WO2024046441A1 - 一种封装结构、 led 装置及封装方法 - Google Patents

一种封装结构、 led 装置及封装方法 Download PDF

Info

Publication number
WO2024046441A1
WO2024046441A1 PCT/CN2023/116314 CN2023116314W WO2024046441A1 WO 2024046441 A1 WO2024046441 A1 WO 2024046441A1 CN 2023116314 W CN2023116314 W CN 2023116314W WO 2024046441 A1 WO2024046441 A1 WO 2024046441A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
layer
transparent cover
circuit
Prior art date
Application number
PCT/CN2023/116314
Other languages
English (en)
French (fr)
Inventor
成鹏
柯有谱
刘杰林
孙平如
黄明
邢美正
黎健任
张妮
Original Assignee
惠州市聚飞光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211052295.8A external-priority patent/CN115377270A/zh
Priority claimed from CN202320148419.6U external-priority patent/CN219246707U/zh
Priority claimed from CN202310461846.4A external-priority patent/CN116581224A/zh
Priority claimed from CN202310471905.6A external-priority patent/CN116469988A/zh
Priority claimed from CN202321351736.4U external-priority patent/CN219610991U/zh
Priority claimed from CN202321364282.4U external-priority patent/CN220306278U/zh
Priority claimed from CN202310641247.0A external-priority patent/CN116682921A/zh
Priority claimed from CN202310953283.0A external-priority patent/CN117059612A/zh
Priority claimed from CN202310957094.0A external-priority patent/CN117059724A/zh
Application filed by 惠州市聚飞光电有限公司 filed Critical 惠州市聚飞光电有限公司
Publication of WO2024046441A1 publication Critical patent/WO2024046441A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings

Definitions

  • the invention belongs to the field of semiconductor packaging technology, and in particular relates to a packaging structure, an LED device and a packaging method.
  • UV-LED In the UV-LED package, the air tightness is poor and the amount of glue used is difficult to calculate, which can easily lead to the failure of the UV-LED device. There are also problems such as high light loss rate and weak welding. Secondly, in the use of UV-LED, due to Ultraviolet rays are invisible to the naked eye, and it is difficult for people to tell whether UV-LED is working;
  • LED products are prone to problems with heat dissipation during operation.
  • Heat dissipation devices are usually added.
  • an insulating layer is required to prevent short circuits.
  • the insulating layer is easy to fall off, causing a short circuit, and the series and parallel circuits of the substrate have been fixed. Applicability poor;
  • 3D TOF Three Dimensions Time of flight
  • the current packaging structure of light-emitting element device mainly includes substrate, package, light transmission and a light-emitting element, wherein the light-transmitting component includes a light-transmitting layer and a light-diffusing layer.
  • the light-diffusing layer includes a light-diffusing structure to refract the laser into a large-angle beam to protect the human eye. Therefore, a photoelectric device is installed in the internal receiving cavity. Detector, but the light uniformity layer is easy to fall off. The photoelectric detector can detect whether the light uniformity layer is peeled off, but it cannot accurately detect whether some areas of the light uniformity layer are damaged. As a result, the photoelectric detector cannot reliably guarantee the safety of the human eye.
  • the object of the present invention is to overcome at least one of the deficiencies of the above-mentioned prior art, and provide a packaging structure, an LED device and a packaging method, which have better air tightness and stability, while ensuring the reliability of the packaging structure and improving the semiconductor device. Sealing effect, and can improve the light extraction rate of semiconductor devices.
  • the technical solution of the present invention is: a packaging structure, including a substrate, a light-emitting element, a transparent cover and a dam connected to the substrate.
  • the light-emitting element is an LED chip or a laser chip; the substrate has opposite front and back sides, so The light-emitting element is fixed on the front surface of the substrate; the transparent cover is connected to the dam.
  • the enclosure dam is surrounded by a transparent cover and the base plate to form an installation area;
  • the enclosure dam includes an outer retaining wall and an inner retaining wall, and there is a groove between the outer retaining wall and the inner retaining wall.
  • the packaging structure also includes a seal disposed in the groove, the transparent cover covers the inner retaining wall and the installation area, and the transparent cover is inserted into the groove and connected with the The sealing members are connected;
  • the packaging structure also includes a protective member disposed at the edge of the transparent cover, the protective member having a blocking portion for blocking the gap between the transparent cover and the outer retaining wall , a resisting portion connected to the blocking portion and capable of abutting against the upper end of the transparent cover.
  • a soldering layer is provided on the bottom of the transparent cover, and a first circuit layer is provided on the front side of the substrate.
  • the first circuit layer includes a first circuit pattern for connecting with the soldering layer, and the The first circuit layer also includes a pad for soldering to the LED chip.
  • a sealed packaging cavity is formed between the transparent cover and the substrate. The LED chip is disposed in the packaging cavity and welded to the LED chip. The soldering pad, the soldering layer and the first circuit pattern are soldered.
  • the dam has an inner wall, and at least a portion located above the LED chip is provided with a mounting groove that passes through the top of the dam, and the mounting groove has a groove bottom surface and groove side walls;
  • the packaging structure further It includes a positioning block, and the positioning block is arranged in the installation groove; the bottom surface of the transparent cover is in contact with the bottom surface of the installation groove, and the side surface of the transparent cover is in contact with a plurality of the positioning blocks, so The side surface of the transparent cover, the bottom surface of the installation groove, and the side walls of the groove form a sealing groove;
  • the packaging structure also includes sealant, and the sealant is disposed in the sealing groove and does not cover the transparent sealing groove. build.
  • a first circuit layer is provided on the front side of the substrate; the light-emitting element is provided on the front side of the substrate, and the light-emitting element is connected to the first circuit layer; and the dam is provided on the substrate.
  • the front side of the substrate includes a first part and a second part that are spaced apart from the front side of the substrate.
  • the first part and the second part are respectively configured as a positive conductor and a negative conductor connected to the electrical signal detection module, and the positive conductor and The negative conductor is provided on the periphery of the light-emitting element and the first circuit layer;
  • the transparent cover includes a laminated light-transmitting conductive layer, a uniform light layer and a light-transmitting layer, and the light-transmitting conductive layer is connected to the positive conductor and the first circuit layer. negative conductor.
  • the packaging structure also includes a fluorescent substance.
  • the fluorescent substance is provided on the bracket structure or/and the transparent cover.
  • the fluorescent substance is used to produce visible light through a fluorescent reaction when the light emitted by the LED chip is irradiated. .
  • the substrate is a multi-layer substrate
  • the multi-layer substrate includes:
  • the first substrate has an opposite front and a back.
  • the front of the first substrate is provided with a first circuit layer
  • the back of the first substrate is provided with a second circuit layer.
  • the first circuit layer and the second The circuit layer is conductive, and the first circuit layer includes a first circuit positive electrode and a first circuit negative electrode;
  • An encapsulation body is annular and is disposed on the front side of the first substrate, and the encapsulation body surrounds the periphery of the first line positive electrode and the first line negative electrode;
  • the second substrate is connected to the second circuit layer on the back side of the first substrate through a welding process, and a heat dissipation layer is provided on the back side of the second substrate.
  • a first circuit layer is provided on the front side of the substrate, and the first circuit layer includes a plurality of groups of positive electrode pads and negative electrode pad groups, and a second circuit layer is provided on the back side of the substrate, and the second circuit layer
  • the layer includes a plurality of sets of positive terminals and negative terminal groups corresponding to the positive electrode pads and negative electrode pad groups, and a group of the positive terminals and negative terminals are symmetrically arranged on opposite sides of the back of the substrate; each of the The positive terminals are arranged at linear intervals and equidistantly arranged on the same side of the back of the substrate, and the negative terminals are arranged at linear intervals and equidistantly arranged on the other side of the back of the substrate and face each of the positive terminals one by one, and one
  • the positive electrode pad is electrically connected to one of the positive electrode terminals through a positive electrode conductive hole that penetrates the substrate, and one of the negative electrode pads is electrically connected to one of the negative electrode terminals through a
  • each LED chip is electrically connected to a group of positive electrode pads and negative electrode pads respectively.
  • the present invention also includes a light window assembly, which includes: a transparent cover and a metal tube cap, the metal tube cap is welded to the periphery of the transparent cover, and the transparent cover and metal tube cap are fixed to the In the installation groove, and the bottoms of the transparent cover and the metal tube cap are in contact with the bottom surface of the installation groove, the transparent cover, the metal tube cap, the front side of the base plate and the enclosure dam are formed to accommodate the said
  • the receiving cavity of the LED chip, and the surfaces of the transparent cover and the metal tube cap are enclosed with the wall of the installation groove to form a sealing groove;
  • the packaging structure also includes a sealant, and the sealant is provided on the sealant inside the tank.
  • the inner wall of the dam is coated with a reflective layer for reflecting the light emitted by the light-emitting element, and the inner wall is inclined away from the first end surface in a direction away from the light-emitting element and is in contact with the third end surface.
  • One end face forms an included angle greater than zero and less than 90°.
  • the packaging structure provided by the invention has a fixed amount of packaging glue, good consistency, good air tightness, low light loss rate, firm welding, can distinguish invisible light, and is safe to use.
  • Figure 1 is a schematic structural diagram of an LED packaging structure provided by an embodiment of the present invention.
  • Figure 1-a is another structural schematic diagram of an LED packaging structure provided by an embodiment of the present invention.
  • Figure 1-b is another structural schematic diagram of an LED packaging structure provided by an embodiment of the present invention.
  • Figure 1-c is another structural schematic diagram of an LED packaging structure provided by an embodiment of the present invention.
  • Figure 1-d is another structural schematic diagram of an LED packaging structure provided by an embodiment of the present invention.
  • Figure 1-e is another structural schematic diagram of an LED packaging structure provided by an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a dam in an LED packaging structure provided by an embodiment of the present invention.
  • FIG. 3 is another structural schematic diagram of an LED packaging structure provided by an embodiment of the present invention.
  • Figure 4 is a flow chart of a packaging method for an LED packaging structure provided by an embodiment of the present invention.
  • Figure 5 is a schematic cross-sectional view of an organic packaging structure provided in the prior art
  • Figure 6 is a schematic cross-sectional view of a semi-inorganic packaging structure provided in the prior art
  • Figure 7 is a schematic cross-sectional view of an all-inorganic packaging structure provided in the prior art
  • Figure 8 is a schematic cross-sectional view of an all-inorganic packaging structure provided by an embodiment of the present invention.
  • Figure 9 is a schematic cross-sectional view of an all-inorganic packaging structure provided by an embodiment of the present invention.
  • Figure 10 is a cross-sectional view of an LED packaging structure provided by an embodiment of the present invention.
  • Figure 11 is a top view of the LED packaging structure provided by the embodiment of the present invention.
  • Figure 12 is a cross-sectional view of the LED packaging structure provided by the embodiment of the present invention.
  • Figure 13 is a top view of the LED packaging structure provided by the embodiment of the present invention.
  • Figure 14 is a flow chart of an LED packaging method provided by an embodiment of the present invention.
  • Figure 15 is a flow chart of the steps of preparing a substrate in the LED packaging method provided by the embodiment of the present invention.
  • Figure 16 is a flow chart of the steps of arranging the LED chip on the front side of the substrate in the LED packaging method provided by the embodiment of the present invention.
  • Figure 17 is a flow chart of the steps of placing sealant in the sealing groove in the LED packaging method provided by the embodiment of the present invention.
  • Figure 18 is a flow chart of an LED packaging method provided by an embodiment of the present invention.
  • Figure 19 is a cross-sectional view of the packaging structure of the light-emitting element provided by the embodiment of the present invention.
  • Figure 20 is a top view of the packaging structure of the light-emitting element provided by the embodiment of the present invention, excluding the light-transmitting component and the conductive adhesive;
  • Figure 21 is a bottom view of the packaging structure of the light-emitting element provided by the embodiment of the present invention.
  • Figure 22 is a cross-sectional view of an LED device provided by an embodiment of the present invention.
  • Figure 23 is a top view of an LED device provided by an embodiment of the present invention.
  • Figure 24 is a schematic diagram of an LED device provided by an embodiment of the present invention that does not include a light-transmitting component
  • Figure 25 is another schematic diagram of an LED device provided by an embodiment of the present invention that does not include a light-transmitting component
  • Figure 26 is a cross-sectional view of an LED device provided by an embodiment of the present invention.
  • Figure 27 is a top view of an LED device provided by an embodiment of the present invention.
  • Figure 28 is a cross-sectional view of an LED device provided by an embodiment of the present invention.
  • Figure 29 is a top view of an LED device provided by an embodiment of the present invention.
  • Figure 30 is a flow chart of the first embodiment of the LED packaging method provided by the embodiment of the present invention.
  • Figure 31 is a flow chart of the steps of arranging fluorescent substances on the bracket or/and the light-transmitting member in the LED packaging method provided by the embodiment of the present invention.
  • Figure 32 is a flow chart of the steps of arranging fluorescent substances on the bracket or/and the light-transmitting member in the LED packaging method provided by the embodiment of the present invention.
  • Figure 33 is an A-A cross-sectional view of the LED device provided by the embodiment of Figure 34 of the present invention.
  • Figure 33a is a schematic cross-sectional view of the circuit layer of the LED device provided by the embodiment of the present invention.
  • Figure 34 is a top view of an LED device provided by an embodiment of the present invention.
  • Figure 35 is a cross-sectional view of an LED device provided by another embodiment of the present invention.
  • Figure 36 is a bottom view of the first substrate and the third welding part in the LED device provided by an embodiment of the present invention.
  • FIG. 37 is a cross-sectional view of the second substrate, the first welding part, the second welding part and the fourth welding part in the LED device according to an embodiment of the present invention.
  • Figure 38 is a bottom view of the second substrate in the LED device provided by an embodiment of the present invention.
  • Figure 39 is a flow chart of the first embodiment of the manufacturing method of a multi-layer substrate provided by an embodiment of the present invention.
  • Figure 40 is a schematic cross-sectional view of an LED device provided by an embodiment of the present invention, and is also the A-A cross-sectional view of Figure 41;
  • Figure 41 is a schematic top structural view of an LED device provided by an embodiment of the present invention.
  • Figure 42 is a schematic structural diagram of the back of an LED device provided by an embodiment of the present invention.
  • Figure 43 is a schematic cross-sectional view at B-B in Figure 42;
  • Figure 44 is a schematic cross-sectional view at C-C in Figure 42;
  • Figure 45 is a schematic diagram of the positional relationship between the projection of the positive electrode pad and the negative electrode pad on the front side of the substrate and the back side of the substrate and the positive terminal and negative terminal on the back side of the substrate of the LED device according to an embodiment of the present invention
  • Figure 45a is a schematic diagram of the shape of a rectangular circuit pattern composed of an anode pad and a cathode pad on the front of the substrate of the LED device according to an embodiment of the present invention
  • Figure 46 is a schematic structural diagram of the first circuit layer or the second circuit layer of the LED device provided by an embodiment of the present invention.
  • Figure 47 is a schematic diagram of the mutually independent circuit connection relationships of four LED chips of the LED device provided by an embodiment of the present invention.
  • Figure 47a is a schematic diagram of four LED chips connected in parallel in an LED device provided by an embodiment of the present invention.
  • Figure 47b is a schematic diagram of the LED device provided by an embodiment of the present invention and the peripheral circuit matching to realize the parallel connection of four LED chips;
  • Figure 48 is a schematic diagram of four LED chips connected in series in an LED device provided by an embodiment of the present invention.
  • Figure 48a is a schematic diagram of matching the LED device and the peripheral circuit provided by an embodiment of the present invention to realize the series connection of four LED chips;
  • Figure 49 is a schematic diagram of a series-parallel connection of four LED chips of an LED device provided by an embodiment of the present invention.
  • Figure 49a is a schematic diagram of the LED device provided by an embodiment of the present invention and the peripheral circuit matching to realize the series and parallel connection of four LED chips shown in Figure 10;
  • Figure 50 is a schematic diagram of another series-parallel connection of four LED chips of the LED device provided by the embodiment of the present invention.
  • Figure 50a is a schematic diagram of the LED device provided by the embodiment of the present invention and the peripheral circuit matching to realize the series and parallel connection of four LED chips shown in Figure 50;
  • Figure 51 is a schematic top structural view of an LED device provided by an embodiment of the present invention.
  • Figure 51a is a schematic diagram of the shapes of the positive electrode pad and the negative electrode pad of the LED device provided in Figure 51;
  • Figure 52 is a schematic structural diagram of the back of the LED device provided in Figure 51;
  • Figure 53 is a schematic top structural view of an LED device provided by another embodiment of the present invention.
  • Figure 54 is a schematic structural diagram of the back of the LED device provided in Figure 53;
  • Figure 55 is a cross-sectional view of an LED device provided by an embodiment of the present invention.
  • Figure 56 is a top view of the glass solder connected to the metal cap in the LED device provided by the embodiment of the present invention.
  • Figure 57 is a top view of the glass solder connected to the metal cap in the LED device provided by the embodiment of the present invention.
  • Figure 58 is a top view of the glass solder connected to the metal cap in the LED device provided by the embodiment of the present invention.
  • Figure 59 is a cross-sectional view of the light-transmitting component in the LED device provided by the embodiment of the present invention connected to the metal tube cap through glass solder;
  • Figure 60 is a cross-sectional view of the light-transmitting component in the LED device provided by the embodiment of the present invention connected to the metal cap through glass solder;
  • Figure 61 is a cross-sectional view of an LED device provided in Embodiment 9 of the present invention, and is also a cross-sectional view of an LED device in the manufacturing method of an LED device in Embodiment 10;
  • Figure 62 is a top view of the substrate and the dam component (circular shape) in the LED device provided in Embodiment 9 of the present invention, and is also a top view of the substrate and dam component (circular shape) in Embodiment 10;
  • Figure 63 is a top view of the substrate and the dam component (square shape) in the LED device provided in Embodiment 9 of the present invention, and is also a top view of the substrate and dam component (square shape) in Embodiment 10;
  • Figure 64 is a schematic cross-sectional view of the dam component and the substrate integrally formed in an LED device provided in Embodiment 9 of the present invention. It is also a schematic cross-sectional view of the dam component and the substrate integrally formed in Embodiment 10;
  • Figure 65 is a schematic cross-sectional view of the dam component and the light-transmitting element integrally formed in an LED device provided in Embodiment 9 of the present invention. It is also a schematic cross-sectional view of the dam component and the light-transmitting component integrally formed in Embodiment 10;
  • Figure 66 is a schematic diagram of the manufacturing method of an LED device provided in Embodiment 9 of the present invention and the light emitted by the light-emitting element in the LED device reflecting light through different angles ⁇ . It is also a manufacturing method of an LED device in Embodiment 10. Schematic diagram of the light emitted by the light-emitting element in the LED device reflected at different angles ⁇ ;
  • Figure 67 is a schematic diagram of a manufacturing method of an LED device provided in Embodiment 9 of the present invention and a schematic diagram of the light emitted by the light-emitting element in the LED device reflected by dam components with different included angles ⁇ . It is also a method provided in Embodiment 10. The manufacturing method of the LED device and the schematic diagram of the light emitted by the light-emitting element in the LED device reflected through different angles ⁇ ;
  • Figure 68 is a cross-sectional view of a manufacturing method of an LED device and one of the LED devices provided by the embodiment of the present invention.
  • Figure 68a is a cross-sectional view of the packaging method 2 of the reflective ring in the embodiment.
  • Figure 68b is a cross-sectional view of the packaging method 2 of the reflective ring in the embodiment.
  • Figure 68c is a cross-sectional view of the packaging method 3 of the reflective ring in the embodiment.
  • Figure 68d is a top view of the reflective ring (circular in shape) in the embodiment.
  • Figure 68e is a top view of the reflective ring (square in shape) in the embodiment.
  • Figure 69 is a cross-sectional view of a method for manufacturing an LED device provided by an embodiment of the present invention and an LED device in the embodiment;
  • Figure 69a is a top view of an LED device with a circular cap member in the embodiment.
  • Figure 69b is a top view of the LED device with a square cap member in the embodiment.
  • Figure 69c is a cross-sectional view of an LED device using a hemispherical lens in the embodiment.
  • 70 is a schematic diagram of a method for manufacturing an LED device according to an embodiment of the present invention and a schematic diagram of the light emitted by the light-emitting element in the LED device reflected at different included angles ⁇ .
  • setting and connection should be understood in a broad sense. For example, they can be directly set and connected, or they can be set and connected indirectly through centered components and centered structures.
  • an LED packaging structure provided by an embodiment of the present invention includes a substrate 1, a transparent cover 2 and a dam 3 (shown in Figure 2).
  • the dam 3 is connected to the substrate. 1.
  • the dam 3 is a copper dam
  • the substrate 1 is a ceramic substrate
  • the substrate 1 is connected to an LED chip 6 (UV-LED chip in this embodiment)
  • the dam 3 The installation area 7 is formed by surrounding the transparent cover 2 and the substrate 1;
  • the transparent cover 2 is a glass lens, which can be made of quartz glass or sapphire glass;
  • the dam 3 includes an outer retaining wall 32 and an inner retaining wall. 31.
  • the outer retaining wall 32 and the inner retaining wall 31 are both enclosure walls, which can be square enclosure walls or circular enclosure walls.
  • the LED packaging structure also It includes a seal 5 disposed in the groove 33, the transparent cover 2 covers the inner retaining wall 31 and the installation area 7, and the transparent cover 2 is inserted into the groove 33, And connected with the sealing member 5;
  • the LED packaging structure also includes a protective member 4, the protective member 4 is provided at the edge of the transparent cover 2; the protective member 4 has a blocking portion 41 and a pressing part 43.
  • the blocking part 41 is blocked between the transparent cover 2 and the outer retaining wall 32.
  • the pressing part 43 can resist the upper end of the transparent cover 2.
  • the pressing part 43 is connected to
  • the protective piece 4 is a metal protective piece, which is made of metal.
  • the protective piece 4 can be welded to the substrate 1 (laser welding is used in this embodiment).
  • the welding connection method is very strong and can effectively prevent the glass lens from falling off, and because the metal protective piece provided on the glass lens is not directly welded to the substrate 1, but is welded to the outer retaining wall 32 of the copper dam, the sealing The part 41 is blocked between the transparent cover 2 and the outer retaining wall 32, which can prevent the seal 5 from being irradiated by UV.
  • the glass lens and the ceramic substrate are tightly combined to enhance the air tightness. If there are no cracks in the welding, then The air tightness is better. If there is a crack, the air tightness can be ensured by the seal 5 arranged in the groove 33.
  • the air tightness is double guaranteed, and has the advantages of the inorganic packaging process while overcoming its limitations. ; Moreover, even if the glass lens cracks during welding or subsequent use, it can still meet the use requirements; the setting of the seal 5 has a good filling effect on the contact gap between the ceramic substrate and the glass lens, so that the LED packaging structure
  • the airtightness is good, and because the sealing member 5 is shielded by the inner retaining wall 31 and the outer retaining wall 32, and blocked by the blocking part 41 and the pressing part 43, it can avoid UV irradiation, so it can effectively It prevents the glass lens from falling off and overcomes the limitations of the semi-inorganic packaging process while taking advantage of its advantages.
  • the LED packaging structure provided by the embodiment of the present invention enables the transparent cover 2 (a glass lens in this embodiment) and the substrate 1 (a ceramic substrate in this embodiment) to be tightly coupled and airtight. It realizes a packaging process that combines semi-inorganic packaging and fully inorganic packaging, solves the problem in semi-inorganic packaging that the glue fails under long-term exposure to UV light and causes the transparent cover 2 to fall off, and has the advantages of both semi-inorganic packaging and fully inorganic packaging. Superiority, overcomes the limitations of both, ensures the airtightness of UV-LED products, is conducive to extending the service life of UV-LED devices, has better stability, and has high practical application value.
  • the substrate 1 is a ceramic substrate.
  • the ceramic substrate includes a ceramic layer, internal circuits 11, internal conductive holes 12 and bottom circuits 13.
  • the copper dam is arranged on one side of the ceramic layer, and the internal circuits are located on the inner retaining wall. 31; among them, the internal circuit and the bottom circuit are connected by setting internal conductive holes 12 in the ceramic layer, and the bottom circuit, internal circuit and copper dam are connected on the ceramic layer through the DPC process (Direct Platingcopper, direct copper plating technology)
  • the UV-LED chip is located inside the inner retaining wall 31 and connected to the internal circuit 11 .
  • the ceramic substrate further includes a heat dissipation portion 14 located at the bottom.
  • a plurality of protective members 4 are provided.
  • the plurality of protective members 4 partially cover the upper surface of the transparent cover 2 and are located at two opposite upper surfaces of the transparent cover 2 .
  • the distance between the end surfaces of the resisting portion 43 is no greater than the distance between the two opposite side walls of the inner retaining wall 31 facing the groove 33, that is, the hollow width of the upper surface of the metal inlaid block located on the upper surface of the glass lens. No greater than the distance between the two side walls of the inner retaining wall 31 facing the groove 33 (ie, the two inner side walls of the inner retaining wall 31).
  • four of the protective members 4 may be provided, respectively disposed at four right angles of the transparent cover 2 or at intermediate positions of the four sides of the transparent cover 2, and Partially covers the upper surface of the transparent cover 2 .
  • only two protective pieces 4 can be provided, and they are arranged relatively symmetrically on the sides of the transparent cover 2.
  • the number of protective pieces 4 can also be other values, such as three. , six etc.
  • the sealing member 5 is hidden between the substrate 1 and the transparent cover 2 (glass lens) of the protective member 4 (inlaid metal block). The side part of the light emitted from the UV chip is partially blocked by the inner retaining wall 31 of the dam 3 (copper dam).
  • the hollow width of the upper surface of the metal inlaid block located on the upper surface of the glass lens is not greater than the distance between the two side walls of the inner retaining wall 31 facing the groove 33, the external UV light is reflected back by the glass lens inlaid metal Block and copper dam outer retaining wall can ensure that the seal is not affected by UV light, has better reliability, and ensures the airtightness of UV-LED products.
  • the seal 5 has an inner sealing part 51, an outer sealing part 52 and a transverse sealing part 53
  • the transparent cover 2 includes a surface cover part 21 and a longitudinal part 22, so The longitudinal portion 22 is connected to the outer peripheral side of the cover portion 21, the inner sealing portion 51 is respectively in contact with the inner retaining wall 31 and the inner side of the transparent cover 2, and the outer sealing portion 52 is respectively in contact with the inner side of the inner retaining wall 31 and the transparent cover 2.
  • the outer retaining wall 32 and the outer sides of the longitudinal portion 22 of the transparent cover 2 are in contact with each other, and the transverse sealing portion 53 is in contact with the bottom of the groove 33 and the bottom of the transparent cover 2 respectively, so One end of the transverse sealing part 53 is connected to the outer sealing part 52, and the other end of the transverse sealing part 53 is connected to the inner sealing part 51.
  • the sealing member may have an installation groove, and the inner sealing part 51 and The outer sealing part 52 and the transverse sealing part 53 enclose an installation groove for installing the transparent cover 2 , that is, the two sides of the installation groove are the inner sealing part 51 and the outer sealing part 52 respectively.
  • the bottom of the installation groove is the transverse sealing portion 53 .
  • the longitudinal portion 22 and the inner wall of the installation groove can be closely connected to eliminate gaps and achieve good air tightness.
  • the inner sealing portion 51 is not flush with the upper end of the inner retaining wall 31, and the outer sealing portion 52 is not flush with the upper end of the outer retaining wall 32, that is, the inner sealing portion 51.
  • the gap is set and reserved according to the characteristics of the material to give the seal 5 enough space for thermal expansion.
  • the seal The width of the component 5 is consistent with the width of the longitudinal portion 22 of the transparent cover 2, that is, the sealing component 5 has only one part, the transverse sealing portion 53, making the packaging structure compact and stable.
  • FIG. 1- c As shown in Figure 1-d, at least one side of the longitudinal portion 22 of the transparent cover 3 is in contact with the retaining wall of the dam 3.
  • the point where the longitudinal portion 22 is in contact with the retaining wall can be used as a positioning point.
  • the corresponding seal shown in Figure 1-c only has an outer sealing part 52 and a transverse sealing part 53; correspondingly, the seal shown in Figure 1-d only has an inner sealing part 51 and a transverse sealing part 53.
  • the seal 5 can be preformed by a mold and then installed in the groove 33. Then when the transparent cover 2 is inserted into the groove 33, it will offset the seal 5.
  • the seal 5 can also be directly applied with a certain amount of fluid glue, that is, liquid glue, on the bottom of the groove 33, and then the transparent cover 2 is inserted into the groove 33 and then baked and solidified to form.
  • the seal 5 is formed by this method, the inner retaining wall 31 and the outer retaining wall 32 can effectively prevent the glue from overflowing into the cup body of the substrate 1 or outside the substrate 1 and prevent the overflowing glue from affecting the parameters and air tightness of the product.
  • the seal 5 can be made of silicone, epoxy resin or other sealants.
  • the glue on the surface of the copper dam and the glue that spills into 1 cup of the substrate will yellow and become ineffective after being exposed to UV light for a long time, affecting product parameters and air tightness.
  • Only non-fluid materials can be used to fill the gap;
  • the LED packaging structure provided by embodiments of the present invention can achieve gap filling using liquid or non-liquid (that is, pre-formed with a mold) materials, overcoming the limitations of filling material selection in traditional packaging processes and applicability. Even better, it can reduce packaging costs.
  • the protective piece 4 further includes a fixing part 42 connected to the blocking part 41 , and the fixing part 42 is fixedly connected to the outer retaining wall 32 .
  • the fixing part 42 is integrally connected to the blocking part 41 , the inner side of the blocking part 41 is in contact with the longitudinal part 22 , and the inner wall of the pressing part 43 is in contact with the upper end of the cover part 21 In other words, both inner sides of the protective member 4 can be in contact with the transparent cover 2, so that the protection effect is better.
  • the fixed portion 42 partially overlaps with the outer retaining wall 32
  • the fixed portion 42 partially overlaps with the upper end surface of the outer retaining wall 32 , so that the protective member 4 is vertically aligned.
  • the fixed part 42 partially overlaps with the side of the outer retaining wall 32 facing the groove 33. , the end surface of the fixed part 42 is against the seal 5, that is, the seal 5 supports the protective member 4, making welding convenient.
  • the seal 5 can be fully compressed to reduce the installation gap as much as possible and enhance the airtightness of the packaging structure.
  • there may be a gap between the end surface of the fixing part 42 and the sealing member 5 so that the pressing part 43 can fully abut the upper surface of the transparent cover 2 to prevent the transparent cover 2 from loosening.
  • the height of the inner retaining wall 31 is not equal to the height of the outer retaining wall 32.
  • the groove 33 located between the inner retaining wall 31 and the outer retaining wall 32 is specifically as follows: Example 1a and Example 1b are described in detail.
  • the height of the inner retaining wall 31 is a first height
  • the height of the outer retaining wall 32 is a second height.
  • the first height is greater than the second height, that is, the inner retaining wall 31 is higher than the outer retaining wall 31 .
  • the retaining wall 32 as shown in Figures 1 and 2, is the groove 33 between the inner retaining wall 31 and the outer retaining wall 32.
  • the inner retaining wall 31, the bottom of the groove 33, and the outer retaining wall The combined cross section of the wall is in the shape of " ⁇ ", or the sealing member 5 is installed, and the cross section of the sealing member 5 can be in the shape of " ⁇ "; the fixing part 42 is connected to one end of the blocking part 41, and the resisting part 42 is connected to one end of the blocking part 41.
  • the pressing part 43 is connected to the other end of the blocking part 41, the cross section of the protective member 4 is Z-shaped, and the fixing part 42 can be connected with the upper end of the outer retaining wall 32 and the outer sealing part.
  • the upper ends of the outer retaining wall 32 and the upper end of the outer sealing portion 52 are flush with each other. In this embodiment, the upper ends of the outer retaining wall 32 and the outer sealing portion 52 are flush with each other. Good density.
  • the height of the inner retaining wall 31 is a first height
  • the height of the outer retaining wall 32 is a second height.
  • the first height is smaller than the second height
  • the blocking portion 41 The outer side is in contact with the outer retaining wall 32 , the blocking portion 41 is connected with the outer sealing portion 52 , and the sum of the height of the blocking portion 41 and the height of the outer sealing portion 52 is equal to the outer retaining wall 32
  • the height of the fixed part 42 can be close to the upper end of the outer retaining wall 32.
  • the fixed part 42 is connected to the blocking part 41 and the pressing part 43 respectively.
  • Part 4 has a T-shaped cross-section and excellent air tightness.
  • Embodiment 1 of the present invention also provides a packaging method for an LED packaging structure.
  • the packaging method is used to package the above-mentioned LED packaging structure. Please refer to Figure 4 and includes the following steps:
  • S401 Prepare the substrate 1 with the dam 3 so that the dam 3 is provided with an outer retaining wall 32 and an inner retaining wall 31, and there is a groove 33 between the outer retaining wall 32 and the inner retaining wall 31.
  • the substrate 1 is a ceramic substrate
  • the dam 3 is a copper dam.
  • the DPC (Direct Platingcopper) process is used to form internal circuits 11, external circuits, internal vias 12 and Dam 3, the specific process route is laser drilling, vacuum plating, stamping, line exposure, line development, electroplating hole filling, grinding, sandblasting, stamping, copper dam production and exposure, copper dam development, electroplating copper Dam enclosing, grinding, film removal, copper and titanium removal, electrical testing, surface treatment and other processes.
  • a heat dissipation portion 14 for heat dissipation may also be formed on the bottom of the substrate.
  • the dam 3 produced through the above steps is formed with an outer retaining wall 32 and an inner retaining wall 31, so that a groove 33 is formed between the outer retaining wall 32 and the inner retaining wall 31.
  • the height of the inner retaining wall 31 is defined as the first height
  • the height of the outer retaining wall 32 is defined as the second height.
  • the first height is greater than the second height. Height, in other examples, the first height is less than the second height.
  • the packaging method also includes a chip solidification step, dotting flux on the internal circuits of the substrate 1 (ceramic substrate), and welding the LED chip 6 to the area with flux; wherein the pad of the LED chip 6 is gold-tin. Alloy; the function of the flux is to act as a eutectic medium, so that the LED chip 6 and the substrate 1 are closely combined during the eutectic state.
  • the ceramic substrate circuit needs to be plated with nickel and gold, and the thickness requirements are nickel>3um and gold>0.05um;
  • the packaging method also It includes a chip eutectic step, in which the substrate 1 (ceramic substrate) with the LED chip 6 fixed is passed through a eutectic furnace to firmly combine the LED chip 6 with the ceramic substrate. At least one temperature zone of the eutectic furnace is between 300°C and 340°C. °C and the eutectic process requires nitrogen protection.
  • the sealing member 5 can be preformed through a mold, and then the sealing member 5 can be installed in the groove 33 .
  • a certain amount of fluid thermosetting glue can also be directly applied to the bottom of the groove 33 and baked and solidified to form the seal 5 .
  • the fluid glue that is, liquid glue
  • the glue can be effectively prevented from overflowing to Inside the base plate 1 cup or outside the base plate 1, prevent overflowing glue from affecting the parameters and air tightness of the product.
  • the gap between the transparent cover 2 and the dam 3 can be filled with fluid or non-fluid (that is, preformed by mold) substances, which overcomes the limitations of the selection of filling materials in the traditional packaging process and has better applicability. Can reduce packaging costs.
  • the transparent cover 2 includes a face cover part 21 and a longitudinal part 22 connected to the outer peripheral side of the face cover part 21.
  • the seal 5 is filled with the transparent cover 2
  • the gap between the enclosing dam 3 and the enclosing dam 3 improves the air tightness of the packaging structure.
  • S404 Set the protective member 4 at the edge of the transparent cover 2, and seal the blocking portion 41 of the protective member 4 between the transparent cover 2 and the outer retaining wall 32.
  • the portion 43 abuts the upper end of the transparent cover 2 to firmly connect the protective member 4 to the outer retaining wall 32 .
  • the resisting portion 43 of the protective member 4 can be covered on the upper surface of the transparent cover 2 so that the two opposing resistors located on the upper surface of the transparent cover 2 are The distance between the end surfaces of the pressing portion 43 is no greater than the distance between two opposite side walls of the inner retaining wall 31 facing the groove 33 .
  • the sealing member 5 is shielded by the inner retaining wall 31 and the outer retaining wall 32, and blocked by the blocking part 41 and the pressing part 43, preventing it from being irradiated by UV, making the packaging structure more reliable. Excellent, ensuring the airtightness of UV-LED products.
  • the protective piece 4 can also be provided with a fixing part 42, and the fixing part 42 is fixedly connected to the outer retaining wall 32, and the transparent cover 2 (glass lens) and the ceramic substrate are closely combined.
  • the protective piece 4 is a metal protective piece, and the fixing part 42 is integrally connected to the blocking part 41 and is made of metal.
  • the fixing part 42 can be laser welded to the substrate 1 by using The welded connection method is very strong and can effectively prevent the glass lens from falling off.
  • the fixed portion 42 of the protective member 4 can be disposed on the upper end surface of the outer retaining wall 32 so that the fixed portion 42 and the upper end surface of the outer retaining wall 32 partially overlap, so that the protective member 4 can be positioned vertically. There is a support in the direction to facilitate welding and the welding is firm.
  • the fixed portion 42 of the protective member 4 can be disposed in the groove 33 so that the fixed portion 42 partially overlaps with the side of the outer retaining wall 32 facing the groove 33, and the protective member can be installed.
  • the sealing member 5 can be compressed. Due to the compression of the sealing member 5, there may be slight deformation, which can reduce the installation gap as much as possible and enhance the airtightness of the packaging structure; in other embodiments, the protective member 4 can be between the sealing member 5 and the sealing member 5. There is a gap so that when the protective member 4 is installed, the pressing portion 43 can fully resist the upper surface of the transparent cover 2 to prevent the transparent cover 2 from loosening.
  • Embodiment 1 of the present invention provides an LED packaging structure.
  • a dam 3 with an outer retaining wall 32 and an inner retaining wall 31 on the substrate 1, the outer retaining wall 32 and the inner retaining wall 31 There is a groove 33 between them, and the sealing member 5 is arranged in the groove 33.
  • the transparent cover 2 covers the inner retaining wall 31 and the installation area 7, and the transparent cover 2 is plugged into the The groove 33 is connected with the sealing member 5 , the protective member 4 is arranged at the edge of the transparent cover 2 , and the blocking portion 41 of the protective member 4 blocks the transparent cover 2 .
  • the resisting portion 43 resists the upper end of the transparent cover 2, and is shielded by the inner retaining wall 31 and the outer retaining wall 32 and sealed by the sealing portion 41 and the resisting portion 43.
  • the seal can avoid UV irradiation, so that the transparent cover 2 and the substrate 1 are closely combined with good air tightness, realizing a packaging process that combines semi-inorganic packaging and fully inorganic packaging, and solves the problem of semi-inorganic packaging.
  • the glue fails and causes the transparent cover 2 to fall off. It also has the advantages of semi-inorganic packaging and fully inorganic packaging to ensure the airtightness of UV-LED products and is conducive to improving the performance of UV-LED devices. Longer service life and better stability.
  • an all-inorganic LED packaging structure provided by an embodiment of the present invention includes a packaging substrate 100 (substrate), an LED chip 200 and a light-transmitting cover 300 (transparent cover).
  • the packaging substrate 100 ( Substrate) has an opposite front side 101 and a back side 102.
  • the front side 101 of the packaging substrate 100 (substrate) is provided with a first circuit layer 110.
  • the first circuit layer 110 includes a first circuit pattern 111 and a bonding pad 112.
  • the bonding pad 112 is used for welding with the LED chip 200 .
  • a welding layer 350 is provided at the bottom of the light-transmitting cover 300 (transparent cover). The welding layer 350 is welded to the first circuit pattern 111.
  • the light-transmitting cover 300 (transparent cover) is connected to the packaging substrate 100 ( A sealed packaging cavity is formed between the substrates).
  • the LED chip 200 is disposed in the packaging cavity and welded to the pad 112. Both the top surface and the peripheral side of the light-transmitting cover 300 can transmit light.
  • the welding layer 350 provided at the bottom of the cover 300 (transparent cover) can be closely combined with the first circuit pattern 111 of the packaging substrate 100 (substrate), and its combination is reliable.
  • the packaging structure in this embodiment does not need to use silicone, silicone or silicone resin. Organic materials such as epoxy resin can use a fully inorganic packaging process. There is no risk of the colloidal yellowing lens falling off in organic packaging and semi-inorganic packaging.
  • the sides and front of the light-transmitting cover 300 can transmit light.
  • the cover 300 transparent cover
  • the above-mentioned packaging structure can realize light emission from five sides (when the transparent cover 300 is rectangular), which not only greatly improves the light extraction efficiency of the UV-LED package, but also has high reliability. Since organic materials do not need to be used, the disadvantages of organic materials turning yellow and losing their viscosity when exposed to UV light with wavelengths below 350 nm are avoided.
  • the all-inorganic LED packaging structure provided by this embodiment has obvious advantages in UV-LED products with a peak wavelength below 350 nm.
  • the light-transmitting cover 300 (transparent cover) can be made of inorganic glass material, and the welding layer 350 is provided at the bottom, so that The light-transmitting cover 300 (transparent cover) and the packaging substrate 100 are welded together and tightly integrated without the risk of yellowing or falling off.
  • the product has high reliability and good user experience.
  • the light-transmitting cover 300 can be a glass lens
  • the soldering layer 350 can be a metal layer (ie, metal solder) formed by electroplating on the bottom of the light-transmitting cover 300 (transparent cover).
  • the first circuit pattern 111 is that the metal layer formed on the front surface 101 of the packaging substrate 100 by electroplating has low production cost; in other embodiments, the soldering layer 350 can also be a glass solder formed on the bottom of the light-transmitting cover 300 (transparent cover), and The first circuit pattern 111 can be a metal layer formed by electroplating on the front surface 101 of the package substrate 100 (substrate).
  • the light-transmitting cover 300 is welded to the first circuit pattern through glass solder and metal sealing technology, and has good light transmittance. Reduce the light-blocking effect of the welding layer 350 on the LED chip.
  • the welding layer 350 can cover the bottom surface of the light-transmitting cover 300 (transparent cover). Of course, the welding layer 350 can also extend to a set distance from the inner and outer sides of the light-transmitting cover 300 (transparent cover).
  • the first circuit pattern is used for welding with the light-transmitting cover 300 (transparent cover) and is not used for electrical conduction.
  • the light-transmitting cover 300 covers the top surface and side surfaces of the LED chip, and both the top surface and the side surfaces can emit light, and the light-emitting effect is good.
  • the light-transmitting cover 300 includes a top light-emitting surface and four side light-emitting surfaces.
  • the shape of the light-transmitting cover 300 (transparent cover) can be rectangular (square) to achieve the effect of five-sided light emitting.
  • the packaging substrate 100 can be a ceramic substrate, which has good reliability and low application cost.
  • the metal layer may be a eutectic metal layer; or, the metal layer may be a non-eutectic metal layer.
  • the metal layer is a eutectic metal layer
  • processes such as eutectic welding can be used to connect the metal layer to the first circuit pattern 111, and the reliability of the welding is high.
  • the metal layer is a non-eutectic metal layer
  • reflow soldering or high-temperature baking can be used to tightly combine the light-transmitting cover 300 (glass lens) and the packaging substrate 100 (ceramic substrate), thereby realizing an all-inorganic packaging process. Even if the above-mentioned full The inorganic LED packaging structure is used in UV-LED products, and there is no risk of the glass lens falling off.
  • the metal layer may be a gold-tin alloy layer or a silver layer, which has high reliability and good welding effect with the first circuit pattern 111 .
  • the light-transmitting cover 300 can be a quartz glass cover or a sapphire glass cover, which has good light transmittance.
  • the shape of the light-transmitting cover 300 can be rectangular or circular, and its front surface can be flat or convex spherical.
  • the first circuit pattern 111 is a metal layer formed on the front surface of the packaging substrate 100 (substrate) by electroplating, which is easy to manufacture.
  • the shape of the first circuit pattern 111 is a closed shape, and the welding layer 350 is connected with the first circuit pattern 111 to form a closed-shaped welding area; the first circuit pattern 111 may be in a rectangular ring shape,
  • the shape of the light-transmitting cover 300 (transparent cover) can be rectangular, and the bottom surface of the light-transmitting cover 300 (transparent cover) can be in the shape of a corresponding rectangular ring.
  • the welding layer 350 on the bottom edge of the light-transmitting cover 300 (transparent cover) can be seated exactly on the third On a line graphic 111.
  • the bottom edge of the light-transmitting cover 300 can be completely seated above the first circuit pattern 111, that is, the projection area of the bottom edge of the light-transmitting cover 300 (transparent cover) located on the front 101 of the packaging substrate 100 (substrate) can completely fall. within the range of the first circuit pattern 111.
  • the shape of the first circuit pattern 111 may also be a semi-closed shape, and the soldering layer 350 and the first circuit pattern 111 are connected to form a semi-closed-shaped soldering area.
  • the soldering layer 350 can also be glass solder formed on the bottom of the light-transmitting cover 300, and can be connected through glass solder and metal sealing technology, so that the product reliability is good.
  • the translucent cover 300 has a longitudinal cross-sectional shape in an "n" shape, and the translucent cover 300 (transparent cover) can form a five-sided light emitting structure.
  • the shape of the light-transmitting cover 300 can also be polygonal, round-shaped (as shown in FIG. 9 ), etc.
  • the height of the bottom of the light-transmitting cover 300 can be equal to or lower than the bottom of the LED chip 200 to prevent the welding layer 350 at the bottom of the light-transmitting cover 300 (transparent cover) from blocking the light of the LED chip 200. It is helpful to further improve the light efficiency.
  • a second circuit layer 120 is provided on the back 102 or/and inside of the packaging substrate 100 (substrate); the pad 112 passes through a conductive hole (filled with conductive material) provided on the packaging substrate 100 (substrate). 130) Connected to the second circuit layer 120 to meet the wiring requirements of the circuit.
  • a second circuit layer 120 is provided on the back 102 of the packaging substrate 100 (substrate).
  • the packaging substrate 100 is made of a ceramic substrate using a DPC (Direct Plating Copper) process.
  • DPC Direct Plating Copper
  • the LED chip 200 may be a flip-chip, and the electrodes of the flip-chip may be gold-tin alloy or the like.
  • the invention also provides an all-inorganic LED packaging method for packaging the above-mentioned all-inorganic LED packaging structure, which includes the following steps:
  • LED chip welding step arrange the LED chip 200 on the front surface 101 of the packaging substrate 100 and weld it to the pad 112;
  • the step of fixing the light-transmitting cover cover the LED chip 200 with the light-transmitting cover 300, and seat the welding layer 350 at the bottom of the light-transmitting cover 300 on the first circuit pattern 111, so that the welding layer 350 is connected to the first circuit pattern 111 through welding or baking process.
  • the bonding pad 112 is made of gold-tin alloy, and the first circuit pattern 111 can be plated with a nickel-gold layer, where the thickness of the nickel layer is >3um and the thickness of the gold layer is >0.05um.
  • the LED chip 200 welding step includes a chip solidification step and a eutectic step.
  • the chip solidification step includes: setting a flux that can serve as a eutectic medium on the front side 101 of the packaging substrate 100 (substrate), and then fixing the LED chip 200 to the packaging substrate 100 (substrate).
  • the front side 101 has the flux location.
  • the eutectic step includes: placing the LED chip 200 along with the packaging substrate 100 (substrate) in a eutectic furnace for eutectic welding, and the temperature of the eutectic furnace has at least one temperature zone between 300°C and - 340°C, and the eutectic furnace uses nitrogen protection during the eutectic process.
  • the step of fixing the light-transmitting mask includes: disposing solder on the first circuit layer 110 and covering the first circuit pattern 111 of the first circuit layer 110 with the light-transmitting cover 300 .
  • the soldering layer 350 may be a gold-tin alloy, and the flux is used as the solder and is fixed to the first circuit pattern 111 through a eutectic soldering process.
  • the soldering layer 350 may also be made of a gold-tin alloy, using silver glue or solder paste as the solder, and fixed to the first circuit pattern 111 through a high-temperature baking process or a reflow soldering process.
  • the soldering layer 350 may also be made of non-eutectic metal, and silver glue or solder paste may be used as the solder, and may be fixed to the first circuit pattern 111 through a high-temperature baking process or a reflow soldering process.
  • the peak wavelength of the LED chip 200 is less than 350 nm.
  • the all-inorganic LED packaging method can be referred to as follows:
  • the circuits (including at least the first circuit layer 110) of the packaging substrate 100 can be plated with nickel-gold plating, and the thickness of the nickel plating can be Greater than 3um, the thickness of gold plating can be greater than 0.05um.
  • Eutectic welding step Pass the packaging substrate 100 (substrate) with the LED chip 200 fixed thereto through a eutectic furnace for eutectic welding, so that the LED chip 200 and the packaging substrate 100 (substrate) are firmly combined.
  • the temperature of the eutectic furnace has at least one temperature zone between 300°C and 340°C, and the protective gas (such as nitrogen and other inert gases) is passed through the eutectic welding process, making the welding quality more reliable.
  • Covering the glass lens step spot solder on the first circuit layer 110 on the surface of the packaging substrate 100 at the contact point with the glass lens (transparent cover 300), and cover the glass lens on the surface of the packaging substrate 100 (substrate);
  • Welding steps Pass the ceramic substrate covered with the glass lens through a eutectic furnace, reflow soldering or high-temperature baking to tightly combine the glass lens with the ceramic substrate; (if the electroplated metal at the bottom of the glass lens is a gold-tin alloy, the eutectic process can be used Welding, the solder is flux; you can also use high-temperature baking or reflow soldering, and the solder is silver glue or solder paste. If the electroplated metal at the bottom of the glass lens is silver or other non-eutectic metals, it can only be used Soldering is performed by high-temperature baking or reflow soldering, and the solder is silver glue or solder paste).
  • the all-inorganic LED packaging structure provided by the embodiment of the present invention does not need to use organic materials such as silica gel, silicone resin, or epoxy resin, but can use an all-inorganic packaging process. There is no colloidal yellowing lens in organic packaging or semi-inorganic packaging. The risk of falling off. At the same time, both the sides and the front of the light-transmitting cover 300 can transmit light. When there are four sides of the light-transmitting cover 300, the above-mentioned packaging structure can realize five sides (when the light-transmitting cover 300 is rectangular) to emit light, which is not only extremely It improves the light extraction efficiency of UV-LED packaging and has high reliability.
  • the all-inorganic LED packaging structure provided by this embodiment has obvious advantages in UV-LED products with a peak wavelength below 350 nm.
  • the light-transmitting cover 300 transparent cover
  • Embodiment 3 including Embodiment 3a and Embodiment 3b
  • an LED packaging structure 100 provided by an embodiment of the present invention includes a substrate 10, an LED chip 20, a bracket 30 (dam), a positioning block 40, a light-transmitting member 50 (transparent cover), and Sealant 60.
  • the substrate 10 has an opposite front and a back, and the LED chip 20 is fixed on the front of the substrate 10 .
  • the bracket 30 (dam) is annular and has an inner wall, a top and a bottom. The bottom of the bracket 30 (dam) is seated on the front side of the base plate 10 .
  • the bracket 30 (dam) surrounds the base plate 10 .
  • the LED chip 20 is peripheral.
  • the inner side of the bracket 30 (dam) is the side of the bracket 30 (dam) close to the LED chip 20, and at least a portion of the inner wall of the bracket 30 (dam) located above the LED chip is provided with a penetrating bracket 30 (
  • the positioning block 40 is installed in the mounting groove 31 at the top of the dam).
  • the light-transmitting member 50 transparent cover
  • the light-transmitting member 50 transparent cover
  • the bottom surface of the light-transmitting member 50 is in contact with the bottom surface 311 of the mounting groove 31 and faces the LED chip. 20.
  • the side surface 51 of the light-transmitting member 50 is in contact with the plurality of positioning blocks 40, so that the positioning of the light-transmitting member 50 (transparent cover) can be achieved, so that the side surface of the light-transmitting member 50 51 forms a sealing groove (not shown) with the groove bottom 311 and groove side walls 312 of the installation groove 31.
  • the sealant 60 can be placed in the sealing groove from the upper opening of the sealing groove and does not require Covering the light-transmitting member 50 , that is, the sealant 60 is provided between the side surface 51 of the light-transmitting member 50 and the bottom surface 311 and side walls 312 of the mounting groove 31 , so that when measuring the sealant When the thickness is 60, you can first measure the height of the sealing groove, then measure the distance between the sealant 60 and the top of the sealing groove, and finally get the amount of sealant contained in the sealing groove through simple calculation.
  • the thickness of the sealant 60 can be obtained by immersing 60 into the height of the light-transmitting member 50 (transparent cover) or inserting the sealant 60 to be cured and directly measuring the depth of the sealant 60. The measurement is very convenient and can accurately calculate the sealant.
  • the amount of sealant contained in the groove ensures the sealing effect of the sealant and improves the consistency of the product. It avoids the problem in the prior art that the sealant is first set up and then the light-transmitting part is set on the bracket, which results in the sealant being set in a closed space in the LED structure, making it difficult to measure the thickness of the sealant, and such an arrangement does not require a transparent part.
  • the optical component 50 (transparent cover) and the bottom surface 311 of the installation groove 31 are provided with bottom sealant.
  • the translucent component 50 (transparent cover) will not be affected by the upward pressure of the bottom sealant on the translucent component 50 (transparent cover).
  • the buoyancy also avoids the upward pressure exerted on the light-transmitting component 50 by the rebound force of the bottom sealant itself, and avoids the formation of a sealed space when the bottom sealant first contacts the light-transmitting component 50 (transparent cover) in the prior art.
  • a first circuit 11 is provided on the front side of the substrate 10 , and the LED chip 20 is connected to the first circuit 11 .
  • the LED chip 20 can be any one of a flip chip, a regular chip or a vertical chip.
  • a soldering flux material is provided on the first line 11 on the front side of the substrate 10, and then the LED chip is placed on the assist chip.
  • the connection between the LED chip 20 and the substrate 10 can be realized by using the soldering material.
  • the second circuit 12 is provided on the back side of the substrate 10, and the substrate 10 is provided with a conductive hole 13 penetrating the front and back surfaces, and the first circuit 11 is connected to the conductive hole 13.
  • the second circuit 12 is connected through the conductive hole 13 , thereby realizing the connection between the LED chip 20 , the first circuit 11 and the second circuit 12 .
  • arranging the first line 11 and the second line 12 on the substrate 10 can be implemented through a DPC (Direct Plating copper) process.
  • DPC Direct Plating copper
  • the base plate 10 and the bracket 30 (dam) are integrally formed, which is very convenient to manufacture.
  • the bottom of the light-transmitting member 50 (transparent cover) is seated on the bottom surface 311 of the mounting groove 31 , and the top of the light-transmitting member 50 is higher than the height of the positioning block 40 , so as to avoid
  • the positioning block 40 blocks the sealant 60 at a certain position between the light-transmitting member 50 and the groove side wall 312 of the installation groove 31, ensuring that the light-transmitting member 50 and the bracket 30 (dam) can pass through.
  • the sealant 60 is connected to ensure the bonding and sealing effect of the sealant 60 .
  • the light-transmitting member 50 (transparent cover) is made of quartz or sapphire material, but the present invention does not limit the specific material of the light-transmitting member 50 as long as it can achieve light transmission.
  • the light-transmitting member 50 can be made of plastic such as PMMA (polymethylmethacrylate).
  • the light-transmitting member 50 may be in the shape of a square (see Figures 10 and 11 ) or a hemisphere (see Figures 12 and 13 ), but the shape of the light-transmitting member 50 is not limited thereto. , as long as it does not affect the light transmission, such as rectangular parallelepiped, light bulb shape, etc.
  • a plurality of positioning blocks 40 are arranged at equal intervals along the circumference of the sealing groove, so that the light-transmitting member 50 (transparent cover) is positioned more accurately and the sealing groove is better formed to increase the LED packaging structure. 100% sealing effect.
  • the bracket 30 (dam) is in the shape of a hollow rectangle, and the light-transmitting member 50 can be laid flat in the installation groove 31 in a square shape.
  • the number may be four.
  • the first sides of the four positioning blocks 40 are all in contact with the bracket 30 (dam), and are arranged at equal distances along the circumferential direction of the groove side walls 312 of the installation groove 31 , that is, , the four positioning blocks 40 can be respectively provided at the midpoints of the four sides of the installation groove 31 .
  • the bracket 30 (dam) is in the shape of a hollow circle, and the light-transmitting member 50 can be in the shape of a hemisphere and is installed in the installation groove 31 .
  • the number of positioning blocks may be three.
  • the first sides of the three positioning blocks 40 are all in contact with the bracket 30 (dam), and the three positioning blocks 40 may be aligned with the central axis of the bracket 30 .
  • the angle formed by the connection between each two positioning blocks 40 and the central axis of the bracket 30 (dam) is 120 degrees.
  • the bottom of the positioning block 40 is seated on the bottom surface 311 of the installation groove 31.
  • the positioning block 40 has an opposite first side (not shown) and a second side (not shown).
  • the first side of the positioning block 40 abuts the groove side wall 312 of the installation groove 31
  • the outer peripheral side of the light-transmitting member 50 abuts the second side of the positioning block 40 .
  • the height of the positioning block 40 is low.
  • the upper partition sealant 60 ensures that the light-transmitting component 50 and the bracket 30 can be connected through the sealant 60 , thereby ensuring the bonding and sealing effect of the sealant 60 .
  • the bracket 30 (dam) is provided with a plurality of positioning grooves (not shown) facing the installation groove 31, and the plurality of positioning grooves are used to accommodate the positioning blocks 40 to facilitate the installation of the positioning blocks 40.
  • the positioning block 40 is used for positioning and setting. It can be understood that the present invention is not limited to the connection method between the positioning block 40 and the bracket 30 , as long as the positioning block 40 can be installed on the bracket 30 (dam), for example, by The positioning block 40 and the bracket 30 are integrally formed.
  • the height of the sealant 60 is greater than the height of the positioning block 40 , and the sealant 60 covers the positioning block 40 , thereby preventing the positioning block 40 from being between the light-transmitting component 50 and the installation groove.
  • the sealant 60 is cut off at a certain position between the side walls 312 of the groove 31 to ensure that the light-transmitting component 50 and the bracket 30 can be connected through the sealant 60, thus ensuring the bonding and sealing effect of the sealant 60.
  • the positioning blocks 40 can limit the position of the light-transmitting member 50 , the fewer the positioning blocks 40 , the better. This is because if the number of the positioning blocks 40 is smaller, the volume occupied by the plurality of positioning blocks 40 in the installation groove 31 is smaller, which in turn makes the volume of the sealing groove larger and the sealant that can be applied is larger. The greater the number 60, the larger the bonding area between the light-transmitting member 50 and the bracket 30 (dam), thereby improving the sealing effect of the LED packaging structure 100. In a specific application, please refer to Figures 10 and 11.
  • the number of the positioning blocks 40 can be four, and the four positioning blocks 40 can be respectively disposed at the midpoints of the four sides of the light-transmitting member 50; please refer to Figures 12 and 13.
  • the positioning block The number of positioning blocks 40 may be three, and the three positioning blocks 40 may be respectively arranged at equal distances along the circumferential edge of the light-transmitting member 50 .
  • the positioning block 40 can limit the position of the light-transmitting member 50 , the smaller the size of the positioning block 40 , the better. This is because if the volume of the positioning blocks 40 is smaller, the volume occupied by the plurality of positioning blocks 40 in the installation groove 31 is smaller, which in turn makes the volume of the sealing groove larger, and the sealant that can be coated is smaller. The greater the number 60, the larger the bonding area between the light-transmitting member 50 and the bracket 30 (dam), thereby improving the sealing effect of the LED packaging structure 100.
  • the present invention does not limit the number and size of the positioning blocks 40 as long as the light-transmitting member 50 (transparent cover) It only needs to be bonded to the bracket 30 (dam) through the sealant 60 .
  • the number of positioning blocks 40 is large enough to form a step shape around the installation groove 31, the side surface 51 of the light-transmitting member 50, the top surface of the positioning blocks 40, and the bottom surface of the installation groove 31 311 and the groove side wall 312 of the installation groove 31 form a new sealing groove.
  • the multiple positioning blocks 40 can still limit the thickness of the sealant 60 between the light-transmitting component 50 (transparent cover) and the sealing groove, and , the side sealing method can still avoid the upward pressure exerted by the sealant 60 on the light-transmitting part 50 (transparent cover), thereby avoiding the problem of bubbles and pores in the sealant 60 that may be caused when the light-transmitting part 50 floats. .
  • an LED packaging method provided by an embodiment of the present invention is used to package the above-mentioned LED packaging structure 100. Please combine Figure 10 and Figure 11.
  • the LED packaging method includes the following steps:
  • S102 Set a bracket 30 (dam) with a mounting slot 31 on the substrate 10, and seat the bracket 30 on the front side of the substrate 10.
  • the bracket 30 is annular, and its middle is formed for mounting LED chips. 20 space, the mounting groove 31 is provided with a positioning block 40;
  • the bracket 30 (dam) when setting up the bracket 30 (dam), can be prepared into a ring shape first, and then the bracket 30 (dam) can be placed on the inner wall of the bracket 30 (dam). At least part of the mounting groove 31 is provided through the top of the bracket 30 (dam), and then the top of the base plate 10 is connected to the bottom of the bracket 30 (dam).
  • the The top of the base plate 10 and the bottom of the bracket 30 (dam) are integrally formed (which can be made by direct copper plating technology - DirectPlatingcopper), which is very convenient to manufacture.
  • the middle part of the bracket 30 forms a space for installing the LED chip 20; and the mounting groove 31 is used to install the light-transmitting part 50 (transparent cover).
  • the mounting groove 31 needs to be located above the LED chip 20 .
  • the positioning block 40 can be provided in the mounting groove 31 of the bracket 30 (dam) by first setting a positioning groove in the mounting groove 31, and then setting the positioning block 40 in the positioning groove. way to set the positioning block 40, or when making the bracket 30 (dam), the positioning block 40 and the bracket 30 (dam) can be directly set in an integrated manner, as long as the above mentioned
  • the positioning effect of the positioning block 40 on the light-transmitting member 50 (transparent cover) is sufficient.
  • the positioning groove and the positioning block 40 can be provided manually or mechanically. For example, an intelligent manipulator is provided, and the positioning groove or the positioning block 40 is accurately set at a fixed point by the intelligent manipulator, so that the transparent film can be accurately positioned.
  • the optical component 50 is positioned to further improve the sealing effect.
  • a plurality of positioning blocks 40 can be provided in the mounting groove 31 of the bracket 30 (dam), so as to realize the positioning of the light-transmitting member 50 (transparent cover) in the mounting groove 31, and then in the When the sealant 60 is provided, the thickness of the sealant 60 between the side surface 51 of the light-transmitting member 50 (transparent cover) and the groove side wall 312 of the installation groove 31 can be controlled.
  • a plurality of positioning blocks 40 are arranged at equal intervals along the circumferential direction of the sealing groove, the positioning of the light-transmitting member 50 is more accurate and the sealing groove is better formed, thereby increasing the sealing effect of the LED packaging structure 100 .
  • the height of the positioning block 40 can be lower than the installation groove 31 and the light-transmitting member 50 (transparent cover)
  • the sealant 60 covers the positioning block 40 and the height of the sealant 60 is greater than the height of the positioning block 40 , thereby preventing the positioning block 40 from being placed on the light-transmitting member 50 (transparent cover).
  • the sealant 60 is cut off to ensure that the light-transmitting part 50 (transparent cover) and the bracket 30 (dam) can be connected through the sealant 60, thereby Ensure the bonding and sealing effect of sealant 60.
  • the transparent sealant 60 when the sealant 60 is disposed between the side surface 51 of the light-transmitting member 50 (transparent cover) and the sealing groove formed by the groove bottom surface 311 and groove side walls 312 of the mounting groove 31, the transparent sealant 60 is The optical component 50 (transparent cover) will no longer be subject to the upward buoyancy of the sealant 60 on the translucent component 50 (transparent cover) and the elasticity of the sealant 60 itself to the translucent component 50 (transparent cover). ), thereby avoiding the possibility that the light-transmitting part 50 may float when the sealant 60 is disposed on the bottom surface of the light-transmitting part 50 (transparent cover) and the bottom surface 311 of the mounting groove 31 in the prior art.
  • the sealant 60 produces bubbles and pores, further enhancing the sealing effect of the LED packaging structure 100 .
  • the sealant 60 refers to glue with a bonding function, and the specific material of the sealant 60 is not limited. Specifically, in order to ensure the sealing effect, the sealant 60 can be evenly coated in the sealing groove to prevent the internal gas from collapsing due to pressure when the light-transmitting member 50 settles toward the bottom of the installation groove 31 . increases and overflows from the weak point of the sealant 60 . It can be understood that disposing the sealant 60 in the sealing groove can be achieved manually or mechanically. For example, an intelligent manipulator can be used to evenly place a certain amount of sealant 60, which can further improve the sealing effect.
  • the steps of preparing the substrate include:
  • S1011 Prepare a ceramic substrate, which has a front side and a back side;
  • a first circuit and a second circuit are respectively provided on the front and back sides of the ceramic substrate.
  • the substrate is provided with conductive holes penetrating the front and back sides.
  • the first circuit and the second circuit pass through the conductive holes.
  • the step of arranging the LED chip 20 on the front side of the substrate 10, as shown in Figure 16, further includes:
  • the first circuit 11 includes a first soldering pad, and then disposing a soldering flux material on the first soldering pad, and then placing the LED chip 20 on On the soldering flux material, the electrical connection between the LED chip 20 and the first circuit 11 can be realized. Normally, when the first circuit 11 is made, the first pad will be formed simultaneously. By providing the flux material and making the LED chip 20 and the substrate 10 eutectic, the LED chip 20 and the substrate 10 can be fixed more firmly.
  • the first circuit 11 can be provided on the substrate 10 through a DPC (Direct Plating copper) process.
  • the same process can be used to set the second circuit 12 on the back of the substrate 10, and the substrate 10 is provided with a conductive hole 13 penetrating the substrate 10.
  • the first circuit 11 and the second circuit 12 The LED chip 20 , the first line 11 and the second line 12 are connected through the conductive hole 13 .
  • the flux material can be provided on the first line 11 by spot coating.
  • the spot coating of the soldering flux material on the first line 11 can be achieved manually, mechanically, etc., for example, by setting up an intelligent manipulator, and the intelligent manipulator can evenly set a quantitative amount of the fluxing material, so that it can Further improve the welding effect.
  • the first line 11 and the second line 12 can be plated with nickel and gold to prevent migration and oxidation of metal on the lines and improve conductivity and oxidation resistance.
  • the thickness of nickel plating is required to be >3um
  • the thickness of gold plating is >0.05um to ensure conductivity and anti-oxidation effects.
  • the LED chip 20 can be any one of a flip chip, a regular chip or a vertical chip.
  • a soldering flux material is provided on the first line on the front side of the substrate 10, and then the LED chip is arranged on the soldering flux.
  • the connection between the LED chip 20 and the substrate 10 can be realized based on the materials.
  • the LED chip 20 and the substrate 10 may be eutectic by passing the connected LED chip 20 and the substrate 10 through a eutectic furnace, thereby making the LED chip 20 and the substrate 10 more firmly bonded.
  • a eutectic furnace In specific applications, when the soldering pad is a gold-tin alloy, at least one temperature zone of the eutectic furnace is between 300°C and 340°C, and the eutectic process requires nitrogen protection.
  • the step of disposing the sealant 60 in the sealing groove further includes:
  • the reason why the sealant 60 to be cured covers the positioning block 40 is to prevent the positioning block 40 from being blocked at a certain position between the light-transmitting member 50 (transparent cover) and the bracket 30 (dam).
  • the sealant 60 ensures that the light-transmitting part 50 (transparent cover) and the bracket 30 (dam) can be connected through the sealant 60, thereby ensuring the bonding and sealing effect.
  • the method for curing the sealant 60 may include waiting for the sealant 60 to cure naturally, bake or be cured by UV light. It can be understood that the curing method of the sealant 60 is not limited to this, as long as the sealant 60 can be cured. For example, if the sealant 60 needs to be baked to be cured, baking and curing is used. If it can be cured by direct UV light irradiation, then use UV light curing. If it is other types of sealant, use the corresponding curing method.
  • This optional implementation ensures the bonding and sealing effects of the sealant by making the sealant 60 to be cured cover the positioning block 40 and solidifying the sealant 60 .
  • the LED chip 20 may be first placed on the front of the substrate 10 , and then the bracket 30 (dam) and the positioning block 40 may be placed around the LED chip 20 . That is, the embodiment of the present invention also provides another LED packaging method, which includes the following steps:
  • S103' Set a bracket 30 (dam) with a mounting groove 31 on the substrate 10, and seat the bracket 30 on the front side of the substrate 10.
  • the bracket 30 is annular and surrounds the LED chip 20.
  • the mounting groove 31 is provided with a positioning block 40;
  • Embodiment 3b what is different from Embodiment 3b is that, since in this embodiment, the LED chip 20 is set first and then the bracket 30 is set, it is inconvenient to manufacture the bracket 30 (dam) through the DPC process. Therefore, in this embodiment, When setting up the bracket 30 (dam), the bracket 30 can be prepared into an annular shape first, and then a mounting groove 31 penetrating the top of the bracket 30 is provided on at least part of the inner wall of the bracket 30 , and then the base plate 10 The top is connected to the bottom of the bracket 30 (dam). Other steps in this embodiment are the same as those in Embodiment 2. Please refer to the description of Embodiment 2, which will not be repeated here.
  • the invention provides an LED packaging structure and LED packaging method.
  • the LED packaging structure 100 includes a substrate 10, an LED chip 20, a bracket 30 (dam), a positioning block 40, a light-transmitting member 50 (transparent cover) and a seal. Glue 60.
  • the substrate 10 has an opposite front and a back.
  • the LED chip 20 is fixed on the front surface of the substrate 10 .
  • the bracket 30 (dam) is annular and has a top and a bottom. The bottom of the bracket 30 (dam) is seated on the front side of the substrate 10 .
  • the bracket 30 (dam) surrounds the LED chip 20 Periphery.
  • the bracket 30 (dam) is provided with a mounting groove 31 penetrating the top of the bracket 30 (dam) and the inner wall of the bracket 3 (dam) 0.
  • the mounting groove 31 has a groove bottom surface 311 and a groove side wall 312.
  • the positioning block 40 is disposed in the installation groove 31 .
  • the bottom surface of the light-transmitting member 50 transparent cover
  • the side surface 51 of the light-transmitting member 50 transparent cover
  • the positioning block 40 abuts to achieve positioning of the light-transmitting member 50 (transparent cover).
  • the side surface 51 of the light-transmitting member 50 forms a sealing groove with the groove bottom surface 311 and groove side walls 312 of the mounting groove 31 , and the sealant 60 is disposed in the sealing groove.
  • the present invention first restricts the light-transmitting member 50 (transparent cover) by positioning the light-transmitting member 50 (transparent cover) through the plurality of positioning blocks 40, so that the side surface 51 of the light-transmitting member 50 (transparent cover) is in contact with the installation
  • the bottom surface 311 of the groove 31 and the side walls 312 of the groove 31 form a sealing groove, which limits the maximum amount of sealing glue that the sealing groove can accommodate.
  • the sealant 60 can be placed in the sealing groove from the upper opening of the sealing groove.
  • the sealant 60 can be exposed to the outside, avoiding the existing In the technology, the sealant is set first and then the light-transmitting part is set on the bracket, which leads to the problem that the sealant is set in a closed space in the LED structure, making it difficult to measure the thickness of the sealant.
  • the bottom surface 311 of the installation groove 31 are provided with bottom sealant.
  • the light-transmitting component 50 will not be subject to the upward buoyancy of the bottom sealant on the light-transmitting component 50 (transparent cover), and the bottom sealant is also avoided.
  • the upward pressure exerted on the light-transmitting member 50 (transparent cover) by its own rebound force avoids the problem in the prior art that the bottom sealant and the light-transmitting member 50 form a sealed space when they first come into contact, thereby avoiding the existing problem.
  • the air compression inside the sealed space causes the pressure in the sealed space to increase, causing the light-transmitting member 50 to float. This avoids the possibility of air bubbles and bubbles in the sealant 60 being caused when the light-transmitting member 50 (transparent cover) floats.
  • the problem of air holes further enhances the sealing effect of the LED packaging structure 100 .
  • the 3D TOF (3 Dimensions Time of flight) device is a new generation of light-emitting element device that combines distance detection with 3D imaging technology.
  • the packaging structure of the current light-emitting element device mainly includes a substrate, a package, a light-transmitting component and a light-emitting component.
  • the package is annular and is located on the front side of the substrate.
  • the light-transmitting component is connected to the top of the package and is connected to the package and the substrate. Enclosed to form a receiving cavity, the light-emitting element is received in the receiving cavity.
  • the light-transmitting part includes a light-transmitting layer and a light-diffusing layer.
  • the light-diffusing layer includes a light-diffusing structure to refract the laser into a large-angle beam to protect human eyes.
  • a photodetector In order to ensure the safety of human eyes, it is often necessary to install a photodetector in the receiving cavity.
  • the photodetector receives the light of the laser that passes through the uniform light layer and is reflected to the photodetector, and converts the optical signal into an electrical signal to facilitate the operator's judgment. Whether the light-diffusion layer on the light-transmitting parts has fallen off.
  • the packaging structure requires two driving integrated circuits to be used, which will further increase the manufacturing time and cost; fourth, due to the limited size of the photodetector, the photodetector can only receive the part that has passed through the light uniformity layer.
  • Embodiment 4 of the present invention provides a packaging structure of a light-emitting element.
  • the packaging structure 100 includes a substrate 10 , a light-emitting element 20 , a dam 30 and a light-transmitting member 40 (transparent cover).
  • a first circuit layer 11 is provided on the front side of the substrate 10 .
  • the light-emitting element 20 is disposed on the front surface of the substrate 10 , and the light-emitting element 20 is connected to the first circuit layer 11 .
  • the dam 30 is disposed on the front surface of the substrate 10 .
  • the dam 30 includes a first part and a second part that are spaced apart from the front surface of the substrate 10 .
  • the first part and the second part are respectively configured to connect with the electrical circuit.
  • the positive conductor 31 and the negative conductor 32 are connected to the signal detection module.
  • the positive conductor 31 and the negative conductor 32 are spaced apart from each other on the front side of the substrate 10 , and the positive conductor 31 and the negative conductor 32 are provided between the light-emitting element 20 and the negative conductor 32 .
  • the periphery of the first circuit layer 11 The light-transmitting member 40 (transparent cover) includes a stacked light-transmitting conductive layer 41 , a light uniform layer 42 and a light-transmitting layer 43 .
  • the light-transmitting conductive layer 41 is connected to the positive electrode conductor 31 and the negative electrode conductor 32 .
  • the light-emitting element 20 may be a laser element.
  • the laser light emitted by the light-emitting element 20 is refracted out of the outside world through the light-transmitting member 40 (transparent cover).
  • the uniform light layer is provided with a uniform light structure.
  • the laser light emitted by the light-emitting element 20 passes through the uniform light layer 42 and is refracted out of the outside world as a beam with a larger angle. Avoid direct laser exposure to human eyes, thereby protecting human eyes. In order to protect the safety of human eyes to a greater extent, the operator can determine whether the uniform light layer 42 is detached or damaged by detecting the light-transmitting conductive layer 41.
  • the operator first connects the positive conductor 31 to the negative conductor 32.
  • the electric current is then detected by the electrical signal detection module connected to the positive conductor 31 and the negative conductor 32 to obtain the resistance of the light-transmitting conductive layer 41, and it can be determined whether the light-diffusion layer 42 is peeled off or damaged.
  • the resistance of the light-transmitting conductive layer 41 cannot be detected, it can be determined that the uniform light layer 42 has fallen off; when the resistance of the light-transmitting conductive layer 41 can be detected, but the resistance value is not within the normal range, it can be determined It is determined that the light-diffusion layer 42 and the light-diffusion conductive layer 41 are partially damaged (during the use of the product, the light-diffusion conductive layer 41 is most likely to be damaged because the light-diffusion layer 42 is damaged); When the resistance of the light-transmitting conductive layer 41 is measured and the resistance value is within the normal range, it can be judged that the light-diffusing layer 42 has not fallen off and no damage has occurred in some areas.
  • the present invention provides a conductive light-transmitting conductive layer 41 on the light-diffusing layer 42. By detecting whether the resistance value of the light-transmitting conductive layer 41 is normal, it can be detected and judged whether the light-diffusing layer 42 is peeled off or damaged.
  • the present invention not only does not require the manufacture of photodetectors with complex algorithms and high costs, but also does not require additional drive integrated circuits in the packaging structure that are adapted to the photodetector driving mode, thereby making packaging and detection more convenient.
  • the method is simpler, and it also reduces the time and cost of manufacturing and testing, shortens the work process, and improves the operating efficiency of the product.
  • the existing technology can only determine whether the light uniformity layer has fallen off as a whole, but the present invention can determine the light uniformity through the size of the resistance value. Whether some areas of the layer are damaged, thus ensuring the safety of human eyes to a greater extent.
  • the electrical signal detection module can first detect the current value and the voltage value passing through the light-transmitting conductive layer 41 and then calculate the resistance.
  • the resistance value of the light-transmitting conductive layer 41 is used to detect and determine whether the light-diffusing layer 42 is peeled off or damaged.
  • the present invention can also detect the current value and voltage value passing through the light-transmitting conductive layer 41 through the electrical signal detection module to directly determine whether the light-homogenizing layer 42 is detached or damaged.
  • determining whether the resistance value of the light-transmitting conductive layer 41 is within the normal range can be achieved by using big data comparison. For example, in the same batch of tests, the resistance value of the light-transmitting conductive layer will be within A value hovers around. If the resistance value of the light-transmitting conductive layer deviates greatly from this value, it can be determined that some areas of the light-diffusion layer and the light-transmitting conductive layer in the packaging structure are damaged.
  • the back side of the substrate 10 is provided with a second circuit layer 12 that is electrically connected to the first circuit layer 11, so that to connect the circuit.
  • the substrate 10 is provided with a third conductive hole 15 and a fourth conductive hole 16 penetrating the substrate 10
  • the first circuit layer 11 includes an anode and a cathode connected to the light-emitting element 20 respectively.
  • the positive electrode line 111 and the negative electrode line 112 are connected to the second circuit layer 12 through the third conductive hole 15, and the negative electrode line 112 is connected to the second circuit layer 11 through the fourth conductive hole 16. Line layer 12 connections.
  • the first circuit layer 11 includes a driving integrated circuit (not shown), the light-emitting element 20 is a VCSEL laser chip, and the driving integrated circuit is connected to the VCSEL laser chip and the light-transmitting conductive layer 41 , the driving integrated circuit provides pulse driving current to the VCSEL laser chip and the light-transmitting conductive layer 41 .
  • the electrical signal detection module can be integrated into the driving integrated circuit, so that the resistance value of the light-transmitting conductive layer 41 can be detected without installing another driving integrated circuit in the packaging structure, thereby saving manufacturing time and cost.
  • the light-emitting elements in the packaging structure provided by the present invention are not limited to VCSEL laser chips, and the packaging structure provided by the present invention is not limited to application in 3D TOF devices.
  • the present invention can also be applied to other applications that need to detect whether the uniform light layer is damaged. to ensure safety.
  • the substrate 10 is provided with a first conductive hole 13 and a second conductive hole 14 penetrating the substrate 10, and the positive conductor 31 passes through the
  • the first conductive hole 13 is connected to the second circuit layer 12, and the negative conductor 32 is connected to the second circuit layer 12 through the second conductive hole 14.
  • the first conductive hole 13 is used to realize the positive conductor.
  • the second conductive hole 14 is used to realize the conduction between the negative conductor 32 and the second circuit layer 12 .
  • a first mounting groove 311 is provided on the top of the positive conductor 31 .
  • the first mounting groove 311 is provided on at least part of the side wall of the positive conductor 31 above the light-emitting element 20 and penetrates the positive conductor.
  • a second mounting slot 321 is provided on the top of the negative conductor 32.
  • the second mounting slot 321 is provided on at least part of the side wall of the negative conductor 32 above the light-emitting element 20 and penetrates the negative electrode.
  • the light-transmitting member 40 transparent cover
  • the light-transmitting member 40 transparent cover
  • the dam 30 is separated by a partition groove 33 , and the positive conductor 31 and the negative conductor 32 are symmetrically arranged relative to the partition groove 33 .
  • the dam 30 is separated by the partition groove 33 to increase the distance between the positive conductor 31 and the negative conductor 32 and reduce the possibility of short circuit between the positive conductor 31 and the negative conductor 32.
  • the symmetrical arrangement of the negative conductor 32 relative to the partition groove 33 can improve the installation stability of the light-transmitting member 40 (transparent cover).
  • the positive conductor 31 is in the shape of " ⁇ "
  • the negative conductor 32 is in the shape of an inverted " ⁇ ”
  • the opening of the positive conductor 31 is opposite to the opening of the negative conductor 32
  • the light-emitting element 20 is at least Partially extends into the opening of the positive conductor 31 and/or the opening of the negative conductor 32 , thereby reducing the area of the light-emitting element 20 exposed to the outside to protect the light-emitting element 20 , thereby increasing the service life of the packaging structure 100 of the light-emitting element.
  • an insulating material is provided at the partition groove 33 to reduce the possibility of short circuit between the positive conductor 31 and the negative conductor 32 .
  • the insulating material can be plastic, rubber, insulating glue and other materials.
  • the present invention does not limit the specific material of the insulating material, as long as the insulation between the positive conductor 31 and the negative conductor 32 can be achieved.
  • the positive conductor 31 and the negative conductor 32 are both made of copper material.
  • the positive conductor 31 and the negative conductor 32 can be provided on the substrate 10 through DPC (Direct Plating copper technology).
  • DPC Direct Plating copper technology
  • the DPC process only requires a temperature of about 250 to 350°C to complete the production of the substrate 10 , which avoids the adverse effects of high temperatures on materials or circuit structures and reduces manufacturing process costs.
  • the light-transmitting member 40 (transparent cover) has a bottom surface facing the light-emitting element 20 , and the light uniformity layer 42 completely covers the light-transmitting layer 43
  • the bottom surface of the light-transmitting conductive layer 41 completely covers the bottom surface of the light-diffusing layer 42, and the bottom surface of the light-transmitting conductive layer 41 is bonded to the bottom surface of the first mounting groove 311 and the bottom surface of the first mounting groove 311 through the conductive adhesive glue 50.
  • the bottom surface of the two mounting grooves 321 is used to fix the light-transmitting member 40 (transparent cover).
  • the conductive adhesive 50 refers to an adhesive with certain conductive properties. It usually contains matrix resin and conductive fillers, that is, conductive particles, as its main components.
  • the conductive adhesive 50 can be made of epoxy resin, organic It is made of silicone resin, polyimide resin and other materials. The present invention does not limit the specific material of the conductive adhesive 50, as long as it can detect the resistance of the light-transmitting conductive layer 41 and does not affect the use of the packaging structure 100. .
  • the light-transmitting conductive layer 41, the light-uniforming layer 42 and the light-transmitting layer 43 can all be in the shape of a plate, and the light-transmitting member 40 (transparent cover) can also be in the shape of a flat plate (as shown in Figure 19 Show).
  • the present invention does not limit the specific shape of the light-transmitting member 40 (transparent cover).
  • the light-transmitting member 40 (transparent cover) can be in the shape of a hollow bulb or a hemisphere, as long as the light uniformity is
  • the layer 42 can cover the bottom surface of the light-transmitting layer 43
  • the light-transmitting conductive layer 41 can cover the bottom surface of the light-diffusing layer 42 to ensure the safety of human eyes and enable detection of the light-diffusing layer 42 .
  • the light-transmitting conductive layer 41 can be made of indium tin oxide (ITO) material. Since ITO has good conductivity and light transmittance, a transparent conductive film can be formed on the bottom surface of the uniform light layer 42 , the light transmittance of the transparent conductive film reaches more than 90%.
  • ITO indium tin oxide
  • the present invention does not limit the specific material of the light-transmitting conductive layer 41.
  • indium zinc oxide, indium gallium zinc oxide, indium tin zinc oxide and other materials can also be used, as long as the light-transmitting conductive layer 41 can be detected.
  • the resistance is sufficient to ensure that the light-emitting element 20 can pass through the light-transmitting conductive layer 41 .
  • the light-transmitting conductive layer 41 can be covered on the bottom surface of the light-diffusing layer 42 by evaporation.
  • a stacked light-diffusing layer 42 and a light-transmitting layer 43 may be prepared first, and then the light-transmitting conductive film 41 is evaporated on the bottom surface of the light-diffusing layer 42, and then the substrate 10 is prepared, and then The substrate 10 is provided with a positive conductor 31 and a negative conductor 32 that are spaced apart through DPC (Direct Plating copper) technology, and then the light-emitting element 20 is fixed to the first circuit layer 11 through a eutectic process, and passed through The wire bonding operation connects the light-emitting element 20 to the first circuit layer 11, and then conductive adhesive is placed in the first mounting groove 311 and the second mounting groove 321 to connect the light-transmitting member 40 (transparent cover) to the Dams 30 are connected to complete the overall package.
  • DPC Direct Plating copper
  • the operator first connects the positive conductor 31 and the negative conductor 32 with current, and then detects the light-transmitting conductive layer 41 through the electrical signal detection module in the above manner, so as to determine whether the uniform light layer 42 is peeled off or not. damage.
  • the present invention provides a packaging structure of a light-emitting element.
  • the packaging structure 100 includes a substrate 10, a light-emitting element 20, a dam 30 and a light-transmitting member 40 (transparent cover).
  • a first circuit layer 11 is provided on the front surface of the substrate 10 .
  • the light-emitting element 20 is disposed on the front surface of the substrate 10 , and the light-emitting element 20 is connected to the first circuit layer 11 .
  • the dam 30 is disposed on the front side of the substrate 10.
  • the dam 30 includes a positive conductor 31 and a negative conductor 32.
  • the positive conductor 31 and the negative conductor 32 are spaced apart from each other on the front side of the substrate 10, and the The positive conductor 31 and the negative conductor 32 are provided on the periphery of the light-emitting element 20 and the first circuit layer 11 .
  • the light-transmitting member 40 transparent cover
  • the light-transmitting conductive layer 41 is connected to the positive electrode conductor 31 and the negative electrode conductor 32 .
  • the laser light emitted by the light-emitting element 20 passes through the uniform light layer 42 and is refracted to the outside world at a larger angle, thereby protecting human eyes.
  • the operator first connects the positive conductor 31 and the negative conductor 32 with current, and then the resistance of the light-transmitting conductive layer 41 can be detected, thereby being able to determine whether the light-homogenizing layer 42 is detached or damaged.
  • the present invention provides a conductive light-transmitting conductive layer 41 on the light-diffusing layer 42.
  • the present invention not only does not require the manufacture of photodetectors with complex algorithms and high costs, but also does not require additional drive integrated circuits in the packaging structure that are adapted to the photodetector driving mode, thereby making packaging and detection more convenient.
  • the method is simpler, and it also reduces the time and cost of manufacturing and testing, shortens the work process, and improves the operating efficiency of the product.
  • the existing technology can only determine whether the light-diffusing layer has fallen off as a whole, but the present invention can determine the light-diffusing layer through the resistance value. Some areas are damaged, thus ensuring the safety of human eyes to a greater extent.
  • Embodiment 1 of the present invention provides an LED device 100.
  • the LED device 100 includes a bracket 10 (bracket structure), an LED chip 20, a light-transmitting member 30 (transparent cover) and a fluorescent substance.
  • the bracket 10 (bracket structure) has the dam and the base plate 11.
  • the bracket 10 (bracket structure) includes a base plate 11, and the base plate 11 has an opposite front and a back.
  • the LED chip 20 is fixed on the front surface of the substrate 11 .
  • the light-transmitting member 30 and the bracket 10 (bracket structure) are enclosed to form a receiving cavity 13 for receiving the LED chip 20.
  • the light-transmitting member 30 is disposed on the front side of the substrate 11 and covers the LED. Chip 20.
  • the fluorescent substance is provided on the bracket 10 (bracket structure) or/and the light-transmitting member 30 .
  • the fluorescent substance is used to generate visible light by causing a fluorescent reaction when the light emitted by the LED chip 20 is irradiated.
  • the LED device 100 provided by the present invention can conveniently configure the fluorescent substance Detecting the working status of the LED device 100 is very simple and convenient to produce and apply. Users can easily observe the working status of the LED device, which reduces the probability of safety accidents.
  • the visible light is If the chip and the LED chip are connected in parallel, one chip may fail while the other chip is working normally during use, resulting in misjudgment. If the visible light chip is connected in series with the LED chip, visible light may occur during use. If the chip fails, but the UV chip does not fail, it will also cause the LED device to fail.
  • a series design will increase the risk of overall device failure; another way is to add a monitoring circuit to determine the current and voltage changes in the device circuit through detection. To determine whether the device is in working condition, but adding a monitoring circuit is difficult and costly.
  • the present invention avoids the use of another visible light chip or monitoring circuit in the LED device, thus avoiding the use of another visible light chip.
  • the resulting problems include increased misjudgment rates, increased failure rates, and added monitoring circuits that make production more difficult and more costly.
  • the LED device mentioned in this embodiment has greater advantages.
  • the LED device 100 can be used in UV-LED lamps, infrared LED lamps and other lamps that can emit invisible light.
  • a fluorescent substance that can fluorescently react with the invisible light is provided, the control can be achieved. Detection of the working status of UV-LED lamps, infrared LED lamps and other lamps.
  • the bracket 10 further includes an encapsulation body 12 (dam), and the encapsulation body 12 (dam) is used to install the light-transmitting member 30 (ie, transparent cover, in order to avoid interference between the light-transmitting member 30 and the LED chip 20, the installation position of the light-transmitting member 30 should be higher than the top surface of the LED chip 20), thereby improving the sealing effect of the LED device 100 and enhancing the sealing effect of the LED device 100.
  • the package 12 (dam) is annular and has an inner wall, a top and a bottom. The bottom of the package 12 (dam) is seated on the front surface of the substrate 11.
  • the package 12 (dam) is The light-transmitting member 30 , the package 12 (dam), and the substrate 11 surround the LED chip 20 to form the receiving cavity 13 .
  • the substrate 11 and the package body 12 (dam) can be integrally formed, which is very convenient to manufacture.
  • the light-transmitting member 30 is bonded to the package body 12 (dam) through adhesive glue 40 mixed with the fluorescent substance, and/or the fluorescent substance is disposed in the receiving cavity.
  • the LED chip 20 emits invisible light
  • the fluorescent material undergoes a fluorescence reaction and then emits visible light.
  • the visible light is emitted to the outside through the light-transmitting member 30 , and the human eye can identify the working status of the LED device 100 .
  • At least a portion of the inner wall of the package 12 (dam) located above the LED chip 20 is provided with a mounting groove 121 penetrating the top of the package 12 (dam).
  • the bottom or/and side surfaces of the light-transmitting member 30 are fixed to the mounting groove 121 through the adhesive glue 40 mixed with the fluorescent substance.
  • the fluorescent material is arranged into a fluorescent layer 50, and the fluorescent layer 50 can be in the shape of a ring, a strip, a circle or a polygon.
  • the fluorescent layer 50 can be made by mixing a fluorescent substance and glue, or by mixing a fluorescent substance with other curable liquids, or other methods, or the fluorescent substance directly forms the fluorescent layer 50.
  • the invention does not limit this, as long as the fluorescent substance can be arranged on the bracket or/and the light-transmitting member, and the user can observe the visible light generated by the fluorescent substance.
  • the present invention does not limit the thickness, width and shape of the fluorescent substance coating, as long as the user can observe the visible light generated after the fluorescent substance undergoes a fluorescence reaction.
  • a first circuit 111 is provided on the front side of the substrate 11 for connecting to the LED chip 20 .
  • a second circuit 112 is provided on the back side of the substrate 11 .
  • the substrate 11 is provided with a conductive hole 113 penetrating the front and back surfaces.
  • the first circuit 111 and the second circuit 112 are connected through the conductive hole 113 , thereby realizing the connection between the LED chip 20, the first line 111 and the second line 112.
  • arranging the first line 111 and the second line 112 on the substrate 11 can be implemented through a DPC (Direct Plating copper) process.
  • DPC Direct Plating copper
  • the LED chip 20 is any one of a flip chip, a regular chip, or a vertical chip.
  • a soldering flux material is provided on the first line 111 on the front side of the substrate 11 , and then the LED chip 20 is provided on the flux chip. On the soldering material, the connection between the LED chip 20 and the substrate 11 can be realized.
  • the first line 111 has an annular groove 115, and the fluorescent material is arranged in the annular groove 115, so that the arrangement of the fluorescent material is better.
  • the fluorescent material When the layer 50 is not cured, it can also prevent the liquid to be cured from flowing and affecting the use of other components in the LED device 100 .
  • the fluorescent layer 50 can be coated to cover the annular groove 115, or can be coated in a block shape on the annular groove 115, as long as the user can conveniently observe the fluorescence reaction of the fluorescent material. of visible light.
  • the light-transmitting member 30 is made of quartz or sapphire material, but the present invention does not apply to the light-transmitting member 30 (transparent cover).
  • the specific material of the cover) is not limited as long as it can achieve light transmission.
  • the light transmission member 30 can be made of PMMA (polymethylmethacrylate).
  • the light-transmitting member 30 (transparent cover) can be laid flat in the mounting groove 121 in a square shape, and at least one of the bottom surface or side surfaces of the light-transmitting member 30 (transparent cover) is in contact with the mounting groove 121 .
  • the groove surface is connected through adhesive glue 40.
  • the other surface can be connected to the groove surface through adhesive glue 40.
  • the groove surfaces of the mounting groove 121 are in contact with each other.
  • the LED chip 20 is a UV-LED chip, and the fluorescent substance can be ultraviolet phosphor or other fluorescent substances that can react fluorescently with ultraviolet light.
  • the LED chip 20 is a high-energy infrared laser LED chip, and the fluorescent substance can be infrared phosphor or other fluorescent substances that can react fluorescently with the high-energy infrared laser. It can be understood that, in addition to the above-mentioned fluorescent substance, the present invention does not limit the specific material of the fluorescent substance, as long as it is arranged corresponding to the LED chip, it can react with the invisible light emitted by the LED chip to produce fluorescence reaction. Just check the working status of the LED chip mentioned above.
  • the concentration of the fluorescent substance mixed in the adhesive glue 40 can be 5% to 10%.
  • the adhesive glue 40 mixed with the fluorescent substance can be distributed in a ring shape (see Figure 24) or a block shape (see Figure 25) on the front side of the substrate 11 and located on the package body 12 (dam) or disposed on the inner wall of the package 12 (dam).
  • the present invention does not limit the thickness, width and shape of the adhesive glue 40 mixed with the fluorescent substance, as long as Users can easily observe the visible light generated after the fluorescent substance undergoes a fluorescence reaction, and it only needs to play a bonding role when bonding the light-transmitting member 30 and the package body 12 .
  • the fluorescent substance can also be arranged in the receiving cavity, or even outside the receiving cavity.
  • the fluorescent substance can be provided on the surface (outside or inside) of the transparent member 30 or on the front side of the substrate 11 , etc.
  • the fluorescent substance can also be provided on the interlayer of the transparent member 30 .
  • the present invention is suitable for the fluorescent substance. There is no specific restriction on the location of the substance, as long as the fluorescent substance is arranged on the LED device 100 and does not affect the reaction of the fluorescent substance with the light emitted by the LED chip 20 to generate visible light that can be observed by the user.
  • the adhesive glue 40 refers to a coating with an adhesive function.
  • the bonding glue 40 is a UV-resistant glue, usually glue made of silicone, epoxy resin, fluorine resin and other materials.
  • glue made of silicone, epoxy resin, fluorine resin and other materials.
  • the present invention does not limit the specific material of the bonding glue 40, as long as the service life of the glue can meet the service life of the device.
  • disposing the fluorescent substance in the LED device 100 is not limited to the above-mentioned method of mixing the fluorescent substance with the adhesive glue 40 , and can also be made by mixing the fluorescent substance with a curable liquid.
  • the fluorescent block or fluorescent layer with fluorescent material is arranged on the bracket 10 (bracket structure) or/and the light-transmitting member 30 (transparent cover).
  • the present invention does not limit the arrangement of the fluorescent material. , as long as the fluorescent substance can be fixed in the LED device 100 and the user can observe the visible light generated by the fluorescent substance.
  • Embodiment 5b of the present invention provides an LED device 100.
  • the light-transmitting member 30 in Embodiment 5b is in the shape of a hemisphere and directly wraps the LED.
  • Chip 20, the bracket 10 (stent structure) does not include the package 12 (dam) in Embodiment 5a, has a simple structure, is small in size, has better protection for the LED chip 20, and has a better effect of isolating water vapor.
  • the LED device 100 includes a bracket 10 (stent structure), an LED chip 20, a light-transmitting member 30 (transparent cover) and a fluorescent substance.
  • the bracket 10 (bracket structure) includes a base plate 11 having opposite front and back sides.
  • the LED chip 20 is fixed on the front surface of the substrate 11 .
  • the light-transmitting member 30 (transparent cover) is disposed on the front side of the substrate 11 and covers the LED chip 20 .
  • the fluorescent substance is provided on the bracket 10 (substrate 11 ) or/and the light-transmitting member 30 .
  • the fluorescent substance is used to produce visible light through a fluorescent reaction when the light emitted by the LED chip 20 is irradiated.
  • the LED device 100 When the LED chip 20 is working, the light emitted by the LED chip 20 irradiates the fluorescent substance, so that the fluorescent substance can generate a visible light. Therefore, the LED device 100 provided by the present invention can conveniently configure the fluorescent substance Detecting the working status of the LED device 100 is very simple and convenient to produce and apply. Users can easily observe the working status of the LED device, which reduces the probability of safety accidents. Moreover, there are currently two main methods for detecting the working status of LED devices in the prior art. One is to install another chip that can emit visible light in the device. However, in the actual manufacturing process, if the visible light chip is used, If the chip and the LED chip are connected in parallel, one chip may fail while the other chip is working normally during use, resulting in misjudgment.
  • the visible light chip may appear during use. Failure, but the UV chip does not fail, it will also lead to device failure. Such a series design will increase the risk of overall device failure; another way is to add a monitoring circuit to detect and judge the current and voltage changes in the device circuit. Whether the device is in working condition, but adding a monitoring circuit is difficult and costly.
  • the present invention avoids the use of another visible light chip or monitoring circuit in the LED device, thereby avoiding the problems caused by using another visible light chip. Increasing the misjudgment rate, increasing the device failure rate, and adding monitoring circuits bring about difficulties in production and higher costs. In the actual application of users, this device has greater advantages.
  • the light-transmitting member 30 can be made of light-resistant materials such as silicone, epoxy resin, and fluorine resin. To dispose the light-transmitting member 30 on the front side of the substrate 11 , the light-transmitting member 30 can be directly molded (molding, also called press molding or compression molding) on the front side of the substrate 11 through a mold.
  • Embodiment 3 of the present invention provides an LED device 100.
  • the package 12 in Embodiment 5c is a metal tube cap 14.
  • the LED device 100 includes a bracket 10 (stent structure), an LED chip 20, a light-transmitting member 30 (transparent cover) and a fluorescent substance.
  • the bracket 10 (bracket structure) includes a base plate 11 having opposite front and back sides.
  • the LED chip 20 is fixed on the front surface of the substrate 11 .
  • the light-transmitting member 30 and the bracket 10 are enclosed to form a receiving cavity 13 for receiving the light-transmitting member 30 .
  • the fluorescent substance is provided on the bracket 10 (stent structure) or/and the light-transmitting member 30 (transparent cover).
  • the fluorescent substance is used to generate a fluorescent reaction when the light emitted by the LED chip 20 is irradiated. Produce visible light.
  • the LED chip 20 When the LED chip 20 is working, the light emitted by the LED chip 20 irradiates the fluorescent substance, so that the fluorescent substance can generate a visible light. Therefore, the LED device 100 provided by the present invention can conveniently configure the fluorescent substance Detecting the working status of the LED device 100 is very simple and convenient to produce and apply. Users can easily observe the working status of the LED device, which reduces the probability of safety accidents.
  • there are currently two main methods for detecting the working status of LED devices in the prior art One is to install another chip that can emit visible light in the device.
  • the visible light chip is used, If the chip and the LED chip are connected in parallel, one chip may fail while the other chip is working normally during use, resulting in misjudgment. If the visible light chip is connected in series with the LED chip, the visible light chip may appear during use. Failure, but the UV chip does not fail, which greatly increases the risk of device failure; another way is to add a monitoring circuit to determine whether the device is in working condition by detecting and judging the current and voltage changes in the device circuit, but adding a monitoring circuit
  • the difficulty and cost are high, but the present invention avoids the use of another visible light chip or monitoring circuit in the LED device, thereby avoiding the increased misjudgment rate and device failure rate caused by using another visible light chip. As well as the difficulties and higher costs caused by adding a monitoring circuit, this device has greater advantages in users' practical applications.
  • the upper and lower ends of the metal tube cap 14 have openings, the bottom of the metal tube cap 14 is seated on the front of the substrate 11 , and the light-transmitting member 30 (transparent cover) is connected to the metal tube.
  • the upper end of the cap 14 closes the opening at the upper end.
  • the metal tube cap 14 is enclosed around the periphery of the LED chip 20 .
  • the light-transmitting member 30 (transparent cover), the metal tube cap 14 and the substrate 11 are enclosed to form a
  • the fluorescent substance is provided inside the receiving cavity 13 , the front surface of the substrate 11 and the metal cap 14 .
  • the metal pipe cap 14 includes a housing portion 141 and a first connecting portion 142 and a first connecting portion 142 extending from two ends of the housing portion 141 along a length direction perpendicular to the housing portion 141 .
  • Two connecting parts 143 the first connecting part 142 is located at the upper end of the metal pipe cap 14, the second connecting part 143 is located at the lower end of the metal pipe cap 14, the first connecting part 142 is used to connect with the metal pipe cap 14.
  • the light-transmitting member 30 is connected, and the second connecting portion 143 is used to connect with the substrate 11 .
  • the housing part 141 is annular, and the first connecting part 142 is formed by extending from the housing part 141 into the housing part 141 along a length direction perpendicular to the housing part 141 , the length of the first connecting part 142 is less than the length of the light-transmitting member 30 , and the second connecting part 143 is formed from the housing part 141 along the length direction perpendicular to the housing part 141 to
  • the first connecting portion 142 is formed by extending outwardly from the housing portion 141 and surrounding part of the top surface of the light-transmitting member 30 .
  • the housing portion 141 surrounds the side surface of the light-transmitting member 30 . .
  • the light-transmitting member 30 transparent cover
  • the upper end of the metal tube cap 14 can be connected through high-temperature sintering using glass solder as a medium, and the substrate 11 and the metal tube cap 14 can be welded to form a welding layer 144.
  • Embodiment 5d of the present invention provides an LED packaging method.
  • the LED packaging method is used to package the above-mentioned LED device 100.
  • the LED packaging method includes the following steps:
  • S102 Arrange the LED chip 20 on the front side of the substrate 11;
  • a first line 111 and a first line 111 for connecting to the LED chip 20 can be respectively provided on the front and back of the substrate 11.
  • the first line 111 and the second line 112 can be arranged through a DPC (Direct Plating copper) process.
  • a second circuit 112 may be provided on the back side of the substrate 11.
  • the substrate 11 is provided with a conductive hole 113 penetrating the substrate 11.
  • the first circuit 111 and the second circuit 112 are connected through the conductive hole 113. Therefore, the connection between the LED chip 20 , the first line 111 and the second line 112 can be realized, thereby facilitating the electrical connection of the LED chip 20 in the bracket 10 (bracket structure).
  • the first line 111 and the second line 112 can be plated with nickel and gold to prevent migration and oxidation of metal on the lines and improve conductivity and oxidation resistance.
  • the thickness of nickel plating is required to be >3um
  • the thickness of gold plating is >0.05um to ensure conductivity and anti-oxidation effects.
  • the step of arranging the LED chip 20 on the front surface of the substrate 11 is to fix the LED chip 20 to the substrate 11 .
  • the LED chip 20 is a flip chip
  • the first circuit 111 includes a soldering pad
  • a soldering flux material is disposed on the soldering pad
  • the LED chip 20 is disposed on the soldering flux material to realize the LED
  • the soldering flux material is provided on the first line 111 by spot coating.
  • the spot coating of the soldering flux material on the first line 111 can be achieved manually, mechanically, etc., for example, by setting up an intelligent manipulator, and the intelligent manipulator evenly sets a quantitative amount of the fluxing material, so that it can Further improve the welding effect.
  • the ceramic substrate 11 with the chip fixed can be passed through a eutectic furnace to achieve eutectic.
  • the temperature of the eutectic furnace has at least one temperature zone between 300°C and 340°C, and the eutectic process requires nitrogen protection.
  • the fluorescent substance can be provided by mixing the fluorescent substance with glue and then coating it on the bracket 10 (bracket structure) or/and the light-transmitting member 30, a fluorescent block with a fluorescent substance made by mixing a fluorescent substance and a curable liquid can also be provided on the bracket 10 (bracket structure) or/and The light-transmitting member 30 (transparent cover), or the fluorescent material directly forming the fluorescent layer 50 is provided in the LED device 100, as long as the fluorescent material can be fixed in the LED device 100 and the user can observe to the visible light generated by the fluorescent substance.
  • the glue refers to a coating with a bonding function.
  • the glue can be made of silicone, epoxy resin, fluororesin and other materials.
  • the present invention does not limit the specific material of the glue.
  • the method of curing the glue may include waiting for the glue to cure naturally, bake or be cured by UV light. It can be understood that the method of curing the glue is not limited to this, as long as the glue can be cured. For example, if the glue needs to be baked to be cured, baking and curing is used. For example, UV light can be used directly. If it is cured by irradiation, use UV light curing. If it is other types of glue, use the corresponding curing method.
  • the fluorescent substance is a fluorescent layer
  • the fluorescent layer can be distributed in the shape of a ring, a strip, a circle, a polygon, or a block of no specific shape on the bracket 10 or/and the light-transmitting member 30 ( Transparent cover), the present invention does not limit the thickness, width and shape of the fluorescent substance coating, as long as the user can easily observe the visible light generated after the fluorescent substance undergoes a fluorescence reaction.
  • the connection between the light-transmitting member 30 and the bracket 10 The method is also slightly different, but as long as the light-transmitting member 30 (transparent cover) and the bracket 10 are enclosed to form a receiving cavity 13 for receiving the light-transmitting member 30 (transparent cover), or the transparent member 30 (transparent cover) is enclosed.
  • the optical component 30 is disposed on the front surface of the substrate 11 and covers the LED chip 20 .
  • the light-transmitting member 30 transparent cover
  • the bracket 10 may be packaged in a semi-inorganic package. (bracket structure) for encapsulation connection.
  • a package 12 connected to the substrate 11 needs to be prepared.
  • At least a part of the inner wall of the package 12 located above the LED chip 20 is provided with a through-hole.
  • the mounting groove 121 on the top of the package 12 is placed, and then the bottom of the package 12 is seated on the front surface of the substrate 11 .
  • the package 12 is surrounded by the LED chip 20 , and then the light-transmitting member 30 is The bottom (transparent cover) is placed in the installation groove 121, and then the bottom or/and side of the light-transmitting member 30 (transparent cover) is fixed to the installation groove 121 through glue, and finally, the glue is solidified.
  • the placement position of the fluorescent substance can also be optimized and adjusted according to the different structural shapes of the light-transmitting member 30 and the bracket 10 (stent structure).
  • the fluorescent substances can be mixed.
  • the above-mentioned glue is used to fix the light-transmitting component 30 (transparent cover) and the fluorescent material in the mounting groove 121, so that the fluorescent material can be bonded to the light-transmitting component 30 (transparent cover) and the fluorescent material at the same time.
  • the substrate 11 and the package body 12 can be integrally formed, which is very convenient to manufacture.
  • the light-transmitting member 30 and the bracket 10 may be encapsulated and connected by organic encapsulation.
  • the light-transmitting part 30 transparent cover
  • the light-transmitting part 30 can be made of moldable materials such as silicone, epoxy resin, and fluorine resin, and is placed in the bracket 10 (stent structure) or/and the light-transmitting part 30 ( After the step of arranging the fluorescent substance (transparent cover), the light-transmitting member 30 is directly molded on the front side of the substrate 11 through a mold to complete the connection between the light-transmitting member 30 and the bracket 10 (bracket structure).
  • the position of the fluorescent substance can also be adjusted according to the specific structural shapes of the light-transmitting member 30 (transparent cover) and the bracket 10.
  • the position of the fluorescent substance can be adjusted on the surface of the substrate 11.
  • a fluorescent layer 50 with the fluorescent substance is provided on the front side to facilitate user observation.
  • the fluorescent layer 50 can be made by mixing fluorescent substances and adhesive glue 40, or can be made by mixing fluorescent substances and other curable liquids.
  • the present invention is not limited to this, as long as the fluorescent substances can be designed. on the substrate 11.
  • the light-transmitting member 30 transparent cover
  • the bracket 10 may be packaged in a fully inorganic packaging manner. (bracket structure) for encapsulation connection.
  • a package 12 connected to the substrate 11 needs to be prepared.
  • the package 12 is a metal tube cap 14, and the upper and lower ends of the metal tube cap 14 are provided with openings.
  • the fluorescent substance is provided on the bracket 10 (bracket structure) or/and the light-transmitting component 30, the upper ends of the transparent component 30 and the package 12 are sintered at high temperatures using glass solder as a medium.
  • the light-transmitting member 30 (transparent cover) is connected to the bracket 10, and the light-transmitting member 30 seals the opening at the upper end of the metal tube cap 14 to seal the LED device 100. Finally, The lower end of the metal cap 14 is welded to the front surface of the substrate 11 to form a welding layer 144 .
  • the step of arranging fluorescent substances on the bracket 10 (stent structure) or/and the light-transmitting member 30 further includes:
  • a first circuit 111 is provided on the front side of the substrate 11.
  • a receiving groove is provided on the first circuit 111.
  • the fluorescent substance is mixed into the glue and filled in the receiving groove.
  • glue including fluorescent substances can be conveniently installed to prevent the glue to be cured from flowing and affecting the use of other components in the LED device 100 .
  • the preparation steps of the fluorescent substance include:
  • the concentration of the fluorescent substance mixed in the binding glue 40 can be controlled to be 5% to 10%.
  • the present invention can also provide an intelligent manipulator, which can evenly set a quantitative amount of fluorescent substance and glue, thereby ensuring the illumination effect and detection effect of the LED device 100.
  • stirring the fluorescent substance and the glue can be achieved manually or through mechanical structures, for example, an intelligent manipulator is provided and the intelligent manipulator stirs evenly, thereby further improving the luminous effect of the fluorescent substance.
  • the bubbles in the glue containing fluorescent substances can be removed by artificial means, mechanical structure, etc., for example, by removing the bubbles through a degassing machine, thereby further improving the luminous effect of the fluorescent substances.
  • the fluorescent substance and the glue are mixed more uniformly by stirring the fluorescent substance and the glue and removing the bubbles in the glue including the fluorescent substance, thereby improving the luminous effect of the fluorescent substance and making it more convenient.
  • the user detects the operating status of the LED device 100 .
  • the invention provides an LED device and an LED packaging method.
  • the LED device 100 includes: a bracket 10 (bracket structure), an LED chip 20, a light-transmitting member 30 (transparent cover) and a fluorescent substance.
  • the bracket 10 includes a base plate 11, and the base plate 11 has an opposite front and a back.
  • the LED chip 20 is fixed on the front surface of the substrate 11 .
  • the light-transmitting member 30 and the bracket 10 are enclosed to form a receiving cavity 13 for receiving the light-transmitting member 30 (transparent cover), or the light-transmitting member 30 (transparent cover) is disposed on the substrate 11 and covers the LED chip 20 .
  • the fluorescent substance is provided on the bracket 10 (bracket structure) or/and the light-transmitting member 30 .
  • the fluorescent substance is used to generate visible light by causing a fluorescent reaction when the light emitted by the LED chip 20 is irradiated.
  • the LED chip When the LED chip is working, the light emitted by the LED chip irradiates the fluorescent substance, so that the fluorescent substance can produce a visible light. Therefore, the LED device and the LED packaging method provided by the present invention can be configured to interact with the LED chip.
  • the emitted light produces a fluorescent substance that emits visible light through a fluorescent reaction to detect the working status of the LED device.
  • the production and application are very simple and convenient.
  • the invention avoids the use of another visible light chip or monitoring circuit in the LED device, thereby avoiding the increased misjudgment rate and device failure rate caused by using another visible light chip and the manufacturing difficulty caused by adding a monitoring circuit. In terms of problems such as higher cost, this device has greater advantages in users' actual applications.
  • the present invention provides a multi-layer substrate.
  • the multi-layer substrate 100 includes: a first substrate 10 , a package 20 and a second substrate 50 .
  • the first substrate 10 has an opposite front and a back.
  • the front of the first substrate 10 is provided with a first circuit layer 11, and the back of the first substrate 10 is provided with a second circuit layer 12.
  • the first circuit is Layer 11 is electrically connected to the second circuit layer 12 .
  • the first circuit layer 11 includes a first circuit positive electrode 111 and a first circuit negative electrode 112 .
  • the package body 20 is annular and is disposed on the front surface of the first substrate 10 .
  • the package body 20 surrounds the periphery of the first line positive electrode 111 and the first line negative electrode 112 .
  • the second substrate 50 is connected to the second circuit layer 12 on the back side of the first substrate 10 through a welding process, and a heat dissipation layer 51 is provided on the back side of the second substrate 50 .
  • the multilayer substrate provided by the present invention adds a second substrate 50 and provides a heat dissipation layer 51 on the second substrate 50 instead of providing a heat dissipation layer 51 on the back of the first substrate 10 so that the first substrate 10
  • the circuit on the back cannot come into contact with the radiator or the heat dissipation layer 51, so there is no need to use the insulating layer in the prior art to prevent the circuit from contacting the radiator or the heat dissipation layer, thereby also avoiding the normal damage caused by the peeling off of the insulating layer in the prior art.
  • the first substrate 10 is provided with conductive holes 13.
  • the conductive holes 13 include at least two first conductive holes 131 and at least two second conductive holes. 132.
  • the openings of the at least two first conductive holes 131 on the front surface of the first substrate 10 are located on the inside and outside of the package 20; the at least two second conductive holes 132 are on the The openings on the front surface of the first substrate 10 are respectively located on the inner and outer sides of the package 20 .
  • Each of the first conductive holes 131 and the second conductive holes 132 is provided with conductive material, thereby realizing the connection between the first circuit layer 11 and the second conductive hole 132 . conduction between circuit layers 12.
  • the conductive hole 13 penetrates the first substrate 10, so that the circuit does not need to pass through the package 20, so that there is no need to provide a through gap on the package 20 as in the prior art, thus avoiding the subsequent difficulty in handling the LED caused by the gap. It solves the problem of effective air-tight packaging of the device, thereby meeting the requirements for air-tight packaging of high-power LED products, reducing the risk of LED product failure, and improving the safety and reliability of the product.
  • a surface metal layer 11b is provided on the surface of the first substrate 10 to cover the surface of the copper material 11a forming the first circuit layer 11 to improve the oxidation resistance and convenience of the product.
  • the LED chip 30 is disposed on the surface of the first substrate 10 .
  • the surface metal layer 11b (first circuit layer 11) may be made of gold (Au), silver (Ag), nickel (Ni), palladium (Pd), etc.
  • the LED chip 30 may be a flip-chip, and the LED chip 30 may be fixed using a eutectic process.
  • the surface metal layer 11b may be preferably made of nickel and gold, and the gold layer covers the nickel layer, where nickel The thickness of the layer can be greater than 3 microns, and the thickness of the gold layer can be greater than 0.05 microns.
  • the LED chip 30 can also be a horizontal or vertical chip. The LED chip 30 can be fixed using a wire bonding process later.
  • the material of the surface metal layer 11b can be preferably nickel, palladium and gold. From the front of the first substrate 10, the nickel layer, The palladium layer and the gold layer are stacked in sequence, wherein the thickness of the nickel layer can be greater than 3 microns, the thickness of the palladium layer can be greater than 0.05 microns, and the thickness of the gold layer can be greater than 0.05 microns.
  • the first substrate 10 can be made of ceramic materials, such as aluminum nitride ceramic (AlN), gallium nitride ceramic (GaN), alumina ceramic (Al 2 O 3 ), silicon carbide ceramic ( SiC) and other materials to meet the heat dissipation and insulation properties of LED devices, especially high-power LED devices.
  • the thickness of the first substrate 10 may be 0.3 mm to 2.0 mm.
  • the first circuit layer 11 also includes a positive electrode 113 and a negative electrode 114.
  • the positive electrode 113 and the negative electrode 114 are disposed on the third The front side of a substrate 10, and the positive electrode 113 and the negative electrode 114 are provided on the periphery of the package 20.
  • the package 20 does not need to be provided with a gap.
  • the second circuit layer 12 includes second circuit positive electrodes that are spaced apart and insulated from each other.
  • the second line positive electrode 121 and the second line negative electrode 122, the second line positive electrode 121 and the second line negative electrode 122 are arranged on the back of the first substrate 10, the second line positive electrode 121 is located below the electrode positive electrode 113 and the first line positive electrode 111, the second line negative electrode 122 is located below the electrode negative electrode 114 and the first line negative electrode 112.
  • the second line positive electrode 121 is connected to the electrode positive electrode 113 and the first line positive electrode 111 through at least two first conductive holes 131.
  • the two negative circuit electrodes 122 are respectively connected to the negative electrode electrode 114 and the first negative circuit electrode 112 through at least two second conductive holes 132 .
  • the positive electrode 113 is provided on the front side of the first substrate 10 and covers one of the first conductive holes 131 (upper end)
  • the first line positive electrode 111 is provided on the front side of the first substrate 10 and covers the other first conductive hole 131 (upper end)
  • the second line positive electrode 121 is correspondingly provided on the back side of the first substrate 10, wherein the second line positive electrode 121 covers one of the first conductive holes 131 (lower end), and the second line positive electrode 121 covers the other first conductive hole 131 (lower end), so that the second line positive electrode 121 passes through the first
  • the conductive holes 131 are respectively connected to the positive electrode 113 and the first positive line 111 , thereby realizing the connection between the positive electrode 113 and the first positive line 111 .
  • the negative electrode 114 is disposed on the front side of the first substrate 10 and covers one of the second conductive holes 132 (upper end), and the negative electrode 112 of the first line is provided on the front side of the first substrate 10 and covers the other second conductive hole 132 (upper end), and the second circuit negative electrode 122 is correspondingly provided on the back side of the first substrate 10, wherein the second circuit negative electrode 122 covers one of the second conductive holes 132 (lower end), and the second circuit negative electrode 122 covers the other second conductive hole 132 (lower end), so that the second circuit negative electrode 122 passes through the second conductive hole 132 (lower end).
  • the conductive holes 132 are respectively connected to the negative electrode 114 and the negative first line 112, thereby realizing the connection between the negative electrode 114 and the negative first line 112.
  • the front side of the first substrate also includes a protective layer 14.
  • the protective layer 14 is a metal layer left around after the first circuit layer 11 is made through an etching process. In fact, it has the same structure as the first circuit layer 11. , but this protective layer 14 does not have a conductive function, and remaining on the surface of the ceramic substrate can balance stress, prevent the first substrate 10 from warping, and also protect the substrate.
  • a protective layer similar to the protective layer 14 may also be provided on the back of the first substrate 10 , and the protective layer on the back of the first substrate 10 may participate in the welding of the first substrate 10 and the second substrate 50 .
  • the conductive hole 13 may be provided with a conductive metal connecting the first circuit layer 11 and the second circuit layer 12 so that the conductive hole 13 has a conductive function, wherein the conductive metal may be tungsten (W) , titanium (Ti), nickel (Ni), chromium (Cr), copper (Cu) and other metals or their alloys.
  • the conductive metal may be tungsten (W) , titanium (Ti), nickel (Ni), chromium (Cr), copper (Cu) and other metals or their alloys.
  • the aperture of the conductive hole 13 may be 0.09 mm to 0.15 mm, thereby ensuring the conductive function of the conductive hole 13 while also preventing the use of the first substrate 10 from being affected by an excessively large aperture. If the current that needs to pass through the first circuit layer 11 and the second circuit layer 12 is relatively large, the number of the conductive holes 13 can be increased accordingly, and the distance between each of the conductive holes 13 can be greater than 0.2 mm to avoid conduction. The distance between the holes 13 is too small and the ceramic substrate is broken.
  • the space between the second line positive electrode 121 and the second line negative electrode 122 is filled with insulating material to ensure insulation.
  • the first circuit layer 11 , the second circuit layer 12 and the third welding portion 63 described below can all be provided on the first substrate 10 through a DPC (Direct Plating copper) process.
  • DPC Direct Plating copper
  • Figure 33, Figure 33a and Figure 34 are an embodiment of an LED device including multiple chips; Figure 35 is another embodiment that is only suitable for a single chip. Chip LED device.
  • the package body 20 is annular and has a top and a bottom. The bottom of the package body 20 is disposed on the front surface of the first substrate 10.
  • the package body 20 is provided with a mounting groove 21.
  • the mounting groove 21 is used for setting The light-transmitting member 40 can seal the opening of the mounting groove 21 .
  • the mounting groove 21 penetrates at least part of the inner wall and top of the package 20 above the LED chip 30 described below.
  • the package body 20 can be in the shape of a hollow step, and the step of the package body 20 is the installation groove 21 .
  • the sealant of the component 40 the package body 20 can be in the form of a single layer of steps or multiple layers of steps, for example (as shown in Figure 33) when the package body 20 is in the form of a single layer of steps, the bottom surface of the light-transmitting component 40 passes through The sealant is provided on the bottom surface of the installation groove 21.
  • the light-transmitting component 40 can be directly provided on the lower step, and the sealant is provided on the side of the light-transmitting component 40.
  • the light-transmitting member 40 is fixed to the mounting groove 21 between the side wall surface of the high-rise step.
  • the package body 20 of the embodiment of the present invention can be in the shape of a step, the present invention does not limit the package body. 20 is in the shape of a step.
  • the top of the package 20 can also be a flat mesa.
  • the bottom surface of the light-transmitting member 40 can be disposed on the top surface of the package 20 by welding.
  • the present invention does not limit the shape of the package 20.
  • the package 20 can be circular, square or diamond-shaped, as long as the light-transmitting member 40 can be disposed in the mounting groove 21 and does not affect the use of the LED device. That’s it.
  • the package body 20 can be made of copper material, and a stacked nickel metal layer and a gold metal layer can be provided on the surface of the package body 20, thereby improving the corrosion resistance and resistance of the package body 20.
  • the abrasiveness increases the service life of the package 20 .
  • the height of the package 20 may be 200 microns to 1200 microns, the thickness of the nickel metal layer provided on the package 20 may be greater than 3 microns, and the thickness of the gold metal layer may be greater than 0.05 microns.
  • the first substrate 10 and the second substrate 50 can both be ceramic substrates, and the second substrate 50 can be Made of ceramic materials, such as aluminum nitride ceramics (AlN), gallium nitride ceramics (GaN), alumina ceramics (Al 2 O 3 ), silicon carbide ceramics (SiC) and other materials, thus meeting the needs of LED devices 200 , especially the heat dissipation and insulation of high-power LED devices.
  • the thickness of the second substrate 50 may be 0.3 mm to 2.0 mm.
  • the heat dissipation layer 51 includes a stacked copper heat dissipation layer, a nickel heat dissipation layer and a gold heat dissipation layer.
  • the thickness of the copper heat dissipation layer is 50 to 300 microns, and the thickness of the nickel heat dissipation layer is 50 to 300 microns.
  • the thickness of the gold heat dissipation layer is greater than 3 microns, and the thickness of the gold heat dissipation layer is greater than 0.05 microns, so that the heat dissipation layer 51 has a better heat dissipation effect.
  • the welding layer 60 there is a welding layer 60 connecting the first substrate 10 and the second substrate 50 between the first substrate 10 and the second substrate 50.
  • the welding layer 60 please refer to FIG. 33 to FIG. 38.
  • the welding layer 60 includes a first welding portion 61 and a second welding portion 62 that are separated from each other.
  • the first welding portion 61 is provided on the second line corresponding to the second line positive electrode 121.
  • the second welding portion 62 is provided on the front surface of the second substrate 50 corresponding to the second circuit negative electrode 122 , and the first welding portion 61 and the second welding portion 62 are respectively connected to the
  • the second line positive electrode 121 is welded to the second line negative electrode 122 , and the first welding part 61 is insulated from the second welding part 62 , thereby achieving welding of the first substrate 10 and the second substrate 50 .
  • the first welding part 61 and the second line positive electrode 121 have the same shape and size
  • the second welding part 62 and the second line negative electrode 122 have the same shape and size.
  • This arrangement not only allows the first substrate 10 and the second substrate 50 to be better connected, but also avoids to a certain extent the malfunction caused by slight misalignment of the first substrate 10 and the second substrate 50 when they are welded. Negative short circuit phenomenon. Specifically, along the thickness direction perpendicular to the first welding portion 61 and the second line positive electrode 121, the first welding portion 61 and the second line positive electrode 121 have the same shape and size, and the second welding portion 62 and the second line positive electrode 121 have the same shape and size. The shape and size of the second line negative electrode 122 are the same.
  • the present invention does not limit the specific shape, size and thickness of the first welding part 61, the second line anode 121, the second welding part 62 and the second line anode 122. As long as the first welding part 61 and the second welding part 62 can play a welding role, and the second line positive electrode 121 and the second line negative electrode 122 can play a circuit conduction and welding role.
  • the welding layer 60 further includes a third welding portion 63 , which may be in a closed ring shape and surround the periphery of the second circuit layer 12 . Furthermore, the third welding portion 63 may be spaced apart from and insulated from the second circuit layer 12 .
  • the welding layer 60 may further include a fourth welding part 64 , which may be in a closed ring shape and surround the first welding part 61 and the second welding part 62 . Furthermore, the fourth welding part 64 may be spaced apart from and insulated from the first welding part 61 and the second welding part 62 .
  • the third welding portion 63 and the fourth welding portion 64 may be enclosed with the back surface of the first substrate 10 and the front surface of the second substrate 50 to form an enclosure that accommodates the second circuit positive electrode 121 and the second circuit negative electrode 122 . space to protect the second line positive electrode 121 and the second line negative electrode 122.
  • the arrangement of the third welding portion 63 and the fourth welding portion 64 can not only improve the firmness of the connection between the first substrate 10 and the second substrate 50 , but also surround the second line positive electrode 121 and the second line negative electrode. 122.
  • the periphery of the first welding part 61 and the second welding part 62 reduces the possibility of water vapor intruding into the second line positive electrode 121 and the second line negative electrode 122, thereby improving the protective performance of the product.
  • the third welding part 63 and the fourth welding part 64 have the same shape and size. This arrangement not only allows the first substrate 10 and the second substrate 50 to be better connected, but also avoids the problem to a certain extent. When the first substrate 10 and the second substrate 50 are welded, a slight misalignment of the first substrate 10 and the second substrate 50 results in a short circuit between the positive and negative electrodes. Specifically, along the thickness direction perpendicular to the third welding portion 63 and the fourth welding portion 64, the third welding portion 63 and the fourth welding portion 64 have the same shape and size.
  • the third welding portion 63 of the present invention The specific shape, size and thickness of the fourth welding portion 64 are not limited, as long as the third welding portion 63 and the fourth welding portion 64 can perform a welding function.
  • the present invention can make the third welding portion 63 and the second circuit layer 12 , the second line positive electrode 121 and the second line negative electrode 122, the fourth welding part 64 and the first welding part 61 and the second welding part 62 respectively, and between the first welding part 61 and the second welding part 62 The distance is limited to reduce the possibility of short circuits.
  • the minimum distance W1 between the third welding portion 63 and the second circuit layer 12 can be greater than 0.2 mm, and the second circuit positive electrode 121 and the second circuit layer 12
  • the minimum distance W2 between the two line negative electrodes 122 may be greater than 0.2 mm; the minimum distance between the fourth welding part 64 and the first welding part 61 may be greater than 0.2 mm; the fourth welding part
  • the minimum distance between 64 and the second welding part 62 may be greater than 0.2 mm; the minimum distance between the first welding part 61 and the second welding part 62 may be greater than 0.2 mm.
  • an insulating material may be provided at the interval between the third welding portion 62 and the second circuit layer 12 to ensure insulation.
  • the first circuit layer 11, the second circuit layer 12 and the welding layer 60 each include a stacked copper metal layer, a nickel metal layer and a gold metal layer, wherein the thickness of the copper metal layer may be 50 microns. to 80 microns, the thickness of the nickel metal layer can be greater than 3 microns, and the thickness of the gold metal layer can be greater than 0.05 microns, so that the first circuit layer 11 and the second circuit layer 12 have better circuit conduction effect, and make The welding layer 60 has better welding effect.
  • the present invention provides an LED device 200.
  • the LED device 200 includes the above-mentioned multi-layer substrate 100, and may also include a light-transmitting member 40 and an LED chip 30.
  • the light-transmitting member 40 Connected to the package 20, the LED chip 30 is disposed on the front side of the first substrate 10 and is electrically connected to the first line positive electrode 111 and the first line negative electrode 112; the light-transmitting member 40, package
  • the body 20 and the front surface of the first substrate 10 form a packaging cavity for sealing the LED chip 30 .
  • the LED chip 30 is integrated through a COB (Chip On Board, chip on board) packaging method.
  • LED modules in the existing technology are usually integrated through SMT (Surface Mounted Technology) patch method.
  • SMT Surface Mounted Technology
  • This integration method needs to be carried out on the basis of PCB first, and the LED device needs to be placed on the PCB. Its main There are three problems. First, each LED device often requires solder paste to be soldered to the PCB (Printed Circuit Board), which causes the heat emitted by the chip in the LED device to pass through the solder paste and the PCB.
  • the radiator connected to the PCB, which makes the heat dissipation path longer and affects the heat dissipation and service life of the product.
  • an insulating layer needs to be set up to avoid short circuits on the PCB. The setting of the insulating layer further reduces the product's heat dissipation. Thermal conductivity; secondly, when setting LED devices through SMT, a certain distance needs to be between each device to avoid mutual interference between LED devices due to patching errors during the patching process. Under the influence of the size of the LED device itself, the LED module The size of the group is further increased, which limits the application of the product; third, the large distance between each LED device also reduces the optical power density per unit area.
  • the COB packaging method can directly integrate the chip on the substrate. Compared with the SMT method in the existing technology, the COB packaging method does not require the use of solder paste, thus shortening the heat dissipation path of the product and improving the heat dissipation of the product. There is no need to increase the distance between chips to avoid patching errors, thereby reducing the size of the product, increasing the optical power density of the product, and improving the use effect.
  • the LED chip 30 can be a UV-LED chip, and the wavelength range of the UV-LED chip can be 100 nanometers to 350 nanometers.
  • the present invention can realize heat dissipation of high-power UV-LED devices and meet the needs of high-power UV-LED devices.
  • the requirement for airtight packaging of LED devices also reduces the risk of failure of high-power UV-LED devices and improves product safety and reliability.
  • the LED chip 30 may be a flip-chip chip, thereby facilitating integration using a COB method.
  • the electrodes of the LED chip 30 may be made of gold-tin alloy to facilitate the installation of the LED chip 30 on the first substrate 10 .
  • the number and connection methods of the LED chips 30 can be adapted according to actual needs or the power supply of the LED device 200 .
  • the number of the LED chips 30 may be 64, and the 64 LED chips 30 are arranged in 8 rows and 8 columns on the front side of the first substrate 10 , and the LED chips 30 in each row are connected in series.
  • the series and parallel connection of the LED chips 30 can be set to 2*2 (2 series and 2 parallel), 3*3, 4*4, 5*5, 6*6, 7*7, 8*8, etc., the present invention does not limit the number and connection method of the LED chips 30, as long as it does not affect actual use.
  • the material of the light-transmitting member 40 may be quartz, sapphire, or other materials.
  • the bottom of the light-transmitting member 40 for connection with the package body 20 may be provided with a gold-tin alloy to facilitate connection.
  • the gold content is 80wt%
  • the tin content is 20wt%
  • the melting point of the gold-tin alloy is is 280°C.
  • a method for manufacturing a multi-layer substrate provided by an embodiment of the present invention can be used to manufacture the above-mentioned multi-layer substrate 100. Please refer to Figures 33-38. The method includes the following steps:
  • S101 Prepare the first substrate and the second substrate, and then weld the first substrate and the second substrate;
  • Preparing the first substrate includes:
  • conductive holes penetrating through the first substrate are provided to avoid the location of the package;
  • a first circuit layer and a second circuit layer are respectively provided on the front and back sides of the first substrate, and the first circuit layer and the second circuit layer are electrically connected through the conductive holes.
  • the first circuit layer includes The first circuit positive electrode and the first circuit negative electrode;
  • the second circuit layer includes the second circuit positive electrode and the second circuit negative electrode;
  • An annular package body is provided on the front side of the first substrate, and the package body surrounds the first circuit positive electrode and the first circuit negative electrode of the first circuit layer;
  • Making the second substrate includes:
  • a metal layer for soldering the second circuit layer on the back of the first substrate is provided on the front of the second substrate, and a heat dissipation layer is provided on the back of the second substrate;
  • the front side of the second substrate is connected to the second circuit layer on the back side of the first substrate through a welding process to form a welding layer.
  • the first substrate 10 and the second substrate 50 can be made of ceramic materials, such as aluminum nitride ceramic (AlN), gallium nitride ceramic (GaN), alumina ceramic (Al 2 O3), silicon carbide It is made of ceramic (SiC) and other materials to meet the heat dissipation and insulation properties of LED devices, especially high-power LED devices.
  • the first substrate 10 and the second substrate 50 can be produced by a tape casting method, and then polished and/or cut into required sizes.
  • the thickness of the first substrate 10 and the second substrate 50 may be 0.3 mm to 2.0 mm.
  • the surface film of the first substrate 10 can be metallized first to improve the performance of the surface of the first substrate 10 .
  • the conductive hole 13 can be drilled on the first substrate 10 by laser drilling or mechanical drilling, and then the conductive hole 13 is formed in the hole by vacuum plating of conductive metal.
  • the conductive hole 13 has conductive effect.
  • the conductive metal can be tungsten (W), titanium (Ti), nickel (Ni), chromium (Cr), copper (Cu) and other metals or their alloys.
  • the aperture of the conductive hole 13 may be 0.09 mm to 0.15 mm, thereby ensuring the conductive function of the conductive hole 13 while also preventing the use of the first substrate 10 from being affected by an excessively large aperture.
  • the number of the conductive holes 13 can be increased accordingly, and the distance between each of the conductive holes 13 can be greater than 0.2 mm to avoid conduction. The distance between the holes 13 is too small and the ceramic substrate is broken.
  • the method of metallizing the thin film on the surface of the first substrate 10 may be to provide the thin film metal on the surface of the first substrate 10 by vacuum plating or magnetron sputtering, and the thin film metal may be Tungsten (W), titanium (Ti), nickel (Ni), chromium (Cr) and other metals or their alloys.
  • the thin film metal may be tungsten-titanium alloy (WTi), and the thickness of the tungsten-titanium alloy (WTi) may be 0.1 micron.
  • the thin film metal may be nickel-chromium alloy (CrNi), and the thickness of nickel-chromium alloy (CrNi) may be 0.25 microns.
  • the first circuit layer 11 and the second circuit layer 12 are respectively provided on the front and back of the first substrate 10 and the heat dissipation layer 51 is provided on the back of the second substrate 50 through DPC (direct copper plating technology).
  • DPC direct copper plating technology
  • -Direct Plating copper process is provided on the first substrate 10 or the second substrate 50 .
  • the step of arranging the first circuit layer 11 and the second circuit layer 12 may be: plating copper on the surface of the first substrate 10; pressing a dry film on the copper-plated surface of the first substrate 10 and placing it on the surface of the first substrate 10; Patterns of the first circuit layer 11 and the second circuit layer 12 are respectively arranged on the dry film; the first circuit layer 11 and the second circuit layer 12 are exposed and developed; the circuits are etched to remove unnecessary copper; the dry film on the surface of the first substrate 10; polish the first substrate 10, the first circuit layer 11 and the second circuit layer 12.
  • the thickness of copper plating can be 50 microns to 80 microns; the purpose of pressing the dry film is to make the dry film cover the copper surface of the first substrate 10 so that the first circuit layer 11 and the second circuit layer can be respectively carved on the dry film. 12 pattern; the first circuit layer 11 and the second circuit layer 12 can be ground using an abrasive belt, thereby improving the flatness of the surfaces of the first substrate 10 , the first circuit layer 11 and the second circuit layer 12 .
  • the soldering layer 60 and the heat dissipation layer 51 can also be provided on the first substrate 10 or the second substrate 50 through the same steps.
  • the step of arranging the annular package 20 on the front surface of the first substrate 10 may include: sandblasting the package 20; laminating the package 20; Exposure and development are performed; the package body 20 is plated and thickened; the surface of the package body 20 is ground; the dry film on the surface of the package body 20 is removed; and the package body 20 is subjected to copper and titanium removal treatment.
  • Sandblasting the package body 20 can remove impurities, variegated colors, and oxide layers on the surface of the package body 20 , roughen the surface, eliminate residual stress on the workpiece, and improve the surface hardness of the base material. Grinding is used to improve the flatness of the surface of the package 20 .
  • the package 20 in order to improve the corrosion resistance and wear resistance of the package 20 and extend the service life of the package 20 , the package 20 can be made of copper material.
  • the nickel metal layer and the gold metal layer may be stacked.
  • the height of the package 20 may be 200 microns to 1200 microns
  • the thickness of the nickel metal layer provided on the package 20 may be greater than 3 microns
  • the thickness of the gold metal layer may be greater than 0.05 microns.
  • the first substrate 10 and (already installed) can be The copper surface 11a of the second substrate 50 (where the heat dissipation layer 51 is provided) is provided with a surface metal layer 11b, which can improve the oxidation resistance of the product and facilitate subsequent placement of the first circuit layer 11 on the surface of the first substrate 10 with 30 LED chips.
  • the material of the surface metal layer 11b may be gold (Au), silver (Ag), nickel (Ni), palladium (Pd), etc.
  • the LED chip 30 can be a flip chip, and the LED chip 30 can be fixed using a eutectic process.
  • the material of the surface metal layer 11b can preferably be nickel and gold, and the gold layer covers the nickel layer, where, The thickness of the nickel layer can be greater than 3 microns, and the thickness of the gold layer can be greater than 0.05 microns.
  • the LED chip 30 can also be a horizontal or vertical chip.
  • the LED chip 30 can be fixed using a wire bonding process later.
  • the material of the surface metal layer 11b can be preferably nickel, palladium and gold.
  • the nickel layer, The palladium layer and the gold layer are stacked in sequence, where the thickness of the nickel layer can be greater than 3 microns, the thickness of the palladium layer can be greater than 0.05 microns, and the thickness of the gold layer can be greater than 0.05 microns.
  • the front side of the second substrate 50 is connected to the back side of the first substrate 10 through the soldering layer 60 by using solder through reflow soldering or vacuum furnace soldering.
  • the back side of the first substrate 10 is soldered, and the soldering temperature is adjusted according to the melting point of the solder.
  • the specific material of the solder can be selected according to the specific processing method of the chip and the light-transmitting component 40 .
  • the soldering flux materials selected are all gold-tin alloys with a gold content of 80 wt% and a tin content of 20 wt%.
  • the solder can also use this gold-tin alloy.
  • the solder can be a gold-tin alloy (Au 80 Sn 20 ), in which the gold content is 80wt%, the tin content is 20wt%, and the solder content
  • the melting point can be 280°C
  • the solder can be gold-germanium alloy (Au 88 Ge 12 ), in which the gold content is 88wt% and the germanium content is 12wt %, the melting point of the solder can be 361°C, which is suitable for products whose temperature is within 360°C during the later packaging process.
  • the spot coating of the solder on the first substrate 10 and the second substrate 50 can be achieved manually, mechanically, etc., for example, by setting up an intelligent manipulator, and the intelligent manipulator can evenly place a certain amount of solder, so that Further improve the welding effect.
  • solder is applied to the front surface of the second substrate 50 and the back surface of the first substrate 10 and soldered to form the soldering layer 60 .
  • the part of the welding layer 60 on the back side of the first substrate 10 is the third welding part 63
  • the part of the welding layer 60 on the front side of the second substrate 50 is the first welding part 61 and the second welding part 61 .
  • the first welding part 61 corresponds to the second circuit positive electrode 121
  • the first welding part 61 is welded to the second circuit positive electrode 121 in the second circuit layer 12
  • the second welding part 62 corresponds to the second circuit negative electrode 122
  • the second welding part 62 is welded to the second circuit negative electrode 122 in the second circuit layer 12
  • the third welding part 63 is provided on
  • the back side of the first substrate 10 is annularly surrounding the periphery of the second line positive electrode 121 and the second line negative electrode 122.
  • the fourth welding portion 64 corresponds to the third welding portion 63.
  • the fourth welding portion 64 is annularly surrounding the periphery of the first welding part 61 and the second welding part 62 .
  • the solder can be more evenly coated on the periphery of the second line positive electrode 121 and the second line negative electrode 122 at the third welding portion 63 and the fourth welding portion 64, and the solder is applied to the third welding portion 63 and the fourth welding portion 64.
  • the thickness of the third welding portion 63 and the fourth welding portion 64 (that is, the stacking thickness of the third welding portion 63 and the fourth welding portion 64 ) is equal to the stacking thickness of the second line positive electrode 121 and the first welding portion 61
  • the thickness and the stacking thickness of the second line negative electrode 122 and the second welding portion 62 can reduce the possibility of water vapor intruding into the second line positive electrode 121 and the second line negative electrode 122 and improve the protective performance of the product.
  • the present invention does not limit the specific shape, size and thickness of each part of the welding layer 60, that is, the specific shape, size and thickness of the solder coating, as long as it can perform the welding function.
  • the present invention can make the third welding portion 63 and the second circuit layer 12 between the second line positive electrode 121 and the second line negative electrode 122, between the fourth welding portion 64 and the first welding layer 60 and the second welding layer 60 respectively, and between the first welding layer 60 and the second welding layer 60.
  • the distance between solder layers 60 is limited to reduce the possibility of short circuits.
  • the minimum distance W1 between the third welding part 63 and the second circuit layer 12 may be greater than 0.2 mm, and the minimum distance W2 between the second circuit positive electrode 121 and the second circuit negative electrode 122 may be greater than 0.2 mm; the minimum distance between the fourth welding part 64 and the first welding part 61 may be greater than 0.2 mm; the minimum distance between the fourth welding part 64 and the second welding part 62 may be greater than 0.2 mm; the minimum distance between the first welding part 61 and the second welding part 62 may be greater than 0.2 mm.
  • the manufacturing method of the multilayer substrate provided by the present invention adds a second substrate 50 and provides a heat dissipation layer 51 on the second substrate 50 instead of providing a heat dissipation layer 51 on the back of the first substrate 10, so that the first The circuits on the back of the substrate 10 cannot come into contact with the radiator or the heat dissipation layer 51, so there is no need to use the insulating layer in the prior art to prevent the circuits from contacting the radiator or heat dissipation layer, and thus avoid the insulating layer falling off in the prior art.
  • the manufacturing method can not only realize the heat dissipation of high-power products, but also meet the requirements for high-power LEDs.
  • the requirement for airtight packaging of products reduces the risk of LED device failure and improves product safety and reliability.
  • An embodiment of the present invention also provides a packaging method of a packaging structure.
  • the packaging method includes a manufacturing method of the multi-layer substrate. Please refer to the following description for the manufacturing method of the multi-layer substrate.
  • the manufacturing method of the multi-layer substrate may further include:
  • S102 Set an LED chip on the front side of the first substrate, so that the LED chip is connected to the first line positive electrode and the first line negative electrode; set a light-transmitting component on the package body, so that the light-transmitting component, The package body and the front surface of the first substrate form a packaging cavity that seals the LED chip.
  • the LED chip 30 can be integrated through a COB (Chip On Board, chip on board) packaging method.
  • LED chips in the existing technology are usually integrated through SMT (Surface Mounted Technology) patch method.
  • SMT Surface Mounted Technology
  • This integration method requires first processing on the PCB basis, and then placing the LED on the substrate. It has three main features: First, each chip often requires solder paste to be soldered to the PCB (Printed Circuit Board), which causes the heat emitted by the chip to pass through the solder paste and the PCB before being transmitted to the heat sink connected to the PCB. The device makes the heat dissipation path longer, which affects the heat dissipation and service life of the product.
  • an insulating layer needs to be installed to avoid short circuits on the PCB.
  • the setting of the insulating layer further reduces the thermal conductivity of the product; second, through SMT
  • a certain distance between each chip is required to avoid pad displacement caused by mutual interference between the chips due to placement errors during the placement process.
  • the size of the product is further increased. Large, which makes the application of the product limited; third, the large distance between each chip also reduces the optical power density per unit area.
  • the COB packaging method can directly integrate the chip on the substrate.
  • the COB packaging method does not require the use of solder paste, thus shortening the heat dissipation path of the product and improving the heat dissipation of the product. There is no need to increase the distance between chips to avoid patching errors, thereby reducing the size of the product, increasing the optical power density of the product, and improving the use effect.
  • the LED chip 30 may be a flip-chip chip, thereby facilitating integration using a COB method.
  • the LED chip 30 and the substrate 10 can be eutectic.
  • the way to achieve eutectic can be: connecting the completed LED chip 30 and the first substrate 10 .
  • a substrate 10 passes through the eutectic furnace.
  • the temperature of the eutectic furnace has at least one temperature zone between 280°C and 320°C, and the eutectic process can be protected by nitrogen.
  • the number and connection method of the LED chips 30 can be adapted according to the actual situation or the power supply of the LED device 200 .
  • the number of the LED chips 30 may be 64, and the 64 LED chips 30 are arranged in 8 rows and 8 columns on the front side of the first substrate 10 , and the LED chips 30 in each row are connected in series.
  • the series and parallel connection of the LED chips 30 can also be set to 2*2 (2 series and 2 parallel), 3*3, 4*4, 5*5, 6*6 , 7*7, 8*8 and other modes.
  • the present invention does not limit the number and connection mode of the LED chips 30 as long as it does not affect actual use.
  • the material of the light-transmitting member 40 may be quartz, sapphire or other materials.
  • the bottom of the light-transmitting component 40 for connection with the package body 20 may be provided with a soldering flux material such as gold-tin alloy to facilitate connection, in which the gold content is 80wt% and the tin content is 80wt%. It is 20wt%, and the melting point of gold-tin alloy is 280°C.
  • the LED device 200 having the multi-layer substrate 100 can be obtained, thereby not only realizing the heat dissipation of the high-power LED device, but also satisfying the following requirements:
  • the requirement for airtight packaging of high-power LED products also reduces the risk of LED device failure and improves product safety and reliability.
  • the present invention provides a multilayer substrate, a manufacturing method thereof, and an LED device.
  • the multilayer substrate 100 includes: a first substrate 10, a package 20, an LED chip 30, a light-transmitting component 40, and a second substrate 50.
  • the first substrate 10 has an opposite front and a back.
  • the front of the first substrate 10 is provided with a first circuit layer 11, and the back of the first substrate 10 is provided with a second circuit layer 12.
  • the first circuit is Layer 11 is electrically connected to the second circuit layer 12 .
  • the first circuit layer 11 includes a first circuit positive electrode 111 and a first circuit negative electrode 112 .
  • the package body 20 is annular and is disposed on the front surface of the first substrate 10 .
  • the package body 20 surrounds the first circuit positive electrode 111 and the first circuit negative electrode 112 .
  • the light-transmitting member is connected to the package body, and the light-transmitting member, the package body and the front surface of the first substrate form a packaging cavity.
  • the LED chip is disposed in the packaging cavity and connected to the first circuit positive electrode and the first circuit negative electrode.
  • the front side of the second substrate 50 is connected to the back side of the first substrate 10 through a soldering layer 60 , and a heat dissipation layer 51 is provided on the back side of the second substrate 50 .
  • the present invention adds a second substrate 50 and provides a heat dissipation layer 51 on the second substrate 50 instead of providing a heat dissipation layer 51 on the back of the first substrate 10, so that the circuits on the back of the first substrate 10 cannot be connected to each other.
  • the radiator or heat dissipation layer 51 is in contact, thereby eliminating the need to use the insulating layer in the prior art to prevent the circuit from contacting the radiator or heat dissipation layer, thereby also avoiding the short circuit or leakage of the positive and negative electrodes caused by the peeling off of the insulating layer in the prior art.
  • the present invention not only realizes heat dissipation of high-power products and meets the requirements for air-tight packaging of high-power LED products, but also reduces the cost of air-tight packaging. Reduces the risk of LED device failure and improves product safety and reliability.
  • Embodiment 7 including Embodiment 7a, Embodiment 7b and Embodiment 7c, is described in detail as follows:
  • the present invention provides an LED device. Please refer to FIGS. 40 to 45 .
  • the LED device 100 includes a substrate 10 and a plurality of LED chips 20 .
  • the substrate 10 has an opposite front and a back.
  • the front of the substrate 10 is provided with a first circuit layer 11.
  • the first circuit layer 11 includes a plurality of groups of positive electrode pads and negative electrode pads (including positive electrode pads 111 and negative electrode pads). 112), a second circuit layer 12 is provided on the back of the substrate 10, and the second circuit layer 12 includes multiple sets of positive terminals and negative terminals (including positive terminals 121 and negative terminals 122).
  • the positive terminal 121 and the negative terminal 122 are symmetrically arranged (the axis of symmetry is shown as L1 in the figure) on opposite sides of the back of the substrate 10; the positive terminals 121 on the back of the substrate 10 are linearly spaced and arranged equidistantly on the substrate.
  • the negative terminals 122 are linearly spaced and equidistantly arranged on the other side of the back of the substrate 10 and face the positive terminals 121 one by one, and a positive electrode pad 111 passes through the positive conductive hole that penetrates the substrate 10 131 is electrically connected to a positive terminal 121 ; and a negative electrode pad 112 is electrically connected to a negative electrode terminal 122 through the negative electrode conductive hole 132 penetrating the substrate 10 .
  • each positive electrode pad 111 is connected to each positive conductive hole 131 and each positive terminal 121 in a one-to-one correspondence; each negative electrode pad 112 is connected to each negative electrode conductive hole 132 and each negative terminal 122 in a one-to-one correspondence.
  • Each LED chip 20 is electrically connected to a set of positive electrode pads 111 and negative electrode pads 121 on the front side of the substrate 10 , and one LED chip 20 is connected to a set of positive electrode pads 111 and negative electrode pads 112 .
  • Each LED chip 20 can be independently controlled through its corresponding positive terminal 121 and negative terminal 122.
  • the operator can individually control the connection with the group of positive terminals 121 and 122.
  • the LED chips 20 to which the negative terminal 122 is electrically connected can be individually turned on or off.
  • the present invention is connected to an LED chip 20 through a set of positive electrode pads 111 and negative electrode pads 112 on the front side of the substrate 10. Since the control of each LED chip 20 is independent, the LED device 100 can not only package LEDs of different voltages and wavelengths The chip 20 also enables the user to individually control a single LED chip 20 or multiple LED chips 20, allowing the user to control any LED chip 20 to effectively emit light according to usage conditions.
  • each LED chip 20 can be controlled individually, and there is no fixed series-parallel connection mode.
  • the series-parallel connection mode can be controlled by The connection circuit of the positive terminal 121 and the negative terminal 122 is changed (refer to the description below), which improves the compatibility of the LED device 100, facilitates the management of the LED device 100, and reduces the difficulty, time and cost of manufacturing, and expands the application range of the product. Wider and more applicable.
  • Figures 40 to 45 show an LED device with four LED chips 20.
  • Figure 47 shows the independent electrical connections of the four LED chips 20. relation.
  • the four LED chips 20 are respectively LED1, LED2, LED3, and LED4.
  • Each LED chip 20 is connected in parallel with a Zener chip 50 of a flip-chip structure (described in detail below).
  • each LED chip 20 is connected to a corresponding set of positive terminals 121 and negative terminals 122 on the back of the substrate 10, so there are four positive terminals 121 and four negative terminals 122.
  • the positive terminal 121 can be numbered as 1357
  • the negative terminal 122 can be numbered as 2468 respectively
  • the two poles of LED1 are electrically connected to 12
  • the two poles of LED2 are electrically connected to 34
  • the two poles of LED3 are electrically connected to 56
  • LED4 The two poles are electrically connected to 78 respectively.
  • Each LED can be independently controlled by a corresponding set of positive terminal 121 and negative terminal 122.
  • LED1 can be controlled by positive pad 1 and negative pad 2
  • LED2 can be controlled by positive pad 3 and negative pad 4, and so on.
  • the series connection of each LED chip 20 can be realized through the printed circuit of the PCB circuit board. There is no series-parallel relationship between the LED chips 20 of the LED device 100 in this embodiment.
  • the circuit on the PCB board is To meet the needs of the design, design a matching circuit (called an external circuit here for ease of explanation) to form the required series-parallel relationship between the LED chips.
  • Figure 47a shows a schematic diagram of each LED chip 20 being connected in parallel with each other.
  • the peripheral circuit (the gray block in Figure 47a and Figure 47b indicates the peripheral circuit) connects the positive electrode pad 1357 and the negative electrode
  • the soldering pads 2468 are electrically connected; thereby realizing the parallel connection of each LED chip 20.
  • Figure 48 shows a schematic diagram of each LED chip 20 connected in series.
  • the peripheral circuit (the gray block in Figure 48 and Figure 48a indicates the peripheral circuit) connects the positive electrode pad 3 and the negative electrode
  • the welding pad 2 is electrically connected; the positive welding pad 4 and the negative welding pad 5 are electrically connected; the positive welding pad 6 and the negative welding pad 7 are electrically connected, thereby realizing the series connection of each LED chip 20 .
  • the peripheral circuit (the gray block in Figure 49 and Figure 49a indicates the peripheral circuit) electrically connects the positive electrode pads 1 and 3; electrically connects the positive electrode pads 5 and 7; connects the negative electrode pad 2 and 4 are electrically connected; the negative electrode pads 6 and 8 are electrically connected; and then the negative electrode pad 4 and the positive electrode pad 5 are electrically connected, thereby realizing a series-parallel relationship between the LED chips 20 .
  • the peripheral circuit (the gray block in Figure 50 and Figure 50a indicates the peripheral circuit) electrically connects the positive electrode pads 1 and 5; electrically connects the negative electrode pads 4 and 8; connects the negative electrode pad 2 is electrically connected to the positive electrode pad 3; the negative electrode pad 6 is electrically connected to the positive electrode pad 7, thereby realizing another series-parallel relationship of each LED chip 20.
  • the LED device 100 does not limit the series-parallel relationship between the LED chips 20, but leaves independent positive terminals and negative terminal groups for each LED chip 20, thereby leaving room for the design of peripheral circuits. It provides ample design space and can be adapted to different peripheral circuits, with wide compatibility and applicability.
  • the present invention is not limited to the method of realizing the series-parallel relationship between LED chips 20.
  • multiple groups of positive terminals and negative terminal groups can be connected through circuits provided with switching diodes, and the user controls each switching diode to control By turning the circuit on and off, the series-parallel relationship between the LED chips 20 can be switched while the circuit circuit is fixed.
  • Each LED chip 20 is an LED light-emitting chip with a flip-chip structure, which can be a visible light-emitting chip (such as a blue LED chip) or an invisible light-emitting chip, such as an infrared LED light-emitting chip or an ultraviolet LED light-emitting chip.
  • the number of LED chips 20 can also be other numbers of chips.
  • the number of LED chips 20 can be n*n, where n is a natural number greater than 2.
  • the number of LED chips 20 can be 3*. 3 A total of 9 pieces, or the number of LED chips 20 can be 4*4, a total of 16 pieces, and so on.
  • Each LED chip 20 is arranged in a rectangular array, which has the advantages of compact structure, high integration and good light uniformity.
  • the substrate 10 is provided with a positive conductive hole 131 and a negative conductive hole 132 that penetrate the substrate 10 .
  • Both the positive conductive hole 131 and the negative conductive hole 132 are filled with conductive materials, so that the positive electrode pad 111 passes through the positive conductive hole 131 and the negative electrode conductive hole 132 .
  • the positive terminal 121 is electrically connected, and the negative electrode pad 112 is electrically connected to the negative electrode terminal 122 through the negative electrode conductive hole 132.
  • Such an arrangement not only has a good conductive effect, but is also simple to manufacture and low in cost.
  • the positive electrode conductive hole 131 and the negative electrode conductive hole 132 can be vertical. It penetrates the substrate 10 and is arranged symmetrically to facilitate processing.
  • the positive electrode pad 111 and the negative electrode pad 112 on the front side of the substrate 10 form a rectangular circuit pattern (see Figure 45a), and each LED chip 20 are evenly distributed on the circuit pattern, and the rectangular circuit pattern is more suitable for the rectangular LED chip 20, making it easier for the LED chip 20 to be evenly arranged on the circuit pattern.
  • the geometric center (shown as center point O in FIG. 41 ) of the rectangle defined by the LED chip array composed of each LED chip 20 coincides with the geometric center of the circuit pattern, so that the LED device 100 The light symmetry is good.
  • the circuit pattern includes a first edge region 13 and a second edge region 14 respectively located on opposite sides of the circuit pattern.
  • Each positive conductive hole 131 is located in the first edge region 13 on one side of the circuit pattern; each negative conductive hole 132
  • the second edge area 14 is located on the other side of the circuit pattern.
  • the first edge area 13 and the second edge area 14 are located at the edge of the circuit pattern to avoid interference with the installation position of the LED.
  • the circuit pattern is provided with a gap 115 that separates the positive electrode pad 111 and the negative electrode pad 112 on the front side of each substrate 10.
  • the gap 115 is at least greater than 0.2mm to ensure the insulation between the pads; each positive conductive hole 131 is arranged linearly;
  • the negative electrode conductive holes 132 are arranged linearly, and the positive electrode conductive holes 131 and the negative electrode conductive holes 132 are arranged symmetrically one to one, which facilitates processing.
  • the positive electrode pads 111 on the front of the multiple substrates 10 can be numbered as the first positive electrode.
  • the nth negative electrode pad is nN; the LED chips 20 can be numbered as LED1, LED2, LED3, LED4 and so on. If there are n LED chips, the nth LED chip is LEDn. Referring to the thick dotted line in Figure 45a, one end of the n-th positive electrode pad 111 on the front side of the substrate 10 is connected to the anode of the corresponding n-th LED chip LEDn, and the other end extends to the first edge area 13 and a corresponding n-th LED chip LEDn.
  • the positive conductive hole 131 is connected; one end of the n-th negative electrode pad 112 on the front surface of the substrate 10 is connected to the corresponding negative electrode of the n-th LED chip 20, and the other end extends to the second edge area 14 and is connected to a corresponding n-th negative electrode conductive hole 132.
  • Each thick dotted line in Figure 6a represents the hidden electrical connection line of each pad (positive electrode pad 111 and negative electrode pad 112) (the implicit here refers to virtual), and then each hidden electrical connection line is the main line Expand outwards to form the shape of each pad. There is no intersection between the pad patterns, making the pattern of each pad very simple.
  • each pad is expanded as much as possible while maintaining the insulation gap, so as to fully connect with the electrode of the LED chip 20 contact to facilitate heat dissipation of the LED chip 20 .
  • the electrical connection lines hidden in each pad pattern include horizontal and/or vertical connection lines, and there are no oblique lines or curves, so that when each pad expands outward with the electrical connection lines, it is also perpendicular to each hidden
  • the direction of the electrical connection lines is expanded, so that the shape of each pad is block-like and presents a pattern made up of multiple rectangles.
  • the outer edges of each pad are aligned so that the circuit pattern composed of each pad is rectangular.
  • the design of each pad in this embodiment is conducive to simplifying the design and facilitating production and manufacturing.
  • each LED chip 20 is also connected to a Zener chip 50 in parallel, so the electrical connection lines hidden in each pad are also connected to the electrodes of the Zener chip 50 .
  • the circuit pattern shown in Figure 45a is rotationally symmetrical with its geometric center as the symmetry point (that is, the circuit pattern coincides with it after rotating 180° with its rotation center fulcrum); the design of the positive electrode pad 111 and the negative electrode pad 112 can be simplified and facilitated design and manufacturing. .
  • a first positioning mark 113 is also provided on the circuit pattern.
  • the first positioning mark 113 may be a rectangular notch formed at the edge of the circuit pattern.
  • the first positioning mark 113 may also be a triangular notch or a protrusion or other shapes formed at the edge of the circuit pattern.
  • the first positioning mark 113 can define the negative electrode of the LED device 100, or the placement direction.
  • the first positioning mark 113 can be defined as the left side (or lower side) of the LED device 100.
  • the LED chip 20 When the LED chip 20 is fixed on the LED device 100, it can be The first positioning marks 113 of the LED device 100 are all facing to the left (or lower side), so that each LED chip 20 has good consistency during the die bonding operation. It is ensured that each LED device 100 is exactly the same.
  • the first positioning mark 113 can also identify the direction of the negative electrode of the LED chip 20 .
  • the first positioning mark 113 can be used to identify the direction of the cathode of each LED chip 20 . It should be noted that the presence of the first positioning mark 113 will prevent the circuit pattern from being rotationally symmetrical with its geometric center as the symmetry point in the strict sense. However, the first positioning mark 113 may not be on the circuit pattern, for example, the first positioning mark 113 may not be on the circuit pattern.
  • the mark 113 can also be provided on the package 30 of the LED device 100. Therefore, the circuit pattern described in this embodiment is rotationally symmetrical with its geometric center as the symmetry point, which means that the first positioning mark 113 is not considered or ignored.
  • the circuit pattern is equivalent to or substantially rotationally symmetrical with its geometric center as the symmetry point. Referring to FIG.
  • a second positioning mark 114 may also be provided on the back of the LED device 100 .
  • the second positioning mark 114 is provided on the heat dissipation layer 15 .
  • the second positioning mark 114 is mainly used to identify the negative terminal 122 , that is, the electrode terminal on the side close to the second positioning mark 114 is the negative terminal 122 . Since the heat dissipation layer 15 is mainly used for heat dissipation, disposing the second positioning mark 114 close to the heat dissipation layer 15 will not affect the circuit function of the LED device 100 .
  • the positive terminal 121 on the back of each substrate 10 is at least partially located on the back corresponding to the first edge area 13, and the negative terminal 122 on the back of each substrate 10 is at least partially located on the back corresponding to the second edge area 14; the positive electrode on the front of each substrate 140
  • the projection of the bonding pad 111 on the back of the substrate 10 and the corresponding positive terminal 121 on the back of the substrate 10 at least partially overlap; the projection of the negative electrode pad 112 on the front of each substrate 10 on the back of the substrate 10 is consistent with the corresponding positive terminal 121 on the back of the substrate 10
  • the negative electrode terminal 122 has at least a partial overlapping area, and each positive electrode conductive hole 131 and negative electrode conductive hole 132 are respectively located in each of the overlapping areas. This facilitates the positive electrode pad 111 to be connected to the positive terminal 121 through the corresponding positive conductive hole 131, and the negative electrode pad 112 to be connected to the negative terminal 122 through the corresponding negative conductive hole 132.
  • a heat dissipation layer 15 is provided in the middle area of the back surface of the substrate 10 , a plurality of positive terminals 121 are arranged at linear intervals on one side of the heat dissipation layer 15 , and a plurality of negative terminals 122 are arranged at linear intervals on the heat dissipation layer 15 the other side.
  • This arrangement can improve the heat dissipation performance of the LED device 100 and make the positive terminal 121 and the negative terminal 122 located at the edge area on the back of the substrate 10 to avoid affecting the connection between the positive terminal 121 and the negative terminal 122 and the peripheral circuit.
  • the LED chip 20 may be a UV-LED chip
  • the LED device 100 may be a 6060/6565/6868/7070 size product
  • the LED chip 20 may have a length less than or equal to 52 mil.
  • the above embodiments are only for illustration, and the present invention does not limit the specific type of the LED chip 20 and the size of the LED device 100 .
  • each LED chip 20 can be controlled independently, the number of LED chips 20 is not limited in the present invention.
  • the number of LED chips 20 can be 1, 2, 3 or 4, etc. As long as it can be adapted to the size of the LED device 100 and the actual application solution.
  • the substrate 10 may be made of ceramic materials, such as aluminum nitride ceramics (AlN), gallium nitride ceramics (GaN), alumina ceramics (Al 2 O 3 ), silicon carbide ceramics (SiC ) and other ceramic materials. Ceramic materials have good insulation and heat dissipation properties.
  • the first circuit layer 11 and the second circuit can be produced on the surface of the substrate 10 through the DPC (Direct Plating copper) process.
  • Layer 12 The DPC process only requires a temperature of about 250 to 350°C to complete the production of the substrate 10 , which avoids the adverse effects of high temperatures on materials or circuit structures and reduces manufacturing process costs.
  • the present invention does not limit the specific material of the substrate 10 as long as it does not affect the use of the LED device 100 .
  • the first circuit layer 11 includes a stacked first copper metal layer 11a, a first nickel metal layer 11b and a first gold metal layer 11c.
  • the first nickel metal layer 11b is The thickness is greater than 3 microns, and the thickness of the first gold metal layer 11c is greater than 0.05 microns.
  • the first nickel metal layer 11b and the first gold metal layer 11c can improve the corrosion resistance, wear resistance and oxidation resistance of the first circuit layer 11, and reduce the impact of external acid, alkali, moisture and other environments on the first circuit layer 11. Damage to a circuit layer 11 prolongs the service life of the first circuit layer 11 .
  • the second circuit layer 12 includes a stacked first copper metal layer, a first nickel metal layer and a first gold metal layer.
  • the thickness of the first nickel metal layer is greater than 3 microns, and the thickness of the first gold metal layer is greater than 3 microns. Greater than 0.05 micron.
  • the first nickel metal layer and the first gold metal layer can improve the corrosion resistance, wear resistance and oxidation resistance of the second circuit layer 12, and reduce the impact of external acid, alkali, moisture and other environments on the second circuit layer 12. Damage to the layer 12 prolongs the service life of the second circuit layer 12 .
  • the LED chip 20 is a flip chip (but in other embodiments, either a formal chip or a vertical chip may also be used).
  • Solder can be disposed on the first circuit layer 11 on the front side of the substrate 10, and then the LED chip 20 is disposed on the solder to realize the connection between the LED chip 20 and the substrate 10.
  • the electrode of the LED chip 20 is a gold-tin alloy.
  • the gold-tin alloy has a gold content of 80wt% and a tin content of 20wt%.
  • the melting point of the gold-tin alloy is 280°C, thereby facilitating the installation of the LED chip. 20 is fixed on the first circuit layer 11 .
  • the LED device 100 includes a package 30 and a light-transmitting member 40 .
  • the package 30 is annular and is disposed on the front surface of the substrate 10 and surrounds each LED chip 20 and the positive electrode pad 111 and the negative electrode pad 112 on the front surface of each group of substrates 10 . There is a gap between the package body 30 and the circuit pattern formed by the positive electrode pad 111 and the negative electrode pad 112 to avoid possible short circuit conditions.
  • the light-transmitting member 40 is connected to the package body 30 ; the light-transmitting member 40 , the package body 30 and the front surface of the substrate 10 form a packaging cavity for accommodating the first circuit layer 11 .
  • the package 30 is provided with a mounting groove 31 opened on the inner wall of the package 30 and penetrating the top of the package 30 .
  • the bottom surface of the light-transmitting member 40 is welded into the mounting groove 31 through a flux material.
  • the package body 30 is made of metal, and the light-transmitting member 40 is made of glass.
  • the portion of the light-transmitting member 40 that contacts the package body 30 is formed into a gold-tin alloy through a glass gold plating process and is then welded to the package body 30 .
  • the light-transmitting component and the package body usually use semi-inorganic packaging.
  • Semi-inorganic packaging refers to using organic silicon materials with glass and other inorganic materials to achieve the combination of the light-transmitting component 40 and the package body 30 through bonding. A way of packaging.
  • the light-transmitting component 40 and the package body 30 are packaged in a completely inorganic packaging method. Because no organic matter that is easily affected by light such as UV light is used, the risk of pores or the light-transmitting component 40 falling off is reduced, thereby improving the packaging efficiency. It improves the airtightness of the product, has a longer service life, and uses welding, which is more solid than glue bonding.
  • the gold component content in the gold-tin alloy is 80wt%, the tin component content is 20wt%, the melting point of the gold-tin alloy is 280°C, and metal welding can further improve the firmness of the connection.
  • the installation groove 31 can be a stepped groove to facilitate the installation of the light-transmitting member 40, and the light-transmitting member 40 is not easy to shake and fall off.
  • the mounting groove 31 can be in the shape of a single step or multiple steps. For example (as shown in FIGS. 40 and 43 ) when the package 30 is in the shape of a single step, the bottom surface of the light-transmitting member 40 is disposed in the mounting groove 31 through the welding material 41 The bottom of the groove.
  • the light-transmitting member 40 can be directly provided on the lower step, and the side and/or bottom surface of the light-transmitting part 40 is welded to the wall surface of the upper step.
  • the light-transmitting member 40 is fixed to the package body 30.
  • the mounting groove 31 on the package body 30 in this embodiment is stepped, the invention does not limit the specific shape of the mounting groove 31 on the package body 30.
  • the mounting groove 31 may not be needed, the top of the package 30 may be flat, and the bottom surface of the light-transmitting member 40 may be directly welded to the top surface of the package 30 , and the present invention does not cover the package 30
  • the cross-sectional shape of the package 30 is limited.
  • the cross-section of the package 30 can be a hollow circle, square, diamond, etc., as long as the light-transmitting member 40 can be disposed in the package 30 and does not affect the use of the LED device 100 .
  • the surface of the package 30 is laminated with a third copper metal layer, a third nickel metal layer and a third gold metal layer.
  • the thickness of the third nickel metal layer is greater than 3 microns, and the thickness of the third gold metal layer is greater than 0.05 microns. .
  • the third nickel metal layer and the third gold metal layer can improve the corrosion resistance, wear resistance and oxidation resistance of the package 30 and reduce damage to the package 30 from external acid, alkali, moisture and other environments. , extending the service life of the package 30 .
  • the material of the light-transmitting member 40 may be quartz, sapphire or other materials.
  • the light-transmitting member 40 may be in the shape of a plate, an arc, or a hemisphere, as long as it does not affect the use of the LED device 100 .
  • the invention does not limit the specific shape of the light-transmitting member 40 .
  • the LED device 100 includes a plurality of Zener chips 50.
  • Each of the Zener chips 50 is connected to a set of positive electrode pads 111 and negative electrode pads 112, that is, one LED chip 20 and one Zener chip. 50 in parallel.
  • the Zener chip 50 is used to reduce the probability of electrostatic breakdown of the LED chip 20 to protect the LED chip 20 .
  • the Zener chip 50 is a flip chip, and the electrode of the Zener chip 50 is a gold-tin alloy.
  • the gold content in the gold-tin alloy is 80wt%, the tin content is 20wt%, and the melting point of the gold-tin alloy is 280°C. °C, thereby facilitating the fixation of the Zener chip 50 to the first circuit layer 11 .
  • flux or gold-tin solder can be first provided on the first circuit layer 11 of the substrate 10 (the gold content can be 80wt%, the tin content can be 20wt%, and the melting point is 280°C ), and then place the LED chip 20 and the Zener chip 50 at the flux or gold-tin solder, thereby welding and fixing the LED chip 20 and the Zener chip 50 to the first circuit layer 11; secondly, in the installation Flux or gold-tin solder is provided in the groove 31 (the gold content can be 80wt%, the tin content can be 20wt%, and the melting point is 280°C), so that the light-transmitting component 40 is welded and fixed to the package 30; finally, The semi-finished product that has passed the above steps can be fixed through a eutectic process to improve the firmness of the fixation.
  • the eutectic process can be that the semi-finished product passes through a eutectic furnace, where the temperature of the eutectic furnace has at least one temperature zone between 280°C and 320°C. , and nitrogen protection is required during the eutectic process to further improve the firmness.
  • FIG. 51 and Figure 51a Please refer to Figure 51 and Figure 51a.
  • the difference between this embodiment and Embodiment 7a is that the number of LED chips 20 in this embodiment is 9, distributed in a 3*3 matrix.
  • the LED device 100 shown in Figure 51 and Figure 51a is placed at an angle corresponding to the 90-degree counterclockwise rotation shown in Figures 41 and 42 shown in Embodiment 1. Therefore, the positive conductive hole 131 and the negative conductive hole in Figure 51 and Figure 51a 132 is located on the left and right sides; the positive terminal 121 and the negative terminal 122 on the back side of the substrate 10 in Figure 52 are located on the left and right sides.
  • the corresponding positive electrode pads 111 and negative electrode pads 112 on the front side of the substrate 10 are also nine respectively; the positive electrode terminals 121 and negative electrode terminals 122 on the back side of the substrate 10 are also nine respectively; the positive electrode is conductive There are also nine holes 131 and nine negative electrode conductive holes 132 respectively.
  • the circuit pattern composed of the positive electrode pad 111 and the negative electrode pad 112 is rotationally symmetrical with its geometric center as the symmetry point.
  • One end of the n-th positive electrode pad 111 is connected to the corresponding anode of the n-th LED chip 20, and the other end extends to the first edge region 13 and is connected to a corresponding n-th positive electrode conductive hole 131; the n-th negative electrode pad
  • One end of 112 is connected to the negative electrode of the corresponding n-th LED chip 20, and the other end extends to the second edge area 14 and is connected to a corresponding n-th negative electrode conductive hole 132; where n is a natural number greater than 1 and less than 9.
  • the number of LED chips 20 in this embodiment is 16, distributed in a 4*4 matrix. Since the number of LED chips 20 is 16, there are 16 corresponding positive electrode pads 111 and 16 negative electrode pads on the front side of the substrate 10; there are 16 positive electrode terminals 121 and 16 negative electrode terminals 122 on the back side of the substrate 10; and there are 16 positive electrode conductive holes. There are also 16 negative conductive holes 131 and 132 respectively.
  • the circuit pattern composed of the positive electrode pad 111 and the negative electrode pad 112 is rotationally symmetrical with its geometric center as the symmetry point.
  • One end of the n-th positive electrode pad 111 is connected to the corresponding anode of the n-th LED chip 20, and the other end extends to the first edge region 13 and is connected to a corresponding n-th positive electrode conductive hole 131; the n-th negative electrode pad
  • One end of 122 is connected to the negative electrode of the corresponding n-th LED chip 20, and the other end extends to the second edge area 14 and is connected to a corresponding n-th negative electrode conductive hole 132; where n is a natural number greater than 1 and less than 16.
  • the present invention provides an LED device.
  • the LED device 100 includes a substrate 10 and a plurality of LED chips 20 .
  • the substrate 10 has an opposite front and a back.
  • the front of the substrate 10 is provided with a first circuit layer 11.
  • the first circuit layer 11 includes multiple groups of positive electrode pads and negative electrode pad groups (positive electrode pads 111 and negative electrode pad groups 112).
  • a second circuit layer 12 is provided on the back of the substrate 10 .
  • the second circuit layer 12 includes multiple sets of positive electrode pads and negative electrode pads (second positive electrode terminals 121 and second negative electrode terminals 122 ).
  • One positive terminal 121 corresponds to one positive terminal 121 is set, and a positive terminal 121 is electrically connected to a positive electrode pad 111, a negative terminal 122 is arranged corresponding to a negative electrode pad 112, and a negative electrode terminal 122 is electrically connected to a negative electrode pad 112.
  • at least one LED chip 20 is connected to a set of positive electrode pads 111 and negative electrode pads 112 .
  • the (single or multiple) LED chips 20 connected to a group of first positive electrode pads 111 and negative electrode pads 112 can be individually controlled to turn on or off individually.
  • the present invention connects at least one LED chip 20 through a set of positive electrode pads 111 and negative electrode pads 112, which not only enables the LED device 100 to package LED chips with different voltages and different wavelengths, but also enables users to realize the control of a single LED chip by matching different external circuits.
  • Individual control of LED chips or multiple LED chipsets allows users to control individual LED chips to effectively emit light according to usage conditions.
  • multiple LED chips in the existing technology are usually connected by fixed lines, and LED chips are connected in series and parallel.
  • the circuits on the substrate are also different. In the present invention, when the LED chips 20 are connected in different series and parallel modes, the circuits on the front of the substrate 10 are still the same.
  • Embodiment 8 including Embodiment 8a and Embodiment 8b
  • the present invention provides an LED device (in this embodiment, the LED devices are all package structures, specifically LED package structures).
  • the LED device 100 includes: a substrate 10, a dam 20, an LED chip 30, and a light window. Assembly 40 and sealant 50.
  • the dam 20 is annular and has an inner wall, a top and a bottom. The bottom of the dam 20 is seated on the front surface of the base plate 10 .
  • the LED chip 30 is fixed on the front surface of the substrate 10 .
  • the dam 20 surrounds the LED chip 30 , and at least a portion of the inner wall of the dam 20 located above the LED chip 30 is provided with a mounting groove 21 penetrating the top of the dam 20 .
  • the light window assembly 40 includes a light-transmitting part 41 (the light-transmitting parts 41 in this embodiment are all transparent covers) and a metal tube cap 42.
  • the metal tube cap 42 is welded to the periphery of the light-transmitting part 41.
  • the light-transmitting component 41 and the metal tube cap 42 are fixed in the installation groove 21 , and the bottoms of the light-transmitting component 41 and the metal tube cap 42 are in contact with the bottom surface of the installation groove 21 . 41.
  • the metal tube cap 42, the front surface of the substrate 10 and the dam 20 form a receiving cavity for accommodating the LED chip 30, and the surfaces of the light-transmitting member 41 and the metal tube cap 42 are in contact with the mounting groove 21
  • the walls are enclosed to form a sealing groove.
  • the sealant 50 is disposed in the sealant groove and does not cover the light-transmitting component 41 .
  • the present invention not only reduces the possibility of the light window assembly 40 falling off and improves product reliability by welding the light window assembly 40 to the dam 20, but also protects the welding joint by filling the sealant 50 and reduces the welding time. There is a possibility of oxidation and rust at the welding joint, and since the sealant 50 plays a role in filling the pore cracks on the welding joint, this arrangement can further improve the reliability and air tightness of the product.
  • the present invention Compared with the single semi-inorganic sealant in the prior art, Packaging and all-inorganic packaging methods, the present invention fully integrates the advantages of the two packaging methods through a packaging method that combines organic packaging and inorganic packaging, and the present invention also arranges the bottom of the light window assembly 40 flush within the dam 20 , so that the operator can match LED chips 30 of different thicknesses by changing the height of the dam 20 during the production process.
  • the present invention There is no need to set an inwardly extending edge, thereby ensuring the light extraction rate of the product while effectively reducing the cost and difficulty of universal product parts, thereby improving the versatility of the metal tube cap 42 and lowering the production cost.
  • a first circuit 11 is provided on the front side of the substrate 10 for connecting to the LED chip 30 .
  • the back side of the substrate 10 may be provided with a second circuit 12, and the substrate 10 may be provided with a conductive hole 13 penetrating the front and back surfaces, and the first circuit 11 and the second circuit 12 may pass through the conductive holes 13.
  • the conductive holes 13 are connected to realize the connection between the LED chip 30, the first line 11 and the second line 12.
  • arranging the first line 11 and the second line 12 on the substrate 10 can be implemented through a DPC (Direct Plating copper) process.
  • DPC Direct Plating copper
  • the first circuit 11 and the second circuit 12 may be provided with a first metal layer and a second metal layer.
  • the first metal layer may be a nickel layer and the second metal layer may be a gold layer, thereby improving the performance of the circuits. Oxidation resistance, corrosion resistance and electrical conductivity, wherein the thickness of the first metal layer can be greater than 3 um, and the thickness of the second metal layer can be greater than 0.05 um to ensure conductivity and anti-oxidation effects.
  • the dam 20 can be welded to the base plate 10, or integrally formed with the base plate 10, which is very convenient to manufacture.
  • the installation groove 21 not only allows the light window assembly 40 to be embedded in the dam 20 , thereby improving the positioning effect of the light window assembly 40 , but also facilitates the connection between the light window assembly 40 and the dam 20
  • a sealing groove with sealant 50 is enclosed to form a sealing groove to improve the airtightness effect of the LED device 100.
  • the mounting groove 21 can be in a stepped shape, and its contact surface with the sealant 50 is relatively larger. In order to achieve a higher sealing effect of the LED device 100, Excellent embodiment.
  • the top of the dam 20 can also be in the shape of a plane, a single-layer step or a multi-layer step (when the installation groove 21 has a multi-layer step structure, the sealant 50 can be refilled multiple times, To further improve the air tightness), the present invention does not limit this, as long as the light window assembly 40 can be installed on the dam 20 .
  • the LED chip 30 can be any one of a flip chip, a regular chip or a vertical chip, and the present invention is not limited thereto.
  • a soldering flux material can be provided on the front side of the substrate 10 first, and then the LED chip 30 is disposed on the soldering flux material, and finally the LED chip 30 is connected to the soldering flux material.
  • the substrate 10 is eutectic, so that the LED chip 30 can be installed.
  • a die-bonding adhesive can be provided on the front side of the substrate 10 , and then the LED chip 30 is placed on the die-bonding adhesive and baked at high temperature. The die-bonding adhesive is solidified, and finally the electrodes of the LED chip 30 and the circuits of the substrate 10 are connected by wire bonding using wire bonding equipment, so that the LED chip 30 can be installed.
  • the metal tube cap 42 please refer to Figures 55 to 60.
  • the metal tube cap 42 can be welded to the dam 20 to improve the firmness of the connection and enhance the reliability of the LED device 100.
  • the metal tube cap 42 includes a shell part 421 , the shell part 421 is in the shape of a tube and is used for welding to the light-transmitting member 41 (transparent cover). ) periphery, compared with the prior art in which the metal tube cap 42 extends inward to connect with the light-transmitting member 41, the embodiment of the present invention can reduce the blocking and reflection of the LED light, so that the LED device 100 has Better light extraction rate, and the welding area of the metal tube cap 42 and the light-transmitting component 41 is increased, making the welding between the metal tube cap 42 and the light-transmitting component 41 stronger.
  • the inner wall of the shell part 421 can be square (see Figure 2), circular (see Figures 3 and 4), etc.
  • the present invention does not limit this, as long as it is used in practical applications. , as long as it can be adapted to the light-transmitting member 41 .
  • the outer wall of the shell of the housing part 421 can also be circular (see Figure 3), square (see Figures 2 and 4), etc. The present invention does not limit this as long as it does not affect the The LED device 100 can be used.
  • the bottom of the metal cap 42 (that is, the bottom of the housing part 421 ) has a welding part 422 extending in a direction away from the light-transmitting member 41 .
  • the metal pipe cap 42 is welded to the bottom surface of the installation groove 21 through the welding portion 422, thereby making the connection between the light window assembly 40 and the dam 20 stronger, and compared with the prior art.
  • the metal tube cap 42 extends inward to connect with the dam 20.
  • the embodiment of the present invention can not only reduce the blocking and reflection of the LED light, thereby allowing the LED device 100 to have better light extraction rate, but also improve the efficiency of the LED device 100.
  • the sealant 50 plays a blocking role, reducing the impact of LED light on the sealant 50 , prolonging the time to achieve the air tightness effect, and increasing the service life of the LED device 100 .
  • the light-transmitting member 41 transparent cover
  • the metal tube cap 42 can be welded with glass solder 60, thereby increasing the number of the light-transmitting member 41 and the metal tube.
  • the firmness of the connection between caps 42 can be achieved.
  • the present invention does not limit the welding material, as long as the welding between the light-transmitting member 41 and the metal pipe cap 42 can be achieved.
  • the height of the glass solder 60 is greater than the height of the metal cap 42 and covers the surface of the metal cap 42 away from the substrate 10 , thereby increasing the soldering area to further increase the light transmission. It improves the firmness of the connection between the component 41 and the metal tube cap 42 and improves the smoothness of the transition between the metal tube cap 42 and the light-transmitting component 41, making it convenient for users to use.
  • the welding portion 422 is in contact with the groove side wall of the mounting groove 21 , and the glass solder 60 , the metal tube cap 42 and the groove side wall of the mounting groove 21 form the sealing groove, so that The sealant 50 can completely cover the welding portion 422, thereby improving the airtightness effect of the LED device 100. Furthermore, the sealant 50 can also cover the glass solder 60 and the metal tube cap 42, thereby better covering the welding joint between the metal tube cap 42 and the light-transmitting member 41, as well as the metal tube.
  • the welding joint between the cap 42 and the dam 20 can protect the welding joint and reduce the possibility of oxidation and rust at the welding joint. Moreover, since the sealant 50 plays a role in filling the pore cracks on the welding joint, this arrangement It can further improve the reliability and air tightness of the product.
  • the metal tube cap 42 can be made of Kovar alloy, which can complete a tight mechanical connection between the two materials within a certain temperature range, thereby being able to well connect the light-transmitting member 41 and the Dam 20.
  • the height of the light-transmitting part 41 is greater than the height of the metal tube cap 42, so that The glass solder 60 better covers the surface of the metal tube cap 42, improves the surface flatness of the welding joint between the light-transmitting part 41 and the metal tube cap 42, improves the aesthetics and enhances the user experience, and the sealant 50 does not cover it
  • the front side of the light-transmitting member 41 avoids affecting the light effect.
  • the light-transmitting member 41 may be made of quartz or sapphire material, but the present invention does not limit the specific material of the light-transmitting member 41 as long as it can achieve light transmission. That is, for example, the light-transmitting member 41 can be made of PMMA (polymethylmethacrylate) or the like.
  • the light-transmitting member 41 can be in the shape of a square (see Figure 59) or a hemisphere (see Figure 60). Of course, the shape of the light-transmitting member 41 is not limited to this, as long as it does not affect light transmission. Yes, for example, it can also be in the shape of a rectangular parallelepiped, a bulb, etc.
  • the sealant 50 refers to a curable coating with a bonding function.
  • the sealant 50 can be a UV-resistant glue, and the UV-resistant glue can usually be glue made of materials such as silicone, epoxy resin, and fluorine resin.
  • the present invention does not limit the specific material of the sealant 50 , as long as the service life of the sealant 50 can meet the service life of the device.
  • the present invention provides an LED packaging method for packaging the above-mentioned LED device 100 (in this embodiment, the LED devices 100 are all packaging structures, specifically LED packaging structures).
  • the LED Encapsulation methods include:
  • S102 Set a dam 20 with a mounting groove 21 on the substrate 10, and seat the dam 20 on the front side of the substrate 10.
  • the dam 20 is annular, and its middle is formed for mounting the LED chip 30. Space;
  • S103 Arrange the LED chip 30 on the front side of the substrate 10 and in the space in the middle of the dam 20;
  • a first circuit 11 and a second circuit 12 for connecting to the LED chip 30 may be provided on the front and back of the substrate 10 respectively.
  • the first line 11 and the second line 12 can be arranged through a DPC (Direct Plating copper) process.
  • a second circuit 12 may be provided on the back side of the substrate 10.
  • the substrate 10 is provided with a conductive hole 13 penetrating the substrate 10.
  • the first circuit 11 and the second circuit 12 are connected through the conductive hole 13. Therefore, the connection between the LED chip 30 , the first line 11 and the second line 12 can be realized, thereby facilitating the electrical connection of the LED chip 30 .
  • the first line 11 and the second line 12 can be plated with a nickel metal layer and a gold metal layer to prevent migration and oxidation of metal on the lines and improve conductivity and oxidation resistance.
  • the thickness of the nickel metal layer is required to be >3um
  • the thickness of the gold metal layer is >0.05um to ensure conductivity and anti-oxidation effects.
  • the method of fixing the metal pipe cap 42 and the light-transmitting member 41 in the mounting groove 21 is to first weld the light-transmitting member 41 to the metal pipe cap 42 and then laser weld the metal pipe.
  • the cap 42 is welded into the mounting groove 21 of the dam 20 , thereby improving the firmness of the connection, reducing the possibility of the light-transmitting component 41 falling off, and enhancing the reliability of the LED device 100 .
  • the LED packaging method provided by the present invention fully integrates the advantages of the two packaging methods by combining organic packaging and inorganic packaging.
  • the present invention not only reduces the number of light window components 40 by welding the light window component 40 to the dam 20, but also reduces the number of light window components 40.
  • the possibility of falling off improves product reliability
  • the sealant 50 is used to protect the welding joint, reducing the possibility of oxidation and rust at the welding joint, and because the sealant 50 has an effect on the pore cracks on the welding joint Therefore, this arrangement can further improve the reliability and air-tightness effect of the product, and the present invention also arranges the bottom of the light window assembly 40 flush within the dam 20, so that the operator can change the dam during the production process.
  • the height of 20 can match LED chips of different thicknesses 30, thereby ensuring the light output of the product while effectively reducing the cost and difficulty of realizing a universal product, thus improving the versatility of the product and facilitating the mass promotion and application of the product. .
  • the step of arranging the LED chip 30 on the front side of the substrate 10 may further include:
  • the soldering flux material may be a gold-tin alloy to have good soldering properties.
  • the LED chip 30 can also be directly placed on the front of the substrate 10 without using solder flux material, and then the LED chip 30 and the substrate 10 are eutectic, thereby reducing manufacturing costs. Difficulty and cost.
  • the method of making the LED chip 30 and the substrate 10 eutectic may be to pass the substrate 10 with the LED chip 30 together through a eutectic furnace or the like. Furthermore, since the melting point of gold-tin alloy is 280°C, the eutectic furnace temperature can have at least one temperature zone between 280°C and 340°C, and the eutectic process can be set up with vacuum or nitrogen protection, allowing the LED chip to 30 The welding void rate is reduced and the electrode of the LED chip 30 is prevented from high-temperature oxidation.
  • the flux material can be disposed on the front surface of the substrate 10 by spot coating.
  • the spot coating of the soldering flux material on the front surface of the substrate 10 can be achieved manually, mechanically, etc., for example, by setting up an intelligent manipulator, and the intelligent manipulator can evenly set a quantitative amount of the soldering flux material, so as to be able to further Improve welding effect.
  • the flip-chip is mounted on the substrate 10 using flux material, and the connection between the LED chip 30 and the substrate 10 is made stronger through eutectic, thereby improving the reliability of the LED device 100 .
  • the step of arranging the LED chip 30 on the front side of the substrate 10 further includes:
  • S1035 Place the LED chip 30 on the die-bonding adhesive, and bake it at high temperature to solidify the die-bonding adhesive;
  • S1036 Use wire bonding equipment to connect the electrodes of the LED chip 30 and the circuits of the substrate 10 by wire bonding.
  • the die-bonding glue may be insulating glue or silver glue.
  • the die-bonding glue may be silver glue.
  • the first line 11 can be provided with a nickel metal layer, a palladium metal layer and a gold metal layer, wherein the thickness of the nickel metal layer can be greater than 3um, and the thickness of the nickel metal layer can be greater than 3um.
  • the thickness can be greater than 0.05um, and the thickness of the gold metal layer can be greater than 0.05um to ensure welding, conductivity and anti-oxidation effects.
  • formal chips or vertical chips are installed on the substrate 10 through die-bonding glue, and the die-bonding glue is solidified through high-temperature baking to make the connection between the LED chip 30 and the substrate 10 stronger, thereby improving the Reliability of LED device 100.
  • the step of welding the metal pipe cap 42 to the periphery of the light-transmitting member 41 may further include:
  • the positioning mold may include a positioning block, which is used to contact the metal tube cap 42 and the light-transmitting member 41 to achieve positioning.
  • the present invention is not limited to this, as long as positioning can be achieved.
  • the positioning mold may include a positioning groove connected with the metal pipe cap 42 and the light-transmitting part 41 .
  • the metal pipe cap 42 and the light-transmitting part 41 are disposed in the positioning groove and connected with the groove of the positioning groove. By making surface contact, the positioning of the metal pipe cap 42 and the light-transmitting member 41 can be achieved.
  • the metal pipe cap 42 and the light-transmitting part 41 are first welded with the glass solder 60 , and then the metal pipe cap 42 and the light-transmitting part 41 are sintered, so that the metal pipe cap 42 and the light-transmitting part can be made
  • the connection of the LED device 41 is stronger, which reduces the possibility of the light-transmitting member 41 falling off and increases the reliability of the LED device 100 .
  • the step of disposing the sealant 50 in the sealing groove further includes:
  • the sealant 50 refers to a curable coating with a bonding function.
  • the sealant 50 can be made of silicone, epoxy resin, fluororesin and other materials.
  • the present invention is for the sealing
  • the specific material of the glue 50 is not limited.
  • the method for curing the sealant 50 may include waiting for the sealant 50 to cure naturally, bake or be cured by UV light.
  • the curing method of the sealant 50 is not limited to this, as long as the sealant 50 can be cured.
  • the sealant 50 needs to be baked to be cured, the baking curing method is used.
  • the sealant 50 can be cured directly. It can be cured by irradiation with UV light. Then use UV light curing method. If it is other types of sealant 50, use the corresponding curing method.
  • placing the sealant 50 to be cured in the sealing tank can be realized manually or mechanically, for example, by setting up an intelligent manipulator, and the intelligent manipulator performs fixed-point quantitative setting, thereby effectively reducing the amount of sealant 50 Possibility of covering the light-transmitting member 41 .
  • the sealant 50 is disposed in the sealing groove to avoid covering the light-transmitting member 41 to reduce light loss and increase the light extraction rate of the LED device 100, and the sealant 50 covers the metal tube cap. 42 and the welding joint of the dam 20, thereby realizing the protection of the welding joint and reducing the possibility of oxidation and rusting of the welding joint, and because the sealant 50 plays a role in filling the pore cracks on the welding joint, this arrangement It can also further improve the reliability and air tightness of the product.
  • the invention provides an LED device and an LED packaging method, in which the LED device 100 includes: a substrate 10, a dam 20, an LED chip 30, a light window assembly 40 and a sealant 50.
  • the LED chip 30 is fixed on the front surface of the substrate 10 .
  • the dam 20 is annular and has an inner wall, a top and a bottom. The bottom of the dam 20 is seated on the front surface of the substrate 10 .
  • the dam 20 surrounds the LED chip 30 , and the dam 20 surrounds the LED chip 30 . At least a portion of the inner wall of the dam 20 located above the LED chip 30 is provided with a mounting groove 21 penetrating the top of the dam 20 .
  • the light window assembly 40 includes a light-transmitting component 41 and a metal tube cap 42.
  • the metal tube cap 42 is welded to the periphery of the light-transmitting component 41.
  • the light-transmitting component 41 and the metal tube cap 42 are fixed to the installation groove. 21, and the bottoms of the light-transmitting component 41 and the metal tube cap 42 are in contact with the bottom surface of the installation groove 21.
  • Enclosed to form a receiving cavity for receiving the LED chip 30 and the surfaces of the transparent member 41 and the metal cap 42 and the wall of the mounting groove 21 are enclosed to form a sealing groove.
  • the sealant 50 is disposed in the sealing groove and does not cover the light-transmitting member 41 (transparent cover).
  • the present invention Compared with the single semi-inorganic packaging and all-inorganic packaging methods in the prior art, the present invention fully integrates the advantages of the two packaging methods through a packaging method that combines organic packaging and inorganic packaging.
  • the present invention not only makes the light window assembly 40 Welded to the dam 20, the possibility of the light window assembly 40 falling off is reduced, and product reliability is improved.
  • the welding joint is also protected by the sealant 50, which reduces the possibility of oxidation and rust at the welding joint.
  • the present invention also arranges the bottom of the light window assembly 40 flush within the dam 20 , so that the operator can match LED chips 30 of different thicknesses by changing the height of the dam 20 during the production process, thereby ensuring the light extraction rate of the product and effectively reducing the cost and difficulty of realizing a universal product, thus improving the efficiency of the product.
  • the versatility of the product facilitates mass promotion and application of the product.
  • an LED device provided by an embodiment of the present invention includes a device body.
  • the device body includes a substrate 1, a light-emitting element 2, and a dam component 3 (all are dams in this embodiment). and light-transmitting element 4 (both are transparent covers in this embodiment).
  • the dam component 3 is connected to the substrate 1 and the light-transmitting component 4.
  • the substrate 1, the dam component 3 and the The light-transmitting element 4 surrounds a packaging cavity 5.
  • the substrate 1 has an opposite first end face 11 and a second end face 12.
  • the light-emitting element 2 is disposed on the first end face 11 of the substrate 1 and is located in the packaging cavity 5.
  • the dam part 3 has an inner wall, and the inner wall of the dam part 3 is coated with a reflective layer for reflecting the light emitted by the light-emitting element 2. 32.
  • the inner wall of the dam component 3 is inclined away from the light-emitting element 2 from the first end surface 11, and forms an included angle ⁇ with the first end surface 11 that is greater than zero and less than 90°.
  • the light-emitting element 2 is arranged in the packaging cavity 5 formed by the light-transmitting element 4, the dam component 3 and the substrate 1.
  • the dam component The inner wall of 3 is arranged non-vertically relative to the first end surface 11, the inner wall of the dam component 3 and the first end surface 11 have the included angle ⁇ , and the dam component 3 faces the
  • the reflective layer 32 is provided on the inner wall surface of the packaging cavity 5. By reflecting the light emitted by the light-emitting element 2 through the reflective layer 32 having an angle ⁇ with the first end surface, the reflective layer 32 plays a role in , most of the lateral light of the light-emitting element 2 will be reflected to the light-transmitting element 4 and emitted from the light-transmitting element 4, effectively reflecting the emitted light, reducing light loss, and improving the light extraction rate of the LED device. .
  • the dam component 3 is in the shape of a cylindrical shape.
  • the outer dimensions of the upper end of the casing are larger than the outer dimensions of the lower end of the casing.
  • the inner wall of the dam component 3 is The outer side wall of the dam enclosure 3 is perpendicular to the first end face 11 , and the longitudinal section of the side wall of the dam enclosure 3 is in the shape of a right-angled trapezoid. ⁇ is equal to the angle between the hypotenuse and the bottom of the right-angled trapezoid.
  • the dam component 3 having the angle ⁇ relative to the first end surface 11 can be more effective than the traditional vertical dam component 3 Reflect the light emitted by the light-emitting element 2 to reduce light loss.
  • the dam enclosure 3 can be made of silicon or quartz, which is low-cost. As shown in Figure 62, the dam enclosure 3 has a truncated cone shape, or, as shown in Figure 63, the dam enclosure 3 has a truncated cone shape.
  • the outer shape of the dam component 3 is in the shape of a pyramid, and the shape of the dam component 3 can be set according to specific conditions.
  • the inner wall of the dam component 3 is in the shape of a bevel, and has strong flexibility.
  • the reflective layer 32 is a metal layer that evenly covers the inner wall of the dam component 3; or, the reflective layer 32 is a metal layer that partially covers the inner wall of the dam component 3.
  • the metal layer has high light reflectivity, simple preparation process, and excellent heat resistance and light resistance.
  • the metal layer is a silver layer or an aluminum layer plated on the inner wall of the dam component 3 by vacuum sputtering or evaporation.
  • the aluminum layer will form dense aluminum oxide when it comes into contact with air. The performance is stable, so the aluminum layer is preferably used as the reflective layer 32 here.
  • the included angle ⁇ is 30° to 60°. According to the characteristics of the Fresnel effect (that is, a certain material exhibits different reflection and refraction effects at different distances and angles), when the light-emitting element 2 emits When light passes through the light-transmitting element 4 perpendicularly, the Fresnel reflection of the light-transmitting element 4 is weak, and the reflection of light by the light-transmitting element 4 is also weak; and when the light passes through the light-transmitting element non-vertically, In the optical element 4, when the angle ⁇ between the reflective layer 32 and the first end surface 11 is too small or too large, the Fresnel reflection of the light-transmitting element 4 will be enhanced, that is, the light-transmitting element 4 will The reflection of light also becomes stronger.
  • the weaker the Fresnel reflection on the light-transmitting element 4 the higher the transmittance of light passing through the light-transmitting element 4.
  • the reflective layer 32 When the angle ⁇ with the first end surface 11 is between 30° and 60°, the light transmittance at the light-transmitting element 4 is relatively high. Within this angle range, the dam component 3 The light reflection effect is better.
  • the included angle ⁇ is 45°.
  • the light A is the reflection of the light emitted by the light-emitting element 2 on the light-transmitting element 4 when the included angle ⁇ is 75°.
  • Path diagram is a reflection path diagram of the light emitted by the light-emitting element 2 at the light-transmitting element 4 when the included angle ⁇ is 60°;
  • light C is a reflection path of the light emitted by the light-emitting element 2 when the included angle ⁇ is 45°.
  • light E is a schematic diagram of the reflection path of the light emitted by the light-emitting element 2 at the light-transmitting element 4 when the included angle ⁇ is 15°; as shown in Figure 67, light A is when the included angle ⁇ is Schematic diagram of the reflection path of the light emitted by the light emitting element 2 at the reflective layer 32 of the dam enclosure 3 at 75°; light B is the light emitted by the light emitting element 2 when the included angle ⁇ is 60°. Schematic diagram of the reflection path at the reflective layer 32 of the dam component 3; light C is the reflection of the light emitted by the light-emitting element 2 on the dam component 3 when the included angle ⁇ is 45°.
  • light D is a schematic diagram of the reflection path of the light emitted by the light-emitting element 2 at the reflective layer 32 of the dam component 3 when the included angle ⁇ is 30°
  • light E is Schematic diagram of the reflection path of the light emitted by the light-emitting element 2 at the reflective layer 32 of the dam component 3 when the included angle ⁇ is 15°. It can be seen from this that when the angle ⁇ between the reflective layer 32 and the first end surface 11 is 45°, the light C passes through the light-transmitting element 4 almost vertically. Element 4 has the smallest Fresnel reflection and the highest light transmittance. Increasing or decreasing the angle ⁇ on the basis of 45° will increase the Fresnel reflection of the light-transmitting element 4. Therefore, here In the embodiment, the angle ⁇ between the reflective layer 32 and the first end surface 11 is preferably 45°.
  • a substrate surface circuit 13 is provided between the light-emitting element 2 and the first end face 11
  • a substrate back circuit 14 is provided on the second end face 12
  • the substrate 1 has a penetrating circuit 13 .
  • the circuits 13 on the surface of the substrate and the circuits 14 on the back of the substrate are connected through the conductive holes 15, and the structure is compact.
  • the substrates on the circuits 13 on the substrate surface and the circuits 14 on the back of the substrate are plated with nickel-gold plating or nickel-palladium gold plating.
  • the substrates on the circuits 13 on the substrate surface and the circuits 14 on the back of the substrate are plated.
  • the thickness of nickel in the nickel-gold plating layer is >3um, and the thickness of gold is >0.05um.
  • the thickness of nickel in the nickel-palladium gold plating layer is >3um, the thickness of palladium is >0.05um, and the thickness of gold is >0.05um.
  • the substrate surface circuit 13 also has a dam soldering layer 17 and a chip soldering layer 16 for soldering the light emitting element 2.
  • the substrate surface circuit 13 has layers other than the chip soldering layer 16 and the dam soldering layer 17. Some areas are coated with a metal reflective layer by vacuum sputtering or evaporation.
  • the metal reflective layer 32 can be an aluminum or silver reflective layer. When the aluminum reflective layer contacts the air, it will form dense aluminum oxide, which has stable performance. The reflectivity of ultraviolet light is above 90%, and aluminum plating is preferred here.
  • the light-emitting element 2 is a UV chip with a flip-chip structure.
  • the electrode of the UV chip is a gold-tin alloy.
  • the gold-tin alloy has excellent physical properties such as moderate welding temperature and strong welding, and is more suitable for chips and substrates. Eutectic.
  • the light-transmitting element 4 can be a glass lens.
  • the glass lens can be made of quartz or sapphire, which is not easy to wear.
  • the glass lens can be a plane lens, or the glass lens can be a sphere or a hemisphere.
  • Surface lens as shown in Figure 61, both the front and back surfaces of the glass lens can be coated with an anti-reflection coating 41 for improving ultraviolet transmittance.
  • the anti-reflection coating 41 can be made of magnesium fluoride or silicon dioxide. Made of material that can increase the light transmittance of ultraviolet rays.
  • the dam component 3 can be integrally formed with the base plate 1.
  • the integrated base plate 1 with a dam avoids the need for a split base plate during the bonding or welding process of the dam. There may be a risk of poor bonding or welding leading to product failure due to air tightness, so it is highly practical.
  • the upper end of the dam member 3 has a lens welding layer 31 for welding the light-transmitting element 4
  • the upper end of the dam member 3 has a surface to be contacted with the light-transmitting element 4
  • glue or solder to form the lens welding layer 31
  • the light-transmitting element 4 can be fixedly connected to the dam component 3 through glue or solder, or, as shown in Figure 65, the dam can also be
  • the component 3 and the light-transmitting element 4 are integrally formed to simplify the process steps.
  • the light-emitting element 2 is arranged in the packaging cavity 5 formed by the light-transmitting element 4, the dam component 3 and the substrate 1.
  • the dam component The inner wall of the dam member 3 is inclined relative to the first end face 11 , the inner wall of the dam member 3 and the first end face 11 have the included angle ⁇ , and the dam member 3 faces the package.
  • the reflective layer 32 is provided on the inner wall surface of the cavity 5. The reflective layer 32 can effectively reflect the light emitted by the light-emitting element 2, reduce light loss, and improve the light extraction rate of the LED device.
  • a manufacturing method (packaging method) of an LED device (LED packaging structure) provided by the present invention includes the following steps:
  • a dam component 3 (all dams in this embodiment) surrounding the light-emitting element 2 is provided on the first end surface 11 of the substrate 1;
  • a reflective surface 6 for reflecting part of the light emitted by the light-emitting element 2 is provided in the space surrounded by the dam member 3.
  • the reflective surface 6 is inclined toward the outside of the space from the first end surface 11 and
  • the angle ⁇ between the reflective surface 6 and the first end surface 11 is set to be greater than zero and less than 90°;
  • the light-transmitting element 4 (all transparent covers in this embodiment) is fixedly connected to the dam part 3, and the light-transmitting element 4 is directed towards the light-emitting element 2.
  • the light-transmitting element 4 and the dam part 3 are A packaging cavity 5 is formed surrounding the substrate 1 .
  • the present invention provides a manufacturing method of an LED device and an LED device.
  • a reflective surface 6 for reflecting part of the light emitted by the light-emitting element 2 is provided in the space surrounded by the dam component 3, and the transparent
  • the optical element 4, the dam component 3 and the substrate 1 form a packaging cavity 5.
  • the light-emitting element 2 is located in the packaging cavity 5.
  • the light emitted by the light-emitting element 2 passes through an included angle with the first end surface 11.
  • the ⁇ reflective surface 6 reflects, which can improve the light extraction rate of the LED device and effectively reduce light loss.
  • An embodiment of the present invention provides a method (packaging method) for manufacturing an LED device (packaging structure), including the following steps:
  • a dam component 3 (all dams in this embodiment) surrounding the light-emitting element 2 is provided on the first end surface 11 of the substrate 1;
  • a reflective surface 6 for reflecting part of the light emitted by the light-emitting element 2 is provided in the space surrounded by the dam member 3 .
  • the angle ⁇ between the inner wall of the dam component 3 and the first end surface 11 is set to be greater than zero and less than 90°.
  • the light-transmitting element 4 is fixedly connected to the dam part 3, and the light-transmitting element 4 (both are transparent covers in this embodiment) faces the light-emitting element 2, and the light-transmitting element 4 and the dam part 3 are A packaging cavity 5 is formed surrounding the substrate 1 .
  • the light-emitting element 2 is arranged in the packaging cavity 5 formed by the light-transmitting element 4, the dam component 3 and the substrate 1.
  • the inner wall of the dam component 3 is non-perpendicularly arranged relative to the first end surface 11 , there is the reflection angle ⁇ between the inner wall of the dam component 3 and the first end surface 11 , and the dam component 3 faces
  • the reflective layer 32 is provided on the inner wall surface of the packaging cavity 5.
  • the LED device includes the substrate 1, the light-emitting element 2, the dam part 3, the light-transmitting element 4 and the packaging cavity 5.
  • the light-emitting element 2 is located between the light-transmitting element 4 and the dam part. 3 and the substrate 1 form the packaging cavity 5 .
  • the inner wall of the dam enclosure 3 is inclined relative to the first end face 11 , the outer wall of the dam enclosure 3 is perpendicular to the first end face 11 , and the longitudinal section of the side wall of the dam enclosure 3 is in the shape of It has a right-angled trapezoid shape, and the angle ⁇ between the inner wall of the dam member 3 and the first end surface 11 is equal to the angle between the hypotenuse and the bottom of the right-angled trapezoid.
  • the dam member 3 has a right-angled trapezoid shape.
  • the reflective layer 32 is provided on the inner wall surface of the dam component 3 toward the packaging cavity 5.
  • the reflective layer 32 may completely cover the inner wall surface of the dam component 3, or may not completely cover the inner wall surface of the dam component 3.
  • the reflective layer 32 is a metal layer plated on the inner wall of the dam component 3.
  • the metal layer is an aluminum layer.
  • the thickness of the reflective layer 32 can be set to greater than 50 nm;
  • the angle ⁇ between the reflective layer 32 and the first end surface 11 is set between 30° and 60°.
  • the Fresnel effect that is, a certain material is (different distances and angles exhibit different reflection and refraction effects).
  • the Fresnel reflection of the light-transmitting element 4 is weak.
  • the reflection of light by the light-transmitting element 4 is also weak; and when light passes through the light-transmitting element 4 non-perpendicularly, the angle ⁇ between the reflective layer 32 and the first end surface 11 is too small or too large.
  • the Fresnel reflection of the light-transmitting element 4 will be enhanced, that is, the reflection of light by the light-transmitting element 4 will also become stronger. Therefore, the weaker the Fresnel reflection on the light-transmitting element 4, the less light will be emitted.
  • the transmittance from the light-transmitting element 4 is higher.
  • the angle ⁇ between the reflective layer 32 and the first end surface 11 is between 30° and 60°
  • the transparent element 4 has a higher transmittance.
  • the light transmittance at the light element 4 is high. As shown in Figure 67, the light A is the light emitted by the light-emitting element 2 when the included angle ⁇ is 75°.
  • light B is a schematic diagram of the reflection path of the light emitted by the light-emitting element 2 at the reflective layer 32 of the dam component 3 when the included angle ⁇ is 60°;
  • light C is a schematic diagram of the reflection path of Schematic diagram of the reflection path of the light emitted by the light-emitting element 2 at the reflective layer 32 of the dam member 3 when the included angle ⁇ is 45°;
  • light D is the light emitted when the included angle ⁇ is 30°.
  • the light E is the reflection path of the light emitted by the light emitting element 2 at the dam enclosure 3 when the included angle ⁇ is 15°.
  • the light-transmitting element 4 4 has the smallest Fresnel reflection and the highest light transmittance.
  • Increasing or decreasing the angle ⁇ on the basis of 45° will increase the Fresnel reflection of the light-transmitting element 4, so it is implemented here
  • the angle ⁇ between the reflective layer 32 and the first end surface 11 is preferably 45°.
  • the substrate 1 is a ceramic substrate.
  • a substrate surface circuit 13 is provided on the first end surface 11 of the substrate 1.
  • the second end surface 12 of the substrate 1 is provided with substrate back circuits 14, and conductive holes 15 for connecting the substrate surface circuits 13 and the substrate back circuits 14 are opened in the substrate 1, and the conductive holes 15 penetrate the substrate.
  • the base materials on the first end face 11 and the second end face 12, the circuits 13 on the surface of the substrate and the circuits 14 on the back of the substrate are made by a copper plating process, and the surface of the base material is plated with nickel gold through an immersion gold process.
  • Coating or nickel-palladium-gold coating enables the light-emitting element 2 to be better combined with the substrate 1.
  • the thickness of nickel in the nickel-gold plating layer is >3um, and the thickness of gold is >0.05um.
  • the thickness of nickel in the nickel-palladium-gold plating layer is >3um.
  • the thickness of palladium is >0.05um, and the thickness of gold is >0.05um.
  • the substrate surface circuit 13 also has a dam welding layer 17 and a chip welding layer 16 for welding the light-emitting element 2.
  • the substrate surface circuit 13 is in addition to Partial areas other than the chip welding layer 16 and the dam welding layer 17 are coated with a metal reflective layer by vacuum sputtering or evaporation.
  • the metal reflective layer can be an aluminum or silver reflective layer, and the aluminum reflective layer is in contact with the air. It will form dense aluminum oxide with stable performance. The reflectivity of aluminum to ultraviolet light is over 90%.
  • Embodiment 10a when fixing the light-emitting element 2 to the first end surface 11 of the substrate 1, the following steps are included: 1 Dot-coating flux as a eutectic medium on the chip soldering layer 16, Place the light-emitting element 2 in a place with flux; 2 Send the substrate 1 with the light-emitting element 2 on it into a eutectic furnace for eutecticization, so that the light-emitting element 2 and the substrate 1 are firmly combined, where the temperature of the eutectic furnace At least one temperature zone has a temperature between 300°C and 340°C, and nitrogen can be input for protection during the eutectic process, or the vacuum of the eutectic environment can be ensured to prevent the LED device from being oxidized at high temperatures.
  • the light-emitting element 2 is a UV chip with a flip-chip structure
  • the electrode of the UV chip is a gold-tin alloy.
  • the gold-tin alloy has excellent physical properties such as moderate welding temperature and strong welding. , more suitable for chip and substrate eutectic.
  • Embodiment 10a when the dam component 3 surrounding the light-emitting element 2 is provided on the first end surface 11 of the substrate 1 , the dam component 3 can be prefabricated first, and then Glue or solder is provided at the contact surface between the dam component 3 and the substrate 1, and then the dam component 3 is disposed on the first end surface 11 of the substrate 1 to ensure that the substrate 1 and The dam part 3 is firmly combined.
  • the dam part 3 when the dam part 3 is made of non-metallic material and is welded with solder, the dam part 3 needs to be installed in advance.
  • the lower end contact surface is metallized, and the metallization can be gold-tin alloy electroplating.
  • the outer shape of the dam enclosure 3 is a truncated cone shape, or, as shown in FIGS. 61 and 63 , the outer shape of the dam enclosure 3 is in the shape of a truncated cone.
  • the shape of the dam component 3 can be made in the shape of a pyramid according to actual needs.
  • the shape of the dam component 3 can be set according to specific conditions.
  • the inner wall of the dam component 3 is in a bevel shape to facilitate the reflection of light.
  • the dam component 3 can be integrally formed with the base plate 1.
  • the integrated base plate 1 with a dam avoids the problem of a split base plate in the dam.
  • the upper end of the dam member 3 has a lens welding layer 31 for welding the light-transmitting element 4, and the upper end of the dam member 3 is connected to the transparent element 4.
  • the surface to be contacted of the optical element 4 is coated with glue or solder (to form a soldering layer 31), so that the dam component 3 is fixedly connected to the light-transmitting element 4 through glue or solder, or, as shown in Figure 65,
  • the dam component 3 and the light-transmitting element 4 can also be integrally formed to simplify the process steps.
  • Embodiment 9a as shown in FIG.
  • both front and back surfaces of the light-transmitting element 4 can be coated with an anti-reflection film 41 for improving light transmittance.
  • the anti-reflection film 41 can be made of Made of magnesium fluoride or silica, it can effectively improve the transmittance of ultraviolet light.
  • the dam component 3 can be made of silicon or quartz, and the light-transmitting element 4 can be a glass lens, and the glass lens can be made of quartz or sapphire. Not easy to wear.
  • the glass lens may be a plane lens, or a spherical or hemispherical lens to meet different light requirements.
  • the substrate 1 provided with the dam component 3 and the light-transmitting element 4 can be tightly combined through high-temperature baking or photo-curing, which has good reliability.
  • Embodiment 10b of the present invention provides a manufacturing method (packaging method) for an LED device (packaging structure), including the following steps:
  • a dam component 3 (all dams in this embodiment) surrounding the light-emitting element 2 is provided on the first end surface 11 of the substrate 1;
  • a reflective surface 6 for reflecting part of the light emitted by the light-emitting element 2 is provided in the space surrounded by the dam component 3; specifically in this embodiment, in the space surrounded by the dam component 3 A reflection ring 7 is provided, the reflection ring 7 surrounds the light-emitting element 2, and the lower end of the reflection ring 7 is close to the substrate 1.
  • the lower end of the reflection ring 7 is smaller than the upper end of the reflection ring 7.
  • the inner wall of the reflection ring 7 facing the light-emitting element 2 is the reflection surface 6;
  • the light-transmitting element 4 (all transparent covers in this embodiment) is fixedly connected to the dam part 3, and the light-transmitting element 4 is directed towards the light-emitting element 2.
  • the light-transmitting element 4 and the dam part 3 are A packaging cavity 5 is formed surrounding the substrate 1 .
  • Embodiment 10b of the present invention provides an LED device, which has the reflection ring 7 for reflecting light, and the reflection ring 7 is located surrounded by the light-transmitting element 4, the dam component 3 and the substrate 1 In the packaging cavity 5, the inner wall of the reflection ring 7 is inclined relative to the first end surface 11, and there is an angle ⁇ between the inner wall of the reflection ring 7 and the first end surface 11, so The light emitted by the light-emitting element 2 is reflected by the inclined inner wall of the reflection ring 7.
  • the element 4 is emitted from the light-transmitting element 4, which can effectively reduce light loss and improve the light extraction rate of the LED device.
  • the reflection ring 7 is annular with upper and lower ends penetrating, and the opening shape of the upper end of the reflection ring 7 is the same as the opening shape of the lower end, but the sizes are different; the reflection ring 7 The opening of the upper end of the reflection ring 7 is larger than the opening of the lower end, and the opening of the upper end of the reflection ring 7 is coaxially arranged with the opening of the lower end of the reflection ring 7; Part is the side wall of the reflection ring 7 .
  • the thickness of the side walls of the reflection ring 7 is uniform, and there is a gap between the outer side wall of the reflection ring 7 and the inner side wall of the dam component 3 .
  • this embodiment 9b there is no need to provide an inclined reflective surface on the inner side of the dam member 3, but a reflective surface is formed on the inner wall of the reflection ring 7, thereby saving the material of the dam member 3.
  • the LED device includes the substrate 1 , the light-emitting element 2 , the dam component 3 , the reflective ring 7 , the light-transmitting element 4 and the packaging cavity 5 .
  • the reflective ring 7 is located between the light-transmitting element 4
  • the dam component 3 and the substrate 1 are enclosed to form the packaging cavity 5.
  • the inner wall of the reflection ring 7 is inclined relative to the first end surface 11, and the inner wall of the reflection ring 7 is in contact with the third end surface. There is an angle ⁇ between one end surface 11.
  • the light emitted by the light-emitting element 2 is reflected by the inner wall of the inclined reflection ring 7. Under the action of the inner wall of the reflection ring 7, the light-emitting element 2 emits transversely.
  • the packaging method of the packaging cavity 5 can directly use the substrate 1 integrally formed with the dam component 3.
  • the integrated substrate 1 with the dam avoids the problems caused by the split substrate during the bonding or welding process of the dam. There may be a risk of product failure due to poor bonding or welding, which is highly practical.
  • the reflective ring 7 can be prefabricated by a metal stamping process, which is easy to make, and then set on the dam component 3 for easy assembly and replacement; and the dam component 3 can match specific angles according to different product requirements (i.e.
  • the reflective ring 7 has a reflective surface angle ⁇ ) and has wide applicability.
  • the angle ⁇ between the reflective surface 6 and the first end surface 11 is set between 30° and 60°.
  • the Fresnel effect that is, a certain material is (different distances and angles exhibit different reflection and refraction effects).
  • the Fresnel reflection of the light-transmitting element 4 is weak.
  • the reflection of light by the light-transmitting element 4 is also weak; and when light passes through the light-transmitting element 4 non-perpendicularly, the angle ⁇ between the reflective layer 32 and the first end surface 11 is too small or too large.
  • the Fresnel reflection of the light-transmitting element 4 When it is large, the Fresnel reflection of the light-transmitting element 4 will be enhanced, that is, the reflection of light by the light-transmitting element 4 will also become stronger. Therefore, the weaker the Fresnel reflection on the light-transmitting element 4, the less light will be emitted.
  • the transmittance from the light-transmitting element 4 is higher.
  • the angle ⁇ between the reflective layer 32 and the first end surface 11 is between 30° and 60°, the transparent element 4 has a higher transmittance.
  • the light transmittance at the light element 4 is relatively high.
  • light A is a schematic diagram of the reflection path of the light emitted by the light-emitting element 2 at the light-transmitting element 4 when the angle ⁇ is 75°.
  • Light B is a schematic diagram of the reflection path of the light emitted by the light-emitting element 2 at the light-transmitting element 4 when the included angle ⁇ is 60°;
  • Light C is the light-emitting element when the included angle ⁇ is 45° 2.
  • the light D is a schematic diagram of the reflection path of the light emitted by the light-emitting element 2 at the light-transmitting element 4 when the included angle ⁇ is 30°;
  • the light E is a schematic diagram of the reflection path of the light emitted by the light-emitting element 2 at the light-transmitting element 4 when the included angle ⁇ is 15°.
  • the angle ⁇ between the reflective layer 32 and the first end surface 11 is 45°, the light C passes through the light-transmitting element 4 almost vertically. At this time, the light-transmitting element 4 4 has the smallest Fresnel reflection and the highest light transmittance. Increasing or decreasing the angle ⁇ on the basis of 45° will increase the Fresnel reflection of the light-transmitting element 4, so it is implemented here
  • the angle ⁇ between the reflective surface 6 and the first end surface 11 is preferably 45°.
  • the outer shape of the reflection ring 7 is a truncated cone, or, as shown in Figure 68e, the outer shape of the reflection ring 7 is a prism shape, and the reflection ring 7
  • the shape of the reflective ring 7 can be set according to actual usage requirements.
  • the inner wall of the reflective ring 7 is beveled to facilitate the reflection of light.
  • the reflection ring 7 can be made of mirror aluminum or mirror silver.
  • mirror aluminum When mirror aluminum contacts air, it will form dense aluminum oxide and has stable performance. Therefore, mirror aluminum is preferred here.
  • the reflection ring 7 is made of material, mirror aluminum, whose reflectivity of ultraviolet light is higher than 90%, which greatly improves the light extraction rate, and the process difficulty and cost are low.
  • the substrate 1 may be a ceramic substrate.
  • a substrate surface circuit 13 is provided on the first end face 11 of the substrate 1.
  • the second end surface 12 of the substrate 1 is provided with circuits 14 on the back side of the substrate, and conductive holes 15 are opened in the substrate 1 for connecting the circuits 13 on the substrate surface and the circuits 14 on the back side of the substrate, and the conductive holes 15 penetrate all
  • the first end face 11 and the second end face 12, the base material on the substrate surface circuit 13 and the substrate back circuit 14 can be made by a copper plating process, and the surface of the base material is plated with an immersion gold process.
  • Nickel-gold plating or nickel-palladium-gold plating enables the light-emitting element 2 to be better combined with the substrate 1.
  • the thickness of nickel in the nickel-gold plating is >3um, and the thickness of gold is >0.05um.
  • the thickness of nickel in the nickel-palladium-gold plating is >3um, the thickness of palladium is >0.05um, and the thickness of gold is >0.05um.
  • the substrate surface circuit 13 also has a dam contact position and a chip contact position for welding the light-emitting element 2. At the same time, the substrate surface circuit 13 is in addition to Partial areas other than the dam contact position and the chip contact position are coated with a metal reflective layer by vacuum sputtering or evaporation.
  • the metal reflective layer can be an aluminum or silver reflective layer.
  • the aluminum reflective layer will form a dense layer when in contact with air. Aluminum trioxide has stable performance and the reflectivity of aluminum to ultraviolet light is over 90%.
  • the first end surface 11 of the substrate 1 has a connection groove 111 for the lower end of the reflection ring 7 to engage.
  • the reflection ring 7 The lower end can be directly embedded in the connection groove 111, or glue or solder can be coated in the connection groove 111, and the lower end of the reflection ring 7 can be bonded or welded in the connection groove 111. Sturdy structure.
  • Embodiment 10b when fixing the light-emitting element 2 to the first end surface 11 of the substrate 1, the following steps are included: 1 Dot-coat flux as a eutectic medium on the chip contact position, and Place the light-emitting element 2 in a place with flux; 2 Send the substrate 1 with the light-emitting element 2 on it into a eutectic furnace for eutecticization, so that the light-emitting element 2 and the substrate 1 are firmly combined, and the temperature of the eutectic furnace is at least There is a temperature zone with a temperature between 300°C and 340°C, and nitrogen can be input during the eutectic process to protect or ensure a vacuum in the eutectic environment to prevent the LED device from being oxidized at high temperatures.
  • the light-emitting element 2 is a UV chip with a flip-chip structure
  • the electrode of the UV chip is a gold-tin alloy.
  • the gold-tin alloy has excellent physical properties such as moderate welding temperature and strong welding. , more suitable for chip and substrate eutectic.
  • the dam contact position can be Apply glue or solder to ensure a stable combination.
  • metallization treatment needs to be performed on the contact position of the dam component 3 in advance.
  • the metallization treatment may be electroplating of gold-tin alloy.
  • the dam component 3 can be made of silicon or quartz.
  • the packaging method of the reflection ring 7 can be as follows: 1 As shown in Figure 68, the lower end surface of the reflection ring 7 is directly bonded to the substrate through glue 1; 2 As shown in Figure 68a, the dam component 3 has a stepped groove inside, and the stepped groove includes a lower groove 34 surrounding the light-emitting element 2, and dimensions The upper groove 33 is larger than the lower groove 34 and is located above the lower groove 34. The edge of the upper end opening of the reflection ring 7 has a contact portion 71 extending in the horizontal direction. The front end surface of the contact portion 71 abuts against the upper groove 33. It is attached to the wall of the upper groove 33 to prevent the reflection ring 7 from shaking.
  • the contact portion 71 has an opposite upper surface 711 and a lower surface 712.
  • the lower surface 712 of the contact portion 71 is bonded with glue or solder.
  • the upper groove 33 is connected at the bottom, and the light-transmitting element 4 is covered with glue or solder and is provided on the upper surface 711 of the contact portion 71; or, as shown in Figure 68b, the contact portion 71 and the transparent element 4 are connected to each other.
  • the optical elements 4 are all located in the upper groove 33.
  • the contact portion 71 and the side walls of the light-transmitting element 4 are connected to the wall of the upper groove 33 through glue or solder, and only the upper groove 33 needs to be 33 Glue or solder is provided once to save the process; 3 As shown in Figure 68c, the lower surface 712 of the abutment portion 71 is covered with glue or solder and connected to the upper end surface of the dam component 3, and the light-transmitting The component 4 is installed on the upper surface 711 of the contact portion 71 through glue or solder cover. There is no need to provide a step groove on the top of the dam component 3, and the packaging forms are various.
  • the upper end of the dam member 3 has a lens welding layer 31 for welding the light-transmitting element 4 .
  • the contact surface of the component 4 is coated with glue or solder (to form the lens soldering layer 31 ).
  • the light-transmitting component 4 is fixedly connected to the lens soldering layer 31 through glue or solder, and the connection is stable.
  • the light-transmitting element 4 can be a glass lens.
  • the glass lens can be made of quartz or sapphire, which is not easy to wear.
  • the glass lens can be a plane lens or a spherical lens. Or hemispherical lens to meet different light needs.
  • the substrate 1 provided with the dam component 3 and the light-transmitting element 4 can be tightly combined through high-temperature baking or photo-curing, which has good reliability.
  • Embodiment 10c of the present invention provides a manufacturing method (packaging method) for an LED device (packaging structure), including the following steps:
  • a dam component 3 (all dams in this embodiment) is provided on the first end surface 11 of the substrate 1 surrounding the light-emitting element 2; in this embodiment, a cap member 8 is provided as the dam Component 3.
  • the cap member 8 is integrally formed of metal material and has a cap seat 81 and a cap side wall 82 integrally connected to the cap seat 81.
  • the cap seat 81 is attached to and connected to the cap member 8.
  • Substrate 1, the inner wall of the cap side wall 82 is the reflective surface 6;
  • the light-transmitting element 4 (all transparent covers in this embodiment) is fixedly connected to the upper end of the side wall 82 of the tube cap, and the light-transmitting element 4 is directed towards the light-emitting element 2, and the light-transmitting element 4 and the tube are
  • the cap member 8 and the substrate 1 enclose a packaging cavity 5 .
  • the cap member 8 is provided as the dam member 3, and the light-emitting element 2 is located between the light-transmitting element 4, the cap member 8 and the substrate 1
  • the cap side wall 82 is inclined relative to the first end surface 11 , and the lower end of the cap side wall 82 is smaller than the upper end of the cap side wall 82 .
  • the light emitted by the light-emitting element 2 can be reflected by the inner wall of the cap side wall 82 , in Under the action of the inner wall of the side wall 82 of the tube cap, most of the light emitted laterally by the light-emitting element 2 will be reflected to and emitted from the light-transmitting element 4, which can effectively reduce the amount of light emitted. loss and improve the light extraction rate of LED devices.
  • the upper end of the cap side wall 82 has an upper end opening
  • the lower end of the cap side wall 82 has a lower end opening
  • the shape of the upper end opening is the same as the shape of the lower end opening
  • the upper end opening and the lower end opening are coaxially arranged
  • the pipe cap seat 81 extends horizontally from the lower opening edge of the pipe cap side wall 82 toward the outer periphery, forming a flat base with an opening in the middle.
  • the pipe cap member 8 is generally shaped like a hat.
  • the light-transmitting element 4 can be fixedly connected to the upper opening of the cap side wall 82 and close the upper opening.
  • the LED device includes the substrate 1, the light-emitting element 2, the cap member 8, the light-transmitting element 4 and the packaging cavity 5.
  • the light-emitting element 2 is located between the light-transmitting element 4 and the cap member.
  • the side wall 82 of the tube cap is inclined relative to the first end surface 11, and the outer dimension of the lower end of the side wall 82 of the tube cap is smaller than that of the tube cap.
  • the outer dimensions of the upper end of the side wall 82 , the inner wall of the cap side wall 82 and the first end surface 11 have an included angle ⁇ , and the light emitted by the light-emitting element 2 can pass through the cap side wall 82 Reflected by the inner wall of the tube cap side wall 82 , most of the light emitted laterally by the light-emitting element 2 will be reflected to the light-transmitting element 4 and from the light-transmitting element 4 It can effectively reduce light loss and improve the light extraction rate of LED devices.
  • the angle ⁇ between the reflective surface 6 (the inner wall of the cap side wall 82 ) and the first end surface 11 is set to between 30° and 60°.
  • the characteristics of the Fresnel effect that is, a certain material exhibits different reflection and refraction effects at different distances and angles
  • the angle ⁇ between the reflective surface 6 (the inner wall of the cap side wall 82 ) and the first end surface 11 is set to between 30° and 60°.
  • the light-transmitting element 4 will The weaker the Fresnel reflection on the element 4 is, the higher the transmittance of light passing through the light-transmitting element 4 is.
  • the angle ⁇ between the reflective layer 32 and the first end surface 11 is When the angle ⁇ is between 30° and 60°, the light transmittance at the light-transmitting element 4 is relatively high.
  • light A is the light emitted by the light-emitting element 2 when the angle ⁇ is 75°.
  • light B is a schematic diagram of the reflection path of the light emitted by the light-emitting element 2 at the light-transmitting element 4 when the included angle ⁇ is 60°;
  • light C is a schematic diagram of the reflection path of the light-emitting element 2 when the included angle ⁇ is 60°;
  • light D is the reflection path of the light emitted by the light-emitting element 2 when the included angle ⁇ is 30°.
  • the substrate 1 may be a ceramic substrate.
  • a substrate surface circuit 13 is provided on the first end surface 11 of the substrate 1.
  • the second end surface 12 of the substrate 1 is provided with circuits 14 on the back side of the substrate, and conductive holes 15 are opened in the substrate 1 for connecting the circuits 13 on the substrate surface and the circuits 14 on the back side of the substrate, and the conductive holes 15 penetrate all
  • the first end face 11 and the second end face 12, the substrate surface lines 13 and the substrate back line 14 are made of copper plating process, and the surface of the base material is plated with nickel gold through an immersion gold process.
  • Coating or nickel-palladium-gold coating enables the light-emitting element 2 to be better combined with the substrate 1.
  • the thickness of nickel in the nickel-gold plating layer is >3um, and the thickness of gold is >0.05um.
  • the thickness of nickel in the nickel-palladium-gold plating layer is >3um.
  • the thickness of palladium is >0.05um, and the thickness of gold is >0.05um.
  • the substrate surface circuit 13 also has a cap seat contact position and a chip contact position for welding the light-emitting element 2. At the same time, the substrate surface circuit 13 is in addition to the Part of the area other than the cap base contact position and the chip contact position is coated with a metal reflective layer by vacuum sputtering or evaporation.
  • the metal reflective layer can be an aluminum or silver reflective layer.
  • the aluminum reflective layer will form a dense layer when in contact with the air. Aluminum trioxide has stable performance and the reflectivity of aluminum to ultraviolet light is over 90%.
  • Embodiment 10c when fixing the light-emitting element 2 to the first end surface 11 of the substrate 1, the following steps are included: 1 Dot-coat solder as a eutectic medium on the chip contact position to emit light. Component 2 is placed in a place with solder; 2 Send the substrate 1 on which the light-emitting component 2 is placed into a eutectic furnace for eutecticization, so that the light-emitting component 2 and the substrate 1 are firmly combined, and the temperature of the eutectic furnace is at least one The temperature of the temperature zone is between 300°C and 340°C, and nitrogen can be input for protection during the eutectic process, or the vacuum of the eutectic environment can be ensured to prevent the LED device from being oxidized at high temperatures.
  • the light-emitting element 2 is a UV chip with a flip-chip structure.
  • the electrode of the UV chip is a gold-tin alloy. It has excellent physical properties such as moderate welding temperature and strong welding, which is more suitable for chips and substrates. Eutectic.
  • Embodiment 10c when the cap member 8 surrounding the light-emitting element 2 is disposed on the first end surface 11 of the substrate 1, glue or solder can be applied to the contact position of the cap base. , ensuring a solid combination.
  • the outer shape of the side wall 82 of the pipe cap is a pyramid shape, or, as shown in Figure 69b, the outer shape of the side wall 82 of the pipe cap is a truncated cone shape, Only the shape of the side wall 82 of the pipe cap can be made according to actual use requirements, which is flexible and practical. As shown in Figure 69, the outer dimension of the lower end of the side wall 82 of the pipe cap is smaller than the outer dimension of the upper end of the side wall 82 of the pipe cap.
  • the angle ⁇ between the cap side wall 82 and the first end surface 11 is set to be greater than zero and less than 90°, and the inner wall of the cap side wall 82 is plated with aluminum, which reflects ultraviolet rays. The rate is above 90%, and the light emitted by the light-emitting element 2 can be effectively reflected.
  • the outer dimension W2 of the pipe cap holder 81 is larger than the outer dimension W1 of the upper end of the pipe cap side wall 82 , and the pipe cap holder 81
  • the difference between the outer dimension W2 and the outer dimension W1 of the upper end of the pipe cap side wall 82 is ⁇ 0.2mm, that is, the range of the pipe cap seat 81 extending outward from the lower end opening edge of the pipe cap side wall 82 exceeds the pipe cap side wall 82
  • the projection range of the upper end of the pipe cap holder 81 such a design makes the pipe cap holder 81 have a larger area to facilitate welding (that is, to facilitate connection with the substrate 1), and because the outer contour area of the pipe cap holder 81 is larger than
  • the outer contour area of the upper end of the tube cap side wall 82 makes the bottom force-bearing area of the tube cap member 8 large, which can enhance the support of the tube cap member 8 to the light-transmit
  • the cap member 8 needs to be rigid and not easily deformed. Therefore, Kovar alloy is preferably used as the material of the cap member 8.
  • the cap member 8 is processed by stamping. Molding, the outer shape can be processed into a circle, a square or a diamond shape, etc. The outer shape of the cap member 8 can be set according to the specific situation.
  • the inner side wall of the cap side wall 82 is in a bevel shape to facilitate reflection of light.
  • the upper end of the side wall 82 of the tube cap has a welding point 821 for welding the light-transmitting element 4, and the light-transmitting element 4 and the tube cap
  • the side walls 82 can be sintered together with glass solder, or metal can be electroplated at the welding point 821 or the welding point of the light-transmitting element 4, and all the sidewalls 82 can be welded together by laser welding, eutectic welding or reflow soldering.
  • the light-transmitting element 4 and the side wall 82 of the tube cap are welded together.
  • the metal used for electroplating is preferably gold-tin alloy.
  • the LED device proposed by the present invention usually needs to go through a patch process during the production process of the LED module. Mounted on the PCB board, and then soldered through reflow soldering equipment, and the temperature of the reflow soldering equipment reaches 265°C, in order to avoid secondary remelting at the soldering point 821 between the light-transmitting component 4 and the side wall 82 of the tube cap.
  • the gold component content in the gold-tin alloy is set to 80%, and the tin component content is set to 20%. Under this ratio, the melting temperature of the gold-tin alloy is greater than 280°C, and there will be no secondary remelting phenomenon during reflow soldering. .
  • the light-transmitting element 4 and the tube cap side wall 82 can be locally heated and welded by laser welding or other welding methods, which can realize fully inorganic packaging of the LED device and prevent the entire product from being expanded and cooled by the air in the cavity during the heated welding. It can reduce the impact of shrinkage and prevent bubbles, holes, cracks and other undesirable phenomena in welding joints, thereby avoiding affecting product reliability.
  • the light-transmitting element 4 can be a glass lens, and the glass lens can be made of quartz or sapphire, which is not easy to wear.
  • the glass lens can be a plane lens, or a spherical or hemispherical lens to meet different light requirements.
  • the present invention provides a manufacturing method (packaging method) of an LED device (packaging structure) and an LED device (packaging structure), in which a light-emitting element 2 is provided around the light-emitting element 2 for reflecting part of the light emitted by the light-emitting element 2 .
  • Reflective surface 6, and the angle ⁇ between the reflective surface 6 and the first end surface 11 is set to be greater than zero and less than 90°. At this angle, most of the light emitted laterally by the light-emitting element 2 will be Reflected to the front and emitted from the light-transmitting element 4 (transparent cover), it avoids the phenomenon of light reflection loss back and forth between the dams in the vertical dam structure.
  • the light extraction efficiency is relatively higher, and is directly reflected in the Surface 6 is coated with aluminum, which not only achieves a UV reflectivity higher than 90%, but also effectively improves the light extraction rate of the UV-LED device and reduces light loss.
  • the order of the method steps in the embodiments provided by the present invention is not necessary. If there is no conflict, the order of the steps in this embodiment can be adjusted according to the actual situation. For example, it can precede the first step of the substrate 1.
  • the end face 11 is provided with a dam member 3 surrounding the light-emitting element 2; and the light-emitting element 2 is then fixed to the first end face 11 of the substrate 1.
  • Those skilled in the art do not need to make creative efforts to simply adjust the sequence of steps in the LED device manufacturing method provided by the present invention, and any simple adjustment of the sequence of steps should be deemed to be included in the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

一种封装结构、LED装置及封装方法,封装结构包括基板(1)、透明盖(2)和连接于基板(1)的围坝(3),围坝(3)与透明盖(2)、基板(1)合围形成安装区(7);围坝(3)包括外挡墙(32)和内挡墙(31),外挡墙(32)和内挡墙(31)之间具有凹槽(33);封装结构还包括设置于凹槽(33)的密封件(5),透明盖(2)罩盖于内挡墙(31)和安装区(7),且透明盖(2)插接于凹槽(33)内;封装结构还包括设置于透明盖(2)边缘处的防护件(4),防护件(4)具有用于封堵透明盖(2)与外挡墙(32)之间间隙的封堵部(41)、连接于封堵部(41)且可与透明盖(2)上端相抵的抵压部(43)。在内挡墙(31)、外挡墙(32)以及封堵部(41)的遮蔽下,密封件(5)可以避免UV照射,封装结构兼具半无机封装和全无机封装的优越性,克服两者的局限性,气密性、稳定性更佳。

Description

一种封装结构、LED 装置及封装方法 技术领域
本发明属于半导体封装技术领域,尤其涉及一种封装结构、LED装置及封装方法。
背景技术
半导体封装技术对于半导体器件的性能至关重要。但在现有技术中,存在以下问题:
在UV-LED封装中,气密性不佳,使用胶量难以计算,容易导致UV-LED器件失效,也存在光损失率高,焊接不牢固的问题,其次,在UV-LED使用中,由于紫外线肉眼不可见,人们难以分辨UV-LED是否工作;
LED产品在工作中,散热容易存在问题,通常采用增加散热器件,而使用散热器件需用绝缘层来防止短路,但绝缘层容易脱落,从而造成短路,且基板的串并联线路已经固定,适用性较差;
3D TOF(3 Dimensions Time of flight,三维飞行时间法)装置是新一代将距离检测与3D成像技术结合的发光元件装置,在目前的发光元件装置的封装结构中主要包括基板、封装体、透光件与发光元件,其中透光件包括透光层与匀光层,匀光层包括匀光结构从而将激光折射成大角度的光束以保护人眼,因此会在其内部的收容腔内设置光电探测器,但匀光层容易脱落,光电探测器能检测到匀光层是否脱落,却无法准确检测到匀光层的部分区域是否损坏,从而导致光电探测器并不能可靠地保证人眼的安全。
发明内容
本发明的目的在于至少克服上述现有技术的不足之一,提供了一种封装结构、LED装置及封装方法,其气密性、稳定性更佳,保证封装结构可靠性的同时,提高半导体器件的密封效果,并且可以提升半导体器件的出光率。
本发明的技术方案是:一种封装结构,包括基板、发光元件、透明盖和连接于基板的围坝,所述发光元件为LED芯片或激光芯片;所述基板具有相对的正面和背面,所述发光元件固定于所述基板的正面;所述透明盖连接于所述围坝。 
优选地,所述围坝与透明盖、所述基板合围形成安装区;所述围坝包括外挡墙和内挡墙,所述外挡墙和所述内挡墙之间具有凹槽,所述封装结构还包括设置于所述凹槽的密封件,所述透明盖罩盖于所述内挡墙和所述安装区,且所述透明盖插接于所述凹槽内,并与所述密封件相接;所述封装结构还包括设置于所述透明盖边缘处的防护件,所述防护件具有用于封堵所述透明盖与所述外挡墙之间间隙的封堵部、连接于所述封堵部且可与所述透明盖上端相抵的抵压部。  
优选地,所述透明盖的底部设置有焊接层,所述基板的正面设置有第一线路层,所述第一线路层包括用于与所述焊接层相接的第一线路图形,所述第一线路层还包括用于与所述LED芯片焊接的焊盘,所述透明盖与所述基板之间形成有密封的封装腔,所述LED芯片设置于所述封装腔内且焊接于所述焊盘,所述焊接层与所述第一线路图形焊接。
优选地,所述围坝具有一内侧壁,位于所述LED芯片上方的至少一部分设置有贯通所述围坝顶部的安装槽,所述安装槽具有槽底面、槽侧壁;所述封装结构还包括定位块,所述定位块设置于所述安装槽内;所述透明盖底面于所述安装槽的槽底面抵接,所述透明盖的侧表面与多个所述定位块抵接,所述透明盖的侧表面与所述安装槽的槽底面、槽侧壁形成封胶槽;所述封装结构还包括密封胶,所述密封胶设于所述封胶槽内且不覆盖所述透明盖。
优选地,所述基板的正面设有第一线路层;所述发光元件设置于所述基板的正面,且所述发光元件与所述第一线路层连接;所述围坝设置于所述基板的正面,包括相隔设置于所述基板的正面的第一部分和第二部分,所述第一部分和第二部分分别配置为与电信号检测模块连接的正极导体与负极导体,且所述正极导体与负极导体设于所述发光元件与第一线路层的外围;所述透明盖包括层叠设置的透光导电层、匀光层与透光层,所述透光导电层连接于所述正极导体与负极导体。
所述封装结构还包括荧光物质,所述荧光物质设于所述支架结构或/和所述透明盖,所述荧光物质用于在所述LED芯片发射出的光照射时发生荧光反应而产生可见光。
优选地,所述基板为多层基板,所述多层基板包括:
第一基板,具有相对的正面与背面,所述第一基板的正面设有第一线路层,所述第一基板的背面设有第二线路层,所述第一线路层与所述第二线路层导通,所述第一线路层包括第一线路正极与第一线路负极;
封装体,所述封装体呈环形并设置于所述第一基板的正面,所述封装体围于所述第一线路正极与第一线路负极的外围;
第二基板,所述第二基板通过焊接工艺与所述第一基板的背面的第二线路层连接,所述第二基板的背面设有散热层。
优选地,所述基板的正面设有第一线路层,所述第一线路层包括多组正极焊盘与负极焊盘组,所述基板的背面设有第二线路层,所述第二线路层包括多组与所述正极焊盘与负极焊盘组一一对应的正极端子与负极端子组,一组所述正极端子与负极端子对称设置于所述基板背面相对的两侧;各所述正极端子呈线性间隔排列且等距设置于基板背面的同一侧,各所述负极端子呈线性间隔排列且等距设置于基板背面的另一侧且与各所述正极端子一一相对,且一所述正极焊盘通过贯通于所述基板的正极导电孔与一所述正极端子导通,且一所述负极焊盘通过贯通于所述基板的负极导电孔与一所述负极端子导通;
所述LED芯片设置有多颗,各所述LED芯片分别与一组所述正极焊盘和负极焊盘电连接连接。
优选地,本发明还包括光窗组件,所述光窗组件包括:透明盖与金属管帽,所述金属管帽焊接于所述透明盖外围,所述透明盖与金属管帽固定于所述安装槽内,且所述透明盖与金属管帽的底部均与所述安装槽的槽底面抵接,所述透明盖、金属管帽、基板的正面及围坝围合形成用于收容所述LED芯片的收容腔,并且所述透明盖与金属管帽的表面与所述安装槽的壁面围合形成封胶槽;所述封装结构还包括密封胶,所述密封胶设于所述封胶槽内。
优选地,所述围坝的内侧壁镀设有用于反射所述发光元件发出光的反射层,所述内侧壁由所述第一端面向远离所述发光元件的方向倾斜,并与所述第一端面形成大于零且小于90°的夹角。
本发明所提供的封装结构,封装胶量固定,一致性好,气密性佳、光损失率底、焊接牢固、可辨别不可见光、使用安全。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种LED封装结构的结构示意图;
图1-a是本发明实施例提供的一种LED封装结构的另一结构示意图;
图1-b是本发明实施例提供的一种LED封装结构的另一结构示意图;
图1-c是本发明实施例提供的一种LED封装结构的另一结构示意图;
图1-d是本发明实施例提供的一种LED封装结构的另一结构示意图;
图1-e是本发明实施例提供的一种LED封装结构的另一结构示意图;
图2是本发明实施例提供的一种LED封装结构中围坝的示意图;
图3是本发明实施例提供的一种LED封装结构的另一结构示意图;
图4是本发明实施例提供的一种用于LED封装结构的封装方法的流程图;
图5是现有技术中提供的一种有机封装结构的剖面示意图;
图6是现有技术中提供的一种半无机封装结构的剖面示意图;
图7是现有技术中提供的一种全无机封装结构的剖面示意图;
图8是本发明实施例提供的一种全无机封装结构的剖面示意图;
图9是本发明实施例提供的一种全无机封装结构的剖面示意图;
图10是本发明实施例提供的LED封装结构的剖视图;
图11是本发明实施例提供的LED封装结构的俯视图;
图12是本发明实施例提供的LED封装结构的剖视图; 
图13是本发明实施例提供的LED封装结构的俯视图;
图14是本发明实施例提供的LED封装方法的流程图;
图15是本发明实施例提供的LED封装方法中制备基板的步骤的流程图;
图16是本发明实施例提供的LED封装方法中将LED芯片设置于所述基板的正面的步骤的流程图;
图17是本发明实施例提供的LED封装方法中将密封胶设于所述封胶槽内的步骤的流程图;
图18是本发明实施例提供的LED封装方法的流程图;
图19是本发明实施例提供的发光元件的封装结构的剖视图;
图20是本发明实施例提供的发光元件的封装结构中不包括透光件与导电粘结胶的俯视图;
图21是本发明实施例提供的发光元件的封装结构的仰视图;
图22是本发明实施例提供的LED器件的剖视图;
图23是本发明实施例提供的LED器件的俯视图;
图24是本发明实施例提供的LED器件中不包括透光件的一示意图; 
图25是本发明实施例提供的LED器件中不包括透光件的另一示意图;
图26是本发明实施例提供的LED器件的剖视图;
图27是本发明实施例提供的LED器件的俯视图;
图28是本发明实施例提供的LED器件的剖视图;
图29是本发明实施例提供的LED器件的俯视图;
图30是本发明实施例提供的LED封装方法第一实施例的流程图;
图31是本发明实施例提供的LED封装方法中于所述支架或/和所述透光件设置荧光物质的步骤的流程图;
图32是本发明实施例提供的LED封装方法中于所述支架或/和所述透光件设置荧光物质的步骤的流程图;
图33是本发明图34一实施例提供的LED装置的A-A剖面图;
图33a是本发明实施例提供的LED装置的线路层的剖面示意图;
图34是本发明一实施例提供的LED装置的俯视图;
图35是本发明另一实施例提供的LED装置剖面图; 
图36是本发明一实施例提供的LED装置中第一基板与第三焊接部的仰视图;
图37是本发明一实施例提供的LED装置中第二基板、第一焊接部、第二焊接部与第四焊接部的剖视图;
图38是本发明一实施例提供的LED装置中第二基板的仰视图;
图39是本发明一实施例提供的多层基板的制造方法第一实施例的流程图;
图40是本发明一实施例提供的LED装置的剖面示意图,同时也是图41的A-A剖面图;
图41是本发明一实施例提供的LED装置的俯视结构示意图;
图42是本发明一实施例提供的LED装置的背面结构示意图;
图43是图42中B-B处的剖面示意图; 
图44是图42中C-C处的剖面示意图;
图45是本发明一实施例提供的LED装置的基板正面的正极焊盘与负极焊盘再基板背面的投影与基板背面的正极端子和负极端子的位置关系示意图;
图45a是本发明一实施例提供的LED装置的 基板正面的正极焊盘与负极焊盘组成的呈矩形的电路图案的形状示意图;
图46是本发明一实施例提供的LED装置的第一线路层或第二线路层的结构示意图;
图47是本发明一实施例提供的LED装置的4颗LED芯片电路连接关系相互独立示意图;
图47a是本发明一实施例提供的LED装置的4颗LED芯片并联的示意图;
图47b是本发明一实施例提供的LED装置与外围电路匹配实现4颗LED芯片并联的示意图;
图48是本发明一实施例提供的LED装置的4颗LED芯片串联的示意图;
图48a是本发明一实施例提供的LED装置与外围电路匹配实现4颗LED芯片串联的示意图;
图49是本发明一实施例提供的LED装置的4颗LED芯片的一种串并联连接的示意图;
图49a是本发明一实施例提供的LED装置与外围电路匹配实现图10所示的4颗LED芯片串并联的示意图;
图50是本发明实施例提供的LED装置的4颗LED芯片的另一种串并联连接的示意图;
图50a是本发明实施例提供的LED装置与外围电路匹配实现图50所示的4颗LED芯片串并联的示意图;
图51是本发明实施例提供的LED装置的俯视结构示意图;
图51a是图51提供的LED装置的正极焊盘和负极焊盘的形状示意图;
图52是图51提供的LED装置的背面结构示意图;
图53是是本发明另一实施例提供的LED装置的俯视结构示意图;
图54是图53提供的LED装置的背面结构示意图;
图55是本发明实施例提供的LED器件的剖视图;
图56是本发明实施例提供的LED器件中玻璃焊料连接于金属管帽的俯视图;
图57是本发明实施例提供的LED器件中玻璃焊料连接于金属管帽的俯视图;
图58是本发明实施例提供的LED器件中玻璃焊料连接于金属管帽的俯视图;
图59是本发明实施例提供的LED器件中透光件通过玻璃焊料连接于金属管帽的剖视图;
图60是是本发明实施例提供的LED器件中透光件通过玻璃焊料连接于金属管帽的剖视图;
图61是本发明实施例9提供的一种LED器件的剖视图,同时也是实施例10中一种LED器件的制作方法中LED器件的剖视图;
图62是本发明实施例9提供的一种LED器件中基板和围坝部件(外形呈圆形)的俯视图,同时也是实施例10中基板和围坝部件(外形呈圆形)的俯视图;
图63是本发明实施例9提供的一种LED器件中基板和围坝部件(外形呈方形)的俯视图,同时也是实施例10中基板和围坝部件(外形呈方形)的俯视图;
图64是本发明实施例9提供的一种LED器件中围坝部件与基板一体成型的剖面示意图,同时也是实施例10中围坝部件与基板一体成型的剖面示意图;
图65是本发明实施例9提供的一种LED器件中围坝部件与透光元件一体成型的剖面示意图,同时也是实施例10中围坝部件与透光元件一体成型的剖面示意图;
图66是本发明实施例9提供的一种LED器件的制作方法及LED器件中的发光元件所发出光经由不同夹角α反射光线示意图,同时也是实施例10中一种LED器件的制作方法及LED器件中的发光元件所发出光经由不同夹角α反射的光线示意图;
图67是本发明实施例9提供的一种LED器件的制作方法及LED器件中发光元件所发出光经由不同夹角α的围坝部件反射的光线示意图,同时也是实施例10中提供的一种LED器件的制作方法及LED器件中的发光元件所发出光经由不同夹角α反射的光线示意图;
图68是本发明实施例提供的一种LED器件的制作方法及LED器件中一种LED器件的剖视图;
图68a是实施例中反射环的封装方式②的剖视图;
图68b是实施例中反射环的封装方式②的剖视图;
图68c是实施例中反射环的封装方式③的剖视图;
图68d是实施例中反射环(外形呈圆形)的俯视图;
图68e是实施例中反射环(外形呈方形)的俯视图;
图69是本发明实施例提供的一种LED器件的制作方法及LED器件中实施例中的一种LED器件的剖视图;
图69a是实施例中管帽构件外形呈圆形的LED器件的俯视图;
图69b是实施例中管帽构件外形呈方形的LED器件的俯视图;
图69c是实施例中使用半球面透镜的LED器件的剖视图。
图70是本发明实施例提供的一种LED器件的制作方法及LED器件中的发光元件所发出光经由不同夹角α反射的光线示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,术语“设置”、“连接”应做广义理解,例如,可以是直接设置、连接,也可以通过居中元部件、居中结构间接设置、连接。
另外,本发明实施例中若有“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系的用语,其为基于附图所示的方位或位置关系或常规放置状态或使用状态,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的结构、特征、装置或元件必须具有特定的方位或位置关系、也不是必须以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在具体实施方式中所描述的各个具体技术特征和各实施例,在不矛盾的情况下,可以通过任何合适的方式进行组合,例如通过不同的具体技术特征/实施例的组合可以形成不同的实施方式,为了避免不必要的重复,本发明中各个具体技术特征/实施例的各种可能的组合方式不再另行说明。
实施例1:
如图1和图3所示,本发明实施例提供的一种LED封装结构,包括基板1、透明盖2和围坝3(如图2所示),所述围坝3连接于所述基板1,具体地,所述围坝3为铜围坝,所述基板1为陶瓷基板,所述基板1连接有LED芯片6(本实施例中为UV-LED芯片),且所述围坝3与所述透明盖2、所述基板1合围形成安装区7;所述透明盖2为玻璃透镜,可以采用石英玻璃或蓝宝石玻璃制成;所述围坝3包括外挡墙32和内挡墙31,外挡墙32和内挡墙31均为围墙,可以为方形围墙或圆形围墙,所述外挡墙32和所述内挡墙31之间具有凹槽33;所述LED封装结构还包括设置于所述凹槽33的密封件5,所述透明盖2罩盖于所述内挡墙31和所述安装区7,且所述透明盖2插接于所述凹槽33内,并与所述密封件5相接;所述LED封装结构还包括防护件4,所述防护件4设置于所述透明盖2的边缘处;所述防护件4具有封堵部41和抵压部43,所述封堵部41封堵于所述透明盖2与所述外挡墙32之间,所述抵压部43可与所述透明盖2上端相抵,所述抵压部43连接于所述封堵部41;具体应用中,所述防护件4为金属防护件,均为金属材质,本实施例中,可以将防护件4与基板1焊接(本实施例采用激光焊接),采用焊接的连接方式非常牢固,可以有效避免玻璃透镜脱落,并且由于设置于玻璃透镜的金属防护件并不直接与基板1焊接,而是与铜围坝的外挡墙32焊接,所述封堵部41封堵于所述透明盖2与所述外挡墙32之间,可以避免密封件5被UV照射,玻璃透镜与陶瓷基板之间紧密结合,增强气密性,如果焊接没有裂纹,那气密性更佳,如果有裂纹,也能通过设置于凹槽33内的密封件5保证其气密性,气密性得以双重保障,具有无机封装工艺的优越性,同时克服了其局限性;并且,玻璃透镜即使在焊接中或者后续使用过程中出现裂纹,也能满足使用要求;密封件5的设置对于陶瓷基板与玻璃透镜之间接触间隙的填充效果佳,以使所述LED封装结构气密性佳,并且由于所述密封件5在内挡墙31、外挡墙32的遮蔽下,以及封堵部41和抵压部43的的封堵下,可以避免UV照射,因而可以有效防止玻璃透镜脱落,取其优越性的同时克服了半无机封装工艺的局限性。本发明实施例所提供的一种LED封装结构,使得所述透明盖2(本实施例中为玻璃透镜)和所述基板1(本实施例中为陶瓷基板)之间紧密结合,气密性佳,实现了半无机封装与全无机封装结合的封装工艺,解决了半无机封装中UV光长时间照射下使得胶水失效导致透明盖2脱落的问题,并且兼具半无机封装和全无机封装的优越性,克服两者的局限性,保证UV-LED产品的气密性,有利于提高UV-LED器件的使用寿命,稳定性更佳,实际应用价值高。
具体应用中,所述基板1为陶瓷基板,所述陶瓷基板包括陶瓷层、内部线路11、内部导电孔12和底部线路13,铜围坝设置于陶瓷层的一侧,内部线路位于内挡墙31的内侧;其中,内部线路与底部线路是通过在陶瓷层设置内部导电孔12实现线路连接,底部线路、内部线路以及铜围坝是在陶瓷层上通过DPC工艺(DirectPlatingcopper,直接镀铜技术)实现与陶瓷层的结合,UV-LED芯片位于内挡墙31的内侧并连接于内部线路11。在别的实施例中,陶瓷基板还包括位于底部的散热部14 。
在本实施例的一些示例中,所述防护件4设置有多个,多个所述防护件4部分覆盖于所述透明盖2上表面,位于所述透明盖2上表面相对的两个所述抵压部43的端面之间的间距不大于所述内挡墙31相对的两个面向凹槽33的侧壁之间的间距,即位于玻璃透镜上表面的金属镶嵌块的上表面镂空宽度不大于内挡墙31的两个面向凹槽33的侧壁(即内挡墙31的两个内侧壁)之间的间距。本实施例的另一些示例中,所述防护件4可以设置四个,分别设置于所述透明盖2的四个直角或设与所述透明盖2的四个侧边的中间位置处,并部分覆盖于所述透明盖2的上表面。在别的实施例中,防护件4也可以仅设置两个,且在透明盖2的侧边相对对称设置,在其他实施例中,防护件4的个数也可以为其他数值,例如三个、六个等。密封件5隐藏在基板1与防护件4(镶嵌金属块)的透明盖2(玻璃透镜)之间,从UV芯片上发出的光侧面部分被围坝3(铜围坝)的内挡墙31挡住,且因为位于玻璃透镜上表面的金属镶嵌块的上表面镂空宽度不大于内挡墙31的两面向凹槽33的侧壁之间的间距,外界的UV光反射回来时被玻璃透镜镶嵌金属块与铜围坝外挡墙挡住,可保证密封件不受UV光照影响,可靠性更佳,保证UV-LED产品气密性。
本实施例中,如图1和3所示,所述密封件5具有内密封部51、外密封部52和横向密封部53,所述透明盖2包括面盖部21和纵向部22,所述纵向部22连接于所述面盖部21的外周侧,所述内密封部51分别与所述内挡墙31、所述透明盖2的内侧相贴,所述外密封部52分别与所述外挡墙32、所述透明盖2的所述纵向部22的外侧相贴,所述横向密封部53分别与所述凹槽33的槽底、所述透明盖2的底部相贴,所述横向密封部53的一端连接于所述外密封部52,所述横向密封部53的另一端连接于所述内密封部51,所述密封件可以具有安装槽,所述内密封部51与所述外密封部52、横向密封部53围合形成用于安装所述透明盖2的安装槽,即所述安装槽的两侧分别为所述内密封部51和外密封部52,所述安装槽的底部为所述横向密封部53。所述纵向部22与所述安装槽的内壁可以紧密相接,排除空隙,气密性佳。在本实施例的一些示例中,如图1-a所示,内密封部51与内挡墙31的上端不平齐,外密封部52与外挡墙32的上端不平齐,即在内密封部51、外密封部52的上端留有一定的间隙,根据材料的特性设定和预留间隙,给予密封件5足够的热膨胀空间,另一些示例中,如图1-b所示,所述密封件5的宽度与所述透明盖2的所述纵向部22的宽度一致,即密封件5只有横向密封部53一个部分,使得封装结构紧凑,稳定性强,在其他示例中,如图1-c、图1-d所示,透明盖3的纵向部22至少有一侧与围坝3的挡墙相贴,在安装透明盖2时,纵向部22与挡墙相贴的点可作为定位点,方便安装,相应的如图1-c所示的密封件仅有外密封部52和横向密封部53;相应的,如图1-d所示密封件仅有内密封部51和横向密封部53。
具体应用中,密封件5可以通过模具预制成型后,安装于凹槽33内,然后透明盖2插接于所述凹槽33内时,会与所述密封件5相抵,在其他示例中,密封件5也可以直接在凹槽33的槽底涂抹一定量的且具有流动性的胶水,即液态胶水,然后将透明盖2插接于所述凹槽33后,经过烘烤固化成型,使用此方法形成密封件5时,内挡墙31和外挡墙32能有效的避免胶水外溢至基板1杯体内或基板1外,避免溢出的胶水影响产品的参数及气密性。具体的,密封件5可采用硅胶、环氧树脂或其他封装胶制成。传统的封装工艺中,铜围坝表面胶水及溢入基板1杯内胶水后长时间受UV光照射会黄变失效,影响产品参数及气密性,只能选用非流动性的材料填充间隙;而本发明实施例所提供的LED封装结构,采用流动性或者非流动性(即使用模具预制成型)的物质均可实现间隙填充,克服了传统封装工艺中对于填充材料选择的局限性,适用性更佳,可以降低封装成本。
在本实施例的一些示例中,所述防护件4还包括固定部42,所述固定部42连接于所述封堵部41,所述固定部42固定连接于所述外挡墙32,本实施例中所述固定部42一体连接于所述封堵部41,所述封堵部41的内侧与所述纵向部22相贴,抵压部43的内壁与所述面盖部21的上端相贴,即所述防护件4的两个内侧面均可以与透明盖2相贴,防护效果更佳。在另一些示例中,所述固定部42与所述外挡墙32有部分位置重合,所述固定部42与所述外挡墙32的上端面有部分位置重合,以使防护件4在竖直方向有承托物,方便焊接,且焊接牢固,在另一些示例中,如图1-e所示,所述固定部42与所述外挡墙32面向凹槽33的侧面有部分位置重合,所述固定部42的端面与所述密封件5相抵,即所述密封件5承托着所述防护件4,使得焊接方便,同时,因密封件5压缩可有微量变形,安装防护件4时可充分压缩密封件5,尽可能的减小安装间隙,增强封装结构的气密性。在别的实施例中,固定部42的端面与所述密封件5之间也可以存在间隙,使得抵压部43可充分与所述透明盖2的上表面相抵,防止透明盖2松动。
本发明实施例中所述内挡墙31的高度与所述外挡墙32的高度不相等,位于所述内挡墙31与所述外挡墙32之间的凹槽33,具体以下面两个实施例1a和实施例1b详细描述。
实施例1a:
所述内挡墙31的高度为第一高度,所述外挡墙32的高度为第二高度,所述第一高度大于所述第二高度,即所述内挡墙31高于所述外挡墙32,如图1和图2所示,所述内挡墙31与所述外挡墙32之间的凹槽33,所述内挡墙31、凹槽33槽底、所述外挡墙的组合横截面呈“乚”形,或者装入密封件5,密封件5的横截面可以呈“乚”形;所述固定部42连接于所述封堵部41的一端,所述抵压部43连接于所述封堵部41的另一端,所述防护件4的横截面呈Z形,并且所述固定部42均可以与所述外挡墙32的上端、所述外密封部52的上端相贴,本实施例中,所述外挡墙32的上端、所述外密封部52的上端平齐,通过金属防护件封于外挡墙32以及外密封部52的顶部,气密性佳。
实施例1b:
所述内挡墙31的高度为第一高度,所述外挡墙32的高度为第二高度,作为上述实施例的替代方案,本实施例中所述第一高度小于所述第二高度,如图3所示,即所述内挡墙31低于所述外挡墙32,所述内挡墙31与所述外挡墙32之间形成所述凹槽33;所述封堵部41的外侧与所述外挡墙32相贴,所述封堵部41与所述外密封部52相接,所述封堵部41的高度与外密封部52的高度之和等于外挡墙32的高度,所述固定部42的底壁可以与所述外挡墙32的上端相贴,所述固定部42分别与所述封堵部41、所述抵压部43相接,所述防护件4的截面呈T形,气密性优。
本发明实施例1还提供了一种用于LED封装结构的封装方法,所述封装方法用于封装上述LED封装结构,请参见图4所示,包括以下步骤:
S401:制备具有围坝3的基板1,使得所述围坝3设置有外挡墙32和内挡墙31,并且外挡墙32和内挡墙31之间具有凹槽33。
具体地,所述基板1为陶瓷基板,所述围坝3为铜围坝,采用DPC(直接镀铜技术-DirectPlatingcopper)工艺在陶瓷基板上形成内部线路11、外部线路、内部导通孔12以及围坝3,具体的工艺路线为激光转孔、真空镀、压模、线路曝光、线路显影、电镀填孔、研磨、喷砂、压模、铜围坝制作曝光、铜围坝显影、电镀铜围坝、研磨、退膜、退铜退钛、电测、表面处理等工艺。在别的实施例中还可以在基板的底部形成用于散热的散热部14。
可以理解的是,通过以上步骤制作得到的所述围坝3成型有外挡墙32和内挡墙31,使得外挡墙32和所述内挡墙31之间形成凹槽33,基于前述介绍可知,把所述内挡墙31的高度定义为第一高度,所述外挡墙32的高度定义为第二高度,在本实施例的一些示例中,所述第一高度大于所述第二高度,在另一些示例中,所述第一高度小于所述第二高度。
具体地,所述封装方法还包括芯片固晶步骤,在基板1(陶瓷基板)内部线路上点助焊剂,将LED芯片6焊接于有助焊剂的区域;其中LED芯片6的焊盘为金锡合金;助焊剂的作用为充当共晶媒介,使共晶时LED芯片6与基板1紧密结合,陶瓷基板线路需镀镍金,厚度要求为镍>3um,金>0.05um;所述封装方法还包括芯片共晶步骤,将固好LED芯片6的基板1(陶瓷基板)通过共晶炉,使LED芯片6与陶瓷基板结合牢固,其中共晶炉温度至少有一个温区温度在300℃-340℃之间且共晶过程需要氮气保护。
S402:将密封件5设置于所述凹槽33内;
具体地,可通过模具预制成型所述密封件5,然后将所述密封件5安装于所述凹槽33内。在一些示例中,也可以直接在所述凹槽33的槽底涂抹一定量的有流动性的热固性胶水,经过烘烤固化形成所述密封件5。所述有流动性的胶水,即液态胶水,采用此种方面制作所述密封件5,后续需烘烤固化,在内挡墙31和外挡墙32的作用下,能有效的避免胶水外溢至基板1杯体内或基板1外,避免溢出的胶水影响产品的参数及气密性。采用流动性或者非流动性(即使用模具预制成型)的物质均可填充透明盖2和围坝3之间的间隙,克服了传统封装工艺中对于填充材料选择的局限性,适用性更佳,可以降低封装成本。
S403:将透明盖2罩盖于所述内挡墙31和所述安装区7,并插接于所述凹槽33且与所述密封件5相抵;
基于前述介绍可知,在一种实施例中,所述透明盖2包括面盖部21、连接于所述面盖部21外周侧的纵向部22,通过以上步骤,使得密封件5填充透明盖2和围坝3之间的间隙,提高封装结构的气密性。
S404:将防护件4设置于所述透明盖2的边缘处,并且使所述防护件4的封堵部41封堵于所述透明盖2与所述外挡墙32之间,将抵压部43与所述透明盖2上端相抵,将所述防护件4固定连接于所述外挡墙32。
具体地,在一种实施例中,可将所述防护件4的所述抵压部43覆盖于所述透明盖2上表面,使位于所述透明盖2上表面相对的两个所述抵压部43的端面之间的间距不大于所述内挡墙31相对的两个面向所述凹槽33的侧壁之间的间距。经过上述步骤,使得在密封件5在内挡墙31、外挡墙32的遮蔽下,以及封堵部41和抵压部43的封堵下,避免其被UV照射,使得封装结构可靠性更佳,保证UV-LED产品的气密性。
基于前述介绍可知,在一些示例中,还可以将防护件4设置有固定部42,将固定部42固定连接于外挡墙32,透明盖2(玻璃透镜)与陶瓷基板之间紧密结合,本实施例中所述防护件4为金属防护件,所述固定部42一体连接于所述封堵部41,均为金属材质,本实施例中,可以将固定部42与基板1激光焊接,采用焊接的连接方式非常牢固,可以有效避免玻璃透镜脱落。一些示例中,可将防护件4的所述固定部42设置于外挡墙32的上端面,使固定部42与外挡墙32的上端面有部分位置重合,以使防护件4在竖直方向有承托物,方便焊接,且焊接牢固。
另一些示例中,可将防护件4的所述固定部42设置于所述凹槽33内,使固定部42与外挡墙32面向所述凹槽33的侧面有部分位置重合,安装防护件4时可压缩密封件5,因密封件5压缩可有微量变形,尽可能的减小安装间隙,增强封装结构的气密性;在别的实施例中防护件4可与密封件5之间存在间隙,使得安装防护件4时,抵压部43可充分与透明盖2的上表面相抵,防止透明盖2发生松动。
本发明实施例1所提供的一种LED封装结构,通过在所述基板1上设置具有外挡墙32和内挡墙31的围坝3,所述外挡墙32和所述内挡墙31之间具有凹槽33,将密封件5设置于所述凹槽33,所述透明盖2罩盖于所述内挡墙31和所述安装区7且所述透明盖2插接于所述凹槽33,并使其与所述密封件5相接,将所述防护件4设置于所述透明盖2的边缘处,并且所述防护件4的封堵部41封堵于所述透明盖2与所述外挡墙32之间,抵压部43与所述透明盖2上端相抵,在内挡墙31、外挡墙32的遮蔽下以及封堵部41、抵压部43的封堵下,密封件可以避免UV照射,使得所述透明盖2和所述基板1之间紧密结合,气密性佳,实现了半无机封装与全无机封装结合的封装工艺,解决了半无机封装中UV光长时间照射下使得胶水失效导致透明盖2脱落的问题,并且兼具半无机封装和全无机封装的优越性,保证UV-LED产品的气密性,有利于提高UV-LED器件的使用寿命,稳定性更佳。
实施例2:
如图8、图9所示,本发明实施例提供的一种全无机LED封装结构,包括封装基板100(基板)、LED芯片200和透光罩300(透明盖),所述封装基板100(基板)具有相对的正面101和背面102,所述封装基板100(基板)的正面101设置有第一线路层110,所述第一线路层110包括第一线路图形111和焊盘112,焊盘112用于与所述LED芯片200焊接。所述透光罩300(透明盖)的底部设置有焊接层350,所述焊接层350与所述第一线路图形111焊接,所述透光罩300(透明盖)与所述封装基板100(基板)之间形成有密封的封装腔, 所述LED芯片200设置于所述封装腔内且焊接于所述焊盘112,透光罩300的顶面及周侧均可以透光,通过透光罩300(透明盖)底部设置的焊接层350,其可以与封装基板100(基板)的第一线路图形111紧密结合,其结合可靠,本实施例中的封装结构可以不采用硅胶、硅树脂或者环氧树脂等有机材料,可以使用全无机封装工艺,没有有机封装及半无机封装中胶体发黄透镜脱落的风险,同时透光罩300(透明盖)的侧面及正面均可以透光,透光罩300(透明盖)的侧面具有四个时,上述封装结构可以实现五面(透光罩300呈矩形时)出光,不仅极大的提升了UV-LED封装的出光效率,而且可靠性高,由于可以不使用有机材料,规避了有机材料在波长350nm以下的UV光照射下会发黄及失去粘性的缺点。本实施例提供的全无机LED封装结构,在峰值波长350nm以下UV-LED产品中具备明显的优势,透光罩300(透明盖)可以采用无机的玻璃材料,其底部设置的焊接层350,使得透光罩300(透明盖)与封装基板100焊接到一起,紧密结合,无发黄、脱落的风险,产品可靠性高,用户体验佳。
具体地,透光罩300(透明盖)可以为玻璃透镜,所述焊接层350可以为电镀形成于所述透光罩300(透明盖)底部的金属层(即金属焊料),第一线路图形111以为电镀形成于所述封装基板100正面101的金属层,其生产成本低;在别的实施例中,焊接层350也可以为形成于透光罩300(透明盖)底部的玻璃焊料,而第一线路图形111可以为电镀形成于所述封装基板100(基板)正面101的金属层,通过 玻璃焊料与金属封接技术将透光罩300焊接在第一线路图形上,透光性好,减少焊接层350对LED芯片的挡光作用。 焊接层350可以覆盖于透光罩300(透明盖)的底面,当然,焊接层350也可以延伸至透光罩300(透明盖)内外侧面设定距离处。本实施例中第一线路图形用于与透光罩300(透明盖)焊接,并不用于导电。
具体地,所述透光罩300(透明盖)覆盖所述LED芯片的顶面和侧面,其顶面和侧面均可以发光,发光效果好。本实施例中,所述透光罩300(透明盖)包括顶部出光面和四个侧出光面,透光罩300(透明盖)的外形可以呈矩形(方形),实现五面出光的效果。
具体地,封装基板100(基板)可为陶瓷基板,其可靠性佳且应用成本低。
具体地,所述金属层(焊接层350)可为共晶金属层;或者,所述金属层为非共晶金属层。金属层为共晶金属层时,可以采用共晶焊等工艺将金属层与第一线路图形111相接,其焊接的可靠性高。金属层为非共晶金属层时,可以采用回流焊或者高温烘烤的方式使透光罩300(玻璃透镜)与封装基板100(陶瓷基板)紧密结合,可实现全无机封装工艺,即使上述全无机LED封装结构应用于UV-LED产品中,玻璃透镜也无脱落的风险。
具体地,所述金属层可为金锡合金层或者银层等,其可靠性高且与第一线路图形111的焊接效果好。
具体地,所述透光罩300(透明盖)可为石英玻璃罩或者蓝宝石玻璃罩,其透光性好。透光罩300的外形可呈矩形或圆形等,其正面可呈平面或外凸的球面状。
具体地,所述第一线路图形111为电镀形成于所述封装基板100(基板)正面的金属层,易于制造。
具体地,所述第一线路图形111的形状呈封闭形状,且所述焊接层350与所述第一线路图形111相接形成封闭形状的焊接区;第一线路图形111可呈矩形环状,透光罩300(透明盖)的外形可以呈矩形,透光罩300(透明盖)的底面呈相应的矩形环状,透光罩300(透明盖)底沿的焊接层350可以恰好座于第一线路图形111上。透光罩300(透明盖)底沿可以完全座于第一线路图形111的上方,即透光罩300(透明盖)底沿位于所述封装基板100(基板)正面101的投影区域可完全落于第一线路图形111的范围内。
或者,作为替代方案之一,所述第一线路图形111的形状也可以呈半封闭形状,且所述焊接层350与所述第一线路图形111相接形成半封闭形状的焊接区。
具体地,所述焊接层350也可为形成于所述透光罩300底部的玻璃焊料 ,可以通过玻璃焊料与金属封接技术进行连接,产品可靠性佳。
具体地,所述透光罩300(透明盖)的纵向断面形状呈“n”形,透光罩300(透明盖)可以形成五面出光的结构。当然,透光罩300的外形也可以呈多边形、圆头形(如图9所示)等。
具体地,所述透光罩300(透明盖)底部的高度可以等于或低于LED芯片200的底部,以避免透光罩300(透明盖)底部的焊接层350遮挡LED芯片200的光线,有利于进一步提高光效。
具体地,所述封装基板100(基板)的背面102或/和内部设置有第二线路层120;所述焊盘112通过设置于所述封装基板100(基板)的导电孔(填充有导电材料130)连通于所述第二线路层120,以满足线路的布线要求。本实施例中,在所述封装基板100(基板)的背面102设置有第二线路层120,封装基板100采用陶瓷基板由DPC(直接镀铜技术:Direct Plating Copper )工艺制成,在表面及背部皆设有线路,表面线路(第一线路层110)的焊盘112与背部线路(第二线路层120)之间可通过内部导电孔连通。
本实施例中,LED芯片200可为倒装芯片,倒装芯片的电极可为金锡合金等。
本发明还提供了一种全无机LED封装方法,用于封装上述的一种全无机LED封装结构,包括以下步骤:
制备LED芯片200、正面具有第一线路图形111和焊盘112的封装基板100(基板)和底部具有焊接层350的透光罩300;
LED芯片焊接步骤:将所述LED芯片200设置于所述封装基板100的正面101并焊接于所述焊盘112;
透光罩固定步骤:将所述透光罩300罩于所述LED芯片200,并使所述透光罩300底部的焊接层350座于所述第一线路图形111上,使所述焊接层350与所述第一线路图形111通过焊接或烘烤工艺相接。
具体地,所述焊盘112为金锡合金,所述第一线路图形111可镀有镍金层,其中,镍层的厚度>3um,金层的厚度>0.05um。
本实施例中,所述LED芯片200焊接步骤中包括芯片固晶步骤和共晶步骤。
具体地,所述芯片固晶步骤包括:在所述封装基板100(基板)的正面101设置可充当共晶媒介的助焊剂,再将所述LED芯片200固定于所述封装基板100(基板)正面101具有所述助焊剂处。 
具体地,所述共晶步骤包括:将LED芯片200随所述封装基板100(基板)放置于共晶炉中进行共晶焊接,且共晶炉的温度至少有一个温区温度在300℃-340℃之间,且共晶炉在共晶过程采用氮气保护。
具体地,所述透光罩固定步骤包括:于所述第一线路层110设置焊料,将所述透光罩300盖于所述第一线路层110的第一线路图形111上。
具体应用中,所述焊接层350可为金锡合金,且采用助焊剂为焊料并通过共晶焊接工艺固定于所述第一线路图形111。
或者,所述焊接层350也可以为金锡合金,且采用银胶或者锡膏为焊料并通过高温烘烤工艺或回流焊工艺固定于所述第一线路图形111。
或者,所述焊接层350也可以为非共晶金属,且采用银胶或者锡膏为焊料并通过高温烘烤工艺或回流焊工艺固定于所述第一线路图形111。
具体地,所述LED芯片200的峰值波长小于350nm。
具体应用中,全无机LED封装方法可以参考如下:
LED芯片焊接步骤(也称芯片固晶步骤):封装基板100(基板,本实施例中为陶瓷基板)的线路(至少包括第一线路层110)可镀有镍金镀层,镍镀层的厚度可大于3um,金镀层的厚度可大于0.05um。在封装基板100(基板)的正面101的第一线路层110上点助焊剂,将LED芯片200定位于具有助焊剂处,并使电极对应于焊盘112(焊盘112可为金锡合金),使LED芯片200固定于封装基板100;采用共晶焊接方式时,助焊剂可以充当共晶媒介,LED芯片200与焊盘112可紧密结合。
共晶焊接步骤:将固定有LED芯片200的封装基板100(基板)通过共晶炉进行共晶焊接,使LED芯片200与封装基板100(基板)结合牢固。其中共晶炉温度至少有一个温区温度在300℃-340℃之间,且共晶焊接的过程通入保护气体(例如氮气等惰性气体),焊接的质量更可靠。
盖玻璃透镜步骤:在封装基板100表面的第一线路层110上与玻璃透镜(透光罩300)接触处点焊料,将玻璃透镜盖在封装基板100(基板)表面;
焊接步骤:将盖好玻璃透镜的陶瓷基板通过共晶炉、回流焊或者高温烘烤,使玻璃透镜与陶瓷基板紧密结合;(若玻璃透镜底部电镀金属为金锡合金时,可使用共晶工艺焊接,焊料为助焊剂;也可使用高温烘烤或回流焊的方式进行焊接,焊料为银胶或者锡膏,若玻璃透镜底部电镀金属为银或者其他不可共晶的金属时,则只可使用高温烘烤或回流焊的方式进行焊接,焊料为银胶或者锡膏)。
本发明实施例所提供的一种全无机LED封装结构,其可以不采用硅胶、硅树脂或者环氧树脂等有机材料,可以使用全无机封装工艺,没有有机封装及半无机封装中胶体发黄透镜脱落的风险,同时透光罩300的侧面及正面均可以透光,透光罩300的侧面具有四个时,上述封装结构可以实现五面(透光罩300呈矩形时)出光,不仅极大的提升了UV-LED封装的出光效率,而且可靠性高,由于可以不使用有机材料,规避了有机材料在波长350nm以下的UV光照射下会发黄及失去粘性的缺点。本实施例提供的全无机LED封装结构,在峰值波长350nm以下UV-LED产品中具备明显的优势,透光罩300(透明盖)可以采用无机的玻璃材料作为玻璃透镜,玻璃透镜无发黄、脱落的风险,产品可靠性高,用户体验佳。 
实施例3,包括实施例3a和实施例3b
实施例3a:
如图10与图11所示,本发明实施例提供的一种LED封装结构100,包括基板10、LED芯片20、支架30(围坝)、定位块40、透光件50(透明盖)以及密封胶60。具体的,所述基板10具有相对的正面和背面,所述LED芯片20固定于所述基板10的正面。所述支架30(围坝)呈环形并具有内侧壁、顶部和底部,所述支架30(围坝)的底部座于所述基板10的正面,所述支架30(围坝)围于所述LED芯片20外围。支架30(围坝)的内侧为支架30(围坝)靠近于LED芯片20的侧面,并且所述支架30(围坝)内侧壁位于所述LED芯片上方的至少一部分设有贯通于支架30(围坝)顶部的安装槽31,所述定位块40则设置于所述安装槽31内。所述透光件50(透明盖)设于所述安装槽31内,并且所述透光件50(透明盖)的底面与所述安装槽31的槽底面311抵接并朝向所述LED芯片20,所述透光件50的侧表面51与多个所述定位块40抵接,从而能够实现对所述透光件50(透明盖)的定位,使得所述透光件50的侧表面51与所述安装槽31的槽底面311、槽侧壁312形成封胶槽(未图示),所述密封胶60可从封胶槽的上开口处设于所述封胶槽内且不覆盖所述透光件50,也即,所述密封胶60设于透光件50的侧表面51与所述安装槽31的槽底面311、槽侧壁312之间,从而使得在测量密封胶60的厚度时可以通过先测量封胶槽的高度,再测量密封胶60与封胶槽的槽顶的距离,最后通过简单计算而得到封胶槽中容纳密封胶的量,可通过测量密封胶60浸过透光件50(透明盖)的高度或者插入待固化的密封胶60而直接测量密封胶60的深度等方式得到密封胶60的厚度,测量十分方便,并能精准的测算出封胶槽中容纳封装胶的量,保证了密封胶的密封效果的同时,提高了产品的一致性。避免了现有技术中先设置密封胶,再将透光件设于支架,导致将密封胶被设于LED结构中的封闭空间,从而使得密封胶厚度难以测量的问题,并且这样设置无需在透光件50(透明盖)与安装槽31的槽底面311设置底面密封胶,所述透光件50(透明盖)将不会受到底面密封胶对所述透光件50(透明盖)向上的浮力,也避免了底面密封胶自身的回弹力而对所述透光件50产生的向上的压力,避免现有技术中底面密封胶与透光件50(透明盖)刚接触时即形成密封空间的问题,进而避免了现有技术中密封空间内部的空气压缩导致密封空间内压强增大而使透光件50(透明盖)浮起的问题,从而能够避免了现有技术中将密封胶60设于透光件50(透明盖)的底面与安装槽31的槽底面311时,透光件50(透明盖)浮起而可能导致的密封胶60产生气泡及气孔的问题,进一步增强了LED封装结构100的密封效果。
对于所述LED芯片20,在一些实施例中,所述基板10的正面设有第一线路11,所述LED芯片20与所述第一线路11连接。
在一些实施例中,所述LED芯片20可以为倒装芯片、正装芯片或垂直芯片中的任意一种,在基板10正面的第一线路11上设置助焊材料,再将LED芯片设置于助焊材料上即可实现所述LED芯片20与基板10的连接。
对于所述基板10,在一些实施例中,所述基板10的背面设有第二线路12,所述基板10设有贯穿所述正面与背面的导电孔13,所述第一线路11与所述第二线路12通过所述导电孔13连接,进而实现LED芯片20、第一线路11与第二线路12之间的连接。
具体应用中,在所述基板10设置所述第一线路11与第二线路12可以通过DPC(直接镀铜技术-Direct Plating copper)工艺实现。
优选的,所述基板10与支架30(围坝)为一体成型,制造十分方便。
优选的,所述透光件50(透明盖)的底部座于所述安装槽31的槽底面311,且所述透光件50的顶部高于所述定位块40的高度,从而能够避免所述定位块40在所述透光件50与安装槽31的槽侧壁312之间的某位置上隔断密封胶60,保证了所述透光件50与支架30(围坝)之间能够通过密封胶60连接,从而确保密封胶60的粘结与密封效果。
在一些实施例中,所述透光件50(透明盖)是由石英或者蓝宝石材料制得的,但本发明对所述透光件50的具体材质不做限制,只要能实现透光作用即可,例如所述透光件50可采用PMMA(聚甲基丙烯酸甲酯)等塑料制得。在本实施例中,所述透光件50可呈正方形(请参阅图10与图11)或者是半球体(请参阅图12与图13),但所述透光件50的形状不限于此,只要不影响透光即可,例如呈长方体、灯泡状等。
优选的,多个所述定位块40沿所述封胶槽周向等间距设置,使得透光件50(透明盖)定位更准确,更好的形成封胶槽,以增加所述LED封装结构100的密封效果。
在一些实施例中,请参阅图10与图11,所述支架30(围坝)呈中空的矩形,所述透光件50可以呈正方形平铺于所述安装槽31,所述定位块的数量可以为4个,4个所述定位块40的第一侧面均抵接于所述支架30(围坝),并沿所述安装槽31的槽侧壁312周向等距离设置,也即,4个所述定位块40可以分别设于所述安装槽31的四条边的中点处。在一些其它的实施例中,请参阅图12与图13,所述支架30(围坝)呈中空的圆形,所述透光件50可以呈半球体安装于所述安装槽31,所述定位块的数量可以为3个,3个所述定位块40的第一侧面均抵接于所述支架30(围坝),并且3个所述定位块40可以以所述支架30的中心轴作为中心等距离设置,每两个定位块40与支架30(围坝)的中心轴连线形成的角均为120度。
优选的,所述定位块40的底部座于所述安装槽31的槽底面311,所述定位块40具有相对的第一侧面(未图示)和第二侧面(未图示),所述定位块40的第一侧面抵于所述安装槽31的槽侧壁312,所述透光件50的外周侧抵顶于所述定位块40的第二侧面,所述定位块40的高度低于所述安装槽31的顶部,使得密封胶60能够覆盖定位块40的顶部,从而能够避免所述定位块40在所述透光件50与安装槽31的槽侧壁312之间的某位置上隔断密封胶60,保证了所述透光件50与支架30之间能够通过密封胶60连接,从而确保密封胶60的粘结与密封效果。
在一些实施例中,所述支架30(围坝)面向所述安装槽31设有多个定位槽(未图示),多个所述定位槽用于收容所述定位块40,方便对所述定位块40进行定位与设置。可以理解的是,本发明对所述定位块40与所述支架30的连接方式不限于此,只要能实现将所述定位块40设于所述支架30(围坝)即可,例如通过将所述定位块40与所述支架30一体成型等方式。
具体的,所述密封胶60的高度大于所述定位块40的高度,所述密封胶60覆盖于所述定位块40,从而能够避免所述定位块40在所述透光件50与安装槽31的槽侧壁312之间的某位置上隔断密封胶60,保证了所述透光件50与支架30之间能够通过密封胶60连接,从而确保密封胶60的粘结与密封效果。
需要说明的是,在保证所述定位块40能限制所述透光件50位置的前提下,所述定位块40数量越少越好。这是因为如果所述定位块40数量越少,多个所述定位块40在所述安装槽31占据的体积越小,进而使得所述封胶槽的体积越大,可涂覆的密封胶60则越多,所述透光件50与所述支架30(围坝)的粘结面积更大,从而能够提高所述LED封装结构100的密封效果。在具体应用中,请参阅图10与图11,当所述透光件50呈正方形平铺在所述安装槽31时,所述定位块40的数量可为4个,4个所述定位块40可分别设于所述透光件50的四条边的中点处;请参阅图12与图13,当所述透光件50呈半球体设于所述安装槽31时,所述定位块40的数量可为3个,3个所述定位块40可分别沿所述透光件50的圆边周向等距设置。
需要说明的是,在保证所述定位块40能限制所述透光件50位置的前提下,所述定位块40尺寸越小越好。这是因为如果所述定位块40体积越小,多个所述定位块40在所述安装槽31占据的体积越小,进而使得所述封胶槽的体积越大,可涂覆的密封胶60则越多,所述透光件50与所述支架30(围坝)的粘结面积更大,从而能够提高所述LED封装结构100的密封效果。
可以理解的是,虽然本实施例如上述限制了所述定位块40的数量与尺寸,但本发明对所述定位块40的数量与尺寸不做限制,只要所述透光件50(透明盖)与所述支架30(围坝)之间仍能通过密封胶60粘结即可。例如,当所述定位块40的数量足够多,以至于围绕所述安装槽31形成台阶状时,所述透光件50的侧表面51、定位块40的顶面、安装槽31的槽底面311与安装槽31的槽侧壁312形成新的封胶槽,此时多个定位块40仍旧能够限制透光件50(透明盖)与封胶槽各处之间密封胶60的厚度,以及,侧面封胶的方式仍旧能够避免密封胶60对透光件50(透明盖)产生的向上的压力,从而能够避免因透光件50浮起时可能导致的密封胶60产生气泡及气孔的问题。
实施例3b:
如图14所示,本发明实施例提供的一种LED的封装方法,用于封装上述LED封装结构100,请结合图10与图11,所述LED封装方法包括以下步骤:
S101:制备基板10;
S102:于所述基板10设置具有安装槽31的支架30(围坝),并使所述支架30座于所述基板10的正面,所述支架30呈环形,其中部形成用于安装LED芯片20的空间,所述安装槽31设置有定位块40;
S103:将LED芯片20设置于所述基板10的正面,并位于所述支架30(围坝)中部的空间;
S104:将透光件50(透明盖)底面和侧面分别抵于所述安装槽31的槽底面311和定位块40,使透光件50的侧表面51与所述安装槽31的槽底面311、槽侧壁312形成封胶槽;
S105:将密封胶60设于所述封胶槽内。
具体地,在一种实施例中,在设置所述支架30(围坝)时,可先将所述支架30(围坝)制备成环形,再于所述支架30(围坝)内侧壁的至少一部分设置贯通于支架30(围坝)顶部的安装槽31,再将所述基板10的顶部与所述支架30(围坝)的底部连接,在另一种实施例中,可以将所述基板10的顶部与支架30(围坝)的底部(可以通过直接镀铜技术-DirectPlatingcopper)一体成型,制造十分方便。其中,所述支架30(围坝)中部形成用于安装LED芯片20的空间;而安装槽31用于安装透光件50(透明盖),为了避免透光件50(透明盖)与LED芯片20发生干涉,安装槽31需要设于LED芯片20上方。
具体的,于所述支架30(围坝)的安装槽31设置定位块40的方式可以通过先在所述安装槽31内设置定位槽,再将所述定位块40设于所述定位槽的方式设置定位块40,也可以在制作所述支架30(围坝)的时候直接将所述定位块40与所述支架30(围坝)直接以一体成型的方式直接设置,只要能够实现所述定位块40对所述透光件50(透明盖)的定位效果即可。可以理解的是,设置定位槽及定位块40的方式可以通过人工、机械结构等方式实现,例如:设置智能机械手,由智能机械手定点精确设置定位槽或定位块40,能够精确的对所述透光件50进行定位,从而进一步提高密封效果。
优选的,于所述支架30(围坝)的安装槽31内可以设置多个定位块40,从而实现对所述透光件50(透明盖)在所述安装槽31内的定位,进而在设置所述密封胶60时能够控制透光件50(透明盖)的侧表面51与安装槽31的槽侧壁312之间的密封胶60的厚度。当多个所述定位块40沿所述封胶槽周向等间距设置时,使得透光件50定位更准确,更好的形成封胶槽,以增加所述LED封装结构100的密封效果。
优选的,制备支架30(围坝)与定位块40以及设置所述密封胶60时,可以使所述定位块40的高度低于所述安装槽31和所述透光件50(透明盖)的顶部,所述密封胶60覆盖于所述定位块40且所述密封胶60的高度大于所述定位块40的高度,从而能够避免所述定位块40在所述透光件50(透明盖)与安装槽31的槽侧壁312之间的某位置上隔断密封胶60,保证了所述透光件50(透明盖)与支架30(围坝)之间能够通过密封胶60连接,从而确保密封胶60的粘结与密封效果。
具体的,将所述密封胶60设于透光件50(透明盖)的侧表面51与所述安装槽31的槽底面311、槽侧壁312形成的封胶槽之间时,所述透光件50(透明盖)将不再受到所述密封胶60对所述透光件50(透明盖)向上的浮力以及由于密封胶60自身的回弹力而对所述透光件50(透明盖)产生的向上的压力,从而能够避免了现有技术中将密封胶60设于透光件50(透明盖)的底面与安装槽31的槽底面311时,透光件50浮起而可能导致的密封胶60产生气泡及气孔的问题,进一步增强了LED封装结构100的密封效果。
可以理解的是,所述密封胶60是指具有粘结功能的胶水,对于所述密封胶60的具体材料不作限定。具体地,为保证密封效果,所述密封胶60可以均匀地涂布于所述封胶槽内,避免在所述透光件50朝向所述安装槽31的槽底沉降时,内部气体因压强增大而从所述密封胶60的薄弱处溢出。可以理解的是,将密封胶60设于所述封胶槽内可以通过人工、机械结构等方式实现,例如:设置智能机械手,由智能机械手均匀设置定量的密封胶60,能够进一步提高密封效果。
作为本实施例的其中一种可选实施方式,如图15所示,制备基板的步骤包括:
S1011:准备陶瓷基材,所述陶瓷基材具有正面和反面;
S1012:于所述陶瓷基材的正面和反面分别设置第一线路和第二线路,所述基板设有贯穿所述正面与背面的导电孔,所述第一线路与所述第二线路通过所述导电孔连接。
作为本实施例的其中一种可选实施方式,所述将所述LED芯片20设置于所述基板10的正面的步骤,如图16所示,进一步包括:
S1031:于所述基板10的正面设置助焊材料;
S1032:使所述LED芯片20设于所述助焊剂材料上;
S1033:使所述LED芯片20与所述基板10共晶。
具体的,通过在所述基板10的正面设置第一线路11,所述第一线路11包括第一焊盘,再在所述第一焊盘上设置助焊材料,然后将LED芯片20设置于助焊材料上,即可实现所述LED芯片20与第一线路11的电连接,通常情况下,在制作第一线路11时,会同步形成第一焊盘。通过设置所述助焊材料以及使所述LED芯片20与所述基板10共晶能够使所述LED芯片20的基板10之间的固定更牢固。
对于所述基板10的正面设置设有助焊材料的第一线路11的步骤,将所述第一线路11设置于所述基板10的方式可以通过DPC(直接镀铜技术-Direct Plating copper)工艺制成,可以采用同样的工艺在所述基板10的背面设置第二线路12,并在所述基板10设有贯穿所述基板10的导电孔13,所述第一线路11与第二线路12通过所述导电孔13连接,从而能够实现所述LED芯片20、第一线路11与第二线路12之间的连接。将所述助焊材料设于所述第一线路11的方式可以通过点涂的方式。可以理解的是,将所述助焊材料点涂于所述第一线路11的可以通过人工、机械结构等方式实现,例如:设置智能机械手,由智能机械手均匀设置定量的助焊材料,从而能够进一步提高焊接效果。
在具体应用中,所述第一线路11与第二线路12上可以镀镍金,以防止线路上金属的迁移和氧化,并提高导电和抗氧化性能。其中,要求镀镍的厚度>3um,镀金的厚度>0.05um,以保证导电和抗氧化效果。
在一些实施例中,所述LED芯片20可以为倒装芯片、正装芯片或垂直芯片中的任意一种,在基板10正面的第一线路上设置助焊材料,再将LED芯片设置于助焊材料上即可实现所述LED芯片20与基板10的连接。
使所述LED芯片20与所述基板10共晶的方式可以是通过将连接完成的LED芯片20与基板10通过共晶炉,从而能够使LED芯片20与基板10的结合更牢固。具体应用中,当所述焊盘为金锡合金时,共晶炉的温度至少有一个温区温度在300℃-340℃之间且共晶过程需要氮气保护。
作为本实施例的其中一种可选实施方式,所述将密封胶60设于所述封胶槽内的步骤,如图17所示,进一步包括:
S1051:将待固化的所述密封胶60设于所述封胶槽内,并使待固化的所述密封胶60覆盖所述定位块40;
S1052:使所述密封胶60固化。
其中,使待固化的所述密封胶60覆盖所述定位块40是为了避免所述定位块40在所述透光件50(透明盖)与支架30(围坝)之间的某位置上隔断密封胶60,保证了所述透光件50(透明盖)与支架30(围坝)之间能够通过密封胶60连接,从而保证粘结与密封效果。
具体的,使所述密封胶60固化的方式可以包括等待使密封胶60自然固化、烘烤固化或者UV光照固化。可以理解的是,所述密封胶60固化的方式不限于此,只要能使所述密封胶60固化即可,例如,如果是需要烘烤才能固化的密封胶60则采用烘烤固化的方式,如可直接用UV光照射即可固化那么采用UV光照固化的方式,若是其他类型的密封胶则采用对应的固化方法。
此可选实施方式通过使待固化的所述密封胶60覆盖所述定位块40以及对所述密封胶60固化,确保了密封胶的粘结与密封效果。
实施例3c:
在其他实施例中,如图18所示,制备基板10后,也可以先在基板10正面先设置LED芯片20,然后再在LED芯片20周围设置支架30(围坝)和定位块40。即本发明实施例还提供另一种LED的封装方法,包括以下步骤:
S101:制备基板10;
S102’:将LED芯片20设置于所述基板10的正面,
S103’:于所述基板10设置具有安装槽31的支架30(围坝),并使所述支架30座于所述基板10的正面,所述支架30呈环形,包围所述LED芯片20,所述安装槽31设置有定位块40;
S104:将透光件50(透明盖)底面和侧面分别抵于所述安装槽31的槽底面311和定位块40,使透光件50(透明盖)的侧表面51与所述安装槽31的槽底面311、槽侧壁312形成封胶槽;
S105:将密封胶60设于所述封胶槽内。
具体地,与实施例3b不同的是,由于本实施例中,先设置LED芯片20再设置所述支架30,不便于通过DPC工艺制作支架30(围坝),故在本实施例中,在设置所述支架30(围坝)时,可先将所述支架30制备成环形,再于所述支架30内侧壁的至少一部分设置贯通于支架30顶部的安装槽31,再将所述基板10的顶部与所述支架30(围坝)的底部连接,本实施例其他的步骤与实施例二相同,可参考实施例二的描述,在此不再赘述。
本发明所提供的一种LED封装结构及LED封装方法,所述LED封装结构100包括基板10、LED芯片20、支架30(围坝)、定位块40、透光件50(透明盖)以及密封胶60。其中,所述基板10具有相对的正面和背面。所述LED芯片20则固定于所述基板10的正面。所述支架30(围坝)呈环形并具有顶部和底部,所述支架30(围坝)的底部座于所述基板10的正面,所述支架30(围坝)围于所述LED芯片20外围。并且所述支架30(围坝)设有贯通于支架30(围坝)顶部及支架3(围坝)0内侧壁的安装槽31,所述安装槽31具有槽底面311、槽侧壁312。所述定位块40则设置于所述安装槽31内。所述透光件50(透明盖)的底面与所述安装槽31的槽底面311抵接并朝向所述LED芯片20,所述透光件50(透明盖)的侧表面51与多个所述定位块40抵接,从而实现对所述透光件50(透明盖)的定位。所述透光件50的侧表面51与所述安装槽31的槽底面311、槽侧壁312形成封胶槽,所述密封胶60则设于所述封胶槽内。本发明首先通过所述多个定位块40对所述透光件50(透明盖)的定位限制了透光件50(透明盖),使透光件50(透明盖)的侧表面51与安装槽31的槽底面311、槽侧壁312形成封胶槽,限制了封装槽可容纳封装胶的最大量,所述密封胶60可从封胶槽的上开口处设于所述封胶槽内,也及,通过将所述密封胶60设于所述透光件50(透明盖)与所述封胶槽的侧表面51之间,所述密封胶60可以暴露于外部,避免了现有技术中先设置密封胶再将透光件设于支架而导致的将密封胶设于LED结构中的封闭空间从而使得密封胶厚度难以测量的问题,例如,在测量密封胶60的厚度时可以通过先测量封胶槽的高度,再测量密封胶60与封胶槽的槽顶的距离,通过简单计算就能得到密封胶的用量,测量十分方便,并且这样设置无需在透光件50(透明盖)与安装槽31的槽底面311设置底面密封胶,所述透光件50将不会受到所述底面密封胶对所述透光件50(透明盖)向上的浮力,也避免了底面密封胶自身的回弹力而对所述透光件50(透明盖)产生的向上的压力,避免了现有技术中底面密封胶与透光件50刚接触时即形成密封空间的问题,进而避免了现有技术中密封空间内部的空气压缩导致密封空间内压强增大而使透光件50浮起的问题,从而避免了透光件50(透明盖)浮起时可能导致的密封胶60产生气泡及气孔的问题,进一步增强了LED封装结构100的密封效果。
实施例4:
3D TOF(3 Dimensions Time of flight,三维飞行时间法)装置是新一代将距离检测与3D成像技术结合的发光元件装置。在目前的发光元件装置的封装结构中主要包括基板、封装体、透光件与发光元件,封装体呈环形并设于基板的正面,透光件连接于封装体的顶部并与封装体及基板围合形成收容腔,所述发光元件则收容于收容腔内。其中的透光件包括透光层与匀光层,匀光层包括匀光结构从而将激光折射成大角度的光束以保护人眼。为了保证人眼的安全,往往还需要在收容腔内设置光电探测器,光电探测器通过接收激光经过匀光层后反射至光电探测器的光线,而将光信号转换成电信号以方便操作人员判断透光件上的匀光层是否脱落。
但在实际使用光电探测器时也存在一些问题,一是收容腔内空间有限,光电探测器的设置使得封装结构内可封装空间减小,导致发光元件的尺寸选择具有一定局限性;二是光电探测器的制造及算法都比较复杂,所需的时间与成本较高;三是因为主要采用脉冲电流驱动VCSEL(垂直腔表面发射激光器)发光元件,而光电探测器往往需要偏压驱动,两者驱动方式不同,所以封装结构需要设置两个驱动集成电路才能使用,这将进一步增大制造的时间与成本;四是由于光电探测器尺寸有限,光电探测器只能接收到经过匀光层的部分区域反射的光线而非匀光层全部区域,并且若匀光层损坏,光线可能直接经透光层射出或反射至其他位置而不能被光电探测器接收,因此光电探测器只能检测到匀光层是否脱落,而无法准确检测到匀光层的部分区域是否损坏,从而导致光电探测器并不能可靠地保证人眼的安全。
本发明实施例4提供了一种发光元件的封装结构,如图19和图20所示,所述封装结构100包括基板10、发光元件20、围坝30与透光件40(透明盖)。其中,所述基板10的正面设有第一线路层11。所述发光元件20设置于所述基板10的正面,且所述发光元件20与所述第一线路层11连接。所述围坝30设置于所述基板10的正面,所述围坝30包括相隔设置于所述基板10的正面的第一部分和第二部分,所述第一部分和第二部分分别配置为与电信号检测模块连接的正极导体31与负极导体32,所述正极导体31与负极导体32相隔设置于所述基板10的正面,且所述正极导体31与负极导体32设于所述发光元件20与第一线路层11的外围。所述透光件40(透明盖)包括层叠设置的透光导电层41、匀光层42与透光层43,所述透光导电层41连接于所述正极导体31与负极导体32。所述发光元件20可为激光元件,当所述第一线路层11连通电源时,所述发光元件20发射的激光经过所述透光件40(透明盖)折射出外界。所述匀光层设有匀光结构,当所述第一线路层11连通电源时,所述发光元件20发射的激光经过所述匀光层42而以更大的角度的光束折射出外界,避免激光直射人眼,从而能够保护人眼。为更大程度地保护人眼的安全,操作人员可以通过检测所述透光导电层41而判断所述匀光层42是否脱落或损坏,操作人员首先将所述正极导体31与负极导体32连通电流,再通过与所述正极导体31与负极导体32连接的电信号检测模块检测得到所述透光导电层41的电阻,即可判断所述匀光层42是否脱落或损坏。当不能检测到所述透光导电层41的电阻时,可以判断所述匀光层42脱落;当能检测到所述透光导电层41的电阻,但电阻值不处于正常范围内时,可以判断所述匀光层42与透光导电层41部分区域出现损坏(产品在使用过程中,透光导电层41出现破损大概率是因为匀光层42受损而导致);当能检测到所述透光导电层41的电阻,且电阻值处于正常范围内时,可以判断所述匀光层42未脱落且未出现部分区域出现损坏。本发明在匀光层42上设置能够导电的透光导电层41,可以通过检测透光导电层41的电阻值是否正常,即可检测判断匀光层42是否脱落或损坏。相较于现有技术,本发明不仅无需制造算法复杂、成本较大的光电探测器,而且无需在封装结构内额外配置与光电探测器驱动方式相适配的驱动集成电路,从而使得封装及检测的方式更简单,也减小了制造与检测的时间与成本,缩短了工作流程,提高产品的作业效率,还无需在封装空间内设置光电探测器,发光元件可占用的封装空间增大,从而能够在封装结构内设置更大尺寸的发光元件,增大了芯片尺寸选择的可能性,并且,现有技术仅能判断匀光层是否整体脱落,而本发明能够通过电阻值的大小判断匀光层的部分区域是否损坏,从而能够更大程度地保证人眼的安全。
可以理解的是,通过电信号检测模块检测得到所述透光导电层41的电阻可以是首先通过电信号检测模块分别检测得到经过所述透光导电层41的电流值与电压值再计算得到所述透光导电层41的电阻值从而检测判断匀光层42是否脱落或损坏。当然,本发明也可以通过电信号检测模块分别检测得到经过所述透光导电层41的电流值与电压值而直接判断匀光层42是否脱落或损坏,当不能检测到所述透光导电层41的电流时,可以判断所述匀光层42脱落;当能检测到所述透光导电层41的电流,但电流值或电压值不处于正常范围内时,可以判断所述匀光层42与透光导电层41部分区域出现损坏;当能检测到所述透光导电层41的电流,且电流值与电压值处于正常范围内时,可以判断所述匀光层42未脱落且未出现部分区域出现损坏。
可以理解的是,判断所述透光导电层41的电阻值是否处于正常范围内可以采用大数据比对等方式实现,比如,在同一批测试中,所述透光导电层的电阻值将在一个数值左右徘徊,若出现一所述透光导电层的电阻值与此数值有很大的偏差,则可以判断此封装结构中匀光层与透光导电层部分区域出现损坏。
对于所述基板10,请参阅图19、图20与图21,在一些实施例中,所述基板10的背面设有与所述第一线路层11相导通的第二线路层12,以便于连接电路。
优选的,请结合图21,所述基板10设有贯穿所述基板10的第三导电孔15和第四导电孔16,所述第一线路层11包括分别连接所述发光元件20正极和负极的正极线路111和负极线路112,所述正极线路111通过所述第三导电孔15与所述第二线路层12连接,所述负极线路112通过所述第四导电孔16与所述第二线路层12连接。
优选的,所述第一线路层11包括驱动集成电路(未图示),所述发光元件20为VCSEL激光芯片,所述驱动集成电路与所述VCSEL激光芯片及所述透光导电层41连接,所述驱动集成电路向所述VCSEL激光芯片及所述透光导电层41提供脉冲驱动电流。电信号检测模块可以集成于驱动集成电路,从而使封装结构内无需设置另一驱动集成电路即可实现对所述透光导电层41的电阻值的检测,节省了制造时间与成本。当然,本发明所提供的封装结构中的发光元件不限于VCSEL激光芯片,本发明所提供的封装结构也不限于应用于3D TOF装置,例如本发明还可以运用于其他需要检测匀光层是否损坏以保证安全的装置。
对于所述围坝30,请参阅图20与图21,优选的,所述基板10设有贯穿所述基板10的第一导电孔13与第二导电孔14,所述正极导体31通过所述第一导电孔13与所述第二线路层12连接,所述负极导体32通过所述第二导电孔14与所述第二线路层12连接,所述第一导电孔13用于实现正极导体31与第二线路层12的导通,所述第二导电孔14用于实现负极导体32与第二线路层12的导通。
优选的,所述正极导体31的顶部设有第一安装槽311,所述第一安装槽311设于所述发光元件20上方的所述正极导体31的至少部分侧壁且贯穿所述正极导体31的顶部,所述负极导体32的顶部设有第二安装槽321,所述第二安装槽321设于所述发光元件20上方的所述负极导体32的至少部分侧壁且贯穿所述负极导体32的顶部,所述透光件40(透明盖)固定于所述第一安装槽311与第二安装槽321以使所述透光件40(透明盖)的安装更稳定。
优选的,所述围坝30由隔断槽33隔开,所述正极导体31与所述负极导体32相对所述隔断槽33对称设置。其中,围坝30由隔断槽33隔开能够增大正极导体31与所述负极导体32之间的距离,减少正极导体31与所述负极导体32短路的可能,所述正极导体31与所述负极导体32相对所述隔断槽33对称设置能够提高所述透光件40(透明盖)安装的稳定性。
优选的,所述正极导体31呈“Π”形,所述负极导体32呈倒“Π”形,所述正极导体31的开口与所述负极导体32的开口相对设置,所述发光元件20至少部分伸入于所述正极导体31的开口和/或负极导体32的开口,从而减少发光元件20暴露于外部的面积以保护发光元件20,进而增长所述发光元件的封装结构100的使用寿命。
优选的,于所述隔断槽33处设有绝缘材料以减少正极导体31与所述负极导体32短路的可能性。所述绝缘材料可以为塑料、橡胶、绝缘胶水等材料,本发明对绝缘材料的具体材料不做限制,只要能实现对所述正极导体31与负极导体32之间的绝缘即可。
优选的,所述正极导体31与负极导体32均由铜材料制得。在实际应用中,所述正极导体31与负极导体32可以通过DPC(直接镀铜技术- Direct Plating copper)设于所述基板10。DPC工艺仅需250~350℃左右的温度即可完成对基板10的制作,避免了高温对材料或线路结构的不利影响,也降低了制造工艺成本。
对于所述透光件40(透明盖),优选的,所述透光件40(透明盖)具有朝向于所述发光元件20的底面,所述匀光层42完全覆盖于透光层43的底面,所述透光导电层41完全覆盖于匀光层42的底面,且所述透光导电层41的底面通过导电粘结胶50粘结于所述第一安装槽311的槽底面与第二安装槽321的槽底面以实现对所述透光件40(透明盖)的固定。
其中,所述导电粘结胶50是指具有一定导电性能的胶黏剂,它通常以基体树脂和导电填料即导电粒子为主要组成成分,所述导电粘结胶50可以由环氧树脂、有机硅树脂、聚酰亚胺树脂等材料制得,本发明对导电粘结胶50的具体材料不做限制,只要能够实现对透光导电层41电阻的检测以及不影响封装结构100的使用即可。
在一些实施例中,所述透光导电层41、匀光层42与透光层43可以均呈板状,所述透光件40(透明盖)也呈平坦的板状(如图19所示)。当然,本发明对所述透光件40(透明盖)的具体形状不做限制,例如,所述透光件40(透明盖)可以呈中空的灯泡状或半球状等,只要所述匀光层42能够覆盖于透光层43的底面,所述透光导电层41能够覆盖于匀光层42的底面以保证人眼的安全及实现对匀光层42的检测即可。
优选的,所述透光导电层41可以由氧化铟锡(ITO)材料制得,由于ITO具有很好的导电性及透光性,从而能够在匀光层42的底面形成一层透明导电薄膜,该透明导电薄膜的透光率达90%以上。当然,本发明对透光导电层41的具体材料不做限制,例如还可以采用铟锌氧化物、铟镓锌氧化物或铟锡锌氧化物等材料,只要能检测到透光导电层41的电阻并且保证发光元件20能够透过所述透光导电层41即可。在实际应用中,所述透光导电层41可以通过蒸镀的方式覆盖于所述匀光层42的底面。
在实际封装过程中,可以首先制备层叠设置的匀光层42与透光层43,其次将所述透光导电膜41蒸镀于所述匀光层42的底面,再制备基板10,然后于所述基板10通过DPC(直接镀铜技术- Direct Plating copper)技术设置相隔设置的正极导体31与负极导体32,然后将发光元件20通过共晶工艺固定于所述第一线路层11,并通过焊线作业使发光元件20与第一线路层11连接,然后于所述第一安装槽311与第二安装槽321内设置导电粘结胶使所述透光件40(透明盖)与所述围坝30连接以完成整体封装。在测试时,操作人员首先将所述正极导体31与负极导体32连通电流,再通过电信号检测模块以上述方式检测所述透光导电层41,即可判断所述匀光层42是否脱落或损坏。
本发明提供了一种发光元件的封装结构,所述封装结构100包括基板10、发光元件20、围坝30与透光件40(透明盖)。其中,所述基板10的正面设有第一线路层11。所述发光元件20设置于所述基板10的正面,且所述发光元件20与所述第一线路层11连接。所述围坝30设置于所述基板10的正面,所述围坝30包括正极导体31与负极导体32,所述正极导体31与负极导体32相隔设置于所述基板10的正面,且所述正极导体31与负极导体32设于所述发光元件20与第一线路层11的外围。所述透光件40(透明盖)包括层叠设置的透光导电层41、匀光层42与透光层43,所述透光导电层41连接于所述正极导体31与负极导体32。当所述第一线路层11连通电源时,所述发光元件20发射的激光经过所述匀光层42以更大的角度的光束折射出外界,从而能够保护人眼。操作人员首先将所述正极导体31与负极导体32连通电流,即可通过检测得到所述透光导电层41的电阻,从而能够判断所述匀光层42是否脱落或损坏,当不能检测到所述透光导电层41的电阻时,可以判断所述匀光层42脱落;当能检测到所述透光导电层41的电阻,但电阻值不处于正常范围内时,可以判断所述匀光层42与透光导电层41部分区域出现损坏;当能检测到所述透光导电层41的电阻,且电阻值处于正常范围内时,可以判断所述匀光层42未脱落且未出现部分区域出现损坏。本发明在匀光层42设置能够导电的透光导电层41,通过检测透光导电层41的电阻值是否正常,即可检测判断匀光层42是否脱落或损坏。相较于现有技术,本发明不仅无需制造算法复杂、成本较大的光电探测器,而且无需在封装结构内额外配置与光电探测器驱动方式相适配的驱动集成电路,从而使得封装及检测的方式更简单,也减小了制造与检测的时间与成本,缩短了工作流程,提高产品的作业效率,还无需在封装空间内设置光电探测器,发光元件可占用的空间增大,从而能够在封装结构内设置更大尺寸的发光元件,增大了芯片尺寸选择的可能性,并且,现有技术仅能判断匀光层是否整体脱落,而本发明能够通过电阻值的大小判断匀光层的部分区域是否损坏,从而能够更大程度地保证人眼的安全。
实施例5:
实施例5a:
如图22与图23所示,本发明实施例一提供了一种LED器件100,所述LED器件100包括支架10(支架结构)、LED芯片20、透光件30(透明盖)与荧光物质,其中,所述支架10(支架结构)具有所述围坝和所述基板11,具体地,所述支架10(支架结构)包括基板11,所述基板11具有相对的正面和背面。所述LED芯片20固定于所述基板11的正面。所述透光件30与所述支架10(支架结构)围合形成用于收容所述LED芯片20的收容腔13,所述透光件30设置于所述基板11的正面且覆盖所述LED芯片20。所述荧光物质设于所述支架10(支架结构)或/和所述透光件30,所述荧光物质用于在所述LED芯片20发射出的光照射时发生荧光反应而产生可见光。当LED芯片20工作时,LED芯片20发射出的光照射至所述荧光物质,使所述荧光物质能够产生一种可见光,因此本发明所提供的LED器件100通过设置所述荧光物质能够方便地检测出LED器件100的工作状态,制作与应用都十分简单方便,用户可方便地观察到LED器件的工作状态,降低了引发安全事故的概率。并且,在现有技术中目前为检测LED器件的工作状态的方法主要有两种,一种是在LED器件中加装另一种能发出可见光的芯片,但在实际制造过程中,若将可见光的芯片与LED芯片并联,在使用时则可能会出现一芯片失效而另一芯片正常工作的情况,从而造成误判,若将可见光的芯片与LED芯片串联,在使用时则可能会出现可见光的芯片失效,而紫外线芯片未失效的情况,也会到导致LED器件失效,这样串联的设计会增加器件整体失效的风险;另一种方式是增加监控电路,通过检测判断器件电路中的电流电压变化以判断器件是否处于工作状态,但增加监控电路的难度较高,成本较大,而本发明则避免了在LED器件中使用另一种可见光芯片或者监控电路,从而避免了使用另一种可见光芯片造成的增大误判率、增加故障率以及添加监控电路带来的制作难度大,成本较高等问题,在用户的实际应用中,本实施例提到的LED器件具有更大的优势。
可以理解的是,所述LED器件100可以用于UV-LED灯具、红外LED灯具等能够发射出不可见光的灯具,当设置能够与所述不可见光发生荧光反应的荧光物质时,则能够实现对UV-LED灯具、红外LED灯具等灯具的工作状态的检测。
具体地,对于所述支架10,在一些实施例中,所述支架10还包括封装体12(围坝),所述封装体12(围坝)用于安装所述透光件30(即透明盖,为避免透光件30与LED芯片20发生干涉,透光件30的安装位置应高于LED芯片20的顶面)从而提高所述LED器件100的密封效果,增强所述LED器件100的防护性能。优选的,所述封装体12(围坝)呈环形并具有内侧壁、顶部和底部,所述封装体12(围坝)的底部座于所述基板11的正面,所述封装体12(围坝)合围于所述LED芯片20外围,所述透光件30、所述封装体12(围坝)、所述基板11围合形成所述收容腔13。优选的,所述基板11与封装体12(围坝)可以为一体成型,制造十分方便。
优选的,所述透光件30通过混有所述荧光物质的粘结胶水40粘接于所述封装体12(围坝),且/或,所述荧光物质设置于所述收容腔内。当所述LED芯片20发射出不见光时,所述荧光物质发生荧光反应进而发出可见光,所述可见光通过所述透光件30发射至外部,人眼则可识别出LED器件100的工作状态。
优选的,如图22所示,所述封装体12(围坝)的内侧壁位于所述LED芯片20上方的至少一部分设有贯通于所述封装体12(围坝)顶部的安装槽121,所述透光件30的底部或/和侧面通过混有所述荧光物质的所述粘结胶水40固定于所述安装槽121。通过将混有所述荧光物质的所述粘结胶水40固定于所述安装槽121,不仅能实现对所述荧光物质的固定,还能实现将所述透光件30固定于所述安装槽121。
优选的,请结合图26与图27,将所述荧光物质设置成荧光层50,所述荧光层50可以呈环形、条形、圆形或多边形。具体的,所述荧光层50可以由荧光物质与胶水混合制得,也可以是通过将荧光物质与其它可固化液体混合得到等其它方式制得,或者所述荧光物质直接形成荧光层50,本发明对此不做限制,只要能使所述荧光物质设置于所述支架或/和所述透光件上,且用户能观察到所述荧光物质产生的可见光即可。本发明对所述荧光物质涂覆的厚度、宽度及形状不做限制,只要用户能够观察到所述荧光物质发生荧光反应后产生的可见光即可。
对于所述基板11,在一些实施例中,所述基板11的正面设有第一线路111,用于与所述LED芯片20连接。所述基板11的背面设有第二线路112,所述基板11设有贯穿所述正面与背面的导电孔113,所述第一线路111与所述第二线路112通过所述导电孔113连接,进而实现LED芯片20、第一线路111与第二线路112之间的连接。
具体应用中,在所述基板11设置所述第一线路111与第二线路112可以通过DPC(直接镀铜技术-Direct Plating copper)工艺实现。
在一些实施例中,所述LED芯片20为倒装芯片、正装芯片或垂直芯片中的任意一种,在基板11正面的第一线路上111设置助焊材料,再将LED芯片20设置于助焊材料上,即可实现所述LED芯片20与基板11的连接。
在一些实施例中,请结合图26与图27,所述第一线路111具有环形槽115,所述荧光物质设置于所述环形槽115内,使所述荧光物质的设置更佳,当荧光层50未固化时也能避免待固化液体流动而影响LED器件100中其他部件的使用。可以理解的是,所述荧光层50可以涂布覆盖所述环形槽115,也可以呈块状涂布于所述环形槽115,只要用户能够方便地观察到所述荧光物质发生荧光反应后产生的可见光即可。
对于所述透光件30(透明盖),在一些实施例中,所述透光件30(透明盖)是由石英或者蓝宝石材料制得的,但本发明对所述透光件30(透明盖)的具体材质不做限制,只要能实现透光作用即可,例如所述透光件30可采用PMMA(聚甲基丙烯酸甲酯)等制得。优选的,所述透光件30(透明盖)可呈正方形平铺于所述安装槽121内,所述透光件30(透明盖)的底面或侧面中至少一面与所述安装槽121的槽面通过粘结胶水40连接,当所述透光件30(透明盖)的底面或侧面中的一面与所述安装槽121的槽面通过粘结胶水40连接时,另一面可以与所述安装槽121的槽面抵接。
对于所述荧光物质,在一些实施例中,所述LED芯片20为UV-LED芯片,所述荧光物质可以为紫外荧光粉或者其它可以与紫外线发生荧光反应的荧光物质。在一些其它的实施例中,所述LED芯片20为高能红外激光LED芯片,所述荧光物质可以为红外荧光粉或者其它可以与高能红外激光发生荧光反应的荧光物质。可以理解的是,除了上述荧光物质外,本发明对所述荧光物质的具体材料不做限制,只要对应所述LED芯片设置,能够与所述LED芯片发射出的不可见光发生荧光反应而对所述LED芯片的工作状态进行检测即可。
实际应用中,由于部分荧光物质具有吸光性,为避免因荧光物质吸收所述LED芯片20发射出的光而影响所述LED器件100的使用,以及保证所述荧光物质足量以产生可见光,所述荧光物质混合于粘结胶水40的浓度可以为5%至10%。
可以理解的是,混有所述荧光物质的粘结胶水40可以呈环状(请参阅图24)或块状(请参阅图25)分布于所述基板11的正面且位于所述封装体12(围坝)内或者设置于所述封装体12(围坝)的内侧壁,本发明对所述混有所述荧光物质的粘结胶水40涂覆的厚度、宽度及形状不做限制,只要用户能够方便地观察到所述荧光物质发生荧光反应后产生的可见光,以及,在粘结所述透光件30与所述封装体12时能够起到粘结作用即可。
需要说明的是,除了上述优选的将所述荧光物质设于所述安装槽121内,在一些其他的实施例中,也可以将荧光物质设置于所述收容腔内,甚至是收容腔外也可以,比如 将所述荧光物质设于所述透明件30表面(外侧或内侧)或者设于所述基板11的正面等,荧光物质也可以设置于透明件30的夹层,本发明对所述荧光物质的设置位置不做具体限制,只要将所述荧光物质设于LED器件100,并且不影响所述荧光物质与LED芯片20发出的光反应产生能使用户观察到的可见光即可。
可以理解的是,所述粘结胶水40是指具有粘结功能的涂料。当所述LED芯片20为UV-LED芯片时,所述粘结胶水40为耐紫外胶水,通常为由硅胶、环氧树脂及氟树脂等材料制得的胶水。当然,本发明对于所述粘结胶水40的具体材料不作限定,只要胶水的使用寿命能满足器件的使用寿命即可。
可以理解的是,将所述荧光物质设于所述LED器件100中不限于上述将所述荧光物质混合于所述粘结胶水40的方式,也可以通过将荧光物质与可固化液体混合制成的带有荧光物质的荧光块或荧光层设于所述支架10(支架结构)或/和所述透光件30(透明盖)等方式设置,本发明对所述荧光物质的设置方式不作限定,只要能使所述荧光物质固定于LED器件100中,并且用户能观察到所述荧光物质产生的可见光即可。
实施例5b:
如图26与图27所示,本发明实施例5b提供了一种LED器件100,与实施例5a不同的是,本实施例5b中的透光件30呈半球体状,直接包裹所述LED芯片20,所述支架10(支架结构)不包括实施例5a中封装体12(围坝),结构简单,体积小,且对LED芯片20的保护性更好,隔绝水汽的效果更好。
具体的,所述LED器件100包括支架10(支架结构)、LED芯片20、透光件30(透明盖)与荧光物质。所述支架10(支架结构)包括基板11,所述基板11具有相对的正面和背面。所述LED芯片20固定于所述基板11的正面。所述透光件30(透明盖)设置于所述基板11的正面且覆盖于所述LED芯片20。所述荧光物质设于所述支架10(基板11)或/和所述透光件30,所述荧光物质用于在所述LED芯片20发射出的光照射时发生荧光反应而产生可见光。当LED芯片20工作时,LED芯片20发射出的光照射至所述荧光物质,使所述荧光物质能够产生一种可见光,因此本发明所提供的LED器件100通过设置所述荧光物质能够方便地检测出LED器件100的工作状态,制作与应用都十分简单方便,用户可方便地观察到LED器件的工作状态,降低了引发安全事故的概率。并且,在现有技术中目前为检测LED器件的工作状态的方法主要有两种,一种是在器件中加装另一种能发出可见光的芯片,但在实际制造过程中,若将可见光的芯片与LED芯片并联,在使用时则可能会出现一芯片失效而另一芯片正常工作的情况,从而造成误判,若将可见光的芯片与LED芯片串联,在使用时则可能会出现可见光的芯片失效,而紫外线芯片未失效的情况,也会到导致器件失效,这样串联的设计会增加器件整体失效的风险;另一种方式是增加监控电路,通过检测判断器件电路中的电流电压变化以判断器件是否处于工作状态,但增加监控电路的难度较高,成本较大,而本发明则避免了在LED器件中使用另一种可见光芯片或者监控电路,从而避免了使用另一种可见光芯片造成的增大误判率、增加器件故障率以及添加监控电路带来的制作难度大,成本较高等问题,在用户的实际应用中,本器件具有更大的优势。
可以理解的是,所述透光件30可以由硅胶、环氧树脂及氟树脂等耐光材料制得。将所述透光件30设置于所述基板11的正面可以通过模具直接将透光件30molding成型(模压成型、又称压制成型或压缩成型)于基板11的正面。
实施例5c:
如图28与图29所示,本发明实施例三提供了一种LED器件100,与实施例5a不同的是,本实施例5c中的封装体12为金属管帽14。所述LED器件100包括支架10(支架结构)、LED芯片20、透光件30(透明盖)与荧光物质。所述支架10(支架结构)包括基板11,所述基板11具有相对的正面和背面。所述LED芯片20固定于所述基板11的正面。所述透光件30与所述支架10围合形成用于收容所述透光件30的收容腔13。所述荧光物质设于所述支架10(支架结构)或/和所述透光件30(透明盖),所述荧光物质用于在所述LED芯片20发射出的光照射时发生荧光反应而产生可见光。当LED芯片20工作时,LED芯片20发射出的光照射至所述荧光物质,使所述荧光物质能够产生一种可见光,因此本发明所提供的LED器件100通过设置所述荧光物质能够方便地检测出LED器件100的工作状态,制作与应用都十分简单方便,用户可方便地观察到LED器件的工作状态,降低了引发安全事故的概率。并且,在现有技术中目前为检测LED器件的工作状态的方法主要有两种,一种是在器件中加装另一种能发出可见光的芯片,但在实际制造过程中,若将可见光的芯片与LED芯片并联,在使用时则可能会出现一芯片失效而另一芯片正常工作的情况,从而造成误判,若将可见光的芯片与LED芯片串联,在使用时则可能会出现可见光的芯片失效,而紫外线芯片未失效的情况,这大大提高了器件故障的风险;另一种方式是增加监控电路,通过检测判断器件电路中的电流电压变化以判断器件是否处于工作状态,但增加监控电路的难度较高,成本较大,而本发明则避免了在LED器件中使用另一种可见光芯片或者监控电路,从而避免了使用另一种可见光芯片造成的增大误判率、增加器件故障率以及添加监控电路带来的制作难度大,成本较高等问题,在用户的实际应用中,本器件具有更大的优势。
具体的,所述金属管帽14的上端和下端均具有开口,所述金属管帽14的底部座于所述基板11的正面,所述透光件30(透明盖)连接于所述金属管帽14上端且将上端的开口封闭,所述金属管帽14合围于所述LED芯片20外围,所述透光件30(透明盖)、所述金属管帽14与所述基板11围合形成所述收容腔13,所述基板11的正面与所述金属管帽14内部设置有所述荧光物质。
在一些实施例中,所述金属管帽14包括壳体部141以及分别由所述壳体部141的两端沿垂直于所述壳体部141的长度方向延伸的第一连接部142与第二连接部143,所述第一连接部142位于所述金属管帽14的上端,所述第二连接部143位于所述金属管帽14的下端,所述第一连接部142用于与所述透光件30连接,所述第二连接部143用于与所述基板11连接。
进一步的,所述壳体部141呈环形,所述第一连接部142是由所述壳体部141沿垂直于所述壳体部141的长度方向,向所述壳体部141内延伸得到的,所述第一连接部142的长度小于所述透光件30的长度,所述第二连接部143是由所述壳体部141沿垂直于所述壳体部141的长度方向,向所述壳体部141外延伸得到的,所述第一连接部142围于所述透光件30的部分顶面外围,所述壳体部141围于所述透光件30的侧表面外围。
可以理解的是,所述透光件30(透明盖)与所述金属管帽14的上端可以以玻璃焊料为媒介,通过高温烧结实现连接,并且,所述基板11与所述金属管帽14的下端之间可以焊接从而形成焊接层144。
实施例5d:
如图30所示,本发明实施例5d提供了一种LED封装方法,LED封装方法用于封装上述LED器件100,结合图22至图30,所述LED封装方法包括以下步骤:
S101:制备设有基板11的支架10(支架结构);
S102:将LED芯片20设置于所述基板11的正面;
S103:于所述支架10(支架结构)或/和所述透光件30(透明盖)设置荧光物质,使所述透光件30(透明盖)连接于所述支架10(支架结构)。
对于制备设有基板11的支架10(支架结构)的步骤,制备所述基板11时,在所述基板11的正面与背面可以分别设置用于与所述LED芯片20连接的第一线路111与第二线路112。设置所述第一线路111与第二线路112的方式可以通过DPC(直接镀铜技术-Direct Plating copper)工艺制成。并且,所述基板11的背面可以设置第二线路112,所述基板11设有贯穿所述基板11的导电孔113,所述第一线路111与第二线路112通过所述导电孔113连接,从而能够实现所述LED芯片20、第一线路111与第二线路112之间的连接,进而方便对所述支架10(支架结构)内的LED芯片20的电连接。
在具体应用中,所述第一线路111与第二线路112上可以镀镍金,以防止线路上金属的迁移和氧化,并提高导电和抗氧化性能。其中,要求镀镍的厚度>3um,镀金的厚度>0.05um,以保证导电和抗氧化效果。
对于所述将LED芯片20设置于所述基板11的正面的步骤,是为了使所述LED芯片20固定于所述基板11。在一些实施例中,所述LED芯片20为倒装芯片,第一线路111包括焊盘,在焊盘上设置助焊材料,再将LED芯片20设置于助焊材料上即可实现所述LED芯片20与基板11的连接,通常情况下,在制作第一线路11时,会同步形成第一焊盘。优选的,将所述助焊材料设于所述第一线路111的方式可以通过点涂的方式。可以理解的是,将所述助焊材料点涂于所述第一线路111的可以通过人工、机械结构等方式实现,例如:设置智能机械手,由智能机械手均匀设置定量的助焊材料,从而能够进一步提高焊接效果。
可以理解的是,为了使LED芯片20与基板11的结合更牢固,可将固好芯片的陶瓷基板11通过共晶炉而实现共晶。具体应用中,当所述焊盘可为金锡合金时,共晶炉的温度至少有一个温区温度在300℃-340℃之间且共晶过程需要氮气保护。
对于所述于所述支架10(支架结构)或/和所述透光件30设置荧光物质的步骤,设置所述荧光物质可以通过将所述荧光物质混合于胶水后涂覆于所述支架10(支架结构)或/和所述透光件30的方式,也可以通过将荧光物质与可固化液体混合制成的带有荧光物质的荧光块设于所述支架10(支架结构)或/和所述透光件30(透明盖),或者所述荧光物质直接形成荧光层50等方式设于所述LED器件100中,只要能使所述荧光物质固定于LED器件100中,并且用户能观察到所述荧光物质产生的可见光即可。
可以理解的是,所述胶水是指具有粘结功能的涂料,所述胶水可以是由硅胶、环氧树脂、氟树脂等材料制得的,本发明对于所述胶水的具体材料不作限定。进一步的,使所述胶水固化的方式可以包括等待使胶水自然固化、烘烤固化或者UV光照固化。可以理解的是,所述胶水固化的方式不限于此,只要能使所述胶水固化即可,例如,如果是需要烘烤才能固化的胶水则采用烘烤固化的方式,如可直接用UV光照射即可固化那么采用UV光照固化的方式,若是其他类型的胶水则采用对应的固化方法。
优选的,所述荧光物质为荧光层,所述荧光层可以呈环形、条形、圆形、多边形或者呈无特定形状的块状分布于所述支架10或/和所述透光件30(透明盖),本发明对所述荧光物质涂覆的厚度、宽度及形状不做限制,只要用户能够方便地观察到所述荧光物质发生荧光反应后产生的可见光即可。
对于所述使所述透光件30连接于所述支架10(支架结构)的步骤,不同结构形状的所述透光件30与支架10,所述透光件30与所述支架10的连接方式也略有不同,但只要使所述透光件30(透明盖)与所述支架10围合形成用于收容所述透光件30(透明盖)的收容腔13,或者,所述透光件30设置于所述基板11的正面且覆盖于所述LED芯片20即可。
作为本实施例的其中一种可选实施方式,可参考发明实施例5a,结合图22至图25,可以采取半无机封装的方式对所述透光件30(透明盖)与所述支架10(支架结构)进行封装连接。具体的,在制备所述基板11的步骤后还需制备与所述基板11连接的封装体12,于所述封装体12的内侧壁位于所述LED芯片20上方的至少一部分设有贯通于所述封装体12顶部的安装槽121,然后将所述封装体12的底部座于所述基板11的正面,所述封装体12合围于所述LED芯片20外围,然后将所述透光件30(透明盖)的底部放置于所述安装槽121,然后再将所述透光件30(透明盖)的底部或/和侧面通过胶水固定于所述安装槽121,最后,使所述胶水固化。可以理解的是,所述荧光物质的设置位置也可以根据所述透光件30与支架10(支架结构)结构形状的不同而进行优化调整,在发明实施例一中可以将所述荧光物质混合于上述胶水进而使所述透光件30(透明盖)与荧光物质均固定于所述安装槽121,这样在设置荧光物质的同时还能粘结所述透光件30(透明盖)与所述封装体12。优选的,可以将所述基板11与封装体12一体成型,制造十分方便。
作为本实施例的另一种可选实施方式,可参考发明实施例二,结合图26与图27,可以采取有机封装的方式对所述透光件30与所述支架10进行封装连接。具体的,所述透光件30(透明盖)可以由硅胶、环氧树脂及氟树脂等可模压成型材料制得,在所述支架10(支架结构)或/和所述透光件30(透明盖)设置荧光物质的步骤之后,将所述透光件30通过模具直接molding成型在基板11的正面即可完成所述透光件30与所述支架10(支架结构)的连接。可以理解的是,所述荧光物质的设置位置也可以根据所述透光件30(透明盖)与支架10的具体结构形状不同而进行调整,在发明实施例二中可以于所述基板11的正面设置具有所述荧光物质的荧光层50以方便用户观察。所述荧光层50可以由荧光物质与粘结胶水40混合制得,也可以是由荧光物质与其它可固化液体混合制得的,本发明对此不做限制,只要能使所述荧光物质设于所述基板11即可。
作为本实施例的另一种可选实施方式,可参考发明实施例5c,结合图28与图29,可以采取全无机封装的方式对所述透光件30(透明盖)与所述支架10(支架结构)进行封装连接。具体的,在制备所述基板11后还需制备与所述基板11连接的封装体12,所述封装体12为金属管帽14,所述金属管帽14的上端和下端均设有开口,在于所述支架10(支架结构)或/和所述透光件30设置荧光物质后,再将所述透光件30与所述封装体12的上端以玻璃焊料为媒介,通过高温烧结实现所述透光件30(透明盖)与所述支架10的连接,并且使所述透光件30将所述金属管帽14的上端的开口封闭以实现对所述LED器件100的密封,最后将所述金属管帽14的下端焊接于所述基板11的正面,从而形成焊接层144。
如图31所示,作为本实施例的另一种可选实施方式,于所述支架10(支架结构)或/和所述透光件30设置荧光物质的步骤,进一步包括:
S1031:在所述基板11的正面设置第一线路111,于所述第一线路111上设置有容纳槽,将荧光物质混于胶水中并填充于所述容纳槽。
本实施方式通过设置容纳槽,能够方便地设置包括荧光物质的胶水,避免待固化的胶水流动而影响LED器件100中其他部件的使用。
如图32所示,作为本实施例的其中一种可选实施方式,所述荧光物质的制备步骤包括: 
S1032:将所述荧光物质置于胶水中;
S1032:搅拌所述荧光物质与所述胶水;
S1034:除去所述包括荧光物质的胶水中的气泡。
优选的,由于部分荧光物质具有吸光性,为避免因荧光物质吸收所述LED芯片20发射出的光而影响所述LED器件100的使用,以及保证所述荧光物质足量以产生可见光,将所述荧光物质置于胶水中时,可以控制所述荧光物质混合于粘结胶水40的浓度为5%至10%。为确保浓度,本发明也可以设置智能机械手,由智能机械手均匀设置定量的荧光物质与胶水,从而能够保证所述LED器件100的光照效果与检测效果。
可以理解的是,搅拌所述荧光物质与所述胶水可以通过人工、机械结构等方式实现,例如:设置智能机械手,由智能机械手均匀搅拌,从而能够进一步提高荧光物质的发光效果。除去所述包括荧光物质的胶水中的气泡可以通过人工、机械结构等方式实现,例如:通过脱泡机脱去气泡,从而能够进一步提高荧光物质的发光效果。
本实施方式通过搅拌所述荧光物质与所述胶水以及除去所述包括荧光物质的胶水中的气泡使所述荧光物质与所述胶水混合更均匀,从而提高所述荧光物质的发光效果,进一步方便用户检测LED器件100的工作状态。
本发明所提供的一种LED器件及LED封装方法,所述一种LED器件100包括:支架10(支架结构)、LED芯片20、透光件30(透明盖)与荧光物质。其中,所述支架10包括基板11,所述基板11具有相对的正面和背面。所述LED芯片20固定于所述基板11的正面。所述透光件30与所述支架10围合形成用于收容所述透光件30(透明盖)的收容腔13,或者,所述透光件30(透明盖)设置于所述基板11的正面且覆盖于所述LED芯片20。所述荧光物质设于所述支架10(支架结构)或/和所述透光件30,所述荧光物质用于在所述LED芯片20发射出的光照射时发生荧光反应而产生可见光。当LED芯片工作时,LED芯片发射出的光照射至所述荧光物质,使所述荧光物质能够产生一种可见光,因此本发明所提供的LED器件及LED封装方法通过设置能与所述LED芯片发射出的光产生荧光反应而发出可见光的荧光物质以检测LED器件的工作状态,制作与应用都十分简单方便,用户可方便地观察到LED器件的工作状态,降低了引发安全事故的概率,并且本发明避免了在LED器件中使用另一种可见光芯片或者监控电路,从而避免了使用另一种可见光芯片造成的增大误判率、增加器件故障率以及添加监控电路带来的制作难度大,成本较高等问题,在用户的实际应用中,本器件具有更大的优势。
实施例6:
请参阅图33与图34,本发明提供了一种多层基板,所述多层基板100包括:第一基板10、封装体20与第二基板50。所述第一基板10具有相对的正面与背面,所述第一基板10的正面设有第一线路层11,所述第一基板10的背面设有第二线路层12,所述第一线路层11与所述第二线路层12导通。其中,所述第一线路层11包括第一线路正极111与第一线路负极112。所述封装体20呈环形,且所述封装体20设置于所述第一基板10的正面,所述封装体20围于所述第一线路正极111与第一线路负极112的外围。所述第二基板50通过焊接工艺与所述第一基板10的背面的第二线路层12连接,并且所述第二基板50的背面设有散热层51。本发明所提供的多层基板一方面通过增加第二基板50并且在所述第二基板50设置散热层51,而并非在所述第一基板10的背面设置散热层51,使得第一基板10背面的线路不可能与散热器或散热层51接触,从而无需使用现有技术中的绝缘层来避免线路与散热器或散热层接触,进而也避免了现有技术中绝缘层脱落而导致的正负极短路或者漏电的问题,并且,另一方面通过在第一基板10的正面与背面设置相互连接的线路,使得线路无需穿过封装体20,从而无需如现有技术中在封装体20上设置贯通的缺口,进而避免了设置缺口造成的后续难以对LED装置200进行有效气密性封装的问题,因此,本发明不仅实现了对大功率产品的散热,满足了对大功率LED产品的气密性封装的要求,还降低了LED产品的故障风险,提高了产品的安全可靠性。
对于所述第一基板10,请参阅图34至图36,所述第一基板10设置有导电孔13,所述导电孔13包括至少两个第一导电孔131和至少两个第二导电孔132,优选的,所述至少两个第一导电孔131在所述第一基板10正面的开孔位于所述封装体20的内侧和外侧;所述至少两个第二导电孔132在所述第一基板10正面的开孔分别位于所述封装体20的内侧和外侧,各所述第一导电孔131和第二导电孔132内设有导电材料,从而实现第一线路层11与第二线路层12之间的导通。所述导电孔13贯通所述第一基板10,使得线路无需穿过封装体20,从而无需如现有技术中在封装体20上设置贯通的缺口,进而避免了设置缺口造成的后续难以对LED装置进行有效气密性封装的问题,进而满足了对大功率LED产品的气密性封装的要求,降低了LED产品的故障风险,提高了产品的安全可靠性。
在一些实施例中,参考图33a,于所述第一基板10的表面设置有用于在形成第一线路层11的铜材11a表面覆盖表面金属层11b,用以提高产品的抗氧化性以及方便后续于所述第一基板10的表面设置所述LED芯片30。具体的,表面金属层11b(第一线路层11)的材料可以为金(Au)、银(Ag)、镍(Ni)、钯(Pd)等。需要说明的是,所述LED芯片30可以为倒装芯片,后续可采用共晶工艺固定LED芯片30,表面金属层11b的材料可以优选为镍与金,且金层覆盖镍层,其中,镍层的厚度可以大于3微米,金层的厚度可以大于0.05微米。所述LED芯片30也可为水平或垂直芯片,后续可采用焊线工艺固定LED芯片30,表面金属层11b的材料可以优选为镍、钯与金,自第一基板10的正面,镍层、钯层与金层依次层叠设置,其中,镍层的厚度可以大于3微米,钯层的厚度可以大于0.05微米,金层的厚度可以大于0.05微米。
在具体应用中,所述第一基板10可以由陶瓷材料制得,例如采用氮化铝陶瓷(AlN)、氮化镓陶瓷(GaN)、氧化铝陶瓷(Al 2O 3)、碳化硅陶瓷(SiC)等材料制得,从而满足LED装置,特别是大功率LED装置的散热性与绝缘性。具体应用中,所述第一基板10的厚度可以为0.3毫米至2.0毫米。
对于所述第一线路层11与第二线路层12,请参阅图34至图36,所述第一线路层11还包括电极正极113与电极负极114,电极正极113与电极负极114设置于第一基板10的正面,且所述电极正极113与电极负极114设于所述封装体20的外围,封装体20无需设置缺口,所述第二线路层12包括相互间隔且绝缘的第二线路正极121与第二线路负极122,第二线路正极121与第二线路负极122设置于第一基板10的背面,第二线路正极121位于电极正极113和第一线路正极111的下方,第二线路负极122位于电极负极114和第一线路负极112的下方,所述第二线路正极121通过至少两个所述第一导电孔131分别与所述电极正极113及第一线路正极111连接,所述第二线路负极122通过至少两个所述第二导电孔132分别与所述电极负极114及第一线路负极112连接。
具体的,所述第一导电孔131至少为两个,所述电极正极113设于第一基板10的正面并覆盖于一所述第一导电孔131(上端),所述第一线路正极111设于第一基板10的正面并覆盖于另一所述第一导电孔131(上端),所述第二线路正极121则对应设于第一基板10的背面,其中,所述第二线路正极121覆盖于一所述第一导电孔131(下端),且所述第二线路正极121覆盖于另一所述第一导电孔131(下端),从而使所述第二线路正极121通过第一导电孔131分别与所述电极正极113及第一线路正极111连接,从而实现所述电极正极113与第一线路正极111之间的连接。同理,所述第二导电孔132至少为两个,所述电极负极114设于第一基板10的正面并覆盖于一所述第二导电孔132(上端),所述第一线路负极112设于第一基板10的正面并覆盖于另一所述第二导电孔132(上端),所述第二线路负极122则对应设于第一基板10的背面,其中,所述第二线路负极122覆盖于一所述第二导电孔132(下端),且所述第二线路负极122覆盖于另一所述第二导电孔132(下端),从而使所述第二线路负极122通过第二导电孔132分别与所述电极负极114及第一线路负极112连接,从而实现所述电极负极114与第一线路负极112之间的连接。
具体地,第一基板正面还包括有保护层14,保护层14是通过蚀刻工艺制作第一线路层11后留一下的周围一圈金属层,其实是跟第一线路层11的结构是一样的,只是这个保护层14不起导电作用,留在陶瓷基板表面能起到平衡应力的作用,防止第一基板10翘曲,还起到保护基板的作用。第一基板10背面也可以设置类似于保护层14的保护层,且第一基板10背面的保护层,可以参与到第一基板10与第二基板50的焊接。
优选的,所述导电孔13中可以设有连接所述第一线路层11与第二线路层12的导电金属以使所述导电孔13具有导电作用,其中,导电金属可以为钨(W)、钛(Ti)、镍(Ni)、铬(Cr)、铜(Cu)等金属或者其合金。
具体应用中,所述导电孔13的孔径可以为0.09毫米至0.15毫米,从而在保证导电孔13的导电作用的同时,也避免了孔径过大而影响第一基板10的使用。若第一线路层11与第二线路层12需要通过的电流较大时,所述导电孔13的数量可以随之增加,每个所述导电孔13之间的距离可以大于0.2毫米,避免导电孔13之间的距离过小而使陶瓷基板碎裂。
优选的,第二线路正极121与第二线路负极122的间隔处填充有绝缘材料,从而保证绝缘性。
具体应用中,所述第一线路层11、第二线路层12及下述第三焊接部63均可以通过DPC(直接镀铜技术-Direct Plating copper)工艺设于所述第一基板10。
对于所述封装体20,请参阅图33至图35,其中,图33、图33a和图34是一种包括多颗芯片的LED装置的实施例;图35是另一种仅适用于单颗芯片的LED装置。所述封装体20呈环形并具有顶部和底部,所述封装体20的底部设置于所述第一基板10的正面,所述封装体20设有安装槽21,所述安装槽21用于设置能够将所述安装槽21的槽口封闭的透光件40,所述安装槽21贯通所述封装体20位于下述LED芯片30上方的至少一部分的内侧壁与顶部。当透光件40设于所述安装槽21时,所述透光件40、封装体20和第一基板10的正面则形成用于容纳所述LED芯片30的封装腔。
可以理解的是,所述封装体20可以呈中空的台阶状,所述封装体20的台阶处即为所述安装槽21,为方便设置所述透光件40以及用于固定所述透光件40的密封胶,所述封装体20可以呈单层台阶或多层台阶,例如(如图33所示)当所述封装体20呈单层台阶时,所述透光件40的底面通过密封胶设于安装槽21的槽底面,例如当所述封装体20呈双层台阶时,所述透光件40可以直接设于低层台阶,而密封胶设于所述透光件40的侧面与高层台阶的侧壁面之间而使所述透光件40固定于所述安装槽21,当然,虽然本发明实施例的封装体20可以呈台阶状,但本发明并不限制所述封装体20为台阶状,例如所述封装体20顶部也可以为平坦的台面,所述透光件40的底面可以通过焊接的方式设于所述封装体20的顶面。并且,本发明对所述封装体20的形状不做限制,例如所述封装体20可以呈圆形、方形或菱形等,只要透光件40能设置于安装槽21并且不影响LED装置的使用即可。
在具体应用中,所述封装体20可以由铜材料制得,所述封装体20的表面可以设置堆叠设置的镍金属层与金金属层,从而提高所述封装体20的耐腐蚀性与耐磨性,增长所述封装体20的使用寿命。并且,所述封装体20的高度可以为200微米至1200微米,所述封装体20上设置的镍金属层厚度可以大于3微米,金金属层厚度可以大于0.05微米。
对于所述第二基板50,请参阅图33、图37与图38,在具体应用中,所述第一基板10与所述第二基板50可以均为陶瓷基板,所述第二基板50可以由陶瓷材料制得,例如采用氮化铝陶瓷(AlN)、氮化镓陶瓷(GaN)、氧化铝陶瓷(Al 2O 3)、碳化硅陶瓷(SiC)等材料制得,从而满足LED装置200,特别是大功率LED装置的散热性与绝缘性。具体应用中,所述第二基板50的厚度可以为0.3毫米至2.0毫米。
对于所述散热层51,优选的,所述散热层51包括层叠设置的铜散热层、镍散热层与金散热层,所述铜散热层的厚度为50至300微米,所述镍散热层的厚度大于3微米,所述金散热层的厚度大于0.05微米,从而使所述散热层51具有更好的散热效果。
在一些实施例中,所述第一基板10与第二基板50之间具有连接所述第一基板10和第二基板50的焊接层60,对于所述焊接层60,请参阅图33至图38,在一些实施例中,所述焊接层60包括相互分隔的第一焊接部61与第二焊接部62,所述第一焊接部61对应所述第二线路正极121设于所述第二基板50的正面,所述第二焊接部62对应所述第二线路负极122设于所述第二基板50的正面,所述第一焊接部61与所述第二焊接部62分别与所述第二线路正极121与所述第二线路负极122焊接,且所述第一焊接部61与所述第二焊接部62绝缘,从而实现所述第一基板10与第二基板50的焊接。
优选的,所述第一焊接部61与第二线路正极121的形状与尺寸相同,所述第二焊接部62与第二线路负极122的形状与尺寸相同。这样设置不仅让所述第一基板10与第二基板50能够更好地连接,也在一定程度上避免了在所述第一基板10与第二基板50焊接时两者轻微错位即导致的正负极短路现象。具体的,沿垂直于所述第一焊接部61与第二线路正极121的厚度方向,所述第一焊接部61与第二线路正极121的形状与尺寸相同,所述第二焊接部62与第二线路负极122的形状与尺寸相同,本发明对第一焊接部61、第二线路正极121、所述第二焊接部62与第二线路负极122的具体形状、尺寸以及厚度不做限制,只要第一焊接部61与第二焊接部62能起到焊接作用及第二线路正极121与第二线路负极122能起到电路导通与焊接的作用即可。
优选的,所述焊接层60还包括第三焊接部63,所述第三焊接部63可以呈封闭的环形,且围于所述第二线路层12的外围。进一步的,所述第三焊接部63可以与所述第二线路层12之间相互间隔且绝缘。同理,所述焊接层60还可以包括第四焊接部64,所述第四焊接部64可以呈封闭的环形,且围于所述第一焊接部61与第二焊接部62的外围。进一步的,所述第四焊接部64可以与所述第一焊接部61与第二焊接部62之间相互间隔且绝缘。进一步的,所述第三焊接部63与第四焊接部64可以与第一基板10的背面及第二基板50的正面围合形成收容所述第二线路正极121与第二线路负极122的封闭空间以保护所述第二线路正极121与第二线路负极122。所述第三焊接部63与第四焊接部64的设置不仅能提高所述第一基板10与第二基板50连接的牢固性,还能围于所述第二线路正极121、第二线路负极122、第一焊接部61与第二焊接部62的外围,减少水汽侵入所述第二线路正极121与第二线路负极122的可能,提高产品的防护性能。
优选的,所述第三焊接部63与第四焊接部64的形状与尺寸相同,这样设置不仅让所述第一基板10与第二基板50能够更好地连接,也在一定程度上避免了在所述第一基板10与第二基板50焊接时两者轻微错位即导致的正负极短路现象。具体的,沿垂直于所述第三焊接部63与第四焊接部64的厚度方向,所述第三焊接部63与第四焊接部64的形状与尺寸相同,本发明对第三焊接部63与第四焊接部64的具体形状、尺寸以及厚度不做限制,只要所述第三焊接部63与第四焊接部64能起到焊接作用即可。
优选的,为避免所述第一基板10与第二基板50在焊接时因两者轻微错位即导致正负极短路的现象,本发明可对所述第三焊接部63与第二线路层12、所述第二线路正极121与第二线路负极122、第四焊接部64分别与第一焊接部61及第二焊接部62,以及,第一焊接部61及第二焊接部62之间的距离进行限制以减小短路的可能性。结合图33、图36与图37,在具体应用中,所述第三焊接部63与第二线路层12之间的间隔的最小距离W1可以大于0.2毫米,所述第二线路正极121与第二线路负极122之间的间隔的最小距离W2可以大于0.2毫米;所述第四焊接部64与所述第一焊接部61之间的间隔的最小距离可以大于0.2毫米;所述第四焊接部64与所述第二焊接部62之间的间隔的最小距离可以大于0.2毫米;所述第一焊接部61与所述第二焊接部62之间的间隔的最小距离可以大于0.2毫米。
优选的,所述第三焊接部62与所述第二线路层12之间的间隔处可以设有绝缘材料以保证绝缘性。
优选的,所述第一线路层11、第二线路层12与焊接层60均包括层叠设置的铜金属层、镍金属层与金金属层,其中,所述铜金属层的厚度可以为50微米至80微米,镍金属层的厚度可以大于3微米,金金属层的厚度可以大于0.05微米,从而使所述第一线路层11与第二线路层12具有更好的线路导通效果,以及使所述焊接层60具有更好的焊接效果。
请参阅图33与图34所示,本发明提供了一种LED装置200,所述LED装置200包括上述多层基板100,还可以包括透光件40和LED芯片30,所述透光件40连接于所述封装体20,所述LED芯片30设置于所述第一基板10正面且与所述第一线路正极111与所述第一线路负极112电连接;所述透光件40、封装体20和第一基板10的正面形成密封所述LED芯片30的封装腔。
对于所述LED芯片30,请参阅图33与图34,优选的,所述LED芯片30通过COB(Chip On Board,板上芯片封装)的封装方式进行集成。现有技术中的LED模组通常通过SMT(Surface Mounted Technology,表面组装技术)贴片的方式进行集成,这种集成方式需要首先在PCB基础上进行,需将LED器件设于PCB上,其主要具有三种问题,一是其中的各个LED器件往往需要锡膏才能焊接到PCB(Printed Circuit Board,印制电路板)上,从而导致LED器件中的芯片散发的热量必须要经过锡膏与PCB才能传输至与PCB连接的散热器,使得散热路径较长从而影响产品的散热性与使用寿命,并且,在制作PCB还需要设置绝缘层以避免PCB上线路短路,绝缘层的设置进一步降低了产品的导热性;二是通过SMT设置LED器件时各个器件之间需要具有一定距离,以避免贴片过程中因为贴片误差而导致LED器件之间相互干扰,在LED器件本身尺寸的影响下,LED模组的尺寸进一步加大,从而使产品的应用具有局限性;三是各个LED器件之间的距离较大也降低了单位面积内的光功率密度。而采用COB的封装方式可以直接在基板上对芯片进行集成,相较于现有技术中通过SMT的方式,采用COB的封装方式无需使用锡膏,从而减短产品的散热路径,提高产品的散热性,也无需增大芯片之间的距离以避免贴片误差,从而减小了产品的尺寸,提高了产品的光功率密度,提升了使用效果。
优选的,所述LED芯片30可以为UV-LED芯片,UV-LED芯片的波长范围可以为100纳米至350纳米,本发明能够实现对大功率UV-LED装置的散热,满足对大功率UV-LED装置的气密性封装的要求,还降低了大功率UV-LED装置的故障风险,提高了产品的安全可靠性。
优选的,所述LED芯片30可以为倒装芯片,从而方便使用COB的方式进行集成。并且,所述LED芯片30的电极可以为金锡合金从而方便将所述LED芯片30设于所述第一基板10。
在具体应用中,所述LED芯片30的数量及连接方式可根据实际需要或LED装置200的电源进行适配。例如,所述LED芯片30的数量可以为64个,64个所述LED芯片30分别以8排8列排列设置于所述第一基板10的正面,每一排的所述LED芯片30相互串联。可以理解的是,在一些其它的实施例中,所述LED芯片30的串联并联可以设置成2*2(2串2并)、3*3、4*4、5*5、6*6、7*7、8*8等方式,本发明对所述LED芯片30的数量及连接方式不做限制,只要不影响实际使用即可。
对于所述透光件40,请参阅图33,所述透光件40的材质可以为石英或者蓝宝石等材料。所述透光件40的用于与所述封装体20连接的底部可以设有金锡合金以方便连接,其中金的成分含量为80wt%,锡的成分含量为20wt%,金锡合金的熔点为280℃。
如图39所示,本发明实施例提供的一种多层基板的制造方法,可用于制造上述多层基板100,请结合图33-图38,该方法包括如下步骤:
S101:制备第一基板与第二基板,然后把第一基板与第二基板焊接;
S1011:制备第一基板包括:
于所述第一基板,避开封装体的设置位置,设置贯穿所述第一基板的导电孔;
于所述第一基板的正面和背面分别设置第一线路层和第二线路层,并使所述第一线路层和第二线路层通过所述导电孔导通,所述第一线路层包括第一线路正极与第一线路负极;所述第二线路层包括第二线路正极与第二线路负极;
于所述第一基板的正面设置呈环形的封装体,所述封装体合围所述第一线路层的第一线路正极与第一线路负极;
S1012:制作第二基板包括:
于所述第二基板的正面设置用于所述第一基板背面的第二线路层焊接的金属层,于所述第二基板的背面设置散热层;
S1013:把第一基板与第二基板焊接具体包括:
使所述第二基板的正面通过焊接工艺与所述第一基板背面的第二线路层连接,形成焊接层。
优选的,所述第一基板10与第二基板50可以由陶瓷材料制得,例如采用氮化铝陶瓷(AlN)、氮化镓陶瓷(GaN)、氧化铝陶瓷(Al 2O3)、碳化硅陶瓷(SiC)等材料制得,从而满足LED装置,特别是大功率LED装置的散热性与绝缘性。实际应用中,所述第一基板10与第二基板50可以通过流延法制得,再通过打磨和/或裁剪成所需要的尺寸。实际应用中,所述第一基板10与第二基板50的厚度可以为0.3毫米至2.0毫米。
优选的,设置贯穿所述第一基板10的导电孔13的步骤之后,可以先使所述第一基板10的表面薄膜金属化以提高所述第一基板10表面的性能。
具体的,设置导电孔13的方式可以通过激光钻孔或者机械钻孔等方式在所述第一基板10上钻孔,再在孔内通过真空镀镀导电金属形成导电孔13,导电孔13具备导电作用。导电金属可以为钨(W)、钛(Ti)、镍(Ni)、铬(Cr)、铜(Cu)等金属或者其合金。并且,所述导电孔13的孔径可以为0.09毫米至0.15毫米,从而在保证导电孔13的导电作用的同时,也避免了孔径过大而影响第一基板10的使用。若第一线路层11与第二线路层12需要通过的电流较大时,所述导电孔13的数量可以随之增加,每个所述导电孔13之间的距离可以大于0.2毫米,避免导电孔13之间的距离过小而使陶瓷基板碎裂。
具体的,使所述第一基板10的表面薄膜金属化的方式可以通过真空镀或者磁控溅射等方式将薄膜金属设于所述第一基板10的表面,并且,所述薄膜金属可以为钨(W)、钛(Ti)、镍(Ni)、铬(Cr)等金属或者其合金。具体应用中,所述薄膜金属可以为钨钛合金(WTi),钨钛合金(WTi)的厚度可以为0.1微米。具体应用中,所述薄膜金属可以为镍铬合金(CrNi),镍铬合金(CrNi)的厚度可以为0.25微米。
具体的,于所述第一基板10的正面和背面分别设置第一线路层11和第二线路层12以及于所述第二基板50的背面设置散热层51均可以通过DPC(直接镀铜技术-Direct Plating copper)工艺设于所述第一基板10或第二基板50。
优选的,设置第一线路层11和第二线路层12的步骤可以为:于所述第一基板10的表面镀铜;于所述第一基板10的镀铜表面压干膜并在所述干膜上分别设置第一线路层11和第二线路层12的图形;对所述第一线路层11和第二线路层12进行曝光与显影;蚀刻线路以除去不需要的铜;除去所述第一基板10的表面的干膜;研磨所述第一基板10、第一线路层11与第二线路层12。其中,镀铜的厚度可以为50微米至80微米;压干膜的目的是使干膜覆盖于第一基板10的铜表面从而能够在干膜上分别雕刻第一线路层11和第二线路层12的图案;可以使用砂带研磨所述第一线路层11与第二线路层12,从而提高第一基板10、第一线路层11与第二线路层12表面的平整度。可以理解的是,所述焊接层60与散热层51也可以通过相同的步骤设于所述第一基板10或第二基板50。
优选的,于所述第一基板10的正面设置呈环形的封装体20的步骤可以包括:对所述封装体20进行喷砂处理;对所述封装体20压膜;对所述封装体20进行曝光与显影;对所述封装体20电镀加厚;研磨所述封装体20的表面;除去所述封装体20表面的干膜;对所述封装体20进行退铜退钛处理。其中,对所述封装体20进行喷砂处理可以清除封装体20表面的杂质、杂色及氧化层,同时使表面粗化,消除工件残余应力和提高基材表面硬度。研磨则用于提高所述封装体20的表面的平整度。
具体应用中,为提高所述封装体20的耐腐蚀性与耐磨性,增长所述封装体20的使用寿命,所述封装体20可以由铜材料制得,于所述封装体20的表面可以堆叠设置镍金属层与金金属层。实际应用中,所述封装体20的高度可以为200微米至1200微米,所述封装体20上设置的镍金属层厚度可以大于3微米,金金属层厚度可以大于0.05微米。
优选的,于所述第一基板10的正面设置呈环形的封装体20的步骤之前,或者于所述第一基板10的正面设置LED芯片30的步骤之前,可以对第一基板10与(已经设置所述散热层51的)第二基板50的铜表面11a设置表面金属层11b,进而能够提高产品的抗氧化性以及方便后续于所述第一基板10的表面设置所述第一线路层11与LED芯片30。具体的,表面金属层11b的材料可以为金(Au)、银(Ag)、镍(Ni)、钯(Pd)等。需要说明的是,所述LED芯片30可以为倒装芯片,后续可采用共晶工艺固定LED芯片30,表面金属层11b的材料可以优选为镍与金,且金层覆盖于镍层,其中,镍层的厚度可以大于3微米,金层的厚度可以大于0.05微米。所述LED芯片30也可为水平或垂直芯片,后续可采用焊线工艺固定LED芯片30,表面金属层11b的材料可以优选为镍、钯与金,自第一基板10的正面,镍层、钯层与金层依次叠设置,其中,镍层的厚度可以大于3微米,钯层的厚度可以大于0.05微米,金层的厚度可以大于0.05微米。
优选的,使所述第二基板50的正面通过焊接层60与所述第一基板10的背面连接的方式可以借助焊料通过回流焊或者真空炉焊接等方式使第二基板50的正面与所述第一基板10的背面焊接,焊接的温度根据焊料的熔点进行调整。具体应用中,所述焊料的具体材料可以根据芯片与透光件40的具体加工方式进行选择。例如,当芯片共晶与封装透光件40时选择的助焊材料均为金的成分含量为80wt%,锡的成分含量为20wt%的金锡合金时,所述焊料也可以采用此金锡合金;又例如,对于后续封装过程中温度在280℃以内的产品,焊料可以为金锡合金(Au 80Sn 20),其中金的成分含量为80wt%,锡的成分含量为20wt%,焊料的熔点可以为280℃;又例如,对于后续封装过程中温度在360℃以内的产品,焊料可以为金锗合金(Au 88Ge 12),其中金的成分含量为88wt%,锗的成分含量为12wt%,焊料的熔点可以为361℃,以适合后期封装过程中温度在360℃以内的产品。可以理解的是,将所述焊料点涂于所述第一基板10与第二基板50可以通过人工、机械结构等方式实现,例如:设置智能机械手,由智能机械手均匀设置定量的焊料,从而能够进一步提高焊接效果。
可以理解的是,所述焊料分别涂布于第二基板50的正面与所述第一基板10的背面通过焊接后形成所述焊接层60。具体的,所述焊接层60于所述第一基板10背面的部分为第三焊接部63,所述焊接层60于所述第二基板50的正面的部分为第一焊接部61、第二焊接部62与第四焊接部64,所述第一焊接部61对应所述第二线路正极121,所述第一焊接部61与所述第二线路层12中的第二线路正极121焊接,所述第二焊接部62对应所述第二线路负极122,所述第二焊接部62与所述第二线路层12中的第二线路负极122焊接,所述第三焊接部63设于所述第一基板10的背面且呈环形围于所述第二线路正极121与第二线路负极122的外围,所述第四焊接部64对应所述第三焊接部63,所述第四焊接部64呈环形围于所述第一焊接部61与第二焊接部62的外围。优选的,所述焊料于所述第三焊接部63与第四焊接部64处可以更均匀地涂布于所述第二线路正极121与第二线路负极122的外围,所述焊料于所述第三焊接部63与第四焊接部64处的厚度(也即所述第三焊接部63与第四焊接部64堆叠的厚度)等于所述第二线路正极121与第一焊接部61堆叠的厚度以及第二线路负极122与第二焊接部62堆叠的厚度,能够减少水汽侵入所述第二线路正极121与第二线路负极122的可能,提高产品的防护性能。当然,本发明对焊接层60中各部分的具体形状、尺寸以及厚度,也即焊料涂布的具体形状、大小与厚度不做限制,只要能起到焊接作用即可。
优选的,为避免所述第一基板10与第二基板50在焊接时因两者轻微错位即导致正负极短路的现象,本发明可以对所述第三焊接部63与第二线路层12之间、所述第二线路正极121与第二线路负极122之间、第四焊接部64分别与第一焊接层60及第二焊接层60之间,以及,第一焊接层60及第二焊接层60之间的距离进行限制以减小短路的可能性。在具体应用中,所述第三焊接部63与第二线路层12之间的最小距离W1可以大于0.2毫米,所述第二线路正极121与第二线路负极122之间的最小距离W2可以大于0.2毫米;所述第四焊接部64与所述第一焊接部61之间的最小距离可以大于0.2毫米;所述第四焊接部64与所述第二焊接部62之间的最小距离可以大于0.2毫米;所述第一焊接部61与所述第二焊接部62之间的最小距离可以大于0.2毫米。本发明提供的多层基板的制造方法一方面通过增加第二基板50并且在所述第二基板50设置散热层51,而并非在所述第一基板10的背面设置散热层51,使得第一基板10背面的线路不可能与散热器或散热层51接触,从而无需使用现有技术中的绝缘层来避免线路与散热器或散热层接触,进而也避免了现有技术中绝缘层脱落而导致的正负极短路或者漏电的问题,并且,另一方面通过在第一基板10的正面与背面设置相互连接的线路,使得线路无需穿过封装体20,从而无需如现有技术中在封装体20上设置贯通的缺口,进而避免了设置缺口造成的后续难以对LED装置进行有效气密性封装的问题,因此,本制造方法不仅能够实现对大功率产品的散热,还满足了对大功率LED产品的气密性封装的要求,降低了LED装置的故障风险,提高了产品的安全可靠性。
本发明实施例还提供了一种封装结构的封装方法,所述封装方法包括所述多层基板的制造方法,所述多层基板的制造方法请参照下列描述。
在一些实施例中,制备第一基板与第二基板,然后把第一基板与第二基板焊接的步骤之后,所述多层基板的制造方法,还可以包括:
S102:于所述第一基板的正面设置LED芯片,使所述LED芯片连接于所述第一线路正极与第一线路负极;于所述封装体设置透光件,使所述透光件、封装体和第一基板的正面形成密封所述LED芯片的封装腔。
优选的,于所述第一基板10的正面设置LED芯片30的方式可以通过COB(Chip On Board,板上芯片封装)的封装方式对LED芯片30进行集成。现有技术中的LED芯片通常通过SMT(Surface Mounted Technology,表面组装技术)贴片的方式进行集成,这种集成方式需要首先在PCB基础上进行加工,再将LED设于基板,其主要具有三种问题,一是其中的各个芯片往往需要锡膏才能焊接到PCB(Printed Circuit Board,印制电路板)上,从而导致芯片散发的热量必须要经过锡膏与PCB才能传输至与PCB连接的散热器,使得散热路径较长从而影响产品的散热性与使用寿命,并且,在制作PCB还需要设置绝缘层以避免PCB上线路短路,绝缘层的设置进一步降低了产品的导热性;二是通过SMT设置芯片时各个芯片之间需要具有一定距离以避免贴片过程中因为贴片误差而导致芯片之间相互干扰而产生焊盘移位的现象,在芯片本身尺寸的影响下,产品的尺寸进一步加大,从而使产品的应用具有局限性;三是各个芯片之间的距离较大也降低了单位面积内的光功率密度。而采用COB的封装方式可以直接在基板上对芯片进行集成,相较于现有技术中通过SMT的方式,采用COB的封装方式无需使用锡膏,从而减短产品的散热路径,提高产品的散热性,也无需增大芯片之间的距离以避免贴片误差,从而减小了产品的尺寸,提高了产品的光功率密度,提升了使用效果。
优选的,所述LED芯片30可以为倒装芯片,从而方便使用COB的方式进行集成。
为了使所述LED芯片30与所述第一基板10的连接更牢固可以再使所述LED芯片30与所述基板共晶,实现共晶的方式可以为:将连接完成的LED芯片30与第一基板10通过共晶炉。具体应用中,共晶炉的温度至少有一个温区温度在280℃至320℃之间且共晶过程可通入氮气保护。
在具体应用中,所述LED芯片30的数量及连接方式可根据实际情况或LED装置200的电源进行适配。例如,所述LED芯片30的数量可以为64个 ,64个所述LED芯片30分别以8排8列排列设置于所述第一基板10的正面,每一排的所述LED芯片30相互串联。可以理解的是,在一些其它的实施例中,所述LED芯片30的串联并联还可以设置成2*2(2串2并)、3*3、4*4、5*5、6*6、7*7、8*8等方式,本发明对所述LED芯片30的数量及连接方式不做限制,只要不影响实际使用即可。
具体应用中,于所述封装体20设置透光件40的步骤中,所述透光件40的材质可以为石英或者蓝宝石等材料。在具体应用中,所述透光件40的用于与所述封装体20连接的底部可以设有助焊材料例如金锡合金以方便连接,其中金的成分含量为80wt%,锡的成分含量为20wt%,金锡合金的熔点为280℃。
本发明实施例通过于所述多层基板100设置LED芯片30与透光件40,可以得到具有所述多层基板100的LED装置200,从而不仅实现了对大功率LED装置的散热,满足了对大功率LED产品的气密性封装的要求,还降低了LED装置的故障风险,提高了产品的安全可靠性。本发明提供了一种多层基板及其制造方法与LED装置,所述多层基板100包括:第一基板10、封装体20、LED芯片30、透光件40与第二基板50。所述第一基板10具有相对的正面与背面,所述第一基板10的正面设有第一线路层11,所述第一基板10的背面设有第二线路层12,所述第一线路层11与所述第二线路层12导通。其中,所述第一线路层11包括第一线路正极111与第一线路负极112。所述封装体20呈环形并设置于所述第一基板10的正面,所述封装体20围于所述第一线路正极111与第一线路负极112的外围。所述透光件连接于所述封装体,并且所述透光件、封装体和第一基板的正面形成封装腔。所述LED芯片设置于所述封装腔内且连接于所述第一线路正极与所述第一线路负极。所述第二基板50的正面通过焊接层60连接于所述第一基板10的背面,并且所述第二基板50的背面设有散热层51。本发明一方面通过增加第二基板50并且在所述第二基板50设置散热层51,而并非在所述第一基板10的背面设置散热层51,使得第一基板10背面的线路不可能与散热器或散热层51接触,从而无需使用现有技术中的绝缘层来避免线路与散热器或散热层接触,进而也避免了现有技术中绝缘层脱落而导致的正负极短路或者漏电的问题,并且,另一方面通过在第一基板10的正面与背面设置相互连接的线路,使得线路无需穿过封装体20,从而无需如现有技术中在封装体上设置贯通的缺口,进而避免了设置缺口造成的后续难以对LED装置进行有效气密性封装的问题,因此,本发明不仅实现了对大功率产品的散热,满足了对大功率LED产品的气密性封装的要求,还降低了LED装置的故障风险,提高了产品的安全可靠性。
实施例7,包括实施例7a、实施例7b和实施例7c,详细分述如下:
实施例7a:
本发明提供了一种LED装置,请参阅图40至图45,所述LED装置100包括:基板10与多个LED芯片20。所述基板10具有相对的正面与背面,所述基板10的正面设有第一线路层11,第一线路层11包括多组正极焊盘与负极焊盘组(包括正极焊盘111与负极焊盘112),基板10的背面设有第二线路层12,第二线路层12包括多组正极端子与负极端子组(包括正极端子121与负极端子122)。参考图42所示正极端子121与负极端子122对称设置(对称轴如图中L1所示)于基板10背面相对的两侧;基板10背面各正极端子121呈线性间隔排列且等距设置于基板10背面的同一侧,各负极端子122呈线性间隔排列且等距设置于基板10背面的另一侧且与各正极端子121一一相对,且一正极焊盘111通过贯通基板10的正极导电孔131与一正极端子121导通;且一负极焊盘112通过贯通于所述基板10的负极导电孔132与一负极端子122导通。即各正极焊盘111和各正极导电孔131和各正极端子121一一对应连接;各负极焊盘112和各负极导电孔132和各负极端子122一一对应连接。各LED芯片20分别与基板10正面的一组正极焊盘111和负极焊盘121电连接连接,其中一LED芯片20与一组正极焊盘111及负极焊盘112连接。各LED芯片20可以通过与之对应的正极端子121和负极端子122独立控制,即当基板10背面的正极端子121和负极端子122连通电源时,操作人员即可单独控制与该组正极端子121和负极端子122电连接的LED芯片20,例如,可单独点亮或关闭。本发明通过基板10正面的一组正极焊盘111与负极焊盘112与一个LED芯片20连接,由于各LED芯片20的控制是独立的,不仅使LED装置100可以封装不同电压、不同波长的LED芯片20,还使用户实现了对其中单个LED芯片20或者多个LED芯片20的单独控制,让用户能够根据使用情况控制任意一个LED芯片20有效出光。
并且,现有技术中的多个LED芯片之间串并联方式已固定好,不可改变,而本发明中,各LED芯片20均可单独控制,没有固定的串并联方式,串并联方式可通过与正极端子121和负极端子122的连接的电路而改变(参考下文说明),提高了LED装置100的兼容性,方便对LED装置100管理且降低了制造的难度、时间与成本,使得产品的应用范围更广,适用性更强。
请参考图47至图50并结合图40至图45,图40至图45所示为具有4颗LED芯片20的LED装置,图47所示出了4颗LED芯片20的相互独立的电连接关系。4颗LED芯片20分别为LED1,LED2,LED3,LED4,每个LED芯片20均并联一倒装结构的齐纳芯片50(下文再详细说明)。由于各基板10正面的正极焊盘111通过正极导电孔131与基板10背面的正极端子121连接;各基板10正面的负极焊盘112通过负极导电孔132与基板10背面的负极端子122连接,每个LED芯片20均在基板10背面有对应的一组正极端子121和负极端子122与之连接,故正极端子121有4个,负极端子122也有4个。为便于说明,其中正极端子121可编号为①③⑤⑦,负极端子122可分别编号为②④⑥⑧,LED1的两极分别电连接于①②,LED2的两极分别电连接于③④,LED3的两极分别电连接于⑤⑥,LED4的两极分别电连接于⑦⑧。各LED均可单独由对应的一组正极端子121和负极端子122控制,例如LED1可由正极焊盘①和负极焊盘②控制;LED2可由正极焊盘③和负极焊盘④控制,以此类推。
其中,各LED芯片20串联可通过PCB电路板的印刷电路实现,本实施例中的LED装置100各LED芯片20之间没有串并联关系,而在与PCB板配合使用时,PCB板上根据电路设计的需要,设计匹配的电路(为便于说明,在此称为外部电路)以将各LED芯片之间形成需要的串并联关系。
参考图47a、图47b和图40至图45,图47a示出了各LED芯片20相互并联的示意图,外围电路(图47a和图47b中用灰色块示意外围电路)将正极焊盘①③⑤⑦和负极焊盘②④⑥⑧电连接;从而实现各LED芯片20的并联连接。
参考图48、图48a和图40至图45,图48示出了各LED芯片20依次串联的示意图,外围电路(图48和图48a中用灰色块示意外围电路)将正极焊盘③和负极焊盘②电连接;将正极焊盘④和负极焊盘⑤电连接;将正极焊盘⑥和负极焊盘⑦电连接,从而实现各LED芯片20的串联连接。
再参考图49和图49a所示,外围电路(图49和图49a中用灰色块示意外围电路)将正极焊盘①和③电连接;将正极焊盘⑤和⑦电连接;将负极焊盘②和④电连接;将负极焊盘⑥和⑧电连接;然后再将负极焊盘④正极焊盘⑤电连接,从而实现各LED芯片20的一种串并联关系。
再参考图50和图50a所示,外围电路(图50和图50a中用灰色块示意外围电路)将正极焊盘①和⑤电连接;将负极焊盘④和⑧电连接;将负极焊盘②和正极焊盘③电连接;将负极焊盘⑥和正极焊盘⑦电连接,从而实现各LED芯片20的另一种串并联关系。
与上述示例类似,通过PCB板上的外围电路还可实现其他串并联连接关系。本实施例提供的LED装置100,并未对各LED芯片20之间的串并联关系进行限定,而是为各LED芯片20留出独立的正极端子和负极端子组,从而给外围电路的设计留出充足的设计空间,可适配不同的外围电路,兼容性和适用性广泛。当然,本发明对实现LED芯片20之间的串并联关系的方法不限于此,例如多组正极端子和负极端子组之间可以通过设置有开关二极管的电路连接,用户通过控制各开关二极管以控制线路通断,即可在电路线路固定的情况下切换LED芯片20之间的串并联关系。
本实施例中的LED芯片20有4颗,呈矩形阵列设置,具有出光均匀性好的优点。各LED芯片20均为倒装结构的LED发光芯片,可以为可见光发光芯片(例如蓝光LED芯片),也可以为不可见光发光芯片,例如红外LED发光芯片或紫外LED发光芯片。在别的实施例中,LED芯片20的数量还可以为其他数量的芯片,例如LED芯片20的数量为n*n颗,其中n为大于2的自然数,例如LED芯片20的数量可以为3*3总共9颗,或者LED芯片20的数量可以为4*4总共16颗,以此类推,各LED芯片20呈矩形阵列设置,具有结构紧凑,集成度高且出光均匀性好的优点。
具体的,基板10设有贯穿基板10的正极导电孔131与负极导电孔132,正极导电孔131与负极导电孔132内均填充有导电材料,使得正极焊盘111通过所述正极导电孔131与正极端子121导通,负极焊盘112通过负极导电孔132与负极端子122导通,这样设置不仅具有良好的导通效果,而且制造简单且成本低,正极导电孔131与负极导电孔132可垂直贯穿基板10且对称设置,便于加工。
具体的,参考图41、图42、图45和图45a,基板10正面的正极焊盘111与负极焊盘112在基板10正面形成呈矩形的电路图案(参考图45a所示),各LED芯片20均布于所述电路图案,呈矩形的电路图案更适应呈矩形的LED芯片20,使LED芯片20更容易均匀设置在电路图案上。一种实施例中,各LED芯片20组成的LED芯片阵列所定义出的矩形所具有的几何中心(参考图41中心点O所示)与所述电路图案的几何中心重合,使得LED装置100的出光对称性良好。电路图案包括分别位于所述电路图案相对的两侧的第一边缘区域13和第二边缘区域14,各正极导电孔131位于所述电路图案一侧的第一边缘区域13;各负极导电孔132位于所述电路图案另一侧的第二边缘区域14。第一边缘区域13和第二边缘区域14位于电路图案的边缘处,避免与LED的安装位置发生干涉。
电路图案设有间隔各基板10正面的正极焊盘111和负极焊盘112的间隙115,间隙115至少大于0.2mm,以保证各焊盘之间的绝缘性;各正极导电孔131呈线性排列;各负极导电孔132呈线性排列,且各正极导电孔131与负极导电孔132一一对应对称设置,便于加工。
参考图 41和图45a,为便于说明基板10正面的正极焊盘111与负极焊盘112和LED芯片20之间的对应关系,可将多个基板10正面的正极焊盘111编号为第一正极焊盘1P,第二正极焊盘2P,第三正极焊盘3P,第四正极焊盘4P,以此类推,若正极焊盘111有n个,则第n正极焊盘111为nP;类似的,可将多个基板10正面的负极焊盘112编号为第一负极焊盘1N,第二负极焊盘2N,第三负极焊盘3N,第四负极焊盘4N,以此类推,若负极焊盘112有n个,则第n负极焊盘为nN;可将LED芯片20编号为LED1,LED2,LED3,LED4以此类推,若LED芯片有n颗,第n颗LED芯片为LEDn。参考图45a中的粗虚线所示,基板10正面的第n正极焊盘111的一端与对应的第n 颗LED芯片LEDn的正极连接,另一端延伸至第一边缘区域13与一对应的第n正极导电孔131连接;基板10正面的第n负极焊盘112一端与对应的第n LED芯片20的负极连接,另一端延伸至第二边缘区域14与一对应的第n负极导电孔132连接。图6a中各粗虚线表示各焊盘(正极焊盘111和负极焊盘112)隐含的电连接线(这里说的隐含是指虚拟的),然后以各隐含的电连接线为主线向外拓展,形成各焊盘的形状,各焊盘图案之间没有交叉使得各焊盘的图案非常简洁,各焊盘在保持绝缘间隙的情况下,尽量扩展,以便与LED芯片20的电极充分接触,以便于LED芯片20的散热。本实施例中各焊盘图案隐含的电连接线包括横向和/或纵向连接线,不存在斜线或曲线,使得各焊盘以电连接线向外扩展时,也是以垂直于各隐含的电连接线的方向扩展,使得各焊盘的形状层块状,且呈现由多个矩形拼接而成的图案,各焊盘的外侧边对其,使得各焊盘组成的电路图案呈矩形。本实施例中各焊盘这样设计有利于简化设计,便于生产制造。需要说明的是,本实施例中,各LED芯片20还并联一个齐纳芯片50,故,各焊盘隐含的电连接线还连接至齐纳芯片50的电极。
具体地,参考如图45a所示的电路图案。本实施例中电路图案以其几何中心为对称点旋转对称(即电路图案以其旋转中心支点旋转180°后与其重合);可简化正极焊盘111和负极焊盘112的设计,便于设计和制造。进一步地,为了在生产制程中,或者在使用LED装置100过程中,便于标识LED装置100的放置位置,在电路图案上还设有第一定位标识113。第一定位标识113可以电路图案边缘处形成的矩形缺口,在别的示例中第一定位标识113还可以为电路图案边缘处形成的三角形缺口或凸起或其他形状。第一定位标识113可以定义LED装置100的负极,或者放置方向,例如第一定位标识113可以定义为LED装置100的左侧(或下侧),在LED装置100固设LED芯片20时,可以将LED装置100的第一定位标识113均朝向左侧(或下侧),使得各LED芯片20在固晶作业中具有良好的一致性。保证各LED装置100一模一样。在别的示例中第一定位标识113还可以标识LED芯片20的负极方向,例如可通过第一定位标识113标识各LED芯片20的负极的方向。需要说明的是,第一定位标识113的存在会让电路图案不是严格意义上的以其几何中心为对称点旋转对称的图案,但是第一定位标识113也可以不在电路图案上,例如第一定位标识113也可以设置在LED装置100的封装体30上,故,本实施例所述的电路图案以其几何中心为对称点旋转对称,是指在不考虑或忽略第一定位标识113的情况下电路图案等同于或大体上以其几何中心为对称点旋转对称。参考图42所示,LED装置100的背面的也可以设有第二定位标识114,本实施例中第二定位标识114设于散热层15上。第二定位标识114主要用于标识负极端子122,即靠近第二定位标识114一侧的电极端子为负极端子122。由于散热层15主要用于散热,故近第二定位标识114设于散热层15不会影响LED装置100的电路功能。
参考图45,各基板10背面的正极端子121至少部分位于对应第一边缘区域13的背面,各基板10背面的负极端子122至少部分位于对应第二边缘区域14的背面;各基板140正面的正极焊盘111在基板10背面的投影与各自对应的基板10背面的正极端子121至少有部分重合区;各基板10正面的负极焊盘112在所述基板10背面的投影与各自对应的基板10背面的负极端子122至少有部分重合区,各正极导电孔131和负极导电孔132分别位于各所述重合区。从而方便正极焊盘111通过对应的正极导电孔131与正极端子121导通,负极焊盘112通过对应的负极导电孔132与所负极端子122导通。
进一步的,基板10的背面的中间区域设有散热层15,多个正极端子121线性间隔设置于所述散热层15的一侧,多个所述负极端子122线性间隔设置于所述散热层15的另一侧。这样设置能够提高LED装置100的散热性能且使得正极端子121和负极端子122位于基板10背面的边缘区域,避免影响正极端子121和负极端子122与外围电路的连接。
在实际应用中,LED芯片20可以为UV-LED芯片,LED装置100可以为6060/6565/6868/7070尺寸的产品,LED芯片20可以为长度小于或等于52mil。可以理解的是,上述实施例仅用于举例说明,本发明对LED芯片20的具体类别以及LED装置100的尺寸不做限制。当然,由于本实施例中,各LED芯片20均可实现独立控制,故本发明对LED芯片20的数量不做限制,例如LED芯片20可以为1个、2个、3个或者4个等,只要能够与LED装置100的尺寸与实际应用方案相适配即可。
对于所述基板10,所述基板10可以由陶瓷材料制得,例如由氮化铝陶瓷(AlN)、氮化镓陶瓷(GaN)、氧化铝陶瓷(Al 2O 3)、碳化硅陶瓷(SiC)等陶瓷材料制作,陶瓷材料具有良好的绝缘性与散热性,可通过DPC(直接镀铜技术-Direct Plating copper)工艺于所述基板10的表面制作所述第一线路层11、第二线路层12。DPC工艺仅需250~350℃左右的温度即可完成对基板10的制作,避免了高温对材料或线路结构的不利影响,也降低了制造工艺成本。当然,本发明对所述基板10的具体材料不做限制,只要不影响LED装置100的使用即可。
优选地,参考图46所示,所述第一线路层11包括层叠设置的第一铜金属层11a、第一镍金属层11b与第一金金属层11c,所述第一镍金属层11b的厚度大于3微米,所述第一金金属层11c的厚度大于0.05微米。所述第一镍金属层11b与第一金金属层11c可以提高所述第一线路层11的耐腐蚀性、耐磨性与抗氧化性,减少外部酸、碱与潮湿等环境对所述第一线路层11的损伤,延长所述第一线路层11的使用寿命。
优选地,所述第二线路层12包括层叠设置的第一铜金属层、第一镍金属层与第一金金属层,第一镍金属层的厚度大于3微米,第一金金属层的厚度大于0.05微米。所述第一镍金属层与第一金金属层可以提高所述第二线路层12的耐腐蚀性、耐磨性与抗氧化性,减少外部酸、碱与潮湿等环境对所述第二线路层12的损伤,延长所述第二线路层12的使用寿命。
本实施例优选LED芯片20为倒装芯片(但在其他实施例中也可以采用正装芯片或垂直芯片中的任意一种)。可在基板10正面的第一线路层11上设置焊料,再将LED芯片20设置于焊料上即可实现所述LED芯片20与基板10的连接。LED芯片20的电极为金锡合金,所述金锡合金中金的成分含量为80wt%,锡的成分含量为20wt%,所述金锡合金的熔点为280℃,从而方便将所述LED芯片20固定于所述第一线路层11。
在一些实施例中,请结合图40和图41与图43和图44,LED装置100包括封装体30与透光件40。封装体30呈环形并设于所述基板10的正面且包围各LED芯片20与各组基板10正面的正极焊盘111与负极焊盘112。封装体30与正极焊盘111和负极焊盘112形成的电路图案之间具有间隔,以避免可能发生的短路情况。透光件40连接于所述封装体30;透光件40、封装体30和基板10的正面形成收容第一线路层11的封装腔。
具体的,封装体30设有开设于封装体30内侧壁并贯穿所述封装体30顶部的安装槽31,透光件40的底面通过助焊材料焊接于所述安装槽31内。
一种示例中,封装体30为金属材质,透光件40为玻璃材质,透光件40与封装体30接触的部位通过玻璃镀金工艺形成金锡合金然后再与封装体30焊接。在现有技术中,透光件与封装体通常采用半无机封装,半无机封装是指采用有机硅材料搭配玻璃等无机材料,通过粘接的方式来实现透光件40和封装体30的结合的一种封装方式。但由于UV光等光线对有机材料有破坏作用,长时间使用容易使胶水失效,进而导致透光件40与封装体30之间存在气孔或者透光件40脱落等问题,从而影响产品的气密性及使用寿命。而本发明中的透光件40与封装体30采用全无机封装的方式封装,因为没有使用易受UV光等光线影响的有机物,从而减少了产生气孔或者透光件40脱落等的风险,提升了产品的气密性,使用寿命更长,并且采用焊接的方式,相较于胶水粘接的方式,牢固程度更高。
优选的,所述金锡合金中金的成分含量为80wt%,锡的成分含量为20wt%,所述金锡合金的熔点为280℃,金属焊接能够进一步提高连接的牢固性。
优选的,安装槽31可为台阶槽以方便设置透光件40,透光件40不容易晃动和脱落。安装槽31可以呈单层台阶或多层台阶状,例如(如图40和图43所示)当封装体30呈单层台阶时,透光件40的底面通过焊接材料41设于安装槽31的槽底面。再例如当所述封装体30呈双层台阶时(未图示),透光件40可以直接设于低层台阶,而透光件40的侧面和/或底面与高层台阶的壁面之间焊接而使透光件40固定于封装体30,当然,虽然本实施例中的封装体30上的安装槽31呈台阶状,但本发明不对封装体30的上的安装槽31的具体形状做限制。在别的实施例中,也可以不需要安装槽31,封装体30的顶部可以呈平板状,透光件40的底面可以直接焊接于封装体30的顶面,并且本发明也不对封装体30的横截面形状做限制,例如封装体30的截面可以为中空的圆形、方形、菱形等形状,只要透光件40能设置于封装体30内并且不影响LED装置100的使用即可。
优选的,封装体30的表面层叠设置有第三铜金属层、第三镍金属层与第三金金属层,第三镍金属层的厚度大于3微米,第三金金属层的厚度大于0.05微米。所述第三镍金属层与第三金金属层可以提高所述封装体30的耐腐蚀性、耐磨性与抗氧化性,减少外部酸、碱与潮湿等环境对所述封装体30的损伤,延长封装体30的使用寿命。
对于透光件40,透光件40的材质可以为石英或者蓝宝石等材料。在具体应用中,透光件40可以呈板状或者弓形或者半球体形状,只要不影响LED装置100的使用即可,本发明不对透光件40的具体形状进行限制。
本实施例中,LED装置100包括多个齐纳芯片50,每一所述齐纳芯片50与一组正极焊盘111及负极焊盘112连接,即一颗LED芯片20与一颗齐纳芯片50并联。齐纳芯片50用于减少静电击穿LED芯片20的概率以保护LED芯片20。优选的,齐纳芯片50为倒装芯片,齐纳芯片50的电极为金锡合金,金锡合金中金的成分含量为80wt%,锡的成分含量为20wt%,金锡合金的熔点为280℃,从而方便将所述齐纳芯片50固定于所述第一线路层11。
在实际生产过程中,可以首先在所述基板10的第一线路层11设置助焊剂或者金锡焊料(其中金的成分含量可以为80wt%,锡的成分含量可以为20wt%,熔点为280℃),然后将LED芯片20及齐纳芯片50置于所述助焊剂或者金锡焊料处,从而将LED芯片20及齐纳芯片50焊接固定于所述第一线路层11;其次于所述安装槽31内设置助焊剂或者金锡焊料(其中金的成分含量可以为80wt%,锡的成分含量为20wt%,熔点为280℃),从而将透光件40焊接固定于封装体30;最后还可以使通过上述步骤的半成品通过共晶工艺固定从而提高固定的牢固度,共晶工艺可以为使半成品通过共晶炉,其中共晶炉温度至少有一个温区温度在280℃至320℃之间,且在共晶过程中需要氮气保护以进一步提高牢固度。
实施例7b:
请参考图51和图51a,本实施例与实施例7a的不同在于,本实施例中LED芯片20的数量为9颗,呈3*3的矩阵分布。图51和图51a示意的LED装置100放置的角度对应于实施例一中所示的图41和图42逆时针旋转90度,故,图51和图51a中的正极导电孔131和负极导电孔132位于左右两侧;图52中的基板10背面的正极端子121和负极端子122位于左右两侧。由于LED芯片20的数量为9颗,对应的基板10正面的正极焊盘111和负极焊盘112也分别有9个;基板10背面的正极端子121和负极端子122也分别为9个;正极导电孔131和负极导电孔132也分别为9个。
正极焊盘111和负极焊盘112组成的电路图案以其几何中心为对称点旋转对称。第n正极焊盘111的一端与对应的第n LED芯片20的正极连接,另一端延伸至所述第一边缘区域13与一对应的第n正极导电孔131连接;所述第n负极焊盘112一端与对应的第n LED芯片20的负极连接,另一端延伸至第二边缘区域14与一对应的第n负极导电孔132连接;其中n为大于1小于9的自然数。
其他结构与实施例相同,本实施例再此不再赘述。
实施例7c:
请参考图14和图15,本实施例提供的LED装置100与实施例二的不同在于,本实施例中LED芯片20的数量为16颗,呈4*4的矩阵分布。由于LED芯片20的数量为16颗,对应的基板10正面的正极焊盘111和负极焊盘也分别有16个;基板10背面的正极端子121和负极端子122也分别为16个;正极导电孔131和负极导电孔132也分别为16个。
正极焊盘111和负极焊盘112组成的电路图案以其几何中心为对称点旋转对称。第n正极焊盘111的一端与对应的第n LED芯片20的正极连接,另一端延伸至所述第一边缘区域13与一对应的第n正极导电孔131连接;所述第n负极焊盘122一端与对应的第n LED芯片20的负极连接,另一端延伸至第二边缘区域14与一对应的第n负极导电孔132连接;其中n为大于1小于16的自然数。
其他结构与实施例7a相同,本实施例再此不再赘述。
本发明提供了一种LED装置,LED装置100包括:基板10与多个LED芯片20。基板10具有相对的正面与背面,基板10的正面设有第一线路层11,第一线路层11包括多组正极焊盘与负极焊盘组(正极焊盘111与负极焊盘组112),基板10的背面设有第二线路层12,第二线路层12包括多组正极焊盘与负极焊盘(第二正极端子121与第二负极端子122),一正极端子121对应一正极端子121设置,且一正极端子121与一正极焊盘111导通,一负极端子122对应一负极焊盘112设置,且一负极端子122与一负极焊盘112导通。并且至少一LED芯片20与一组正极焊盘111及负极焊盘112连接。可单独控制与一组第一正极焊盘111及负极焊盘112连接的(单个或多个)LED芯片20单独点亮或关闭。本发明通过一组正极焊盘111与负极焊盘112连接至少一个LED芯片20不仅使LED装置100可以封装不同电压、不同波长的LED芯片,还通过匹配不同的外部电路使用户实现了对其中单个LED芯片或者多个LED芯片组的单独控制,让用户能够根据使用情况控制个别LED芯片有效出光,并且,现有技术中的多个LED芯片之间通常采用固定线路连接,LED芯片串并联方式不同时,基板上的线路也不同,而本发明中,当LED芯片20串并联方式不同时基板10正面的线路仍相同,通过适配不同的外围电路即可实现多个LED芯片20之间不同的串并联关系,从而提高了LED装置的兼容性,方便对LED装置的基板结构型号的管理且降低了制造的难度、时间与成本,使得产品的应用范围更广,适用性更强。
实施例8,包括实施例8a、实施例8b
实施例8a:
本发明提供了一种LED器件(本实施例中LED器件均为封装结构,具体为LED封装结构),请参阅图55,LED器件100包括:基板10、围坝20、LED芯片30、光窗组件40与密封胶50。所述围坝20呈环形并具有内侧壁、顶部和底部,所述围坝20的底部座于所述基板10的正面。所述LED芯片30固定于所述基板10的正面。所述围坝20围于所述LED芯片30外围,且所述围坝20的内侧壁位于所述LED芯片30上方的至少一部分设有贯通所述围坝20顶部的安装槽21。所述光窗组件40包括透光件41(本实施例中的透光件41均为透明盖)与金属管帽42,所述金属管帽42焊接于所述透光件41外围,所述透光件41与金属管帽42固定于所述安装槽21内,且所述透光件41与金属管帽42的底部均与所述安装槽21的槽底面抵接,所述透光件41、金属管帽42、基板10的正面及围坝20围合形成用于收容所述LED芯片30的收容腔,并且所述透光件41与金属管帽42的表面与所述安装槽21的壁面围合形成封胶槽。所述密封胶50设于所述封胶槽内且不覆盖所述透光件41。本发明不仅通过使光窗组件40焊接于围坝20,减少了光窗组件40脱落的可能,提高了产品可靠性,还通过密封胶50补胶实现了对焊接处的保护,减小了焊接处氧化生锈的可能,而且由于密封胶50对焊接处上的气孔裂纹起到填充作用,因此这样设置能够进一步提高产品的可靠性与气密性效果,相对于现有技术中单一的半无机封装及全无机封装方式,本发明通过有机封装和无机封装相结合的封装方式,充分融合了两种封装方式的优点,并且本发明还通过将光窗组件40底部齐平设于围坝20内,使得操作者在生产过程,通过改变围坝20的高度即可匹配不同厚度的LED芯片30,相对于现有技术中金属管帽设置向内延伸的边沿导致挡光的方式相比,本发明中无需设置向内延伸的边沿,从而在保证产品出光率的同时,还能有效减小产品零件通用的成本与难度,从而提高了金属管帽42的通用性,生产成本低。
对于所述基板10,请参阅图55,在一些实施例中,所述基板10的正面设有第一线路11,用于与所述LED芯片30连接。优选的,所述基板10的背面可以设有第二线路12,所述基板10设有贯穿所述正面与背面的导电孔13,所述第一线路11与所述第二线路12可以通过所述导电孔13连接,进而实现LED芯片30、第一线路11与第二线路12之间的连接。具体应用中,在所述基板10设置所述第一线路11与第二线路12可以通过DPC(直接镀铜技术-Direct Plating copper)工艺实现。
优选的,所述第一线路11与第二线路12可以设有第一金属层和第二金属层,第一金属层可为镍层,第二金属层可为金层,从而能够提高线路的抗氧化性、耐腐蚀性以及导电性,其中,所述第一金属层的厚度可以大于3 um,所述第二金属层的厚度可以大于0.05um,以保证导电和抗氧化效果。
对于所述围坝20,优选的,所述围坝20可以焊接于所述基板10,或者与所述基板10一体成型,制造十分方便。可以理解的是,所述安装槽21的设置不仅可以让光窗组件40以嵌入式设于围坝20内,从而提高光窗组件40的定位效果,还可以方便光窗组件40与围坝20围合形成设置密封胶50的封胶槽以提高LED器件100的气密性效果,安装槽21可以呈阶梯状,其与密封胶50的接触面相对更大,为实现封装LED器件100的较优的实施例。在其他的实施例中,所述围坝20的顶部还可以为平面、单层台阶或者多层台阶等形状(安装槽21为多层台阶结构时,所述密封胶50可以多次补胶,以进一步提高气密性),本发明对此不作限制,只要所述光窗组件40能够安装于所述围坝20即可。
对于所述LED芯片30,所述LED芯片30可以为倒装芯片、正装芯片或垂直芯片中的任意一种,本发明对此不做限制。当所述LED芯片30为倒装芯片时,可以首先于所述基板10正面设置助焊材料,再使所述LED芯片30设于所述助焊材料上,最后使所述LED芯片30与所述基板10共晶,即可实现对所述LED芯片30的安装。当所述LED芯片30为正装芯片或垂直芯片时,可以于所述基板10正面设置固晶胶,再使所述LED芯片30设于所述固晶胶上,并进行高温烘烤,使所述固晶胶固化,最后通过焊线设备对所述LED芯片30的电极与所述基板10的线路进行焊线连接,即可实现对所述LED芯片30的安装。
对于所述金属管帽42,请参阅图55至图60,优选的,所述金属管帽42可以焊接于所述围坝20,以提高连接的牢固性,增强LED器件100的可靠性。
在一些实施例中,请结合图55与图59,所述金属管帽42包括壳体部421,所述壳体部421呈管壳状,用于焊接于所述透光件41(透明盖)外围,相较于现有技术中的金属管帽42向内延伸以与所述透光件41连接的方式,本发明实施例能够减少对LED光线的遮挡与反射,从而使LED器件100具有更好的出光率,并且增大了所述金属管帽42与所述透光件41的焊接面积,使得所述金属管帽42与所述透光件41之间的焊接更牢固。
优选的,所述壳体部421的管壳内侧壁可以为方形(请参阅图2)、圆形(请参阅图3与图4)等形状,本发明对此不做限制,只要在实际运用中,能够与所述透光件41相适配即可。同理,所述壳体部421的管壳外侧壁也可以为圆形(请参阅图3)、方形(请参阅图2与图4)等形状,本发明对此不做限制,只要不影响LED器件100的使用即可。
在一些实施例中,请结合图55与图59,所述金属管帽42的底部(也即所述壳体部421的底部)向远离所述透光件41的方向延伸有焊接部422,所述金属管帽42通过所述焊接部422焊接于所述安装槽21的槽底面,从而使得所述光窗组件40与围坝20的连接更牢固,并且,相较于现有技术中的金属管帽42向内延伸以与围坝20连接的方式,本发明实施例不仅能够减少对LED光线的遮挡与反射,从而使LED器件100具有更好的出光率,还对封胶槽内的所述密封胶50起到遮挡作用,减少LED光线对密封胶50的影响,延长实现气密性效果的时间,增长LED器件100的使用寿命。
在一些实施例中,请参阅图55至图60,所述透光件41(透明盖)与金属管帽42之间可以通过玻璃焊料60焊接,从而能够增加所述透光件41与金属管帽42之间连接的牢固度。当然,本发明对焊接材料不做限制,只要能够实现所述透光件41与金属管帽42之间的焊接即可。进一步的,所述玻璃焊料60的高度壳体大于所述金属管帽42的高度,并且覆盖所述金属管帽42远离所述基板10的表面,从而能够增加焊接面积以进一步增加所述透光件41与金属管帽42之间连接的牢固度,并提升所述金属管帽42与所述透光件41之间过渡的平滑度,方便用户使用。
优选的,所述焊接部422与所述安装槽21的槽侧壁抵接,所述玻璃焊料60、金属管帽42与所述安装槽21的槽侧壁形成所述封胶槽,从而使所述密封胶50能够完全覆盖所述焊接部422,提高LED器件100的气密性效果。进一步的,所述密封胶50还可以覆盖所述玻璃焊料60与金属管帽42,从而能够更好地覆盖所述金属管帽42与透光件41之间的焊接处,以及所述金属管帽42与围坝20之间的焊接处,从而能够实现对焊接处的保护,减小焊接处氧化生锈的可能,而且由于密封胶50对焊接处上的气孔裂纹起到填充作用,这样设置能够进一步提高产品的可靠性与气密性效果。
优选的,所述金属管帽42可以由科瓦合金制得,科瓦合金在一定温度范围内可以完成两种材料之间的紧密机械衔接,从而能够很好地连接所述透光件41与围坝20。
对于所述透光件41(透明盖),请结合图55、图59与图60,在一些实施例中,所述透光件41的高度大于所述金属管帽42的高度,从而能够让玻璃焊料60更好的覆盖在金属管帽42表面,提高所述透光件41与金属管帽42之间焊接处的表面平整度提高美观度并且提升用户使用体验感,且密封胶50不覆盖所述透光件41的正面,避免影响光效。
在一些实施例中,所述透光件41(透明盖)可以是由石英或者蓝宝石材料制得的,但本发明对所述透光件41的具体材质不做限制,只要能实现透光作用即可,例如所述透光件41可采用PMMA(聚甲基丙烯酸甲酯)等制得。在本发明中,所述透光件41可呈正方形(请参阅图59)或者是半球体(请参阅图60),当然所述透光件41的形状不限于此,只要不影响透光即可,例如还可以呈长方体、灯泡状等。
对于所述密封胶50,可以理解的是,所述密封胶50是指具有粘结功能、可固化的涂料。当所述LED芯片30为UV-LED芯片时,所述密封胶50可以为耐紫外胶水,耐紫外胶水通常可以为由硅胶、环氧树脂及氟树脂等材料制得的胶水。当然,本发明对于所述密封胶50的具体材料不作限定,只要密封胶50的使用寿命能满足器件的使用寿命即可。
实施例8b:
请一并参阅图55至图57,本发明提供了一种LED封装方法,用于封装上述LED器件100(本实施例中LED器件100均为封装结构,具体为LED封装结构),所述LED封装方法包括:
S101:制备基板10;
S102:于所述基板10设置具有安装槽21的围坝20,并使所述围坝20座于所述基板10的正面,所述围坝20呈环形,其中部形成用于安装LED芯片30的空间;
S103:将LED芯片30设置于所述基板10的正面,并位于所述围坝20中部的空间;
S104:将金属管帽42焊接于透光件41(透明盖)外围;
S105:将所述金属管帽42与透光件41固定于所述安装槽21内,且所述金属管帽42与透光件41的底部抵于所述安装槽21的槽底面,使所述金属管帽42与透光件41的表面与所述安装槽21的壁面围合形成封胶槽;
S106:将密封胶50设于所述封胶槽内。
制备所述基板10时,在所述基板10的正面与背面可以分别设置用于与所述LED芯片30连接的第一线路11与第二线路12。设置所述第一线路11与第二线路12的方式可以通过DPC(直接镀铜技术-Direct Plating copper)工艺制成。并且,所述基板10的背面可以设置第二线路12,所述基板10设有贯穿所述基板10的导电孔13,所述第一线路11与第二线路12通过所述导电孔13连接,从而能够实现所述LED芯片30、第一线路11与第二线路12之间的连接,进而方便对LED芯片30的电连接。
在具体应用中,所述第一线路11与第二线路12上可以镀镍金属层与金金属层,以防止线路上金属的迁移和氧化,并提高导电和抗氧化性能。其中,要求镍金属层的厚度>3um,金金属层的厚度>0.05um,以保证导电和抗氧化效果。
优选的,将所述金属管帽42与透光件41固定于所述安装槽21内的方式可以先将透光件41焊接于所述金属管帽42,再通过激光焊将所述金属管帽42焊接于所述围坝20的安装槽21内,从而能够提高连接的牢固程度,减少所述透光件41脱落的可能,增强LED器件100的可靠性。
本发明提供的LED封装方法通过有机封装和无机封装相结合的封装方式,充分融合了两种封装方式的优点,本发明不仅通过使光窗组件40焊接于围坝20,减少了光窗组件40脱落的可能,提高了产品可靠性,还通过密封胶50补胶实现了对焊接处的保护,减小了焊接处氧化生锈的可能,而且由于密封胶50对焊接处上的气孔裂纹起到填充作用,因此这样设置能够进一步提高产品的可靠性与气密性效果,并且本发明还通过将光窗组件40底部齐平设于围坝20内,使得操作者在生产过程,通过改变围坝20的高度即可匹配不同厚度的LED芯片30,从而在保证产品出光率的同时,还能有效减小产品实现通用的成本与难度,从而提高了产品的通用性,方便产品的大批量推广运用。
作为本实施例的其中一种可选实施方式,将LED芯片30设置于所述基板10的正面的步骤,可以进一步包括:
S1031:于所述基板10正面设置助焊材料;
S1032:使所述LED芯片30设于所述助焊材料上;
S1033:使所述LED芯片30与所述基板10共晶。
优选的,所述助焊材料可以为金锡合金,以具有良好的助焊性。当然,在实际生产过程中,所述LED芯片30也可以不使用助焊材料而直接置于所述基板10的正面,再使所述LED芯片30与所述基板10共晶,从而降低制造的难度与成本。
其中,使所述LED芯片30与所述基板10共晶的方法可以为,让设置有LED芯片30的基板10一起通过共晶炉等。进一步的,由于金锡合金的熔点为280℃,共晶炉温度可以至少有一个温区温度在280℃-340℃之间,且共晶过程可以设置真空或者氮气保护,从而能够让LED芯片30的焊接空洞率减少以及防止LED芯片30的电极高温氧化。
优选的,将所述助焊材料设于所述基板10正面的方式可以通过点涂的方式。可以理解的是,将所述助焊材料点涂于所述基板10正面的可以通过人工、机械结构等方式实现,例如:设置智能机械手,由智能机械手均匀设置定量的助焊材料,从而能够进一步提高焊接效果。
本实施方式通过助焊材料将倒装芯片安装于所述基板10,并通过共晶使所述LED芯片30与所述基板10的连接更牢固,提高了LED器件100的可靠性。
作为本实施例的其中一种可选实施方式,将LED芯片30设置于所述基板10的正面的步骤,进一步包括:
S1034:于所述基板10正面设置固晶胶;
S1035:使所述LED芯片30设于所述固晶胶上,并进行高温烘烤,使所述固晶胶固化;
S1036:通过焊线设备对所述LED芯片30的电极与所述基板10的线路进行焊线连接。
其中,固晶可以使所述LED芯片30与基板10更牢固地粘接结合。当所述LED芯片30为正装芯片,所述固晶胶可以是绝缘胶或者银胶。当所述LED芯片30为垂直芯片,所述固晶胶可以为银胶。
优选的,为方便进行焊线,所述第一线路11上可以设有镍金属层、钯金属层与金金属层,其中,所述镍金属层的厚度可以大于3um,所述镍金属层的厚度可以大于0.05um,所述金金属层的厚度可以大于0.05um,以保证焊接、导电和抗氧化效果。
本实施方式通过固晶胶将正装芯片或者垂直芯片安装于所述基板10,并通过高温烘烤使所述固晶胶固化使所述LED芯片30与所述基板10的连接更牢固,提高了LED器件100的可靠性。
作为本实施例的其中一种可选实施方式,将金属管帽42焊接于透光件41外围的步骤,可以进一步包括:
S1041:将所述金属管帽42冲压成型;
S1042:将所述金属管帽42与透光件41置于定位模具内;
S1043:通过挤压设备将熔融状的玻璃焊料60,挤压入所述金属管帽42与透光件41之间的间隙处;
S1044:将所述金属管帽42与透光件41放入高温炉中烧结成型。
在具体应用中,所述定位模具可以包括定位块,所述定位块用于与所述金属管帽42与透光件41抵接以实现定位,当然本发明不限于此,只要能实现定位即可,例如所述定位模具可以包括与所述金属管帽42与透光件41的定位槽,所述金属管帽42与透光件41设于所述定位槽并与所述定位槽的槽面抵接,即可实现对金属管帽42与透光件41的定位。
本实施方式首先通过玻璃焊料60焊接所述金属管帽42与透光件41,再使所述金属管帽42与透光件41烧结成型,从而能够使所述金属管帽42与透光件41的连接更牢固,减小所述透光件41脱落的可能,增加LED器件100的可靠性。
作为本实施例的其中一种可选实施方式,将密封胶50设于所述封胶槽内的步骤,进一步包括:
S1061:将待固化的密封胶50置于所述封胶槽内,且不覆盖所述透光件41;
S1062:使所述密封胶50固化。
可以理解的是,所述密封胶50是指具有粘结功能、可固化的涂料,所述密封胶50可以是由硅胶、环氧树脂、氟树脂等材料制得的,本发明对于所述密封胶50的具体材料不作限定。进一步的,使所述密封胶50固化的方式可以包括等待使密封胶50自然固化、烘烤固化或者UV光照固化。当然,所述密封胶50固化的方式不限于此,只要能使所述密封胶50固化即可,例如,如果是需要烘烤才能固化的密封胶50则采用烘烤固化的方式,如可直接用UV光照射即可固化那么采用UV光照固化的方式,若是其他类型的密封胶50则采用对应的固化方法。
具体应用中,将待固化的密封胶50置于所述封胶槽内可以通过人工、机械结构等方式实现,例如:设置智能机械手,由智能机械手进行定点定量设置,从而能够有效减少密封胶50覆盖所述透光件41的可能。
本实施方式通过将密封胶50设于封胶槽,避免覆盖所述透光件41以减少光损失增大LED器件100的出光率,并通过使所述密封胶50覆盖于所述金属管帽42与所述围坝20的焊接处,从而能够实现对焊接处的保护,减小了焊接处氧化生锈的可能,而且由于密封胶50对焊接处上的气孔裂纹起到填充作用,这样设置还能够进一步提高产品的可靠性与气密性效果。
本发明提供了一种LED器件及LED封装方法,其中,LED器件100包括:基板10、围坝20、LED芯片30、光窗组件40与密封胶50。所述LED芯片30固定于所述基板10的正面。所述围坝20呈环形并具有内侧壁、顶部和底部,所述围坝20的底部座于所述基板10的正面,所述围坝20围于所述LED芯片30外围,且所述围坝20的内侧壁位于所述LED芯片30上方的至少一部分设有贯通所述围坝20顶部的安装槽21。所述光窗组件40包括透光件41与金属管帽42,所述金属管帽42焊接于所述透光件41外围,所述透光件41与金属管帽42固定于所述安装槽21内,且所述透光件41与金属管帽42的底部均与所述安装槽21的槽底面抵接,所述透光件41、金属管帽42、基板10的正面及围坝20围合形成用于收容所述LED芯片30的收容腔,并且所述透光件41与金属管帽42的表面与所述安装槽21的壁面围合形成封胶槽。所述密封胶50设于所述封胶槽内且不覆盖所述透光件41(透明盖)。相对于现有技术中单一的半无机封装及全无机封装方式,本发明通过有机封装和无机封装相结合的封装方式,充分融合了两种封装方式的优点,本发明不仅通过使光窗组件40焊接于围坝20,减少了光窗组件40脱落的可能,提高了产品可靠性,还通过密封胶50补胶实现了对焊接处的保护,减小了焊接处氧化生锈的可能,而且由于密封胶50对焊接处上的气孔裂纹起到填充作用,因此这样设置能够进一步提高产品的可靠性与气密性效果,并且本发明还通过将光窗组件40底部齐平设于围坝20内,使得操作者在生产过程,通过改变围坝20的高度即可匹配不同厚度的LED芯片30,从而在保证产品出光率的同时,还能有效减小产品实现通用的成本与难度,从而提高了产品的通用性,方便产品的大批量推广运用。
实施例9:
如图61至图64所示,本发明实施例提供的一种LED器件,包括器件主体,所述器件主体包括基板1、发光元件2、围坝部件3(本实施例中均为围坝)和透光元件4(本实施例中均为透明盖),所述围坝部件3连接于所述基板1和所述透光元件4,所述基板1、所述围坝部件3和所述透光元件4合围形成封装腔5,所述基板1具有相对的第一端面11与第二端面12,所述发光元件2设置于所述基板1的第一端面11且位于所述封装腔5内,所述发光元件2朝向于所述透光元件4,所述围坝部件3具有内侧壁,所述围坝部件3的内侧壁镀设有用于反射所述发光元件2发出光的反射层32,所述围坝部件3的内侧壁由所述第一端面11向远离所述发光元件2的方向倾斜,并与所述第一端面11形成大于零且小于90°的夹角α。本发明所提供的一种LED器件,将所述发光元件2设置于由所述透光元件4、围坝部件3和所述基板1合围形成的所述封装腔5内,所述围坝部件3的内侧壁相对所述第一端面11非垂直设置,所述围坝部件3的内侧壁与所述第一端面11之间具有所述夹角α,且所述围坝部件3朝向所述封装腔5的内侧壁表面设置有所述反射层32,通过将所述发光元件2所发出光经由与第一端面具有夹角α的所述反射层32反射,在所述反射层32的作用下,所述发光元件2横向的光大部分会被反射到所述透光元件4处并从所述透光元件4处发出,有效反射所发出的光线,减少光损失,提升LED器件的出光率。
具体地,如图61至图63所示,所述围坝部件3呈围筒状,所述围筒上端的外形尺寸大于所述围筒下端的外形尺寸,所述围坝部件3的内侧壁相对于所述第一端面11倾斜设置,所述围坝部件3的外侧壁垂直于所述第一端面11,所述围坝部件3的侧壁的纵截面呈直角梯形状,所述夹角α等同于所述直角梯形斜边与底边的夹角,相对所述第一端面11具有所述夹角α的所述围坝部件3,相较于传统垂直围坝部件3,能够更加有效的反射所述发光元件2所发出的光线,减少光损失。
具体地,所述围坝部件3可以采用硅或石英的材质制成,成本低廉,如图62所示,所述围坝部件3的外形呈圆台形,或者,如图63所示,所述围坝部件3的外形呈棱台形,所述围坝部件3的外形可以根据具体情况设置,所述围坝部件3的内侧壁呈斜面状,灵活性强。
具体地,所述反射层32为均匀覆盖于所述围坝部件3内侧壁的金属层;或者,所述反射层32为部分覆盖于所述围坝部件3内侧壁的金属层,以所述金属层作为所述反射层32,光反射率高,制备工艺简单,且具有优良的耐热性与耐光性。
具体地,所述金属层为通过真空溅射或者蒸镀的方式镀于所述围坝部件3内侧壁的银层或者铝层,所述铝层与空气接触会形成致密的三氧化二铝,性能稳定,所以此处优选所述铝层作为所述反射层32。
具体地,所述夹角α为30°至60°,根据菲涅尔效应(即某种材质在不同距离和角度上呈现出不同的反射折射效果)的特点,当所述发光元件2所发出的光线垂直穿过所述透光元件4时,所述透光元件4的菲涅尔反射弱,所述透光元件4对光线的反射也较弱;而当光线非垂直穿过所述透光元件4,所述反射层32与所述第一端面11之间的夹角α过小或过大时,都会增强所述透光元件4的菲涅尔反射,即所述透光元件4对光线的反射也变强,因此,所述透光元件4上的菲涅尔反射越弱,光线从所述透光元件4处透过的透过率就越高,当所述反射层32与所述第一端面11之间的夹角α为30°至60°之间时,所述透光元件4处的光线透过率较高,在此角度范围内,所述围坝部件3对光的反射效果较佳。
具体地,所述夹角α的角度为45°,如图66所示,光线A为所述夹角α为75°时所述发光元件2所发出光线在所述透光元件4处的反射路径示意图;光线B为所述夹角α为60°时所述发光元件2所发出光线在所述透光元件4处的反射路径示意图;光线C为所述夹角α为45°时所述发光元件2所发出光线在所述透光元件4处的反射路径示意图;光线D为所述夹角α为30°时所述发光元件2所发出光线在所述透光元件4处的反射路径示意图;光线E为所述夹角α为15°时所述发光元件2所发出光线在所述透光元件4处的反射路径示意图;如图67所示,光线A为所述夹角α为75°时所述发光元件2所发出光线在所述围坝部件3的所述反射层32处的反射路径示意图;光线B为所述夹角α为60°时所述发光元件2所发出光线在所述围坝部件3的所述反射层32处的反射路径示意图;光线C为所述夹角α为45°时所述发光元件2所发出光线在所述围坝部件3的所述反射层32处的反射路径示意图;光线D为所述夹角α为30°时所述发光元件2所发出光线在所述围坝部件3的所述反射层32处的反射路径示意图;光线E为所述夹角α为15°时所述发光元件2所发出光线在所述围坝部件3的所述反射层32处的反射路径示意图。从中可以看出,当所述反射层32与所述第一端面11之间的夹角α在45°时,所述光线C几乎垂直穿过所述透光元件4,此时所述透光元件4的菲涅尔反射最小,光线透过率最高,所述夹角α在45°的基础上增大或者减小,都会增大所述透光元件4的菲涅尔反射,因此在此实施例中,所述反射层32与所述第一端面11之间的夹角α的角度优选为45°。
具体地,如图61所示,所述发光元件2与所述第一端面11之间设置有基板表面线路13,所述第二端面12设置有基板背部线路14,所述基板1具有贯通所述第一端面11与所述第二端面12的导电孔15,所述基板表面线路13与所述基板背部线路14通过所述导电孔15导通,结构紧凑。
具体地,所述基板表面线路13与所述基板背部线路14上的基材镀有镍金镀层或镍钯金镀层,所述基板表面线路13与所述基板背部线路14上的基材通过镀铜工艺制成,所述镍金镀层中镍的厚度>3um,金的厚度>0.05um,所述镍钯金镀层中镍的厚度>3um,钯的厚度>0.05um,金的厚度>0.05um,所述基板表面线路13还具有围坝焊接层17和用于焊接发光元件2的芯片焊接层16,同时所述基板表面线路13在除所述芯片焊接层16与围坝焊接层17以外的部分区域通过真空溅射或者蒸镀的方式镀有金属反射层,所述金属反射层32可以为铝或者银反射层,铝反射层与空气接触会形成致密的三氧化二铝,性能稳定,铝对紫外光的反射率为90%以上,此处优选镀铝。
具体地,所述发光元件2为倒装结构的UV芯片,所述UV芯片的电极为金锡合金,所述金锡合金具有焊接温度适中、焊接牢固等优良的物理特性,较为适合芯片与基板共晶。
具体地,所述透光元件4可以为玻璃透镜,所述玻璃透镜可以采用石英或蓝宝石的材质制成,不易磨损,所述玻璃透镜为平面透镜,或者,所述玻璃透镜可以为球面或半球面透镜,如图61所示,所述玻璃透镜的正反两表面皆可以镀有用于提升紫外线透过率的增透膜41,所述增透膜41可以采用氟化镁或者二氧化硅的材质制成,可以提高紫外线的光线透过率。
具体地,如图64所示,所述围坝部件3可以与所述基板1一体成型,一体式的带围坝的所述基板1,规避了分体式基板在围坝粘接或者焊接过程中有可能产生粘接或者焊接不良导致产品因气密性失效的风险,实用性强。
具体地,如图61所示,所述围坝部件3上端具有用于焊接所述透光元件4的透镜焊接层31,于所述围坝部件3的上端与透光元件4的待接触面处涂覆胶水或焊料(形成透镜焊接层31),所述透光元件4可通过胶水或焊料固定连接于所述围坝部件3,或者,如图65所示,也可以将所述围坝部件3与所述透光元件4一体成型,简化工艺步骤。
本发明所提供的一种LED器件,将所述发光元件2设置于由所述透光元件4、围坝部件3和所述基板1合围形成的所述封装腔5内,所述围坝部件3的内侧壁相对所述第一端面11倾斜设置,所述围坝部件3的内侧壁与所述第一端面11之间具有所述夹角α,且所述围坝部件3朝向所述封装腔5的内侧壁表面设置有所述反射层32,所述反射层32能够有效反射所述发光元件2所发出的光线,减少光损失,提升LED器件的出光率。
实施例10:
如图61至图70所示,本发明提供的一种LED器件(LED封装结构)的制作方法(封装方法),包括如下步骤:
制备具有相对的第一端面11与第二端面12的基板1;
将发光元件2固定于所述基板1的第一端面11;
于所述基板1的第一端面11设置围于所述发光元件2周围的围坝部件3(本实施例中均为围坝);
在所述围坝部件3围设的空间内设置用于反射所述发光元件2所发出的部分光线的反射面6,所述反射面6由所述第一端面11向所述空间外侧倾斜且所述反射面6与所述第一端面11之间的夹角α设置为大于零且小于90°;
将透光元件4(本实施例中均为透明盖)固定连接于所述围坝部件3,并使透光元件4朝向所述发光元件2,将所述透光元件4、围坝部件3和所述基板1合围形成封装腔5。本发明提供的一种LED器件的制作方法及LED器件,在所述围坝部件3围设的空间内设置用于反射所述发光元件2所发出的部分光线的反射面6,将所述透光元件4、围坝部件3和所述基板1合围形成封装腔5,所述发光元件2位于所述封装腔5内,通过将发光元件2所发出的光经由与第一端面11具有夹角α的反射面6反射,能够提升LED器件的出光率,有效减少光损失。
下面通过具体的实施例10a和实施例10b作为示例并结合附图对本发明提供的一种LED器件的制作方法及LED器件作进一步详细的描述。
实施例10a:
本发明实施例提供的一种LED器件(封装结构)的制作方法(封装方法),包括如下步骤:
制备具有相对的第一端面11与第二端面12的基板1;
将发光元件2固定于所述基板1的第一端面11;
于所述基板1的第一端面11设置围于所述发光元件2周围的围坝部件3(本实施例中均为围坝);
在所述围坝部件3围设的空间内设置用于反射所述发光元件2所发出的部分光线的反射面6。本实施例10a中将所述围坝部件3的内侧壁与所述第一端面11之间的夹角α设置为大于零且小于90°,设置所述围坝部件3后,于所述围坝部件3的内侧壁镀设反射层32,所述反射层32的表面即为所述反射面6。
将透光元件4固定连接于所述围坝部件3,并使透光元件4(本实施例中均为透明盖)朝向所述发光元件2,将所述透光元件4、围坝部件3和所述基板1合围形成封装腔5。
本发明实施例10a提供的一种LED器件,将所述发光元件2设置于由所述透光元件4、围坝部件3和所述基板1合围形成的所述封装腔5内,所述围坝部件3的内侧壁相对所述第一端面11非垂直设置,所述围坝部件3的内侧壁与所述第一端面11之间具有所述反射角α,且所述围坝部件3朝向所述封装腔5的内侧壁表面设置有所述反射层32,通过将所述发光元件2所发出的光经由与第一端面具有夹角α的所述反射层32反射,在所述反射层32的作用下,所述发光元件2横向发出的光大部分会被反射到所述透光元件4处并从所述透光元件4处发出,有效反射所述发光元件2所发出的光线,减少光损失,提升LED器件的出光率。本实施例中,LED器件包括所述基板1、发光元件2、围坝部件3、透光元件4和所述封装腔5,所述发光元件2位于由所述透光元件4、围坝部件3和所述基板1合围形成所述封装腔5内。本实施例中,所述封装腔5内,除放置有所述发光元件2外,其他空间为空。所述围坝部件3的内侧壁相对于所述第一端面11倾斜设置,所述围坝部件3的外侧壁垂直于所述第一端面11,所述围坝部件3侧壁的纵截面呈直角梯形状,所述围坝部件3的内侧壁与所述第一端面11之间的夹角α等同于所述直角梯形斜边与底边的夹角,如图61所示,所述围坝部件3朝向所述封装腔5的内侧壁表面设置有所述反射层32,所述反射层32可以全覆盖于所述围坝部件3的内侧壁表面,也可以非全覆盖于所述围坝部件3的内侧壁表面,所述反射层32为镀设于所述围坝部件3内侧壁的金属层,所述金属层为铝层,所述反射层32的厚度可以设置为大于50nm;通过将所述发光元件2所发出的光经由与所述第一端面11具有夹角α的所述反射层32反射,在所述反射层32的作用下,所述发光元件2横向发出的光大部分会被反射到所述透光元件4处并从所述透光元件4处发出,有效提升LED器件的出光率,减少光损失。
具体地,在实施例10a中,将所述反射层32与所述第一端面11之间的夹角α设置为在30°至60°之间,根据菲涅尔效应(即某种材质在不同距离和角度上呈现出不同的反射折射效果)的特点,当所述发光元件2所发出的光线垂直穿过所述透光元件4时,所述透光元件4的菲涅尔反射弱,所述透光元件4对光线的反射也较弱;而当光线非垂直穿过所述透光元件4,所述反射层32与所述第一端面11之间的夹角α过小或过大时,都会增强所述透光元件4的菲涅尔反射,即所述透光元件4对光线的反射也变强,因此,所述透光元件4上的菲涅尔反射越弱,光线从所述透光元件4处透过的透过率就越高,当所述反射层32与所述第一端面11之间的夹角α为30°至60°之间时,所述透光元件4处的光线透过率较高,如图67所示,光线A为所述夹角α为75°时所述发光元件2发出的光线在所述围坝部件3的所述反射层32处的反射路径示意图;光线B为所述夹角α为60°时所述发光元件2发出的光线在所述围坝部件3的所述反射层32处的反射路径示意图;光线C为所述夹角α为45°时所述发光元件2发出的光线在所述围坝部件3的所述反射层32处的反射路径示意图;光线D为所述夹角α为30°时所述发光元件2发出的光线在所述围坝部件3的所述反射层32处的反射路径示意图;光线E为所述夹角α为15°时所述发光元件2发出的光线在所述围坝部件3的所述反射层32处的反射路径示意图,如图70所示,光线A为所述夹角α为75°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图;光线B为所述夹角α为60°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图;光线C为所述夹角α为45°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图;光线D为所述夹角α为30°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图;光线E为所述夹角α为15°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图。可以看出,当所述反射层32与所述第一端面11之间的夹角α在45°时,所述光线C几乎垂直穿过所述透光元件4,此时所述透光元件4的菲涅尔反射最小,光线透过率最高,所述夹角α在45°的基础上增大或者减小,都会增大所述透光元件4的菲涅尔反射,因此在此实施例10a中,所述反射层32与所述第一端面11之间的夹角α的角度优选为45°。
具体地,在实施例10a中,所述基板1为陶瓷基板,在制备所述基板1时,如图61所示,于所述基板1的第一端面11设置基板表面线路13,于所述基板1的第二端面12设置基板背部线路14,于所述基板1开设用于导通所述基板表面线路13与所述基板背部线路14的导电孔15,将所述导电孔15贯通所述第一端面11与所述第二端面12,所述基板表面线路13与所述基板背部线路14上的基材采用镀铜工艺制成,在所述基材表面通过沉金工艺镀有镍金镀层或镍钯金镀层,使发光元件2更好的与基板1结合,所述镍金镀层中镍的厚度>3um,金的厚度>0.05um,所述镍钯金镀层中镍的厚度>3um,钯的厚度>0.05um,金的厚度>0.05um,所述基板表面线路13还具有围坝焊接层17和用于焊接发光元件2的芯片焊接层16,同时所述基板表面线路13在除所述芯片焊接层16与围坝焊接层17以外的部分区域通过真空溅射或者蒸镀的方式镀有金属反射层,所述金属反射层可以为铝或者银反射层,铝反射层与空气接触会形成致密的三氧化二铝,性能稳定,铝对紫外光的反射率为90%以上。
具体地,在实施例10a中,在将发光元件2固定于所述基板1的第一端面11时,包括如下步骤:①在所述芯片焊接层16上点涂作为共晶媒介的助焊剂,将发光元件2放置在有助焊剂的地方;②将放置有发光元件2的所述基板1送入共晶炉进行共晶,使发光元件2与所述基板1结合牢固,其中共晶炉温度至少有一个温区的温度在300℃至340℃之间,且共晶过程中可输入氮气进行保护,或保证共晶环境真空,防止LED器件在高温状态下被氧化。
具体地,在实施例10a中,所述发光元件2为倒装结构的UV芯片,所述UV芯片的电极为金锡合金,所述金锡合金具有焊接温度适中、焊接牢固等优良的物理特性,较为适合芯片与基板共晶。
具体地,在实施例10a中,如图61所示,于所述基板1的第一端面11设置围于所述发光元件2周围的围坝部件3时,可以先预制围坝部件3,然后在所述围坝部件3与所述基板1的待接触面处设置胶水或焊料,再将所述围坝部件3设置于所述基板1的第一端面11上,以保证所述基板1和所述围坝部件3稳固结合,需要说明的是,当其他的一些具体实施例中,所述围坝部件3为非金属材质,并使用焊料进行焊接时,需提前在所述围坝部件3下端接触面处做金属化处理,所述金属化处理可以是电镀金锡合金。
具体地,在实施例10a中,如图61与图62所示,所述围坝部件3的外形呈圆台形,或者,如图61与图63所示,所述围坝部件3的外形呈棱台形,可根据实际使用需求制作所述围坝部件3的形状,所述围坝部件3的外形可以根据具体情况设置,所述围坝部件3的内侧壁呈斜面状,方便光线的反射。
具体地,在实施例10a中,如图64所示,所述围坝部件3可以与所述基板1一体成型,一体式的带围坝的所述基板1,规避了分体式基板在围坝粘接或者焊接过程中有可能产生粘接或者焊接不良导致产品因气密性失效的风险,实用性强。
具体地,在实施例10a中,如图61所示,所述围坝部件3上端具有用于焊接所述透光元件4的透镜焊接层31,在所述围坝部件3上端与所述透光元件4的待接触面处涂覆有胶水或焊料(形成焊接层31),使所述围坝部件3通过胶水或焊料与所述透光元件4固定连接,或者,如图65所示,也可以将所述围坝部件3与所述透光元件4一体成型,简化工艺步骤。具体地,在实施例9a中,如图61所示,所述透光元件4的正反两表面皆可以镀有用于提升光透过率的增透膜41,所述增透膜41可以采用氟化镁或者二氧化硅的材质制成,有效提高紫外线的光线透过率。
具体地,在实施例10a中,所述围坝部件3可以采用硅或石英的材质制成,所述透光元件4可以为玻璃透镜,所述玻璃透镜可以采用石英或蓝宝石的材质制成,不易磨损。
具体地,在实施例10a中,所述玻璃透镜可以为平面透镜,也可以是球面或半球面透镜,满足不同光线需求。
具体地,在实施例10a中,设置有所述围坝部件3与所述透光元件4的所述基板1可以通过高温烘烤或光固化的方式紧密结合,可靠性佳。
实施例10b:
本发明实施例10b提供的一种LED器件(封装结构)的制作方法(封装方法),包括如下步骤:
制备具有相对的第一端面11与第二端面12的基板1;
将发光元件2固定于所述基板1的第一端面11;
于所述基板1的第一端面11设置围于所述发光元件2周围的围坝部件3(本实施例中均为围坝);
在所述围坝部件3围设的空间内设置用于反射所述发光元件2所发出的部分光线的反射面6;具体到本实施例中,在所述围坝部件3围设的空间内设置反射环7,所述反射环7围于所述发光元件2周围,将所述反射环7的下端靠近于所述基板1,所述反射环7的下端小于所述反射环7的上端,所述反射环7朝向所述发光元件2的内侧壁即为所述反射面6;
将透光元件4(本实施例中均为透明盖)固定连接于所述围坝部件3,并使透光元件4朝向所述发光元件2,将所述透光元件4、围坝部件3和所述基板1合围形成封装腔5。
本发明实施例10b提供的一种LED器件,具有用于反射光线的所述反射环7,且将所述反射环7位于由所述透光元件4、围坝部件3和所述基板1合围形成所述封装腔5内,所述反射环7的内侧壁相对于所述第一端面11倾斜设置,所述反射环7的内侧壁与所述第一端面11之间具有夹角α,所述发光元件2所发出的光线经由倾斜的所述反射环7内侧壁反射,在所述反射环7内侧壁的作用下,所述发光元件2横向发出的光大部分会被反射到所述透光元件4处并从所述透光元件4处发出,能够有效减少光损失,提升LED器件的出光率。
具体地,本实施例中,所述反射环7的为上下两端贯通的环状,且所述反射环7的上端部开口形状与下端部的开口形状相同,但尺寸不同;所述反射环7的上端部的开口大于下端部的开口,且所述反射环7的上端部的开口与下端部的开口同轴设置;连接于所述反射环7的上端部开口与下端部开口之间的部分为所述反射环7的侧壁。所述反射环7的侧壁的厚度均匀,且所述反射环7的外侧壁与所述围坝部件3的内侧壁之间存在间隙。本实施例9b不用在围坝部件3的内侧面上设置倾斜的反射面,而是于所述反射环7的内侧壁形成反射面,节省了所述围坝部件3的材料。
本实施例中,LED器件包括所述基板1、发光元件2、围坝部件3、反射环7、透光元件4和所述封装腔5,所述反射环7位于由所述透光元件4、围坝部件3和所述基板1合围形成所述封装腔5内,所述反射环7的内侧壁相对于所述第一端面11倾斜设置,所述反射环7的内侧壁与所述第一端面11之间具有夹角α,所述发光元件2所发出的光线经由倾斜的所述反射环7内侧壁反射,在所述反射环7内侧壁的作用下,所述发光元件2横向发出的光大部分会被反射到所述透光元件4处并从所述透光元件4处发出,能够有效减少光损失,提升LED器件的出光率,且通过将所述反射环7置于所述封装腔5的封装方式,可直接使用与围坝部件3一体成型的所述基板1,一体式的带围坝的所述基板1,规避了分体式基板在围坝粘接或者焊接过程中有可能产生粘接或者焊接不良导致产品因气密性失效的风险,实用性强。所述反射环7可以通过金属冲压工艺预制,制作方便,然后再设置在所述围坝部件3上,便于装配和更换;且所述围坝部件3可根据不同的产品需求匹配特定角度(即反射面的角度α)的所述反射环7,适用性广。
具体地,在实施例10b中,将所述反射面6与所述第一端面11之间的夹角α设置为在30°至60°之间,根据菲涅尔效应(即某种材质在不同距离和角度上呈现出不同的反射折射效果)的特点,当所述发光元件2所发出的光线垂直穿过所述透光元件4时,所述透光元件4的菲涅尔反射弱,所述透光元件4对光线的反射也较弱;而当光线非垂直穿过所述透光元件4,所述反射层32与所述第一端面11之间的夹角α过小或过大时,都会增强所述透光元件4的菲涅尔反射,即所述透光元件4对光线的反射也变强,因此,所述透光元件4上的菲涅尔反射越弱,光线从所述透光元件4处透过的透过率就越高,当所述反射层32与所述第一端面11之间的夹角α为30°至60°之间时,所述透光元件4处的光线透过率较高,如图70所示,光线A为所述夹角α为75°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图;光线B为所述夹角α为60°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图;光线C为所述夹角α为45°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图;光线D为所述夹角α为30°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图;光线E为所述夹角α为15°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图。可以看出,当所述反射层32与所述第一端面11之间的夹角α在45°时,所述光线C几乎垂直穿过所述透光元件4,此时所述透光元件4的菲涅尔反射最小,光线透过率最高,所述夹角α在45°的基础上增大或者减小,都会增大所述透光元件4的菲涅尔反射,因此在此实施例中,所述反射面6与所述第一端面11之间的夹角α的角度优选为45°。
具体地,在实施例10b中,如图68d所示,所述反射环7的外形呈圆台形,或者,如图68e所示,所述反射环7的外形呈棱台形,所述反射环7的外形形状可根据实际使用需求设置,所述反射环7的内侧壁呈斜面状,便于光线的反射。
具体地,在实施例10b中,所述反射环7可以采用镜面铝或镜面银制成,镜面铝与空气接触会形成致密的三氧化二铝,性能稳定,所以此处优选镜面铝作为所述反射环7的制作材料,镜面铝对紫外光的反射率高于90%,极大的提升了出光率,并且工艺难度及成本皆较低。
具体地,在实施例10b中,所述基板1可以为陶瓷基板,在制备所述基板1时,如图61所示,于所述基板1的第一端面11设置基板表面线路13,于所述基板1的第二端面12设置基板背部线路14,于所述基板1开设用于导通所述基板表面线路13与所述基板背部线路14的导电孔15,将所述导电孔15贯通所述第一端面11与所述第二端面12,所述基板表面线路13与所述基板背部线路14上的基材可采用镀铜工艺制成,在所述基材表面通过沉金工艺镀有镍金镀层或镍钯金镀层,使发光元件2更好地与基板1结合,所述镍金镀层中镍的厚度>3um,金的厚度>0.05um,所述镍钯金镀层中镍的厚度>3um,钯的厚度>0.05um,金的厚度>0.05um,所述基板表面线路13还具有围坝接触位和用于焊接发光元件2的芯片接触位,同时所述基板表面线路13在除所述围坝接触位与芯片接触位以外的部分区域通过真空溅射或者蒸镀的方式镀有金属反射层,金属反射层可以为铝或者银反射层,铝反射层与空气接触会形成致密的三氧化二铝,性能稳定,铝对紫外光的反射率为90%以上。
具体地,在实施例10b中,所述基板1的第一端面11具有供所述反射环7的下端部卡嵌的连接槽111,如图68至图68c所示,所述反射环7的下端部可直接镶嵌于所述连接槽111内,或者,可在所述连接槽111内涂覆胶水或焊料,将所述反射环7的下端部粘接或焊接于所述连接槽111内,结构稳固。
具体地,在实施例10b中,在将发光元件2固定于所述基板1的第一端面11时,包括如下步骤:①在所述芯片接触位上点涂作为共晶媒介的助焊剂,将发光元件2放置在有助焊剂的地方;②将放置有发光元件2的所述基板1送入共晶炉进行共晶,使发光元件2与所述基板1结合牢固,其中共晶炉温度至少有一个温区的温度在300℃至340℃之间,且共晶过程中可输入氮气进行保护或保证共晶环境真空,防止LED器件在高温状态下被氧化。
具体地,在实施例10b中,所述发光元件2为倒装结构的UV芯片,所述UV芯片的电极为金锡合金,所述金锡合金具有焊接温度适中、焊接牢固等优良的物理特性,较为适合芯片与基板共晶。
具体地,在实施例10b中,如图68所示,于所述基板1的第一端面11设置围于所述发光元件2周围的围坝部件3时,可以在所述围坝接触位上涂覆胶水或焊料,保证结合稳固,需要说明的是,当围坝部件3为非金属材质,并使用焊料进行焊接时,需提前在所述围坝部件3的接触位处做金属化处理,所述金属化处理可以是电镀金锡合金。
具体地,在实施例10b中,所述围坝部件3可以采用硅或石英的材质制成。
具体地,在实施例10b中,所述反射环7的封装方式可以为以下几种:①如图68所示,所述反射环7的下端部端面通过胶水直接贴合粘接于所述基板1的第一端面11的连接槽111内;②如图68a所示,所述围坝部件3内部具有阶梯槽,所述阶梯槽包括围于所述发光元件2周围的下槽34,和尺寸大于所述下槽34且位于所述下槽34上方的上槽33,所述反射环7的上端部开口的边缘沿水平方向延伸有抵接部71,所述抵接部71的前端面抵贴于所述上槽33槽壁,从而避免反射环7晃动,所述抵接部71具有相对的上表面711与下表面712,所述抵接部71的下表面712通过胶水或焊料和所述上槽33槽底连接,所述透光元件4通过胶水或焊料盖设于所述抵接部71的上表面711;或者,如图68b所示,所述抵接部71与所述透光元件4皆位于所述上槽33,所述抵接部71与所述透光元件4的侧壁皆通过胶水或焊料连接于所述上槽33槽壁,且只需要在所述上槽33设置一次胶水或焊料,节约工序;③如图68c所示,所述抵接部71的下表面712通过胶水或焊料盖设并连接于所述围坝部件3的上端面,所述透光元件4通过胶水或焊料盖设于所述抵接部71的上表面711,不需要在围坝部件3的顶部设置阶梯槽,封装形式多样。
具体地,在实施例10b中,如图68所示,所述围坝部件3上端具有用于焊接所述透光元件4的透镜焊接层31,在所述围坝部件3的上端与透光元件4的接触面处涂覆胶水或焊料(形成透镜焊接层31),所述透光元件4通过胶水或焊料固定连接于所述透镜焊接层31,连接稳固。
具体地,在实施例10b中,所述透光元件4可以为玻璃透镜,所述玻璃透镜可以采用石英或蓝宝石的材质制成,不易磨损,所述玻璃透镜可以为平面透镜,也可以是球面或半球面透镜,满足不同光线需求。
具体地,在实施例10b中,设置有所述围坝部件3与所述透光元件4的所述基板1可以通过高温烘烤或光固化的方式紧密结合,可靠性佳。
实施例10c:
本发明实施例10c提供的一种LED器件(封装结构)的制作方法(封装方法),包括如下步骤:
制备具有相对的第一端面11与第二端面12的基板1;
将发光元件2固定于所述基板1的第一端面11;
于所述基板1的第一端面11设置围于所述发光元件2周围的围坝部件3(本实施例中均为围坝);本实施例中通过设置管帽构件8作为所述围坝部件3,所述管帽构件8采用金属材料一体成型且具有管帽座81和一体连接于所述管帽座81的管帽侧壁82,将所述管帽座81贴合并连接于所述基板1,所述管帽侧壁82的内侧壁即为所述反射面6;
将透光元件4(本实施例中均为透明盖)固定连接于所述管帽侧壁82的上端,并使透光元件4朝向所述发光元件2,将所述透光元件4、管帽构件8和所述基板1合围形成封装腔5。本发明实施例9c提供的一种LED器件,设置所述管帽构件8作为所述围坝部件3,所述发光元件2位于由所述透光元件4、管帽构件8和所述基板1合围形成的所述封装腔5内,所述管帽侧壁82相对于所述第一端面11倾斜设置,所述管帽侧壁82的下端外形尺寸小于所述管帽侧壁82的上端外形尺寸,所述管帽侧壁82的内侧壁与所述第一端面11之间具有夹角α,所述发光元件2所发出的光线可经由所述管帽侧壁82的内侧壁反射,在所述管帽侧壁82的内侧壁的作用下,所述发光元件2横向发出的光大部分会被反射到所述透光元件4处并从所述透光元件4处发出,能够有效减少光损失,提升LED器件的出光率。
具体地,所述管帽侧壁82的上端具有上端开口,所述管帽侧壁82的下端具有下端开口,且上端开口的形状与下端开口的形状相同,上端开口与下端开口同轴设置,所述管帽座81自所述管帽侧壁82的下端开口边缘向外周水平延伸,形成中间开孔的平面底座,所述管帽构件8整体形似帽子。所述透光元件4可固定连接于所述管帽侧壁82的上端开口并封闭上端开口。
本实施例中,LED器件包括所述基板1、发光元件2、管帽构件8、透光元件4和所述封装腔5,所述发光元件2位于由所述透光元件4、管帽构件8和所述基板1合围形成的所述封装腔5内,所述管帽侧壁82相对于所述第一端面11倾斜设置,所述管帽侧壁82的下端外形尺寸小于所述管帽侧壁82的上端外形尺寸,所述管帽侧壁82的内侧壁与所述第一端面11之间具有夹角α,所述发光元件2所发出的光线可经由所述管帽侧壁82的内侧壁反射,在所述管帽侧壁82的内侧壁的作用下,所述发光元件2横向发出的光大部分会被反射到所述透光元件4处并从所述透光元件4处发出,能够有效减少光损失,提升LED器件的出光率。
具体地,在实施例10c中,将所述反射面6(所述管帽侧壁82的内侧壁)与所述第一端面11之间的夹角α设置为在30°至60°之间,根据菲涅尔效应(即某种材质在不同距离和角度上呈现出不同的反射折射效果)的特点,当所述发光元件2所发出的光线垂直穿过所述透光元件4时,所述透光元件4的菲涅尔反射弱,所述透光元件4对光线的反射也较弱;而当光线非垂直穿过所述透光元件4,所述反射层32与所述第一端面11之间的夹角α过小或过大时,都会增强所述透光元件4的菲涅尔反射,即所述透光元件4对光线的反射也变强,因此,所述透光元件4上的菲涅尔反射越弱,光线从所述透光元件4处透过的透过率就越高,当所述反射层32与所述第一端面11之间的夹角α为30°至60°之间时,所述透光元件4处的光线透过率较高,如图70所示,光线A为所述夹角α为75°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图;光线B为所述夹角α为60°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图;光线C为所述夹角α为45°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图;光线D为所述夹角α为30°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图;光线E为所述夹角α为15°时所述发光元件2发出的光线在所述透光元件4处的反射路径示意图。可以看出,当所述反射层32与所述第一端面11之间的夹角α在45°时,所述光线C几乎垂直穿过所述透光元件4,此时所述透光元件4的菲涅尔反射最小,光线透过率最高,所述夹角α在45°的基础上增大或者减小,都会增大所述透光元件4的菲涅尔反射,因此在此实施例中,所述反射面6与所述第一端面11之间的夹角α的角度优选为45°。
具体地,在实施例10c中,所述基板1可以为陶瓷基板,在制备所述基板1时,如图69所示,于所述基板1的第一端面11设置基板表面线路13,于所述基板1的第二端面12设置基板背部线路14,于所述基板1开设用于导通所述基板表面线路13与所述基板背部线路14的导电孔15,将所述导电孔15贯通所述第一端面11与所述第二端面12,所述基板表面线路13与所述基板背部线路14上的基材采用镀铜工艺制成,所述基材表面通过沉金工艺镀有镍金镀层或镍钯金镀层,使发光元件2更好的与基板1结合,所述镍金镀层中镍的厚度>3um,金的厚度>0.05um,所述镍钯金镀层中镍的厚度>3um,钯的厚度>0.05um,金的厚度>0.05um,所述基板表面线路13还具有管帽座接触位和用于焊接发光元件2的芯片接触位,同时所述基板表面线路13在除所述管帽座接触位与芯片接触位以外的部分区域通过真空溅射或者蒸镀的方式镀有金属反射层,金属反射层可以为铝或者银反射层,铝反射层与空气接触会形成致密的三氧化二铝,性能稳定,铝对紫外光的反射率为90%以上。
具体地,在实施例10c中,在将发光元件2固定于所述基板1的第一端面11时,包括如下步骤:①在所述芯片接触位上点涂作为共晶媒介的焊料,将发光元件2放置在有焊料的地方;②将放置有发光元件2的所述基板1送入共晶炉进行共晶,使发光元件2与所述基板1结合牢固,其中共晶炉温度至少有一个温区的温度在300℃至340℃之间,且共晶过程中可输入氮气进行保护,或保证共晶环境真空,防止LED器件在高温状态下被氧化。
具体地,在实施例10c中,所述发光元件2为倒装结构的UV芯片,所述UV芯片的电极为金锡合金,焊接温度适中、焊接牢固等优良的物理特性,较为适合芯片与基板共晶。
具体地,在实施例10c中,于所述基板1的第一端面11设置围于所述发光元件2周围的管帽构件8时,可以在所述管帽座接触位上涂覆胶水或焊料,保证结合稳固。
具体地,在实施例10c中,如图69a所示,所述管帽侧壁82的外形呈棱台状,或者,如图69b所示,所述管帽侧壁82的外形呈圆台状,可根据实际使用需求只制作所述管帽侧壁82的形状,灵活实用,如图69所示,所述管帽侧壁82的下端外形尺寸小于所述管帽侧壁82的上端外形尺寸,将所述管帽侧壁82与所述第一端面11之间的夹角α设置为大于零且小于90°,且所述管帽侧壁82的内侧壁镀有铝,铝对紫外线的反射率在90%以上,能够有效反射所述发光元件2所发出的光线。
具体地,在实施例10c中,如图69与图69c所示,所述管帽座81的外形尺寸W2大于所述管帽侧壁82的上端的外形尺寸W1,且所述管帽座81的外形尺寸W2与所述管帽侧壁82的上端的外形尺寸W1之差≥0.2mm,即管帽座81自管帽侧壁82的下端开口边缘向外延伸的范围超出管帽侧壁82的上端向管帽座81的投影范围,这样的设计使得管帽座81具有较大的面积便于焊接(即便于与所述基板1连接),且由于所述管帽座81的外轮廓面积大于所述管帽侧壁82上端的外轮廓面积,使得所述管帽构件8的底部受力面积大,可以增强所述管帽构件8对所述透光元件4的支撑性,避免所述管帽构件8变形。
具体地,在实施例10c中,所述管帽构件8需要具有刚性且不易变形,因此此处优选科瓦合金作为所述管帽构件8的材质,所述管帽构件8通过冲压的方式加工成型,外形可加工成圆形,方形或者菱形等,所述管帽构件8的外形可以根据具体情况设置,所述管帽侧壁82的内侧壁呈斜面状,便于反射光线。
具体地,在实施例10c中,如图69所示,所述管帽侧壁82的上端具有用于焊接所述透光元件4的焊接点821,所述透光元件4与所述管帽侧壁82可通过玻璃焊料烧结在一起,或者,也可以通过在所述焊接点821或者所述透光元件4的焊接处电镀金属,通过激光焊、共晶焊或者回流焊等焊接方式将所述透光元件4与所述管帽侧壁82焊接在一起,电镀所用金属优选用金锡合金,本发明所提出的一种LED器件在制作LED模组的生产过程中通常需要通过贴片工艺贴装在PCB板上,再经过回流焊设备进行焊接,而回流焊设备的温度达到265℃,为了避免所述透光元件4与所述管帽侧壁82的焊接点821出现二次回融现象,所述金锡合金中金的成分含量设置为80%,锡的成分含量设置为20%,在此比例下金锡合金融化温度大于280℃,在经过回流焊时不会出现二次回融现象。所述透光元件4与所述管帽侧壁82可通过激光焊等焊接方式进行局部受热焊接能够实现LED器件的全无机封装,能够避免产品整体在受热焊接中受腔体内的空气热胀冷缩的影响,防止焊接点出现气泡、空洞、裂纹等不良现象,从而避免影响产品可靠性。
具体地,在实施例10c中,所述透光元件4可以为玻璃透镜,所述玻璃透镜可以采用石英或蓝宝石的材质制成,不易磨损。
具体地,在实施例10c中,如图69与图69c所示,所述玻璃透镜可以为平面透镜,也可以是球面或半球面透镜,满足不同光线需求。
本发明所提供的一种LED器件(封装结构)的制作方法(封装方法)及LED器件(封装结构),在所述发光元件2周围设置用于反射所述发光元件2所发出的部分光线的反射面6,且将所述反射面6与所述第一端面11之间的夹角α设置为大于零且小于90°,在此角度下,所述发光元件2横向发出的光大部分会被反射到正面,从所述透光元件4(透明盖)处发出,避免像垂直坝体结构中光在坝体间来回反射损耗的现象,光的提取效率相对更高,并直接在所述反射面6上镀铝,不仅实现了高于90%的紫外线反射率,总体有效提升了UV-LED器件的出光率,减少光损失。
本发明提供实施例中的方法步骤的顺序并不是必须的,在不冲突的情况下,本实施例中的步骤的先后顺序可以根据实际情况进行调整,例如可以先于所述基板1的第一端面11设置围于所述发光元件2周围的围坝部件3;再将发光元件2固定于所述基板1的第一端面11。本领域技术人员对本发明提供的LED器件制作方法的步骤顺序简单调整无需付出创造性劳动,步骤顺序简单调整均应视为包含在本发明的保护范围内。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (65)

  1. 一种封装结构,其特征在于,包括基板、发光元件、透明盖和连接于基板的围坝,所述发光元件为LED芯片或激光芯片;所述基板具有相对的正面和背面,所述发光元件固定于所述基板的正面;所述透明盖连接于所述围坝。
  2. 如权利要求1所述的封装结构,其特征在于,所述围坝与透明盖、所述基板合围形成安装区;所述围坝包括外挡墙和内挡墙,所述外挡墙和所述内挡墙之间具有凹槽,所述封装结构还包括设置于所述凹槽的密封件,所述透明盖罩盖于所述内挡墙和所述安装区,且所述透明盖插接于所述凹槽内,并与所述密封件相接;所述封装结构还包括设置于所述透明盖边缘处的防护件,所述防护件具有用于封堵所述透明盖与所述外挡墙之间间隙的封堵部、连接于所述封堵部且可与所述透明盖上端相抵的抵压部。  
  3. 如权利要求2所述的封装结构,其特征在于,所述防护件设置有多个,多个所述防护件部分覆盖于所述透明盖上表面,位于所述透明盖上表面相对的两个所述抵压部的端面之间的间距不大于所述内挡墙相对的两个面向所述凹槽的侧壁之间的间距。
  4. 如权利要求2所述的封装结构,其特征在于,所述密封件具有用于与所述内挡墙和所述透明盖内侧相贴的内密封部、用于与所述外挡墙和所述透明盖外侧相贴的外密封部以及用于与所述凹槽槽底和所述透明盖底部相贴的横向密封部;所述横向密封部的一端连接于所述外密封部,所述横向密封部的另一端连接于所述内密封部,所述内密封部与所述外密封部、横向密封部围合形成用于安装所述透明盖的安装槽。
  5. 如权利要求4所述的封装结构,其特征在于,所述透明盖包括面盖部、连接于所述面盖部外周侧的纵向部;所述内密封部的一侧面与所述纵向部的内侧面相贴,所述内密封部的另一侧面与所述内挡墙的侧面相贴,所述纵向部的底部与所述横向密封部相贴。
  6. 如权利要求2所述的封装结构,其特征在于,所述防护件还包括连接于所述封堵部并用于与所述外挡墙固定连接的固定部,所述固定部与所述外挡墙有部分位置重合;所述固定部与所述外挡墙的上端面或面向凹槽的侧面有部分位置重合。
  7. 如权利要求6所述的封装结构,其特征在于,所述内挡墙的高度为第一高度,所述外挡墙的高度为第二高度,所述第一高度大于所述第二高度;所述固定部连接于所述封堵部的一端,所述抵压部连接于所述封堵部的另一端。
  8. 如权利要求6所述的封装结构,其特征在于,所述内挡墙的高度为第一高度,所述外挡墙的高度为第二高度,所述第一高度小于所述第二高度;所述封堵部的外侧与所述外挡墙相贴;所述固定部分别与所述封堵部、所述抵压部相接。
  9. 如权利要求1所述的封装结构,其特征在于,所述透明盖的底部设置有焊接层,所述基板的正面设置有第一线路层,所述第一线路层包括用于与所述焊接层相接的第一线路图形,所述第一线路层还包括用于与所述LED芯片焊接的焊盘,所述透明盖与所述基板之间形成有密封的封装腔,所述LED芯片设置于所述封装腔内且焊接于所述焊盘。
  10. 如权利要求9所述的一种封装结构,其特征在于,所述焊接层为电镀形成于所述透明盖底部的金属层;所述第一线路图形为电镀形成于所述基板正面的金属层;或,
    所述焊接层为形成于所述透明盖底部的玻璃焊料;所述第一线路图形为电镀形成于所述基板正面的金属层。
  11. 如权利要求9所述的一种封装结构,其特征在于,所述第一线路图形的形状呈封闭形状,且所述焊接层与所述第一线路图形相接形成封闭形状的焊接区;
    或者,所述第一线路图形的形状呈半封闭形状,且所述焊接层与所述第一线路图形相接形成半封闭形状的焊接区。
  12. 如权利要求9所述的一种封装结构,其特征在于,所述基板的背面或/和内部设置有第二线路层;
    所述焊盘通过设置于所述基板的导电孔连通于所述第二线路层。
  13. 如权利要求1所述的一种封装结构,其特征在于,所述围坝呈环形并具有内侧壁、顶部和底部,所述围坝的底部座于所述基板的正面,所述围坝围于所述LED芯片外围,且所述围坝的内侧壁位于所述LED芯片上方的至少一部分设有贯通所述围坝顶部的安装槽,所述安装槽具有槽底面、槽侧壁;所述封装结构还包括定位块,所述定位块设置于所述安装槽内;所述透明盖的底面与所述安装槽的槽底面抵接并朝向所述LED芯片,所述透明盖的侧表面与多个所述定位块抵接,所述透明盖的侧表面与所述安装槽的槽底面、槽侧壁形成封胶槽;所述封装结构还包括密封胶,所述密封胶设于所述封胶槽内且不覆盖所述透明盖。
  14. 根据权利要求13所述的封装结构,其特征在于,多个所述定位块沿所述封胶槽周向等间距设置。
  15. 根据权利要求13所述的封装结构,其特征在于,所述定位块的底部座于所述安装槽的槽底面,所述定位块具有相对的第一侧面和第二侧面,所述定位块的第一侧面抵于所述安装槽的槽侧壁,所述透明盖的外周侧抵顶于所述定位块的第二侧面。
  16. 根据权利要求13所述的封装结构,其特征在于,所述透明盖的底部座于所述安装槽的槽底面,且所述透明盖的顶部高于所述定位块的高度。
  17. 根据权利要求13所述的封装结构,其特征在于,所述定位块的高度低于所述安装槽的顶部,所述密封胶覆盖于所述定位块顶部。
  18. 根据权利要求13所述的封装结构,其特征在于,
    所述基板的正面设有第一线路,所述LED芯片与所述第一线路连接;所述基板的背面设有第二线路,所述基板设有贯穿所述正面与背面的导电孔,所述第一线路与所述第二线路通过所述导电孔连接。
  19. 如权利要求1所述的封装结构,其特征在于,所述基板的正面设有第一线路层;所述发光元件设置于所述基板的正面,且所述发光元件与所述第一线路层连接;所述围坝设置于所述基板的正面,包括相隔设置于所述基板的正面的第一部分和第二部分,所述第一部分和第二部分分别配置为与电信号检测模块连接的正极导体与负极导体,且所述正极导体与负极导体设于所述发光元件与第一线路层的外围;所述透明盖包括层叠设置的透光导电层、匀光层与透光层,所述透光导电层连接于所述正极导体与负极导体。
  20. 根据权利要求19所述的的封装结构,其特征在于,所述透光导电层由氧化铟锡材料制得;所述围坝由隔断槽隔开,所述正极导体与所述负极导体相对所述隔断槽对称设置;所述隔断槽处设有绝缘材料;所述正极导体呈“Π”形,所述负极导体呈倒“Π”形,所述正极导体的开口与所述负极导体的开口相对设置,所述发光元件至少部分伸入于所述正极导体的开口和/或负极导体的开口;所述正极导体的顶部设有第一安装槽,所述第一安装槽设于所述发光元件上方的所述正极导体的至少部分侧壁且贯穿所述正极导体的顶部,所述负极导体的顶部设有第二安装槽,所述第二安装槽设于所述发光元件上方的所述负极导体的至少部分侧壁且贯穿所述负极导体的顶部,所述透明盖固定于所述第一安装槽与第二安装槽;所述透明盖具有朝向于所述发光元件的底面,所述匀光层完全覆盖于所述透光层的底面,所述透光导电层完全覆盖于所述匀光层的底面,且所述透光导电层的底面通过导电粘结胶粘结于所述第一安装槽的槽底面与第二安装槽的槽底面。
  21. 根据权利要求19或20所述的的封装结构,其特征在于,所述基板的背面设有与所述第一线路层相导通的第二线路层;所述基板设有贯穿所述基板的第一导电孔与第二导电孔,所述正极导体通过所述第一导电孔与所述第二线路层连接,所述负极导体通过所述第二导电孔与所述第二线路层连接;所述第一线路层设置有驱动集成电路,所述发光元件为VCSEL激光芯片,所述驱动集成电路与所述VCSEL激光芯片及所述透光导电层连接。
  22. 根据权利要求1所述的LED封装结构,其特征在于,
    包括具有所述围坝和所述基板的支架结构,所述基板位于所述围坝内; 所述透明盖设置于所述基板的正面且覆盖所述LED芯片;
    所述封装结构还包括荧光物质,所述荧光物质设于所述支架结构或/和所述透明盖,所述荧光物质用于在所述LED芯片发射出的光照射时发生荧光反应而产生可见光。
  23. 根据权利要求22所述的封装结构,其特征在于,所述透明盖包裹所述LED芯片;所述围坝呈环形并具有内侧壁、顶部和底部,所述围坝的底部座于所述基板的正面,所述围坝合围于所述LED芯片外围,所述透明盖、所述围坝、所述基板围合形成收容腔。
  24. 根据权利要求23所述的封装结构,其特征在于,所述透明盖通过混有所述荧光物质的粘结胶水粘接于所述围坝,且/或,所述荧光物质设置于所述收容腔内。
  25. 根据权利要求23所述的封装结构,其特征在于,所述围坝的内侧壁位于所述LED芯片上方的至少一部分设有贯通所述围坝顶部的安装槽,所述透明盖的底部或/和侧面通过混有所述荧光物质的粘结胶水固定于所述安装槽。
  26. 根据权利要求22至25中任一项所述的封装结构,其特征在于,所述荧光物质为荧光层,所述荧光层呈环形、条形、圆形或多边形;所述荧光物质设置于所述基板的正面或者设置于所述围坝的内侧壁。
  27. 根据权利要求22至25中任一项所述的封装结构,其特征在于,所述基板的正面设置有第一线路,所述第一线路具有环形槽,所述荧光物质设置于所述环形槽内。
  28. 根据权利要求23所述的封装结构,其特征在于,所述围坝为金属管帽,所述金属管帽的上端和下端均具有开口,所述金属管帽的底部座于所述基板的正面,所述透明盖连接于所述金属管帽上端且将上端的开口封闭,所述基板的正面于所述金属管帽内部设置有所述荧光物质。
  29. 根据权利要求1所述的封装结构,其特征在于,所述基板为多层基板,所述多层基板包括:
    第一基板,具有相对的正面与背面,所述第一基板的正面设有第一线路层,所述第一基板的背面设有第二线路层,所述第一线路层与所述第二线路层导通,所述第一线路层包括第一线路正极与第一线路负极;
    封装体,所述封装体呈环形并设置于所述第一基板的正面,所述封装体围于所述第一线路正极与第一线路负极的外围;
    第二基板,所述第二基板通过焊接工艺与所述第一基板的背面的第二线路层连接,所述第二基板的背面设有散热层。
  30. 根据权利要求29所述的封装结构,其特征在于,所述第一线路层还包括电极正极与电极负极,所述电极正极与电极负极设于所述封装体的外围,所述第二线路层包括相互间隔且绝缘的第二线路正极与第二线路负极,所述第一基板设置有导电孔,所述导电孔包括至少两个第一导电孔和至少两个第二导电孔,所述至少两个第一导电孔在所述第一基板正面的开孔位于所述封装体的内侧和外侧;所述至少两个第二导电孔在所述第一基板正面的开孔分别位于所述封装体的内侧和外侧,各所述第一导电孔和第二导电孔内设有导电材料,所述第二线路正极通过至少两个所述第一导电孔分别与所述电极正极及第一线路正极连接,所述第二线路负极通过至少两个所述第二导电孔分别与所述电极负极及第一线路负极连接。
  31. 根据权利要求30所述的封装结构,其特征在于,所述第一基板与第二基板之间具有连接所述第一基板和第二基板的焊接层,所述焊接层包括第一焊接部与第二焊接部,所述第一焊接部与所述第二焊接部分别与所述第二线路正极与所述第二线路负极焊接,且所述第一焊接部与所述第二焊接部绝缘。
  32. 根据权利要求31所述的封装结构,其特征在于,所述第一焊接部与所述第二线路正极的形状与尺寸相同,所述第二焊接部与所述第二线路负极的形状与尺寸相同;所述第一基板与所述第二基板均为陶瓷基板。
  33. 根据权利要求31所述的封装结构,其特征在于,所述焊接层还包括第三焊接部,所述第三焊接部呈封闭的环形,且围于所述第二线路层的外围;所述第三焊接部与所述第二线路层之间相互间隔且绝缘。
  34. 根据权利要求33所述的封装结构,其特征在于,第二线路正极与第二线路负极的间隔处填充有绝缘材料;所述第三焊接部与所述第二线路层之间的间隔处设有绝缘材料。
  35. 根据权利要求33所述的封装结构,其特征在于,所述第三焊接部与第二线路层之间的间隔的最小距离大于0.2毫米,所述第二线路正极与第二线路负极之间的间隔的最小距离大于0.2毫米;所述第一焊接部与所述第二焊接部之间的间隔的最小距离大于0.2毫米;各所述第一导电孔和第二导电孔的孔径为0.09毫米至0.15毫米。
  36. 根据权利要求29至35中任一项所述的封装结构,其特征在于,所述散热层包括层叠设置的铜散热层、镍散热层与金散热层,所述铜散热层的厚度为50至300微米,所述镍散热层的厚度大于3微米,所述金散热层的厚度大于0.05微米。
  37. 一种LED装置,其特征在于,包括权利要求29至36任一项所述的多层基板,还包括透光件和LED芯片,所述透光件连接于所述封装体,所述LED芯片设置于所述第一基板正面且与所述第一线路正极与所述第一线路负极电连接;所述透光件、封装体和第一基板的正面形成密封所述LED芯片的封装腔。
  38. 根据权利要求1所述的封装结构,其特征在于,所述基板的正面设有第一线路层,所述第一线路层包括多组正极焊盘与负极焊盘组,所述基板的背面设有第二线路层,所述第二线路层包括多组与所述正极焊盘与负极焊盘组一一对应的正极端子与负极端子组,一组所述正极端子与负极端子对称设置于所述基板背面相对的两侧;各所述正极端子呈线性间隔排列且等距设置于基板背面的同一侧,各所述负极端子呈线性间隔排列且等距设置于基板背面的另一侧且与各所述正极端子一一相对,且一所述正极焊盘通过贯通于所述基板的正极导电孔与一所述正极端子导通,且一所述负极焊盘通过贯通于所述基板的负极导电孔与一所述负极端子导通;
    所述LED芯片设置有多颗,各所述LED芯片分别与一组所述正极焊盘和负极焊盘电连接连接。
  39. 根据权利要求38所述的封装结构,其特征在于,所述LED芯片为倒装芯片,所述LED芯片的数量为n*n颗,其中n为大于2的自然数,各所述LED芯片呈矩形阵列设置。
  40. 根据权利要求39所述的封装结构,其特征在于,所述正极焊盘与负极焊盘在所述基板正面形成呈矩形的电路图案,各所述LED芯片均布于所述电路图案,所述电路图案包括分别位于所述电路图案相对的两侧的第一边缘区域和第二边缘区域,各所述正极导电孔位于所述第一边缘区域;各所述负极导电孔位于所述第二边缘区域,其中,所述第n正极焊盘的一端与对应的第n LED芯片的正极连接,另一端延伸至所述第一边缘区域与一对应的第n正极导电孔连接;所述第n负极焊盘一端与对应的第n LED芯片的负极连接,另一端延伸至第二边缘区域与一对应的第n负极导电孔连接;
    各所述正极焊盘在所述基板背面的投影与各自对应的正极端子至少有部分重合区;各所述负极焊盘在所述基板背面的投影与各自对应的负极端子至少有部分重合区,各所述正极导电孔和负极导电孔分别位于各所述重合区。
  41. 根据权利要求40所述的封装结构,其特征在于,所述电路图案设有间隔各所述基板正面的正极焊盘和负极焊盘的间隙,所述间隙至少大于0.2mm;各正极导电孔呈线性排列;各负极导电孔呈线性排列,且各正极导电孔与负极导电孔一一对应对称设置。
  42. 根据权利要求38至41中任意一项所述的封装结构,其特征在于,所述封装结构还包括设于所述基板正面的封装体与设于所述封装体的上的透光件,所述封装体呈环形且包围各所述LED芯片与各组正极焊盘与负极焊盘,所述透光件覆盖于所述LED芯片的上方。
  43. 根据权利要求42所述的封装结构,其特征在于,所述封装体设有开设于所述封装体内侧壁并贯穿所述封装体顶部的安装槽,所述透光件的底面通过助焊材料焊接在所述安装槽上;所述基板为陶瓷基板。
  44. 根据权利要求38至41中任意一项所述的封装结构,其特征在于,所述基板背面的中间区域还设有散热层,多个所述正极端子相邻间隔设置于所述散热层的一侧,多个所述负极端子相邻间隔设置于所述散热层的另一侧。
  45. 根据权利要求40所述的封装结构,其特征在于,所述电路图案以其几何中心为对称点旋转对称;所述电路图案设有第一定位标识。
  46. 根据权利要求38至41中任意一项所述的封装结构,其特征在于,各所述LED芯片均并联一倒装结构的齐纳芯片,每一所述齐纳芯片与一组所述正极焊盘和负极焊盘电连接。
  47. 根据权利要求38至41中任意一项所述的封装结构,其特征在于,所述第一线路层和/或第二线路层包括层叠设置的第一铜金属层、第一镍金属层与第一金金属层,所述第一镍金属层的厚度大于3微米,所述第一金金属层的厚度大于0.05微米。
  48. 根据权利要求1所述的封装结构,其特征在于,所述围坝呈环形并具有内侧壁、顶部和底部,所述围坝的底部座于所述基板的正面,所述围坝围于所述LED芯片外围,且所述围坝的内侧壁位于所述LED芯片上方的至少一部分设有贯通所述围坝顶部的安装槽;所述封装结构包括光窗组件,所述光窗组件包括透明盖与金属管帽,所述金属管帽焊接于所述透明盖外围,所述透明盖与金属管帽固定于所述安装槽内,且所述透明盖与金属管帽的底部均与所述安装槽的槽底面抵接,所述透明盖、金属管帽、基板的正面及围坝围合形成用于收容所述LED芯片的收容腔,并且所述透明盖与金属管帽的表面与所述安装槽的壁面围合形成封胶槽;所述封装结构还包括密封胶,所述密封胶设于所述封胶槽内。
  49. 根据权利要求48所述的封装结构,其特征在于,所述透明盖的高度大于所述金属管帽的高度。
  50. 根据权利要求48或49所述的封装结构,其特征在于,
    所述透明盖与金属管帽之间通过玻璃焊料焊接;
    所述玻璃焊料的高度大于所述金属管帽的高度,并且覆盖所述金属管帽远离所述基板的表面。
  51. 根据权利要求50所述的封装结构,其特征在于,所述金属管帽的底部向远离所述透明盖的方向延伸有焊接部,所述金属管帽通过所述焊接部焊接于所述安装槽的槽底面。
  52. 根据权利要求51所述的封装结构,其特征在于,所述焊接部与所述安装槽的槽侧壁抵接,所述玻璃焊料、金属管帽与所述安装槽的槽侧壁形成所述封胶槽;所述密封胶覆盖所述玻璃焊料与金属管帽。
  53. 根据权利要求1所述的封装结构,其特征在于,包括器件主体,所述器件主体包括所述基板、发光元件、所述围坝和所述透明盖,所述围坝连接于所述基板和所述透明盖,所述基板、所述围坝和所述透明盖合围形成封装腔,所述基板具有相对的第一端面与第二端面,所述发光元件设置于所述基板的第一端面且位于所述封装腔内,所述发光元件朝向于所述透明盖,所述围坝具有内侧壁,所述内侧壁镀设有用于反射所述发光元件发出光的反射层,所述内侧壁由所述第一端面向远离所述发光元件的方向倾斜,并与所述第一端面形成大于零且小于90°的夹角。
  54. 如权利要求53所述的一种封装结构,其特征在于,所述围坝呈围筒状,所述围筒上端的外形尺寸大于所述围筒下端的外形尺寸,所述围坝的内侧壁相对于所述第一端面倾斜设置;所述反射层为均匀覆盖于所述围坝内侧壁的金属层;或者,所述反射层为部分覆盖于所述围坝内侧壁的金属层;所述金属层为铝层;所述夹角为30°至60°或所述夹角为45°。
  55. 如权利要求53所述的一种封装结构,其特征在于,所述发光元件与所述第一端面之间设置有基板表面线路,所述第二端面设置有基板背部线路,所述基板具有贯通所述第一端面与所述第二端面的导电孔,所述基板表面线路与所述基板背部线路通过所述导电孔导通;所述基板表面线路与所述基板背部线路上的基材镀有镍金镀层或镍钯金镀层。
  56. 如权利要求53所述的一种封装结构,其特征在于,所述透明盖为玻璃透镜,所述玻璃透镜为平面透镜,或者,所述玻璃透镜为球面或半球面透镜,所述玻璃透镜表面镀有用于提升紫外线透过率的增透膜。
  57. 一种封装结构的封装方法,其特征在于,所述封装方法用于封装如权利要求53所述的封装结构,包括如下步骤:
    制备具有相对的第一端面与第二端面的基板;
    将发光元件固定于所述基板的第一端面;
    于所述基板的第一端面设置围于所述发光元件周围的围坝;
    在所述围坝围设的空间内设置用于反射所述发光元件所发出的部分光线的反射面,所述反射面由所述第一端面向所述空间外侧倾斜且所述反射面与所述第一端面之间的夹角设置为大于零且小于90°;
    将透明盖固定连接于所述围坝,并使透明盖朝向所述发光元件,将所述透明盖、围坝和所述基板合围形成封装腔。
  58. 如权利要求57所述的封装方法,其特征在于,将所述围坝的内侧壁与所述第一端面之间的夹角设置为大于零且小于90°,设置所述围坝后,于所述内侧壁镀设反射层,所述反射层的表面为所述反射面。
  59. 如权利要求5768所述的封装方法,其特征在于,在将透明盖固定连接于所述围坝之前,设置所述围坝后,于所述围坝围设的空间内设置反射环,将所述反射环的下端靠近于所述基板,所述反射环的下端小于所述反射环的上端,所述反射环的外形呈圆台形或棱台形,所述反射环朝向所述发光元件的内侧壁为所述反射面。
  60. 如权利要求57所述的封装方法,其特征在于,设置管帽构件作为所述围坝,所述管帽构件采用金属材料一体成型且具有管帽座和一体连接于所述管帽座的管帽侧壁,将所述管帽座贴合并连接于所述基板,所述管帽侧壁的内侧壁为所述反射面。
  61. 如权利要求60所述的封装方法,其特征在于,所述管帽侧壁的外形呈圆台状或呈棱台状,所述管帽侧壁的下端外形尺寸小于所述管帽侧壁的上端外形尺寸,将所述管帽侧壁与所述第一端面之间的夹角设置为大于零且小于90°。
  62. 如权利要求61所述的封装方法,其特征在于,所述管帽座的外形尺寸大于所述管帽侧壁的上端的外形尺寸,且所述管帽座的外形尺寸与所述管帽侧壁的上端的外形尺寸之差≥0.2mm。
  63. 如权利要求57至61中任一项所述的封装方法,其特征在于,在制备所述基板时,于所述基板的第一端面设置基板表面线路,于所述基板的第二端面设置基板背部线路,于所述基板内开设用于导通所述基板表面线路与所述基板背部路线的导电孔,将所述导电孔贯通所述第一端面与所述第二端面。
  64. 如权利要求57至61中任一项所述的封装方法,其特征在于,所述透明盖为玻璃透镜,所述玻璃透镜表面镀有用于提升光透过率的增透膜。
  65. 如权利要求57至61中任一项所述的封装方法,其特征在于,将所述反射面与所述第一端面之间的夹角设置为在30°至60°之间。
PCT/CN2023/116314 2022-08-31 2023-08-31 一种封装结构、 led 装置及封装方法 WO2024046441A1 (zh)

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
CN202211052295.8 2022-08-31
CN202211052295.8A CN115377270A (zh) 2022-08-31 2022-08-31 一种led封装结构
CN202320148419.6U CN219246707U (zh) 2023-01-13 2023-01-13 一种全无机led封装结构
CN202320148419.6 2023-01-13
CN202310461846.4 2023-04-26
CN202310461846.4A CN116581224A (zh) 2023-04-26 2023-04-26 一种led封装结构及led封装方法
CN202310471905.6 2023-04-27
CN202310471905.6A CN116469988A (zh) 2023-04-27 2023-04-27 一种led器件及led封装方法
CN202321351736.4 2023-05-30
CN202321351736.4U CN219610991U (zh) 2023-05-30 2023-05-30 一种发光元件的封装结构
CN202321364282.4 2023-05-31
CN202310641247.0 2023-05-31
CN202321364282.4U CN220306278U (zh) 2023-05-31 2023-05-31 一种led器件
CN202310641247.0A CN116682921A (zh) 2023-05-31 2023-05-31 一种led器件的制作方法及led器件
CN202310953283.0 2023-07-31
CN202310957094.0 2023-07-31
CN202310953283.0A CN117059612A (zh) 2023-07-31 2023-07-31 一种led装置
CN202310957094.0A CN117059724A (zh) 2023-07-31 2023-07-31 一种多层基板及其制造方法与led装置

Publications (1)

Publication Number Publication Date
WO2024046441A1 true WO2024046441A1 (zh) 2024-03-07

Family

ID=90100437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116314 WO2024046441A1 (zh) 2022-08-31 2023-08-31 一种封装结构、 led 装置及封装方法

Country Status (1)

Country Link
WO (1) WO2024046441A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3156732U (ja) * 2009-10-29 2010-01-14 柏友照明科技股▲フン▼有限公司 リフローによる半田付けが可能で且つ放熱効果を高めるledのパッケージ構造
CN205028920U (zh) * 2015-10-09 2016-02-10 广州市鸿利光电股份有限公司 一种深紫外led封装结构
CN108321279A (zh) * 2018-03-16 2018-07-24 江苏鸿利国泽光电科技有限公司 一种深紫外led光源无机封装结构
CN211295136U (zh) * 2020-03-13 2020-08-18 深圳市领德优威科技有限公司 一种uv封装结构
KR20200099262A (ko) * 2019-02-14 2020-08-24 엘지이노텍 주식회사 발광소자 패키지 및 이를 포함하는 광원 모듈
CN212659557U (zh) * 2020-07-20 2021-03-05 麦科勒(滁州)新材料科技有限公司 一种显示可见光的紫外led灯珠
CN114695622A (zh) * 2020-12-30 2022-07-01 佛山市国星光电股份有限公司 一种深紫外led封装结构及其封装方法
CN216958074U (zh) * 2021-11-22 2022-07-12 惠州市芯瓷半导体有限公司 避免封装流胶的3d金属围坝陶瓷基板
CN115377270A (zh) * 2022-08-31 2022-11-22 深圳市聚飞光电股份有限公司 一种led封装结构
CN218498092U (zh) * 2022-09-07 2023-02-17 江西晶弘新材料科技有限责任公司 可提高uv反射率的陶瓷封装结构
CN219246707U (zh) * 2023-01-13 2023-06-23 深圳市聚飞光电股份有限公司 一种全无机led封装结构
CN116469988A (zh) * 2023-04-27 2023-07-21 深圳市聚飞光电股份有限公司 一种led器件及led封装方法
CN116581224A (zh) * 2023-04-26 2023-08-11 深圳市聚飞光电股份有限公司 一种led封装结构及led封装方法
CN219610991U (zh) * 2023-05-30 2023-08-29 深圳市聚飞光电股份有限公司 一种发光元件的封装结构

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3156732U (ja) * 2009-10-29 2010-01-14 柏友照明科技股▲フン▼有限公司 リフローによる半田付けが可能で且つ放熱効果を高めるledのパッケージ構造
CN205028920U (zh) * 2015-10-09 2016-02-10 广州市鸿利光电股份有限公司 一种深紫外led封装结构
CN108321279A (zh) * 2018-03-16 2018-07-24 江苏鸿利国泽光电科技有限公司 一种深紫外led光源无机封装结构
KR20200099262A (ko) * 2019-02-14 2020-08-24 엘지이노텍 주식회사 발광소자 패키지 및 이를 포함하는 광원 모듈
CN211295136U (zh) * 2020-03-13 2020-08-18 深圳市领德优威科技有限公司 一种uv封装结构
CN212659557U (zh) * 2020-07-20 2021-03-05 麦科勒(滁州)新材料科技有限公司 一种显示可见光的紫外led灯珠
CN114695622A (zh) * 2020-12-30 2022-07-01 佛山市国星光电股份有限公司 一种深紫外led封装结构及其封装方法
CN216958074U (zh) * 2021-11-22 2022-07-12 惠州市芯瓷半导体有限公司 避免封装流胶的3d金属围坝陶瓷基板
CN115377270A (zh) * 2022-08-31 2022-11-22 深圳市聚飞光电股份有限公司 一种led封装结构
CN218498092U (zh) * 2022-09-07 2023-02-17 江西晶弘新材料科技有限责任公司 可提高uv反射率的陶瓷封装结构
CN219246707U (zh) * 2023-01-13 2023-06-23 深圳市聚飞光电股份有限公司 一种全无机led封装结构
CN116581224A (zh) * 2023-04-26 2023-08-11 深圳市聚飞光电股份有限公司 一种led封装结构及led封装方法
CN116469988A (zh) * 2023-04-27 2023-07-21 深圳市聚飞光电股份有限公司 一种led器件及led封装方法
CN219610991U (zh) * 2023-05-30 2023-08-29 深圳市聚飞光电股份有限公司 一种发光元件的封装结构

Similar Documents

Publication Publication Date Title
JP5726409B2 (ja) 発光装置および発光装置の製造方法
KR101162404B1 (ko) 수지 밀봉 발광체 및 그 제조 방법
JP4279388B2 (ja) 光半導体装置及びその形成方法
KR100586944B1 (ko) 고출력 발광다이오드 패키지 및 제조방법
JP3978451B2 (ja) 発光装置
JP2019220726A (ja) 波長変換材料の気密シールを有するledモジュール
TWI415293B (zh) 光電元件之製造方法及其封裝結構
JP5648422B2 (ja) 発光装置及びその製造方法
CN213242589U (zh) 一种发光角度可调的紫外led器件
JP5036222B2 (ja) 発光装置
CN100485989C (zh) 发光元件及其制造方法和具备发光元件的背光灯单元及其制造方法
JP2014187081A (ja) 発光装置
JP4847793B2 (ja) 発光装置
JP2007194675A (ja) 発光装置
JP2007214592A (ja) 発光装置
JP2007266222A (ja) 発光素子搭載用基板、発光素子収納用パッケージ、発光装置および照明装置
WO2024046441A1 (zh) 一种封装结构、 led 装置及封装方法
CN219246707U (zh) 一种全无机led封装结构
JP5406691B2 (ja) 半導体発光装置
JP2012054383A (ja) 半導体発光装置及びその製造方法
CN213660405U (zh) 一种深紫外与可见光双波长led封装结构
CN210489647U (zh) 一种具有多层结构芯片的led灯
JP2007173271A (ja) 発光素子収納用パッケージ
JP2014140050A (ja) 発光装置
CN219144209U (zh) 一种新型led封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859469

Country of ref document: EP

Kind code of ref document: A1