring a spectrum by Fourier transform infrared spectroscopy, it is necessary to obtain a CNT dispersion by dispersing the CNT aggregates so that the bundle length is 10 ⁇ m or more.
  • CNT aggregates, water, and a surfactant e.g., sodium dodecylbenzenesulfonate
  • a surfactant e.g., sodium dodecylbenzenesulfonate
  • the bundle length of the CNT dispersion can be obtained by analyzing it with a wet image analysis type particle size measuring device. Such a measuring device calculates the area of each dispersion from an image obtained by photographing the CNT dispersion, and calculates the diameter of a circle having the calculated area (hereinafter also referred to as ISO area diameter). ) can be obtained.
  • ISO area diameter a circle having the calculated area
  • the bundle length of each dispersion is defined as the value of the ISO circle diameter obtained in this manner.
  • Condition (2) specifies that "the maximum peak in the pore distribution curve is in the range of pore diameters of more than 100 nm and less than 400 nm.”
  • the pore distribution of the carbon nanotube aggregate can be determined based on the BJH method from the adsorption isotherm of liquid nitrogen at 77K.
  • the fact that the peak in the pore distribution curve obtained by measuring carbon nanotube aggregates is in a range exceeding 100 nm means that in carbon nanotube aggregates, there are voids of a certain size between CNTs, and the CNTs are This means that it is not in an excessively dense and aggregated state.
  • the upper limit of 400 nm is the measurement limit when, for example, BELSORP-mini II is used as the measurement device.
  • Condition (3) stipulates that "at least one peak in the two-dimensional spatial frequency spectrum of the electron microscope image of the carbon nanotube aggregate exists in the range of 1 ⁇ m ⁇ 1 to 100 ⁇ m ⁇ 1 .”
  • the sufficiency of these conditions can be determined as follows. First, the CNT aggregate to be determined is observed under magnification (for example, 10,000 times) using an electron microscope (for example, a field emission scanning electron microscope), and multiple electron microscope images ( For example, 10 images). A fast Fourier transform (FFT) process is performed on the plurality of obtained electron microscope images to obtain a two-dimensional spatial frequency spectrum. The two-dimensional spatial frequency spectrum obtained for each of the plurality of electron microscope images is binarized to obtain the average value of the peak positions appearing on the highest frequency side.
  • FFT fast Fourier transform
  • condition (3) If the average value of the obtained peak positions is within the range of 1 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less, it can be determined that condition (3) is satisfied.
  • a clear peak obtained by performing isolated point extraction processing that is, a reverse operation of isolated point removal
  • a clear peak is not obtained within the range of 1 ⁇ m ⁇ 1 to 100 ⁇ m ⁇ 1 when isolated points are extracted, it can be determined that condition (3) is not satisfied.
  • the peak of the two-dimensional spatial frequency spectrum exists in the range of 2.6 ⁇ m ⁇ 1 or more and 100 ⁇ m ⁇ 1 or less.
  • the CNT aggregate satisfies at least two of the conditions (1) to (3) above. It is more preferable to satisfy all of the requirements.
  • the CNT aggregate that can be used in producing the resin composition of the present invention preferably has the following properties.
  • the tapped bulk density of the CNT aggregate is preferably 0.001 g/cm 3 or more and 0.2 g/cm 3 or less.
  • CNT aggregates in such a density range have excellent dispersibility because the bonds between the CNTs are not excessively strong, and can be molded into various shapes. If the tapped bulk density of the CNT aggregate is 0.2 g/cm 3 or less, the bonds between the CNTs will be weak, so that when the CNT aggregate is stirred in a solvent, it will be easy to disperse it homogeneously. Further, if the tapped bulk density of the CNT aggregate is 0.001 g/cm 3 or more, the integrity of the CNT aggregate will be improved and handling will be facilitated.
  • the tapped bulk density is the apparent bulk density obtained when a container is filled with a powdered CNT aggregate and then the voids between the powder particles are reduced by tapping or vibration, resulting in a tightly packed state.
  • the method for producing a CNT aggregate is not particularly limited, and production conditions can be adjusted depending on desired properties.
  • a CNT aggregate that satisfies at least any of the conditions (1) to (3) above can be produced, for example, according to the method described in International Publication No. 2021/172078.
  • the content ratio of CNT in the resin composition is preferably 0.1% by mass or more, more preferably 0.6% by mass or more, and 0.8% by mass, based on the total mass of the resin composition as 100% by mass. It is more preferably at least 4.0% by mass, more preferably at most 3.5% by mass, even more preferably at most 2.8% by mass.
  • the conductivity of the resin composition can be further improved.
  • the cleanliness of the resin composition can be further improved. This is because CNTs may inevitably contain metals as impurities due to their manufacturing method, but by preventing the CNT content from becoming excessive, the amount of metals in the resin composition can be reduced and cleanliness improved. This is because it is possible.
  • any solvent can be used as long as the distance Ra of the Hansen solubility parameter between the resin and the solvent is 2.0 or more and 4.5 or less.
  • organic solvents such as 5,5,6,6-decafluorooctane, those having a Hansen solubility parameter distance Ra of 2.0 or more and 4.5 or less with the blended resin can be preferably used.
  • the distance Ra of the Hansen solubility parameter between the resin and the solvent is preferably 2.1 or more, preferably 3.9 or less, and more preferably 3.5 or less.
  • the conductivity of the resin composition can be further improved. More specifically, if the distance Ra of the Hansen solubility parameter is equal to or greater than the above lower limit, the dispersibility of CNTs in the resin composition is increased by avoiding excessive dissolution of the resin in the solvent. Conductivity can be increased.
  • the distance Ra of the Hansen solubility parameter is below the above upper limit, the affinity between the resin and the solvent will be suppressed from decreasing excessively, thereby increasing the dispersibility of CNTs in the resin composition and improving conductivity. can be increased. As a result of the increased dispersibility of CNTs in the resin composition, it is possible to exhibit good electrical conductivity even when a small amount of CNTs is blended into the resin composition.
  • the proportion of the solvent in the resin composition is preferably 100 ppm or less, more preferably 90 ppm or less on a mass basis. This is because it is possible to reduce the amount of outgas generated from a molded object (for example, a member for semiconductor manufacturing) manufactured using the resin composition.
  • the lower limit of the amount of solvent is not particularly limited, but may be, for example, 0.1 ppm or more.
  • the resin composition of the present invention may optionally contain other components such as additives.
  • Additives include antioxidants, crystal nucleating agents, waxes, ultraviolet absorbers, light stabilizers, near-infrared absorbers, colorants such as dyes and pigments, plasticizers, antistatic agents, and optical brighteners. Can be mentioned. The content of these additives can be determined as appropriate depending on the purpose.
  • a manufacturing method capable of efficiently manufacturing the resin composition described above is a manufacturing method of a resin composition containing a resin, carbon nanotubes, and a solvent, and includes at least the following mixing step, kneading step, and solvent removal step. including. Moreover, it is preferable to carry out an impregnation process prior to the mixing process.
  • CNTs are impregnated with a solvent.
  • the solvent and CNT those described above can be used.
  • the blending ratio of the solvent and CNT can be set to the blending ratio described below in the section of ⁇ Mixing Step>.
  • a mixture of the solvent and carbon nanotubes obtained by adding a solvent to the CNTs is left to stand for at least 1 hour and at most 24 hours in an environment with a temperature of 10°C or more and 80°C or less. It is preferable.
  • ⁇ Mixing process> a mixture containing resin, CNT, and solvent is prepared. At this time, when the impregnation step is carried out, a resin is added to the mixture containing the solvent and CNTs obtained in the above step.
  • the proportion of the solvent in the target mixture is 0.1% by mass or more and 20% by mass or less, and the amount of solvent is 1.0 times or more and 7.0 times or less relative to the CNTs on a mass basis. Adjust the mixing ratio accordingly.
  • the proportion of the solvent in the mixture needs to be 0.1% by mass or more, preferably 1.0% by mass or more, and 20% by mass or less, based on the total mass of the mixture as 100% by mass. It is preferably 15% by mass or less, more preferably 10% by mass or less. If the proportion of the solvent in the mixture is equal to or higher than the above lower limit value, the stress of the mixture can be appropriately reduced, and by applying an appropriate shear force during mixing, the dispersibility of CNTs can be increased, and the resulting resin composition can be improved. It can increase the conductivity of objects. Moreover, if the proportion of the solvent in the mixture is below the above upper limit value, the efficiency of the solvent removal step described below can be improved, and the production efficiency of the resin composition can be improved.
  • the proportion of the solvent in the mixture to the above upper limit value or less, the amount of solvent remaining in the resulting resin composition can be reduced, and the resin composition can be used to produce molded objects (such as parts for semiconductor manufacturing). ), the amount of outgas can be reduced.
  • the amount of solvent contained in the mixture (based on the amount of CNT) must be 1.0 times or more, preferably 2.0 times or more, and 7.0 times or less, and 6 It is preferably .0 times or less, and more preferably 5.0 times or less. If the amount of solvent contained in the mixture (based on the amount of CNTs) is at least the above lower limit, the dispersibility of CNTs can be increased and the conductivity of the resulting resin composition can be increased. Furthermore, if the amount of solvent contained in the mixture (based on the amount of CNTs) is below the above upper limit, the solvent removal process described below can be made more efficient, and the manufacturing efficiency of the resin composition can be increased. , the amount of residual solvent can be reduced.
  • the mixture obtained in the mixing step is kneaded.
  • the kneading method is not particularly limited, and examples thereof include a method of melt-kneading using a single-screw kneader, a twin-screw kneader, or the like.
  • the conditions for kneading are not particularly limited, and can be appropriately set, for example, within the range of normal kneading conditions in the above-mentioned apparatus.
  • the kneaded material after kneading may be formed into an arbitrary shape, such as a pellet shape.
  • the solvent removal step removes the solvent from the mixture.
  • This solvent removal step may be carried out partially overlapping the kneading step, or may be carried out after the kneading step is completed.
  • vacuum degassing is performed during at least part of the kneading process to remove the mixture from the mixture while kneading.
  • Solvent can be removed.
  • the solvent when carrying out the solvent removal step without proceeding simultaneously with the above-mentioned kneading step, the solvent can be removed by drying the kneaded material after the kneading step.
  • the drying method is not particularly limited, but conventional methods such as heat drying, vacuum drying, air drying, and leaving at room temperature and pressure can be used. Drying conditions are also not particularly limited, and conventional methods can be used.
  • the molded article of the present invention is characterized by being formed by molding the resin composition of the present invention described above. Since the molded article of the present invention is formed by molding the resin composition of the present invention, it can achieve both high levels of conductivity and cleanliness. Furthermore, the molded body can be a member for semiconductor manufacturing. Semiconductor manufacturing components include, for example, FOUPs (Front Opening Unified Pods), FOSBs (Front Opening Shipping Boxes), wafer trays, wafer carriers used in the semiconductor manufacturing process, and can be used by attaching to these trays or carriers. They can be handles, carrier tapes, dicing tapes, wafer cassettes, housings, and various types of tubes that can be used to convey fluids such as gases and liquids in semiconductor manufacturing equipment.
  • FOUPs Front Opening Unified Pods
  • FOSBs Front Opening Shipping Boxes
  • wafer trays wafer carriers used in the semiconductor manufacturing process
  • wafer carriers used in the semiconductor manufacturing process
  • They can be handles, carrier tapes, dicing tapes,
  • a member for semiconductor manufacturing can be manufactured by molding the resin composition of the present invention according to a molding method suitable for the shape of the intended member. More specifically, the semiconductor manufacturing member can be molded, for example, according to a melt molding method. Examples of the melt molding method include injection molding, blow molding, and injection blow molding. These methods can be appropriately selected depending on the target member shape and the like. Among these, it is preferable to employ an injection molding method.
  • Example 1 ⁇ CNT synthesis>
  • the CNT aggregates used in Examples 1 to 5 and Comparative Examples 1 to 2 were produced in the CNT synthesis process by supplying raw material gas while continuously conveying particulate catalyst carriers by rotating a screw. .
  • one manufactured in the same manner as Example 1 of International Publication No. 2021/172078 was used.
  • the characteristics of the manufactured CNT aggregate are: tap bulk density: 0.01 g/cm 3 , CNT average length: 200 ⁇ m, BET specific surface area: 800 m 2 /g, average outer diameter: 4.0 nm, carbon purity 99.6 %Met.
  • the obtained CNT aggregate was evaluated in the same manner as Example 1 of International Publication No. 2021/172078.
  • the peak based on the plasmon resonance of the carbon nanotube dispersion has a wave number of 830 cm. -1 observed.
  • the peak of the two-dimensional spatial frequency spectrum of the electron microscope image of the carbon nanotube was present at the position of 3.0 ⁇ m ⁇ 1 .
  • a mixture containing 990 g of the obtained carbon nanotubes and toluene was mixed using a twin-screw extrusion kneader (“HK-25D” manufactured by Parker Corporation, screw system: 25 mm, L/D: 41). , the mixture was introduced from the third barrel. The barrel temperatures were water-cooled for the third barrel and 270° C. thereafter, and the screw rotation speed was 200 rpm.
  • Example 2 Pellets and molded bodies of the resin composition were obtained in the same manner as in Example 1, except that the amount of toluene was changed to 60 g. Then, the amount of residual solvent, surface resistivity, and amount of metal were measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 Pellets and molded bodies of a resin composition were obtained in the same manner as in Example 3, except that 7 g of carbon nanotubes, 21 g of n-hexane, and 993 g of cycloolefin polymer were used. Then, in the same manner as in Example 1, the amount of residual solvent, surface resistivity, and amount of metal were measured. The results are shown in Table 1.
  • Example 6 Multi-walled CNTs (manufactured by Kumho Petrochemical Co., Ltd., product name "K-nanos 100T", carbon purity 94.5%, BET specific surface area: 270 m 2 /g; average bundle length: 26 ⁇ m; average outer diameter: 9.1 nm) were used as carbon nanotubes. ), 90 g of toluene, and 970 g of cycloolefin polymer were used, but in the same manner as in Example 1, pellets and molded bodies of the resin composition were obtained. Then, in the same manner as in Example 1, the amount of residual solvent, surface resistivity, and amount of metal were measured. The results are shown in Table 1.
  • Example 1 Pellets and molded bodies of the resin composition were obtained in the same manner as in Example 1 except that toluene was not used. Then, in the same manner as in Example 1, the amount of residual solvent, surface resistivity, and amount of metal were measured. The results are shown in Table 1.
  • a solvent was intentionally not blended when preparing the mixture, but a trace amount of residual solvent in the resin composition was detected. This residual solvent is presumed to be a polymerization solvent contained as an impurity in the resin during resin preparation.
  • the distance Ra of the Hansen solubility parameter between the solvent and the resin was 0.6, which was less than 2.0.
  • CPME cyclopentyl methyl ether
  • Example 3 Pellets and molded bodies of the resin composition were obtained in the same manner as in Example 6, except that toluene was not used as a solvent, 40 g of multi-walled CNTs, and 960 g of cycloolefin polymer were used. Then, in the same manner as in Example 1, the amount of residual solvent, surface resistivity, and amount of metal were measured. The results are shown in Table 1.
  • a solvent was intentionally not blended when preparing the mixture, but a trace amount of residual solvent in the resin composition was detected. This residual solvent is presumed to be a polymerization solvent contained as an impurity in the resin during resin preparation.
  • the distance Ra of the Hansen solubility parameter between the solvent and the resin was 0.6, which was less than 2.0.
  • CPME indicates cyclopentyl methyl ether
  • AC-2000 refers to 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorohexane.
  • Comparative Example 3 although the surface resistivity of the molded body was good due to the addition of a large amount of multi-walled CNT, it was found that the addition of a large amount of multi-walled CNT resulted in a large amount of metal and poor cleanliness.
  • resins, solvents, and carbon nanotubes that meet the specified parameters, resins with low surface resistivity, excellent conductivity, and low metal content and excellent cleanliness can be obtained. It can be seen that the composition could be obtained.
  • the present invention it is possible to provide a resin composition and a method for producing the same that can achieve both high levels of conductivity and cleanliness. Further, according to the present invention, a molded article having excellent conductivity and cleanliness can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

樹脂、カーボンナノチューブ、及び溶剤を含む樹脂組成物である。具体的には、溶剤及び樹脂の間のハンセン溶解度パラメータの距離Raが2.0以上4.5以下であり、且つ、カーボンナノチューブの炭素純度が94.0質量%以上である樹脂組成物である。

Description

樹脂組成物及びその製造方法、並びに成形体
 本発明は、樹脂組成物及びその製造方法、並びに成形体に関するものである。
 カーボンナノチューブ(以下「CNT」と称することがある。)は、導電性、熱伝導性、摺動特性、機械特性等に優れるため、幅広い用途への応用が検討されている。そこで、近年、CNTの優れた特性を活かし、樹脂材料とCNTとを複合化することで、加工性及び強度といった樹脂の特性と、導電性などのCNTの特性とを併せ持つ複合樹脂材料を提供する技術の開発が進められている。
 例えば、特許文献1には、カーボンナノチューブ、多価アルコール、熱可塑性樹脂の混合物を用いて、複合材料を製造することが記載されている。また、例えば特許文献2には、カーボンナノチューブ、熱可塑性樹脂、及び、溶剤を用いて複合材料を製造することが記載されている。
特開2021-004158号公報 特開2017-066321号公報
 ここで近年、カーボンナノチューブを含む樹脂組成物には、導電性に優れるとともに金属量が少なく清浄性に優れることが求められている。しかし、上記従来技術に係る複合材料には、導電性及び清浄性の両立という点で一層の向上の余地があった。そこで、本発明は、導電性及び清浄性を高いレベルで両立することができる、樹脂組成物及びその製造方法を提供することを目的とする。また、本発明は、導電性及び清浄性が共に優れる成形体を提供することを目的とする。
 この発明は、上記課題を有利に解決することを目的とするものであり、〔1〕本発明の樹脂組成物は、樹脂、カーボンナノチューブ、及び溶剤を含む樹脂組成物であって、前記溶剤及び前記樹脂の間のハンセン溶解度パラメータの距離Raが2.0以上4.5以下であり、且つ、前記カーボンナノチューブの炭素純度が94.0質量%以上であることを特徴とする。かかる属性を満たす樹脂組成物は、導電性及び清浄性を高いレベルで両立することができる。ここで、溶剤と樹脂との間の「ハンセン溶解度パラメータの距離Ra」は、本明細書の実施例に記載した方法により測定することができる。
 〔2〕ここで、上記〔1〕に記載の樹脂組成物において、前記カーボンナノチューブが単層カーボンナノチューブを含むことが好ましい。かかる属性を満たす樹脂組成物は、導電性に一層優れる。
 〔3〕また、上記〔1〕又は〔2〕に記載の樹脂組成物において、前記カーボンナノチューブの含有割合が0.1質量%以上4.0質量%未満であることが好ましい。カーボンナノチューブの含有割合が上記範囲内であれば、樹脂組成物の導電性及び清浄性を一層優れたものとすることができる。
 〔4〕また、上記〔1〕~〔3〕の何れかに記載の樹脂組成物において、前記溶剤の含有割合が100ppm以下であることが好ましい。溶剤の含有割合が100ppm以下であれば、樹脂組成物の清浄性を一層優れたものとすることができる。ここで、樹脂組成物中の溶剤の含有割合は、実施例に記載した方法により測定することができる。
 〔5〕また、上記〔1〕~〔4〕の何れかに記載の樹脂組成物において、前記樹脂が、フッ素系重合体、ポリカーボネート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン、及び、脂環式構造含有重合体のうちの少なくとも一種を含む、ことが好ましい。樹脂が上記列挙にかかる何れかであれば、樹脂組成物の導電性及び清浄性を一層優れたものとすることができる。
 〔6〕また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の樹脂組成物の製造方法は、樹脂、カーボンナノチューブ、及び溶剤を含む樹脂組成物の製造方法であって、前記樹脂、前記カーボンナノチューブ、及び前記溶剤を含む混合物を、該混合物における前記溶剤の割合が0.1質量%以上20質量%以下となり、且つ、質量基準で、前記カーボンナノチューブに対する前記溶剤の量が1.0倍以上7.0倍以下となるように、調製する混合工程と、前記混合物を混練する混練工程と、前記混合物から前記溶剤を除去して樹脂組成物を得る溶剤除去工程と、を含み、前記混練工程と溶剤除去工程は、これらの工程の継続期間の一部において同時進行してもよく、前記溶剤除去工程にて、前記樹脂組成物中の前記溶剤の割合が100ppm以下となるようにすることを特徴とする。このような本発明の樹脂組成物の製造方法によれば、上記〔1〕~〔5〕の何れかに記載の本発明の樹脂組成物を効率的に製造することができる。
 〔7〕ここで、上記〔6〕に記載した樹脂組成物の製造方法が、前記混合工程に先立って、前記カーボンナノチューブに対して前記溶剤を含浸させる含浸工程を含む、ことが好ましい。このような含浸工程を実施することで、得られる樹脂組成物の導電性を一層高めることができる。
 〔8〕また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の成形体は、上記〔1〕~〔5〕の何れかに記載の樹脂組成物を成形してなることを特徴とする。かかる成形体は、導電性及び清浄性に優れる。
 〔9〕また、上記〔8〕に記載した成形体は、半導体製造用部材であってもよい。かかる半導体製造用部材は、導電性及び清浄性に優れる。ここで、本明細書における半導体製造用部材とは半導体製造工程にて使用される部材を意味する。
 本発明によれば、導電性及び清浄性を高いレベルで両立することができる、樹脂組成物及びその製造方法を提供することができる。また、本発明によれば、導電性及び清浄性が共に優れる成形体を提供することができる。
 以下、本発明の実施形態について詳細に説明する。ここで、本発明の樹脂組成物は、本発明の成形体の製造に用いられる。また、本発明の樹脂組成物の製造方法によれば、本発明の樹脂組成物を効率的に製造することができる。
(樹脂組成物)
 本発明の樹脂組成物は、樹脂、カーボンナノチューブ、及び溶剤を含む樹脂組成物である。より具体的には、樹脂組成物が含有する溶剤及び樹脂の間のハンセン溶解度パラメータの距離Raが2.0以上4.5以下であり、且つ、カーボンナノチューブの炭素純度が94.0質量%以上であることを特徴とする。かかる特徴を満たす樹脂組成物は、導電性及び清浄性を高いレベルで両立することができる。
<樹脂>
 本発明の樹脂組成物に含まれる樹脂としては、フッ素系重合体、ポリカーボネート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン、及び、脂環式構造含有重合体のうちの少なくとも一種を含む樹脂が挙げられる。中でも、耐熱性及び耐薬品性の観点から、フッ素樹脂及び脂環式構造含有重合体が好ましい。
 フッ素樹脂としては、特に限定されることなく、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン(変性PTFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、エチレン/テトラフルオロエチレン共重合体(ETFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)及びポリフッ化ビニル(PVF)が挙げられる。中でも、成形性の観点から、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)を好適に用いることができる。
 ポリカーボネート、ポリエーテルイミド、ポリエーテルエーテルケトン、及びポリエーテルサルフォンとしては、特に限定されることなく、上市商品又は合成品を用いることができる。
 脂環式構造含有重合体は、脂環式構造を有する繰り返し単位を含む重合体である。そして、脂環式構造含有重合体としては、主鎖に脂環式構造を有する重合体、および、側鎖に脂環式構造を有する重合体のいずれを用いることもできるが、樹脂組成物などに優れた機械強度および耐熱性を発揮させる観点からは、主鎖に脂環式構造を有する重合体が好ましい。なお、脂環式構造含有重合体は、1種を単独で用いても良く、2種以上を任意の比率で組み合わせて用いてもよい。
 脂環式構造としては、例えば、飽和脂環式炭化水素(シクロアルカン)構造、不飽和脂環式炭化水素(シクロアルケン、シクロアルキン)構造などが挙げられる。中でも、樹脂組成物などに優れた機械強度および耐熱性を発揮させる観点から、シクロアルカン構造およびシクロアルケン構造が好ましく、シクロアルカン構造がより好ましい。
 ここで、脂環式構造を構成する炭素原子の数は、一つの脂環式構造当たり、4個以上であることが好ましく、5個以上であることがより好ましく、30個以下であることが好ましく、20個以下であることが好ましく、15個以下であることが更に好ましい。脂環式構造を構成する炭素原子の数が上述した範囲内であれば、樹脂組成物などの成形性を確保しつつ、優れた機械強度および耐熱性を発揮させることができる。
 また、脂環式構造含有重合体中における脂環式構造を有する繰り返し単位の割合は、脂環式構造含有重合体を構成する全繰り返し単位を100質量%として、50質量%超であることが好ましく、55質量%以上であることがより好ましく、70質量%以上であることが更に好ましく、90質量%以上であることが特に好ましく、100質量%以下である。脂環式構造含有重合体中における脂環式構造を有する繰り返し単位の割合が50質量%超であれば、樹脂組成物などの耐熱性を向上させることができる。
―脂環式構造含有重合体の具体例―
 具体的な脂環式構造含有重合体としては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素系重合体を挙げることができる。これらの中でも、樹脂組成物などの成形性を確保しつつ、優れた透明性を発揮させる観点から、ノルボルネン系重合体が好ましい。
 ノルボルネン系重合体としては、例えば、ノルボルネン構造を有する単量体の開環重合体、若しくはノルボルネン構造を有する単量体と任意の単量体との開環共重合体、又はそれらの水素化物;ノルボルネン構造を有する単量体の付加重合体、若しくはノルボルネン構造を有する単量体と任意の単量体との付加共重合体、又はそれらの水素化物;を挙げることができる。これらの中でも、樹脂組成物などの成形性を確保しつつ、優れた透明性、耐熱性、低吸湿性、寸法安定性、および軽量性を付与する観点から、ノルボルネン構造を有する単量体の開環重合体の水素化物、およびノルボルネン構造を有する単量体と任意の単量体との開環共重合体の水素化物が好ましい。
 ノルボルネン構造を有する単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、およびこれらの化合物の誘導体(例えば、環に置換基を有するもの)を挙げることができる。ここで、これらの化合物が環に有する置換基としては、例えばアルキル基、アルキレン基、極性基を挙げることができる。極性基としては、ヘテロ原子、およびヘテロ原子を含む基が挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子が挙げられる。またヘテロ原子を含む基としては、カルボキシル基、カルボニルオキシカルボニル基(カルボン酸無水物基)、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン酸基などが挙げられる。これらの置換基は、同一または相異なって、複数個が環に結合していてもよい。また、ノルボルネン構造を有する単量体は、1種を単独で用いても良く、2種以上を任意の比率で組み合わせて用いてもよい。
 上述したノルボルネン構造を有する単量体と開環共重合または付加共重合可能な任意の単量体としては、特に限定されず、例えば国際公開第2015/098750号に挙げられたものを用いることができる。
 また、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素系重合体としては、特に限定されず、例えば国際公開第2015/098750号に挙げられたものを用いることができる。
 脂環式構造含有重合体の調製方法は特に限定されず、公知の手法を用いることができる。例えば、ノルボルネン構造を有する重合体は、少なくとも上述したノルボルネン構造を有する単量体を含む単量体組成物を、開環重合又は付加重合し、任意に水素化を行うことにより調製することができる。
<カーボンナノチューブ>
 本発明の樹脂組成物に含まれるカーボンナノチューブ(CNT)としては、特に限定されることはなく、単層カーボンナノチューブ及び/又は多層カーボンナノチューブを用いることができるが、単層カーボンナノチューブ(単層CNT)を主成分として含有することが好ましい。CNTに含まれうる単層CNT以外の成分としては、多層カーボンナノチューブ(多層CNT)が挙げられる。ここで、CNTの質量全体に占める単層CNTの比率は、50質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、100質量%であっても良い。樹脂組成物に含有されるカーボンナノチューブにおける単層カーボンナノチューブの割合が50質量%以上であれば、樹脂組成物の導電性を一層高めることができる。なお、CNTが多層CNTを含む場合には、多層CNTの層数が5層以下であることが好ましい。また、CNTは、炭素純度が94.0質量%以上である必要があり、95.0質量%以上であることが好ましく、99.0質量%以上であることがより好ましい。なお、CNTの炭素純度の上限は特に限定されることなく、例えば、99.9999%未満でありうる。また、CNTの炭素純度は、実施例に記載した方法により測定することができる。
 CNTは、BET比表面積が、250m/g以上であることが好ましく、500m/g以上であることがより好ましく、600m/g以上であることがさらに好ましく、1600m/g以下であることが好ましく、1200m/g以下であることがより好ましく、1000m/g以下であることがさらに好ましく、800m/g以下としてもよい。BET比表面積が上記範囲内であれば、樹脂組成物の導電性を一層高めることができる。なお、本発明において、「BET比表面積」とは、BET(Brunauer-Emmett-Teller)法を用いて測定した窒素吸着比表面積を指す。
 CNTは、特に限定されることなく、アーク放電法、レーザーアブレーション法、化学的気相成長法(CVD法)などの既知のCNTの合成方法を用いて製造することができる。具体的には、CNTは、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に原料化合物及びキャリアガスを供給し、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて、効率的に製造することができる。
 また、CNTは、吸着等温線から得られるt-プロットが上に凸な形状を示すことが好ましい。
 ここで、表面に細孔を有する物質では、窒素ガス吸着層の成長は、次の(1)~(3)の過程に分類される。そして、下記の(1)~(3)の過程によって、t-プロットの傾きに変化が生じる。
(1)全表面への窒素分子の単分子吸着層形成過程
(2)多分子吸着層形成とそれに伴う細孔内での毛管凝縮充填過程
(3)細孔が窒素によって満たされた見かけ上の非多孔性表面への多分子吸着層形成過程
 そして、上に凸な形状を示すt-プロットは、窒素ガス吸着層の平均厚みtが小さい領域では、原点を通る直線上にプロットが位置するのに対し、tが大きくなると、プロットが当該直線から下にずれた位置となる。かかるt-プロットの形状を有するCNTは、CNTの全比表面積に対する内部比表面積の割合が大きく、CNTに多数の開口が形成されていることを示している。
 なお、CNTのt-プロットの屈曲点は、0.2≦t(nm)≦1.5を満たす範囲にあることが好ましく、0.45≦t(nm)≦1.5の範囲にあることがより好ましく、0.55≦t(nm)≦1.0の範囲にあることが更に好ましい。t-プロットの屈曲点がかかる範囲内にあるCNTは、かかるCNTを用いて分散液を調製した場合に、分散液中においてCNTが凝集しにくくなる。
 ここで、「屈曲点の位置」は、前述した(1)の過程の近似直線Aと、前述した(3)の過程の近似直線Bとの交点である。
 更に、CNTは、t-プロットから得られる全比表面積S1に対する内部比表面積S2の比(S2/S1)が0.05以上0.30以下であるのが好ましい。S2/S1の値がかかる範囲内であるCNTは、かかるCNTを用いてカーボンナノチューブ分散液を調製した場合に、分散液中においてCNTがさらに凝集しにくくなる。
 ここで、CNTの全比表面積S1及び内部比表面積S2は、そのt-プロットから求めることができる。具体的には、まず、(1)の過程の近似直線の傾きから全比表面積S1を、(3)の過程の近似直線の傾きから外部比表面積S3を、それぞれ求めることができる。そして、全比表面積S1から外部比表面積S3を差し引くことにより、内部比表面積S2を算出することができる。
 そして、CNTの吸着等温線の測定、t-プロットの作成、及び、t-プロットの解析に基づく全比表面積S1と内部比表面積S2との算出は、例えば、市販の測定装置である「BELSORP(登録商標)-mini」(日本ベル(株)製)を用いて行うことができる。
 CNTの平均直径は、1nm以上であることが好ましく、60nm以下であることが好ましく、30nm以下であることがより好ましく、10nm以下であることが更に好ましい。
 また、CNTは、平均長さが、10μm以上であることが好ましく、50μm以上であることがより好ましく、80μm以上であることがさらに好ましく、600μm以下であることが好ましく、500μm以下であることがより好ましく、400μm以下であることがさらに好ましい。
 また、カーボンナノチューブは、CNT集合体の形態のものを用いてもよい。CNT集合体の形態のCNTとしては、例えば、後述する(1)~(3)の少なくとも何れかの条件を満たすCNT集合体を用いることができる。
<<CNT集合体>>
 ここで、樹脂組成物を形成する際に用いるCNT集合体としては下記(1)~(3)の条件のうち少なくとも1つを満たすCNT集合体を用いることが好ましい。
 (1)カーボンナノチューブ集合体を、バンドル長が10μm以上になるように分散させて得たカーボンナノチューブ分散体について、フーリエ変換赤外分光分析して得たスペクトルにおいて、カーボンナノチューブ分散体のプラズモン共鳴に基づくピークが、波数300cm-1超2000cm-1以下の範囲に、少なくとも1つ存在する。
 (2)カーボンナノチューブ集合体について、液体窒素の77Kでの吸着等温線から、Barrett-Joyner-Halenda法に基づいて得られる、細孔径とLog微分細孔容積との関係を示す細孔分布曲線における最大のピークが、細孔径100nm超400nm未満の範囲にある。
 (3)カーボンナノチューブ集合体の電子顕微鏡画像の二次元空間周波数スペクトルのピークが、1μm-1以上100μm-1以下の範囲に少なくとも1つ存在する。
 上記条件(1)~(3)について、それぞれ詳述する。
<<条件(1)>>
 条件(1)は、「カーボンナノチューブ集合体を、バンドル長が10μm以上になるように分散させて得たカーボンナノチューブ分散体について、フーリエ変換赤外分光分析して得たスペクトルにおいて、カーボンナノチューブ分散体のプラズモン共鳴に基づくピークが、波数300cm-1超2000cm-1以下の範囲に、少なくとも1つ存在する。」ことを規定する。ここで、従来から、CNTの光学特性として、遠赤外領域における強い吸収特性が広く知られている。かかる遠赤外領域における強い吸収特性は、CNTの直径及び長さに起因ものであると考えられている。なお、遠赤外線領域における吸収特性、より具体的には、CNTのプラズモン共鳴に基づくピークと、CNTの長さとの関係については、非特許文献(T.Morimoto et.al., ”Length-Dependent Plasmon Resonance in Single-Walled Carbon Nanotubes”, pp 9897-9904, Vol.8, No.10, ACS NANO, 2014)にて詳細に検討されている。
 樹脂組成物の導電性を一層高める観点から、条件(1)において、CNTのプラズモン共鳴に基づくピークが、波数300cm-1超2000cm-1以下の範囲に存在することが好ましく、波数500cm-1以上2000cm-1以下の範囲に存在することがより好ましく、波数700cm-1以上2000cm-1以下の範囲に存在することが更に好ましい。
 CNT集合体をフーリエ変換赤外分光分析して得られたスペクトルにおいて、CNT分散体のプラズモン共鳴に基づく比較的緩やかなピーク以外に、波数840cm-1付近、1300cm-1付近、及び1700cm-1付近に、鋭いピークが確認されることがある。これらの鋭いピークは、「カーボンナノチューブ分散体のプラズモン共鳴に基づくピーク」には該当せず、それぞれが、官能基由来の赤外吸収に対応している。より具体的には、波数840cm-1付近の鋭いピークは、C-H面外変角振動に起因し;波数1300cm-1付近の鋭いピークは、エポキシ三員環伸縮振動に起因し;波数1700cm-1付近の鋭いピークは、C=O伸縮振動に起因する。なお、波数2000cm-1超の領域では、プラズモン共鳴とは別に、上記したT.Morimotoらによる非特許文献でも言及されているように、S1ピークに類するピークが検出されるため、条件(1)におけるCNT分散体のプラズモン共鳴に基づくピークの有無の判定上限を2000-1cm以下としうる。
 ここで、条件(1)において、フーリエ変換赤外分光分析によるスペクトルを取得するにあたり、バンドル長が10μm以上になるように、CNT集合体を分散させることにより、CNT分散体を得る必要がある。ここで、例えば、CNT集合体、水、及び界面活性剤(例えば、ドデシルベンゼンスルホン酸ナトリウム)を適切な比率で配合して、超音波等により所定時間にわたり撹拌処理することで、水中に、バンドル長が10μm以上であるCNT分散体が分散されてなる分散液を得ることができる。
 CNT分散体のバンドル長は、湿式画像解析型の粒度測定装置により解析することで、得ることができる。かかる測定装置は、CNT分散体を撮影して得られた画像から、各分散体の面積を算出して、算出した面積を有する円の直径(以下、ISO円径(ISO area diameter)とも称することがある)を得ることができる。そして、本明細書では、各分散体のバンドル長は、このようにして得られるISO円径の値であるものとして、定義した。
<<条件(2)>>
 条件(2)は、「細孔分布曲線における最大のピークが、細孔径100nm超400nm未満の範囲にある。」ことを規定する。カーボンナノチューブ集合体の細孔分布は、液体窒素の77Kでの吸着等温線から、BJH法に基づいて求めることができる。そして、カーボンナノチューブ集合体について測定して得た細孔分布曲線におけるピークが100nm超の範囲にあるということは、カーボンナノチューブ集合体において、CNT間にある程度の大きさの空隙が存在し、CNTが過度に過密に凝集した状態となっていないことを意味する。なお、上限の400nmは、測定装置として例えばBELSORP-mini IIを用いた場合における測定限界である。
<<条件(3)>>
 条件(3)は、「カーボンナノチューブ集合体の電子顕微鏡画像の二次元空間周波数スペクトルのピークが、1μm-1以上100μm-1以下の範囲に少なくとも1つ存在する。」ことを規定する。かかる条件の充足性は、下記の要領で判定することができる。まず、判定対象であるCNT集合体を、電子顕微鏡(例えば、電解放射走査型電子顕微鏡)を用いて拡大観察(例えば、1万倍)して、1cm四方の視野で電子顕微鏡画像を複数枚(例えば、10枚)取得する。得られた複数枚の電子顕微鏡画像について、高速フーリエ変換(FFT)処理を行い、二次元空間周波数スペクトルを得る。複数枚の電子顕微鏡画像のそれぞれについて得られた二次元空間周波数スペクトルを二値化処理して、最も高周波数側に出るピーク位置の平均値を求める。得られたピーク位置の平均値が1μm-1以上100μm-1以下の範囲内である場合には、条件(3)を満たすとして判定しうる。ここで、上記の判定において用いる「ピーク」としては、孤立点の抽出処理(即ち、孤立点除去の逆操作)を実施して得られた明確なピークを用いるものとする。従って、孤立点の抽出処理を実施した際に1μm-1以上100μm-1以下の範囲内にて明確なピークが得られない場合には、条件(3)は満たさないものとして判定しうる。
 ここで、樹脂組成物の導電性を一層高める観点から、二次元空間周波数スペクトルのピークが、2.6μm-1以上100μm-1以下の範囲に存在することが好ましい。
 そして、樹脂組成物の導電性を一層高める観点から、CNT集合体は、上記(1)~(3)の条件のうちを少なくとも2つを満たすことが好ましく、(1)~(3)の条件全てを満たすことがより好ましい。
<<その他の性状>>
 なお、本発明の樹脂組成物を製造する際に用いることができるCNT集合体は、上記(1)~(3)の条件以外にも、以下の性状を有することが好ましい。
 CNT集合体のタップかさ密度は、0.001g/cm以上0.2g/cm以下であることが好ましい。このような密度範囲にあるCNT集合体は、CNT同士の結びつきが過度に強まらないため、分散性に優れており、様々な形状に成形加工することが可能である。CNT集合体のタップかさ密度が0.2g/cm以下であれば、CNT同士の結びつきが弱くなるので、CNT集合体を溶媒などに撹拌した際に、均質に分散させることが容易になる。また、CNT集合体のタップかさ密度が0.001g/cm以上であれば、CNT集合体の一体性が向上されハンドリングが容易になる。タップかさ密度とは、粉体状のCNT集合体を容器に充填した後、タッピング又は振動等により粉体粒子間の空隙を減少させ、密充填させた状態での見かけかさ密度である。
<<CNT集合体の製造方法>>
 CNT集合体を製造する方法は特に限定されず、所望の性状に応じて製造条件を調整することができる。例えば、上述した(1)~(3)の条件の少なくとも何れかを満たすCNT集合体は、例えば、国際公開第2021/172078号に記載された方法に従って製造されうる。
<<樹脂組成物中におけるCNT含有割合>>
 樹脂組成物中におけるCNTの含有割合は、樹脂組成物の全質量を100質量%として0.1質量%以上であることが好ましく、0.6質量%以上であることがより好ましく、0.8質量%以上であることが更に好ましく、4.0質量%未満であることが好ましく、3.5質量%以下であることがより好ましく、2.8質量%以下であることが更に好ましい。CNTの含有割合を上記下限値以上とすることで、樹脂組成物の導電性を一層高めることができる。また、CNTの含有割合を上記上限値以下とすることで、樹脂組成物の清浄性を一層高めることができる。これは、CNTはその製法上、不可避的に、不純物として金属を含有しうるが、CNTの含有量が過剰とならないようにすることで、樹脂組成物における金属量を低減して清浄性を高めることができるからである。
<溶剤>
 溶剤としては、上述した樹脂と溶剤との間のハンセン溶解度パラメータの距離Raが2.0以上4.5以下となる限りにおいて、あらゆる溶剤を用いることができる。具体的には、トルエン、n-ヘキサン、メチルシクロヘキサン、1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン、1,1,1,2,2,3,4,5,5,5-デカフルオロ-3-メトキシ-4-(トリフルオロメチル)-ペンタン、1,1,1,2,2,3,3,4,4,5,5,6,6-デカフルオロオクタンなどの有機溶媒のうち、配合する樹脂とのハンセン溶解度パラメータの距離Raが2.0以上4.5以下となるものを好適に用いることができる。
 樹脂と溶剤との間のハンセン溶解度パラメータの距離Raは、2.1以上であることが好ましく、3.9以下であることが好ましく、3.5以下であることがより好ましい。ハンセン溶解度パラメータの距離Raが上記範囲内であることで、樹脂組成物の導電性を一層高めることができる。より具体的には、ハンセン溶解度パラメータの距離Raが上記下限値以上であれば、樹脂が溶剤に対して過度に溶解することを回避することにより、樹脂組成物中におけるCNTの分散性を高めて導電性を高めることができる。また、ハンセン溶解度パラメータの距離Raが上記上限値以下であれば、樹脂と溶剤との親和性が過度に低下することを抑制することにより、樹脂組成物中におけるCNTの分散性を高めて導電性を高めることができる。そして、このように樹脂組成物中におけるCNTの分散性が高まる結果として、樹脂組成物に少量のCNTを配合した場合であっても、良好な導電性を発揮することが可能となる。
<<樹脂組成物中における溶剤量>>
 樹脂組成物中の溶剤の割合は、質量基準で100ppm以下であることが好ましく、90ppm以下であることがより好ましい。樹脂組成物を用いて製造した成形体(例えば半導体製造用部材)からのアウトガスの発生量を低減することができるからである。なお、溶剤量の下限値は特に限定されないが、例えば0.1ppm以上でありうる。
<その他の成分>
 本発明の樹脂組成物は、任意で、添加剤等の他の成分を含有してもよい。添加剤としては、酸化防止剤、結晶核剤、ワックス、紫外線吸収剤、光安定剤、近赤外線吸収剤、染料及び顔料などの着色剤、可塑剤、帯電防止剤、並びに蛍光増白剤等が挙げられる。これらの添加剤の含有量は、目的に応じて適宜決定することができる。
(樹脂組成物の製造方法)
 上述した樹脂組成物を効率的に製造することができる製造方法は、樹脂、カーボンナノチューブ、及び溶剤を含む樹脂組成物の製造方法であって、少なくとも下記の混合工程、混練工程、及び溶剤除去工程を含む。また、混合工程に先立って含浸工程を実施することが好ましい。
<含浸工程>
 含浸工程では、CNTに対して溶剤を含浸させる。溶剤及びCNTとしては、上記したものを用いることができる。溶剤とCNTとの配合比率は、<混合工程>の項目にて後述する配合比率とすることができる。そして、含浸工程では、CNTに対して溶剤を添加して得た溶剤及びカーボンナノチューブの混合物を、温度10℃以上80℃以下の環境にて、1時間以上24時間以下にわたり静置して保持することが好ましい。
<混合工程>
 混合工程では樹脂、CNT、及び溶剤を含む混合物を調製する。この際、上記含浸工程を実施した際には、上記工程で得られた溶剤及びCNTを含む混合物に対して樹脂を添加する。混合工程では、目的とする混合物中における溶剤の割合が0.1質量%以上20質量%以下となり、且つ、質量基準で、CNTに対する溶剤の量が1.0倍以上7.0倍以下となるように、配合比を調節する。
 ここで、混合物中における溶剤の割合は、混合物の全質量を100質量%として、0.1質量%以上である必要があり、1.0質量%以上であることが好ましく、20質量%以下である必要があり、15質量%以下であることが好ましく、10質量%以下であることがより好ましい。混合物中における溶剤の割合が上記下限値以上であれば、混合物の応力を適度に低減することができ、混合時に適度なせん断力を印加することでCNTの分散性を高めて、得られる樹脂組成物の導電性を高めることができる。また、混合物中における溶剤の割合が上記上限値以下であれば、後述する溶剤除去工程を効率化することができ、樹脂組成物の製造効率を高めることができる。また、混合物中における溶剤の割合が上記上限値以下であることで、得られる樹脂組成物中に残留する溶剤量を低減することができ、樹脂組成物を用いて成形体(半導体製造用部材など)を製造した場合に、アウトガス量を低減することができる。
 混合物中に含有される溶剤量(対CNT量基準)は、1.0倍以上である必要があり、2.0倍以上であることが好ましく、7.0倍以下である必要があり、6.0倍以下であることが好ましく、5.0倍以下であることがより好ましい。混合物中に含有される溶剤量(対CNT量基準)が上記下限値以上であれば、CNTの分散性を高めて得られる樹脂組成物の導電性を高めることができる。また、混合物中に含有される溶剤量(対CNT量基準)が上記上限値以下であれば、後述する溶剤除去工程を効率化することができ、樹脂組成物の製造効率を高めることができるとともに、残留溶剤量を低減することができる。
<混練工程>
 混練工程では、前記混合工程で得られた混合物を混練する。混練方法は特に限定されず、例えば、一軸混練機及び二軸混練機等を用いて溶融混練する方法が挙げられる。混練する際の条件は特に限定されず、例えば上述した装置における通常の混練条件の範囲内で適宜設定することができる。なお、混練工程では、混練を終えた混練物を、任意の形状、例えばペレット状などに成形してもよい。
<溶剤除去工程>
 溶剤除去工程では、混合物から溶剤を除去する。かかる溶剤除去工程は、その継続期間において、混練工程と一部重複して実施してもよいし、混練工程の完了後に実施してもよい。例えば、上記の混練工程と溶剤除去工程とをこれらの工程の継続期間の少なくとも一部において同時進行する場合には、混練工程少なくとも一部において真空脱気を行うなどして、混練しつつ混合物から溶剤を除去することができる。また、例えば、上記の混練工程と同時進行することなく、溶剤除去工程を実施する場合には、混練工程を経た混練物を乾燥等することによって、溶剤を除去することができる。もちろん、混練工程と溶剤除去工程とをこれらの工程の継続期間の少なくとも一部において同時進行した後に、得られた混練物を乾燥等することも可能である。乾燥方法は特に限定されないが、加熱乾燥、真空乾燥、風乾燥、及び常温常圧放置等、常法に従いうる。乾燥条件も特に限定されず、常法に従いうる。
(成形体)
 本発明の成形体は、上述した本発明の樹脂組成物を成形してなることを特徴とする。本発明の成形体は、本発明の樹脂組成物を成形してなるものであるため、導電性及び清浄性を高いレベルで両立することができる。さらに、成形体は、半導体製造用部材でありうる。半導体製造用部材としては、例えば、半導体製造工程にて使用される、FOUP(Front Opening Unified Pod)、FOSB(Front Opening Shipping Box)、ウェハートレー、ウェハーキャリア、これらのトレー又はキャリアに取り付けて使用可能なハンドル、キャリアテープ、ダイシングテープ、ウェハーカセット、及び、ハウジング、さらには、半導体製造装置において気体及び液体などの流体を搬送するために用い得る各種のチューブなどであり得る。半導体製造用部材は、本発明の樹脂組成物を、目的とする部材の形状に適した成形方法に従って成形することにより、製造することができる。より具体的には、例えば、溶融成形法に従って、半導体製造用部材を成形し得る。溶融成形法としては、例えば、射出成形法、ブロー成形法、及びインジェクションブロー成形法等が挙げられる。これらの方法は、目的の部材形状等に応じて適宜選択することができる。中でも、射出成形法を採用することが好ましい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 実施例及び比較例において、各種の物性の測定は、下記の方法に従って行った。
<カーボンナノチューブの炭素純度>
 熱重量測定装置(TAインスツルメント社製、製品名「TGA5500」を用い、大気雰囲気下で昇温速度5℃/minで室温から800℃まで昇温させた時の重量減少率を炭素純度(質量%)とした。
<溶解度パラメータの距離Raの算出>
 樹脂と溶剤とのハンセン溶解度パラメータの距離Raは、下記式(1)を用いて算出した。
 Ra={4×(δdPol.-δdSol.+(δpPol.-δpSol.+(δhPol.-δhSol.1/2・・・(1)
 δdCNT:樹脂の分散項
 δdSol.:溶剤の分散項
 δpCNT:樹脂の極性項
 δpSol.:溶剤の極性項
 δhCNT:樹脂の水素結合項
 δhSol.:溶剤の水素結合項
<樹脂組成物中の残留溶剤量の測定>
 熱重量測定装置(TAインスツルメント社製、製品名「TGA5500」を用い、窒素雰囲気下で昇温速度10℃/minで30℃から600℃まで昇温させた時の30℃から350℃の重量減少率を残留溶剤量(%)とした。
<成形体の表面抵抗率の測定>
 低抵抗率計(三菱化学アナリテック社製、製品名「ロレスタ-GX MCP-T700」、)プローブ:LSP)を用いて、得られた成形体の表面抵抗率を5点、測定箇所を変えて測定し、5点の測定値から平均値を求め、平均値を成形体の表面抵抗率とした。表面抵抗率の値が小さい程、成形体及びその構成材料である樹脂組成物が導電性に優れることを示す。
<成形体の金属量の測定>
 走査型蛍光X線分析装置(リガク社製、製品名「ZSX Primus IV」)を用いて、40mm四方で厚さ2mmの板状の成型体を試料にして、以下の条件で元素分析を行い、Na以上の重元素の含有量(質量基準)を求めた。含有量が少ないほど成型体及びその構成材料である樹脂組成物が清浄性に優れることを意味する。
・X線源:Rh
・管電圧:30kV
・管電流:80mA
・測定時間:10分
・分析径:直径30mm
(実施例1)
<CNTの合成>
 実施例1~5、比較例1~2で用いたCNT集合体は、CNT合成工程において、粒子状の触媒担持体をスクリュー回転によって連続的に搬送しながら原料ガスを供給する方法にて作製した。具体的には、国際公開第2021/172078号の実施例1と同様にして製造したものを用いた。
 製造されたCNT集合体の特性は、タップかさ密度:0.01g/cm、CNT平均長さ:200μm、BET比表面積:800m/g、平均外径:4.0nm、炭素純度99.6%であった。
 得られたCNTの集合体について、国際公開第2021/172078号の実施例1と同様にして評価したところ、
(1)バンドル長が10μm以上になるように分散させて得たカーボンナノチューブ分散体について、フーリエ変換赤外分光分析して得たスペクトルにおいて、カーボンナノチューブ分散体のプラズモン共鳴に基づくピークが、波数830cm-1に観測され、
(2)カーボンナノチューブについて、液体窒素の77Kでの吸着等温線から、Barrett-Joyner-Halenda法に基づいて得られる、細孔径とLog微分細孔容積との関係を示す細孔分布曲線における最大のピークが細孔径100nm超400nm未満の範囲内に存在し、
(3)カーボンナノチューブの電子顕微鏡画像の二次元空間周波数スペクトルのピークが3.0μm-1の位置に存在した。
(樹脂組成物の製造)
 容量900mlのガラス瓶に合成したカーボンナノチューブ(ハンセン溶解度パラメータ(δd=18.7、δp=4.9、δh=3.1))10gを計量後、溶剤としてのトルエン(東京化成社製、ハンセン溶解度パラメータ(δd=18.0、δp=1.4、δh=2.0))30gを滴下した。次いで、40℃のオーブンに12時間静置し、カーボンナノチューブにトルエンを含浸させてカーボンナノチューブとトルエンとを含む混合物を得た。
 次に、樹脂としての脂環式構造含有重合体を含む樹脂(粉末状、日本ゼオン社製、製品名「ZEONOR1420R」、ハンセン溶解度パラメータ(δd=16.5、δp=0.1、δh=0.1))990gと得られたカーボンナノチューブとトルエンとを含む混合物を混合し、二軸押出混練機(パーカーコーポレーション社製「HK-25D」、スクリュー系:25mm、L/D:41)を用い、第3バレルから混合物を投入した。バレルの設定温度は、第3バレルは水冷、それ以後は270℃に設定し、スクリューの回転数は200rpmで運転した。また、第4バレルで真空吸引し真空ベント口から残余溶剤の除去を行った。ノズル数2穴(円形、φ3mm)からストランドとして押し出し、押し出されたストランドをベルトコンベア上にて空冷して冷却し、ペレタイザーに挿入してカッティングして、カーボンナノチューブ、シクロオレフィンポリマー、及び溶剤を含む樹脂組成物のペレットを製造した。得たペレットを用い、残留溶剤量の測定を行った。結果を表1に示す。
 また、得られたペレットを、射出成形機(住友重機械工業社製「SE18DUZ」)を用い、シリンダー温度260℃、金型温度105℃、サイクル時間40秒の条件で、縦40mm、横40mm、厚さ2mmの成形体の板に射出成形した。
 得られた成形体の板を用い、表面抵抗率及び金属量の測定を行った。結果を表1に示す。
(実施例2)
 トルエンの量を60gとした以外は、実施例1と同様にして、樹脂組成物のペレット、成形体を得た。そして、実施例1と同様にして残留溶剤量、表面抵抗率及び金属量の測定を行った。結果を表1に示す。
(実施例3)
 溶剤としてn-ヘキサン(東京化成社製、ハンセン溶解度パラメータ(δd=14.9、δp=0.0、δh=0.0))を用いた以外は実施例1と同様にして、樹脂組成物のペレット、成形体を得た。そして、実施例1と同様にして残留溶剤量、表面抵抗率及び金属量の測定を行った。結果を表1に示す。
(実施例4)
 カーボンナノチューブを7g、n-ヘキサンを21g、シクロオレフィンポリマーを993g用いた以外は、実施例3と同様にして樹脂組成物のペレット、成形体を得た。そして、実施例1と同様にして残留溶剤量、表面抵抗率及び金属量の測定を行った。結果を表1に示す。
(実施例5)
 樹脂として、フッ素樹脂であるテトラフルオロエチレンとパーフルオロアルコキシビニルエーテルとの共重合体であるPFA(AGC社製、製品名「Fluon PFA P-36P」、ハンセン溶解度パラメータ(δd=12.6、δp=0.4、δh=0.3))を、溶剤として1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン(AGC社製、製品名「アサヒクリンAC-2000」、ハンセン溶解度パラメータ(δd=13.0、δp=1.9、δh=1.9))を用いた以外は、実施例1と同様にして樹脂組成物のペレット、成形体を得た。そして、実施例1と同様にして残留溶剤量、表面抵抗率及び金属量の測定を行った。結果を表1に示す。
(実施例6)
 カーボンナノチューブとして多層CNT(Kumho Petrochemical社製、製品名「K-nanos 100T」、炭素純度94.5%、BET比表面積:270m/g;バンドル平均長さ:26μm;平均外径:9.1nm)を30g、トルエンを90g、シクロオレフィンポリマーを970g用いた以外は、実施例1と同様にして樹脂組成物のペレット、成形体を得た。そして、実施例1と同様にして残留溶剤量、表面抵抗率及び金属量の測定を行った。結果を表1に示す。
(比較例1)
 トルエンを用いなかった以外は実施例1と同様にして樹脂組成物のペレット、成形体を得た。そして、実施例1と同様にして残留溶剤量、表面抵抗率及び金属量の測定を行った。結果を表1に示す。なお、本比較例では、混合物を調製する際にあえて溶剤を配合していないが、樹脂組成物における残留溶剤が微量検出された。この残留溶剤は、樹脂の不純物として含有されていた樹脂調製時の重合溶媒と推察される。そして、かかる溶媒と、樹脂の間のハンセン溶解度パラメータの距離Raは0.6であり、2.0未満であった。
(比較例2)
 溶剤としてシクロペンチルメチルエーテル(CPME、日本ゼオン社製、ハンセン溶解度パラメータ(δd=16.7、δp=4.3、δh=4.3))を用いた以外は実施例1と同様にして樹脂組成物のペレット、成形体を得た。そして、実施例1と同様にして残留溶剤量、表面抵抗率及び金属量の測定を行った。結果を表1に示す。
(比較例3)
 溶剤としてトルエンを用いず、多層CNTを40g、シクロオレフィンポリマーを960g用いた以外は、実施例6と同様にして樹脂組成物のペレット、成形体を得た。そして、実施例1と同様にして残留溶剤量、表面抵抗率及び金属量の測定を行った。結果を表1に示す。なお、本比較例では、混合物を調製する際にあえて溶剤を配合していないが、樹脂組成物における残留溶剤が微量検出された。この残留溶剤は、樹脂の不純物として含有されていた樹脂調製時の重合溶媒と推察される。そして、かかる溶媒と、樹脂の間のハンセン溶解度パラメータの距離Raは0.6であり、2.0未満であった。
 なお、表1において、
「CPME」は、シクロペンチルメチルエーテルを示し、
「AC-2000」は、1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサンを示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、比較例1では金属量は低いものの、溶剤及び樹脂の間のハンセン溶解度パラメータの距離Raが2.0未満であったため、CNTの分散性が悪いことから成形体の表面抵抗率が高く、導電性が悪かったことがわかる。また、比較例2では、溶剤及び樹脂の間のハンセン溶解度パラメータの距離Raが4.5超であったため、CNTの分散性が悪いことから成形体の表面抵抗率が高く、導電性が悪かったことがわかる。また、比較例3では多層CNTを多量に入れたことで成形体の表面抵抗率は良いものの、多層CNTを多量に添加したため、金属量が多く、清浄性が悪かったことがわかる。その一方で、実施例1~6のように、規定したパラメータを満たす樹脂、溶剤、及びカーボンナノチューブを用いることで、表面抵抗率が低く導電性に優れると共に、金属量が少なく清浄性に優れる樹脂組成物を得ることができたことがわかる。
 本発明によれば、導電性及び清浄性を高いレベルで両立することができる、樹脂組成物及びその製造方法を提供することができる。また、本発明によれば、導電性及び清浄性が共に優れる成形体を提供することができる。

Claims (9)

  1.  樹脂、カーボンナノチューブ、及び溶剤を含む樹脂組成物であって、
     前記溶剤及び前記樹脂の間のハンセン溶解度パラメータの距離Raが2.0以上4.5以下であり、且つ、
     前記カーボンナノチューブの炭素純度が94.0質量%以上である、樹脂組成物。
  2.  前記カーボンナノチューブが単層カーボンナノチューブを含む、請求項1に記載の樹脂組成物。
  3.  前記カーボンナノチューブの含有割合が0.1質量%以上4.0質量%未満である、請求項1に記載の樹脂組成物。
  4.  前記溶剤の含有割合が100ppm以下である、請求項1に記載の樹脂組成物。
  5.  前記樹脂が、
     フッ素系重合体、ポリカーボネート、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン、及び、脂環式構造含有重合体のうちの少なくとも一種を含む、
    請求項1~4の何れかに記載の樹脂組成物。
  6.  樹脂、カーボンナノチューブ、及び溶剤を含む樹脂組成物の製造方法であって、
     前記樹脂、前記カーボンナノチューブ、及び前記溶剤を含む混合物を、該混合物における前記溶剤の割合が0.1質量%以上20質量%以下となり、且つ、質量基準で、前記カーボンナノチューブに対する前記溶剤の量が1.0倍以上7.0倍以下となるように、調製する混合工程と、
     前記混合物を混練する混練工程と、
     前記混合物から前記溶剤を除去して樹脂組成物を得る溶剤除去工程と、を含み、
     前記混練工程と溶剤除去工程は、これらの工程の継続期間の一部において同時進行してもよく、
     前記溶剤除去工程にて、前記樹脂組成物中の前記溶剤の割合が100ppm以下となるようにする、
    樹脂組成物の製造方法。
  7.  前記混合工程に先立って、前記カーボンナノチューブに対して前記溶剤を含浸させる含浸工程を含む、請求項6に記載の樹脂組成物の製造方法。
  8.  請求項5に記載の樹脂組成物を成形してなる成形体。
  9.  半導体製造用部材である請求項8に記載の成形体。
PCT/JP2023/028827 2022-08-31 2023-08-07 樹脂組成物及びその製造方法、並びに成形体 WO2024048213A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-138724 2022-08-31
JP2022138724 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048213A1 true WO2024048213A1 (ja) 2024-03-07

Family

ID=90099295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028827 WO2024048213A1 (ja) 2022-08-31 2023-08-07 樹脂組成物及びその製造方法、並びに成形体

Country Status (1)

Country Link
WO (1) WO2024048213A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066528A1 (ja) * 2016-10-03 2018-04-12 日本ゼオン株式会社 スラリー並びに複合樹脂材料および成形体の製造方法
WO2018066458A1 (ja) * 2016-10-03 2018-04-12 日本ゼオン株式会社 スラリー、複合樹脂材料および成形体の製造方法
JP2018203914A (ja) * 2017-06-06 2018-12-27 国立大学法人広島大学 複合材料の製造方法
JP2019199583A (ja) * 2018-05-18 2019-11-21 国立大学法人広島大学 複合材料の製造方法
WO2022070780A1 (ja) * 2020-09-30 2022-04-07 日本ゼオン株式会社 エラストマー組成物、エラストマー組成物の製造方法、架橋物、及び成形体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066528A1 (ja) * 2016-10-03 2018-04-12 日本ゼオン株式会社 スラリー並びに複合樹脂材料および成形体の製造方法
WO2018066458A1 (ja) * 2016-10-03 2018-04-12 日本ゼオン株式会社 スラリー、複合樹脂材料および成形体の製造方法
JP2018203914A (ja) * 2017-06-06 2018-12-27 国立大学法人広島大学 複合材料の製造方法
JP2019199583A (ja) * 2018-05-18 2019-11-21 国立大学法人広島大学 複合材料の製造方法
WO2022070780A1 (ja) * 2020-09-30 2022-04-07 日本ゼオン株式会社 エラストマー組成物、エラストマー組成物の製造方法、架橋物、及び成形体

Similar Documents

Publication Publication Date Title
Zhang et al. A facile method to prepare flexible boron nitride/poly (vinyl alcohol) composites with enhanced thermal conductivity
JP6841224B2 (ja) 複合樹脂材料、スラリー、複合樹脂材料成形体、及びスラリーの製造方法
JP6047569B2 (ja) ナノチューブ及び微粉砕炭素繊維ポリマー複合組成物ならびに作製方法
JP6585856B2 (ja) 複合樹脂材料および成形体
JP5968720B2 (ja) 複合樹脂材料粒子の製造方法、及び複合樹脂成形体の製造方法
WO2018066528A1 (ja) スラリー並びに複合樹脂材料および成形体の製造方法
TWI816861B (zh) 密封材
JP2018070709A (ja) 複合樹脂材料の製造方法および成形体の製造方法
US20160312011A1 (en) Hydroxylated-fullerene-containing solution, resin molding and resin composition each using the same, and method for producing each of the resin molding and the resin composition
WO2024048213A1 (ja) 樹脂組成物及びその製造方法、並びに成形体
US20160046523A1 (en) Moisture Barrier Composite Film And Its Preparation Method
FR2997088A1 (fr) Procede de preparation d'un materiau composite thermodurcissable a base de graphene
WO2015025944A1 (ja) 樹脂複合材
TWI831854B (zh) 固體添加劑與樹脂組成物,以及固體添加劑與樹脂組成物之製造方法
JP6155043B2 (ja) 水酸化フラーレン類含有溶液、これを用いた樹脂成形物および樹脂組成物、並びにその製造方法
Tummalapalli et al. Deposition and characterization of CNT-polyurethane nanocomposite films
TWI699397B (zh) 複合樹脂材料及成形體
WO2021166743A1 (ja) フッ素樹脂成形体及びそれを含む装置
WO2020026981A1 (ja) 粉末の製造方法、溶融成形体の製造方法、粉末、圧縮成形体、および溶融成形体
WO2023162899A1 (ja) 複合樹脂粒子の製造方法、帯電防止用組成物、及び成形体
WO2023054716A1 (ja) フッ素ゴム組成物及び成形体
Maruyama et al. Thermal conductivity of an epoxy resin enhanced with a polythiophene/graphene complex and aluminum nitride
WO2023162783A1 (ja) エラストマー組成物
WO2023090403A1 (ja) カーボンナノチューブ分散液、炭素膜の製造方法、エラストマー混合液、複合材料の製造方法、及びエラストマー成形体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859981

Country of ref document: EP

Kind code of ref document: A1