WO2024048203A1 - 半導体製造装置および半導体装置の製造方法 - Google Patents

半導体製造装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2024048203A1
WO2024048203A1 PCT/JP2023/028589 JP2023028589W WO2024048203A1 WO 2024048203 A1 WO2024048203 A1 WO 2024048203A1 JP 2023028589 W JP2023028589 W JP 2023028589W WO 2024048203 A1 WO2024048203 A1 WO 2024048203A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
roller
transport
semiconductor manufacturing
manufacturing apparatus
Prior art date
Application number
PCT/JP2023/028589
Other languages
English (en)
French (fr)
Inventor
悠太 小野
健太 河野
衛 土肥
宏晃 伊藤
直人 長田
海人 佐々木
Original Assignee
ファスフォードテクノロジ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファスフォードテクノロジ株式会社 filed Critical ファスフォードテクノロジ株式会社
Publication of WO2024048203A1 publication Critical patent/WO2024048203A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present disclosure relates to semiconductor manufacturing equipment, and is applicable to, for example, a die bonder having a lane for transporting a substrate on which a die is mounted.
  • a semiconductor manufacturing device such as a die bonder is a device that attaches (mounts) an element onto a substrate or an element using a bonding material.
  • the bonding material is, for example, liquid or film resin, solder, or the like.
  • the element is, for example, a die such as a semiconductor chip, a MEMS (Micro Electro Mechanical System), or a glass chip.
  • the substrate is, for example, a wiring board, a lead frame made of a thin metal plate, a glass substrate, or the like.
  • Some die bonders are equipped with a transport section that has a substrate transport claw that grips and transports the substrate and a transport lane (transport guide, chute) along which the substrate moves (for example, Patent Document 1).
  • the length of the substrate in the transport direction is longer than the length in the direction perpendicular to the transport direction.
  • the transport section transports the substrate from the substrate supply section along the transport lane to the bonding position, and after bonding, transports the substrate to the substrate unloading section and delivers the substrate to the substrate unloading section.
  • the substrate transport claws are provided inside the transport lane, so when the distance between the edge of the board and the product area (frame area) becomes small, the board transport claws (transport member) Areas may be touched.
  • An object of the present disclosure is to provide a technique that allows the substrate to be transported without the transport member touching the product area even if the frame area becomes smaller.
  • the semiconductor manufacturing apparatus includes a transport unit that transports a substrate having a product area on which a die is mounted and a frame area located outside the product area.
  • the transport unit includes a transport block that supports one end of the substrate on both upper and lower sides when the substrate is transported, and a transport block that supports the other end of the substrate on both the upper and lower sides.
  • One end of the transport block is located in the frame area, and the other end is located outside the substrate.
  • the conveyance block includes a conveyance roller or a conveyance belt.
  • FIG. 1 is a schematic top view of a die bonder in an embodiment.
  • FIG. 2 is a schematic side view of the die bonder shown in FIG. 1.
  • FIG. 3 is a flowchart showing a method for manufacturing a semiconductor device using the die bonder shown in FIG.
  • FIG. 4 is a top view of the substrate transported by the transport section.
  • FIG. 5 is a diagram showing a schematic configuration of the transport section shown in FIG. 1.
  • FIG. 6 is a schematic cross-sectional view taken along line AA of the conveying section shown in FIG.
  • FIG. 7 is a diagram showing a conveyance section in a comparative example and an embodiment.
  • FIG. 8 is a diagram showing a schematic configuration of a conveying section in a first modification.
  • FIG. 9 is a schematic cross-sectional view taken along the line AA of the conveying section shown in FIG.
  • FIG. 10 is a diagram showing a schematic configuration of a conveying section in a second modification.
  • FIG. 11 is a diagram showing a schematic configuration of a conveyance section in a third modification.
  • FIG. 12 is a schematic cross-sectional view taken along line AA of the conveyance section shown in FIG. 11.
  • FIG. 13 is a diagram showing a schematic configuration of a conveyance section in a fourth modification.
  • FIG. 14 is a top view showing the configuration of the conveyance section in the fifth modification.
  • FIG. 15 is a schematic cross-sectional view taken along line AA of the conveyance section shown in FIG. 14.
  • FIG. 16 is a top view showing the configuration of the conveyance section in the sixth modification.
  • FIG. 17 is a top view showing the configuration of the conveyance section in the seventh modification.
  • FIG. 18 is a diagram showing the configuration and operation of the transport section in the eighth modification.
  • FIG. 19 is a schematic top view showing the orientation of the substrate and the direction of conveyance of the substrate.
  • FIG. 1 is a schematic top view of a die bonder in an embodiment.
  • FIG. 2 is a schematic side view of the die bonder shown in FIG. 1.
  • the die bonder 1 is roughly divided into a die supply section 10, a pickup section 20, an intermediate stage section 30, a bonding section 40, a transport section 50, a substrate supply section 60, and a substrate unloading section 70. It has a control unit (control device) 80 that monitors and controls.
  • the Y direction is the front-rear direction of the die bonder 1
  • the X direction is the left-right direction
  • the Z direction is the up-down direction.
  • the die supply section 10 is arranged on the front side of the die bonder 1
  • the bonding section 40 is arranged on the rear side.
  • the substrate supply section 60 is arranged on the left side of the die bonder 1
  • the substrate unloading section 70 is arranged on the right side of the die bonder 1.
  • the die supply unit 10 includes a wafer holding table (not shown) that holds the wafer W, and a peeling unit 13 that peels the die D from the wafer W.
  • the wafer holding table is moved in the X and Y directions by a drive means (not shown), and the die D to be picked up is moved to the position of the peeling unit 13.
  • the peeling unit 13 is moved in the vertical direction by a drive means (not shown).
  • the wafer W is adhered onto a dicing tape DT and is divided into a plurality of dies D.
  • the dicing tape DT to which the wafer W is attached is held by a wafer ring (not shown).
  • a film-like adhesive material called a die attach film (DAF) is attached between the wafer W and the dicing tape DT. Die attach film is cured by heating.
  • DAF die attach film
  • the pickup section 20 includes a pickup head 21, a wafer recognition camera 24, and an illumination device 25.
  • the pickup head 21 has a collet 22 that attracts and holds the peeled die D at its tip, picks up the die D from the die supply section 10, and places it on the intermediate stage 31.
  • the wafer recognition camera 24 grasps the pickup position of the die D to be picked up from the wafer W.
  • the pickup section 20 has drive sections (not shown) that move the pickup head 21 up and down, rotate it, and move it in the X and Y directions.
  • the intermediate stage section 30 includes an intermediate stage 31, a stage recognition camera 34, and an illumination device 35.
  • the stage recognition camera 34 is installed above the intermediate stage 31 and photographs the die D on the intermediate stage 31.
  • the stage recognition camera 34 is installed, for example, directly above the intermediate stage 31, and is installed with its viewing angle directed vertically downward so that the central axis of the intermediate stage 31 and the optical axis of the stage recognition camera 34 coincide.
  • the illumination device 35 irradiates light to make the die D placed on the intermediate stage 31 bright enough to be photographed by the stage recognition camera 34 .
  • the stage recognition camera 34 photographs the subject image reflected from the top surface of the die D.
  • the image taken by the stage recognition camera 34 is output to the control unit 80, undergoes image processing, and may also be displayed on a display screen (not shown).
  • the bonding section 40 includes a bond head 41, a substrate recognition camera 44, and a bond stage 46.
  • the bond head 41 has a collet 42 that attracts and holds the die D at its tip.
  • the board recognition camera 44 images a position recognition mark (not shown) on the board S and recognizes the bond position.
  • a plurality of package areas P are formed on the substrate S, which will eventually become one package.
  • a position recognition mark is provided for each package area P.
  • the bond stage 46 is moved upward and supports the substrate S from below.
  • the bond stage 46 has a suction port (not shown) for vacuum suctioning the substrate S, and is capable of fixing the substrate S.
  • the bond stage 46 has a heating section (not shown) that heats the substrate S.
  • the bonding section 40 has drive sections (not shown) that move the bond head 41 up and down, rotate it, and move it in the X direction and the Y direction.
  • the bond head 41 corrects the pickup position and posture based on the imaging data of the stage recognition camera 34, and picks up the die D from the intermediate stage 31. Then, the bond head 41 bonds onto the package area P of the substrate S based on the imaging data of the substrate recognition camera 44, or stacks it on top of the die already bonded onto the package area P of the substrate S. Bond.
  • the conveyance unit 50 has conveyance rollers 51 and 52 on both sides of the substrate S, which sandwich and move the ends of the substrate S from above and below.
  • the transport rollers 51 and 52 are provided between the substrate supply section 60 and the substrate discharge section 70, and transport the substrate S in the X-axis direction. With this configuration, the substrate S moves from the substrate supply section 60 to the bonding position (mounting position), and after bonding, moves to the substrate unloading section 70 or returns to the substrate supply section 60.
  • the control unit 80 includes a memory that stores programs (software) and data that monitor and control the operations of each part of the die bonder 1, a central processing unit (CPU) that executes the programs stored in the memory, and an input/output device. Equipped with.
  • the input/output device includes an image capture device, a motor control device, an I/O signal control device, and the like.
  • the image capture device captures image data from the wafer recognition camera 24, the stage recognition camera 34, and the substrate recognition camera 44.
  • the motor control device controls a drive unit of the die supply unit 10, a drive unit of the pickup unit 20, a drive unit of the bonding unit 40, a drive unit of the transport unit 50, and the like.
  • the I/O signal control device takes in various sensor signals or controls a signal section such as a switch of a lighting device or the like.
  • FIG. 3 is a flowchart showing a method for manufacturing a semiconductor device using the die bonder shown in FIG. In the following description, the operation of each part constituting the die bonder 1 is controlled by the control section 80.
  • a wafer ring (not shown) is carried into the die bonder 1.
  • the carried-in wafer ring is supplied to the die supply section 10.
  • the wafer ring holds a dicing tape DT to which dies D divided from the wafer W are attached.
  • a substrate transport jig in which the substrate S is stored is supplied to a substrate supply section and carried into the die bonder 1.
  • the substrate S is taken out from the substrate transport jig and fixed to transport rollers 51 and 52.
  • step S3 the wafer holding table is moved so that a desired die D can be picked up from the dicing tape DT.
  • the die D is photographed by the wafer recognition camera 24, and positioning and surface inspection of the die D are performed based on the image data obtained by photographing.
  • the positioned die D is peeled off from the dicing tape DT by the peeling unit 13 and the pickup head 21.
  • the die D peeled off from the dicing tape DT is attracted and held by the collet 22 provided on the pickup head 21, and is transported to and placed on the intermediate stage 31.
  • the die D on the intermediate stage 31 is photographed by the stage recognition camera 34, and the positioning and surface inspection of the die D are performed based on the image data obtained by photographing.
  • the amount of deviation (X, Y, ⁇ directions) of the die D on the intermediate stage 31 from the die position reference point of the die bonder is calculated and positioning is performed. Note that the die position reference point is previously held at a predetermined position of the intermediate stage 31 as the initial setting of the apparatus.
  • the surface inspection of die D is performed by image processing the image data.
  • the pickup head 21 that has transported the die D to the intermediate stage 31 is returned to the die supply section 10.
  • the next die D is peeled off from the dicing tape DT according to the above-described procedure, and thereafter the dies D are peeled off one by one from the dicing tape DT according to the same procedure.
  • Process S4 The substrate S is transported to the bonding stage 46 by the transport section 50 .
  • the substrate S placed on the bond stage 46 is imaged by the substrate recognition camera 44, and image data is acquired by the imaging.
  • image processing the image data the amount of deviation (in the X, Y, and ⁇ directions) of the substrate S from the substrate position reference point of the die bonder 1 is calculated. Note that the substrate position reference point is previously held at a predetermined position of the bonding section 40 as the initial setting of the apparatus.
  • the adsorption position of the bond head 41 is corrected based on the displacement amount of the die D on the intermediate stage 31 calculated in step S3, and the die D is adsorbed by the collet 42.
  • the die D is bonded to a predetermined location on the substrate S supported by the bonding stage 46 by the bond head 41 that has picked up the die D from the intermediate stage 31 .
  • the predetermined location on the substrate S is the package area P of the substrate S, the area where an element is already mounted and where the element is bonded in addition to it, or the bond area of the element to be laminated and bonded. be.
  • the die D bonded to the substrate S is photographed by the substrate recognition camera 44, and based on the image data acquired by the photographing, an inspection is performed to determine whether the die D is bonded at a desired position. If the inspected die D is defective, the bond head 41 transports the die D to a disposal area.
  • the bond head 41 that has bonded the die D to the substrate S is returned to the intermediate stage 31. Following the procedure described above, the next die D is picked up from the intermediate stage 31 and bonded to the substrate S. This process is repeated to bond the die D to all predetermined locations on the substrate S.
  • Substrate unloading process (process S5)) The substrate S to which the die D is bonded is transported to the substrate unloading section 70. At the substrate unloading section 70, the substrate S is taken out from the transport rollers 51 and 52 and stored in a substrate transport jig. The substrate S stored in the substrate transport jig is carried out from the die bonder 1.
  • the die D is bonded onto the substrate S and carried out from the die bonder 1. Thereafter, for example, a transport jig storing the substrate S to which the die D is bonded is transported to a wire bonding process, and the electrode of the die D is electrically connected to the electrode of the substrate S via an Au wire or the like. Then, the substrate S is transferred to a molding process, and the die D and the Au wires are sealed with a molding resin (not shown), thereby completing a semiconductor package.
  • a transport jig storing the substrate S to which the die D is bonded is transported to a wire bonding process, and the electrode of the die D is electrically connected to the electrode of the substrate S via an Au wire or the like.
  • the substrate S is transferred to a molding process, and the die D and the Au wires are sealed with a molding resin (not shown), thereby completing a semiconductor package.
  • a transport jig storing a substrate S to which the die D is bonded is carried into a die bonder, and the die D is laminated on top of the die D bonded to the substrate S. After being carried out from the die bonder, it is electrically connected to the electrodes of the substrate S via Au wires in a wire bonding process.
  • the dies D above the second stage are separated from the dicing tape DT by the method described above, and then transported to the bonding section 40 and stacked on the dies D. After the above process is repeated a predetermined number of times, the substrate S is transferred to a molding process, and a stacked package is completed by sealing the plurality of dies D and the Au wires with a molding resin (not shown).
  • FIG. 4 is a top view of the substrate transported by the transport section.
  • FIG. 5 is a diagram showing a schematic configuration of the transport section shown in FIG. 1.
  • FIG. 6 is a schematic cross-sectional view taken along line AA of the conveying section shown in FIG.
  • FIG. 4 shows an example in which ten package areas P are arranged in the X direction and four package areas P are arranged in the Y direction in the product area PA.
  • the product area PA is not arranged to the edge of the substrate S, and there is a blank area between the edge (outer periphery) of the product area PA and the edge (outer periphery) of the substrate S. In this specification, this blank area is referred to as a frame area FA.
  • a plurality of transport blocks 50a are provided between the substrate supply section 60 and the substrate discharge section 70 to configure the transport section 50.
  • the transport block 50a includes an upper transport roller 51, a lower transport roller 52, an upper drive section 55, and a lower drive section 56.
  • the conveying roller 51 includes a driving roller 51a and driven rollers 51b and 51c that rotate according to the rotation of other rollers that come into contact with the roller. As shown in FIG. 6, a portion of each of the driving roller 51a and the driven rollers 51b and 51c contacts the upper surface of the frame area FA of the substrate S.
  • the conveyance roller 51 further includes feed amount synchronization rollers 51f and 51g that rotate according to the rotation of the drive roller 51a or driven rollers 51b and 51c that come into contact with the conveyance roller 51.
  • the driving roller 51a and the driven rollers 51b, 51c are cylindrical and have the same diameter.
  • the feed rate synchronization rollers 51f, 51g are cylindrical, have the same diameter, and are smaller than the diameters of the drive roller 51a and the driven rollers 51b, 51c.
  • the drive unit 55 applies rotational force to the drive roller 51a, the rotational force is transmitted to the feed amount synchronization rollers 51f, 51g and the driven rollers 51b, 51c.
  • the conveying roller 52 includes a driving roller 52a and driven rollers 52b and 52c that rotate according to the rotation of other rollers that come into contact with the roller. As shown in FIG. 6, a portion of each of the driving roller 52a and the driven rollers 52b, 52c abuts the lower surface of the substrate S.
  • the conveyance roller 52 further includes feed amount synchronization rollers 52f and 52g that rotate according to the rotation of the drive roller 52a or driven rollers 52b and 52c that come into contact with the conveyance roller 52.
  • the driving roller 52a and the driven rollers 52b, 52c are cylindrical and have the same diameter.
  • the feed rate synchronizing rollers 52f, 52g are cylindrical, have the same diameter, and are smaller than the diameters of the drive roller 52a and the driven rollers 52b, 52c.
  • the drive unit 56 applies rotational force to the drive roller 52a, the rotational force is transmitted to the feed amount synchronization rollers 52f, 52g and the driven rollers 52b, 52c.
  • Either one of the conveyance roller 51 and the conveyance roller 52 may be a completely driven roller of the other.
  • the driven roller is rotated by the substrate S moved by the drive roller.
  • the drive unit 55 holds the rotation shaft of each roller of the conveyance roller 51, and applies rotational force to the drive roller 51a.
  • the drive unit 56 holds the rotation shaft of each roller of the conveyance roller 52, and applies rotational force to the drive roller 52a.
  • the drive unit 55 rotates the drive roller 51a counterclockwise, and the drive unit 56 rotates the drive roller 52a clockwise, so that the substrate S moves in the direction of the arrow (rightward).
  • the drive units 55 and 56 are configured such that at least one of them can move in the vertical direction. This allows at least one of the conveyance rollers 51 and 52 to move in the vertical direction.
  • the driving units 55 and 56 may be configured such that at least one of the transport rollers 51 and 52 moves up and down following the thickness of the substrate S.
  • the rotation shafts of the transport rollers 51 and 52 are not restricted in vertical movement, and are configured to move up and down according to the thickness of the substrate S. Thereby, even if the substrates have different thicknesses, they can be transported in the same positional relationship.
  • the driving units 55 and 56 may be configured to be able to adjust the force of the conveyance rollers 51 and 52 to sandwich at least one of the substrates S. As a result, even if the thickness of the substrates differs, the substrates can always be sandwiched and transported stably with the same tension (pressure).
  • FIG. 7 is a diagram showing a conveyance section in a comparative example and an embodiment.
  • the transport unit 50 in the comparative example includes a substrate transport claw 501 that grips and transports the substrate S, and a transport lane (chute) 502 along which the substrate S moves.
  • the substrate S is moved in the X direction by driving a nut (not shown) of a substrate transport claw 501 provided on the transport lane 502 with a ball screw (not shown) provided along the transport lane 502.
  • the product area PA is not touched by the substrate transport claws 501 and the clamper described later (the substrate transport claws 501 and the clamper are located in the frame area FA). Therefore, it may not be possible to accommodate a substrate having a narrow distance from the edge of the product area PA to the edge of the substrate S.
  • the frame area FA is becoming narrower due to the increase in density by increasing the number of package areas P on the substrate S, there may be cases where it is not possible to cope with this.
  • a bar code or product name for understanding the identification number and manufacturing number of the board is included on the short side end of the board S in the frame area FA.
  • a preform stage is used to fix the substrate S.
  • a clamper may be used to push the substrate S from above. In this case, the clamper comes into contact with the inside of the substrate S further than the substrate transport claw 501 shown in FIG.
  • a preform stage or a bond stage 46 is brought into contact with the lower part of the substrate S, and the width of the stage is approximately the same as the width of the package area P.
  • the transport rollers 51 and 52 only ride on the edge of the substrate S with a width of w1 (on one side), and the space w3 for the substrate transport claw 501 becomes unnecessary.
  • the area in which the package area P can be placed on the substrate S increases by this expanded space (w3). This makes it possible to cope with the narrowing of the frame area FA.
  • the space in the embodiment is 1 mm wider on one side than in the comparative example.
  • FIG. 8 is a diagram showing a schematic configuration of a conveying section in a first modification.
  • FIG. 9 is a schematic cross-sectional view taken along the line AA of the conveying section shown in FIG.
  • the transport unit in the first modification transports the substrate S using a transport belt instead of the transport roller in the embodiment.
  • the conveyor block 50a in the first modification includes an upper conveyor belt 57, a lower conveyor belt 58, a drive unit 55 that drives the conveyor belt 57, and a drive unit 56 that drives the conveyor belt 58.
  • the conveyor belt 57 has a belt 57a that comes into contact with the upper surface of the substrate S, and pulleys 57b to 57d that apply rotational force to the belt 57a.
  • the conveyor belt 58 includes a belt 58a that contacts the top surface of the substrate S, and pulleys 58b to 58d that apply rotational force to the belt 58a.
  • the rotation shafts of the pulleys 57b to 57d are held by the drive unit 55 and are applied with rotational force.
  • the rotation shafts of the pulleys 58b to 58d are held by the drive unit 56 and are applied with rotational force.
  • the drive unit 55 rotates the belt 57a counterclockwise
  • the drive unit 56 rotates the belt 58a clockwise, so that the substrate S moves in the direction of the arrow (rightward).
  • the drive units 55 and 56 are configured such that at least one of them can move in the vertical direction. This allows at least one of the conveyor belts 57, 58 to move in the vertical direction. At least one of the conveyor belts 57 and 58 may be configured to move up and down following the thickness of the substrate S. The drive units 55 and 56 may be configured to be able to adjust the force of the conveyor belts 57 and 58 to sandwich at least one of the substrates S.
  • FIG. 10 is a diagram showing a schematic configuration of a conveying section in a second modification.
  • the conveyance block 50a in the second modification is configured by combining the conveyance roller in the embodiment and the conveyance belt in the first modification.
  • the transport block 50a in the second modification has a configuration in BR or RB shown in FIG. 10.
  • BR is a case in which a conveyance belt 57 is used on the upper side as in the first modification, and a conveyance roller 52 is used on the lower side as in the embodiment.
  • RB is a case where the upper side uses the conveyance roller 51 as in the embodiment, and the lower side uses the conveyance belt 58 as in the first modification.
  • FIG. 11 is a diagram showing a schematic configuration of a conveyance section in a third modification.
  • FIG. 12 is a diagram showing a schematic configuration of the conveyance roller and drive section shown in FIG. 11.
  • the conveyance roller in the third modification has a configuration that prevents substrate displacement.
  • the conveyance rollers 51 and 52 in the third modification are the same as those in the embodiment except for the shapes of the drive rollers 51a and 52a, the driven rollers 51b, 51c, 52b and 52c, and the feed amount synchronization rollers 51f, 51g, 52f and 52g. It has the same configuration as the transport block.
  • the rollers in the embodiment have a cylindrical shape with a uniform diameter, but the driving rollers 51a, 52a and the driven rollers 51b, 51c, 52b, 52c in the third modification have two different diameters with a step formed in the middle of the cylinder. It consists of parts.
  • the upper drive roller 51a has a first portion 51a1 that contacts the top surface of the substrate S and a second portion 51a2 that is located outside the substrate S and does not contact the top surface of the substrate S.
  • the first portion 51a1 has a cylindrical shape.
  • the second portion 51a2 is cylindrical and has a larger diameter than the first portion 51a1. That is, the drive roller 51a has a step. This allows the end of the substrate S in the width direction (Y direction) to come into contact with the second portion 51a2.
  • the second portion 51a2 functions as a guide for the substrate S in the lateral direction (X direction).
  • the width (length in the Y direction) of the second portion 51a2 is wider (longer) than the width (length in the Y direction) of the first portion 51a1.
  • the driven rollers 51b and 51c have the same structure as the drive roller 51a.
  • the feed rate synchronization roller 51f is configured to abut against the second portion 51a2.
  • the driven rollers 51b and 51c have the same structure as the drive roller 51a.
  • the feed rate synchronization roller 51g has the same configuration as the feed rate synchronization roller 51f.
  • the lower drive roller 52a has a first portion 52a1 that contacts the lower surface of the substrate S and a second portion 52a2 that is located outside the substrate S and does not contact the lower surface of the substrate S.
  • the first portion 52a1 has a cylindrical shape.
  • the second portion 52a2 is cylindrical and has a smaller diameter than the first portion 52a1. That is, the drive roller 52a has a step.
  • the width (length in the Y direction) of the second portion 52a2 is wider (longer) than the width (length in the Y direction) of the first portion 52a1.
  • the width of the first portion 52a1 of the drive roller 52a is slightly narrower than the first portion 51a1 of the drive roller 51a, and is configured so that the first portion 52a1 does not come into close contact with the second portion 51a2.
  • the feed amount synchronization roller 52f is configured to abut against the second portion 52a2.
  • the driven rollers 52b and 52c have the same structure as the drive roller 52a.
  • the feed rate synchronization roller 52g has the same configuration as the feed rate synchronization roller 52f.
  • the lower end of the second portion 51a2 of the drive roller 51a is located below the lower surface of the substrate S, a gap is provided between the second portion 51a2 and the second portion 52a2 of the drive roller 52a.
  • the diameters of the second portion 51a2 and the second portion 52a2 are set so that the second portion 52a2 and the second portion 52a2 do not come into contact with each other.
  • the first portions 51a1 and 52a1 are made of an elastic material with a high friction coefficient.
  • the second portion 51a2 is formed of a hard material with a low friction coefficient.
  • the substrate S may shift in the width direction (Y direction) of the substrate S during transport.
  • the end surface of the substrate S comes into contact with the side surfaces of the second portion 51a2 of the drive roller 51a and the second portions of the driven rollers 51b, 51c, so that the substrate S is not shifted any further. It disappears.
  • FIG. 13 is a diagram showing a schematic configuration of a conveyance section in a fourth modification.
  • the conveyor belt in the fourth modification has a configuration that prevents substrate displacement.
  • the conveyor block 50a in the fourth modification has the same configuration as the conveyor block in the first modification except for the shapes of the belts 57a, 58a of the conveyor belts 57, 58.
  • the belts in the first modification have a uniform thickness, but the belts 57a and 58a of the conveyor belts 57 and 58 in the fourth modification have a step formed in the middle and are composed of two parts with different thicknesses. .
  • the belt 57a of the upper conveyor belt 57 has a first portion 57a1 that contacts the top surface of the substrate S and a second portion 57a2 that is located outside the substrate S and does not contact the top surface of the substrate S.
  • the second portion 57a2 is formed thicker than the first portion 57a1. That is, the belt 57a has a step. This allows the end of the substrate S in the width direction (Y direction) to come into contact with the second portion 57a2.
  • the second portion 57a2 functions as a guide for the substrate S in the lateral direction (X direction).
  • the width (length in the Y direction) of the second portion 57a2 is wider (longer) than the width (length in the Y direction) of the first portion 57a1.
  • the belt 58a of the lower conveyor belt 58 has a first portion 58a1 that contacts the lower surface of the substrate S and a second portion 58a2 that is located outside the substrate S and does not contact the lower surface of the substrate S.
  • the second portion 58a2 has a smaller diameter than the first portion 58a1. That is, the belt 58a has a step.
  • the width (length in the Y direction) of the second portion 58a2 is wider (longer) than the width (length in the Y direction) of the first portion 58a1.
  • the width of the first portion 58a1 of the belt 58a is slightly narrower than the first portion 57a1 of the belt 57a, and is configured so that the first portion 58a1 does not come into close contact with the second portion 57a2.
  • the lower end of the second portion 57a2 of the belt 57a is located below the lower surface of the substrate S, a gap is provided between the second portion 57a2 and the second portion 58a2 of the belt 58a so that the second portion 57a2 and the second portion 57a2 are connected to each other.
  • the thicknesses of the second portion 57a2 and the second portion 58a2 are set so that the two portions 58a2 do not come into contact with each other.
  • the first portions 57a1 and 58a1 are made of an elastic material with a high friction coefficient.
  • the second portion 57a2 is formed of a hard material with a low friction coefficient.
  • FIG. 14 is a top view showing the configuration of the conveyance section in the fifth modification.
  • FIG. 15 is a schematic cross-sectional view taken along line AA of the conveyance section shown in FIG. 14.
  • the transport unit in the fifth modification includes guides on both sides of the substrate S.
  • the transport unit 50 in the fifth modification is different from the transport unit in the embodiment in that a guide 59 in the lateral direction (Y direction) of the substrate S is added at locations other than where the transport rollers 51 and 52 are arranged.
  • the guides 59 are provided intermittently along the X direction.
  • the length (thickness) of the guide 59 in the Z direction is such that it does not come into contact with the feed amount synchronization rollers 51f to 51h and 52f to 52h. Both ends of the guide 59 in the X direction are arranged so that the length in the X direction that contacts the substrate S is as long as possible, and so as not to contact the drive rollers 51a, 52a, and the driven rollers 51b to 51d, and 52b to 52d. Therefore, it is formed diagonally.
  • both the conveyance rollers 51 and 52 are configured to have a step like the lower conveyance roller 52 in the third modification, the guide 59 does not come into contact with the conveyance rollers 51 and 52, so that It may also be provided continuously along.
  • FIG. 14 an example is shown in which a driven roller 51d and a feed amount synchronization roller 51h are further provided in addition to the conveying roller 51 in the embodiment.
  • the number of driven rollers and quantity synchronization rollers is not limited to this example, and may be the same as in the embodiment, for example.
  • FIG. 16 is a top view showing the configuration of the conveyance section in the sixth modification.
  • the conveyance unit 50 in the sixth modification uses conveyance rollers 51 and 52 similarly to the embodiment.
  • the extending direction of the rotating shaft of the conveying roller 51 is tilted toward the conveying direction with respect to the width direction of the substrate S, and the conveying roller 51 is attached obliquely.
  • the inclination angle is preferably greater than 0 degrees and less than or equal to 15 degrees.
  • the optimum angle of inclination is determined by the diameter of the conveyance roller, and is not limited to this range. Attaching it diagonally creates friction and creates tension in a direction perpendicular to the conveyance direction. This makes it possible to reduce warping and bending of the substrate S.
  • the lower conveyance roller 52 is not shown, it has the same configuration as the upper conveyance roller 51.
  • driven rollers 51d and 51e are further provided with respect to the conveyance roller 51 in the embodiment, and an example is shown in which the feed amount synchronization rollers 51f and 51g are not provided.
  • the number of driven rollers is not limited to this example; for example, the number of driven rollers may be the same as in the embodiment or may be the same as in the fifth modification.
  • a mechanism for synchronizing the feed rate is provided in the drive unit 56.
  • FIG. 17 is a top view showing the configuration of the conveyance section in the seventh modification.
  • the conveyance section 50 in the seventh modification has the same configuration as the conveyance section 50 in the sixth modification except for the shape of the conveyance roller 51.
  • the conveyance roller 51 in the sixth modification has a cylindrical shape with a uniform diameter, but the conveyance roller 51 in the seventh modification has a step formed in the middle of the cylinder as in the third modification, and has two parts with different diameters. It consists of
  • the drive roller 51a has a first portion 51a1 that contacts the top surface of the substrate S, and a second portion 51a2 that is located outside the substrate S and does not contact the top surface of the substrate S.
  • the first portion 51a1 has a cylindrical shape.
  • the second portion 51a2 is cylindrical and has a larger diameter than the first portion 51a1. That is, the drive roller 51a has a step. This allows the end of the substrate S in the width direction (Y direction) to come into contact with the second portion 51a2.
  • the second portion 51a2 functions as a guide for the substrate S in the lateral direction (X direction).
  • the width (length in the Y direction) of the second portion 51a2 is wider (longer) than the width (length in the Y direction) of the first portion 51a1.
  • the first portion 51a1 is made of an elastic material with a high friction coefficient.
  • the edge portion of the second portion 51a2 is formed of a hard material with a low friction coefficient.
  • FIG. 18 is a diagram showing the configuration and operation of the transport section in the eighth modification.
  • the conveyance block 50a in the ninth modification performs an operation in which the conveyance roller or the conveyance belt moves while sandwiching the substrate S (pitch feeding operation).
  • the pitch feeding operation will be described below using an example in which the conveyance block 50a is constituted by a conveyance belt.
  • a part of the transport section 50 is configured, for example, with a transport block TB1, a transport block TB2, and a transport block TB3.
  • Each of the transport blocks TB1, TB2, and TB3 includes an upper transport belt 57, a lower transport belt 58, a drive unit 55 that drives the transport belt 57, and a drive unit 56 that drives the transport belt 58 in the first modification.
  • transport block TB1 and transport block TB3 are fixedly arranged in the transport direction of substrate S, and transport block TB2 is movable along the transport direction of substrate S between transport block TB1 and transport block TB3. will be placed in The pitch feed operation will be explained below.
  • Step 0 A substrate S is being transported by transport blocks TB1 and TB2. At this time, since the transport block TB3 receives the substrate S being transported, the upper transport belt 57 is moving upward.
  • Step 1 The conveyor block TB2 moves the upper conveyor belt 57 upward and the lower conveyor belt 58 downward, as shown by the arrow (a), and moves the upper conveyor belt 57 and the lower conveyor belt 58. Move to the transport block TB1 side.
  • Step 2 STP2
  • the transport block TB2 moves the upper transport belt 57 downward, moves the lower transport belt 58 upward, and comes into contact with the substrate S.
  • the transport block TB1 moves the upper transport belt 57 upward, as shown by arrow (c).
  • Step 3 The transport block TB2 moves toward the transport block TB3 with the substrate S sandwiched therebetween, as shown by the arrow (d). That is, the transport block TB2 transports the substrate S by pitch.
  • the transport block TB3 moves the upper transport belt 57 downward and comes into contact with the substrate S, as shown by arrow (e).
  • the substrate can be pitch-fed with high precision in a part that requires precision, such as a bonding part. Furthermore, it is possible to reduce the number of conveyance rollers or conveyance belts arranged. Moreover, it is possible to improve the conveyance speed of the substrate S.
  • FIG. 19 is a schematic top view showing the orientation of the substrate and the direction of conveyance of the substrate.
  • the substrate S has a rectangular shape in plan view, and has a long side with a length L1 and a short side with a length L2 ( ⁇ L1). As described above, at the end of the short side of the board S in the frame area FA, there is an area BC in which a bar code and product name for understanding the identification number and manufacturing number of the board are entered.
  • the substrate S is arranged so that the long side thereof is transported along the stretching direction (X direction). Therefore, in order to transport the substrate S, a region of the long side end of the substrate S is required to be in contact with the transport section 50, and this region is an area outside the package area P (frame area).
  • the substrate S in the tenth modification is arranged so as to be transported along the direction in which the short side extends (X direction).
  • the ends of the long sides of the substrate S do not need areas that come into contact with the transport section 50, and the package area P can be arranged almost to the ends of the long sides of the substrate S.
  • the package area P can be arranged almost to the ends of the long sides of the substrate S.
  • the short side end of the substrate S needs an area in contact with the transport section 50, but that area is an area outside the package area P (frame area), and the area BC is Placed.
  • the region BC the package area P is not arranged, so that it is possible to secure a wide region in contact with the transport section 50. Therefore, it is possible to use the substrate transport claw 501 of the transport section 50 in the comparative example shown in FIG.
  • the transport unit 50 it is of course possible to use the transport units 50 of the embodiment and the first to ninth modifications.
  • the substrate S may be bent. In this case, it is preferable to use the conveyance section 50 of the sixth modification or the seventh modification.
  • the diameter of the feed amount synchronization roller is smaller than that of the drive roller (driven roller).
  • the diameter of the feed amount synchronization roller may be larger than the drive roller (driven roller).
  • the width of the portion of the transport roller 51 or the transport belt 57 on the upper surface side of the substrate S that contacts the substrate S (referred to as Wu) and the transport roller 52 or the transport belt 58 on the lower surface side of the substrate S
  • Wu and Wd may be different.
  • Wu may be larger than Wd in the conveyance rollers 51, 52 or conveyance belts 57, 58 disposed at a location where a stage such as the bond stage 46 is located.
  • Wd may be larger than Wu.
  • a die bonder in which a pickup head picks up a die from a die supply unit and places it on an intermediate stage, and a bonding head picks up the die placed on the intermediate stage and bonds it to a substrate. There may be no pickup head, and the die in the die supply section is picked up by a bonding head and placed on an intermediate stage, and the die placed on the intermediate stage is picked up by the bonding head and bonded to the substrate.
  • a DAF is attached to the back surface of the wafer, but the DAF may not be provided.
  • bonding is performed with the front surface of the die facing up, but after the die is picked up, the die may be turned over and bonding may be performed with the back surface of the die facing up.
  • This device is called a flip chip bonder.
  • dies are picked up from a wafer in the die supply unit, but dies may also be picked up from a tray.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Die Bonding (AREA)

Abstract

半導体製造装置は、ダイが搭載される製品エリアと該製品エリアの外側に位置する額縁エリアとを有する基板を搬送する搬送部を備える。前記搬送部は、前記基板が搬送されるときに、前記基板の上下両側の一端部を支持する搬送ブロックおよび前記基板の上下両側の他端部を支持する搬送ブロックを備える。前記搬送ブロックの一端は前記額縁エリアに位置し、他端は前記基板の外側に位置するよう設けられる。前記搬送ブロックは搬送ローラまたは搬送ベルトを含む。

Description

半導体製造装置および半導体装置の製造方法
 本開示は半導体製造装置に関し、例えば、ダイを実装する基板を搬送するレーンを有するダイボンダに適用可能である。
 ダイボンダ等の半導体製造装置(実装装置)は、接合材料を用いて、例えば、素子を基板または素子の上にアタッチする(取り付ける)装置である。接合材料は、例えば、液状またはフィルム状の樹脂やはんだ等である。素子は、例えば、半導体チップやMEMS(Micro Electro Mechanical System)、ガラスチップ等のダイである。基板は、例えば、配線基板や金属薄板で形成されるリードフレーム、ガラス基板等である。
 ダイボンダには、基板を掴み搬送する基板搬送爪と基板が移動する搬送レーン(搬送ガイド、シュート)とを有する搬送部を備えるものがある(例えば、特許文献1)。基板は搬送方向の長さが搬送方向に直交する方向の長さよりも長い構成である。この搬送部は、基板を基板供給部から搬送レーンに沿ってボンド位置まで搬送し、ボンド後、基板搬出部まで搬送して、基板搬出部に基板を渡す。
特開2019-160948号公報
 特許文献1に開示される技術では、基板搬送爪が搬送レーンの内側に設けられるので、基板の端部と製品エリアとの距離(額縁エリア)が小さくなると、基板搬送爪(搬送部材)が製品エリアに触れる場合がある。
 本開示の課題は額縁エリアがより小さくなっても搬送部材が製品エリアに触れないで基板を搬送することが可能な技術を提供することにある。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本開示のうち代表的なものの概要を簡単に説明すれば下記の通りである。
  すなわち、半導体製造装置は、ダイが搭載される製品エリアと該製品エリアの外側に位置する額縁エリアとを有する基板を搬送する搬送部を備える。前記搬送部は、前記基板が搬送されるときに、前記基板の上下両側の一端部を支持する搬送ブロックおよび前記基板の上下両側の他端部を支持する搬送ブロックを備える。前記搬送ブロックの一端は前記額縁エリアに位置し、他端は前記基板の外側に位置するよう設けられる。前記搬送ブロックは搬送ローラまたは搬送ベルトを含む。
 本開示によれば、額縁エリアがより小さくなっても搬送部材が製品エリアに触れないで基板を搬送することが可能である。
図1は実施形態におけるダイボンダの概略上面図である。 図2は図1に示すダイボンダの概略側面図である。 図3は図1に示すダイボンダによる半導体装置の製造方法を示すフローチャートである。 図4は搬送部により搬送される基板の上面図である。 図5は図1に示す搬送部の概略構成を示す図である。 図6は図5に示す搬送部のA-A線における概略断面図である。 図7は比較例および実施形態における搬送部を示す図である。 図8は第一変形例における搬送部の概略構成を示す図である。 図9は図8に示す搬送部のA-A線における概略断面図である。 図10は第二変形例における搬送部の概略構成を示す図である。 図11は第三変形例における搬送部の概略構成を示す図である。 図12は図11に示す搬送部のA-A線における概略断面図である。 図13は第四変形例における搬送部の概略構成を示す図である。 図14は第五変形例における搬送部の構成を示す上面図である。 図15は図14に示す搬送部のA-A線における概略断面図である。 図16は第六変形例における搬送部の構成を示す上面図である。 図17は第七変形例における搬送部の構成を示す上面図である。 図18は第八変形例における搬送部の構成および動作を示す図である。 図19は基板の向きと基板の搬送方向を示す概略上面図である。
 以下、実施形態および変形例について、図面を用いて説明する。ただし、以下の説明において、同一構成要素には同一符号を付し繰り返しの説明を省略することがある。なお、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合がある。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
 まず、実施形態のダイボンダの構成について図1および図2を用いて説明する。図1は実施形態におけるダイボンダの概略上面図である。図2は図1に示すダイボンダの概略側面図である。
 ダイボンダ1は、大別して、ダイ供給部10と、ピックアップ部20と、中間ステージ部30と、ボンディング部40と、搬送部50と、基板供給部60と、基板搬出部70と、各部の動作を監視し制御する制御部(制御装置)80と、を有する。Y方向がダイボンダ1の前後方向であり、X方向が左右方向であり、Z方向が上下方向である。ダイ供給部10がダイボンダ1の前側に配置され、ボンディング部40が後側に配置される。基板供給部60がダイボンダ1の左側に配置され、基板搬出部70がダイボンダ1の右側に配置される。
 ダイ供給部10は、ウエハWを保持するウエハ保持台(不図示)と、ウエハWからダイDを剥離する剥離ユニット13と、を有する。ウエハ保持台は図示しない駆動手段によってXY方向に動かされ、ピックアップするダイDが剥離ユニット13の位置に動かされる。剥離ユニット13は図示しない駆動手段によって上下方向に動かされる。ウエハWはダイシングテープDT上に接着されており、複数のダイDに分割されている。ウエハWが貼付されたダイシングテープDTは図示しないウエハリングに保持されている。ウエハWとダイシングテープDTとの間にダイアタッチフィルム(DAF)と呼ばれるフィルム状の接着材料を貼り付けている。ダイアタッチフィルムは加熱することで硬化する。
 ピックアップ部20は、ピックアップヘッド21と、ウエハ認識カメラ24と、照明装置25と、を有する。ピックアップヘッド21は、剥離されたダイDを先端に吸着保持するコレット22を有し、ダイ供給部10からダイDをピックアップし、中間ステージ31に載置する。ウエハ認識カメラ24はウエハWからピックアップするダイDのピックアップ位置を把握する。なお、ピックアップ部20は、図示しない、ピックアップヘッド21を昇降、回転、X方向およびY方向に動かす各駆動部を有する。
 中間ステージ部30は、中間ステージ31と、ステージ認識カメラ34と、照明装置35と、を有する。ステージ認識カメラ34は中間ステージ31の上方に設置され、中間ステージ31上のダイDを撮影する。
 ステージ認識カメラ34は、例えば、中間ステージ31の直上に設置され、かつ中間ステージ31の中心軸とステージ認識カメラ34の光軸が一致するように垂直下方に視野角を向けて設置される。照明装置35は、中間ステージ31に載置されるダイDをステージ認識カメラ34が撮影可能な明るさにするため、光を照射する。
 ステージ認識カメラ34は、ダイDの上面から反射された被写体像を撮影する。ステージ認識カメラ34が撮影した画像は、制御部80に出力され、画像処理され、また、表示画面(図示しない)にも表示され得る。
 ボンディング部40は、ボンドヘッド41と、基板認識カメラ44と、ボンドステージ46と、を有する。ボンドヘッド41はピックアップヘッド21と同様にダイDを先端に吸着保持するコレット42を有する。基板認識カメラ44は基板Sの位置認識マーク(図示せず)を撮像し、ボンド位置を認識する。ここで、基板Sには、最終的に一つのパッケージとなる、複数のパッケージエリアPが形成されている。位置認識マークはパッケージエリアPごとに設けられる。ボンドステージ46は、基板SにダイDが載置される際、上方向に動かされ、基板Sを下方から支える。ボンドステージ46は基板Sを真空吸着するための吸引口(不図示)を有し、基板Sを固定することが可能である。ボンドステージ46は基板Sを加熱する加熱部(不図示)を有する。なお、ボンディング部40は、図示しない、ボンドヘッド41を昇降、回転、X方向およびY方向に動かす各駆動部を有する。
 このような構成によって、ボンドヘッド41は、ステージ認識カメラ34の撮像データに基づいてピックアップ位置・姿勢を補正し、中間ステージ31からダイDをピックアップする。そして、ボンドヘッド41は、基板認識カメラ44の撮像データに基づいて基板SのパッケージエリアP上にボンドし、又は既に基板SのパッケージエリアPの上にボンドされたダイの上に積層する形でボンドする。
 搬送部50は基板Sの端部を上下から挟んで動かす搬送ローラ51,52を基板Sの両側に有する。搬送ローラ51,52は基板供給部60と基板排出部70との間に設けられ、基板SをX軸方向に搬送する。このような構成によって、基板Sは、基板供給部60からボンド位置(実装位置)まで移動し、ボンド後、基板搬出部70まで移動したり、基板供給部60まで戻ったりする。
 制御部80は、ダイボンダ1の各部の動作を監視し制御するプログラム(ソフトウェア)およびデータを格納するメモリと、メモリに格納されたプログラムを実行する中央処理装置(CPU)と、入出力装置と、を備える。入出力装置は、画像取込装置、モータ制御装置およびI/O信号制御装置等を有する。画像取込装置は、ウエハ認識カメラ24、ステージ認識カメラ34および基板認識カメラ44からの画像データを取り込む。モータ制御装置は、ダイ供給部10の駆動部、ピックアップ部20の駆動部、ボンディング部40の駆動部、搬送部50の駆動部等を制御する。I/O信号制御装置は、種々のセンサ信号を取り込み又は照明装置などのスイッチ等の信号部を制御する。
 ダイボンダ1を用いた半導体装置の製造工程の一工程であるボンド工程(製造方法)について図3を用いて説明する。図3は図1に示すダイボンダによる半導体装置の製造方法を示すフローチャートである。以下の説明において、ダイボンダ1を構成する各部の動作は制御部80により制御される。
 (ウエハ搬入工程(工程S1))
 ウエハリング(不図示)がダイボンダ1に搬入される。搬入されたウエハリングがダイ供給部10に供給される。ここで、ウエハリングにはウエハWから分割されたダイDが貼付されたダイシングテープDTが保持されている。
 (基板搬入工程(工程S2))
 基板Sが格納された基板搬送治具が基板供給部に供給されてダイボンダ1に搬入される。基板供給部で基板Sが基板搬送治具から取り出されて搬送ローラ51,52に固定される。
 (ピックアップ工程(工程S3))
 工程S1後、所望するダイDをダイシングテープDTからピックアップできるようにウエハ保持台が動かされる。ウエハ認識カメラ24によりダイDが撮影され、撮影により取得された画像データに基づいてダイDの位置決めおよび表面検査が行われる。
 位置決めされたダイDは剥離ユニット13およびピックアップヘッド21によりダイシングテープDTから剥離される。ダイシングテープDTから剥離されたダイDは、ピックアップヘッド21に設けられたコレット22に吸着、保持されて、中間ステージ31に搬送されて載置される。
 ステージ認識カメラ34により中間ステージ31の上のダイDが撮影され、撮影により取得された画像データに基づいてダイDの位置決めおよび表面検査が行われる。画像データを画像処理することによって、ダイボンダのダイ位置基準点からの中間ステージ31上のダイDのずれ量(X、Y、θ方向)が算出されて位置決めが行われる。なお、ダイ位置基準点は、予め、中間ステージ31の所定の位置を装置の初期設定として保持されている。画像データを画像処理することによって、ダイDの表面検査が行われる。
 ダイDを中間ステージ31に搬送したピックアップヘッド21はダイ供給部10に戻される。上述した手順に従って、次のダイDがダイシングテープDTから剥離され、以後同様の手順に従ってダイシングテープDTから1個ずつダイDが剥離される。
 (ボンド工程(工程S4))
 搬送部50により基板Sがボンドステージ46に搬送される。ボンドステージ46上に載置された基板Sが基板認識カメラ44により撮像され、撮影によって画像データが取得される。画像データが画像処理されることによって、ダイボンダ1の基板位置基準点からの基板Sのずれ量(X、Y、θ方向)が算出される。なお、基板位置基準点は、予め、ボンディング部40の所定の位置を装置の初期設定として保持されている。
 工程S3において算出された中間ステージ31上のダイDのずれ量からボンドヘッド41の吸着位置が補正されてダイDがコレット42により吸着される。中間ステージ31からダイDを吸着したボンドヘッド41によりボンドステージ46に支持された基板Sの所定箇所にダイDがボンドされる。ここで、基板Sの所定箇所は、基板SのパッケージエリアP、または、すでに素子が載置されており、それに加える形で素子をボンドする際の領域、または、積層ボンドする素子のボンド領域である。基板認識カメラ44により基板SにボンドされたダイDが撮影され、撮影により取得された画像データに基づいてダイDが所望の位置にボンドされたかどうか等の検査が行われる。検査されたダイDが不良の場合、ボンドヘッド41によりダイDを捨て置き領域へ搬送される。
 ダイDを基板Sにボンドしたボンドヘッド41は中間ステージ31に戻される。上述した手順に従って、次のダイDが中間ステージ31からピックアップされ、基板Sにボンドされる。これが繰り返されて基板Sのすべての所定箇所にダイDがボンドされる。
 (基板搬出工程(工程S5))
 ダイDがボンドされた基板Sが基板搬出部70に搬送される。基板搬出部70で搬送ローラ51,52から基板Sが取り出されて基板搬送治具に格納される。ダイボンダ1から基板搬送治具に格納された基板Sが搬出される。
 上述したように、ダイDは、基板S上にボンドされ、ダイボンダ1から搬出される。その後、例えば、ダイDがボンドされた基板Sが格納された搬送治具がワイヤボンディング工程に搬送され、ダイDの電極はAuワイヤ等を介して基板Sの電極と電気的に接続される。そして、基板Sがモールド工程に搬送され、ダイDとAuワイヤとをモールド樹脂(図示せず)で封止することによって、半導体パッケージが完成する。
 積層ボンドする場合は、ワイヤボンディング工程に続いて、ダイDがボンドされた基板Sが格納された搬送治具がダイボンダに搬入されて基板S上にボンドされたダイDの上にダイDが積層され、ダイボンダから搬出された後、ワイヤボンディング工程でAuワイヤを介して基板Sの電極と電気的に接続される。第二段目より上のダイDは、上述した方法でダイシングテープDTから剥離された後、ボンディング部40に搬送されてダイDの上に積層される。上記工程が所定回数繰り返された後、基板Sがモールド工程に搬送され、複数個のダイDとAuワイヤとをモールド樹脂(図示せず)で封止することによって、積層パッケージが完成する。
 搬送部50について図4から図6を用いて説明する。図4は搬送部により搬送される基板の上面図である。図5は図1に示す搬送部の概略構成を示す図である。図6は図5に示す搬送部のA-A線における概略断面図である。
 図4に示すように、基板Sには複数の矩形状のパッケージエリアPがアレイ状に配置されている。複数のパッケージエリアPが配置される領域を製品エリアPAという。図4では、製品エリアPAにはパッケージエリアPがX方向に10個、Y方向に4個配置されている例を示している。製品エリアPAは基板Sの端部まで配置されておらず、製品エリアPAの端部(外周)と基板Sの端部(外周)との間に余白領域がある。本明細書では、この余白領域を額縁エリアFAという。
 基板供給部60と基板排出部70との間に複数の搬送ブロック50aが設けられて搬送部50が構成される。搬送ブロック50aは、上側の搬送ローラ51と下側の搬送ローラ52と上側の駆動部55と下側の駆動部56とを備える。
 図6に示すように、搬送ローラ51は、駆動ローラ51aと、当接する他のローラの回転に従って回転する従動ローラ51b,51cと、を有する。図6に示すように、駆動ローラ51aおよび従動ローラ51b,51cはそれぞれの一部分が基板Sの額縁エリアFAの上面に当接する。搬送ローラ51は、さらに、当接する駆動ローラ51aまたは従動ローラ51b,51cの回転に従って回転する送り量同期用ローラ51f,51gを有する。駆動ローラ51aおよび従動ローラ51b,51cは円柱状であり、それらの径は同じである。送り量同期用ローラ51f,51gは円柱状であり、それらの径は同じであり、駆動ローラ51aおよび従動ローラ51b,51cの径よりも小さい。駆動部55により駆動ローラ51aに回転力が与えられると、送り量同期用ローラ51f,51gおよび従動ローラ51b,51cに回転力が伝達される。
 図6に示すように、搬送ローラ52は、駆動ローラ52aと、当接する他のローラの回転に従って回転する従動ローラ52b,52cと、を有する。図6に示すように、駆動ローラ52aおよび従動ローラ52b,52cはそれぞれの一部分が基板Sの下面に当接する。搬送ローラ52は、さらに、当接する駆動ローラ52aまたは従動ローラ52b,52cの回転に従って回転する送り量同期用ローラ52f,52gを有する。駆動ローラ52aおよび従動ローラ52b,52cは円柱状であり、それらの径は同じである。送り量同期用ローラ52f,52gは円柱状であり、それらの径は同じであり、駆動ローラ52aおよび従動ローラ52b,52cの径よりも小さい。駆動部56により駆動ローラ52aに回転力が与えられると、送り量同期用ローラ52f,52gおよび従動ローラ52b,52cに回転力が伝達される。
 搬送ローラ51および搬送ローラ52の何れか一方が他方の完全な従動ローラとなっていても良い。この場合、従動ローラは駆動ローラによって動かされる基板Sにより回転する。
 駆動部55は、搬送ローラ51の各ローラの回転軸を保持すると共に、駆動ローラ51aに回転力を付与する。駆動部56は、搬送ローラ52の各ローラの回転軸を保持すると共に、駆動ローラ52aに回転力を付与する。図6において、駆動部55が駆動ローラ51aを反時計回りに回転させると共に、駆動部56が駆動ローラ52aを時計回りに回転させることにより、基板Sは矢印の方向(右方向)に移動する。
 駆動部55,56は、少なくとも一方が上下方向に移動することが可能なように構成される。これにより、搬送ローラ51,52の少なくとも一方が上下方向に動かすことが可能になる。
 また、駆動部55,56は、搬送ローラ51,52の少なくとも一方が基板Sの厚さに追従して上下動するように構成されてもよい。搬送ローラ51,52の各ローラの回転軸は上下方向の移動が制限されておらず、基板Sの厚さに応じて上下動するよう構成されている。これにより、基板の厚さが異なっても同様の位置関係で搬送することができる。また、駆動部55,56は、搬送ローラ51,52の少なくとも一方の基板Sを挟む力を調整可能に構成されてもよい。これにより、基板の厚さが異なっても常に同様のテンション(押圧)で基板を挟んで安定的に搬送することができる。
 なお、送り量同期用ローラ51f,51g,52f,52gを設ける必要はなく、駆動部55,56において駆動ローラ51a,52aの回転軸にギア等を設けて従動ローラ51b,51c,52b,52cの回転軸に設けたギア等に回転力を伝達するようにしてもよい。
 本実施形態を効果について図7を用いて説明する。図7は比較例および実施形態における搬送部を示す図である。
 比較例における搬送部50は、基板Sを掴み搬送する基板搬送爪501と、基板Sが移動する搬送レーン(シュート)502と、を有する。基板Sは、搬送レーン502に設けられた基板搬送爪501の図示しないナットを搬送レーン502に沿って設けられた図示しないボールネジで駆動することによってX方向に移動する。シュート502には基板Sがw1(片側)の幅で乗っており、さらに、シュート502からgの隙間を空けた位置に幅がw2の基板搬送爪501が配置されている。よって、シュート502の端からw3(=g+w2)の位置、すなわち、基板Sの端からw4(=w1+w3=w1+g+w2)の位置までを使用して搬送している。
 基本的に製品エリアPAには基板搬送爪501や後述するクランパが触れない(基板搬送爪501やクランパが額縁エリアFAに位置する)ように設計される。そのため、製品エリアPAの端から基板Sの端までの距離が狭い基板に対応できないことがあり得る。基板SのパッケージエリアPの数を増加させる高密度化により、額縁エリアFAの狭小化が進んでいるので、これに対応できない場合があり得る。なお、一般的に、額縁エリアFAの基板Sの短辺側端部には、基板の判別番号や製造番号を把握するためのバーコードや品種名が入っている。
 なお、ボンドステージ46に基板Sを搬送する前に基板Sにペーストを塗布したり、基板Sをクリーニングしたりする場合、基板Sを固定するためプリフォームステージが用いられる。プリフォームステージやボンドステージ上では、基板Sを上から押させるため、さらにクランパを用いる場合がある。この場合は図7に示す基板搬送爪501よりさらに基板Sの内側にクランパが触れることになる。なお、基板Sの下方にはプリフォームステージやボンドステージ46のステージが当接され、ステージの幅はパッケージエリアPの幅と同程度である。
 実施形態における搬送部50では、搬送ローラ51,52が基板Sの端部にw1(片側)の幅で乗っているだけで、基板搬送爪501のスペースであるw3が不要になる。この広がったスペース(w3)の分だけ、基板SにパッケージエリアPを配置できる領域が増える。これにより、額縁エリアFAの狭小化に対応することが可能となる。
 例えば、比較例において、w1=1mm、g=0.5mm、w2=0.5mmの場合、w4=2mmとなる。この場合、実施形態は比較例よりも片側1mmスペースが広がる。基板Sの端部と製品エリアPAの端部との間(額縁エリアFA)のY方向の長さをw5とすると、比較例では、w5はw4(=2mm)まで小さくすることが可能であるのに対し、実施形態では、w5はw1(=1mm)まで小さくすることが可能になる。パッケージエリアPの大きさによっては、パッケージエリアPの数を増加させることが可能であり、製品エリアPAを高密度化することが可能になる場合がある。
 <変形例>
 以下、実施形態の代表的な変形例について、幾つか例示する。以下の変形例の説明において、上述の実施形態にて説明されているものと同様の構成および機能を有する部分に対しては、上述の実施形態と同様の符号が用いられ得るものとする。そして、かかる部分の説明については、技術的に矛盾しない範囲内において、上述の実施形態における説明が適宜援用され得るものとする。また、上述の実施例の一部、および、複数の変形例の全部または一部が、技術的に矛盾しない範囲内において、適宜、複合的に適用され得る。
 (第一変形例)
 第一変形例における搬送部の構成について図8および図9を用いて説明する。図8は第一変形例における搬送部の概略構成を示す図である。図9は図8に示す搬送部のA-A線における概略断面図である。
 第一変形例における搬送部は、実施形態における搬送ローラに代えて搬送ベルトにより基板Sを搬送する。第一変形例における搬送ブロック50aは、上側の搬送ベルト57と下側の搬送ベルト58と搬送ベルト57を駆動する駆動部55と搬送ベルト58を駆動する駆動部56とを備える。
 搬送ベルト57は基板Sの上面に当接するベルト57aおよびベルト57aに回転力を付与するプーリ57b~57dを有する。搬送ベルト58は基板Sの上面に当接するベルト58aおよびベルト58aに回転力を付与するプーリ58b~58dを備える。
 プーリ57b~57dの回転軸は、駆動部55により保持されると共に、回転力が付与される。プーリ58b~58dの回転軸は、駆動部56により保持されると共に、回転力が付与される。図9において、駆動部55がベルト57aを反時計回りに回転させると共に、駆動部56がベルト58aを時計回りに回転させることにより、基板Sは矢印の方向(右方向)に移動する。
 駆動部55,56は、少なくとも一方が上下方向に移動することが可能なように構成される。これにより、搬送ベルト57,58の少なくとも一方が上下方向に動かすことが可能になる。搬送ベルト57,58の少なくとも一方が基板Sの厚さに追従して上下動するように構成されてもよい。駆動部55,56は、搬送ベルト57,58の少なくとも一方の基板Sを挟む力を調整可能に構成されてもよい。
 (第二変形例)
 第二変形例における搬送部の構成について図10を用いて説明する。図10は第二変形例における搬送部の概略構成を示す図である。
 第二変形例における搬送ブロック50aは、実施形態における搬送ローラと第一変形例における搬送ベルトとを組み合わせて構成される。第二変形例における搬送ブロック50aは、図10に示すB-RまたはR-Bにおける構成である。B-Rは上側が第一変形例と同様に搬送ベルト57を用い、下側が実施形態と同様に搬送ローラ52を用いる場合である。R-Bは上側が実施形態と同様に上側が搬送ローラ51を用い、下側が第一変形例と同様に搬送ベルト58を用いる場合である。
 (第三変形例)
 第三変形例における搬送部の構成について図11および図12を用いて説明する。図11は第三変形例における搬送部の概略構成を示す図である。図12は図11に示す搬送ローラおよび駆動部の概略構成を示す図である。
 第三変形例における搬送ローラは基板ずれを防止する構成を有する。第三変形例における搬送ローラ51,52は駆動ローラ51a,52a、従動ローラ51b,51c,52b,52cおよび送り量同期用ローラ51f,51g,52f,52gのローラの形状を除いて、実施形態における搬送ブロックと同様の構成である。実施形態におけるローラは径が一様な円柱状であるが、第三変形例における駆動ローラ51a,52aおよび従動ローラ51b,51c,52b,52cは円柱の途中で段差が形成され径が異なる二つの部分で構成されている。駆動ローラ51a,52aおよび従動ローラ51b,51c,52b,52cのローラの形状の変更に伴い、それに従動する送り量同期用ローラ51f,51g,52f,52gも形状が変更になっている。
 上側の駆動ローラ51aは、基板Sの上面に当接する第一部分51a1と基板Sの外に位置し、基板Sの上面に当接しない第二部分51a2とを有する。第一部分51a1は円柱状である。第二部分51a2は円柱状であり、第一部分51a1の径よりも大きい径である。すなわち、駆動ローラ51aは段差を有する。これにより、基板Sの幅方向(Y方向)側の端部が第二部分51a2に当接することが可能になる。第二部分51a2が基板Sの横方向(X方向)のガイドとして機能する。第二部分51a2の幅(Y方向の長さ)は第一部分51a1の幅(Y方向の長さ)よりも広い(長い)。従動ローラ51b,51cは駆動ローラ51aと同様の構成である。送り量同期用ローラ51fは、第二部分51a2に当接するよう構成される。従動ローラ51b,51cは駆動ローラ51aと同様の構成である。送り量同期用ローラ51gは、送り量同期用ローラ51fと同様の構成である。
 下側の駆動ローラ52aは、基板Sの下面に当接する第一部分52a1と基板Sの外に位置し、基板Sの下面に当接しない第二部分52a2とを有する。第一部分52a1は円柱状である。第二部分52a2は円柱状であり、第一部分52a1の径よりも小さい径である。すなわち、駆動ローラ52aは段差を有する。第二部分52a2の幅(Y方向の長さ)は第一部分52a1の幅(Y方向の長さ)よりも広い(長い)。駆動ローラ52aの第一部分52a1の幅は駆動ローラ51aの第一部分51a1よりも僅かに狭く、第一部分52a1が第二部分51a2と密着しないように構成される。送り量同期用ローラ52fは、第二部分52a2に当接するよう構成される。従動ローラ52b,52cは駆動ローラ52aと同様の構成である。送り量同期用ローラ52gは、送り量同期用ローラ52fと同様の構成である。
 駆動ローラ51aの第二部分51a2の下端は基板Sの下面よりも下方に位置することになるが、第二部分51a2と駆動ローラ52aの第二部分52a2の間に隙間を設けて第二部分51a2と第二部分52a2が接触しないように、第二部分51a2および第二部分52a2の径が設定される。
 第一部分51a1,52a1は高摩擦率の弾性材質により形成される。第二部分51a2は低摩擦率の硬質材により形成される。これにより、基板Sを搬送させる部分(第一部分)は十分な摩擦力で基板Sへの推進力を確保するとともに、ガイド部分(第二部分)は基板Sの接触による摩擦による損傷を最小限にとどめることができる。
 実施形態における搬送部は、搬送の際に基板Sの幅方向(Y方向)に基板Sがずれる可能性がある。本変形例では、基板Sが幅方向にずれようとするとき、基板Sの端面が駆動ローラ51aの第二部分51a2および従動ローラ51b,51cの第二部分の側面に当接するため、それ以上ずれなくなる。
 (第四変形例)
 第四変形例における搬送部の構成について図13を用いて説明する。図13は第四変形例における搬送部の概略構成を示す図である。
 第四変形例における搬送ベルトは基板ずれを防止する構成を有する。第四変形例における搬送ブロック50aは搬送ベルト57,58のベルト57a,58aの形状を除いて、第一変形例における搬送ブロックと同様の構成である。第一変形例におけるベルトは厚さが一様であるが、第四変形例における搬送ベルト57,58のベルト57a,58aは途中で段差が形成され厚さが異なる二つの部分で構成されている。
 上側の搬送ベルト57のベルト57aは、基板Sの上面に当接する第一部分57a1と基板Sの外に位置し、基板Sの上面に当接しない第二部分57a2とを有する。第二部分57a2は、第一部分57a1の厚さよりも厚く形成される。すなわち、ベルト57aは段差を有する。これにより、基板Sの幅方向(Y方向)側の端部が第二部分57a2に当接することが可能になる。第二部分57a2が基板Sの横方向(X方向)のガイドとして機能する。第二部分57a2の幅(Y方向の長さ)は第一部分57a1の幅(Y方向の長さ)よりも広い(長い)。
 下側の搬送ベルト58のベルト58aは、基板Sの下面に当接する第一部分58a1と基板Sの外に位置し、基板Sの下面に当接しない第二部分58a2とを有する。第二部分58a2は、第一部分58a1の径よりも小さい径である。すなわち、ベルト58aは段差を有する。第二部分58a2の幅(Y方向の長さ)は第一部分58a1の幅(Y方向の長さ)よりも広い(長い)。ベルト58aの第一部分58a1の幅はベルト57aの第一部分57a1よりも僅かに狭く、第一部分58a1が第二部分57a2と密着しないように構成される。
 ベルト57aの第二部分57a2の下端は基板Sの下面よりも下方に位置することになるが、第二部分57a2とベルト58aの第二部分58a2の間に隙間を設けて第二部分57a2と第二部分58a2が接触しないように、第二部分57a2および第二部分58a2の厚さが設定される。
 第一部分57a1,58a1は高摩擦率の弾性材質により形成される。第二部分57a2は低摩擦率の硬質材により形成される。これにより、基板Sを搬送させる部分(第一部分)は十分な摩擦力で基板Sへの推進力を確保するとともに、ガイド部分(第二部分)は基板Sの接触による摩擦による損傷を最小限にとどめることができる。
 本変形例では、基板Sが幅方向にずれようとするとき、基板Sの端面がベルト57aの第二部分57a2の側面に当接するため、それ以上ずれなくなる。
 (第五変形例)
 第五変形例における搬送部の構成について図14および図15を用いて説明する。図14は第五変形例における搬送部の構成を示す上面図である。図15は図14に示す搬送部のA-A線における概略断面図である。
 第五変形例における搬送部は、基板Sの両脇にガイドを備える。第五変形例における搬送部50は実施形態における搬送部に対して、搬送ローラ51,52が配置される個所以外に基板Sの横方向(Y方向)のガイド59を追加する。言い換えると、ガイド59はX方向に沿って間欠的に設けられる。
 ガイド59のZ方向の長さ(厚さ)は、送り量同期用ローラ51f~51h,52f~52hと当接しない厚さである。ガイド59のX方向の両端部は、基板Sと当接するX方向の長さをできるだけ長くするように、かつ、駆動ローラ51a,52a、従動ローラ51b~51d,52b~52dと当接しないようにするため、斜めに形成される。
 なお、搬送ローラ51,52の両方を第三変形例における下側の搬送ローラ52と同様に段差を有する構成とする場合、ガイド59は搬送ローラ51,52に当接することがないので、X方向に沿って連続的に設けてもよい。
 また、図14では、実施形態における搬送ローラ51に対して、さらに、従動ローラ51dおよび送り量同期用ローラ51hを有する例が示されている。しかし、従動ローラおよび量同期用ローラの数はこの例に限定されるものではなく、例えば、実施形態と同じあってもよい。
 (第六変形例)
 第六変形例における搬送部の構成について図16を用いて説明する。図16は第六変形例における搬送部の構成を示す上面図である。
 第六変形例における搬送部50は実施形態と同様に搬送ローラ51,52が用いられる。ただし、搬送ローラ51の回転軸の延伸方向を基板Sの幅方向に対して搬送方向に傾けて、搬送ローラ51を斜めに取り付ける。傾け角度は、例えば、搬送ローラの径が10mmのときは0度よりも大きく15度以下が好ましい。なお、傾け角度は、搬送ローラの径により最適値が定められる値であり、この範囲に限らない。斜めに取り付けることで摩擦が発生し、搬送方向に対して直交方向に張力がかかる。これにより基板Sの反りや撓みを軽減することが可能となる。なお、下側の搬送ローラ52は図示されていないが、上側の搬送ローラ51と同様の構成である。
 なお、図16では、実施形態における搬送ローラ51に対して、さらに、従動ローラ51d,51eを有する例が示され、送り量同期用ローラ51f,51gを有さない例が示されている。しかし、従動ローラの数はこの例に限定されるものではなく、例えば、実施形態と同じあってもよいし、第五変形例と同じであってもよい。また、送り量同期用ローラ51f,51gに代えて、送り量を同期する機構を駆動部56の中に設けられている。
 (第七変形例)
 第七変形例における搬送部の構成について図17を用いて説明する。図17は第七変形例における搬送部の構成を示す上面図である。
 第七変形例における搬送部50は、搬送ローラ51の形状を除いて、第六変形例における搬送部50と同様の構成である。第六変形例における搬送ローラ51は径が一様な円柱状であるが、第七変形例における搬送ローラ51は第三変形例と同様に円柱の途中で段差が形成され径が異なる二つの部分で構成されている。
 例えば、駆動ローラ51aは、基板Sの上面に当接する第一部分51a1と、基板Sの外に位置し、基板Sの上面に当接しない第二部分51a2と、を有する。第一部分51a1は円柱状である。第二部分51a2は円柱状であり、第一部分51a1の径よりも大きい径である。すなわち、駆動ローラ51aは段差を有する。これにより、基板Sの幅方向(Y方向)側の端部が第二部分51a2に当接することが可能になる。第二部分51a2が基板Sの横方向(X方向)のガイドとして機能する。第二部分51a2の幅(Y方向の長さ)は第一部分51a1の幅(Y方向の長さ)よりも広い(長い)。
 第一部分51a1は高摩擦率の弾性材質により形成される。第二部分51a2のエッジ部は低摩擦率の硬質材により形成される。このような構成により、ガイド部分となるローラは接触点が常に移動し基板の接触による摩擦による損傷を最小限にとどめることができる。なお、下側の搬送ローラ52は図示されていないが、第三変形例と同様の形状である。
 (第八変形例)
 第八変形例における搬送部について図18を用いて説明する。図18は第八変形例における搬送部の構成および動作を示す図である。
 搬送ローラまたは搬送ベルトによる搬送は、基板搬送爪による搬送よりも搬送速度が遅くなりやすい。そこで、ボンドステージ付近などの一部のエリアにおいて、第九変形例における搬送ブロック50aは搬送ローラまたは搬送ベルトが基板Sを挟んで移動する動作(ピッチ送り動作)を行う。以下、搬送ブロック50aが搬送ベルトで構成される例を用いてピッチ送り動作について説明する。
 搬送部50の一部は、例えば、搬送ブロックTB1と、搬送ブロックTB2と、搬送ブロックTB3と、で構成される。搬送ブロックTB1,TB2,TB3のそれぞれは第一変形例における上側の搬送ベルト57、下側の搬送ベルト58、搬送ベルト57を駆動する駆動部55および搬送ベルト58を駆動する駆動部56とで構成される。例えば、搬送ブロックTB1および搬送ブロックTB3は、基板Sの搬送方向においては、固定されて配置され、搬送ブロックTB2は搬送ブロックTB1と搬送ブロックTB3との間に基板Sの搬送方向に沿って移動可能に配置される。以下、ピッチ送り動作について説明する。
 ステップ0(STP0)
 搬送ブロックTB1,TB2により基板Sが搬送されている。このとき、搬送ブロックTB3は搬送されて来る基板Sを受け取るため、上側の搬送ベルト57が上方に移動している。
 ステップ1(STP1)
 搬送ブロックTB2は、矢印(a)で示すように、上側の搬送ベルト57を上方に移動し、下側の搬送ベルト58を下方に移動し、上側の搬送ベルト57および下側の搬送ベルト58を搬送ブロックTB1側に移動する。
 ステップ2(STP2)
 搬送ブロックTB2は、矢印(b)で示すように、上側の搬送ベルト57を下方に移動し、下側の搬送ベルト58を上方に移動して、基板Sに当接する。搬送ブロックTB1は、矢印(c)で示すように、上側の搬送ベルト57を上方に移動する。
 ステップ3(STP3)
 搬送ブロックTB2は、矢印(d)で示すように、基板Sを挟んだで、搬送ブロックTB3側に移動する。すなわち、搬送ブロックTB2は、基板Sをピッチ送りする。搬送ブロックTB3は、矢印(e)で示すように、上側の搬送ベルト57を下方に移動して、基板Sに当接する。
 本変形例によれば、ボンディング部のように精度を要求する部分において基板を高精度にピッチ送りすることができる。また、配置される搬送ローラまたは搬送ベルトの数を少なくすることが可能である。また、基板Sの搬送速度を向上させることが可能である。
 (第九変形例)
 第九変形例における基板について図19を用いて説明する。図19は基板の向きと基板の搬送方向を示す概略上面図である。
 基板Sは、平面視において矩形状であり、長さがL1の長辺と長さがL2(<L1)の短辺を有する。上述したように、額縁エリアFAの基板Sの短辺側端部には、基板の判別番号や製造番号を把握するためのバーコードや品種名が入る領域BCがある。
 実施形態、第一変形例から第九変形例では、図19のH-Sに示すように、基板Sの長辺が延伸方向(X方向)に沿って搬送されるよう配置される。したがって、基板Sを搬送するため、基板Sの長辺の端部は搬送部50と接する領域が必要であり、その領域はパッケージエリアPの外の領域(額縁エリア)である。
 他方、図19のV-Sに示すように、第十変形例における基板Sは短辺が延伸する方向(X方向)に沿って搬送されるよう配置される。基板Sの長辺の端部は搬送部50と接する領域が不要であり、パッケージエリアPを基板Sの長辺の端部ぎりぎりまで配置することができる。これにより、パッケージエリアPのサイズによっては、パッケージエリアPの数を増やすことが可能である。
 また、基板Sを搬送するため、基板Sの短辺の端部は搬送部50と接する領域が必要であるが、その領域はパーケージエリアPの外の領域(額縁エリア)であり、領域BCが配置される。領域BCが配置されることにより、パーケージエリアPが配置されることはないので、搬送部50と接する領域を広く確保することが可能である。よって、図7に示す比較例における搬送部50の基板搬送爪501を使用することが可能である。搬送部50としては、実施形態、第一変形例から第九変形例の搬送部50を使用することはもちろん可能である。
 なお、基板Sの短辺の両端部が搬送部50により支持されるので、基板Sに撓みや生ずることもあり得る。この場合は、第六変形例または第七変形例の搬送部50を使用するのが好ましい。
 以上、本開示者らによってなされた開示を実施形態および変形例に基づき具体的に説明したが、本開示は、上記実施形態および変形例に限定されるものではなく、種々変更可能であることはいうまでもない。
 例えば、実施形態では、送り量同期用ローラの径は駆動ローラ(従動ローラ)よりも小さい例を説明した。送り量同期用ローラの径は駆動ローラ(従動ローラ)よりも大きくてもよい。
 実施形態や変形例では、基板Sの上面側の搬送ローラ51または搬送ベルト57のうち基板Sに当接する部分の幅(Wuとする。)と基板Sの下面側の搬送ローラ52または搬送ベルト58のうち基板Sに当接する部分の幅(Wdとする。)が同じである例を説明した。しかし、これに限定されるものでなく、WuとWdは異なってもよい。例えば、ボンドステージ46等のステージがある箇所に配置される搬送ローラ51,52または搬送ベルト57,58においては、WuがWdよりも大きくてもよい。ボンドステージ46等のステージがない箇所に配置される搬送ローラ51,52または搬送ベルト57,58においては、WdがWuよりも大きくてもよい。
 実施形態では、ダイ供給部からダイをピックアップヘッドによりピックアップして中間ステージに載置し、中間ステージに載置されたダイをボンディングヘッドによりピックアップして基板にボンディングするダイボンダについて説明した。ピックアップヘッドがなく、ダイ供給部のダイをボンディングヘッドによりピックアップして中間ステージに載置し、中間ステージに載置されたダイをボンディングヘッドによりピックアップして基板にボンディングするようにしてもよい。
 実施形態ではウエハの裏面にDAFが貼付されているが、DAFはなくてもよい。
 実施形態ではダイの表面を上にしてボンディングされるが、ダイをピックアップ後ダイの表裏を反転させて、ダイの裏面を上にしてボンディングしてもよい。この装置はフリップチップボンダという。
 実施形態では、ダイ供給部のウエハからダイをピックアップする例を説明したが、トレイからダイをピッアップしてもよい。
 1・・・ダイボンダ(半導体製造装置)
 40・・・ボンディング部
 50・・・搬送部
 50a・・・搬送ブロック
 51,52・・・搬送ローラ
 57,58・・・搬送ベルト

Claims (17)

  1.  ダイが搭載される製品エリアと該製品エリアの外側に位置する額縁エリアとを有する基板を搬送する搬送部を備え、
     前記搬送部は、前記基板が搬送されるときに、前記基板の上下両側の一端部を支持する搬送ブロックおよび前記基板の上下両側の他端部を支持する搬送ブロックを備え、
     前記搬送ブロックの一端は前記額縁エリアに位置し、他端は前記基板の外側に位置するよう設けられ、
     前記搬送ブロックは搬送ローラまたは搬送ベルトを含む半導体製造装置。
  2.  請求項1の半導体製造装置において、
     前記搬送ローラは前記基板に当接するローラを含み、
     前記ローラは、前記基板の上面または下面と当接する第一部分および前記第一部分の径と異なる径を有し、前記基板の上面および下面に当接しない第二部分で構成され、
     前記基板の上側および下側に位置する搬送ローラのうちの一方の搬送ローラにおける前記ローラは前記第二部分の径が前記第一部分の径より大きく形成され、他方の搬送ローラにおける前記ローラは前記第二部分の径が前記第一部分の径より小さく形成される半導体製造装置。
  3.  請求項2の半導体製造装置において、
     前記一方の搬送ローラにおける前記ローラの前記第二部分と前記他方の搬送ローラにおける前記ローラの前記第二部分とは接触しないよう構成され、
     前記一方の搬送ローラにおける前記ローラまたは前記他方の搬送ローラにおける前記ローラは上下動作が可能なように構成される半導体製造装置。
  4.  請求項3の半導体製造装置において、
     前記搬送ブロックは前記基板の上に位置する前記ローラを支持および駆動する駆動部を有し、
     前記駆動部は、前記基板の上に位置する前記ローラが前記基板の厚さに応じて上下するよう構成される半導体製造装置。
  5.  請求項4の半導体製造装置において、
     前記駆動部は、前記ローラが前記基板を挟むテンションを調整可能なように構成される半導体製造装置。
  6.  請求項2の半導体製造装置において、
     前記第一部分は高摩擦率の弾性材質により形成され、前記第二部分は低摩擦率の硬質材により形成される半導体製造装置。
  7.  請求項1の半導体製造装置において、
     さらに、前記基板の両外側の近傍に設けられる一組のガイドを備える半導体製造装置。
  8.  請求項7の半導体製造装置において、
     前記搬送ローラは前記基板に当接するローラと前記基板に当接しないローラを含み、
     前記ガイドは、前記基板に当接しないローラが配置される位置に配置される半導体製造装置。
  9.  請求項1の半導体製造装置において、
     前記搬送ローラは前記基板に当接するローラを含み、
     前記ローラを前記基板の搬送方向に対して開くように斜めに配置する半導体製造装置。
  10.  請求項9の半導体製造装置において、
     前記ローラは前記基板の幅方向側の外に段差が設けられ、前記基板に当接する接触部より径の大きいエッジ部を球面または面取り状に加工して形成される半導体製造装置。
  11.  請求項10の半導体製造装置において、
     前記接触部は高摩擦率の弾性材質により形成され、前記エッジ部は低摩擦率の硬質材により形成される半導体製造装置。
  12.  請求項7の半導体製造装置において、
     前記搬送ローラは前記基板に当接するローラを含み、
     前記ローラは前記基板の幅方向に平行に設置し、その表面に突起または溝が螺旋状に形成される半導体製造装置。
  13.  請求項1の半導体製造装置において、
     前記搬送ブロックは、前記基板の上側に配置される上ブロックと前記基板の下側に配置される下ブロックとを有し、
     前記上ブロックおよび前記下ブロックは、それぞれ独立に上下動作可能に構成される半導体製造装置。
  14.  請求項13の半導体製造装置において、
     前記搬送ブロックは基板搬送方向に前後動作可能な半導体製造装置。
  15.  請求項14の半導体製造装置において、
     さらに、前記搬送ブロックを制御する制御装置を備え、
     前記搬送ブロックを複数配置し、
     前記制御装置は、
     少なくとも、前記基板の搬送方向の両端を除く位置に配置される前記搬送ブロックの前記上ブロックを上方に動かすと共に、前記下ブロックを下方に動かし、
     当該搬送ブロックを前記基板の搬送方向とは反対方向に動かし、
     当該搬送ブロックの前記上ブロックを下方に動かすと共に、前記下ブロックを上方に動かして前記基板を固定し、
     当該搬送ブロックを前記基板の搬送方向に動かすよう構成される半導体製造装置。
  16.  請求項1から15の何れか一項の半導体製造装置において、
     前記基板の搬送方向の長さは前基板の幅方向の長さよりも短い半導体製造装置。
  17.  ダイが搭載される製品エリアと該製品エリアの外側に位置する額縁エリアとを有する基板を搬送する搬送部を備え、前記搬送部は、前記基板が搬送されるときに、前記基板の上下両側の一端部を支持する搬送ブロックおよび前記基板の上下両側の他端部を支持する搬送ブロックを備え、前記搬送ブロックの一端は前記額縁エリアに位置し、他端は前記基板の外側に位置するよう設けられ、前記搬送ブロックは搬送ローラまたは搬送ベルトを含む半導体製造装置に基板を搬入する工程と、
     前記搬送部により搬送されてくる前記基板にダイをボンドする工程と、
    を含む半導体装置の製造方法。
PCT/JP2023/028589 2022-08-31 2023-08-04 半導体製造装置および半導体装置の製造方法 WO2024048203A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-138803 2022-08-31
JP2022138803A JP2024034527A (ja) 2022-08-31 2022-08-31 半導体製造装置および半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2024048203A1 true WO2024048203A1 (ja) 2024-03-07

Family

ID=90099187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028589 WO2024048203A1 (ja) 2022-08-31 2023-08-04 半導体製造装置および半導体装置の製造方法

Country Status (2)

Country Link
JP (1) JP2024034527A (ja)
WO (1) WO2024048203A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086654A (ja) * 2001-09-14 2003-03-20 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2008133118A (ja) * 2006-11-29 2008-06-12 Athlete Fa Kk 基板搬送装置、基板搬送装置の制御方法、基板処理装置および基板処理装置の制御方法
JP2011006183A (ja) * 2009-06-24 2011-01-13 C Uyemura & Co Ltd 表面処理槽のワーク搬送方法及び搬送用治具
WO2018092191A1 (ja) * 2016-11-15 2018-05-24 ヤマハ発動機株式会社 基板作業装置
JP2021019068A (ja) * 2019-07-19 2021-02-15 パナソニックIpマネジメント株式会社 電子部品搭載装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086654A (ja) * 2001-09-14 2003-03-20 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2008133118A (ja) * 2006-11-29 2008-06-12 Athlete Fa Kk 基板搬送装置、基板搬送装置の制御方法、基板処理装置および基板処理装置の制御方法
JP2011006183A (ja) * 2009-06-24 2011-01-13 C Uyemura & Co Ltd 表面処理槽のワーク搬送方法及び搬送用治具
WO2018092191A1 (ja) * 2016-11-15 2018-05-24 ヤマハ発動機株式会社 基板作業装置
JP2021019068A (ja) * 2019-07-19 2021-02-15 パナソニックIpマネジメント株式会社 電子部品搭載装置

Also Published As

Publication number Publication date
JP2024034527A (ja) 2024-03-13

Similar Documents

Publication Publication Date Title
KR100738769B1 (ko) 전자부품 장착장치 및 전자부품 장착방법
KR102050477B1 (ko) 전자 부품의 실장 장치와 표시용 부재의 제조 방법
KR20190120738A (ko) 전자 부품의 실장 장치와 표시용 부재의 제조 방법
JP2007184485A (ja) 電子部品実装装置
JP2000012568A (ja) ダイボンダ
JP2007201375A (ja) 電子部品の実装装置及び実装方法
JP6663940B2 (ja) 電子部品の実装装置と表示用部材の製造方法
JP2010135574A (ja) 移載装置
TWI733164B (zh) 半導體製造裝置、頂出治具及半導體裝置之製造方法
KR100447866B1 (ko) 테이프 캐리어 패키지 핸들러
JP6849468B2 (ja) 半導体製造装置および半導体装置の製造方法
WO2024048203A1 (ja) 半導体製造装置および半導体装置の製造方法
TWI734434B (zh) 接合裝置
JP2001068487A (ja) チップボンディング方法及びその装置
JP2012164706A (ja) 被実装部材の実装装置及び実装方法
JP4134169B2 (ja) ダイボンダにおけるワーク認識方法およびダイボンダ
JP2021048375A (ja) ダイボンディング装置および半導体装置の製造方法
JP4691923B2 (ja) 半導体装置の搭載設備
TWI719896B (zh) 黏晶裝置,剝離單元,夾頭及半導體裝置的製造方法
JP7398651B2 (ja) 部品圧着装置および部品圧着方法
JP7291586B2 (ja) ダイボンディング装置および半導体装置の製造方法
TWI786739B (zh) 晶粒接合裝置及半導體裝置之製造方法
JP2007048975A (ja) セラミック基板の分割装置及び分割方法
TW202425103A (zh) 半導體製造裝置及半導體裝置之製造方法
JPH09330957A (ja) ボンデイング装置およびその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859971

Country of ref document: EP

Kind code of ref document: A1