WO2024047981A1 - 電子回路モジュール - Google Patents

電子回路モジュール Download PDF

Info

Publication number
WO2024047981A1
WO2024047981A1 PCT/JP2023/020419 JP2023020419W WO2024047981A1 WO 2024047981 A1 WO2024047981 A1 WO 2024047981A1 JP 2023020419 W JP2023020419 W JP 2023020419W WO 2024047981 A1 WO2024047981 A1 WO 2024047981A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion unit
electronic circuit
circuit module
photoelectric conversion
unit
Prior art date
Application number
PCT/JP2023/020419
Other languages
English (en)
French (fr)
Inventor
拓生 若岡
佳史 ▲高▼橋
力 島袋
健太朗 田▲邊▼
康裕 村瀬
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024047981A1 publication Critical patent/WO2024047981A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present invention relates to an electronic circuit module that includes a photoelectric conversion unit that converts optical signals and electrical signals, a processor unit, and a power conversion unit.
  • Patent Document 1 describes a circuit unit including an optical package element, a processor element, an electronic device, an electronic circuit element, and an interposer.
  • the optical package element and the processor element are connected through an electronic device or an electronic circuit element within the interposer.
  • Patent Document 1 may not have sufficient information transmission efficiency or power supply efficiency.
  • an object of the present invention is to provide an electronic circuit module that can realize high information transmission efficiency and high power supply efficiency.
  • An electronic circuit module is an electronic circuit module that is mounted on a motherboard that includes a power supply source.
  • the electronic circuit module includes a photoelectric conversion unit that converts optical signals and electrical signals, a processor unit that performs arithmetic processing using electrical signals, and converts power from a power source to the photoelectric conversion unit and processor unit. It includes a power conversion unit that supplies power, a photoelectric conversion unit, a processor unit, and a package substrate on which the power conversion unit is mounted.
  • the photoelectric conversion unit, the processor unit, and the power conversion unit are connected only through a conductor pattern formed on the package substrate.
  • the photoelectric conversion unit and the processor unit are connected only by the conductor pattern formed on the package substrate, without passing through the motherboard. This improves information transmission efficiency.
  • the photoelectric conversion unit, processor unit, and power conversion unit are connected only by the conductor pattern formed on the package board without passing through the motherboard, so power is supplied from the power conversion unit to the photoelectric conversion unit and processor unit. Efficiency increases.
  • FIG. 1 is a functional block diagram showing an example of the circuit configuration of an electronic circuit module according to the first embodiment.
  • FIG. 2 is a side view showing the configuration of the electronic circuit module according to the first embodiment.
  • FIG. 3 is a side view showing a state in which the electronic circuit module according to the first embodiment is mounted on a motherboard.
  • FIG. 4 is a side view showing the configuration of an electronic circuit module according to the second embodiment.
  • FIG. 5 is a side view showing the configuration of an electronic circuit module according to the third embodiment.
  • 6(A) is a plan view showing the configuration of an electronic circuit module according to the fourth embodiment, and FIG. 6(B) is a side view taken along line AA' in FIG. 6(A).
  • (C) is a BB' cross-sectional view of FIG. 6(A).
  • FIG. 7(A) is a diagram showing an example of a wiring pattern of a data communication system in an electronic circuit module according to a fourth embodiment
  • FIG. 7(B) is a diagram showing an example of a wiring pattern of a data communication system in an electronic circuit module according to a fourth embodiment
  • FIG. 3 is a diagram showing an example of a wiring pattern of a power supply system
  • FIG. 8(A) is a plan view showing the configuration of an electronic circuit module according to the fifth embodiment
  • FIG. 8(B) is a wiring pattern of a data communication system in the electronic circuit module according to the fifth embodiment
  • FIG. 8C is a diagram illustrating an example of a wiring pattern of a power supply system in an electronic circuit module according to a fifth embodiment.
  • FIG. 9(A) is a plan view showing the configuration of an electronic circuit module according to the sixth embodiment
  • FIG. 9(B) is a wiring pattern of a data communication system in the electronic circuit module according to the sixth embodiment.
  • FIG. 9C is a diagram illustrating an example of a wiring pattern of a power supply system in an electronic circuit module according to a sixth embodiment.
  • FIG. 10(A) is a plan view showing the configuration of an electronic circuit module according to the seventh embodiment
  • FIG. 10(B) is a wiring pattern of a data communication system in the electronic circuit module according to the seventh embodiment.
  • FIG. 10C is a diagram illustrating an example of a wiring pattern of a power supply system in an electronic circuit module according to a seventh embodiment.
  • FIG. 11(A) and 11(B) are plan views showing the configuration of an electronic circuit module according to the eighth embodiment.
  • FIG. 12(A) is a diagram showing an example of a data communication wiring pattern in the electronic circuit module according to the eighth embodiment
  • FIG. 12(B) is a diagram showing an example of the wiring pattern in the electronic circuit module according to the eighth embodiment.
  • FIG. 3 is a diagram showing an example of a wiring pattern of a power supply system.
  • FIG. 13(A) is a plan view showing the configuration of an electronic circuit module according to the ninth embodiment
  • FIG. 13(B) and FIG. 13(C) are cross sections taken along the line CC' in FIG. 13(A). It is a figure which shows each different example.
  • FIG. 13(A) is a plan view showing the configuration of an electronic circuit module according to the ninth embodiment
  • FIG. 13(B) and FIG. 13(C) are cross sections taken along the line CC' in FIG. 13(A). It is a figure which shows each different example.
  • FIG. 14(A) is a diagram showing an example of a data communication wiring pattern in the electronic circuit module according to the ninth embodiment
  • FIG. 14(B) is a diagram showing an example of the wiring pattern in the electronic circuit module according to the ninth embodiment.
  • FIG. 3 is a diagram showing an example of a wiring pattern of a power supply system.
  • FIG. 1 is a functional block diagram showing an example of the circuit configuration of an electronic circuit module according to the first embodiment.
  • FIG. 2 is a side view showing the configuration of the electronic circuit module according to the first embodiment.
  • FIG. 3 is a side view showing a state in which the electronic circuit module according to the first embodiment is mounted on a motherboard. Note that in FIGS. 2 and 3, the wiring patterns formed within the substrate are also shown by solid lines.
  • the electronic circuit module 10 includes a processor unit 20, a memory 30, a photoelectric conversion unit 40, and a power conversion unit 50.
  • the processor unit 20 is connected to the memory 30 via the information processing bus Lpm.
  • the processor unit 20 is connected to the photoelectric conversion unit 40 through a data transmission line Lop.
  • the photoelectric conversion unit 40 is connected to the outside through an optical waveguide OTL.
  • the processor unit 20 performs predetermined arithmetic processing using the electrical signal input from the photoelectric conversion unit 40 through the data transmission line Lop. At this time, the processor unit 20 performs arithmetic processing using the memory 30 connected by the information processing bus Lpm.
  • the processor unit 20 outputs the calculation result as an electrical signal, and inputs it to the photoelectric conversion unit 40 through the data transmission line Lop.
  • the photoelectric conversion unit 40 converts the optical signal input from the optical waveguide OTL into an electrical signal and outputs it to the processor unit 20 via the data transmission line Lop. Further, the photoelectric conversion unit 40 converts an electrical signal input from the processor unit 20 through the data transmission line LOP into an optical signal, and outputs the optical signal to the outside through the optical waveguide OTL.
  • the power conversion unit 50 is connected to the processor unit 20 through a processor power supply line Lpwp, to the memory 30 through a memory power supply line Lpwm, and to the photoelectric conversion unit 40 through a photoelectric conversion unit power supply line Lpwo.
  • the power conversion unit 50 converts input power from an external (motherboard described later) power source to the processor unit 20, memory 30, and photoelectric conversion unit 40, and supplies the power to these.
  • the information transmission speed can be made faster than when all electrical signals are used.
  • the electronic circuit module 10 includes a processor unit 20, a memory 30, a photoelectric conversion unit 40, a power conversion unit 50, and a package substrate 60.
  • the processor unit 20, the memory 30, the photoelectric conversion unit 40, and the power conversion unit 50 are each mounted electronic components, and each includes a casing of a predetermined shape and a plurality of terminal conductors. Functional parts that implement the respective units and the like are formed in the casing. The plurality of terminal conductors are arranged in a predetermined pattern on the bottom surface of the casing.
  • the package substrate 60 includes a first substrate 61 and a second substrate 62.
  • the first substrate 61 and the second substrate 62 are each a flat plate.
  • the planar area of the second substrate 62 (the area viewed in the z-axis direction in FIGS. 2 and 3) is smaller than the planar area of the first substrate 61.
  • the planar area of the first substrate 61 and the planar area of the second substrate 62 are smaller than the planar area of the motherboard 91 on which the electronic circuit module 10 is mounted.
  • the processor unit 20, memory 30, and photoelectric conversion unit 40 are mounted on the surface of the second substrate 62.
  • the data transmission line Lop connecting the processor unit 20 and the photoelectric conversion unit 40 is composed only of the conductor pattern formed on the second substrate 62.
  • the data transmission line Lop is configured without passing through the motherboard 91 on which the electronic circuit module 10 is mounted. This allows the data transmission line Lop to be shortened. Therefore, transmission loss and delay of the data transmission line Lop can be reduced.
  • the information processing bus Lpm that connects the processor unit 20 and the memory 30 is also composed of only a conductor pattern formed on the second substrate 62, similar to the data transmission line Lop.
  • the information processing bus Lpm is configured without passing through the motherboard 91 on which the electronic circuit module 10 is mounted. This allows the information processing bus Lpm to be shortened. Therefore, transmission loss and delay of the information processing bus Lpm can be reduced.
  • the processor unit 20 and the photoelectric conversion unit 40 are arranged close to each other.
  • the distance between the processor unit 20 and the photoelectric conversion unit 40 is preferably as short as possible.
  • the processor unit 20 and the photoelectric conversion unit 40 be placed as close as possible in terms of the accuracy of pattern formation on the second substrate 62 and the mounting accuracy of the processor unit 20 and the photoelectric conversion unit 40.
  • it is preferably equal to or less than the length of the long side of the processor unit 20 or the photoelectric conversion unit 40, and more preferably equal to or less than 1/2 of the long side or less than the length of the short side.
  • the processor unit 20 or the photoelectric conversion unit 40 is square in plan view, it is preferable that the width is less than one side, preferably less than 1/2 of one side.
  • the conductor pattern constituting the data transmission line Lop be formed on the surface of the second substrate 62.
  • the data transmission line Lop does not have a portion extending in the thickness direction of the second substrate 62, so transmission loss and delay can be reduced.
  • the data transmission line Lop preferably connects the processor unit 20 and the photoelectric conversion unit 40 at the shortest distance in a plan view.
  • the conductor pattern constituting the data transmission line Lop may be a conductor pattern that connects the terminal of the processor unit 20 and the terminal of the photoelectric conversion unit 40 in a straight line in a plan view.
  • the processor unit 20 and the memory 30 are arranged close to each other in the same way as the relationship between the processor unit 20 and the photoelectric conversion unit 40, and the information processing bus Lpm is also arranged in the same way as the data transmission line Lop. Preferably short. Thereby, transmission loss and transmission delay between the processor unit 20 and the memory 30 can be suppressed.
  • the second substrate 62 has a high wiring density of the conductor pattern. Thereby, the number of conductor patterns per unit area can be increased. Therefore, the degree of freedom in wiring patterns of the processor unit 20, the photoelectric conversion unit 40, the data transmission line Lop, and the information processing bus Lpm connecting the processor unit 20 and the memory 30 is improved, and the conductor pattern connecting these can be shortened. It becomes easier to form.
  • the second board 62 is made of a material with lower loss of high frequency signals (for example, resin such as Si or a dielectric material with a low dielectric loss tangent) than the motherboard 91 (see FIG. 3) on which the electronic circuit module 10 is mounted. material). Thereby, transmission loss due to the data transmission line Lop and transmission loss due to the information processing bus Lpm are further suppressed.
  • a material with lower loss of high frequency signals for example, resin such as Si or a dielectric material with a low dielectric loss tangent
  • a processor power supply line Lpwp, a memory power supply line Lpwm, and a photoelectric conversion unit power supply line Lpwo are formed on the second substrate 62 in the thickness direction.
  • the processor power supply line Lpwp connects the electrode on the front surface of the second board 62 on which the processor unit 20 is mounted and the processor power supply terminal on the back surface of the second board 62.
  • the memory power supply line Lpwm connects the electrode on the front surface of the second substrate 62 on which the memory 30 is mounted and the memory power supply terminal on the back surface of the second substrate 62.
  • the photoelectric conversion unit power supply line Lpwo connects the electrode on the front surface of the second substrate 62 on which the photoelectric conversion unit 40 is mounted and the photoelectric conversion unit power supply terminal on the back surface of the second substrate 62.
  • these processor power supply line Lpwp, memory power supply line Lpwm, and photoelectric conversion unit power supply line Lpwo be as straight as possible.
  • these are preferably formed so that most of the parts extend in the thickness direction of the second substrate 62. Since the thickness of the second substrate 62 is significantly smaller than other dimensions, such a configuration allows the power supply distance to be shortened. Therefore, a decrease in power supply efficiency is suppressed.
  • the portions of the processor power supply line Lpwp, the memory power supply line Lpwm, and the photoelectric conversion unit power supply line Lpwo that extend in the thickness direction have a larger cross-sectional area than the data transmission line Lop and the information processing bus Lpm. It is preferable. This improves power supply efficiency.
  • the second substrate 62 and the power conversion unit 50 are mounted on the surface of the first substrate 61.
  • a plurality of power supply lines Lpw are formed on the first substrate 61.
  • the plurality of power supply lines Lpw are conductor patterns, and include an electrode on which the power conversion unit 50 is mounted, an electrode on which the processor power supply terminal of the second board 62 is mounted, an electrode on which the memory power supply terminal is mounted,
  • the photoelectric conversion unit power supply terminals are connected to the electrodes on which the photoelectric conversion unit power supply terminals are mounted.
  • power is supplied from the power conversion unit 50 to the photoelectric conversion unit 40 through a conductor pattern (power supply line Lpw) in the first board 61, which is smaller than the motherboard 91, and a conductor extending in the thickness direction of the second board 62. It can be completed by a pattern (power supply line Lpwo for photoelectric conversion unit).
  • the electronic circuit module 10 can supply power to the photoelectric conversion unit 40 with high efficiency.
  • power is supplied from the power conversion unit 50 to the memory 30 through a conductor pattern (power supply line Lpw) in the first board 61, which is smaller than the motherboard 91, and a conductor pattern (power supply line Lpw) extending in the thickness direction of the second board 62.
  • a conductor pattern power supply line Lpw
  • Lpwm memory power supply line
  • the second substrate 62 and the power conversion unit 50 are mounted adjacent to each other. In other words, no other electronic component is mounted between the second board 62 and the power conversion unit 50. Further, the second substrate 62 and the power conversion unit 50 are arranged close to each other.
  • the distance between the processor unit 20 and the power conversion unit 50 of the second board 62 is preferably less than or equal to the length of the long side of the processor unit 20 and the power conversion unit 50, and may be less than or equal to 1/2 of this long side. More preferably, it is equal to or less than the length of the side. If the processor unit 20 and the power conversion unit 50 are square in plan view, it is preferable that the width be less than one side, preferably less than 1/2 of one side.
  • the power supply distance from the power conversion unit 50 to the processor unit 20, memory 30, and photoelectric conversion unit 40 can be shortened, and a decrease in power supply efficiency can be suppressed.
  • the first substrate 61 is made of a material that is easier to obtain and manufacture than the second substrate 62.
  • a plurality of external connection terminals BP61 are formed on the back surface of the first substrate 61.
  • the width and cross-sectional area of the plurality of power supply lines Lpw are as large as possible. This suppresses a decrease in power supply efficiency.
  • the first substrate 61 does not have a data communication conductor pattern, and only the plurality of power supply lines Lpw are formed. Therefore, the wiring and shapes of the plurality of power supply lines Lpw can be easily made into predetermined wirings and shapes. That is, it is easier to increase the width and cross-sectional area and shorten the length of the plurality of power supply lines Lpw than when forming them on the same substrate (for example, a motherboard) as the conductor pattern of the data communication system as in the conventional case. Therefore, the electronic circuit module 10 can realize a power supply line Lpw with high power supply efficiency.
  • the processor unit 20 is required to have low voltage and high current. Therefore, since the power supply line Lpw from the power conversion unit 50 to the processor unit 20 and the processor power supply line Lpwp are short, the electronic circuit module 10 can supply power more efficiently.
  • the power supply line Lpw extends linearly from the power conversion unit 50 to the processor unit 20 along the direction perpendicular to the thickness direction of the first substrate 61, and the processor power supply line Lpwp extends in the thickness direction of the second substrate 62.
  • the line connecting the power conversion unit 50 and the processor unit 20 has the shortest distance. Thereby, power transmission loss can be further suppressed, and the electronic circuit module 10 can supply power more efficiently.
  • a power input line 652 is formed on the first substrate 61.
  • the power input line 652 connects the electrode on which the power conversion unit 50 is mounted and the external connection terminal BP61 for power input.
  • the power input line 652 has a shape extending in the thickness direction of the first substrate 61.
  • power input line 652 is as straight as possible. In other words, these are preferably formed so that most of the parts extend in the thickness direction of the first substrate 61. Since the thickness of the first substrate 61 is significantly smaller than other dimensions, such a configuration allows the power supply distance to be shortened. Therefore, a decrease in external power input efficiency is suppressed. Further, it is preferable that the portion of the power input line 652 extending in the thickness direction has a large cross-sectional area. This improves the efficiency of power input from the outside.
  • the electronic circuit module 10 can achieve high information transmission efficiency and high power supply efficiency.
  • the electronic circuit module 10 having such a configuration is mounted on a motherboard 91, as shown in FIG.
  • the motherboard 91 is equipped with a power source that converts power from a commercial power source or the like into DC power, and power is supplied from this power source to the electronic circuit module 10 through a power line 92P of the motherboard 91.
  • a plurality of mounting lands 93 are formed on the surface of the motherboard 91, and a socket mechanism 94 is provided.
  • the plurality of external connection terminals BP61 of the electronic circuit module 10 come into contact with the plurality of mounting lands 93 of the motherboard 91.
  • the socket mechanism 94 presses and fixes the electronic circuit module 10 against the surface of the motherboard 91.
  • the electronic circuit module 10 and the motherboard 91 are electrically and mechanically stably connected.
  • the processor unit 20, memory 30, photoelectric conversion unit 40, and power conversion unit 50 are mounted with solder or the like, but these can also be attached and detached using a socket mechanism 94 or the like.
  • structure can be adopted.
  • the structure for fixing the second board 62 to the first board 61 can also be a detachable structure using a socket mechanism 94 or the like.
  • the processor unit 20 and the photoelectric conversion unit 40 are connected only by the conductor pattern within the electronic circuit module 10.
  • the processor unit 20 may be connected to the photoelectric conversion unit 40 in the electronic circuit module 10 and another photoelectric conversion unit mounted on the motherboard 91 in a complementary manner.
  • the processor unit 20 and the power conversion unit 50 are connected only by the conductor pattern within the electronic circuit module 10.
  • the processor unit 20 may be connected to another power conversion unit complementary to the power conversion unit 50 in the electronic circuit module 10 mounted on the motherboard 91.
  • the photoelectric conversion unit 40 and the power conversion unit 50 are connected only by the conductor pattern within the electronic circuit module 10.
  • the photoelectric conversion unit 40 may be connected to another power conversion unit complementary to the power conversion unit 50 in the electronic circuit module 10 mounted on the motherboard 91.
  • FIG. 4 is a side view showing the configuration of an electronic circuit module according to the second embodiment.
  • an electronic circuit module 10A according to the second embodiment differs from the electronic circuit module 10 according to the first embodiment in that it includes a heat dissipation mechanism.
  • the other configuration of the electronic circuit module 10A is the same as that of the electronic circuit module 10, and the description of the similar parts will be omitted.
  • the electronic circuit module 10A includes a heat sink 71 and a heat conductive gel 710.
  • the heat sink 71 is a flat plate made of a material with high thermal conductivity such as metal.
  • the heat sink 71 overlaps the processor unit 20, the memory 30, the photoelectric conversion unit 40, and the power conversion unit 50 in plan view.
  • the heat sink 71 is connected to the processor unit 20, the memory 30, the photoelectric conversion unit 40, and the power conversion unit 50 via the heat conductive gel 710.
  • the electronic circuit module 10 can effectively release heat from the processor unit 20, memory 30, photoelectric conversion unit 40, and power conversion unit 50 to the outside.
  • the heat conductive gel 710 can be omitted. However, even if the top surface of the heat radiation target is not flush (for example, when the top surface of the power conversion unit 50 in FIG. 4 is lower than other top surfaces), the heat sink 71 common to multiple units can be connected through a high heat conduction path.
  • the processor unit 20, the memory 30, the photoelectric conversion unit 40, and the power conversion unit 50 share the heat sink 71, but each unit may have its own heat sink.
  • the processor unit 20 and the power conversion unit 50, which generate a particularly high amount of heat are provided with at least a heat sink.
  • the common heat dissipation plate 71 by using the common heat dissipation plate 71, the number of components of the electronic circuit module 10A can be reduced, and the heat dissipation area can be easily increased.
  • FIG. 5 is a side view showing the configuration of an electronic circuit module according to the third embodiment.
  • the electronic circuit module 10B according to the third embodiment differs from the electronic circuit module 10 according to the first embodiment in the configuration of the power supply system.
  • the other configuration of the electronic circuit module 10B is the same as that of the electronic circuit module 10, and a description of the similar parts will be omitted.
  • the electronic circuit module 10B includes a package substrate 60B.
  • the package substrate 60B includes a first substrate 61B and a second substrate 62.
  • the first substrate 61B is made of the same material as the first substrate 61 according to the first embodiment.
  • the planar area of the first substrate 61B is approximately the same as the planar area of the second substrate 62.
  • a plurality of power conversion units 51B are mounted on the back surface of the first substrate 61B, that is, the surface of the first substrate 61B that faces the surface on which the second substrate 62 is mounted.
  • the electronic circuit module 10B includes a power conversion unit 51B for the memory 30, and a power conversion unit 51B for the processor unit 20 and the photoelectric conversion unit 40.
  • An external power supply connector 52 is mounted on the back surface of the first board 61B.
  • An external power cable PL is connected to the external power connector 52. Thereby, the electronic circuit module 10B is supplied with power from the outside.
  • the arrangement area of the plurality of power conversion units 51B overlaps with the arrangement area of the processor unit 20, the memory 30, and the photoelectric conversion unit 40.
  • the electronic circuit module 10B can have a smaller planar area than the electronic circuit module 10.
  • a mode is shown in which a connector or the like is used to connect to the motherboard.
  • a connector or the like is used to connect to the motherboard.
  • the electronic circuit module 10B includes a heat sink 71B, a heat sink 72B, a heat conductive gel 710B, and a heat conductive gel 720B.
  • the heat sink 71B is thermally connected to the processor unit 20, the memory 30, and the photoelectric conversion unit 40 via the heat conductive gel 710B. Thereby, heat is efficiently radiated from the processor unit 20, the memory 30, and the photoelectric conversion unit 40.
  • the heat sink 72B is thermally connected to the plurality of power conversion units 51B via a heat conductive gel 720B. Thereby, heat is efficiently radiated from the plurality of power conversion units 51B.
  • the processor unit 20 and the plurality of power conversion units 51B which generate relatively high heat, are individually provided with heat sinks 71B and 72B.
  • the electronic circuit module 10B can achieve even higher heat dissipation efficiency.
  • the heat sink 71B and the heat sink 72B are arranged on different sides of the package substrate 60B. Thereby, the heat of the heat sink 71B and the heat of the heat sink 72B are difficult to combine, and the heat radiation effect of the electronic circuit module 10B is improved.
  • the electronic circuit module 10B does not need to be mounted on the motherboard 91, it can be used in more ways.
  • FIG. 6(A) is a plan view showing the configuration of an electronic circuit module according to the fourth embodiment
  • FIG. 6(B) is a side view taken along line AA' in FIG. 6(A).
  • (C) is a cross-sectional view taken along line BB' in FIG. 6(A).
  • FIG. 7(A) is a diagram showing an example of a data communication wiring pattern in the electronic circuit module according to the fourth embodiment
  • FIG. 7(B) is a diagram showing an example of the wiring pattern in the electronic circuit module according to the fourth embodiment.
  • FIG. 3 is a diagram showing an example of a wiring pattern of a power supply system.
  • each component in each embodiment after this embodiment is the same as the above-mentioned first embodiment, except for the contents shown anew below, and the explanation of this part is omitted. do. Further, from this embodiment onwards, illustrations of terminals of each component are omitted.
  • the electronic circuit module 10C includes a plurality of processor units 20, a plurality of memories 30, a plurality of photoelectric conversion units 40, and a power conversion unit 50. , and a package substrate 60C.
  • the plurality of processor units 20, the plurality of memories 30, the plurality of photoelectric conversion units 40, and the power conversion unit 50 are mounted on the first surface (front surface) of the package substrate 60C. That is, the plurality of processor units 20, the plurality of memories 30, the plurality of photoelectric conversion units 40, and the power conversion unit 50 are mounted on one common package substrate 60C.
  • the package substrate 60C is formed of a material with lower loss of high frequency signals than the motherboard 91, at least in the mounting area of the plurality of processor units 20, the plurality of memories 30, and the plurality of photoelectric conversion units 40.
  • the second surface (back surface) of the package substrate 60C is mounted on the motherboard 91.
  • the plurality of processor units 20 are arranged at the center of the first surface.
  • the plurality of memories 30 and the power conversion units 50 are arranged with the arrangement area of the plurality of processor units 20 sandwiched therebetween in a first direction (x-axis direction in the figure) parallel to the first surface.
  • the arrangement area of the plurality of processor units 20 and the arrangement area of the plurality of memories 30 are adjacent and close to each other.
  • the arrangement area of the plurality of processor units 20 and the power conversion unit 50 are adjacent to each other and are close to each other.
  • the plurality of photoelectric conversion units 40 are arranged with the arrangement area of the plurality of processor units 20 between them in a second direction (the y-axis direction in the figure) that is parallel to the first surface and orthogonal to the first direction (the x-axis direction in the figure). placed between them.
  • the arrangement area of the plurality of processor units 20 and the plurality of photoelectric conversion units 40 are adjacent to each other and are close to each other.
  • the electronic circuit module 10C can shorten the data transmission line Lop (the line connecting the plurality of processor units 20 and the plurality of photoelectric conversion units 40), as shown in FIG. 7(A). Furthermore, the electronic circuit module 10C allows for a simple configuration and easy wiring of the data transmission line Lop. Therefore, the electronic circuit module 10C can suppress transmission loss and delay caused by the data transmission line Lop.
  • the electronic circuit module 10C can shorten the information processing bus Lpm (the line connecting the plurality of processor units 20 and the plurality of memories 30). Furthermore, the electronic circuit module 10C allows for a simple configuration and easy wiring of the information processing bus Lpm. Therefore, the electronic circuit module 10C can suppress transmission loss and delay caused by the information processing bus Lpm.
  • the electronic circuit module 10C can shorten the processor power supply line Lpwp, the memory power supply line Lpwm, and the photoelectric conversion unit power supply line Lpwo from the power conversion unit 50, A simple configuration can be realized. Therefore, the electronic circuit module 10C can increase power supply efficiency.
  • the plurality of memories 30 and the power conversion unit 50 are separated from each other with the arrangement area of the plurality of processor units 20 interposed therebetween.
  • the electronic circuit module 10C can suppress superimposition of power supply noise on the plurality of memories 30.
  • FIG. 8(A) is a plan view showing the configuration of an electronic circuit module according to the fifth embodiment
  • FIG. 8(B) is a wiring pattern of a data communication system in the electronic circuit module according to the fifth embodiment
  • FIG. 8C is a diagram illustrating an example of a wiring pattern of a power supply system in an electronic circuit module according to a fifth embodiment.
  • the electronic circuit module 10D according to the fifth embodiment is different from the electronic circuit module 10C according to the fourth embodiment.
  • the arrangement pattern and wiring pattern of each component are different.
  • the other configuration of the electronic circuit module 10D is the same as that of the electronic circuit module 10C, and the description of the similar parts will be omitted.
  • the plurality of memories 30 are arranged on both sides of the package substrate 60D in the first direction (x-axis direction in the figure) with the arrangement area of the plurality of processor units 20 in between.
  • the plurality of photoelectric conversion units 40 are arranged on both sides of the package substrate 60D in the second direction (the y-axis direction in the figure) with the arrangement area of the plurality of processor units 20 in between.
  • the plurality of power conversion units 50 are arranged at the corners of the outer shape formed by the arrangement of the plurality of memories 30 and the plurality of photoelectric conversion units 40.
  • the plurality of processor units 20 and the plurality of memories 30 are adjacent to each other in the first direction.
  • the plurality of processor units 20 and the plurality of photoelectric conversion units 40 are adjacent to each other in the second direction.
  • the electronic circuit module 10D can shorten the data transmission line Lop and the information processing bus Lpm, as shown in FIG. 8(B). Further, the electronic circuit module 10D allows wiring of the data transmission line Lop and the information processing bus Lpm to be configured easily and easily. Therefore, the electronic circuit module 10D can suppress transmission loss and delay caused by the data transmission line Lop and the information processing bus Lpm.
  • the plurality of power conversion units 50 are adjacent to or close to the processor unit 20, the memory 30, and the photoelectric conversion unit 40, respectively. Therefore, as shown in FIG. 8C, the electronic circuit module 10D can shorten the processor power supply line Lpwp, the memory power supply line Lpwm, and the photoelectric conversion unit power supply line Lpwo from the power conversion unit 50, A simple configuration can be realized. Therefore, the electronic circuit module 10D can increase power supply efficiency.
  • the area efficiency of the plurality of processor units 20, the plurality of memories 30, the plurality of photoelectric conversion units 40, and the plurality of power conversion units 50 with respect to the package substrate 60D is good. Therefore, the electronic circuit module 10D can be made smaller.
  • the plurality of power conversion units 50 are arranged at the corners of the arrangement area of the plurality of processor units 20, the plurality of memories 30, and the plurality of photoelectric conversion units 40. Therefore, the influence of heat from the plurality of power conversion units 50 on the plurality of processor units 20 is suppressed, and the electronic circuit module 10D easily releases this heat to the outside.
  • FIG. 9(A) is a plan view showing the configuration of an electronic circuit module according to the sixth embodiment
  • FIG. 9(B) is a wiring pattern of a data communication system in the electronic circuit module according to the sixth embodiment
  • FIG. 9C is a diagram illustrating an example of a wiring pattern of a power supply system in an electronic circuit module according to a sixth embodiment.
  • the electronic circuit module 10E according to the sixth embodiment is different from the electronic circuit module 10C according to the fourth embodiment.
  • the arrangement pattern and wiring pattern of each component are different.
  • the other configuration of the electronic circuit module 10E is the same as that of the electronic circuit module 10C, and description of the similar parts will be omitted.
  • the plurality of memories 30 are arranged on both sides of the package substrate 60E in the first direction (x-axis direction in the figure) with the arrangement area of the plurality of processor units 20 in between.
  • the plurality of photoelectric conversion units 40 are arranged on both sides of the package substrate 60E in the second direction (the y-axis direction in the figure) with the arrangement area of the plurality of processor units 20 in between.
  • the plurality of power conversion units 50E1 are arranged between the plurality of memories 30 arranged in the second direction, and are adjacent to each other.
  • the plurality of power conversion units 50E2 are arranged between the plurality of photoelectric conversion units 40 lined up in the first direction, and are adjacent to each other.
  • the plurality of processor units 20 and the plurality of memories 30 are adjacent to each other in the first direction.
  • the plurality of processor units 20 and the plurality of photoelectric conversion units 40 are adjacent to each other in the second direction.
  • the plurality of processor units 20 and the plurality of power conversion units 50E1 are adjacent to each other in the first direction.
  • the plurality of processor units 20 and the plurality of power conversion units 50E2 are adjacent to each other in the second direction.
  • the electronic circuit module 10E can shorten the data transmission line Lop and the information processing bus Lpm, as shown in FIG. 9(B). Further, the electronic circuit module 10E allows wiring of the data transmission line Lop and the information processing bus Lpm to be simple and easy. Therefore, the electronic circuit module 10E can suppress transmission loss and delay caused by the data transmission line Lop and the information processing bus Lpm.
  • the plurality of power conversion units 50E1 and 50E2 are adjacent to or close to the processor unit 20, the memory 30, and the photoelectric conversion unit 40, respectively. Therefore, as shown in FIG. 9C, the electronic circuit module 10E shortens the processor power supply line Lpwp, memory power supply line Lpwm, and photoelectric conversion unit power supply line Lpwo from the power conversion units 50E1 and 50E2. It is possible to realize a simple configuration. Therefore, the electronic circuit module 10E can improve power supply efficiency.
  • the plurality of memories 30, the plurality of photoelectric conversion units 40, and the plurality of power conversion units 50E1 and 50E2 are arranged symmetrically.
  • the electronic circuit module 10E can realize a configuration in which wiring patterns of the data transmission line Lop, the information processing bus Lpm, the processor power supply line Lpwp, the memory power supply line Lpwm, and the photoelectric conversion unit power supply line Lpwo can be easily designed.
  • the plurality of memories 30 are arranged on both sides of the power conversion unit 50E1, and the plurality of photoelectric conversion units 40 are arranged on both sides of the power conversion unit 50E2.
  • the electronic circuit module 10E can symmetrically supply power to the plurality of memories 30 and the plurality of photoelectric conversion units 40.
  • the power supply from the power conversion unit 50E1 to the plurality of memories 30 and the power supply from the power conversion unit 50E2 to the plurality of photoelectric conversion units 40 can be separated and separated. Thereby, the electronic circuit module 10E can suppress interference between these power supply lines (memory power supply line Lpwm and photoelectric conversion unit power supply line Lpwo).
  • the electronic circuit module 10E can separate the photoelectric conversion unit power supply line Lpwo from other power supply lines, and can suppress noise from being superimposed on the photoelectric conversion unit power supply line Lpwo.
  • FIG. 10(A) is a plan view showing the configuration of an electronic circuit module according to the seventh embodiment
  • FIG. 10(B) is a wiring pattern of a data communication system in the electronic circuit module according to the seventh embodiment
  • FIG. 10C is a diagram illustrating an example of a wiring pattern of a power supply system in an electronic circuit module according to a seventh embodiment.
  • the electronic circuit module 10F according to the seventh embodiment is different from the electronic circuit module 10C according to the fourth embodiment.
  • the arrangement pattern and wiring pattern of each component are different.
  • the other configuration of the electronic circuit module 10F is the same as that of the electronic circuit module 10C, and description of the similar parts will be omitted.
  • the power conversion unit 50 is arranged at the center of the first surface of the package substrate 60F.
  • the plurality of processor units 20 are arranged at positions surrounding the power conversion unit 50.
  • the plurality of processor units 20 are adjacent to and close to the power conversion unit 50.
  • the plurality of memories 30 are arranged on both sides of the package substrate 60F in the first direction (x-axis direction in the figure) with the arrangement area of the power conversion unit 50 and the plurality of processor units 20 sandwiched therebetween.
  • the plurality of photoelectric conversion units 40 are arranged on both sides of the package substrate 60F in the second direction (the y-axis direction in the figure) with the arrangement area of the power conversion unit 50 and the plurality of processor units 20 sandwiched therebetween.
  • the plurality of processor units 20 and the plurality of memories 30 are adjacent to each other in the first direction.
  • the plurality of processor units 20 and the plurality of photoelectric conversion units 40 are adjacent to each other in the second direction.
  • the electronic circuit module 10F can shorten the data transmission line Lop and the information processing bus Lpm, as shown in FIG. 9(B).
  • the electronic circuit module 10F allows wiring of the data transmission line Lop and the information processing bus Lpm to be simple and easy. Therefore, the electronic circuit module 10F can suppress transmission loss and delay caused by the data transmission line Lop and the information processing bus Lpm.
  • the plurality of memories 30, the plurality of photoelectric conversion units 40, and the plurality of power conversion units 50 are arranged symmetrically.
  • the electronic circuit module 10E can realize a configuration in which the wiring patterns of the data transmission line Lop and the information processing bus Lpm can be easily designed.
  • the power conversion unit 50 is located at the center, diversity can be realized in the wiring patterns of the processor power supply line Lpwp, the memory power supply line Lpwm, and the photoelectric conversion unit power supply line Lpwo. That is, depending on the power specifications of the plurality of memories 30, the plurality of photoelectric conversion units 40, and the plurality of power conversion units 50, power supply lines to each can be made separate or shared.
  • the electronic circuit module 10F can improve the power quality for the plurality of memories 30, the plurality of photoelectric conversion units 40, and the plurality of power conversion units 50.
  • the electronic circuit module 10F can have a smaller space for power supply and can be made smaller.
  • the power conversion unit 50 and the plurality of processor units 20 are adjacent and close to each other. Therefore, in the electronic circuit module 10F, the processor power supply line Lpwp can be shortened, and the efficiency of power supply to the plurality of processor units 20 can be increased.
  • FIG. 11(A) and 11(B) are plan views showing the configuration of an electronic circuit module according to the eighth embodiment, with FIG. 11(A) showing the first surface side and FIG. 11(B) showing the first surface side. The second side is shown.
  • FIG. 12(A) is a diagram showing an example of a data communication wiring pattern in the electronic circuit module according to the eighth embodiment
  • FIG. 12(B) is a diagram showing an example of the wiring pattern in the electronic circuit module according to the eighth embodiment.
  • FIG. 3 is a diagram showing an example of a wiring pattern of a power supply system.
  • the electronic circuit module 10G according to the eighth embodiment has a layout pattern of each component with respect to the electronic circuit module 10C according to the fourth embodiment. , the wiring pattern is different.
  • the other configuration of the electronic circuit module 10G is the same as that of the electronic circuit module 10C, and description of the similar parts will be omitted.
  • the plurality of processor units 20 are arranged at the center of the first surface of the package substrate 60G.
  • the plurality of memories 30 are arranged on both sides of the package substrate 60G in the first direction (the x-axis direction in the figure) with the arrangement area of the plurality of processor units 20 in between.
  • the plurality of photoelectric conversion units 40 are arranged on both sides of the package substrate 60G in the second direction (the y-axis direction in the figure) with the arrangement area of the plurality of processor units 20 in between.
  • the plurality of processor units 20 and the plurality of memories 30 are adjacent to each other in the first direction.
  • the plurality of processor units 20 and the plurality of photoelectric conversion units 40 are adjacent to each other in the second direction.
  • the power conversion unit 50 is arranged on the second surface of the package substrate 60G. When viewed in the direction perpendicular to the first and second surfaces (the z-axis direction in the figure), the power conversion unit 50 overlaps the plurality of processor units 20, the plurality of memories 30, and the plurality of photoelectric conversion units 40. There is.
  • the electronic circuit module 10G can shorten the data transmission line Lop and the information processing bus Lpm, as shown in FIG. 12(A).
  • the electronic circuit module 10G allows wiring of the data transmission line Lop and the information processing bus Lpm to be simple and easy. Therefore, the electronic circuit module 10G can suppress transmission loss and delay caused by the data transmission line Lop and the information processing bus Lpm.
  • the processor power supply line Lpwp, the memory power supply line Lpwm, and the photoelectric conversion unit power supply line Lpwo are formed by conductor patterns extending in the thickness direction of the package substrate 60G.
  • the processor power supply line Lpwp, the memory power supply line Lpwm, and the photoelectric conversion unit power supply line Lpwo can be formed short. Therefore, the electronic circuit module 10G can improve power supply efficiency.
  • the area of the power conversion unit 50 can be increased. Therefore, the electronic circuit module 10G can increase the degree of freedom in designing the power conversion unit 50.
  • FIG. 13(A) is a plan view showing the configuration of an electronic circuit module according to the ninth embodiment
  • FIG. 13(B) and FIG. 13(C) are cross sections taken along the line CC' in FIG. 13(A). It is a figure which shows each different example. Note that FIG. 13(A) shows a state in which the heat sink and the heat conductive gel are removed.
  • FIG. 14(A) is a diagram showing an example of a data communication wiring pattern in the electronic circuit module according to the ninth embodiment
  • FIG. 14(B) is a diagram showing an example of the wiring pattern in the electronic circuit module according to the ninth embodiment.
  • FIG. 3 is a diagram showing an example of a wiring pattern of a power supply system.
  • the electronic circuit module 10H according to the ninth embodiment is different from the electronic circuit module 10C according to the fourth embodiment.
  • the arrangement pattern and wiring pattern of each component are different.
  • the other configuration of the electronic circuit module 10H is the same as that of the electronic circuit module 10C, and description of the similar parts will be omitted.
  • the plurality of processor units 20 are arranged at the center of the first surface of the package substrate 60H.
  • the plurality of photoelectric conversion units 40 are arranged around the arrangement area of the plurality of processor units 20.
  • the arrangement area of the plurality of processor units 20 and the plurality of photoelectric conversion units 40 are adjacent to each other in a direction parallel to the first surface.
  • the plurality of power conversion units 50 are arranged at the corners of the outer shape formed by the arrangement of the plurality of photoelectric conversion units 40.
  • the memory 30 is arranged above the plurality of processor units 20 so as to overlap with the arrangement area of the plurality of processor units 20. In other words, the memory 30 is arranged at a position facing the package substrate 60H with the plurality of processor units 20 in between.
  • the memory 30 and the plurality of processor units 20 are adjacent to each other in a direction perpendicular to the first surface.
  • the electronic circuit module 10H can shorten the data transmission line Lop and the information processing bus Lpm, as shown in FIG. 14(A). Furthermore, in the electronic circuit module 10H, the main wiring directions of the data transmission line Lop and the information processing bus Lpm are orthogonal, which facilitates wiring, and as a result, each wiring can be shortened. Therefore, the electronic circuit module 10H can suppress transmission loss and delay caused by the data transmission line Lop and the information processing bus Lpm.
  • the plurality of power conversion units 50 are adjacent to or close to the processor unit 20, the memory 30, and the photoelectric conversion unit 40, respectively, in a plan view of the electronic circuit module 10H. Therefore, as shown in FIG. 14B, the electronic circuit module 10H can shorten the processor power supply line Lpwp, the memory power supply line Lpwm, and the photoelectric conversion unit power supply line Lpwo from the power conversion unit 50, A simple configuration can be realized. Therefore, the electronic circuit module 10H can increase the power supply efficiency.
  • the planar area of the memory 30 can be increased. Therefore, the electronic circuit module 10H can increase the capacity of the memory 30 without increasing the overall shape.
  • the configuration of the heat sink can be appropriately adjusted depending on the height of the plurality of photoelectric conversion units 40.
  • the height of the photoelectric conversion unit 40 is approximately the same as the height of the processor unit 20 and the height of the memory 30.
  • the electronic circuit module 10H includes a heat sink 71H.
  • the heat sink 71H overlaps the plurality of photoelectric conversion units 40 and the memory 30, and is thermally connected to the plurality of photoelectric conversion units 40 and the memory 30 via the heat conductive gel 710H.
  • the height of the photoelectric conversion unit 40 is almost the same as the height of the processor unit 20.
  • the electronic circuit module 10H includes a heat sink 71H and a heat sink 72H.
  • the heat sink 71H overlaps the memory 30 and is thermally connected to the memory 30 via the heat conductive gel 710H.
  • the heat sink 72H overlaps the plurality of photoelectric conversion units 40 and is thermally connected to the plurality of photoelectric conversion units 40 via the heat conductive gel 720H.
  • An electronic circuit module mounted on a motherboard equipped with a power supply source, a photoelectric conversion unit that converts an optical signal and an electrical signal; a processor unit that performs arithmetic processing using the electrical signal; a power conversion unit that converts power from the power supply source and supplies power to the photoelectric conversion unit and the processor unit; a package substrate on which the photoelectric conversion unit, the processor unit, and the power conversion unit are mounted; Equipped with The photoelectric conversion unit, the processor unit, and the power conversion unit are connected only through a conductor pattern formed on the package substrate.
  • the package substrate includes: a first substrate on which the power conversion unit is mounted; a second substrate mounted on the first substrate, on which the photoelectric conversion unit and the processor unit are mounted;
  • An electronic circuit module comprising:
  • the package substrate includes: a first substrate on which the power conversion unit is mounted; a second substrate on which the photoelectric conversion unit and the processor unit are mounted and mounted on the first substrate; Equipped with The electronic circuit module according to ⁇ 3>, wherein the high frequency signal loss of the first board is lower than the high frequency signal loss of the motherboard.
  • ⁇ 5> The electronic circuit module according to any one of ⁇ 1> to ⁇ 4>, wherein the photoelectric conversion unit and the processor unit are supplied with power from the common power conversion unit.
  • ⁇ 6> The electronic circuit module of ⁇ 5>, wherein the photoelectric conversion unit and the processor unit are supplied with power from one power conversion unit.
  • ⁇ 7> The electronic circuit module according to any one of ⁇ 1> to ⁇ 6>, wherein the photoelectric conversion unit and the processor unit are thermally connected to a shared heat sink.
  • ⁇ 8> The electronic circuit module of ⁇ 7>, wherein the photoelectric conversion unit, the processor unit, and the power conversion unit are thermally connected to the shared heat sink.
  • ⁇ 9> The electronic circuit module according to any one of ⁇ 1> to ⁇ 8>, wherein the package substrate is mounted in a structure that is detachable from the motherboard.
  • ⁇ 11> The electronic circuit of ⁇ 9> or ⁇ 10>, wherein at least one of the photoelectric conversion unit, the processor unit, and the power conversion unit is mounted in a structure that can be attached to and detached from the package substrate. module.
  • a memory connected to the processor unit, The photoelectric conversion unit, the processor unit, the power conversion unit, and the memory are mounted on a first surface of the package substrate, the processor unit is arranged in the center of the first surface, The memory and the power conversion unit are arranged with the processor unit in between in a first direction parallel to the first surface, Any one of ⁇ 1> to ⁇ 4>, wherein the plurality of photoelectric conversion units are arranged with the processor unit in between in a second direction parallel to the first surface and orthogonal to the first direction.
  • electronic circuit module is
  • a memory connected to the processor unit, The photoelectric conversion unit, the processor unit, the power conversion unit, and the memory are mounted on a first surface of the package substrate, the processor unit is arranged in the center of the first surface, The plurality of memories are arranged with the processor unit in between in a first direction parallel to the first surface, The plurality of photoelectric conversion units are arranged with the processor unit in between in a second direction parallel to the first surface and orthogonal to the first direction, The electronic circuit module according to any one of ⁇ 1> to ⁇ 4>, wherein the plurality of power conversion units are arranged at corners of an outline formed by the arrangement of the plurality of memories and the plurality of photoelectric conversion units.
  • a memory connected to the processor unit, The photoelectric conversion unit, the processor unit, the power conversion unit, and the memory are mounted on a first surface of the package substrate, the processor unit is arranged in the center of the first surface, The plurality of memories are arranged with the processor unit therebetween in a first direction parallel to the first surface, The plurality of photoelectric conversion units are arranged with the processor unit in between in a second direction parallel to the first surface and orthogonal to the first direction, The electronic circuit module according to any one of ⁇ 1> to ⁇ 4>, wherein the plurality of power conversion units are arranged between the plurality of memories and between the plurality of photoelectric conversion units.
  • a memory connected to the processor unit, The photoelectric conversion unit, the processor unit, the power conversion unit, and the memory are mounted on a first surface of the package substrate,
  • the power conversion unit is arranged at the center of the first surface,
  • the plurality of processor units are arranged in positions surrounding the power conversion unit,
  • the plurality of memories are arranged in a first direction parallel to the first surface, with the processor unit and the power conversion unit interposed therebetween,
  • the plurality of photoelectric conversion units are arranged in a second direction parallel to the first surface and orthogonal to the first direction, with the processor unit and the power conversion unit interposed therebetween, ⁇ 1> to ⁇ 4>. > any of the electronic circuit modules.
  • a memory connected to the processor unit, The photoelectric conversion unit, the processor unit, and the memory are mounted on a first surface of the package substrate, The power conversion unit is mounted on a second surface of the package substrate, Viewed in a direction perpendicular to the first surface and the second surface,
  • the electronic circuit module according to any one of ⁇ 1> to ⁇ 4>, wherein the power conversion unit at least partially overlaps the photoelectric conversion unit, the processor unit, and the memory.
  • a memory connected to the processor unit, The photoelectric conversion unit, the processor unit, and the power conversion unit are mounted on a first surface of the package substrate, the processor unit is arranged in the center of the first surface, The plurality of photoelectric conversion units are arranged at positions surrounding the processor unit, The plurality of power conversion units are arranged at corners of the outer shape formed by the arrangement of the plurality of photoelectric conversion units, Any one of ⁇ 1> to ⁇ 4>, wherein the memory is disposed at a position overlapping the processor unit and facing the package substrate with the processor unit in between, when viewed in a direction perpendicular to the first surface. electronic circuit module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

電子回路モジュール(10)は、電力供給源を備えるマザーボード(91)に実装される電子回路モジュールである。電子回路モジュール(10)は、光信号と電気信号とを変換する光電変換ユニット(40)と、電気信号を用いて演算処理を行うプロセッサユニット(20)と、電力供給源からの電力を変換して、光電変換ユニット(40)およびプロセッサユニット(20)に電力供給する電力変換ユニット(50)と、光電変換ユニット(40)、プロセッサユニット(20)、および、電力変換ユニット(50)が実装されたパッケージ基板(60)と、を備える。光電変換ユニット(40)、プロセッサユニット(20)、および、電力変換ユニット(50)は、パッケージ基板(60)に形成された導体パターンのみを通じて接続されている。

Description

電子回路モジュール
 本発明は、光信号と電気信号を変換する光電変換ユニット、プロセッサユニット、および、電力変換ユニットを備える電子回路モジュールに関する。
 特許文献1には、光パッケージ素子、プロセッサ素子、電子デバイス、電子回路素子、および、インターポーザを備える回路ユニットが記載されている。光パッケージ素子とプロセッサ素子とは、インターポーザ内の電子デバイスや電子回路素子を通じて接続される。
米国特許出願公開第2021/0091056号明細書
 しかしながら、特許文献1に示すような従来の装置では、情報伝達効率や電力供給効率について、十分でないことがある。
 したがって、本発明の目的は、高い情報伝達効率および高い電力供給効率を実現できる電子回路モジュールを提供することにある。
 この発明の実施形態に係る電子回路モジュールは、電力供給源を備えるマザーボードに実装される電子回路モジュールである。電子回路モジュールは、光信号と電気信号とを変換する光電変換ユニットと、電気信号を用いて演算処理を行うプロセッサユニットと、電力供給源からの電力を変換して、光電変換ユニットおよびプロセッサユニットに電力供給する電力変換ユニットと、光電変換ユニット、プロセッサユニット、および、電力変換ユニットが実装されたパッケージ基板と、を備える。光電変換ユニット、プロセッサユニット、および、電力変換ユニットは、パッケージ基板に形成された導体パターンのみを通じて接続されている。
 この構成では、光電変換ユニットとプロセッサユニットとは、マザーボードを通さず、パッケージ基板に形成された導体パターンのみによって接続される。これにより、情報伝達効率は向上する。また、光電変換ユニット、プロセッサユニット、および、電力変換ユニットは、マザーボードを通さず、パッケージ基板に形成された導体パターンのみによって接続されるので、電力変換ユニットから光電変換ユニットおよびプロセッサユニットへの電力供給効率は向上する。
 この発明によれば、高い情報伝達効率および高い電力供給効率を実現できる。
図1は、第1の実施形態に係る電子回路モジュールの回路構成の一例を示す機能ブロック図である。 図2は、第1の実施形態に係る電子回路モジュールの構成を示す側面図である。 図3は、第1の実施形態に係る電子回路モジュールをマザーボードに実装した状態を示す側面図である。 図4は、第2の実施形態に係る電子回路モジュールの構成を示す側面図である。 図5は、第3の実施形態に係る電子回路モジュールの構成を示す側面図である。 図6(A)は、第4の実施形態に係る電子回路モジュールの構成を示す平面図であり、図6(B)は、図6(A)のA-A’側面図であり、図6(C)は、図6(A)のB-B’断面図である。 図7(A)は、第4の実施形態に係る電子回路モジュールにおけるデータ通信系の配線パターンの一例を示す図であり、図7(B)は、第4の実施形態に係る電子回路モジュールにおける電力供給系の配線パターンの一例を示す図である。 図8(A)は、第5の実施形態に係る電子回路モジュールの構成を示す平面図であり、図8(B)は、第5の実施形態に係る電子回路モジュールにおけるデータ通信系の配線パターンの一例を示す図であり、図8(C)は、第5の実施形態に係る電子回路モジュールにおける電力供給系の配線パターンの一例を示す図である。 図9(A)は、第6の実施形態に係る電子回路モジュールの構成を示す平面図であり、図9(B)は、第6の実施形態に係る電子回路モジュールにおけるデータ通信系の配線パターンの一例を示す図であり、図9(C)は、第6の実施形態に係る電子回路モジュールにおける電力供給系の配線パターンの一例を示す図である。 図10(A)は、第7の実施形態に係る電子回路モジュールの構成を示す平面図であり、図10(B)は、第7の実施形態に係る電子回路モジュールにおけるデータ通信系の配線パターンの一例を示す図であり、図10(C)は、第7の実施形態に係る電子回路モジュールにおける電力供給系の配線パターンの一例を示す図である。 図11(A)、図11(B)は、第8の実施形態に係る電子回路モジュールの構成を示す平面図である。 図12(A)は、第8の実施形態に係る電子回路モジュールにおけるデータ通信系の配線パターンの一例を示す図であり、図12(B)は、第8の実施形態に係る電子回路モジュールにおける電力供給系の配線パターンの一例を示す図である。 図13(A)は、第9の実施形態に係る電子回路モジュールの構成を示す平面図であり、図13(B)、図13(C)は、図13(A)のC-C’断面のそれぞれ異なる例を示す図である。 図14(A)は、第9の実施形態に係る電子回路モジュールにおけるデータ通信系の配線パターンの一例を示す図であり、図14(B)は、第9の実施形態に係る電子回路モジュールにおける電力供給系の配線パターンの一例を示す図である。
 [第1の実施形態]
 本発明の第1の実施形態に係る電子回路モジュールについて、図を参照して説明する。図1は、第1の実施形態に係る電子回路モジュールの回路構成の一例を示す機能ブロック図である。図2は、第1の実施形態に係る電子回路モジュールの構成を示す側面図である。図3は、第1の実施形態に係る電子回路モジュールをマザーボードに実装した状態を示す側面図である。なお、図2、図3では、基板内に形成された配線パターンも実線で示している。
 (電子回路モジュール10の回路構成)
 図1に示すように、電子回路モジュール10は、プロセッサユニット20、メモリ30、光電変換ユニット40、および、電力変換ユニット50を備える。
 プロセッサユニット20は、情報処理バスLpmを通じてメモリ30に接続する。プロセッサユニット20は、データ伝送ラインLopを通じて光電変換ユニット40に接続する。光電変換ユニット40は、光導波路OTLを通じて外部に接続する。
 プロセッサユニット20は、光電変換ユニット40からデータ伝送ラインLopを通じて入力された電気信号によって、所定の演算処理を行う。この際、プロセッサユニット20は、情報処理バスLpmによって接続されるメモリ30を用いて、演算処理を行う。
 プロセッサユニット20は、演算結果を電気信号で出力し、データ伝送ラインLopを通じて、光電変換ユニット40に入力する。
 光電変換ユニット40は、光導波路OTLから入力された光信号を電気信号に変換して、データ伝送ラインLopを通じて、プロセッサユニット20に出力する。また、光電変換ユニット40は、プロセッサユニット20からデータ伝送ラインLopを通じて入力した電気信号を光信号に変換して、光導波路OTLを通じて外部に出力する。
 電力変換ユニット50は、プロセッサ用電源供給ラインLpwpを通じてプロセッサユニット20に接続し、メモリ用電源供給ラインLpwmを通じてメモリ30に接続し、光電変換ユニット用電源供給ラインLpwoを通じて光電変換ユニット40に接続する。
 電力変換ユニット50は、外部(後述するマザーボード)の電源からの入力電力を、プロセッサユニット20用、メモリ30用、および、光電変換ユニット40用に変換し、これらに供給する。
 このように、光信号を用いることによって、全てを電気信号とする場合よりも、情報伝達速度を速くできる。
 (電子回路モジュール10の構成)
 図2に示すように、電子回路モジュール10は、プロセッサユニット20、メモリ30、光電変換ユニット40、電力変換ユニット50、および、パッケージ基板60を備える。
 プロセッサユニット20、メモリ30、光電変換ユニット40、および、電力変換ユニット50は、それぞれに、実装型の電子部品であり、所定形状の筐体と、複数の端子導体と、を備える。筐体には、それぞれのユニット等を実現する機能部が形成されている。複数の端子導体は、筐体の底面に所定パターンで配列されている。
 パッケージ基板60は、第1基板61と第2基板62とを備える。第1基板61および第2基板62は、それぞれに平板である。例えば、第2基板62の平面面積(図2、図3のz軸方向に視た面積)は、第1基板61の平面面積よりも小さい。そして、第1基板61の平面面積および第2基板62の平面面積は、電子回路モジュール10が実装されるマザーボード91の平面面積よりも小さい。
 プロセッサユニット20、メモリ30、および、光電変換ユニット40は、第2基板62の表面に実装されている。
 プロセッサユニット20と光電変換ユニット40とを接続するデータ伝送ラインLopは、第2基板62に形成された導体パターンのみによって構成される。言い換えれば、データ伝送ラインLopは、電子回路モジュール10が実装されるマザーボード91を通ることなく、構成される。これにより、データ伝送ラインLopを短くできる。したがって、データ伝送ラインLopの伝送損失および遅延は、低減できる。
 同様に、プロセッサユニット20とメモリ30とを接続する情報処理バスLpmも、データ伝送ラインLopと同様に、第2基板62に形成された導体パターンのみによって構成される。言い換えれば、情報処理バスLpmは、電子回路モジュール10が実装されるマザーボード91を通ることなく構成される。これにより、情報処理バスLpmを短くできる。したがって、情報処理バスLpmの伝送損失および遅延は、低減できる。
 さらに、プロセッサユニット20と光電変換ユニット40とは、近接して配置されていることが好ましい。そして、プロセッサユニット20と光電変換ユニット40との距離は、できる限り短いことが好ましい。例えば、プロセッサユニット20と光電変換ユニット40とは、第2基板62のパターン形成の精度や、プロセッサユニット20と光電変換ユニット40の実装精度において、できるだけ近接する位置に配置されることが好ましい。例えば、プロセッサユニット20や光電変換ユニット40の長辺の長さ以下であるとよく、この長辺の1/2以下や短辺の長さ以下であるとより好ましい。プロセッサユニット20や光電変換ユニット40が平面視して正方形であれば、この一辺以下、好ましくは一辺の1/2以下であることが好ましい。
 このように、プロセッサユニット20と光電変換ユニット40との物理的な距離が短くなることで、データ伝送ラインLopを短くし易い。
 さらには、データ伝送ラインLopを構成する導体パターンは、第2基板62の表面に形成されていることが好ましい。これにより、データ伝送ラインLopは、第2基板62の厚み方向に延びる部分を有さないので、伝送損失および遅延を低減できる。
 また、データ伝送ラインLopは、プロセッサユニット20と光電変換ユニット40とを、平面視において最短距離で接続するとよい。具体的には、例えば、データ伝送ラインLopを構成する導体パターンは、それぞれにプロセッサユニット20の端子と光電変換ユニット40の端子とを平面視において直線で接続する導体パターンであるとよい。これにより、データ伝送ラインLopの伝送損失および遅延は、さらに低減できる。
 そして、プロセッサユニット20とメモリ30とは、プロセッサユニット20と光電変換ユニット40との関係と同様に、近接して配置されていることが好ましく、情報処理バスLpmも、データ伝送ラインLopと同様に短いことが好ましい。これにより、プロセッサユニット20とメモリ30との間の伝送損失や伝送遅延を抑制できる。
 また、第2基板62は、導体パターンの配線密度が高いことが好ましい。これにより、単位面積当たりの導体パターン数を増やすことができる。したがって、プロセッサユニット20と光電変換ユニット40とデータ伝送ラインLop、および、プロセッサユニット20とメモリ30とを接続する情報処理バスLpmの配線パターンの自由度が向上し、これらを接続する導体パターンを短く形成し易くなる。
 さらに、第2基板62は、電子回路モジュール10が実装されるマザーボード91(図3参照)よりも、高周波数信号の損失が低い材料(例えば、Siや誘電正接の低い誘電体等の樹脂を主材料とする材料)によって形成されている。これにより、データ伝送ラインLopによる伝送損失、および、情報処理バスLpmによる伝送損失は、さらに抑制される。
 また、第2基板62には、プロセッサ用電源供給ラインLpwp、メモリ用電源供給ラインLpwm、光電変換ユニット用電源供給ラインLpwoが形成されている。プロセッサ用電源供給ラインLpwp、メモリ用電源供給ラインLpwm、光電変換ユニット用電源供給ラインLpwoは、第2基板62を厚み方向に貫通する。プロセッサ用電源供給ラインLpwpは、第2基板62の表面のプロセッサユニット20が実装される電極と、第2基板62の裏面のプロセッサ電源供給用端子とを接続する。メモリ用電源供給ラインLpwmは、第2基板62の表面のメモリ30が実装される電極と、第2基板62の裏面のメモリ電源供給用端子とを接続する。光電変換ユニット用電源供給ラインLpwoは、第2基板62の表面の光電変換ユニット40が実装される電極と、第2基板62の裏面の光電変換ユニット電源供給用端子とを接続する。
 これらプロセッサ用電源供給ラインLpwp、メモリ用電源供給ラインLpwm、光電変換ユニット用電源供給ラインLpwo、可能な限り直線状であることが好ましい。言い換えれば、これらは、第2基板62の厚み方向に延びる部分が殆どの部分となるように、形成されることが好ましい。第2基板62は、厚みが他の寸法よりも大幅に小さいので、このような構成とすることで、電力供給距離を短くできる。したがって、電力供給効率が低下することは抑制される。また、プロセッサ用電源供給ラインLpwp、メモリ用電源供給ラインLpwm、光電変換ユニット用電源供給ラインLpwoにおける厚み方向に延びる部分は、データ伝送ラインLopおよび情報処理バスLpmと比較して、断面積が大きいことが好ましい。これにより、電力供給効率は向上する。
 第2基板62および電力変換ユニット50は、第1基板61の表面に実装される。
 第1基板61には、複数の電源供給ラインLpwが形成されている。複数の電源供給ラインLpwは導体パターンであり、電力変換ユニット50が実装される電極と、第2基板62のプロセッサ電源供給用端子が実装される電極、メモリ電源供給用端子が実装される電極、および、光電変換ユニット電源供給用端子が実装される電極に、それぞれ接続する。
 この構成によって、電力変換ユニット50からプロセッサユニット20への電力供給は、マザーボード91よりも小型の第1基板61内の導体パターン(電源供給ラインLpw)と、第2基板62の厚み方向に延びる導体パターン(プロセッサ用電源供給ラインLpwp)によって完結させることができる。これにより、電子回路モジュール10は、プロセッサユニット20へ高効率に電力供給を行うことができる。
 同様に、電力変換ユニット50から光電変換ユニット40への電力供給は、マザーボード91よりも小型の第1基板61内の導体パターン(電源供給ラインLpw)と、第2基板62の厚み方向に延びる導体パターン(光電変換ユニット用電源供給ラインLpwo)によって完結させることができる。これにより、電子回路モジュール10は、光電変換ユニット40へ高効率に電力供給を行うことができる。
 同様に、電力変換ユニット50からメモリ30への電力供給は、マザーボード91よりも小型の第1基板61内の導体パターン(電源供給ラインLpw)と、第2基板62の厚み方向に延びる導体パターン(メモリ用電源供給ラインLpwm)によって完結させることができる。これにより、電子回路モジュール10は、メモリ30へ高効率に電力供給を行うことができる。
 また、第2基板62と電力変換ユニット50とは、隣接して実装される。言い換えれば、第2基板62と電力変換ユニット50との間には、他の実装型電子部品は実装されていない。また、第2基板62と電力変換ユニット50とは、近接して配置されている。例えば、第2基板62のプロセッサユニット20と電力変換ユニット50との距離は、プロセッサユニット20と電力変換ユニット50の長辺の長さ以下であるとよく、この長辺の1/2以下や短辺の長さ以下であるとより好ましい。プロセッサユニット20と電力変換ユニット50が平面視して正方形であれば、この一辺以下、好ましくは一辺の1/2以下であることが好ましい。
 これにより、電力変換ユニット50からプロセッサユニット20、メモリ30、および、光電変換ユニット40への電力供給距離を短くでき、電力供給効率の低下は抑制される。
 第1基板61は、第2基板62と比較して、入手、製造が容易な材料によって形成される。
 第1基板61の裏面には、複数の外部接続端子BP61が形成されている。
 複数の電源供給ラインLpwの幅および断面積は、可能な限り大きいことが好ましい。これにより、電力供給効率の低下は抑制される。特に、この構成では、第1基板61には、データ通信系の導体パターンは存在せず、複数の電源供給ラインLpwのみが形成されている。したがって、複数の電源供給ラインLpwの配線および形状は、所定の配線および形状にし易い。すなわち、複数の電源供給ラインLpwは、従来のようにデータ通信系の導体パターンと同じ基板(例えば、マザーボード)に形成するよりも、幅および断面積を大きく、長さを短くし易い。したがって、電子回路モジュール10は、電力供給効率の高い電源供給ラインLpwを実現できる。
 特に、プロセッサユニット20は、低電圧および高電流が求められている。このため、電力変換ユニット50からプロセッサユニット20までの電源供給ラインLpwおよびプロセッサ用電源供給ラインLpwpが短いことによって、電子回路モジュール10は、より高効率に電力供給を行うことができる。
 また、電源供給ラインLpwが第1基板61の厚み方向に直交する方向に沿って電力変換ユニット50からプロセッサユニット20へ直線状に延び、プロセッサ用電源供給ラインLpwpが第2基板62の厚み方向に直線状に延びることで、電力変換ユニット50とプロセッサユニット20とを接続するラインは、最短距離となる。これにより、電力伝送損失をさらに抑制でき、電子回路モジュール10は、より高効率に電力供給を行うことができる。
 第1基板61には、電源入力ライン652が形成されている。電源入力ライン652は、電力変換ユニット50が実装される電極と、電源入力用の外部接続端子BP61とを接続する。電源入力ライン652は、第1基板61の厚み方向に延びる形状である。電源入力ライン652は、可能な限り直線状であることが好ましい。言い換えれば、これらは、第1基板61の厚み方向に延びる部分が殆どの部分となるように、形成されることが好ましい。第1基板61は、厚みが他の寸法よりも大幅に小さいので、このような構成とすることで、電力供給距離を短くできる。したがって、外部からの電力入力効率が低下することは抑制される。また、電源入力ライン652における厚み方向に延びる部分は、断面積が大きいことが好ましい。これにより、外部からの電力入力効率は向上する。
 このような構成によって、電子回路モジュール10は、高い情報伝達効率および高い電力供給効率を実現できる。
 そして、このような構成の電子回路モジュール10は、図3に示すように、マザーボード91に実装される。マザーボード91には、商用電源等からの電力を直流電力に変換する電源等が備えられており、この電源から、マザーボード91の電力ライン92Pを通じて、電子回路モジュール10に給電される。
 また、マザーボード91の表面には、複数の実装用ランド93が形成されており、ソケット機構94が備えられている。
 電子回路モジュール10の複数の外部接続端子BP61は、マザーボード91の複数の実装用ランド93に当接する。この状態で、ソケット機構94は、電子回路モジュール10をマザーボード91の表面に押しつけるように固定する。これにより、電子回路モジュール10とマザーボード91とは、電気的および機械的に安定して接続する。
 なお、電子回路モジュール10をマザーボード91にはんだ等の導電性接合材で実装することも可能である。ただし、上述のソケット機構94を備えることによって、電子回路モジュール10の取り付け、交換等が容易になる。また、本実施形態では、ソケット機構94を用いる態様を示したが、電子回路モジュール10をマザーボード91に対して着脱可能に固定できる構造であれば、他の構造を用いることも可能である。
 また、電子回路モジュール10では、プロセッサユニット20、メモリ30、光電変換ユニット40、および、電力変換ユニット50は、はんだ等で実装されているが、これらについても、ソケット機構94等を用いた着脱可能な構造を採用できる。さらには、第2基板62を第1基板61に固定する構造にも、ソケット機構94等を用いた着脱可能な構造を採用できる。
 また、上述の実施形態では、プロセッサユニット20と光電変換ユニット40とは、電子回路モジュール10内の導体パターンのみで接続される態様を示した。しかしながら、プロセッサユニット20は、電子回路モジュール10内の光電変換ユニット40とともに、補完的にマザーボード91に実装された別の光電変換ユニットと接続されていてもよい。
 同様に、上述の実施形態では、プロセッサユニット20と電力変換ユニット50とは、電子回路モジュール10内の導体パターンのみで接続される態様を示した。しかしながら、プロセッサユニット20は、電子回路モジュール10内の電力変換ユニット50とともに、補完的にマザーボード91に実装された別の電力変換ユニットと接続されていてもよい。
 さらに、上述の実施形態では、光電変換ユニット40と電力変換ユニット50とは、電子回路モジュール10内の導体パターンのみで接続される態様を示した。しかしながら、光電変換ユニット40は、電子回路モジュール10内の電力変換ユニット50とともに、補完的にマザーボード91に実装された別の電力変換ユニットと接続されていてもよい。
 [第2の実施形態]
 本発明の第2の実施形態に係る電子回路モジュールについて、図を参照して説明する。図4は、第2の実施形態に係る電子回路モジュールの構成を示す側面図である。
 図4に示すように、第2の実施形態に係る電子回路モジュール10Aは、第1の実施形態に係る電子回路モジュール10に対して、放熱機構を備える点で異なる。電子回路モジュール10Aの他の構成は、電子回路モジュール10と同様であり、同様の箇所の説明は省略する。
 電子回路モジュール10Aは、放熱板71および熱伝導ジェル710を備える。放熱板71は、金属等の熱伝導性の高い材料からなる平板である。放熱板71は、平面視して、プロセッサユニット20、メモリ30、光電変換ユニット40、および、電力変換ユニット50に重なる。
 放熱板71は、熱伝導ジェル710を介して、プロセッサユニット20、メモリ30、光電変換ユニット40、および、電力変換ユニット50に接続する。
 このような構成によって、電子回路モジュール10は、プロセッサユニット20、メモリ30、光電変換ユニット40、および、電力変換ユニット50からの熱を、効果的に外部に放出できる。
 なお、熱伝導ジェル710は、省略することが可能である。しかしながら、放熱対象の天面が面一でない場合(例えば、図4の電力変換ユニット50の天面が、他の天面よりも低い場合)であっても、複数のユニットに共通の放熱板71を高い熱伝導経路で接続できる。
 また、上述の説明では、プロセッサユニット20、メモリ30、光電変換ユニット40、および、電力変換ユニット50で放熱板71を共通にしているが、ユニット毎に放熱板を個別に備えていてもよい。個別に設ける場合、特に発熱量が高いプロセッサユニット20および電力変換ユニット50は、少なくとも放熱板を備えることが好ましい。
 ただし、共通の放熱板71を用いることで、電子回路モジュール10Aの構成要素を少なくでき、放熱面積をより大きくし易い。
 [第3の実施形態]
 本発明の第3の実施形態に係る電子回路モジュールについて、図を参照して説明する。図5は、第3の実施形態に係る電子回路モジュールの構成を示す側面図である。
 図5に示すように、第3の実施形態に係る電子回路モジュール10Bは、第1の実施形態に係る電子回路モジュール10に対して、電力供給系の構成において異なる。電子回路モジュール10Bの他の構成は、電子回路モジュール10と同様であり、同様の箇所の説明は省略する。
 電子回路モジュール10Bは、パッケージ基板60Bを備える。パッケージ基板60Bは、第1基板61B、および、第2基板62を備える。
 第1基板61Bは、第1の実施形態に係る第1基板61と同様の材料からなる。第1基板61Bの平面面積は、第2基板62の平面面積と略同じである。第1基板61Bの裏面、すなわち、第1基板61Bにおける第2基板62が実装される面と対向する面には、複数の電力変換ユニット51Bが実装されている。
 複数の電力変換ユニット51Bは、電力供給対象に応じて備えられている。電子回路モジュール10Bでは、メモリ30用の電力変換ユニット51Bと、プロセッサユニット20および光電変換ユニット40用の電力変換ユニット51Bとが備えられる。
 第1基板61Bの裏面には、外部電源用コネクタ52が実装されている。外部電源用コネクタ52には、外部からの電源ケーブルPLが接続される。これにより、電子回路モジュール10Bは、外部から電源供給される。
 ここで、電子回路モジュール10Bを平面視して、複数の電力変換ユニット51Bの配置領域は、プロセッサユニット20、メモリ30、および、光電変換ユニット40の配置領域に重なる。
 したがって、電子回路モジュール10Bは、電子回路モジュール10と比較して平面面積を小さくできる。
 なお、図5の構成では、コネクタ等を用いてマザーボードに接続する態様を示した。しかしながら、パッケージ基板60Bの側端部に複数の端子電極を形成し、当該複数の端子電極をマザーボードのコネクタに差し込む構造を採用することもできる。
 電子回路モジュール10Bは、放熱板71B、放熱板72B、熱伝導ジェル710B、および、熱伝導ジェル720Bを備える。
 放熱板71Bは、プロセッサユニット20、メモリ30、および、光電変換ユニット40に熱伝導ジェル710Bを介して熱的に接続される。これにより、プロセッサユニット20、メモリ30、および、光電変換ユニット40は、効率的に放熱される。
 放熱板72Bは、複数の電力変換ユニット51Bに熱伝導ジェル720Bを介して熱的に接続される。これにより、複数の電力変換ユニット51Bは、効率的に放熱される。
 さらに、この構成では、比較的発熱性の高いプロセッサユニット20と複数の電力変換ユニット51Bとで、個別に放熱板71B、72Bを備える。これにより、電子回路モジュール10Bは、さらに高い放熱効率を実現できる。また、放熱板71Bと放熱板72Bとは、パッケージ基板60Bを介して、異なる側に配置される。これにより、放熱板71Bの熱と放熱板72Bの熱が結合し難く、電子回路モジュール10Bの放熱効果は向上する。
 また、電子回路モジュール10Bは、マザーボード91に実装しなくてもよいので、より多くの使用態様に対応できる。
 [第4の実施形態]
 本発明の第4の実施形態に係る電子回路モジュールについて、図を参照して説明する。図6(A)は、第4の実施形態に係る電子回路モジュールの構成を示す平面図であり、図6(B)は、図6(A)のA-A’側面図であり、図6(C)は、図6(A)のB-B’断面図である。図7(A)は、第4の実施形態に係る電子回路モジュールにおけるデータ通信系の配線パターンの一例を示す図であり、図7(B)は、第4の実施形態に係る電子回路モジュールにおける電力供給系の配線パターンの一例を示す図である。
 なお、本実施形態(第4の実施形態)以降の各実施形態における各構成要素は、以下に改めて示す内容を除いて、上述の第1の実施形態と同様であり、この部分の説明は省略する。また、本実施形態以降では、各構成要素の端子について図示を省略している。
 図6(A)、図6(B)、図6(C)に示すように、電子回路モジュール10Cは、複数のプロセッサユニット20、複数のメモリ30、複数の光電変換ユニット40、電力変換ユニット50、および、パッケージ基板60Cを備える。
 複数のプロセッサユニット20、複数のメモリ30、複数の光電変換ユニット40、電力変換ユニット50は、パッケージ基板60Cの第1面(表面)に実装される。すなわち、複数のプロセッサユニット20、複数のメモリ30、複数の光電変換ユニット40、電力変換ユニット50は、共通の1つのパッケージ基板60Cに実装される。パッケージ基板60Cは、少なくとも複数のプロセッサユニット20、複数のメモリ30、および複数の光電変換ユニット40の実装領域において、マザーボード91よりも高周波数信号の損失が低い材料で形成される。
 パッケージ基板60Cの第2面(裏面)は、マザーボード91に実装される。
 複数のプロセッサユニット20は、第1面の中央に配置される。複数のメモリ30と電力変換ユニット50とは、第1面に平行な第1方向(図のx軸方向)において、複数のプロセッサユニット20の配置領域を間に挟んで配置される。複数のプロセッサユニット20の配置領域と、複数のメモリ30の配置領域とは、隣接し、近接している。複数のプロセッサユニット20の配置領域と電力変換ユニット50とは、隣接し、近接している。
 複数の光電変換ユニット40は、第1面に平行で第1方向(図のx軸方向)に直交する第2方向(図のy軸方向)において、複数のプロセッサユニット20の配置領域を間に挟んで配置される。複数のプロセッサユニット20の配置領域と複数の光電変換ユニット40とは、隣接し、近接している。
 このような構成によって、図7(A)に示すように、電子回路モジュール10Cは、データ伝送ラインLop(複数のプロセッサユニット20と複数の光電変換ユニット40とを接続するライン)を短くできる。また、電子回路モジュール10Cは、データ伝送ラインLopの配線を簡素な構成および容易にできる。したがって、電子回路モジュール10Cは、データ伝送ラインLopによる伝送損失や遅延を抑制できる。
 また、電子回路モジュール10Cは、情報処理バスLpm(複数のプロセッサユニット20と複数のメモリ30を接続するライン)を短くできる。また、電子回路モジュール10Cは、情報処理バスLpmの配線を簡素な構成および容易にできる。したがって、電子回路モジュール10Cは、情報処理バスLpmによる伝送損失や遅延を抑制できる。
 さらに、図7(B)に示すように、電子回路モジュール10Cは、電力変換ユニット50からのプロセッサ用電源供給ラインLpwp、メモリ用電源供給ラインLpwm、光電変換ユニット用電源供給ラインLpwoを短くでき、簡素な構成を実現できる。したがって、電子回路モジュール10Cは、電力供給効率を高くできる。
 さらに、この構成では、複数のメモリ30と電力変換ユニット50とは、複数のプロセッサユニット20の配置領域を間に挟んで離間している。これにより、電子回路モジュール10Cは、複数のメモリ30への電源ノイズの重畳を抑制できる。
 [第5の実施形態]
 本発明の第5の実施形態に係る電子回路モジュールについて、図を参照して説明する。図8(A)は、第5の実施形態に係る電子回路モジュールの構成を示す平面図であり、図8(B)は、第5の実施形態に係る電子回路モジュールにおけるデータ通信系の配線パターンの一例を示す図であり、図8(C)は、第5の実施形態に係る電子回路モジュールにおける電力供給系の配線パターンの一例を示す図である。
 図8(A)、図8(B)、図8(C)に示すように、第5の実施形態に係る電子回路モジュール10Dは、第4の実施形態に係る電子回路モジュール10Cに対して、各構成要素の配置パターン、配線パターンが異なる。電子回路モジュール10Dの他の構成は、電子回路モジュール10Cと同様であり、同様の箇所の説明は省略する。
 複数のメモリ30は、パッケージ基板60Dの第1方向(図のx軸方向)において、複数のプロセッサユニット20の配置領域を間に挟んで両側に配置される。複数の光電変換ユニット40は、パッケージ基板60Dの第2方向(図のy軸方向)において、複数のプロセッサユニット20の配置領域を間に挟んで両側に配置される。
 複数の電力変換ユニット50は、複数のメモリ30および複数の光電変換ユニット40の配置によって形成される外形の角部に配置される。
 複数のプロセッサユニット20と複数のメモリ30とは、第1方向において隣接し、近接する。複数のプロセッサユニット20と複数の光電変換ユニット40とは、第2方向において隣接し、近接する。
 このような構成によって、図8(B)に示すように、電子回路モジュール10Dは、データ伝送ラインLopおよび情報処理バスLpmを短くできる。また、電子回路モジュール10Dは、データ伝送ラインLopおよび情報処理バスLpmの配線を簡素な構成および容易にできる。したがって、電子回路モジュール10Dは、データ伝送ラインLopおよび情報処理バスLpmによる伝送損失や遅延を抑制できる。
 また、複数の電力変換ユニット50は、それぞれに、プロセッサユニット20、メモリ30、および、光電変換ユニット40に隣接または近接する。したがって、図8(C)に示すように、電子回路モジュール10Dは、電力変換ユニット50からのプロセッサ用電源供給ラインLpwp、メモリ用電源供給ラインLpwm、光電変換ユニット用電源供給ラインLpwoを短くでき、簡素な構成を実現できる。したがって、電子回路モジュール10Dは、電力供給効率を高くできる。
 また、複数のプロセッサユニット20、複数のメモリ30、複数の光電変換ユニット40、および、複数の電力変換ユニット50のパッケージ基板60Dに対する面積効率が良い。したがって、電子回路モジュール10Dは、小型化を実現できる。
 また、複数の電力変換ユニット50は、複数のプロセッサユニット20、複数のメモリ30、および、複数の光電変換ユニット40の配置領域の角部に配置される。したがって、複数の電力変換ユニット50の熱が複数のプロセッサユニット20に与える影響を抑制し、電子回路モジュール10Dは、この熱を外部に放出しやすい。
 [第6の実施形態]
 本発明の第6の実施形態に係る電子回路モジュールについて、図を参照して説明する。図9(A)は、第6の実施形態に係る電子回路モジュールの構成を示す平面図であり、図9(B)は、第6の実施形態に係る電子回路モジュールにおけるデータ通信系の配線パターンの一例を示す図であり、図9(C)は、第6の実施形態に係る電子回路モジュールにおける電力供給系の配線パターンの一例を示す図である。
 図9(A)、図9(B)、図9(C)に示すように、第6の実施形態に係る電子回路モジュール10Eは、第4の実施形態に係る電子回路モジュール10Cに対して、各構成要素の配置パターン、配線パターンが異なる。電子回路モジュール10Eの他の構成は、電子回路モジュール10Cと同様であり、同様の箇所の説明は省略する。
 複数のメモリ30は、パッケージ基板60Eの第1方向(図のx軸方向)において、複数のプロセッサユニット20の配置領域を間に挟んで両側に配置される。複数の光電変換ユニット40は、パッケージ基板60Eの第2方向(図のy軸方向)において、複数のプロセッサユニット20の配置領域を間に挟んで両側に配置される。
 複数の電力変換ユニット50E1は、第2方向に並ぶ複数のメモリ30の間に配置され、隣接および近接する。複数の電力変換ユニット50E2は、第1方向に並ぶ複数の光電変換ユニット40の間に配置され、隣接および近接する。
 複数のプロセッサユニット20と複数のメモリ30とは、第1方向において隣接し、近接する。複数のプロセッサユニット20と複数の光電変換ユニット40とは、第2方向において隣接し、近接する。複数のプロセッサユニット20と複数の電力変換ユニット50E1とは、第1方向において隣接し、近接する。複数のプロセッサユニット20と複数の電力変換ユニット50E2とは、第2方向において隣接し、近接する。
 このような構成によって、図9(B)に示すように、電子回路モジュール10Eは、データ伝送ラインLopおよび情報処理バスLpmを短くできる。また、電子回路モジュール10Eは、データ伝送ラインLopおよび情報処理バスLpmの配線を簡素な構成および容易にできる。したがって、電子回路モジュール10Eは、データ伝送ラインLopおよび情報処理バスLpmによる伝送損失や遅延を抑制できる。
 また、複数の電力変換ユニット50E1,50E2は、それぞれに、プロセッサユニット20、メモリ30、および、光電変換ユニット40に隣接または近接する。したがって、図9(C)に示すように、電子回路モジュール10Eは、電力変換ユニット50E1、50E2からのプロセッサ用電源供給ラインLpwp、メモリ用電源供給ラインLpwm、光電変換ユニット用電源供給ラインLpwoを短くでき、簡素な構成を実現できる。したがって、電子回路モジュール10Eは、電力供給効率を高くできる。
 また、この構成では、複数のメモリ30、複数の光電変換ユニット40、および、複数の電力変換ユニット50E1、50E2の配置の対称性が良い。電子回路モジュール10Eは、データ伝送ラインLop、情報処理バスLpm、プロセッサ用電源供給ラインLpwp、メモリ用電源供給ラインLpwm、光電変換ユニット用電源供給ラインLpwoの配線パターンが設計し易い構成を実現できる。
 また、複数のメモリ30は電力変換ユニット50E1の両側に配置され、複数の光電変換ユニット40は、電力変換ユニット50E2の両側に配置される。これにより、電子回路モジュール10Eは、複数のメモリ30および複数の光電変換ユニット40への電力供給を対称化できる。
 さらに、電子回路モジュール10Eは、電力変換ユニット50E1から複数のメモリ30への電力供給と、電力変換ユニット50E2から複数の光電変換ユニット40への電力供給を分離でき、離間できる。これにより、電子回路モジュール10Eは、これらの電力供給ライン(メモリ用電源供給ラインLpwmと光電変換ユニット用電源供給ラインLpwo)間での干渉を抑制できる。
 さらに、電子回路モジュール10Eは、光電変換ユニット用電源供給ラインLpwoを他の電源供給ラインから分離でき、光電変換ユニット用電源供給ラインLpwoへのノイズの重畳を抑制できる。
 [第7の実施形態]
 本発明の第7の実施形態に係る電子回路モジュールについて、図を参照して説明する。図10(A)は、第7の実施形態に係る電子回路モジュールの構成を示す平面図であり、図10(B)は、第7の実施形態に係る電子回路モジュールにおけるデータ通信系の配線パターンの一例を示す図であり、図10(C)は、第7の実施形態に係る電子回路モジュールにおける電力供給系の配線パターンの一例を示す図である。
 図10(A)、図10(B)、図10(C)に示すように、第7の実施形態に係る電子回路モジュール10Fは、第4の実施形態に係る電子回路モジュール10Cに対して、各構成要素の配置パターン、配線パターンが異なる。電子回路モジュール10Fの他の構成は、電子回路モジュール10Cと同様であり、同様の箇所の説明は省略する。
 電力変換ユニット50は、パッケージ基板60Fの第1面の中央に配置される。複数のプロセッサユニット20は、電力変換ユニット50を囲む位置に配置される。複数のプロセッサユニット20は、電力変換ユニット50に隣接し、近接する。
 複数のメモリ30は、パッケージ基板60Fの第1方向(図のx軸方向)において、電力変換ユニット50および複数のプロセッサユニット20の配置領域を間に挟んで両側に配置される。複数の光電変換ユニット40は、パッケージ基板60Fの第2方向(図のy軸方向)において、電力変換ユニット50および複数のプロセッサユニット20の配置領域を間に挟んで両側に配置される。
 複数のプロセッサユニット20と複数のメモリ30とは、第1方向において隣接し、近接する。複数のプロセッサユニット20と複数の光電変換ユニット40とは、第2方向において隣接し、近接する。
 このような構成によって、図9(B)に示すように、電子回路モジュール10Fは、データ伝送ラインLopおよび情報処理バスLpmを短くできる。また、電子回路モジュール10Fは、データ伝送ラインLopおよび情報処理バスLpmの配線を簡素な構成および容易にできる。したがって、電子回路モジュール10Fは、データ伝送ラインLopおよび情報処理バスLpmによる伝送損失や遅延を抑制できる。
 また、この構成では、複数のメモリ30、複数の光電変換ユニット40、および、複数の電力変換ユニット50の配置の対称性が良い。これにより、電子回路モジュール10Eは、データ伝送ラインLop、情報処理バスLpmの配線パターンが設計し易い構成を実現できる。さらに、電力変換ユニット50が中心にあることで、プロセッサ用電源供給ラインLpwp、メモリ用電源供給ラインLpwm、光電変換ユニット用電源供給ラインLpwoの配線パターンに対して多様性を実現できる。すなわち、複数のメモリ30、複数の光電変換ユニット40、および、複数の電力変換ユニット50の電源仕様に応じて、それぞれへの電源供給ラインを別々にしたり、共通化したりできる。それぞれを別のラインにする場合、電子回路モジュール10Fは、複数のメモリ30、複数の光電変換ユニット40、および、複数の電力変換ユニット50に対する電源品質を向上できる。それぞれの電源供給ラインを共通化する場合、電子回路モジュール10Fは、電源供給用のスペースを小さくでき、小型化を実現できる。
 また、この構成では、電力変換ユニット50と複数のプロセッサユニット20とが隣接且つ近接している。したがって、電子回路モジュール10Fは、プロセッサ用電源供給ラインLpwpを短くでき、複数のプロセッサユニット20への電力供給効率を高くできる。
 [第8の実施形態]
 本発明の第8の実施形態に係る電子回路モジュールについて、図を参照して説明する。図11(A)、図11(B)は、第8の実施形態に係る電子回路モジュールの構成を示す平面図であり、図11(A)は第1面側、図11(B)は第2面側を示す。図12(A)は、第8の実施形態に係る電子回路モジュールにおけるデータ通信系の配線パターンの一例を示す図であり、図12(B)は、第8の実施形態に係る電子回路モジュールにおける電力供給系の配線パターンの一例を示す図である。
 図11(A)、図11(B)に示すように、第8の実施形態に係る電子回路モジュール10Gは、第4の実施形態に係る電子回路モジュール10Cに対して、各構成要素の配置パターン、配線パターンが異なる。電子回路モジュール10Gの他の構成は、電子回路モジュール10Cと同様であり、同様の箇所の説明は省略する。
 複数のプロセッサユニット20は、パッケージ基板60Gの第1面の中央に配置される。複数のメモリ30は、パッケージ基板60Gの第1方向(図のx軸方向)において、複数のプロセッサユニット20の配置領域を間に挟んで両側に配置される。複数の光電変換ユニット40は、パッケージ基板60Gの第2方向(図のy軸方向)において、複数のプロセッサユニット20の配置領域を間に挟んで両側に配置される。
 複数のプロセッサユニット20と複数のメモリ30とは、第1方向において隣接し、近接する。複数のプロセッサユニット20と複数の光電変換ユニット40とは、第2方向において隣接し、近接する。
 電力変換ユニット50は、パッケージ基板60Gの第2面に配置される。第1面および第2面に直交する方向(図のz軸方向)に視て、電力変換ユニット50は、複数のプロセッサユニット20、複数のメモリ30、および、複数の光電変換ユニット40に重なっている。
 このような構成によって、図12(A)に示すように、電子回路モジュール10Gは、データ伝送ラインLopおよび情報処理バスLpmを短くできる。また、電子回路モジュール10Gは、データ伝送ラインLopおよび情報処理バスLpmの配線を簡素な構成および容易にできる。したがって、電子回路モジュール10Gは、データ伝送ラインLopおよび情報処理バスLpmによる伝送損失や遅延を抑制できる。
 また、この構成では、プロセッサ用電源供給ラインLpwp、メモリ用電源供給ラインLpwm、光電変換ユニット用電源供給ラインLpwoは、パッケージ基板60Gの厚み方向に延びる導体パターンによって形成される。これにより、電子回路モジュール10Gは、プロセッサ用電源供給ラインLpwp、メモリ用電源供給ラインLpwm、光電変換ユニット用電源供給ラインLpwoを短く形成できる。したがって、電子回路モジュール10Gは、電源供給効率を高くできる。
 さらに、この構成では、電力変換ユニット50の面積を大きくできる。したがって、電子回路モジュール10Gは、電力変換ユニット50の設計自由度を高くできる。
 [第9の実施形態]
 本発明の第9の実施形態に係る電子回路モジュールについて、図を参照して説明する。図13(A)は、第9の実施形態に係る電子回路モジュールの構成を示す平面図であり、図13(B)、図13(C)は、図13(A)のC-C’断面のそれぞれ異なる例を示す図である。なお、図13(A)は、放熱板および熱伝導ジェルを取り除いた状態を示す。図14(A)は、第9の実施形態に係る電子回路モジュールにおけるデータ通信系の配線パターンの一例を示す図であり、図14(B)は、第9の実施形態に係る電子回路モジュールにおける電力供給系の配線パターンの一例を示す図である。
 図13(A)、図13(B)、図13(C)に示すように、第9の実施形態に係る電子回路モジュール10Hは、第4の実施形態に係る電子回路モジュール10Cに対して、各構成要素の配置パターン、配線パターンが異なる。電子回路モジュール10Hの他の構成は、電子回路モジュール10Cと同様であり、同様の箇所の説明は省略する。
 複数のプロセッサユニット20は、パッケージ基板60Hの第1面の中央に配置される。複数の光電変換ユニット40は、複数のプロセッサユニット20の配置領域の周囲に配置される。複数のプロセッサユニット20の配置領域と複数の光電変換ユニット40とは、第1面に平行な方向に隣接し、近接している。
 複数の電力変換ユニット50は、複数の光電変換ユニット40の配置によって形成される外形の角部に配置される。
 メモリ30は、複数のプロセッサユニット20の配置領域に重なるように、複数のプロセッサユニット20の上方に配置される。言い換えれば、メモリ30は、複数のプロセッサユニット20を挟んでパッケージ基板60Hと対向する位置に配置される。メモリ30と複数のプロセッサユニット20とは、第1面に直交する方向に隣接し、近接している。
 このような構成によって、図14(A)に示すように、電子回路モジュール10Hは、データ伝送ラインLopおよび情報処理バスLpmを短くできる。また、電子回路モジュール10Hでは、データ伝送ラインLopおよび情報処理バスLpmの主たる配線方向が直交しており、配線が容易になり、結果として、それぞれの配線を短くできる。したがって、電子回路モジュール10Hは、データ伝送ラインLopおよび情報処理バスLpmによる伝送損失や遅延を抑制できる。
 また、複数の電力変換ユニット50は、電子回路モジュール10Hの平面視において、それぞれに、プロセッサユニット20、メモリ30、および、光電変換ユニット40に隣接または近接する。したがって、図14(B)に示すように、電子回路モジュール10Hは、電力変換ユニット50からのプロセッサ用電源供給ラインLpwp、メモリ用電源供給ラインLpwm、光電変換ユニット用電源供給ラインLpwoを短くでき、簡素な構成を実現できる。したがって、電子回路モジュール10Hは、電力供給効率を高くできる。
 また、この構成では、メモリ30の平面面積を大きくできる。したがって、電子回路モジュール10Hは、全体形状を大きくすることなく、メモリ30の容量を大きくできる。
 また、図13(B)、図13(C)に示すように、この構成では、複数の光電変換ユニット40の高さによって、放熱板の構成を適正に調整できる。
 図13(B)の場合、光電変換ユニット40の高さは、プロセッサユニット20の高さとメモリ30の高さと略同じである。この場合、電子回路モジュール10Hは、放熱板71Hを備える。放熱板71Hは、複数の光電変換ユニット40とメモリ30に重なり、熱伝導ジェル710Hを介して複数の光電変換ユニット40およびメモリ30に熱的に接続する。
 図13(C)の場合、光電変換ユニット40の高さは、プロセッサユニット20の高さとほぼ同じである。この場合、電子回路モジュール10Hは、放熱板71Hと放熱板72Hとを備える。放熱板71Hは、メモリ30に重なり、熱伝導ジェル710Hを介してメモリ30に熱的に接続する。放熱板72Hは、複数の光電変換ユニット40に重なり、熱伝導ジェル720Hを介して複数の光電変換ユニット40に熱的に接続する。
 <1> 電力供給源を備えるマザーボード  に実装される電子回路モジュールであって、
 光信号と電気信号とを変換する光電変換ユニットと、
 前記電気信号を用いて演算処理を行うプロセッサユニットと、
 前記電力供給源からの電力を変換して、前記光電変換ユニットおよび前記プロセッサユニットに電力供給する電力変換ユニットと、
 前記光電変換ユニット、前記プロセッサユニット、および、前記電力変換ユニットが実装されたパッケージ基板と、
 を備え、
 前記光電変換ユニット、前記プロセッサユニット、および、前記電力変換ユニットは、前記パッケージ基板に形成された導体パターンのみを通じて接続されている、電子回路モジュール。
 <2> 前記パッケージ基板は、
  前記電力変換ユニットが実装される第1基板と、
  前記光電変換ユニットおよび前記プロセッサユニットが実装される、前記第1基板に実装される第2基板と、
 を備える、<1>に記載の電子回路モジュール。
 <3> 電力供給源を備えるマザーボードに実装される電子回路モジュールであって、
 光信号と電気信号とを変換する光電変換ユニットと、
 前記電気信号を用いて演算処理を行うプロセッサユニットと、
 前記電力供給源からの電力を変換して、前記光電変換ユニットおよび前記プロセッサユニットに電力供給する電力変換ユニットと、
 前記光電変換ユニット、前記プロセッサユニット、および、前記電力変換ユニットが実装され、前記マザーボードよりも高周波数信号の損失が低い部分を有するパッケージ基板と、
 を備える、電子回路モジュール。
 <4> 前記パッケージ基板は、
  前記電力変換ユニットが実装される第1基板と、
  前記光電変換ユニットおよび前記プロセッサユニットが実装され、前記第1基板に実装される第2基板と、
 を備え、
 前記第1基板の前記高周波数信号の損失は、前記マザーボードの高周波数信号の損失よりも低い、<3>の電子回路モジュール。
 <5> 前記光電変換ユニットと前記プロセッサユニットは、共通の前記電力変換ユニットから電力供給される、<1>乃至<4>のいずれかの電子回路モジュール。
 <6> 前記光電変換ユニットと前記プロセッサユニットは、1つの前記電力変換ユニットから電力供給される、<5>の電子回路モジュール。
 <7> 前記光電変換ユニットおよび前記プロセッサユニットは、共有の放熱板に熱的に接続している、<1>乃至<6>のいずれかの電子回路モジュール。
 <8> 前記光電変換ユニット、前記プロセッサユニット、および、前記電力変換ユニットは、前記共有の放熱板に熱的に接続している、<7>の電子回路モジュール。
 <9> 前記パッケージ基板は、前記マザーボードに対して着脱が可能な構造で実装される、<1>乃至<8>のいずれかの電子回路モジュール。
 <10> 前記パッケージ基板は、前記マザーボードへの実装面に、ソケット機構を備える、<9>の電子回路モジュール。
 <11> 前記光電変換ユニット、前記プロセッサユニット、および、前記電力変換ユニットの少なくとも1つは、前記パッケージ基板に対して着脱が可能な構造で実装される、<9>または<10>の電子回路モジュール。
 <12> 前記プロセッサユニットに接続するメモリを備え、
 前記光電変換ユニット、前記プロセッサユニット、前記電力変換ユニット、および、前記メモリは、前記パッケージ基板の第1面に実装され、
 前記プロセッサユニットは、前記第1面の中央に配置され、
 前記メモリと前記電力変換ユニットとは、前記第1面に平行な第1方向において、前記プロセッサユニットを間に挟んで配置され、
 複数の前記光電変換ユニットは、前記第1面に平行で前記第1方向に直交する第2方向において、前記プロセッサユニットを間に挟んで配置される、<1>乃至<4>のいずれかの電子回路モジュール。
 <13> 前記プロセッサユニットに接続するメモリを備え、
 前記光電変換ユニット、前記プロセッサユニット、前記電力変換ユニット、および、前記メモリは、前記パッケージ基板の第1面に実装され、
 前記プロセッサユニットは、前記第1面の中央に配置され、
 複数の前記メモリは、前記第1面に平行な第1方向において、前記プロセッサユニットを間に挟んで配置され、
 複数の前記光電変換ユニットは、前記第1面に平行で前記第1方向に直交する第2方向において、前記プロセッサユニットを間に挟んで配置され、
 複数の前記電力変換ユニットは、前記複数のメモリおよび前記複数の光電変換ユニットの配置によって形成される外形の角部に配置される、<1>乃至<4>のいずれかの電子回路モジュール。
 <14> 前記プロセッサユニットに接続するメモリを備え、
 前記光電変換ユニット、前記プロセッサユニット、前記電力変換ユニット、および、前記メモリは、前記パッケージ基板の第1面に実装され、
 前記プロセッサユニットは、前記第1面の中央に配置され、
 複数の前記メモリは、前記第1面に平行な第1方向において、前記プロセッサユニットを間に挟んで配置され、
 複数の前記光電変換ユニットは、前記第1面に平行で前記第1方向に直交する第2方向において、前記プロセッサユニットを間に挟んで配置され、
 複数の前記電力変換ユニットは、前記複数のメモリの間、および、前記複数の光電変換ユニットの間に配置される、<1>乃至<4>のいずれかの電子回路モジュール。
 <15> 前記プロセッサユニットに接続するメモリを備え、
 前記光電変換ユニット、前記プロセッサユニット、前記電力変換ユニット、および、前記メモリは、前記パッケージ基板の第1面に実装され、
 前記電力変換ユニットは、前記第1面の中央に配置され、
 複数の前記プロセッサユニットは、前記電力変換ユニットを囲む位置に配置され、
 複数の前記メモリは、前記第1面に平行な第1方向において、前記プロセッサユニットおよび前記電力変換ユニットを間に挟んで配置され、
 複数の前記光電変換ユニットは、前記第1面に平行で前記第1方向に直交する第2方向において、前記プロセッサユニットおよび前記電力変換ユニットを間に挟んで配置される、<1>乃至<4>のいずれかの電子回路モジュール。
 <16> 前記プロセッサユニットに接続するメモリを備え、
 前記光電変換ユニット、前記プロセッサユニット、および、前記メモリは、前記パッケージ基板の第1面に実装され、
 前記電力変換ユニットは、前記パッケージ基板の第2面に実装され、
 前記第1面および前記第2面に直交する方向に視て、
 前記電力変換ユニットは、前記光電変換ユニット、前記プロセッサユニット、および、前記メモリに少なくとも一部が重なっている、<1>乃至<4>のいずれかの電子回路モジュール。
 <17> 前記プロセッサユニットに接続するメモリを備え、
 前記光電変換ユニット、前記プロセッサユニット、および、前記電力変換ユニットは、前記パッケージ基板の第1面に実装され、
 前記プロセッサユニットは、前記第1面の中央に配置され、
 複数の前記光電変換ユニットは、前記プロセッサユニットを囲む位置に配置され、
 複数の前記電力変換ユニットは、前記複数の光電変換ユニットの配置によって形成される外形の角部に配置される、
 前記メモリは、前記第1面に直交する方向に視て、前記プロセッサユニットに重なり、前記プロセッサユニットを挟んで前記パッケージ基板と対向する位置に配置される、<1>乃至<4>のいずれかの電子回路モジュール。
10、10A、10B、10C、10D、10E、10F、10G、10H:電子回路モジュール
20:プロセッサユニット
30:メモリ
40:光電変換ユニット
50、51B、50E1、50E2:電力変換ユニット
52:外部電源用コネクタ
60、60B、60C、60D、60E、60F、60G、60H:パッケージ基板
61、61B:第1基板
62:第2基板
71、71B、71H、72B、72H:放熱板
91:マザーボード
92P:電力ライン
93:実装用ランド
94:ソケット機構
652:電源入力ライン
710、710B、710H、720B、720H:熱伝導ジェル
BP61:外部接続端子
Lop:データ伝送ライン
Lpm:情報処理バス
Lpw:電源供給ライン
Lpwm:メモリ用電源供給ライン
Lpwo:光電変換ユニット用電源供給ライン
Lpwp:プロセッサ用電源供給ライン
OTL:光導波路
PL:電源ケーブル

Claims (17)

  1.  電力供給源を備えるマザーボードに実装される電子回路モジュールであって、
     光信号と電気信号とを変換する光電変換ユニットと、
     前記電気信号を用いて演算処理を行うプロセッサユニットと、
     前記電力供給源からの電力を変換して、前記光電変換ユニットおよび前記プロセッサユニットに電力供給する電力変換ユニットと、
     前記光電変換ユニット、前記プロセッサユニット、および、前記電力変換ユニットが実装されたパッケージ基板と、
     を備え、
     前記光電変換ユニット、前記プロセッサユニット、および、前記電力変換ユニットは、前記パッケージ基板に形成された導体パターンのみを通じて接続されている、
     電子回路モジュール。
  2.  前記パッケージ基板は、
      前記電力変換ユニットが実装される第1基板と、
      前記光電変換ユニットおよび前記プロセッサユニットが実装される、前記第1基板に実装される第2基板と、
     を備える、
     請求項1に記載の電子回路モジュール。
  3.  電力供給源を備えるマザーボードに実装される電子回路モジュールであって、
     光信号と電気信号とを変換する光電変換ユニットと、
     前記電気信号を用いて演算処理を行うプロセッサユニットと、
     前記電力供給源からの電力を変換して、前記光電変換ユニットおよび前記プロセッサユニットに電力供給する電力変換ユニットと、
     前記光電変換ユニット、前記プロセッサユニット、および、前記電力変換ユニットが実装され、前記マザーボードよりも高周波数信号の損失が低い部分を有するパッケージ基板と、
     を備える、電子回路モジュール。
  4.  前記パッケージ基板は、
      前記電力変換ユニットが実装される第1基板と、
      前記光電変換ユニットおよび前記プロセッサユニットが実装され、前記第1基板に実装される第2基板と、
     を備え、
     前記第1基板の前記高周波数信号の損失は、前記マザーボードの高周波数信号の損失よりも低い、
     請求項3に記載の電子回路モジュール。
  5.  前記光電変換ユニットと前記プロセッサユニットは、共通の前記電力変換ユニットから電力供給される、
     請求項1乃至請求項4のいずれかに記載の電子回路モジュール。
  6.  前記光電変換ユニットと前記プロセッサユニットは、1つの前記電力変換ユニットから電力供給される、
     請求項5に記載の電子回路モジュール。
  7.  前記光電変換ユニットおよび前記プロセッサユニットは、共有の放熱板に熱的に接続している、
     請求項1乃至請求項4のいずれかに記載の電子回路モジュール。
  8.  前記光電変換ユニット、前記プロセッサユニット、および、前記電力変換ユニットは、前記共有の放熱板に熱的に接続している、
     請求項7に記載の電子回路モジュール。
  9.  前記パッケージ基板は、前記マザーボードに対して着脱が可能な構造で実装される、
     請求項1乃至請求項4のいずれかに記載の電子回路モジュール。
  10.  前記パッケージ基板は、前記マザーボードへの実装面に、ソケット機構を備える、
     請求項9に記載の電子回路モジュール。
  11.  前記光電変換ユニット、前記プロセッサユニット、および、前記電力変換ユニットの少なくとも1つは、前記パッケージ基板に対して着脱が可能な構造で実装される、
     請求項9に記載の電子回路モジュール。
  12.  前記プロセッサユニットに接続するメモリを備え、
     前記光電変換ユニット、前記プロセッサユニット、前記電力変換ユニット、および、前記メモリは、前記パッケージ基板の第1面に実装され、
     前記プロセッサユニットは、前記第1面の中央に配置され、
     前記メモリと前記電力変換ユニットとは、前記第1面に平行な第1方向において、前記プロセッサユニットを間に挟んで配置され、
     複数の前記光電変換ユニットは、前記第1面に平行で前記第1方向に直交する第2方向において、前記プロセッサユニットを間に挟んで配置される、
     請求項1乃至請求項4のいずれかに記載の電子回路モジュール。
  13.  前記プロセッサユニットに接続するメモリを備え、
     前記光電変換ユニット、前記プロセッサユニット、前記電力変換ユニット、および、前記メモリは、前記パッケージ基板の第1面に実装され、
     前記プロセッサユニットは、前記第1面の中央に配置され、
     複数の前記メモリは、前記第1面に平行な第1方向において、前記プロセッサユニットを間に挟んで配置され、
     複数の前記光電変換ユニットは、前記第1面に平行で前記第1方向に直交する第2方向において、前記プロセッサユニットを間に挟んで配置され、
     複数の前記電力変換ユニットは、前記複数のメモリおよび前記複数の光電変換ユニットの配置によって形成される外形の角部に配置される、
     請求項1乃至請求項4のいずれかに記載の電子回路モジュール。
  14.  前記プロセッサユニットに接続するメモリを備え、
     前記光電変換ユニット、前記プロセッサユニット、前記電力変換ユニット、および、前記メモリは、前記パッケージ基板の第1面に実装され、
     前記プロセッサユニットは、前記第1面の中央に配置され、
     複数の前記メモリは、前記第1面に平行な第1方向において、前記プロセッサユニットを間に挟んで配置され、
     複数の前記光電変換ユニットは、前記第1面に平行で前記第1方向に直交する第2方向において、前記プロセッサユニットを間に挟んで配置され、
     複数の前記電力変換ユニットは、前記複数のメモリの間、および、前記複数の光電変換ユニットの間に配置される、
     請求項1乃至請求項4のいずれかに記載の電子回路モジュール。
  15.  前記プロセッサユニットに接続するメモリを備え、
     前記光電変換ユニット、前記プロセッサユニット、前記電力変換ユニット、および、前記メモリは、前記パッケージ基板の第1面に実装され、
     前記電力変換ユニットは、前記第1面の中央に配置され、
     複数の前記プロセッサユニットは、前記電力変換ユニットを囲む位置に配置され、
     複数の前記メモリは、前記第1面に平行な第1方向において、前記プロセッサユニットおよび前記電力変換ユニットを間に挟んで配置され、
     複数の前記光電変換ユニットは、前記第1面に平行で前記第1方向に直交する第2方向において、前記プロセッサユニットおよび前記電力変換ユニットを間に挟んで配置される、
     請求項1乃至請求項4のいずれかに記載の電子回路モジュール。
  16.  前記プロセッサユニットに接続するメモリを備え、
     前記光電変換ユニット、前記プロセッサユニット、および、前記メモリは、前記パッケージ基板の第1面に実装され、
     前記電力変換ユニットは、前記パッケージ基板の第2面に実装され、
     前記第1面および前記第2面に直交する方向に視て、
     前記電力変換ユニットは、前記光電変換ユニット、前記プロセッサユニット、および、前記メモリに少なくとも一部が重なっている、
     請求項1乃至請求項4のいずれかに記載の電子回路モジュール。
  17.  前記プロセッサユニットに接続するメモリを備え、
     前記光電変換ユニット、前記プロセッサユニット、および、前記電力変換ユニットは、前記パッケージ基板の第1面に実装され、
     前記プロセッサユニットは、前記第1面の中央に配置され、
     複数の前記光電変換ユニットは、前記プロセッサユニットを囲む位置に配置され、
     複数の前記電力変換ユニットは、前記複数の光電変換ユニットの配置によって形成される外形の角部に配置される、
     前記メモリは、前記第1面に直交する方向に視て、前記プロセッサユニットに重なり、前記プロセッサユニットを挟んで前記パッケージ基板と対向する位置に配置される、
     請求項1乃至請求項4のいずれかに記載の電子回路モジュール。
PCT/JP2023/020419 2022-09-02 2023-06-01 電子回路モジュール WO2024047981A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022139683 2022-09-02
JP2022-139683 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024047981A1 true WO2024047981A1 (ja) 2024-03-07

Family

ID=90099266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020419 WO2024047981A1 (ja) 2022-09-02 2023-06-01 電子回路モジュール

Country Status (1)

Country Link
WO (1) WO2024047981A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340414A (ja) * 1998-05-28 1999-12-10 Nec Corp マイクロ波集積回路マルチチップモジュール、マイクロ波集積回路マルチチップモジュールの実装構造
JP2015103764A (ja) * 2013-11-28 2015-06-04 株式会社日立製作所 マルチチップモジュール
JP2018195723A (ja) * 2017-05-18 2018-12-06 富士通株式会社 光モジュールおよびその製造方法並びに光トランシーバ
US20200350255A1 (en) * 2019-02-19 2020-11-05 Faraday Semi, Inc. Chip embedded integrated voltage regulator
WO2021158500A1 (en) * 2020-02-03 2021-08-12 Lightmatter, Inc. Photonic wafer communication systems and related packages

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340414A (ja) * 1998-05-28 1999-12-10 Nec Corp マイクロ波集積回路マルチチップモジュール、マイクロ波集積回路マルチチップモジュールの実装構造
JP2015103764A (ja) * 2013-11-28 2015-06-04 株式会社日立製作所 マルチチップモジュール
JP2018195723A (ja) * 2017-05-18 2018-12-06 富士通株式会社 光モジュールおよびその製造方法並びに光トランシーバ
US20200350255A1 (en) * 2019-02-19 2020-11-05 Faraday Semi, Inc. Chip embedded integrated voltage regulator
WO2021158500A1 (en) * 2020-02-03 2021-08-12 Lightmatter, Inc. Photonic wafer communication systems and related packages

Similar Documents

Publication Publication Date Title
TWI528646B (zh) 具有接點重疊貫孔之連接器系統
TWI510143B (zh) High frequency circuit module
US9699887B2 (en) Circuit board and electronic device
JP6151794B2 (ja) 回路基板、電子部品収納用パッケージおよび電子装置
US20200045815A1 (en) Circuit board and electronic device including the same
JP5533881B2 (ja) 電子装置及びノイズ抑制方法
US20160021748A1 (en) Wiring board structure and method of manufacturing wiring board structure
JP4630409B2 (ja) 光電子集積回路装置
US7438558B1 (en) Three-dimensional stackable die configuration for an electronic circuit board
US20120120614A1 (en) Wiring board
WO2024047981A1 (ja) 電子回路モジュール
JP6612008B1 (ja) 電子機器
US10321555B1 (en) Printed circuit board based RF circuit module
CN115442953A (zh) 转接板、中框结构和电子装置
US20220021102A1 (en) Wireless communication module
JP6949239B2 (ja) 空中線
JP7396461B2 (ja) 回路基板モジュール
US20220386508A1 (en) Electronic component
WO2018168336A1 (ja) 信号伝送モジュール
WO2021186797A1 (ja) 回路基板モジュール
JP7412644B2 (ja) アンテナ装置
WO2024202552A1 (ja) インターポーザ及び回路モジュール
JP7537629B2 (ja) アンテナモジュール
TWI845391B (zh) 電連接器及電性連接裝置
JP7060426B2 (ja) 基板の伝熱構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859751

Country of ref document: EP

Kind code of ref document: A1