WO2024043693A1 - 회로 기판 및 이를 포함하는 반도체 패키지 - Google Patents

회로 기판 및 이를 포함하는 반도체 패키지 Download PDF

Info

Publication number
WO2024043693A1
WO2024043693A1 PCT/KR2023/012495 KR2023012495W WO2024043693A1 WO 2024043693 A1 WO2024043693 A1 WO 2024043693A1 KR 2023012495 W KR2023012495 W KR 2023012495W WO 2024043693 A1 WO2024043693 A1 WO 2024043693A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
layer
holes
circuit board
hole
Prior art date
Application number
PCT/KR2023/012495
Other languages
English (en)
French (fr)
Inventor
김성민
공은영
황시윤
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220105318A external-priority patent/KR20240027289A/ko
Priority claimed from KR1020220105922A external-priority patent/KR20240027990A/ko
Priority claimed from KR1020220109537A external-priority patent/KR20240030463A/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2024043693A1 publication Critical patent/WO2024043693A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components

Definitions

  • the embodiment relates to a circuit board and a semiconductor package including the same.
  • a semiconductor package in which a plurality of semiconductor elements are arranged using a plurality of circuit boards.
  • Such a semiconductor package has a structure in which a plurality of semiconductor devices are connected to each other in the horizontal and/or vertical directions on a circuit board. Accordingly, the semiconductor package has the advantage of efficiently using the mounting area of the semiconductor device and enabling high-speed signal transmission through a short signal transmission path between the semiconductor devices.
  • semiconductor packages applied to products that provide the Internet of Things (IoT), self-driving cars, and high-performance servers are increasing in number of semiconductor devices and/or the size of each semiconductor device in accordance with the trend of high integration. As functional parts are divided, the concept is expanding to semiconductor chiplets.
  • the area of the circuit board and semiconductor package tends to increase. Additionally, as the area of the circuit board and semiconductor package increases, the area and/or wiring density of the circuit layer provided on the circuit board also increases. When the area and/or wiring density of the circuit layer increases, a problem occurs in which the gas generated from the insulating layer in contact with the circuit layer cannot be sufficiently discharged, resulting in the gas not being discharged from the surface of the insulating layer and/or the circuit layer. It may swell. Because of this, mechanical reliability problems may occur where the insulating layer and/or circuit layer peels off.
  • Embodiments provide a circuit board with a new structure and a semiconductor package including the same.
  • the embodiment provides a circuit board with improved adhesion between an insulating layer and a circuit layer and a semiconductor package including the same.
  • the embodiment provides a circuit board with improved gas emission characteristics and a semiconductor package including the same.
  • a circuit board includes an insulating layer; and a circuit layer disposed on the insulating layer and having a lower surface in contact with the insulating layer and an upper surface facing the lower surface, wherein the circuit layer has a plurality of through holes penetrating the upper surface and the lower surface. And, the diameter of each of the plurality of through holes is greater than or equal to the separation distance between two through holes disposed adjacent to each other among the plurality of through holes.
  • the diameters of each of the plurality of through holes are different from each other, the separation distance between each two through holes disposed adjacent to each other among the plurality of through holes is different from each other, and the diameter of the smallest through hole among the plurality of through holes is , It is more than the largest separation distance among the separation distances between each of the two through holes arranged adjacent to each other.
  • the ratio of the diameter of the through hole to the planar area of the insulating layer satisfies the range of 0.0000825 to 0.000147.
  • the ratio of the planar area of the through hole to the planar area of the insulating layer satisfies the range of 0.00025905 to 0.0004605.
  • planar area of the insulating layer is 1500mm 2 to 2000mm 2 .
  • At least one of the plurality of through holes has a diameter of 165 ⁇ m to 220 ⁇ m.
  • planar area of at least one of the plurality of through holes satisfies the range of 518.1 ⁇ m 2 to 690.8 ⁇ m 2 .
  • the circuit layer includes a plurality of circuit patterns spaced apart in the horizontal direction, the plurality of through holes are provided in each of the plurality of circuit patterns, and the distance between the plurality of circuit patterns is greater than the diameter of the through hole. small.
  • the circuit board further includes a through electrode that penetrates the insulating layer and is connected to the circuit layer, and the diameter of the through hole is larger than the horizontal width of the through electrode.
  • each of the plurality of through holes is not connected to the outer surface of the circuit layer and does not overlap the through electrode in the vertical direction.
  • the diameter of the through hole is 2.5 times or more than the width of the through electrode.
  • the insulating layer is provided with a plurality of layers
  • the circuit layer is disposed on the insulating layer disposed on the uppermost side among the plurality of layers of the insulating layer
  • the through hole of the circuit layer is on the circuit layer. It is filled with a protective layer that is placed.
  • the insulating layer includes a first insulating layer and a second insulating layer disposed on the first insulating layer, the circuit layer is disposed between the first and second insulating layers, and the through hole is Filled with a second insulating layer.
  • the circuit board includes a plurality of circuit layers spaced apart in a vertical direction, and each ratio is a ratio to a through hole provided in one of the plurality of circuit layers.
  • the circuit board of the embodiment includes an insulating layer; and a first circuit layer disposed on an upper surface of the insulating layer, wherein the first circuit layer is divided into first and second regions along a horizontal direction, and the first region of the first circuit layer includes the first circuit layer.
  • a plurality of first through holes are provided that penetrate the upper and lower surfaces of the first circuit layer, and in the second region of the first circuit layer, a plurality of second through holes are provided that penetrate the upper and lower surfaces of the first circuit layer. and each diameter of the plurality of first through holes is smaller than each diameter of the plurality of second through holes.
  • the circuit board includes a second circuit layer disposed on a lower surface of the insulating layer, the second circuit layer comprising: first circuit patterns vertically overlapping with the first region of the first circuit layer; , and includes second circuit patterns vertically overlapping with the second region of the first circuit layer, and the wiring density of the first circuit patterns is different from the wiring density of the second circuit patterns.
  • the wiring density of the second circuit patterns is greater than that of the first circuit patterns.
  • the second circuit patterns include an impedance matching circuit pattern for impedance matching.
  • the separation distance between the two first through holes most adjacent to each other among the plurality of first through holes is greater than the separation distance between the two second through holes most adjacent to each other among the plurality of second through holes.
  • the first circuit layer is further divided into a third area corresponding to the border area of the upper surface of the first circuit layer, and the third area of the first circuit layer includes the upper and lower surfaces of the first circuit layer.
  • a plurality of third through holes are provided.
  • the diameter of the third through hole is smaller than the respective diameters of the first and second through holes.
  • the separation distance between the two third through holes most adjacent to each other among the plurality of third through holes is the separation distance between the two first through holes most adjacent to each other among the plurality of first through holes and the distance between the two first through holes most adjacent to each other among the plurality of first through holes It is larger than each of the separation distances between the two second through holes that are most adjacent to each other among the two through holes.
  • each of the plurality of first through holes is equal to or greater than the separation distance between the two first through holes disposed most adjacent to each other among the plurality of first through holes.
  • the two first through holes arranged most adjacent to each other are two first through holes located diagonally horizontally to each other in the first circuit layer.
  • the respective diameters of the plurality of first through holes are different from each other, and are different from the separation distance between each of the two first through holes disposed adjacent to each other in the plurality of first through holes, and the plurality of first through holes are different from each other.
  • the smallest diameter of the hole is greater than or equal to the largest distance between the two first through holes disposed adjacent to each other.
  • the ratio of the diameter of the first through hole to the planar area of the insulating layer satisfies the range of 0.0000825 to 0.000147.
  • the ratio of the planar area of the first through hole to the planar area of the insulating layer satisfies the range of 0.00025905 to 0.0004605.
  • the ratio is a ratio with respect to the first through hole provided in the single circuit layer disposed on the insulating layer.
  • planar area of the insulating layer is 1500mm 2 to 2000mm 2 .
  • At least one of the plurality of first through holes has a diameter of 165 ⁇ m to 220 ⁇ m.
  • planar area of at least one of the plurality of first through holes satisfies the range of 518.1 ⁇ m 2 to 690.8 ⁇ m 2 .
  • the circuit board further includes a through electrode penetrating the insulating layer, and the width of the through electrode is different from the diameter of each of the first to third through holes.
  • the through electrode has an inclination in which the width gradually changes from the upper surface to the lower surface of the insulating layer, and each diameter of the first to third through holes is the width of the area having the largest width in the through electrode. bigger than
  • each of the first to third through holes does not vertically overlap the through electrode.
  • the first circuit layer includes a fourth through hole vertically overlapping the through electrode; and a pad disposed inside the fourth through hole, wherein the fourth through hole has a diameter smaller than each of the first to third through holes.
  • the inner region of the first to third through holes is not provided with a circuit pattern, and the inner region of the first to third through holes is filled with another insulating layer or protective layer disposed on the insulating layer.
  • the semiconductor package of the embodiment may include an insulating layer and a circuit layer disposed on the insulating layer.
  • the circuit layer may include at least one through hole. That is, the circuit layer may include a plurality of circuit patterns spaced apart in the horizontal direction. Additionally, the through hole may have a different meaning from the space between the plurality of circuit patterns. That is, the through hole may mean a through hole penetrating the upper and lower surfaces of each circuit pattern.
  • the embodiment can ensure that gas generated in the insulating layer can be easily discharged onto the circuit layer by using the through hole provided in the circuit layer. Through this, the embodiment can prevent the insulating layer and/or the circuit layer from swelling due to gas. Accordingly, the embodiment can improve the adhesion between the plurality of insulating layers and the adhesion between the insulating layer and the circuit layer. Through this, the embodiment can improve the physical reliability of the substrate.
  • the circuit layer of the embodiment is provided with a plurality of through holes.
  • the diameter W3 of each of the plurality of through holes provided in the circuit layer may be greater than or equal to the separation distance between two adjacent through holes among the plurality of through holes. That is, the diameter of each of the plurality of through holes provided in the circuit layer may be equal to or larger than the separation distance between two adjacent through holes among the plurality of through holes.
  • the diameter of each of the plurality of through holes is smaller than the separation distance between two adjacent through holes among the plurality of through holes, gas generated in the insulating layer may not be easily discharged to the outside of the substrate.
  • the diameter is smaller than the separation distance, which means that gas cannot be discharged at the separation distance between a plurality of through holes than the area where gas can be discharged through the through holes, based on the area where the through holes are arranged in the circuit layer. This may mean that the area is larger.
  • the diameter of the through hole is smaller than the separation distance between the plurality of through holes, the gas may not be discharged well and may remain in the insulating layer, resulting in deterioration of physical properties.
  • the diameter of each of the plurality of through holes provided in the circuit layer is equal to or larger than the separation distance between two adjacent through holes among the plurality of through holes.
  • the diameter of at least one of the plurality of through holes may be different from the diameter of at least another one.
  • the separation distance between adjacent through holes among the plurality of through holes may be different from each other.
  • the diameter of the through hole having the smallest diameter among the plurality of through holes may be equal to or greater than the largest spacing distance between the plurality of adjacent through holes.
  • the circuit layer of the embodiment is provided with a plurality of through holes.
  • the diameter of at least one through hole among the plurality of through holes may be determined based on the planar area of the substrate and/or the insulating layer.
  • the ratio of the diameter of the through hole to the planar area of the insulating layer may satisfy the range of 0.0000825 to 0.000147. Additionally, the ratio of the planar area of the through hole to the planar area of the insulating layer may satisfy the range of 0.00025905 to 0.0004605. At this time, the planar area of the insulating layer may be 1500mm 2 to 2000mm 2 . Additionally, at least one of the plurality of through holes may have a diameter of 165 ⁇ m to 220 ⁇ m. Additionally, the planar area of at least one of the plurality of through holes may satisfy the range of 518.1 ⁇ m 2 to 690.8 ⁇ m 2 .
  • the diameter of at least one through hole among the plurality of through holes provided in the circuit layer is 165 ⁇ m or more.
  • the diameter of at least one of the plurality of through holes provided in the circuit layer may be 165 ⁇ m or more. That is, if the diameter of the through hole is smaller than 165 ⁇ m, gas generated in the insulating layer having the above-mentioned planar area may not be easily discharged to the upper side of the circuit layer. And if the gas cannot be discharged, the circuit layer and/or the insulating layer may swell, causing a problem of reduced adhesion. Accordingly, in the embodiment, at least one of the plurality of through holes has a diameter of 165 ⁇ m or more, so that gas generated in the insulating layer can be easily discharged, and thus physical properties can be further improved.
  • the diameter of the through hole may be 220 ⁇ m or less.
  • the diameter of the through hole exceeds 220 ⁇ m, a problem may occur in which impedance characteristics between a plurality of circuit layers change.
  • the diameter of the through hole exceeds 220 ⁇ m, the density and/or area of the circuit layer decreases, which may cause the substrate and semiconductor package to bend significantly in a specific direction. Accordingly, the embodiment allows the diameter of the through hole to be 220 ⁇ m or less, thereby improving the rigidity of the substrate and semiconductor package while preventing changes in impedance characteristics between the plurality of circuit layers.
  • the through hole in the circuit layer may not vertically overlap the through electrode that penetrates the insulating layer.
  • the through electrode may mean a through electrode directly connected to the circuit layer.
  • the through electrode directly connected to the circuit layer may not overlap perpendicularly with the through hole. Therefore, the embodiment can ensure that gas generated in the insulating layer is well discharged without deteriorating the electrical signal transmission characteristics of the through electrode.
  • the through hole in the circuit layer may be larger than the width of the region with the largest width in the through electrode.
  • the circuit layer of the embodiment may include a first circuit layer disposed on the insulating layer and a second circuit layer disposed under the insulating layer.
  • the first circuit layer may be divided into a plurality of areas.
  • the first circuit layer may include first and second regions.
  • the first area of the first circuit layer may be an area that vertically overlaps the first electrode patterns of the second circuit layer.
  • the second area of the second circuit layer may be an area that vertically overlaps the second electrode patterns of the second circuit layer.
  • the first circuit layer may include a third region that is closer to the edge of the first circuit layer than the first and second regions.
  • through holes may be provided in the first to third regions of the first circuit layer, respectively.
  • a plurality of first through holes may be provided in the first region of the first circuit layer.
  • a plurality of second through holes may be provided in the second region of the first circuit layer.
  • a plurality of third through holes may be provided in the third region of the first circuit layer.
  • the diameter of the first through hole provided in the first circuit pattern, the diameter of the second through hole provided in the second circuit pattern, and the diameter of the third through hole provided in the third circuit pattern may be different from each other.
  • the second electrode patterns of the second circuit layer may have a higher wiring density than other circuit patterns of the second circuit layer.
  • the second circuit patterns of the second circuit layer may include a circuit pattern for impedance matching.
  • the diameter of the second through hole provided in the second region of the first circuit layer may be larger than the respective diameters of the first and third through holes.
  • gas discharge can be achieved more smoothly in the area that vertically overlaps the second circuit patterns of the second circuit layer with a high wiring density among the entire area of the insulating layer.
  • the embodiment allows the diameter of the second through hole provided in the second region of the second circuit layer to be larger than the diameter of other through holes, thereby lowering the metal ratio in the second region.
  • the embodiment can prevent the impedance characteristics of the second circuit pattern of the second circuit layer from changing due to the first circuit layer. Through this, the embodiment can further improve the physical reliability and/or electrical characteristics of the semiconductor package.
  • the third area of the first circuit layer may be disposed on the edge area of the insulating layer.
  • the diameter of the third through hole provided in the third region of the first circuit layer may be smaller than the respective diameters of the first through hole and the second through hole.
  • the diameters of each of the first through hole, the second through hole, and the third through hole may be larger than the width of the through electrode penetrating the insulating layer.
  • the separation distance between two adjacent second through holes among the plurality of second through holes is the separation distance between two adjacent first through holes among the plurality of first through holes and the distance between the two adjacent second through holes among the plurality of third through holes are adjacent to each other among the plurality of third through holes. It may be smaller than each of the separation distances between the two third through holes.
  • the separation distance between two third through holes adjacent to each other among the plurality of third through holes is the separation distance between two adjacent first through holes among the plurality of first through holes and the separation distance between the two adjacent first through holes among the plurality of second through holes are adjacent to each other among the plurality of second through holes. It may be greater than the separation distance between the two second through holes.
  • FIG. 1A is a cross-sectional view showing a semiconductor package according to a first embodiment.
  • FIG. 1B is a cross-sectional view showing a semiconductor package according to a second embodiment.
  • Figure 1C is a cross-sectional view showing a semiconductor package according to a third embodiment.
  • Figure 1D is a cross-sectional view showing a semiconductor package according to a fourth embodiment.
  • Figure 1e is a cross-sectional view showing a semiconductor package according to a fifth embodiment.
  • Figure 1f is a cross-sectional view showing a semiconductor package according to a sixth embodiment.
  • Figure 1g is a cross-sectional view showing a semiconductor package according to a seventh embodiment.
  • Figure 2 is a cross-sectional view showing a circuit board according to the first embodiment.
  • FIG. 3 is a plan view showing some layers of the circuit board of FIG. 2.
  • FIG. 4 is a top view for explaining the relationship between the through electrode and the through hole in the top view of FIG. 3.
  • 5 and 6 are diagrams for explaining the adhesion characteristics of the circuit board of the comparative example and the first embodiment.
  • FIG. 7 is a plan view for explaining a modified example of the circuit board of FIG. 3.
  • FIG. 8 is a plan view showing some layers of the circuit board of FIG. 2 according to the second embodiment.
  • FIG. 9 is a plan view showing some layers of the circuit board of FIG. 2 according to the third embodiment.
  • FIG. 10 is a top view for explaining the relationship between the through electrode and the through hole in the top view of FIG. 8.
  • FIG. 11 is an enlarged view of a partial layer of the circuit board of FIG. 2 according to the fourth embodiment.
  • FIG. 12 is a plan view for explaining the diameters of a plurality of through holes provided in the first circuit layer of FIG. 11.
  • FIG. 13 is a plan view for explaining the wiring density of the second circuit layer of FIG. 11.
  • FIG. 14 is a top view for explaining the relationship between the through electrode and the through hole in the top view of FIG. 12.
  • the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and as long as it is within the scope of the technical idea of the present invention, one or more of the components may be optionally used between the embodiments. It can be used by combining and replacing.
  • “above” or “below” refers not only to cases where two components are in direct contact with each other, but also to one This also includes cases where another component described above is formed or placed between two components.
  • “top (above) or bottom (bottom)” it may include not only the upper direction but also the lower direction based on one component.
  • Electronic devices include smart phones, personal digital assistants, digital video cameras, digital still cameras, vehicles, high-performance servers, network systems, and computers. It may be a computer, monitor, tablet, laptop, netbook, television, video game, smart watch, automotive, etc. . However, it is not limited to this, and of course, it can be any other electronic device that processes data.
  • the electronic device includes a main board (not shown).
  • the main board may be physically and/or electrically connected to various components.
  • the main board may be connected to the semiconductor package of the embodiment.
  • the semiconductor package includes a circuit board, a semiconductor chip, a bonding part that electrically connects the semiconductor device and the circuit board, a resin part that fills the space between the semiconductor device and the circuit board, and a molding part that entirely surrounds the semiconductor device. .
  • Semiconductor devices may include active elements and/or passive elements and may have various functions. Active devices may be in the form of integrated circuits (ICs) in which hundreds to millions of transistors are integrated into one semiconductor device, and may be, for example, logic chips, memory chips, etc.
  • the logic chip is an application processor (AP) device that includes at least one of a central processor (CPU), graphics processor (GPU), digital signal processor, cryptographic processor, microprocessor, microcontroller, or analog-digital It could be a converter, an application-specific IC (ASIC), or a set of devices containing a specific combination of those listed so far.
  • the memory chip may be a stack memory such as HBM. Additionally, the memory chip may include memory chips such as volatile memory (eg, DRAM), non-volatile memory (eg, ROM), and flash memory.
  • the semiconductor package of the embodiment is one of CSP (Chip Scale Package), FC-CSP (Flip Chip-Chip Scale Package), FC-BGA (Flip Chip Ball Grid Array), POP (Package On Package), and SIP (System In Package). It may be one, but is not limited to this.
  • the semiconductor package of the embodiment may have various types of package structures including a circuit board, which will be described later. Additionally, the circuit board described in the embodiment may be either the first circuit board or the second circuit board shown in any one of FIGS. 1A to 1G.
  • FIG. 1A is a cross-sectional view showing a semiconductor package according to a first embodiment
  • FIG. 1B is a cross-sectional view showing a semiconductor package according to a second embodiment
  • FIG. 1C is a cross-sectional view showing a semiconductor package according to a third embodiment
  • FIG. 1D is a cross-sectional view showing a semiconductor package according to a fourth embodiment
  • FIG. 1E is a cross-sectional view showing a semiconductor package according to a fifth embodiment
  • FIG. 1F is a cross-sectional view showing a semiconductor package according to a sixth embodiment
  • FIG. 1G is a cross-sectional view showing a semiconductor package according to a sixth embodiment.
  • This is a cross-sectional view showing a semiconductor package according to Example 7.
  • the semiconductor package of the first embodiment may include a first circuit board 1100, a second circuit board 1200, and a semiconductor device 1300.
  • the first circuit board 1100 may refer to a semiconductor package substrate.
  • the first circuit board 1100 may provide a space where at least one external board is coupled.
  • the external substrate may refer to the second circuit board 1200 coupled to the first circuit board 1100.
  • the external board may refer to a main board included in an electronic device coupled to the lower part of the first circuit board 1100.
  • the first circuit board 1100 may provide a space in which at least one semiconductor device is mounted.
  • the first circuit board 1100 may include at least one insulating layer, a circuit layer disposed on the at least one insulating layer, and a through electrode penetrating the at least one insulating layer.
  • a second circuit board 1200 may be placed on the first circuit board 1100.
  • the second circuit board 1200 may be an interposer.
  • the second circuit board 1200 may provide a space in which at least one semiconductor device is mounted.
  • the second circuit board 1200 may be connected to at least one semiconductor device 1300.
  • the second circuit board 1200 may provide a space where the first semiconductor device 1310 and the second semiconductor device 1320 are mounted.
  • the second circuit board 1200 electrically connects the first semiconductor element 1310 and the second semiconductor element 1320, and connects the first and second semiconductor elements 1310 and 1320 and the first circuit board 1100. can be electrically connected. That is, the second circuit board 1200 can function as a horizontal connection between a plurality of semiconductor devices and a vertical connection between the semiconductor devices and the package substrate.
  • FIG. 1A two semiconductor devices 1310 and 1320 are shown as being disposed on the second circuit board 1200, but the present invention is not limited thereto.
  • one semiconductor device may be disposed on the second circuit board 1200, and alternatively, three or more semiconductor devices may be disposed on the second circuit board 1200.
  • the second circuit board 1200 may be disposed between at least one semiconductor device 1300 and the first circuit board 1100.
  • the second circuit board 1200 may be an active interposer that functions as a semiconductor device.
  • the semiconductor package of the embodiment may have a vertical stack structure on the first circuit board 1100 and function as a plurality of logic chips. Being able to have the functions of a logic chip may mean having the functions of an active element and a passive element. In the case of active devices, unlike passive devices, the current and voltage characteristics may not be linear, and in the case of active interposers, they may have the function of active devices.
  • the active interposer may function as a corresponding logic chip and perform a signal transmission function between the first circuit board 1100 and a second logic chip disposed on top of the active interposer.
  • the second circuit board 1200 in another embodiment may be a passive interposer.
  • the second circuit board 1200 may function as a signal relay between the semiconductor element 1300 and the first circuit board 1100, and may have passive element functions such as a resistor, capacitor, and inductor.
  • the number of terminals of the semiconductor device 1300 is gradually increasing due to 5G, Internet of Things (IOT), increased image quality, increased communication speed, etc.
  • IOT Internet of Things
  • the first circuit board 1100 may be connected to the main board of the electronic device. Accordingly, in order for the electrodes provided on the first circuit board 1100 to have a width and spacing for being connected to the semiconductor device 1300 and the main board, the thickness of the first circuit board 1100 must be increased, or the thickness of the first circuit board 1100 must be increased. There is a problem that the layer structure of the substrate 1100 becomes complicated. Accordingly, in the first embodiment, the second circuit board 1200 may be placed on the first circuit board 1100 and the semiconductor device 1300. Additionally, the second circuit board 1200 may include electrodes having a fine width and spacing corresponding to the terminals of the semiconductor device 1300.
  • a first connection portion 1410 may be disposed between the first circuit board 1100 and the second circuit board 1200.
  • the first connection portion 1410 may couple the first circuit board 1100 to the second circuit board 1200 and electrically connect them.
  • a second connection portion 1420 may be disposed between the second circuit board 1200 and the semiconductor device 1300.
  • the second connection portion 1420 may couple the semiconductor device 1300 to the second circuit board 1200 and electrically connect them.
  • a third connection part 1430 may be disposed on the lower surface of the first circuit board 1100.
  • the third connection unit 1430 can connect the first circuit board 1100 to the main board and electrically connect them.
  • the first connection part 1410, the second connection part 1420, and the third connection part 1430 electrically connect a plurality of components using at least one bonding method among wire bonding, solder bonding, and direct metal-to-metal bonding. You can connect. That is, since the first connection part 1410, the second connection part 1420, and the third connection part 1430 have the function of electrically connecting a plurality of components, when direct bonding between metals is used, the semiconductor package is made using solder or wire. It can be understood as a part that is electrically connected, rather than as a part.
  • the wire bonding method may mean electrically connecting a plurality of components using conductors such as gold (Au). Additionally, the solder bonding method can electrically connect a plurality of components using a material containing at least one of Sn, Ag, and Cu.
  • the direct bonding method between metals may mean recrystallization by applying heat and pressure between a plurality of components without the absence of solder, wire, conductive adhesive, etc., thereby directly bonding the plurality of components. .
  • the direct bonding method between metals may refer to a bonding method using the second connection part 1420. In this case, the second connection portion 1420 may refer to a metal layer formed between a plurality of components through recrystallization.
  • the first connection part 1410, the second connection part 1420, and the third connection part 1430 may be connected to a plurality of components using a thermal compression bonding method.
  • the thermocompression bonding method may refer to a method of directly bonding a plurality of components by applying heat and pressure to the first connection part 1410, the second connection part 1420, and the third connection part 1430.
  • a protrusion is disposed on the electrode where the first connection part 1410, the second connection part 1420, and the third connection part 1430 are disposed. It can be.
  • the protrusion may protrude outward from the first circuit board 1100 or the second circuit board 1200 .
  • the protrusion may be called a bump, a post, or a pillar.
  • the protrusion may refer to an electrode of the second circuit board 1200 on which the second connection portion 1420 for coupling to the semiconductor device 1300 is disposed.
  • the embodiment may perform thermal compression bonding to reduce the volume of the second connection portion 1420. Accordingly, the embodiments are based on the degree of conformity, diffusion power, and diffusion prevention power that prevents the intermetallic compound (IMC) formed between the conductive adhesive such as solder and the protrusion from diffusing into the interposer and/or the substrate.
  • the electrode of the second circuit board 1200 on which the second connection portion 1420 is disposed may include a protrusion.
  • the semiconductor package of the second embodiment may differ from the semiconductor package of the first embodiment in that the connection member 1210 is disposed on the second circuit board 1200.
  • the connecting member 1210 may be referred to as a bridge.
  • the connection member 1210 may include a redistribution layer.
  • the connection member 1210 may function to electrically connect a plurality of semiconductor devices to each other horizontally.
  • the connection member 1210 may include a redistribution layer. Since the semiconductor package and the semiconductor device have a large difference in the width or width of the circuit pattern, a buffering role of the circuit pattern for electrical connection is required.
  • the buffering role may mean having an intermediate size between the width or width of the circuit pattern of the semiconductor package and the width or width of the circuit pattern of the semiconductor device, and the redistribution layer includes a buffering function. can do.
  • connecting member 1210 may be a silicon bridge. That is, the connection member 1210 may include a silicon substrate and a redistribution layer disposed on the silicon substrate.
  • the connecting member 1210 may be an organic bridge.
  • the connecting member 1210 may include an organic material.
  • the connecting member 1210 may include an organic substrate containing an organic material instead of a silicon substrate.
  • connection member 1210 when the connecting member 1210 includes an organic material, the structure of the circuit board of the embodiment described below makes the connecting member 1210 more stable from stress caused by heat cycles such as shrinkage and/or expansion of the semiconductor package. It can be protected.
  • the connection member 1210 may be an organic bridge that can smoothly supply power from the bottom to the top and minimize loss of supplied power. At this time, in the case of an inorganic bridge including a silicon substrate, power can be supplied through TSV (Through Silicon Via), but there are problems in that the process cost for TSV processing increases and product yield decreases. Therefore, it is preferable that the connection member 1210 of the embodiment is an organic bridge.
  • connection member 1210 may be embedded in the second circuit board 1200, but is not limited thereto.
  • the connecting member 1210 may be disposed on the second circuit board 1200 to have a protruding structure.
  • the second circuit board 1200 may include a cavity, and the connecting member 1210 may be disposed within the cavity of the second circuit board 1200.
  • the connecting member 1210 may horizontally connect a plurality of semiconductor devices disposed on the second circuit board 1200.
  • the semiconductor package of the third embodiment may include a second circuit board 1200 and a semiconductor device 1300. At this time, the semiconductor package of the third embodiment may have a structure in which the first circuit board 1100 is omitted compared to the semiconductor package of the second embodiment.
  • the second circuit board 1200 of the third embodiment can function as an interposer and a semiconductor package substrate.
  • the first connection portion 1410 disposed on the lower surface of the second circuit board 1200 may couple the second circuit board 1200 to the main board of the electronic device.
  • the semiconductor package of the fourth embodiment may include a first circuit board 1100 and a semiconductor device 1300.
  • the semiconductor package of the fourth embodiment may have a structure in which the second circuit board 1200 is omitted compared to the semiconductor package of the second embodiment. That is, the first circuit board 1100 of the fourth embodiment may function as a package substrate and connect the semiconductor device 1300 and the main board.
  • the first circuit board 1100 may include a connecting member 1110 for connecting a plurality of semiconductor devices.
  • the connection member 1110 may be a silicon bridge or an organic bridge that connects a plurality of semiconductor devices.
  • the semiconductor package of the fifth embodiment may further include a third semiconductor device 1330 compared to the semiconductor package of the fourth embodiment.
  • a fourth connection portion 1440 may be disposed on the lower surface of the first circuit board 1100.
  • a third semiconductor device 1330 may be disposed in the fourth connection portion 1400. That is, the semiconductor package of the fifth embodiment may have a structure in which semiconductor devices are mounted on the upper and lower sides, respectively. At this time, the third semiconductor device 1330 may have a structure disposed on the lower surface of the second circuit board 1200 in the semiconductor package of FIG. 1C.
  • the semiconductor package of the sixth embodiment may include a first circuit board 1100.
  • a first semiconductor device 1310 may be disposed on the first circuit board 1100.
  • a first connection portion 1410 may be disposed between the first circuit board 1100 and the first semiconductor device 1310.
  • the first circuit board 1100 may include a conductive coupling portion 1450.
  • the conductive coupling portion 1450 may protrude further from the first circuit board 1100 toward the second semiconductor device 1320.
  • the conductive coupling portion 1450 may be referred to as a bump or, alternatively, may be referred to as a post.
  • the conductive coupling portion 1450 may be disposed with a protruding structure on the electrode disposed on the uppermost side of the first circuit board 1100 .
  • a second semiconductor device 1320 may be disposed on the conductive coupling portion 1450. At this time, the second semiconductor device 1320 may be connected to the first circuit board 1100 through the conductive coupling portion 1450. Additionally, a second connection portion 1420 may be disposed on the first semiconductor device 1310 and the second semiconductor device 1320. Accordingly, the second semiconductor device 1320 may be electrically connected to the first semiconductor device 1310 through the second connection portion 1420.
  • the second semiconductor device 1320 may be connected to the first circuit board 1100 through the conductive coupling portion 1450 and may also be connected to the first semiconductor device 1310 through the second connection portion 1420. At this time, the second semiconductor device 1320 may receive a power signal and/or power through the conductive coupling portion 1450. Additionally, the second semiconductor device 1320 may exchange communication signals with the first semiconductor device 1310 through the second connection unit 1420.
  • the semiconductor package of the sixth embodiment provides sufficient power for driving the second semiconductor device 1320 by supplying a power signal and/or power to the second semiconductor device 1320 through the conductive coupling portion 1450. Smooth control of power operation may be possible. Accordingly, the embodiment can improve the driving characteristics of the second semiconductor device 1320.
  • the embodiment can solve the problem of insufficient power provided to the second semiconductor device 1320. Furthermore, the embodiment may allow at least one of the power signal, power, and communication signal of the second semiconductor device 1320 to be provided through different paths through the conductive coupling portion 1450 and the second connection portion 1420. Through this, the embodiment can solve the problem of loss of communication signals caused by power signals. For example, embodiments may minimize mutual interference between power signals and communication signals.
  • the second semiconductor device 1320 in the sixth embodiment may have a POP (Package On Package) structure in which a plurality of semiconductor package substrates are stacked and may be disposed on the first circuit board 1100.
  • the second semiconductor device 1320 may be a memory package including a memory chip. And the memory package may be coupled to the conductive coupling portion 1450. At this time, the memory package may not be connected to the first semiconductor device 1310.
  • the semiconductor package of the seventh embodiment may include a first circuit board 1100, a first connection part 1410, a first connection part 1410, a semiconductor element 1300, and a third connection part 1430. You can.
  • the semiconductor package of the seventh embodiment may differ from the semiconductor package of the fourth embodiment in that the connecting member 1110 is omitted and the first circuit board 1100 includes a plurality of substrate layers.
  • the first circuit board 1100 may include a plurality of substrate layers.
  • the first circuit board 1100 may include a first substrate layer 1100A corresponding to a package substrate and a second substrate layer 1100B corresponding to a connecting member.
  • the semiconductor package of the seventh embodiment includes a first substrate layer (1100A) and a first circuit substrate (semiconductor package substrate, 1100) and a second circuit substrate (interposer, 1200) shown in FIG. 1A formed integrally. It may include two substrate layers (1100B).
  • the material of the insulating layer of the second substrate layer 1100B may be different from the material of the insulating layer of the first substrate layer 1100A.
  • the material of the insulating layer of the second substrate layer 1100B may include a photocurable material.
  • the second substrate layer 1100B may be a photo imageable dielectric (PID).
  • PID photo imageable dielectric
  • an insulating layer of a photo-curable material is sequentially stacked on the first substrate layer 1100A and a micronized electrode is formed on the insulating layer of the photo-curable material to form a second substrate layer 1100B.
  • the second substrate 1100B may include a redistribution layer function including a miniaturized electrode, and may include a function of horizontally connecting a plurality of semiconductor devices 1310 and 1320.
  • FIG. 2 is a cross-sectional view showing a circuit board according to the first embodiment
  • FIG. 3 is a plan view showing some layers of the circuit board of FIG. 2
  • FIG. 4 is a diagram for explaining the relationship between the through electrode and the through hole in the plan view of FIG. 3.
  • FIGS. 5 and 6 are diagrams for explaining the adhesion characteristics of the circuit board of the comparative example and the first embodiment
  • FIG. 7 is a plan view for explaining a modified example of the circuit board of FIG. 3
  • FIG. 8 is a diagram of the second embodiment.
  • FIG. 9 is a plan view showing some layers of the circuit board of FIG. 2 according to an embodiment
  • FIG. 9 is a plan view showing some layers of the circuit board of FIG.
  • FIG. 10 is a plan view of FIG. 8 showing a through electrode and It is a plan view for explaining the relationship between through holes
  • FIG. 11 is an enlarged view of a partial layer of the circuit board of FIG. 2 according to the fourth embodiment
  • FIG. 12 is a plurality of through holes provided in the first circuit layer of FIG. 11.
  • FIG. 13 is a plan view for explaining the diameter of the hole
  • FIG. 13 is a plan view for explaining the wiring density of the second circuit layer of FIG. 11
  • FIG. 14 is a plan view for explaining the relationship between the through electrode and the through hole in the plan view of FIG. 12.
  • FIGS. 2 to 14 a circuit board according to an embodiment will be described in detail with reference to FIGS. 2 to 14.
  • the embodiment will be described in detail with reference to the attached drawings, but identical or corresponding components will be assigned the same reference numbers regardless of the reference numerals, and duplicate descriptions thereof will be omitted.
  • the circuit board 100 includes an insulating substrate 110, a first protective layer 116, a second protective layer 117, a circuit layer 120, a through electrode 130, It may include an insulating member 140 and a bonding portion 150.
  • the insulating substrate 110 may be provided with multiple layers.
  • the insulating substrate 110 includes a core layer 111, an upper build-up insulating layer 112 and 113 disposed on one side of the core layer, and a lower build-up insulating layer disposed on the other side of the core layer 111. It may include layers 114 and 115. Additionally, each of the upper build-up layers 112 and 113 and the lower build-up layers 114 and 115 may be provided as a single layer, or may have a structure in which a plurality of layers are stacked along the vertical direction.
  • the core layer 111 is composed of a resin such as epoxy resin or BT (bismaleimide triazine) and a reinforcing material such as glass fiber, and functions to improve the rigidity of the circuit board 100.
  • a resin such as epoxy resin or BT (bismaleimide triazine)
  • a reinforcing material such as glass fiber
  • the core layer 110 of this embodiment may have a thickness of 400 ⁇ m to 1200 ⁇ m in order to improve the overall rigidity of the circuit board 100 and prevent excessive signal loss.
  • a via hole penetrating one side and the other side may be formed in the core layer 111. Via holes in the core layer 111 can be formed using a mechanical drill process or a CO 2 laser.
  • the slope of the inner wall of the via hole may be perpendicular to one side and/or the other side of the core layer 111, and the core layer ( When forming the via hole 111), the inner wall of the via hole may be provided with a plurality of concave portions and/or convex portions alternately stacked along the vertical direction.
  • the concave part may mean a concave area in a direction away from the horizontal center of the via hole provided in the core layer 111, and the convex part may protrude toward the horizontal center of the via hole provided in the core layer 111. and/or may mean a convex area.
  • the path for transmitting electrical signals is shortened, which may be advantageous for electrical characteristics, but may increase process costs.
  • the thickness of the core penetration electrode 131 provided on the inner wall of the via hole of the core layer 111 can be thickened in the subsequent process, It has the advantage of being able to lower the impedance and the advantage of being able to lower the process cost. Accordingly, the processing method of the via hole provided in the core layer 111 can be freely and selectively used depending on the application field of the semiconductor package.
  • a core through-electrode 131 may be disposed within the via hole of the core layer 111.
  • the core through-electrode 131 functions to electrically connect the circuit layer provided in the upper build-up insulating layers 112 and 113 and the circuit layer provided in the lower build-up insulating layers 114 and 115. Therefore, it is preferable that the through-core electrode 131 densely fills the via hole for the function of resistance or heat dissipation.
  • the thickness of the core layer 111 becomes thick as described above, it may become difficult for the core through electrode 131 to densely fill the via hole.
  • the core through-electrode 131 having a predetermined thickness is disposed on the inner wall of the via hole of the core layer 111.
  • the thickness of the core through-electrode 131 is not the thickness in the vertical direction in which the upper build-up insulating layers 112 and 113, the core layer 111 and the lower build-up insulating layers 114 and 115 are stacked, but is perpendicular to this. It refers to the thickness in the horizontal direction.
  • the thickness of the core through-electrode 131 can be arranged to have a thickness of 5 ⁇ m to 20 ⁇ m to prevent the voltage drop that occurs as the thickness of the core layer 111 increases and to prevent the generation of voids. It is difficult to densely fill the inside of the core through-electrode 131 with metal through a process such as plating, resulting in an empty space.
  • the empty space may be a problem that makes it difficult to arrange the upper build-up insulating layers 112 and 113, the circuit layer 120 and the lower build-up insulating layers 114 and 115 evenly.
  • the insulating member 140 can be disposed inside the core through-electrode 131, thereby ensuring the flatness of the core layer 111.
  • the top surface of the insulating member 140 may be on the same plane as the top surface of the core layer 111, or may be closer to the upper build-up insulating layers 112 and 113 along the vertical direction than the top surface of the core layer 111. It can be placed like this.
  • the lower surface of the insulating member 140 is on the same plane as the lower surface of the core layer 111, or is disposed closer to the lower build-up insulating layers 114 and 115 along the vertical direction than the lower surface of the core layer 111. It can be.
  • an upper build-up insulating layer 112, 113, a plurality of circuit layers 121, 122, 123, a plurality of penetrating electrodes 132, 133, and a first protective layer 116 are disposed. It can be.
  • the plurality of circuit layers 121, 122, and 123 disposed on one side of the core layer 111 are larger than the first circuit layer 121 and the first circuit layer 121 that are closest along the vertical direction from the core layer 111.
  • the first to third circuit layers 121, 122, and 123 may function to electrically connect semiconductor devices disposed on the circuit board 100.
  • Each of the first to third circuit layers 121, 122, and 123 can be freely designed considering impedance.
  • through electrodes 132 and 133 may be disposed to connect the first to third circuit layers 121, 122, and 123, respectively.
  • the first through electrode 132 is disposed between the first circuit layer 121 and the second circuit layer 122
  • the second through electrode 133 is disposed between the second circuit layer 122 and the third circuit layer 122. It is disposed between the circuit layers 123, thereby electrically connecting the first to third circuit layers 121, 122, and 123.
  • the first to third circuit layers 121, 122, and 123 may have at least one through hole.
  • the third circuit layer 123 may include a through hole 120a penetrating the upper and lower surfaces of the third circuit layer 123.
  • the through hole 120a provided in the first to third circuit layers 121, 122, and 123 is different from the spaced area between the plurality of circuit patterns in each of the first to third circuit layers 121, 122, and 123. It can have different meanings.
  • the spacing area may be connected to the outer surface of each circuit pattern and may be provided between the outer surfaces of a plurality of circuit patterns.
  • the through hole 120a is provided to penetrate the upper and lower surfaces of each circuit pattern and may not be connected to the outer surface of each circuit pattern.
  • each of the first to third circuit layers 121, 122, and 123 may include a plurality of pads and a plurality of traces connecting the plurality of pads.
  • the through hole 120a may have a different meaning from the separation area between the plurality of pads, the separation area between the pad and the trace, and the separation area between the plurality of traces.
  • the through hole 120a may allow gas generated during curing of the first and second insulating layers 112 and 113 to be easily discharged. This will be described later.
  • the first and second through electrodes 132 and 133 may be performed simultaneously in the process of disposing the second and third circuit layers 122 and 123.
  • a through hole is formed in the first insulating layer 112 of the upper build-up insulating layer to form the first circuit layer 121.
  • the second circuit layer 122 can be disposed together with the first through electrode 132 that fills the through hole of the first insulating layer 112 of the upper build-up insulating layer.
  • the first through electrode 132 may be divided into a protrusion of the second circuit layer 122.
  • the second through electrode 133 may be separated by a protrusion of the third circuit layer 123 and connected to another circuit layer disposed below the circuit layer.
  • the first circuit layer 121 may contact one surface of the core layer 111. In this case, a portion of the first circuit layer 121 may be disposed to cover the above-described insulating member 140. A portion of the first circuit layer 121 covering the insulating member 140 may be thinner than the remaining portions that do not overlap the insulating member 140 in the vertical direction.
  • the thickness of the first circuit layer 121 refers to the thickness along the vertical direction.
  • the insulating member 140 may be in direct contact with the first insulating layer 112 of the upper build-up insulating layer. Compared to the case where the insulating member 140 and the first insulating layer 112 of the upper build-up insulating layer are in direct contact, the first circuit layer 121 and the first insulating layer 112 of the upper build-up insulating layer are in contact. In this case, the bonding force may be better and it may be advantageous for heat dissipation. However, in order to reduce process costs, the first circuit layer 121 may be arranged so as not to cover the insulating member 140.
  • the first circuit layer 121 may or may not cover the insulating member 140.
  • the electrical connectivity and/or To ensure mechanical coupling the first circuit layer 121 may be provided to cover the insulating member 140.
  • the first circuit layer 121 may be provided without covering the insulating member 140.
  • the upper build-up insulating layers 112 and 113 may have a structure in which a plurality of layers are stacked along the vertical direction.
  • the upper build-up insulating layers 112 and 113 are aligned with the first insulating layer 112 closest to the core layer 111 in a direction perpendicular to the core layer 111, and are formed in a direction more perpendicular to the core layer 111 than the first insulating layer 112. It may include a second insulating layer 113 spaced apart from each other.
  • the first and second insulating layers 112 and 113 are disposed to insulate the above-described first to third circuit layers 121, 122, and 123 in the vertical direction.
  • the first and second insulating layers 112 and 113 may be made of a thermosetting insulating material containing an inorganic filler in a resin, and Ajinomoto's Ajinomoto Build-up Film (ABF) may be used.
  • ABSF Ajinomoto's Ajinomoto Build-up Film
  • the embodiment is not limited to this, and a photocurable insulating material (Photo Imageable Dielectric, PID) may be used to form a fine pattern.
  • the first protective layer 116 may protect the third circuit layer 123 from external moisture or contaminants. Additionally, when a semiconductor device is disposed on the circuit board 100 using a material such as solder, the first protective layer 116 functions to prevent short circuits between solders due to low wettability with the solder.
  • the first protective layer 116 may be made of a photocurable insulating material, and for example, solder resist may be used.
  • lower build-up insulating layers 114 and 115 On the other side of the core layer 111, lower build-up insulating layers 114 and 115, a plurality of circuit layers 124, 125 and 126, a plurality of through electrodes 134 and 135, and a second protective layer 117 are disposed. It can be.
  • the plurality of circuit layers 124, 125, and 126 disposed on the other side of the core layer 111 are larger than the fourth circuit layer 124 and the fourth circuit layer 124 that are closest along the vertical direction from the core layer 111. It includes a fifth circuit layer 125 that is farther away along the perpendicular direction to the core layer 111, and a sixth circuit layer 126 that is farther away along the perpendicular direction to the core layer 111 than the fifth circuit layer 125. can do.
  • the fourth to sixth circuit layers 124, 125, and 126 may function to electrically connect a main board (not shown) of an electronic device and semiconductor devices disposed on the circuit board 100.
  • Each of the fourth to sixth circuit layers 124, 125, and 126 can be freely designed considering impedance.
  • the fourth to sixth circuit layers 124, 125, and 126 may have at least one through hole.
  • the through holes provided in the fourth to sixth circuit layers 124, 125, and 126 are also The separation area between the plurality of circuit patterns of each of the fourth to sixth circuit layers 124, 125, and 126 may have a different meaning.
  • each of the fourth to sixth circuit layers 124, 125, and 126 may include a plurality of pads and a plurality of traces connecting the plurality of pads.
  • the through holes provided in the fourth to sixth circuit layers 124, 125, and 126 are the space between the plurality of pads of the fourth to sixth circuit layers 124, 125, and 126, and the pads and traces. It may have a different meaning from the space between the space and the space between the plurality of traces.
  • the through holes provided in the fourth to sixth circuit layers 124, 125, and 126 can allow gas generated during curing of the third and fourth insulating layers 114 and 115 to be easily discharged. This will be described later.
  • through electrodes 134 and 135 may be disposed to connect the fourth to sixth circuit layers 124, 125, and 126, respectively.
  • the third through electrode 134 is disposed between the fourth circuit layer 124 and the fifth circuit layer 125
  • the fourth through electrode 135 is disposed between the fifth circuit layer 125 and the sixth circuit layer 125. It is disposed between the circuit layers 126, thereby electrically connecting the fourth to sixth circuit layers 124, 125, and 126.
  • the third and fourth through electrodes 134 and 135 are also simultaneously formed in the process of disposing the fifth and sixth circuit layers 125 and 126. You can proceed. Exemplarily, as described above, the third through electrode 134 may be divided into a protrusion of the fifth circuit layer 125. Additionally, the fourth through electrode 135 may be distinguished by a protrusion of the sixth circuit layer 126.
  • the layers disposed on top of the core layer 111 and the layers disposed on the bottom of the core layer 111 are stacked in different directions, and the inclination of the third and fourth through electrodes 134 and 135 is carried out. The direction may be opposite to the inclination direction of the first and second through electrodes 132 and 133.
  • the first and second through electrodes 132 and 133 may have an inclination where the width becomes narrower toward the core layer 111, and the third and fourth through electrodes 134 and 135 may also have a narrower width toward the core layer 111. It may have a slope that becomes narrower toward (111).
  • the inclination of the first and second through electrodes 132 and 133 may be symmetrical to the inclination of the third and fourth through electrodes 134 and 135 with respect to the core layer 111.
  • the fourth circuit layer 124 may contact the other surface of the core layer 111. In this case, a portion of the fourth circuit layer 124 may be disposed to cover the above-described insulating member 140. A portion of the fourth circuit layer 124 covering the insulating member 140 may be thinner than the remaining portions that do not overlap the insulating member 140 in the vertical direction. Here, the thickness of the fourth circuit layer 124 refers to the thickness along the vertical direction.
  • the insulating member 140 may or may not be covered depending on the freedom of wiring, and thus the freedom of wiring connection can be increased.
  • the fourth circuit layer 124 does not cover the insulating member 140, the insulating member 140 may be in direct contact with the third insulating layer 114.
  • the fourth circuit layer 124 may be arranged so as not to cover the insulating member 140.
  • the fourth circuit layer 124 may or may not cover the insulating member 140.
  • the electrical connectivity and/or To ensure mechanical coupling the fourth circuit layer 124 may be provided to cover the insulating member 140.
  • the fourth circuit layer 124 may be provided without covering the insulating member 140.
  • the lower build-up insulating layers 114 and 115 may have a structure in which a plurality of layers are stacked along a vertical direction.
  • the lower build-up insulating layers 114 and 115 are aligned with the third insulating layer 114, which is closest to the core layer 111, in a direction perpendicular to the core layer 111, and are located in a direction more perpendicular to the core layer 111 than the third insulating layer 114. Accordingly, it may include a fourth insulating layer 115 that is spaced apart from each other.
  • the third and fourth insulating layers 114 and 115 are disposed to insulate the above-described fourth to sixth circuit layers 124, 125, and 126 in the vertical direction.
  • the third and fourth insulating layers 114 and 115 may be made of a thermosetting insulating material containing an inorganic filler in a resin, and Ajinomoto's Ajinomoto Build-up Film (ABF) may be used.
  • ABSF Ajinomoto's Ajinomoto Build-up Film
  • the embodiment is not limited to this, and a photocurable insulating material (Photo Imageable Dielectric, PID) may be used to form a fine pattern.
  • the second protective layer 117 may protect the sixth circuit layer 126 from external moisture or contaminants. Additionally, when a semiconductor device is disposed on the circuit board 100 using a material such as solder, the second protective layer 117 functions to prevent short circuits between solders due to low wettability with the solder.
  • the second protective layer 117 may be made of a photocurable insulating material, and for example, solder resist may be used.
  • a partial area of the third circuit layer 123 may include a pad portion exposed from the first protective layer 116. Additionally, as the density of terminals of semiconductor devices increases, a problem of solder short circuiting between adjacent pad parts may occur with conventional solder bonding. Accordingly, in order to reduce the amount of solder used as the density of terminals of semiconductor devices increases, the semiconductor devices and the circuit board 100 may be bonded to each other through thermal compression bonding. When using thermal compression bonding, the circuit board 100 may include a bonding portion 150 protruding on the first protective layer 116 . The bonding portion 150 has a protrusion 151 that protrudes onto the first protective layer 116 and a penetrating portion 152 that penetrates the first protective layer 116 and contacts the third circuit layer 123. You can.
  • cracks may occur in the penetration portion 152 of the bonding portion 150 due to the resulting load. Accordingly, cracks can be prevented by disposing a material having a higher elastic force than that of the third circuit layer 123 in the penetration portion 152 of the bonding portion 150 adjacent to the third circuit layer 123 .
  • Nickel (Ni) may be used as this material, but a copper layer with a low crystal grain density can be disposed through electroless plating.
  • the protruding part 151 and the penetrating part 152 of the bonding part 150 can be arranged in various ways.
  • the first protective layer 116 is exposed and developed to form an opening in the first protective layer 116, and then a process of placing the bonding part 150 and the penetrating part 152 in the opening is performed. You can. Additionally, a through hole in the first protective layer 116 may be formed using a laser, and then a process of disposing the protruding portion 151 and the penetrating portion 152 of the bonding portion 150 in the opening may be performed.
  • DFR Dia Film Resist
  • DFR is first placed in the area where the penetrating portion 152 is to be placed, and then the first protective layer 116 is placed so that the DFR is covered, and then the first protective layer ( A portion of 116) is etched with a chemical solution to expose the DFR, and then the DFR is peeled off to form an opening in the first protective layer 116, and then the protruding portion 151 and the penetrating portion 152 of the bonding portion 150 are formed. It can be placed. Accordingly, the penetrating portion 152 of the bonding portion 150 may have various shapes depending on the processing method.
  • the side of the penetration part 152 of the bonding part 150 becomes gradually narrower as it moves toward the third circuit layer 123. It may have a structure, and when the opening of the first protective layer 116 is formed through a laser process, the side of the penetrating portion 152 has a vertical side and a curved portion adjacent to the third circuit layer 123. When forming the opening of the first protective layer 116 using DFR, the side of the penetrating portion 152 may have only a vertical side. As described above, when a semiconductor device is bonded to the circuit board 100 through thermocompression bonding, a load may be applied to the penetrating portion 152. In this case, in the case of the penetrating portion 152 using DFR, the stress is applied uniformly. This can be done to increase manufacturing yield.
  • circuit board 100 The structure of the circuit board 100 described above is only an example for explaining the present invention, and the technical idea of the present invention is not limited to the laminated structure of this embodiment.
  • the third circuit layer 123 and the sixth circuit layer 126 disposed at the uppermost and lowermost portions of the circuit layers 120 of the circuit board 100 are respectively connected to the upper surface of the second insulating layer 113 and the fourth insulating layer.
  • the third circuit layer 123 and the sixth circuit layer 126 may have an Embedded Trace Substrate (ETS) structure.
  • the third circuit layer 123 may be disposed in a recess provided on the upper surface of the second insulating layer 113.
  • the ETS structure described above can also be called an embedded structure.
  • the ETS structure is advantageous for miniaturization compared to circuit layers with a general protruding structure. Accordingly, the embodiment allows the formation of circuit layers corresponding to the size and pitch of terminals provided in the semiconductor device. Through this, the embodiment can improve circuit integration. Furthermore, the embodiment can minimize the transmission distance of a signal transmitted through a semiconductor device, thereby minimizing signal transmission loss.
  • the above-described circuit board 100 may generate gas during the process, through which the first to fourth insulating layers 112, 113, 114, 115 and the first to sixth circuit layers 121, 122, 123, 124 , 125, 126), the adhesion between them may decrease. In addition, when the adhesion decreases, the interface between the first to fourth insulating layers 112, 113, 114, and 115 and the first to sixth circuit layers 121, 122, 123, 124, 125, and 126 peels off. Mechanical reliability and/or electrical reliability problems may occur. Through this, at least one of the first to sixth circuit layers 121, 122, 123, 124, 125, and 126 may have a through hole 120a.
  • the through hole 120a may be provided in each of the first to sixth circuit layers 121, 122, 123, 124, 125, and 126, and through this, the first to fourth insulating layers 112, 113, and 114 , 115), the gas generated during curing can be easily discharged.
  • the circuit board may include an insulating layer 210 and a circuit layer 220 disposed on the insulating layer 210 .
  • the insulating layer 210 may refer to any one of the first to fourth insulating layers 112, 113, 114, and 115 described in FIG. 1, and the circuit layer 220 may refer to the first to sixth circuit layers. It may refer to any one of (121, 122, 123, 124, 125, 126).
  • the circuit layer 220 may include a plurality of circuit patterns spaced apart from each other in the horizontal direction.
  • the through hole 1220a may have a different meaning from the separation area between the plurality of circuit patterns.
  • the circuit layer 220 may include a plurality of circuit patterns disposed on the same plane of the insulating layer 210 and spaced apart from each other in the horizontal direction. And the spaced area between the plurality of circuit patterns may have a different meaning from the through hole 220a.
  • the spacing area may refer to a hole provided between a plurality of circuit patterns that must be electrically separated from each other.
  • the through hole 220a may refer to a hole that penetrates the upper and lower surfaces of one circuit pattern.
  • the separation area may also be expressed as an interval between a plurality of circuit patterns.
  • the gap may be in the range of 20 ⁇ m or less, 18 ⁇ m or less, 15 ⁇ m or less, or 12 ⁇ m or less to miniaturize the circuit layer 220.
  • the through hole 220a is provided in the circuit layer 220 and may function as a gas discharge hole for discharging gas generated in the insulating layer 210. Accordingly, the through hole 220a may be functionally referred to as a degassing hole.
  • the planar shape of the through hole 220a may be circular. However, the embodiment is not limited to this.
  • the planar shape of the through hole 220a in another embodiment may have a triangular, square, oval, diamond, or polygonal shape.
  • at least one of the plurality of through holes 220a provided in the circuit layer 220 may have a first plane shape, and at least another through hole 220a may have a second plane shape different from the first plane shape. You may also have
  • the through hole 220a of the circuit layer 220 may function as a gas outlet for discharging gas generated in the insulating layer 210.
  • the insulating layer 210 may be provided in a semi-cured state. And the circuit layer 220 may be disposed on the insulating layer 210 in a semi-cured state. In this case, after the circuit layer 220 is disposed, a process of completely curing the insulating layer 210 may be performed.
  • gas may be generated from the insulating layer 210.
  • the generated gas must be discharged from the insulating layer 210 to the outside of the circuit board 100.
  • the circuit layer 220 is disposed on the insulating layer 210. Accordingly, a problem may occur in which gas generated in the insulating layer 210 may not be discharged to the outside of the circuit board 100 by the circuit layer 220.
  • the circuit layer 220 of the embodiment may have a through hole 220a penetrating the upper and lower surfaces.
  • the through hole 220a of the circuit layer 220 discharges gas generated in the insulating layer 210 to the outside of the circuit board 100 (for example, toward the top of the circuit layer away from the insulating layer 210). It can function as an outlet.
  • the circuit layer 220 is provided with a through hole 220a so that gas generated in the insulating layer 210 can be easily discharged to the outside of the circuit board 100.
  • the embodiment can solve physical reliability problems that occur due to gas remaining in the insulating layer 210. For example, if the gas generated in the insulating layer 210 cannot be discharged, a problem may occur in which at least one of the insulating layer 210 and the circuit layer 220 swells due to the gas.
  • the circuit layer of the circuit board of the comparative example was not provided with a through hole.
  • the circuit board of the comparative example may have a problem in which gas generated in the insulating layer 10 is not discharged to the upper side of the circuit layer 20.
  • the circuit board of the comparative example may include a portion where the insulating layer 10 and the circuit layer 20 swell due to gas.
  • the insulating layer 10 of the circuit board of the comparative example may include a convex region 10P in which one region swells upward and/or a concave region A that is depressed to correspond to the convex region 10P. You can.
  • the circuit layer 20 of the circuit board of the comparative example may include a convex area 20P with one area bulging upward to correspond to the convex area 10P.
  • the adhesion between the insulating layer 10 and the circuit layer 20 decreases in the convex regions 10P and 20P, which may cause physical reliability problems such as delamination between the circuit layer 20 and the insulating layer 10. .
  • the adhesion between the plurality of insulating layers is reduced due to the concave area A, which may cause an adhesion problem in which the plurality of insulating layers are physically separated from each other.
  • the circuit board of the comparative example includes a portion where the insulating layer 10 and/or the circuit layer 20 swells due to gas.
  • the circuit layer 20 of the circuit board of the comparative example may include a convex region 20P, one region of which bulges upward from the insulating layer 10.
  • the surface B corresponding to the convex region 20P of the circuit layer 20 may not be in contact with the insulating layer 10.
  • the adhesion of the circuit layer 20 to the insulating layer 10 may be reduced due to the convex region 20P, and as a result, physical reliability problems may occur due to separation from the insulating layer 10.
  • the circuit layer 220 of the embodiment is provided with a through hole 220a, and the gas generated in the insulating layer 210 flows to the outside of the circuit board 100 through the through hole 220a. Make sure it can be discharged smoothly.
  • the embodiment can prevent the insulating layer 210 and/or the circuit layer 220 from including a region that swells due to gas. Accordingly, the embodiment can improve the adhesion between the plurality of insulating layers and the adhesion between the insulating layer and the circuit layer. Through this, the embodiment can improve the physical reliability of the substrate.
  • the through hole 220a of the circuit layer 220 may be filled with an insulating material. That is, the through hole 220a of the circuit layer 220 may be filled with another insulating layer and/or a protective layer laminated on top of the through hole 220a during the stacking process of the circuit board 110.
  • gas discharge characteristics and/or warpage characteristics of the circuit board 100 may be determined depending on the diameter W3 of the through hole 220a provided in the circuit layer 220.
  • the gas generated in the insulating layer 210 may not be easily discharged to the outside of the circuit board 200, thereby causing the insulating layer 210 to The effect of improving adhesion between the and circuit layer 220 may be minimal.
  • the diameter W3 of the through hole 220a is too large, the area or wiring density of the circuit layer 220 on a single layer of the insulating layer 210 may decrease. Additionally, when the area or density of the circuit layer 220 decreases, the bending characteristics of the circuit board 100 may decrease, and as a result, the circuit board 100 may be significantly bent in a specific direction. If the circuit board 100 is greatly bent in a specific direction, it may be difficult to secure a uniform contact surface when the semiconductor package is mounted on the main board, or the circuit board 100 may be bent due to heat generated during operation of the semiconductor device. In this case, it may be difficult to operate semiconductor devices smoothly, and it may be difficult for servers or electronic products to operate smoothly.
  • the diameter W3 of the through hole 220a compared to the planar area of the circuit board 100 can be directly related to the reliability of electronic products such as servers to which the semiconductor package is applied, and thus can have technical interoperability or functional integrity. Additionally, if the circuit board 100 is greatly bent in a specific direction, process errors may occur during the manufacturing process of the circuit board 100, which may result in a decrease in yield.
  • the embodiment determines the diameter W3 of the through hole 220a based on the planar area of the circuit board 100. Through this, the embodiment solves the problem of the circuit board 100 being bent and allows gas generated in the insulating layer 210 to be easily discharged to the outside of the circuit board 100.
  • the planar area of the circuit board 100 may mean the planar area of the insulating layer 210.
  • the insulating layer 210 may have a first width W1 in a first horizontal direction (eg, x-axis direction or horizontal direction). Additionally, the insulating layer 210 may have a second width W2 in a second horizontal direction (eg, y-axis direction or vertical direction) perpendicular to the first horizontal direction.
  • planar area of the circuit board 100 having the first width W1 and the second width W2 may be 1500 mm 2 to 2000 mm 2 .
  • the planar area of the circuit board 100 having the first width W1 and the second width W2 may be 1550 mm 2 to 1950 mm 2 .
  • the planar area of the circuit board 100 having the first width W1 and the second width W2 may be 1580 mm 2 to 1900 mm 2 .
  • the minimum value of the diameter W3 of the through hole 220a provided in the circuit layer 220 must be at a certain level to prevent heat generated in the insulating layer 210. Gas can be smoothly discharged to the outside of the circuit board 100.
  • the circuit layer 220 there may be a plurality of through holes 220a provided in the circuit layer 220.
  • at least one of the plurality of through holes 220a must have a diameter W3 of a certain level or more, and as at least one through hole 220a has a diameter W3, the gas generated in the insulating layer 210 must be It can be easily discharged to the outside.
  • the diameter W3 of the through hole 220a may be at least 165 ⁇ m. If the diameter W3 of the through hole 220a is smaller than 165 ⁇ m, gas generated in the insulating layer 210 having the above-mentioned planar area may not be easily discharged to the upper side of the circuit layer 220. Additionally, if the gas cannot be discharged, a problem may occur in which the circuit layer 220 and/or the insulating layer 210 swells. As a result, the adhesion between the circuit layer 220 and the insulating layer 210 may decrease.
  • the larger the diameter W3 of the through hole 220a the better the gas generated in the insulating layer 210 can be discharged to the outside.
  • the diameter of the through hole 220a becomes too large, the wiring density or area of the circuit layer 220 on the insulating layer 210 may decrease.
  • the characteristics of the circuit layer 220 may change or the bending characteristics of the circuit board 100 may deteriorate.
  • the characteristics of the circuit layer 220 may mean impedance characteristics, but are not limited thereto.
  • the circuit layer 220 may function as a wiring line and also prevent the circuit board 100 from bending.
  • the diameter W3 of the through hole 220a may satisfy the range of 165 ⁇ m to 220 ⁇ m.
  • the diameter W3 of the through hole 220a may satisfy the range of 165 ⁇ m to 210 ⁇ m. More preferably, the diameter W3 of the through hole 220a may satisfy the range of 165 ⁇ m to 205 ⁇ m. If the diameter W3 of the through hole 220a is less than 165 ⁇ m, the gas generated in the insulating layer 210 is not easily discharged to the outside of the circuit board 100, as described, and thus the gas in the insulating layer 210 Problems with residual residue may occur. Additionally, if gas remains, physical reliability problems may occur as the insulating layer 210 and/or the circuit layer 220 swell.
  • the diameter W3 of the through hole 220a exceeds 220 ⁇ m, the area or density of the circuit layer 220 decreases, and thus the impedance characteristics between a plurality of circuit layers change or the circuit board ( 100), the rigidity may decrease.
  • the ratio of the diameter of the through hole 220a to the planar area of the insulating layer 210 may satisfy the range of 0.0000825 to 0.000147. Additionally, the ratio of the planar area of the through hole 200a to the planar area of the insulating layer 1210 may satisfy the range of 0.00025905 to 0.0004605. That is, the planar area of the insulating layer 210 may be 1500 mm 2 to 2000 mm 2 , and at least one of the plurality of through holes 220a may have a diameter of 165 ⁇ m to 220 ⁇ m, and the plurality of through holes 220a may have a diameter of 165 ⁇ m to 220 ⁇ m. At least one of the plane areas may satisfy a range of 518.1 ⁇ m 2 to 690.8 ⁇ m 2 .
  • the embodiment allows the gas generated in the insulating layer 210 to be well discharged to the outside of the circuit board 100, solving the problem of remaining gas, and further solving the problem of reducing the area or wiring density of the circuit layer. It is possible to solve the change in impedance characteristics between a plurality of circuit layers, and further solve the problem of deterioration in the rigidity of the circuit board 100.
  • the penetrating electrode 230 may be provided to penetrate the insulating layer 210 .
  • the circuit layer 220 having the through hole 220a may overlap the through electrode 230 in the vertical direction.
  • the through hole 220a provided in the circuit layer 220 may not overlap the through electrode 230 in the vertical direction.
  • the electrical connection characteristics between the plurality of circuit layers by the through electrode 230 may deteriorate. That is, the through electrode 230 can connect circuit layers disposed on different insulating layers.
  • the through hole 220a of the circuit layer 220 overlaps the through electrode 230 in the vertical direction, the transmission loss of the signal transmitted through the through electrode 230 may increase, resulting in signal transmission. Reliability may decrease. Accordingly, the through hole 220a provided in the circuit layer 220 of the embodiment may not overlap in the vertical direction with the through electrode 230 penetrating the insulating layer 210.
  • the diameter W3 of the through hole 220a provided in the circuit layer 220 may be larger than the diameter of the through electrode 230.
  • the through electrode 230 may have an inclination whose width gradually changes from the top to the bottom of the insulating layer 210, as shown in FIG. 2 .
  • the diameter W3 of the through hole 220a may be larger than the width W4 of the region having the largest width in the entire vertical direction of the through electrode 230.
  • the width W4 of the through electrode 230 may satisfy the range of 60 ⁇ m to 90 ⁇ m.
  • the width W4 of the through electrode 230 may satisfy the range of 60 ⁇ m to 85 ⁇ m.
  • the width W4 of the through electrode 230 may satisfy the range of 60 ⁇ m to 80 ⁇ m. If the width W4 of the through electrode 230 is less than 60 ⁇ m, the allowable current of a signal that can be transmitted through the through electrode 230 decreases, and the electrical characteristics of the circuit board and semiconductor package may accordingly deteriorate. . If the width W4 of the through electrode 230 exceeds 90 ⁇ m, the process time for filling the through electrode 230 with a conductive material increases, and the product production yield may decrease accordingly. Additionally, if the width W4 of the through electrode 230 exceeds 90 ⁇ m, the pitch between the plurality of through electrodes spaced apart in the horizontal direction increases, and thus the circuit integration may decrease.
  • the diameter W3 of the through hole 220a provided in the circuit layer 220 may be 2.5 times or more than the width W4 of the through electrode 230. And, if the diameter W3 of the through hole 220a provided in the circuit layer 220 is less than 2.5 times the width W4 of the through electrode 230, the gas generated in the insulating layer 210 flows into the circuit board 100. ) may not be easily discharged to the outside.
  • the circuit layer 220 may be provided with a through hole 220a having a diamond shape rather than a circular shape.
  • the diameter W3 of the through hole 220a refers to the distance between vertices facing each other on the plane of the through hole 220a. can do.
  • the diameter W3 of each of the plurality of through holes 320a provided in the circuit layer 320 is the distance between two adjacent through holes among the plurality of through holes 320a. It may be more than the distance (W4). That is, the diameter W3 of each of the plurality of through holes 320a provided in the circuit layer 320 is equal to the separation distance W4 between two adjacent through holes among the plurality of through holes 320a, or It can be bigger than this.
  • the gas generated in the insulating layer 310 may not be easily discharged to the outside of the circuit board 100.
  • the fact that the diameter W3 of the through hole 320a is smaller than the separation distance W4 means that gas is discharged through the through hole 320a based on the area in the circuit layer 320 where the through hole 320a is placed. This may mean that the area where gas cannot be discharged at the separation distance W4 between the plurality of through holes 320a is larger than the area where gas can be discharged.
  • the diameter W3 of the through hole 320a is larger than the separation distance W4 between the plurality of through holes 320a, the gas may not be discharged well and may remain in the insulating layer 310. Physical properties may deteriorate.
  • the separation distance W4 may vary depending on the arrangement direction and/or arrangement shape of the plurality of through holes 320a.
  • the separation distance W4 is the separation distance between two through holes located in a diagonal direction from each other among the plurality of through holes. It can mean.
  • a plurality of through holes 320a are provided at regular intervals in a first horizontal direction parallel to the first side of the circuit board or a second horizontal direction perpendicular to the first side.
  • the separation distance W4 may mean the separation distance between two through holes located in the first horizontal direction or the second horizontal direction among the plurality of through holes.
  • the diameter of at least one of the plurality of through holes 320a may be different from the diameter of at least another one.
  • the separation distance between adjacent through holes among the plurality of through holes may be different from each other.
  • the diameter W3 may mean the diameter of the through hole having the smallest diameter among the plurality of through holes 320a.
  • the separation distance may mean the largest separation distance among the separation distances between a plurality of adjacent through holes.
  • the smallest diameter among the diameters of each of the plurality of through holes 320a in the embodiment may be equal to or greater than the largest separation distance between the plurality of adjacent through holes.
  • the separation distance W4 may be determined based on the diameter W3 of the through hole 320a and the width W5 of the through electrode 330.
  • the separation distance W4 may be less than or equal to the diameter W3 of the through hole 320a and greater than or equal to the width W5 of the through electrode 330. If the separation distance W4 is less than the width W5 of the through electrode 330, the through hole 320a and the through electrode 330 may overlap in the vertical direction, or the area of the area overlapping in the vertical direction may increase. . Additionally, when the area of the vertically overlapping area increases, the signal transmission characteristics of the through electrode 330 may deteriorate.
  • the separation distance W4 may mean the separation distance between two through holes disposed adjacent to each other among the plurality of through holes 320a.
  • the second through hole disposed closest to the first through hole may be located in a diagonal horizontal direction of the first through hole. Accordingly, the separation distance W4 may mean the separation distance between two through holes spaced apart from each other in the diagonal horizontal direction.
  • the embodiment is not limited to this.
  • the separation distance is It may refer to the separation distance between the first and second through holes located in the horizontal, vertical, and horizontal directions.
  • the through electrode 330 may be provided to penetrate the insulating layer 310, and the circuit layer 320 including the through hole 320a may be provided with the through electrode 330 in the vertical direction. ) may overlap. At this time, the through hole 320a provided in the circuit layer 320 may not overlap the through electrode 330 in the vertical direction. At this time, when the through hole 320a of the circuit layer 320 overlaps the through electrode 330 in the vertical direction, the electrical connection characteristics between the plurality of circuit layers by the through electrode 330 may be deteriorated. That is, the through electrode 330 can connect circuit layers disposed on different insulating layers.
  • the through hole 320a of the circuit layer 320 overlaps the through electrode 330 in the vertical direction, the transmission loss of the signal transmitted through the through electrode 330 may increase, resulting in signal transmission. Reliability may decrease. Accordingly, the through hole 320a provided in the circuit layer 320 of the embodiment should not overlap in the vertical direction with the through electrode 330 penetrating the insulating layer 310, or even if it overlaps, the area of the overlapping area will be minimized. make it possible
  • the circuit board may include a first circuit layer 421 disposed on the insulating layer 411 .
  • the first circuit layer 421 may be divided into a plurality of areas.
  • the first circuit layer 421 may be divided into a plurality of regions based on a plurality of circuit patterns provided in the second circuit layer 422.
  • the first circuit layer 421 may include first to third regions R1, R2, and R3.
  • the first region R1 of the first circuit layer 421 may include a plurality of first through holes 421-1 penetrating the upper and lower surfaces of the first region R1.
  • the plurality of first through holes 421-1 may have a first diameter W3.
  • the first diameter W3 of the first through hole 421-1 is at least one of the embodiments of FIGS. 3, 4, 6, 7, 8, 9, and 10. It may correspond to the diameter of the through holes 220a and 320a described above.
  • the first circuit layer 421 may include a second region (R2) separated from the first region (R1) on the insulating layer 411.
  • the first region R1 and the second region R2 may be one circuit pattern connected to each other divided into regions in the first circuit layer 421.
  • the first region R1 and the second region R2 may be divided in the first circuit layer 421 based on a plurality of circuit patterns spaced apart from each other.
  • the second region R2 may include a plurality of second through holes 421-2 penetrating the upper and lower surfaces of the second region R2 of the first circuit layer 421. At this time, the plurality of second through holes 421-2 provided in the second region R2 may have a second diameter W4.
  • the second diameter W4 of each of the plurality of second through holes 421-2 provided in the second region R2 is the plurality of first through holes 421-2 provided in the first region R1. 1) may be different from each first diameter (W3).
  • the second diameter W4 of each of the plurality of second through holes 421-2 provided in the second region R2 is equal to the second diameter W4 of each of the plurality of first through holes 421-2 provided in the first region R1. It may be larger than each first diameter (W3) of -1). This may be due to the characteristics of the circuit patterns of the second circuit layer 422 that overlap the first region (R1) and the second region (R2) of the first circuit layer 421 in the vertical direction, respectively.
  • the characteristics of the circuit patterns of the second circuit layer 422 may refer to any one of the wiring density of the circuit patterns, the width/spacing of the circuit patterns, and the function of the circuit patterns.
  • the first circuit layer 421 may include a third region (R3) that is distinct from the first region (R1) and the second region (R2).
  • the third region R3 of the first circuit layer 421 may be distinguished from the first region R1 and the second region R2 depending on the arrangement position on the insulating layer 411.
  • the third region R3 may be connected to the first region R1 and the second region R2, but is not limited thereto.
  • the third region R3 may be physically and/or electrically separated from the first region R1 and the second region R2.
  • the third region R3 may be disposed closer to the outer edge of the circuit board 100 than the first region R1 and the second region R2.
  • the third region R3 may be provided along the edge and/or circumferential direction of the upper surface of the first circuit layer 421.
  • the third area R3 may mean an edge area of the upper surface of the first circuit layer 421.
  • the top surface of the insulating layer 411 may include an edge area adjacent to the edge.
  • the third region R3 may refer to an area of the first circuit layer 421 that overlaps in the vertical direction with the edge area of the insulating layer 411.
  • the first area (R1) and the second area (R2) may refer to an inner area of the border area corresponding to the third area (R3).
  • the third region R3 of the first circuit layer 421 may include a plurality of third through holes 421-3 penetrating the upper and lower surfaces of the third region R3.
  • Each of the plurality of third through holes 421-3 provided in the third region R3 may have a third diameter W5.
  • the third diameter W5 of each of the plurality of third through holes 421-3 provided in the third region R3 is the plurality of first through holes 421-3 provided in the first region R1. 1) may be different from each first diameter W3 and each second diameter W4 of the plurality of second through holes 421-2 provided in the second region R2.
  • the third diameter W5 of each of the plurality of third through holes 421-3 provided in the third region R3 is equal to the third diameter W5 of each of the plurality of first through holes 421-3 provided in the first region R1.
  • -1) may be smaller than each of the first diameters (W3) and each of the second diameters (W4) of the plurality of second through holes 421-2 provided in the second region (R2).
  • the first circuit layer 421 is disposed on the insulating layer 411 and can be horizontally divided into a first region (R1), a second region (R2), and a third region (R3). Additionally, the first region R1 of the first circuit layer 421 may include a plurality of first through holes 421-1. Additionally, the second region R2 of the first circuit layer 421 may include a plurality of second through holes 421-2. Additionally, the third region R3 of the first circuit layer 421 may include a plurality of third through holes 421-3. At this time, among the first through hole 421-1, the second through hole 421-2, and the third through hole 421-3, the second through hole 421-2 may have the largest diameter, The third through hole 421-3 may have the smallest diameter. This refers to the positions of the first region (R1), second region (R2), and third region (R3) of the first circuit layer 421 and/or the circuit of the second circuit layer 422 overlapping in the vertical direction. This may be due to the characteristics of the pattern.
  • a second circuit layer 422 may be disposed on the lower surface of the insulating layer 411.
  • the second circuit layer 422 may include a plurality of circuit patterns. Circuit patterns of the second circuit layer 422 may have different wiring densities. Wiring density may refer to the area occupied by the second circuit layer 422 within a specific unit area of the insulating layer 411.
  • the second circuit layer 422 may include a first circuit pattern 422-1 that overlaps the first region R1 of the first circuit layer 421 in the vertical direction. Additionally, the second circuit layer 422 overlaps the second region R2 of the first circuit layer 421 in the vertical direction and is spaced apart from the first circuit pattern 422-1 in the horizontal direction. 422-2) may be included.
  • the second circuit layer 422 may include a third circuit pattern 422-3 that overlaps the third region R3 of the first circuit layer 421 in the vertical direction.
  • the third circuit pattern 422-3 may refer to a circuit pattern disposed on the edge area of the lower surface of the insulating layer 411, corresponding to the third region R3 of the first circuit layer 421.
  • the first circuit pattern 422-1 and the second circuit pattern 422-2 of the second circuit layer 422 are located in the border area of the lower surface of the insulating layer 411 among the second circuit layer 422. It may refer to a circuit pattern placed on the inside.
  • the first circuit pattern 422-1 and the second circuit pattern 422-2 of the second circuit layer 422 may have different wiring densities.
  • the second circuit pattern 422-2 of the second circuit layer 422 may have a greater density than the first circuit pattern 422-1.
  • the width and spacing of the circuit pattern 422-2 in the second area may be smaller than the width and spacing of the circuit pattern 422-1 in the first area.
  • a through hole with a relatively small diameter is provided in the second region (R2) of the first circuit layer 421 that overlaps the second circuit pattern 422-2 in the vertical direction, a relatively high wiring density is achieved.
  • the characteristics of the second circuit patterns 422-2 may change.
  • the second circuit pattern 422-2 may be a circuit pattern for impedance matching.
  • the second circuit layer 422-2 when a relatively small diameter through hole is provided in the second region (R2) of the first circuit layer 421 overlapping in the vertical direction with the second circuit pattern 422-2, the second circuit layer 422-2 ) The impedance characteristics of the second circuit pattern 422-2 may change. In addition, when a relatively small diameter through hole is provided in the second region (R2) of the first circuit layer 421 that overlaps the second circuit pattern 422-2 in the vertical direction, the second circuit pattern 422-2 -2) may be damaged.
  • the third region (R3) Gas in the corresponding insulating layer 411 may not be easily discharged to the outside, and as a result, the physical and/or electrical characteristics of the circuit board and semiconductor package may be deteriorated.
  • the second diameter W4 of each of the plurality of second through holes 421-2 provided in the second region R2 of the first circuit layer 421 is the first circuit layer 421. ) is larger than the first diameter W3 of each of the plurality of first through holes 421-1 provided in the first region R1.
  • the embodiment allows gas generated in the insulating layer 411 to be discharged to the upper side of the first circuit layer 421 without affecting the impedance characteristics of the second circuit pattern 422-2. .
  • the embodiment differentiates the gas emissions for each region in the first circuit layer 421, thereby insulating the second circuit layer 422 disposed below the first circuit layer 421 without changing its characteristics. Ensure that the gas generated in layer 411 is completely removed.
  • the gas generated in the insulating layer 411 of the embodiment passes through a plurality of second through holes 421-2 provided in the second region R2 of the first circuit layer 421 with a relatively large diameter. There may be concentrated discharge. That is, if the adhesion between the second region R2 and the insulating layer 411 decreases, the electrical characteristics of the second circuit pattern 422-2 may decrease. Accordingly, in the embodiment, the diameter of the plurality of second through holes 421-2 provided in the second region R2 is larger than the diameter of the through holes provided in other regions. However, if the gas generated in the insulating layer 411 is discharged only through the second through hole 421-2 in the second region R2, the gas in the insulating layer 411 may not be completely discharged.
  • the embodiment allows a portion of the gas of the insulating layer 411 to be discharged through the first through hole 421-1 in the first region R1 of the first circuit layer 421 having a relatively small diameter. You can. Through this, in the embodiment, the gas generated in the insulating layer 411 can be completely discharged to the outside of the circuit board 100. Accordingly, embodiments can further improve the physical and/or electrical properties of circuit boards and semiconductor packages.
  • the third region R3 of the first circuit layer 421 may be a portion disposed in the border region of the surface of the insulating layer 411.
  • the circuit pattern disposed on the edge area of the insulating layer 411 may affect the rigidity of the circuit board and semiconductor package. That is, if the diameter of the third through hole 421-3 provided in the third region R3 of the first circuit layer 421 is large, the third region R3 in the edge region of the insulating layer 411 is large. Area may also decrease. Additionally, when the area of the third region R3 in the edge area decreases, the rigidity of the circuit board and the semiconductor package may decrease.
  • the third through hole 421-3 provided in the third region R3 has a diameter smaller than the respective diameters of the first through hole 421-1 and the second through hole 421-2. to have. Accordingly, the embodiment prevents the circuit board and the semiconductor package from bending in a specific direction and allows the gas generated in the insulating layer 411 to be completely discharged to the outside of the circuit board 100. Through this, the embodiment can further improve the physical and/or electrical characteristics of the circuit board and semiconductor package.
  • the third region R3 is a circuit pattern disposed at the edge of the insulating layer 411, but it is not limited thereto.
  • the third region R3 may refer to a circuit pattern disposed in an edge area of an insulating layer that is different from the first region R1 and the second region R2.
  • first through holes 421-1 provided in the first region R1 two adjacent first through holes may be spaced apart from each other with a first separation distance.
  • second through holes 421-2 provided in the second region R2 two adjacent second through holes may be spaced apart from each other with a second separation distance.
  • third through holes 421-3 provided in the third region R3 two adjacent third through holes may be spaced apart from each other with a third separation distance.
  • the first separation distance, the second separation distance, and the third separation distance may be different from each other.
  • the second distance may be the smallest among the first, second, and third distances.
  • the third distance may be the largest.
  • the separation distance between the plurality of second through holes 421-2 is minimized, so that the second through hole 421-2 with a larger area is provided in the second region R2. make it possible As a result, the embodiment allows the gas generated in the insulating layer 411 to be completely discharged while improving the electrical characteristics of the second circuit pattern 422-2.
  • the first separation distance of the first through hole 421-1 is larger than the second separation distance, so that the gas generated in the insulating layer 411 by the first through hole 421-1 is It can be completely discharged.
  • the third separation distance of the third through hole 421-3 is larger than the first separation distance and the second separation distance, respectively, without affecting the rigidity of the circuit board and the semiconductor package. The gas generated in the insulating layer 411 can be completely discharged.
  • the diameter W3 of the plurality of first through holes 421-1 provided in the first region R1 and the first separation distance between the plurality of first through holes will be described.
  • the diameter (W5) and separation distance in 3) may have a range that satisfies the conditions based on the description below.
  • Each diameter W3 of the plurality of first through holes 421-1 provided in the first region R1 of the first circuit layer 421 is adjacent to each other among the plurality of first through holes 421-1. It may be more than the separation distance between the two first through holes. That is, the diameter W3 of each of the plurality of first through holes 421-1 provided in the first region R1 is the diameter of two adjacent first through holes among the plurality of first through holes 421-1. It may be equal to or greater than the separation distance between them.
  • the insulating layer ( The gas generated in 411) may not be easily discharged to the outside of the circuit board 100. That is, the fact that the diameter W3 of the first through hole 421-1 is smaller than the separation distance between the plurality of first through holes means that the first through hole 421-1 in the first region R1 Based on the arranged area, there are more areas where gas cannot be discharged at the separation distance between the plurality of first through holes 421-1 than areas where gas can be discharged through the first through holes 421-1. It can mean big.
  • the separation distance between the plurality of first through holes 421-1 is greater than the diameter W3 of the first through hole 421-1, the gas is not discharged well and remains in the insulating layer 411. This may cause physical properties to deteriorate.
  • the separation distance may vary depending on the arrangement direction of the plurality of first through holes 421-1. For example, when the plurality of first through holes 421-1 are arranged in a zigzag shape diagonally in the first region R1, the separation distance is the distance between the two first through holes 421-1 located diagonally from each other among the plurality of first through holes 421-1. 1 Can refer to the separation distance between through holes.
  • the separation distance is plural. It may refer to the separation distance between two first through holes located adjacent to each other in the first horizontal direction or the second horizontal direction among the first through holes of .
  • the embodiment allows the diameter W3 of the first through hole 421-1 to be greater than or equal to the separation distance between the through holes, and at least one first through hole among the plurality of first through holes 421-1. Ensure that the diameter (W3) of (421-1) is above a certain level.
  • the diameter W3 of the first through hole 421-1 may be determined based on the planar area of the circuit board 100. That is, if the diameter W3 of the first through hole 421-1 is too small compared to the planar area of the circuit board 100, the gas generated in the insulating layer 411 is not easily discharged to the outside of the circuit board 100. This may not be possible, and as a result, the effect of improving adhesion between the insulating layer 411 and the circuit layers may be insufficient.
  • the diameter W3 of the first through hole 421-1 may be at least 165 ⁇ m. Furthermore, as described above, the diameter W3 of the first through hole 421-1 may satisfy the range of 165 ⁇ m to 220 ⁇ m. Preferably, the diameter W3 of the first through hole 421-1 may satisfy the range of 165 ⁇ m to 210 ⁇ m. More preferably, the diameter W3 of the first through hole 421-1 may satisfy the range of 165 ⁇ m to 205 ⁇ m. Additionally, as described above, the ratio of the diameter of the first through hole 421-1 to the area of the insulating layer 411 may satisfy the range of 0.0000825 to 0.000147.
  • the ratio of the planar area of the first through hole 421-1 to the planar area of the insulating layer 411 may satisfy the range of 0.00025905 to 0.0004605. That is, the planar area of the insulating layer 411 may be 1500 mm 2 to 2000 mm 2 , at least one of the plurality of first through holes 421-1 may have a diameter of 165 ⁇ m to 220 ⁇ m, and a plurality of first through holes 421-1 may have a diameter of 165 ⁇ m to 220 ⁇ m. The planar area of at least one of the through holes 421-1 may satisfy the range of 518.1 ⁇ m 2 to 690.8 ⁇ m 2 .
  • the separation distance between the plurality of first through holes 421-1 may be less than or equal to the diameter W3 of the first through hole 421-1 and greater than or equal to the width of the through electrode 430. If the separation distance is less than the width of the through electrode 430, the first through hole 421-1 and the through electrode 430 may overlap in the vertical direction, or the area of the area overlapping in the vertical direction may increase. Additionally, when the area of the vertically overlapping area increases, the signal transmission characteristics of the through electrode 430 may deteriorate.
  • the penetrating electrode 430 may be provided to penetrate the insulating layer 411.
  • the first through hole 421-1, the second through hole 421-2, and the third through hole 421-3 provided in the first circuit layer 421 are located in the first layer of the insulating layer. It may not overlap in the vertical direction with the disposed penetrating electrode 430. Through this, the embodiment minimizes the transmission loss of the signal transmitted through the through electrode 430. Additionally, the diameter of the through hole provided in each circuit pattern described above may be larger than the diameter of the through electrode 430.
  • the diameter W3 of the first through hole 421-1 provided in the first region R1, the diameter W4 of the second through hole 421-2 provided in the second region R2, and Each diameter W5 of the third through-holes 421-3 provided in the third region R3 may be larger than the diameter of the through-electrode 430.
  • the through electrode 430 may have an inclination whose width gradually changes from the upper surface of the insulating layer 411 toward the lower surface.
  • the diameter W3 of the first through hole 421-1 provided in the first region R1, the diameter W4 of the second through hole 421-2 provided in the second region R2, and the Each of the diameters W5 of the third through holes 421 - 3 provided in the three regions R3 may be larger than the width of the region with the largest width in the through electrode 430 .
  • the first circuit layer 421 may include a pad 421-5 that overlaps the through electrode 430 in the vertical direction.
  • the pad 421-5 may be a circuit pattern connected to the through electrode 430.
  • the first circuit layer 421 may include a fourth through hole 121-4 provided to correspond to the area where the pad 421-5 is disposed. At this time, the fourth through hole 421-4 may have a different function from the first to third through holes 421-1, 421-2, and 421-3.
  • first to third through holes 421-1, 421-2, and 421-3 may function as gas outlets, and accordingly, the first to third through holes 421-1, 421-2, and 421 Other circuit patterns of the first circuit layer 421 may not be disposed in the inner area of -3). That is, the inner regions of the first to third through holes 421-1, 421-2, and 421-3 may be filled with another insulating layer disposed on top thereof.
  • the fourth through hole 421-4 may be a separation area for separating the pad 421-5 from another circuit pattern. Accordingly, another circuit pattern of the first circuit layer 421 may be disposed in the inner area of the fourth through hole 421-4. For example, the pad 421-5 of the first circuit layer 421 may be disposed in the inner area of the fourth through hole 421-4. Additionally, the diameter of the fourth through hole 421-4 may be smaller than the diameter of the first to third through holes 421-1, 421-2, and 421-3.
  • the diameter W3 of the first through hole 421-1 provided in the first region R1, and the diameter W4 of the second through hole 421-2 provided in the second region R2. ) and the diameter W5 of the third through hole 421-3 provided in the third region R3 may each be larger than the width of the through electrode 430.
  • the diameter W4 of the second through hole 421-2 provided in the second region R2 is the diameter W3 of the first through hole 421-1 provided in the first region R1, and
  • the diameter W5 of each of the third through holes 421-3 provided in the third region R3 may be larger.
  • the diameter W5 of the third through hole 421-3 provided in the third region R3 is the diameter W3 of the first through hole 421-1 provided in the first region R1 and Each may be smaller than the diameter W4 of the second through-holes 421-2 provided in the second region R2.
  • the separation distance between two adjacent second through holes among the plurality of second through holes 421-2 is the separation distance between two adjacent first through holes among the plurality of first through holes 421-1. and a separation distance W8 between two adjacent third through-holes among the plurality of third through-holes 421-3.
  • the separation distance between two adjacent third through holes among the plurality of third through holes 421-3 is the separation distance between two adjacent first through holes among the plurality of first through holes 421-1. and may be greater than each of the separation distances between two adjacent second through-holes among the plurality of second through-holes 421-2.
  • the diameter of each through hole and the distance between each through hole may be larger than the width of the through electrode 430.
  • a circuit board having the characteristics of the above-described invention when used in IT devices such as smartphones, server computers, TVs, or home appliances, functions such as signal transmission or power supply can be stably performed.
  • a circuit board having the characteristics of the present invention when a circuit board having the characteristics of the present invention performs a semiconductor package function, it can safely protect the semiconductor chip from external moisture or contaminants, and can prevent problems such as leakage current or electrical short circuits between terminals. Alternatively, the problem of electrical opening of the terminal supplying the semiconductor chip can be solved. Additionally, if it is responsible for the function of signal transmission, the noise problem can be solved.
  • the circuit board having the characteristics of the above-described invention can maintain the stable function of IT devices or home appliances, so that the entire product and the circuit board to which the present invention is applied can achieve functional unity or technical interoperability with each other.
  • a circuit board having the characteristics of the above-mentioned invention is used in a transportation device such as a vehicle, it is possible to solve the problem of distortion of signals transmitted to the transportation device, or to safely protect the semiconductor chip that controls the transportation device from the outside and prevent leakage.
  • the stability of the transport device can be further improved by solving the problem of electrical short-circuiting between currents or terminals, or the problem of electrical opening of the terminal supplying the semiconductor chip. Accordingly, the transportation device and the circuit board to which the present invention is applied can achieve functional unity or technical interoperability with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

실시 예에 따른 회로 기판은 절연층; 및 상기 절연층 상에 배치되고, 상기 절연층과 접촉하는 하면 및 상기 하면과 마주보는 상면을 구비한 회로층을 포함하고, 상기 회로층은 상기 상면 및 상기 하면을 관통하는 복수 개의 관통 홀을 구비하고, 상기 복수의 관통 홀의 각각의 직경은 상기 복수의 관통 홀 중 서로 인접하게 배치된 2개의 관통홀 간의 이격 거리 이상이다.

Description

회로 기판 및 이를 포함하는 반도체 패키지
실시 예는 회로 기판 및 이를 포함하는 반도체 패키지에 관한 것이다.
전기/전자 제품의 고성능화가 진행됨에 따라, 한정된 크기의 반도체 패키지 기판에 더 많은 수의 반도체 소자를 배치하기 위한 기술들이 제안 및 연구되고 있다. 다만, 일반적인 반도체 패키지는 하나의 반도체 소자가 탑재되는 것을 기본으로 하기 때문에 원하는 성능을 얻는데 한계가 있다.
이에 따라, 최근에는 복수의 회로 기판을 이용하여 다수의 반도체 소자를 배치한 반도체 패키지가 제공되고 있다. 이러한 반도체 패키지는 복수의 반도체 소자가 회로 기판 상에서 상호 수평 방향 및/또는 수직 방향으로 연결되는 구조를 가진다. 이에 따라, 반도체 패키지는 반도체 소자의 실장 면적을 효율적으로 사용하고, 반도체 소자 사이의 짧은 신호 전송 패스를 통해 고속 신호의 전송 가능한 장점이 있다.
또한, 사물 인터넷(IoT:Internet of Things)을 제공하는 제품, 자율 주행차 및 고성능 서버 등에 적용되는 반도체 패키지는 고집적화 추세에 따라 반도체 소자의 개수 및/또는 각각의 반도체 소자의 커지거나, 반도체 소자의 기능적인 부분이 분할되면서 반도체 칩렛(Chiplet)으로 그 개념이 확장되고 있다.
한편, 반도체 패키지에 실장되는 반도체 소자 및/또는 반도체 칩렛(Chiplet)의 개수가 증가함에 따라 회로 기판 및 반도체 패키지의 면적이 증가하는 추세에 있다. 또한, 회로 기판 및 반도체 패키지의 면적이 넓어질수록 회로 기판에 구비되는 회로층의 면적 및/또는 배선 밀도도 증가하고 있다. 회로층의 면적 및/또는 배선 밀도가 증가하는 경우, 회로층과 접촉하는 절연층에서 발생하는 가스가 충분히 배출되지 못하는 문제가 발생하여 절연층 및/또는 회로층의 표면이 배출되지 못한 가스로 인해 부풀어 오를 수 있다. 이로 인해, 절연층 및/또는 회로층이 박리되는 기계적 신뢰성 문제가 발생할 수 있다.
실시 예는 새로운 구조의 회로 기판 및 이를 포함하는 반도체 패키지를 제공한다.
또한, 실시 예는 절연층과 회로층 사이의 밀착력이 개선된 회로 기판 및 이를 포함하는 반도체 패키지를 제공한다.
또한, 실시 예는 가스 배출 특성이 개선된 회로 기판 및 이를 포함하는 반도체 패키지를 제공한다.
제안되는 실시 예에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 제안되는 실시 예가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
실시 예에 따른 회로 기판은 절연층; 및 상기 절연층 상에 배치되고, 상기 절연층과 접촉하는 하면 및 상기 하면과 마주보는 상면을 구비한 회로층을 포함하고, 상기 회로층은 상기 상면 및 상기 하면을 관통하는 복수 개의 관통 홀을 구비하고, 상기 복수의 관통 홀의 각각의 직경은 상기 복수의 관통 홀 중 서로 인접하게 배치된 2개의 관통홀 간의 이격 거리 이상이다.
또한, 상기 복수의 관통 홀의 각각의 직경은 서로 다르고, 상기 복수의 관통 홀 중 서로 인접하게 배치된 각각의 2개의 관통 홀 사이의 이격 거리는 서로 다르며, 상기 복수의 관통 홀 중에서 가장 작은 관통 홀의 직경은, 상기 서로 인접하게 배치된 각각의 2개의 관통 홀 간의 이격 거리 중 가장 큰 이격 거리 이상이다.
또한, 상기 절연층의 평면 면적에 대한 상기 관통 홀의 직경의 비율은 0.0000825 내지 0.000147의 범위를 만족한다.
또한, 상기 절연층의 평면 면적에 대한 상기 관통 홀의 평면 면적의 비율은 0.00025905 내지 0.0004605의 범위를 만족한다.
또한, 상기 절연층의 평면 면적은 1500mm2 내지 2000mm2이다.
또한, 상기 복수의 관통 홀 중 적어도 하나는 165㎛ 내지 220㎛의 직경을 가진다.
또한, 상기 복수의 관통 홀 중 적어도 하나의 평면 면적은 518.1㎛2 내지 690.8㎛2의 범위를 만족한다.
또한, 상기 회로층은 수평 방향으로 이격된 복수의 회로 패턴을 구비하고, 상기 복수의 관통 홀은 상기 복수의 회로 패턴에 각각 구비되며, 상기 복수의 회로 패턴들 사이의 간격은 상기 관통 홀의 직경보다 작다.
또한, 상기 회로 기판은 상기 절연층을 관통하고 상기 회로층과 연결된 관통 전극을 더 포함하고, 상기 관통 홀의 직경은 상기 관통 전극의 수평 방향의 폭보다 크다.
또한, 상기 복수의 관통 홀 각각은 상기 회로층의 외측면과 연결되지 않고 상기 관통 전극과 수직 방향으로 중첩되지 않는다.
또한, 상기 관통 홀의 직경은 상기 관통 전극의 폭의 2.5배 이상이다.
또한, 상기 절연층은 복수의 층으로 구비되고, 상기 회로층은 상기 절연층의 복수의 층 중 최상측에 배치된 절연층 상에 배치되고, 상기 회로층의 상기 관통 홀은 상기 회로층 상에 배치되는 보호층으로 채워진다.
또한, 상기 절연층은 제1 절연층 및 상기 제1 절연층 상에 배치된 제2 절연층을 포함하고, 상기 회로층은 상기 제1 및 제2 절연층 사이에 배치되고, 상기 관통 홀은 상기 제2 절연층으로 채워진다.
또한, 상기 회로 기판은 수직 방향을 따라 이격된 복수의 회로층을 포함하고, 상기 각각의 비율은 상기 복수의 회로층 중 어느 하나의 회로층에 구비된 관통 홀에 대한 비율이다.
또한, 실시 예의 회로 기판은 절연층; 및 상기 절연층의 상면에 배치된 제1 회로층을 포함하고, 상기 제1 회로층은 수평 방향을 따라 제1 및 제2 영역으로 구분되고, 상기 제1 회로층의 상기 제1 영역에는 상기 제1 회로층의 상면 및 하면을 관통하는 복수의 제1 관통 홀이 구비되고, 상기 제1 회로층의 상기 제2 영역에는 상기 제1 회로층의 상면 및 하면을 관통하는 복수의 제2 관통 홀이 구비되고, 상기 복수의 제1 관통 홀의 각각의 직경은 상기 복수의 제2 관통 홀의 각각의 직경보다 작다.
또한, 상기 회로 기판은 상기 절연층의 하면에 배치된 제2 회로층을 포함하고, 상기 제2 회로층은,상기 제1 회로층의 상기 제1 영역과 수직으로 중첩된 제1 회로 패턴들과, 상기 제1 회로층의 상기 제2 영역과 수직으로 중첩된 제2 회로 패턴들을 포함하고, 상기 제1 회로 패턴들의 배선 밀도는 상기 제2 회로 패턴들의 배선 밀도와 다르다.
또한, 상기 제2 회로 패턴들의 배선 밀도는, 상기 제1 회로 패턴들의 배선 밀도보다 크다.
또한, 상기 제2 회로 패턴들은 임피던스 매칭을 위한 임피던스 매칭 회로 패턴을 포함한다.
또한, 상기 복수의 제1 관통 홀 중 서로 가장 인접한 2개의 제1 관통 홀 사이의 이격 거리는 상기 복수의 제2 관통 홀 중 서로 가장 인접한 2개의 제2 관통 홀 사이의 이격 거리보다 크다.
또한, 상기 제1 회로층은 상기 제1 회로층의 상면의 테두리 영역에 대응하는 제3 영역으로 더 구분되고, 상기 제1 회로층의 상기 제3 영역에는 상기 제1 회로층의 상면 및 하면을 관통하는 복수의 제3 관통 홀이 구비된다.
또한, 상기 제3 관통 홀의 직경은 상기 제1 및 제2 관통 홀의 각각의 직경보다 작다.
또한, 상기 복수의 제3 관통 홀 중 서로 가장 인접한 2개의 제3 관통 홀 사이의 이격 거리는, 상기 복수의 제1 관통 홀 중 서로 가장 인접한 2개의 제1 관통 홀 사이의 이격 거리 및 상기 복수의 제2 관통 홀 중 서로 가장 인접한 2개의 제2 관통 홀 사이의 이격 거리의 각각보다 크다.
또한, 상기 복수의 제1 관통 홀의 각각의 직경은, 상기 복수의 제1 관통 홀 중 서로 가장 인접하게 배치된 2개의 제1 관통 홀 사이의 이격 거리 이상이다.
또한, 상기 서로 가장 인접하게 배치된 2개의 제1 관통 홀은, 상기 제1 회로층에서 서로 대각 수평 방향에 위치한 2개의 제1 관통 홀이다.
또한, 상기 복수의 제1 관통 홀의 각각의 직경은 서로 다르고, 상기 복수의 제1 관통 홀에서 서로 인접하게 배치된 각각의 2개의 제1 관통 홀 사이의 이격 거리와 다르며, 상기 복수의 제1 관통 홀의 직경 중 가장 작은 직경은, 상기 서로 인접하게 배치된 각각의 2개의 제1 관통 홀 사이의 이격 거리 중 가장 큰 이격 거리 이상이다.
또한, 상기 절연층의 평면 면적에 대한 상기 제1 관통 홀의 직경의 비율은, 0.0000825 내지 0.000147의 범위를 만족한다.
또한, 상기 절연층의 평면 면적에 대한 상기 제1 관통 홀의 평면 면적의 비율은, 0.00025905 내지 0.0004605의 범위를 만족한다.
또한, 상기 비율은, 상기 절연층 상에 배치된 단일 회로층에 구비된 제1 관통 홀에 대한 비율이다.
또한, 상기 절연층의 평면 면적은 1500mm2 내지 2000mm2이다.
또한, 상기 복수의 제1 관통 홀 중 적어도 하나는 165㎛ 내지 220㎛의 직경을 가진다.
또한, 상기 복수의 제1 관통 홀 중 적어도 하나의 평면 면적은 518.1㎛2 내지 690.8㎛2의 범위를 만족한다.
또한, 상기 회로 기판은 상기 절연층을 관통하는 관통 전극을 더 포함하고, 상기 관통 전극의 폭은 상기 제1 내지 제3 관통 홀의 각각의 직경과 다르다.
또한, 상기 관통 전극은 상기 절연층의 상면에서 하면을 향하여 폭이 점진적으로 변화하는 경사를 가지고, 상기 제1 내지 제3 관통 홀의 각각의 직경은, 상기 관통 전극에서 가장 큰 폭을 가지는 영역의 폭보다 크다.
또한, 상기 제1 내지 제3 관통 홀 각각은, 상기 관통 전극과 수직으로 중첩되지 않는다.
또한, 상기 제1 회로층은 상기 관통 전극과 수직으로 중첩된 제4 관통 홀; 및 상기 제4 관통 홀의 내측에 배치된 패드를 더 포함하고, 상기 제4 관통 홀의 직경은 상기 제1 내지 제3 관통 홀의 각각의 직경보다 작다.
또한, 상기 제1 내지 제3 관통 홀의 내측 영역에는 회로 패턴이 구비되지 않으며, 상기 제1 내지 제3 관통 홀의 내측 영역은 상기 절연층 상에 배치되는 다른 절연층 또는 보호층으로 채워진다.
실시 예의 반도체 패키지는 절연층 및 절연층 상에 배치된 회로층을 포함할 수 있다. 이때, 회로층은 적어도 하나의 관통 홀을 포함할 수 있다. 즉, 회로층은 수평 방향으로 이격된 복수의 회로 패턴을 포함할 수 있다. 그리고, 관통 홀은 복수의 회로 패턴 사이의 이격 공간과 다른 의미를 가질 수 있다. 즉, 관통 홀은 각각의 회로 패턴의 상면 및 하면을 관통하는 관통 홀을 의미할 수 있다.
이를 통해, 실시 예는 회로층에 구비된 관통 홀을 이용하여 절연층에서 발생한 가스가 회로층 상으로 잘 배출될 수 있도록 할 수 있다. 이를 통해, 실시 예는 절연층 및/또는 회로층이 가스로 인해 부풀어오르는 것을 방지할 수 있다. 이에 따라, 실시 예는 복수의 절연층들 사이의 밀착력, 및 절연층과 회로층 사이의 밀착력을 향상시킬 수 있다. 이를 통해, 실시 예는 기판의 물리적 신뢰성을 향상시킬 수 있다.
또한, 실시 예의 회로층에는 복수의 관통 홀이 구비된다. 이때, 회로층에 구비된 복수의 관통 홀의 각각의 직경(W3)은 복수의 관통 홀 중 상호 인접한 2개의 관통 홀 사이의 이격 거리 이상일 수 있다. 즉, 회로층에 구비된 복수의 관통 홀의 각각의 직경은 복수의 관통 홀 중 상호 인접한 2개의 관통 홀 사이의 이격 거리와 같거나, 이보다 클 수 있다.
이때, 복수의 관통 홀의 각각의 직경이 복수의 관통 홀 중 상호 인접한 2개의 관통 홀 사이의 이격 거리보다 작으면, 절연층에서 발생한 가스가 기판의 외측으로 용이하게 배출되지 못할 수 있다. 즉, 직경이 이격 거리보다 작다는 것은, 회로층에서 관통 홀이 배치된 영역을 기준으로, 관통 홀을 통해 가스가 배출될 수 있는 영역보다 복수의 관통 홀 사이의 이격 거리에서 가스가 배출되지 못하는 영역이 더 크다는 것을 의미할 수 있다. 그리고, 관통 홀의 직경이 복수의 관통 홀들 사이의 이격 거리보다 작을 경우, 가스가 잘 배출되지 못하고 절연층 내에 잔류할 수 있으며, 이에 따른 물리적 특성이 저하될 수 있다.
따라서, 실시 예는 회로층에 구비된 복수의 관통 홀의 각각의 직경이 복수의 관통 홀 중 상호 인접한 2개의 관통 홀 사이의 이격 거리와 같거나, 이보다 크도록 한다. 이를 통해, 실시 예는 절연층에 가스가 잔류하는 것 없이 가스를 완전히 배출시킬 수 있다. 따라서, 실시 예는 회로 기판 및 반도체 패키지의 물리적 특성을 더욱 향상시킬 수 있다.
한편, 이때, 복수의 관통 홀 중 적어도 하나의 직경은 적어도 다른 하나의 직경과 다를 수 있다. 복수의 관통 홀 중 서로 인접한 복수의 관통 홀들의 이격 거리는 서로 다를 수 있다. 이때, 실시 예는 복수의 관통 홀 중 가장 작은 직경을 가진 관통 홀의 직경은 서로 인접한 복수의 관통 홀 사이의 이격 거리 중 가장 큰 이격 거리와 같거나 클 수 있다. 이를 통해, 실시 예는 절연층에서 발생한 가스가 더욱 잘 배출될 수 있도록 하고, 이에 따른 회로 기판 및 반도체 패키지의 물리적 신뢰성을 더욱 향상시킬 수 있다.
또한, 실시 예의 회로층에는 복수의 관통 홀이 구비된다. 이때, 복수의 관통 홀 중 적어도 하나의 관통 홀의 직경은 기판 및/또는 절연층의 평면 면적을 기준으로 결정될 수 있다.
예를 들어, 절연층의 평면 면적에 대한 관통 홀의 직경의 비율은 0.0000825 내지 0.000147의 범위를 만족할 수 있다. 또한, 절연층의 평면 면적에 대한 관통 홀의 평면 면적의 비율은, 0.00025905 내지 0.0004605의 범위를 만족할 수 있다. 이때, 절연층의 평면 면적은 1500mm2 내지 2000mm2일 수 있다. 또한, 복수의 관통 홀 중 적어도 하나는 165㎛ 내지 220㎛의 직경을 가질 수 있다. 또한, 복수의 관통 홀 중 적어도 하나의 평면 면적은 518.1㎛2 내지 690.8㎛2의 범위를 만족할 수 있다. 그리고, 실시 예는 회로층에 구비된 복수의 관통 홀 중 적어도 하나의 관통 홀의 직경이 165㎛ 이상을 가지도록 한다. 이때, 회로층에 구비된 복수의 관통 홀 중 적어도 하나의 관통 홀의 직경은 165㎛ 이상일 수 있다. 즉, 관통 홀이 가지는 직경이 165㎛보다 작을 경우, 상기와 같은 평면 면적을 가지는 절연층에서 발생한 가스가 회로층의 상측으로 잘 배출되지 못할 수 있다. 그리고 가스가 배출되지 못할 경우, 회로층 및/또는 절연층이 부풀어오름에 따라 밀착력이 저하 문제가 발생할 수 있다. 따라서, 실시 예는 복수의 관통 홀 중 적어도 하나의 관통 홀이 165㎛ 이상의 직경을 가지도록 하여, 절연층에서 발생한 가스가 잘 배출되도록 할 수 있고, 이에 따른 물리적 특성을 더욱 향상시킬 수 있다.
또한, 관통 홀의 직경은 220㎛ 이하일 수 있다. 바람직하게, 관통 홀의 직경이 220㎛를 초과하면, 복수의 회로층들 사이의 임피던스 특성이 변화하는 문제가 발생할 수 있다. 또한, 관통 홀의 직경이 220㎛를 초과하면, 회로층의 밀도 및/또는 면적이 감소하고, 이에 의해 기판 및 반도체 패키지가 특정 방향으로 크게 휘어지는 문제가 발생할 수 있다. 이에 따라, 실시 예는 관통 홀의 직경이 220㎛ 이하를 가지도록 하여, 복수의 회로층들 사이의 임피던스 특성이 변화되지 않도록 하면서 기판 및 반도체 패키지의 강성을 향상시킬 수 있다.
또한, 회로층의 관통 홀은 절연층을 관통하는 관통 전극과 수직으로 중첩되지 않을 수 있다. 즉, 관통 전극은 회로층과 직접 연결되는 관통 전극을 의미할 수 있다. 그리고, 회로층과 직접 연결되는 관통 전극은 관통 홀과 수직으로 중첩되지 않을 수 있다. 따라서, 실시 예는 관통 전극의 전기적 신호 전달 특성을 저하시키지 않으면서 절연층에서 발생한 가스가 잘 배출되도록 할 수 있다.
또한, 회로층의 관통 홀은 관통 전극에서 가장 큰 폭을 가지는 영역의 폭보다 클 수 있다. 이를 통해, 실시 예는 회로층의 관통 홀에 의한 가스 배출 특성을 더욱 향상시킬 수 있다.
한편, 실시 예의 회로층은 절연층 상에 배치된 제1 회로층과, 절연층 하에 배치된 제2 회로층을 포함할 수 있다. 이때, 제1 회로층은 복수의 영역으로 구분될 수 있다. 예를 들어, 제1 회로층은 제1 및 제2 영역을 포함할 수 있다. 제1 회로층의 제1 영역은 제2 회로층의 제1 전극패턴들과 수직으로 중첩되는 영역일 수 있다. 제2 회로층의 제2 영역은 제2 회로층의 제2 전극패턴들과 수직으로 중첩되는 영역일 수 있다. 또한, 제1 회로층은 제1 및 제2 영역보다 제1 회로층의 테두리에 인접한 제3 영역을 포함할 수 있다.
이때, 제1 회로층의 제1 내지 제3 영역에는 각각 관통 홀이 구비될 수 있다. 예를 들어, 제1 회로층의 제1 영역에는 복수의 제1 관통 홀이 구비될 수 있다. 예를 들어, 제1 회로층의 제2 영역에는 복수의 제2 관통 홀이 구비될 수 있다. 예를 들어, 제1 회로층의 제3 영역에는 복수의 제3 관통 홀이 구비될 수 있다. 이때, 제1 회로 패턴에 구비된 제1 관통 홀의 직경, 제2 회로 패턴에 구비된 제2 관통 홀의 직경 및 제3 회로 패턴에 구비된 제3 관통 홀의 직경은 서로 다를 수 있다.
바람직하게, 제2 회로층의 제2 전극패턴들은 제2 회로층의 다른 회로 패턴들보다 배선 밀도가 높을 수 있다. 예를 들어, 제2 회로층의 제2 회로 패턴들은 임피던스 매칭을 위한 회로 패턴을 포함할 수 있다.
이에 따라, 제1 회로층의 제2 영역에 구비된 제2 관통 홀의 직경은 제1 및 제3 관통 홀의 각각의 직경 대비 클 수 있다. 이를 통해, 실시 예에서는 절연층의 전체 영역 중에서 배선 밀도가 높은 제2 회로층의 제2 회로 패턴들과 수직으로 중첩된 영역에서 더욱 원활한 가스 배출이 이루어지도록 할 수 있다. 나아가, 실시 예는 제2 회로층의 제2 영역에 구비된 제2 관통 홀의 직경이 다른 관통 홀의 직경보다 크도록 하여, 제2 영역에서의 메탈 비율을 낮출 수 있다. 이를 통해, 실시 예는 제1 회로층에 의해 제2 회로층의 제2 회로 패턴의 임피던스 특성이 변화하는 것을 방지할 수 있다. 이를 통해, 실시 예는 반도체 패키지의 물리적 신뢰성 및/또는 전기적 특성을 더욱 향상시킬 수 있다.
한편, 제1 회로층의 제3 영역은 절연층의 테두리 영역 상에 배치될 수 있다. 이때, 제1 회로층의 제3 영역에 구비된 제3 관통 홀의 직경은 제1 관통 홀 및 제2 관통 홀의 각각의 직경보다 작을 수 있다. 이를 통해, 실시 예는 제1 회로층의 제3 영역에 의해 회로 기판 및 반도체 패키지의 강성을 확보할 수 있다. 이를 통해 실시 예는 회로 기판의 물리적 특성 및 전기적 특성을 더욱 향상시킬 수 있다.
이때, 제1 관통 홀, 제2 관통 홀 및 제3 관통 홀의 각각의 직경은 절연층을 관통하는 관통 전극의 폭보다 클 수 있다. 이를 통해 실시 예는 절연층에 잔존할 수 있는 가스를 완전히 제거할 수 있고, 이를 통해 절연층과 회로층 사이의 밀착력을 더욱 향상시킬 수 있다.
또한, 복수의 제2 관통 홀 중 서로 인접한 2개의 제2 관통 홀들 사이의 이격 거리는 복수의 제1 관통 홀 중 서로 인접한 2개의 제1 관통 홀들 사이의 이격 거리 및 복수의 제3 관통 홀 중 서로 인접한 2개의 제3 관통 홀들 사이의 이격 거리 각각보다 작을 수 있다. 또한, 복수의 제3 관통 홀 중 서로 인접한 2개의 제3 관통 홀들 사이의 이격 거리는 복수의 제1 관통 홀 중 서로 인접한 2개의 제1 관통 홀들 사이의 이격 거리 및 복수의 제2 관통 홀 중 서로 인접한 2개의 제2 관통 홀들 사이의 이격 거리보다 클 수 있다. 이를 통해, 실시 예는 회로층이 가지는 특성(예를 들어, 임피던스 특성)을 변화시키지 않고 기판이 특정 방향으로 휘어지는 것을 방지하면서 절연층과 회로층 사이의 밀착력을 더욱 향상시킬 수 있다.
도 1a는 제1 실시 예에 따른 반도체 패키지를 나타낸 단면도이다.
도 1b는 제2 실시 예에 따른 반도체 패키지를 나타낸 단면도이다.
도 1c는 제3 실시 예에 따른 반도체 패키지를 나타낸 단면도이다.
도 1d는 제4 실시 예에 따른 반도체 패키지를 나타낸 단면도이다.
도 1e는 제5 실시 예에 따른 반도체 패키지를 나타낸 단면도이다.
도 1f는 제6 실시 예에 따른 반도체 패키지를 나타낸 단면도이다.
도 1g는 제7 실시 예에 따른 반도체 패키지를 나타낸 단면도이다.
도 2는 제1 실시 예에 따른 회로 기판을 나타낸 단면도이다.
도 3은 도 2의 회로 기판의 일부 층을 나타낸 평면도이다.
도 4는 도 3의 평면도에서 관통 전극과 관통 홀의 관계를 설명하기 위한 평면도이다.
도 5 및 6은 비교 예 및 제1 실시 예의 회로 기판의 밀착력 특성을 설명하기 위한 도면이다.
도 7은 도 3의 회로 기판의 변형 예를 설명하기 위한 평면도이다.
도 8은 제2 실시 예에 따른 도 2의 회로 기판 중 일부 층을 나타낸 평면도이다.
도 9는 제3 실시 예에 따른 도 2의 회로 기판 중 일부 층을 나타낸 평면도이다.
도 10은 도 8의 평면도에서 관통 전극과 관통 홀의 관계를 설명하기 위한 평면도이다.
도 11은 제4 실시 예에 따른 도 2의 회로 기판의 일부 층을 확대한 확대도이다.
도 12는 도 11의 제1 회로층에 구비된 복수의 관통 홀의 직경을 설명하기 위한 평면도이다.
도 13은 도 11의 제2 회로층의 배선 밀도를 설명하기 위한 평면도이다.
도 14는 도 12의 평면도에서 관통 전극과 관통 홀의 관계를 설명하기 위한 평면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시 예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다. 또한, 본 발명의 실시 예에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다. 또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다. 그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결, 결합 또는 접속되는 경우 뿐만 아니라, 그 구성 요소와 그 다른 구성요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속'되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우 뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위) 또는 하(아래)"로 표현되는 경우 하나의 구성 요소를 기준으로 상측 방향 뿐만 아니라 하측 방향의 의미도 포함할 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함하여 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고, 이에 대한 중복되는 설명은 생략하기로 한다.
실시 예의 설명에 앞서, 실시 예의 반도체 패키지가 적용되는 전자 디바이스(미도시)에 대해 간략하게 설명하기로 한다. 전자 디바이스는 스마트폰(smart phone), 개인용 정보 단말기(personal digital assistant), 디지털 비디오 카메라(digital video camera), 디지털 스틸 카메라(digital still camera), 차량, 고성능 서버, 네트워크 시스템(network system), 컴퓨터(computer), 모니터(monitor), 태블릿(tablet), 랩탑(laptop), 넷북(netbook), 텔레비전(television), 비디오 게임(video game), 스마트 워치(smart watch), 오토모티브(Automotive) 등일 수 있다. 다만, 이에 한정되는 것은 아니며, 이들 외에도 데이터를 처리하는 임의의 다른 전자기기일 수 있음은 물론이다.
전자 디바이스는 메인 보드(미도시)를 포함한다. 메인 보드는 다양한 부품들과 물리적 및/또는 전기적으로 연결될 수 있다. 예를 들어, 메인 보드는 실시 예의 반도체 패키지와 연결될 수 있다. 또한, 반도체 패키지는 회로 기판, 반도체 칩, 반도체 소자와 회로 기판을 전기적으로 연결하기 위해 접합하는 본딩부, 반도체 소자와 회로 기판 사이의 공간을 메우는 수지부, 그리고 반도체 소자를 전체적으로 감싸는 몰딩부를 포함한다.
반도체 소자는 능동소자 및/또는 수동소자를 포함할 수 있고, 다양한 기능을 가질 수 있다. 능동소자는 소자 수백 내지 수백만 개 이상의 트랜지스터가 하나의 반도체 소자 안에 집적화된 집적회로(IC) 형태일 수 있고, 예시적으로 로직 칩, 메모리칩 등일 수 있다. 예를 들어, 로직 칩은 센트랄 프로세서(CPU), 그래픽 프로세서(GPU), 디지털 신호 프로세서, 암호화 프로세서, 마이크로 프로세서, 마이크로 컨트롤러 중 적어도 하나를 포함하는 애플리케이션 프로세서(AP) 소자이거나, 또는 아날로그-디지털 컨버터, ASIC(application-specific IC) 등이거나, 또는 지금까지 나열한 것들의 특정 조합을 포함하는 소자 세트일 수 있다. 메모리 칩은 HBM 등의 스택 메모리일 수 있다. 또한, 메모리 칩은 휘발성 메모리(예컨대, DRAM), 비-휘발성 메모리(예컨대, ROM), 플래시 메모리 등의 메모리 칩을 포함할 수 있다.
실시 예의 반도체 패키지는 CSP(Chip Scale Package), FC-CSP(Flip Chip-Chip Scale Package), FC-BGA(Flip Chip Ball Grid Array), POP (Package On Package) 및 SIP(System In Package) 중 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.
이하에서는 실시 예에 따른 회로 기판을 포함하는 반도체 패키지에 대해 설명하기로 한다. 실시 예의 반도체 패키지는 추후 설명될 회로 기판을 포함한 다양한 형태의 패키지 구조를 가질 수 있다. 또한, 실시 예에서 설명되는 회로 기판은 도 1a 내지 1g 중 어느 하나에 도시된 제1 회로 기판 및 제2 회로 기판 중 어느 하나일 수 있다.
도 1a는 제1 실시 예에 따른 반도체 패키지를 나타낸 단면도이고, 도 1b는 제2 실시 예에 따른 반도체 패키지를 나타낸 단면도이고, 도 1c는 제3 실시 예에 따른 반도체 패키지를 나타낸 단면도이고, 도 1d는 제4 실시 예에 따른 반도체 패키지를 나타낸 단면도이고, 도 1e는 제5 실시 예에 따른 반도체 패키지를 나타낸 단면도이고, 도 1f는 제6 실시 예에 따른 반도체 패키지를 나타낸 단면도이고, 도 1g는 제7 실시 예에 따른 반도체 패키지를 나타낸 단면도이다.
도 1a를 참조하면, 제1 실시 예의 반도체 패키지는 제1 회로 기판(1100), 제2 회로 기판(1200) 및 반도체 소자(1300)를 포함할 수 있다.
제1 회로 기판(1100)은 반도체 패키지 기판을 의미할 수 있다. 예를 들어, 제1 회로 기판(1100)은 적어도 하나의 외부 기판이 결합되는 공간을 제공할 수 있다. 외부 기판은 제1 회로 기판(1100) 상에 결합되는 제2 회로 기판(1200)을 의미할 수 있다. 또한, 외부 기판은 제1 회로 기판(1100)의 하부에 결합되는 전자 디바이스에 포함된 메인 보드를 의미할 수 있다.
또한, 도면상에 도시하지는 않았지만, 제1 회로 기판(1100)은 적어도 하나의 반도체 소자가 실장되는 공간을 제공할 수 있다.
제1 회로 기판(1100)은 적어도 하나의 절연층, 적어도 하나의 절연층에 배치된 회로층ㄹ, 및 적어도 하나의 절연층을 관통하는 관통 전극을 포함할 수 있다.
제1 회로 기판(1100) 상에는 제2 회로 기판(1200)이 배치될 수 있다. 제2 회로 기판(1200)은 인터포저일 수 있다. 예를 들어, 제2 회로 기판(1200)은 적어도 하나의 반도체 소자가 실장되는 공간을 제공할 수 있다. 제2 회로 기판(1200)은 적어도 하나의 반도체 소자(1300)와 연결될 수 있다. 예를 들어, 제2 회로 기판(1200)은 제1 반도체 소자(1310) 및 제2 반도체 소자(1320)가 실장되는 공간을 제공할 수 있다. 제2 회로 기판(1200)은 제1 반도체 소자(1310)와 제2 반도체 소자(1320) 사이를 전기적으로 연결하면서, 제1 및 제2 반도체 소자(1310, 1320)와 제1 회로 기판(1100) 사이를 전기적으로 연결할 수 있다. 즉, 제2 회로 기판(1200)은 복수의 반도체 소자 사이의 수평적 연결 기능 및 반도체 소자와 패키지 기판 사이의 수직적 연결 기능을 할 수 있다.
도 1a에서는 제2 회로 기판(1200) 상에 2개의 반도체 소자(1310, 1320)가 배치되는 것으로 도시하였으나, 이에 한정되는 것은 아니다. 예를 들어, 제2 회로 기판(1200) 상에는 1개의 반도체 소자가 배치될 수 있고, 이와 다르게 3개 이상의 반도체 소자가 배치될 수 있다.
제2 회로 기판(1200)은 적어도 하나 이상의 반도체 소자(1300)와 제1 회로 기판(1100) 사이에 배치될 수 있다. 일 실시 예에서, 제2 회로 기판(1200)은 반도체 소자 기능을 하는 액티브 인터포저일 수 있다. 제2 회로 기판(1200)이 반도체 소자 기능을 하는 경우, 실시 예의 반도체 패키지는 제1 회로 기판(1100) 상에 수직 방향으로의 적층 구조를 가지고 복수의 로직 칩의 기능을 가질 수 있다. 로직 칩의 기능을 가질 수 있다는 것은, 능동 소자 및 수동 소자의 기능을 가질 수 있음을 의미할 수 있다. 능동 소자의 경우 수동 소자와 다르게 전류와 전압의 특성이 선형적이지 않을 수 있고, 액티브 인터포저의 경우 능동 소자의 기능을 가질 수 있다. 또한, 액티브 인터포저는 해당 로직 칩의 기능을 하면서, 이의 상부에 배치된 제2 로직 칩과 제1 회로 기판(1100) 사이의 신호 전달 기능을 수행할 수 있다. 다른 실시 예서의 제2 회로 기판(1200)은 패시브 인터포져일 수 있다. 예를 들어, 제2 회로 기판(1200)은 반도체 소자(1300)와 제1 회로 기판(1100) 사이에서의 신호 중계 기능을 할 수 있고, 저항, 캐패시터, 인덕터 등의 패시브 소자 기능을 가질 수 있다. 예를 들어, 반도체 소자(1300)는 5G, 사물인터넷(IOT, Internet of Things), 화질 증가, 통신 속도 증가 등의 이유로 단자의 개수가 점차 증가하고 있다. 즉 반도체 소자(1300)에 구비되는 단자의 개수가 증가하고, 이에 의해 단자의 폭이나 복수의 단자들 사이의 간격이 감소하고 있다. 이때, 제1 회로 기판(1100)은 전자 디바이스의 메인 보드와 연결될 수 있다. 이에 따라, 제1 회로 기판(1100)에 구비된 전극들이 반도체 소자(1300) 및 메인 보드와 각각 연결되기 위한 폭 및 간격을 가지기 위해서는 제1 회로 기판(1100)의 두께가 증가하거나, 제1 회로 기판(1100)의 층 구조가 복잡해지는 문제가 있다. 따라서, 제1 실시 예는 제1 회로 기판(1100)과 반도체 소자(1300)에 제2 회로 기판(1200)을 배치할 수 있다. 그리고 제2 회로 기판(1200)은 반도체 소자(1300)의 단자에 대응하는 미세 폭 및 간격을 가지는 전극을 포함할 수 있다.
제1 회로 기판(1100)과 제2 회로 기판(1200) 사이에 제1 접속부(1410)가 배치될 수 있다. 제1 접속부(1410)는 제1 회로 기판(1100)에 제2 회로 기판(1200)을 결합시키면서 이들 사이를 전기적으로 연결할 수 있다. 제2 회로 기판(1200)과 반도체 소자(1300) 사이에 제2 접속부(1420)가 배치될 수 있다. 제2 접속부(1420)는 제2 회로 기판(1200) 상에 반도체 소자(1300)를 결합시키면서 이들 사이를 전기적으로 연결할 수 있다. 제1 회로 기판(1100)의 하면에 제3 접속부(1430)가 배치될 수 있다. 제3 접속부(1430)는 제1 회로 기판(1100)을 메인 보드에 결합시키면서, 이들 사이를 전기적으로 연결할 수 있다.
이때, 제1 접속부(1410), 제2 접속부(1420) 및 제3 접속부(1430)는 와이어 본딩, 솔더 본딩, 메탈 간 다이렉트 본딩 중 적어도 하나의 본딩 방식을 이용하여 복수의 구성 요소 사이를 전기적으로 연결할 수 있다. 즉, 제1 접속부(1410), 제2 접속부(1420) 및 제3 접속부(1430)는 복수의 구성 요소를 전기적으로 연결하는 기능을 갖기 때문에, 메탈 간 다이렉트 본딩을 이용할 경우 반도체 패키지는 솔더나 와이어가 아닌, 전기적으로 연결되는 부분으로 이해될 수 있다.
와이어 본딩 방식은 금(Au) 등의 도선을 이용하여 복수의 구성 요소 사이를 전기적으로 연결하는 것을 의미할 수 있다. 또한, 솔더 본딩 방식은 Sn, Ag, Cu 중 적어도 하나를 포함하는 물질을 이용하여 복수의 구성요소 사이를 전기적으로 연결할 수 있다. 또한, 메탈 간 다이렉트 본딩 방식은 솔더, 와이어, 전도성 접착제 등의 부재 없이, 복수의 구성 요소 사이에 열과 압력을 인가하여 재결정화하고, 이를 통해 복수의 구성요소 사이를 직접 결합시키는 것을 의미할 수 있다. 그리고 메탈 간 다이렉트 본딩 방식은 제2 접속부(1420)에 의한 본딩 방식을 의미할 수 있다. 이 경우, 제2 접속부(1420)는 재결정화에 의해 복수의 구성요소 사이에 형성되는 금속층을 의미할 수 있다.
제1 접속부(1410), 제2 접속부(1420) 및 제3 접속부(1430)는 열 압착(Thermal Compression) 본딩 방식에 의해 복수의 구성을 서로 결합시킬 수 있다. 열 압착 본딩 방식은 제1 접속부(1410), 제2 접속부(1420) 및 제3 접속부(1430)에 열과 압력을 가하여 복수의 구성 사이를 직접 결합시키는 방식을 의미할 수 있다.
이때, 제1 회로 기판(1100) 및 제2 회로 기판(1200) 중 적어도 하나에서, 제1 접속부(1410), 제2 접속부(1420) 및 제3 접속부(1430)가 배치되는 전극에는 돌출부가 배치될 수 있다. 돌출부는 제1 회로 기판(1100) 또는 제2 회로 기판(1200)에서 외측 방향을 향하여 돌출될 수 있다. 돌출부는 범프(bump), 또는 포스트(post), 또는 필라(pillar)라 칭할 수 있다. 돌출부는 제2 회로 기판(1200)의 전극 중 반도체 소자(1300)와의 결합을 위한 제2 접속부(1420)가 배치된 전극을 의미할 수 있다. 즉, 반도체 소자(1300)의 단자들의 피치가 미세화되면서, 솔더 등의 전도성 접착제에 의해 반도체 소자(1300)의 복수의 단자와 각각 연결되는 복수의 제2 접속부(1420) 간의 단락이 발생할 수 있다. 따라서, 실시 예는 제2 접속부(1420)의 볼륨을 줄이기 위해 열 압착 본딩(Thermal Compression Bonding)을 진행할 수 있다. 이에 따라, 실시 예는, 정합도, 확산력, 및 솔더 등의 전도성 접착제와 돌출부 사이에 형성되는 금속간 화합물(Inter Metallic Compound, IMC)이 인터포저 및/또는 기판으로 확산되는 것을 방지하는 확산 방지력 확보를 위해 제2 접속부(1420)가 배치되는 제2 회로 기판(1200)의 전극에 돌출부가 포함되도록 할 수 있다.
한편, 도 1b를 참조하면, 제2 실시 예의 반도체 패키지는 제2 회로 기판(1200)에 연결 부재(1210)가 배치되는 점에서 제1 실시 예의 반도체 패키지와 차이를 가질 수 있다. 연결 부재(1210)는 브리지라 칭할 수 있다. 예를 들어, 연결 부재(1210)는 재배선층을 포함할 수 있다. 연결 부재(1210)는 복수의 반도체 소자를 수평적으로 서로 전기적 연결을 하는 기능을 할 수 있다. 예시적으로, 일반적으로 반도체 소자가 가져야 할 면적이 너무 크기 때문에 연결 부재(1210)는 재배선층을 포함할 수 있다. 반도체 패키지와 반도체 소자는 회로 패턴의 폭이나 너비 등이 서로 큰 차이를 가지기 때문에, 전기적 접속을 위한 회로 패턴의 완충 역할이 필요하다. 완충 역할은 반도체 패키지의 회로 패턴의 폭이나 너비 등의 크기와 반도체 소자의 회로 패턴의 폭이나 너비 등의 크기의 중간 크기를 갖도록 하는 것을 의미할 수 있고, 재배선층은 완충 역할을 하는 기능을 포함할 수 있다. 일 실시 예에서, 연결 부재(1210)는 실리콘 브리지일 수 있다. 즉, 연결 부재(1210)는 실리콘 기판과 실리콘 기판 상에 배치되는 재배선층을 포함할 수 있다. 다른 실시 예에서, 연결 부재(1210)는 유기 브리지일 수 있다. 예를 들어, 연결 부재(1210)는 유기물을 포함할 수 있다. 예를 들어, 연결 부재(1210)는 실리콘 기판 대신에 유기물을 포함하는 유기 기판을 포함할 수 있다. 특히, 연결 부재(1210)가 유기물을 포함할 경우, 이하에서 설명되는 실시 예의 회로 기판의 구조는 반도체 패키지의 수축 및/또는 팽창 등의 히트 사이클에 의한 응력으로부터 연결 부재(1210)를 더욱 안정적으로 보호할 수 있다. 연결 부재(1210)는 하측으로부터 상측 방향으로 전력 공급이 원활히 할 수 있으면서 공급되는 전력의 손실을 최소화할 수 있는 유기 브리지일 수 있다. 이때, 실리콘 기판을 포함하는 무기물 브리지의 경우, TSV(Through Silicon Via)를 통해 전력 공급이 가능하나, TSV 가공을 위한 공정 비용이 증가하고 제품 수율이 저하되는 문제를 가진다. 따라서, 실시 예의 연결 부재(1210)는 유기물 브리지임이 바람직하다.
연결 부재(1210)는 제2 회로 기판(1200) 내에 매립될 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 연결 부재(1210)는 제2 회로 기판(1200) 상에 돌출되는 구조를 가지고 배치될 수 있다. 또한, 제2 회로 기판(1200)은 캐비티를 포함할 수 있고, 연결 부재(1210)는 제2 회로 기판(1200)의 캐비티 내에 배치될 수 있다. 연결 부재(1210)는 제2 회로 기판(1200) 상에 배치되는 복수의 반도체 소자 사이를 수평적으로 연결할 수 있다.
도 1c를 참조하면, 제3 실시 예의 반도체 패키지는 제2 회로 기판(1200) 및 반도체 소자(1300)를 포함할 수 있다. 이때, 제3 실시 예의 반도체 패키지는 제2 실시 예의 반도체 패키지 대비 제1 회로 기판(1100)이 생략된 구조를 가질 수 있다.
즉, 제3 실시 예의 제2 회로 기판(1200)은 인터포저 기능을 하면서 반도체 패키지 기판의 기능을 할 수 있다. 제2 회로 기판(1200)의 하면에 배치된 제1 접속부(1410)는 전자 디바이스의 메인 보드에 제2 회로 기판(1200)을 결합시킬 수 있다.
도 1d를 참조하면, 제4 실시 예의 반도체 패키지는 제1 회로 기판(1100) 및 반도체 소자(1300)를 포함할 수 있다. 이때, 제4 실시 예의 반도체 패키지는 제2 실시 예의 반도체 패키지 대비 제2 회로 기판(1200)이 생략된 구조를 가질 수 있다. 즉, 제4 실시 예의 제1 회로 기판(1100)은 패키지 기판 기능을 하면서, 반도체 소자(1300)와 메인 보드 사이를 연결하는 기능을 할 수 있다. 이를 위해, 제1 회로 기판(1100)에는 복수의 반도체 소자 사이를 연결하기 위한 연결 부재(1110)를 포함할 수 있다. 연결 부재(1110)는 복수의 반도체 소자 사이를 연결하는 실리콘 브리지 또는 유기물 브리지일 수 있다.
도 1e를 참조하면, 제5 실시 예의 반도체 패키지는 제4 실시 예의 반도체 패키지 대비, 제3 반도체 소자(1330)를 더 포함할 수 있다. 이를 위해, 제1 회로 기판(1100)의 하면에는 제4 접속부(1440)가 배치될 수 있다. 그리고, 제4 접속부(1400)에는 제3 반도체 소자(1330)가 배치될 수 있다. 즉, 제5 실시 예의 반도체 패키지는 상측 및 하측에 각각 반도체 소자가 실장되는 구조를 가질 수 있다. 이때, 제3 반도체 소자(1330)는 도 1c의 반도체 패키지에서, 제2 회로 기판(1200)의 하면에 배치된 구조를 가질 수도 있을 것이다.
도 1f를 참조하면, 제6 실시 예의 반도체 패키지는 제1 회로 기판(1100)을 포함할 수 있다. 제1 회로 기판(1100) 상에는 제1 반도체 소자(1310)가 배치될 수 있다. 이를 위해, 제1 회로 기판(1100)과 제1 반도체 소자(1310) 사이에는 제1 접속부(1410)가 배치될 수 있다. 또한, 제1 회로 기판(1100)은 도전성 결합부(1450)를 포함할 수 있다. 도전성 결합부(1450)는 제1 회로 기판(1100)에서 제2 반도체 소자(1320)를 향하여 더 돌출될 수 있다. 도전성 결합부(1450)는 범프라고 할 수 있고, 이와 다르게 포스트라고도 할 수 있다. 도전성 결합부(1450)는 제1 회로 기판(1100)의 최상측에 배치된 전극 상에 돌출된 구조를 가지고 배치될 수 있다. 도전성 결합부(1450) 상에는 제2 반도체 소자(1320)가 배치될 수 있다. 이때, 제2 반도체 소자(1320)는 도전성 결합부(1450)를 통해 제1 회로 기판(1100)과 연결될 수 있다. 또한, 제1 반도체 소자(1310)와 제2 반도체 소자(1320) 상에는 제2 접속부(1420)가 배치될 수 있다. 이에 따라, 제2 반도체 소자(1320)는 제2 접속부(1420)를 통해 제1 반도체 소자(1310)와 전기적으로 연결될 수 있다.
즉, 제2 반도체 소자(1320)는 도전성 결합부(1450)을 통해 제1 회로 기판(1100)과 연결되면서, 제2 접속부(1420)를 통해 제1 반도체 소자(1310)와도 연결될 수 있다. 이때, 제2 반도체 소자(1320)는 도전성 결합부(1450)을 통해 전원신호 및/또는 전력을 공급받을 수 있다. 또한, 제2 반도체 소자(1320)는 제2 접속부(1420)를 통해 제1 반도체 소자(1310)와 통신 신호를 주고받을 수 있다. 제6 실시 예의 반도체 패키지는 도전성 결합부(1450)를 통해 제2 반도체 소자(1320)에 전원신호 및/또는 전력을 공급함으로써, 제2 반도체 소자(1320)의 구동을 위한 충분한 전력의 제공이나, 전원 동작의 원활한 제어가 가능할 수 있다. 이에 따라, 실시 예는 제2 반도체 소자(1320)의 구동 특성을 향상시킬 수 있다. 즉, 실시 예는 제2 반도체 소자(1320)에 제공되는 전력이 부족해지는 문제를 해결할 수 있다. 나아가, 실시 예는 제2 반도체 소자(1320)의 전원 신호, 전력 및 통신 신호 중 적어도 하나가 도전성 결합부(1450)와 제2 접속부(1420)를 통해 서로 다른 경로를 통해 제공되도록 할 수 있다. 이를 통해, 실시 예는 전원 신호에 의해 통신 신호의 손실이 발생하는 문제를 해결할 수 있다. 예를 들어, 실시 예는 전원 신호의 통신 신호 사이의 상호 간섭을 최소화할 수 있다.
다만, 제6 실시 예에서의 제2 반도체 소자(1320)는 복수의 반도체 패키지 기판이 적층된 형태인 POP(Package On Package) 구조를 가지고 제1 회로 기판(1100) 상에 배치될 수 있다. 예를 들어, 제2 반도체 소자(1320)는 메모리 칩을 포함하는 메모리 패키지일 수 있다. 그리고 메모리 패키지는 도전성 결합부(1450) 상에 결합될 수 있다. 이때, 메모리 패키지는 제1 반도체 소자(1310)와는 연결되지 않을 수 있다.
도 1g를 참조하면, 제7 실시 예의 반도체 패키지는 제1 회로 기판(1100), 제1 접속부(1410), 제1 접속부(1410), 반도체 소자(1300) 및 제3 접속부(1430)를 포함할 수 있다.
이때, 제7 실시 예의 반도체 패키지는 제4 실시 예의 반도체 패키지 대비 연결 부재(1110)가 생략되면서 제1 회로 기판(1100)이 복수의 기판층을 포함하는 점에서 차이를 가질 수 있다.
제1 회로 기판(1100)은 복수의 기판층을 포함할 수 있다. 예를 들어, 제1 회로 기판(1100)은 패키지 기판에 대응하는 제1 기판층(1100A)과 연결 부재에 대응되는 제2 기판층(1100B)을 포함할 수 있다. 예시적으로, 제7 실시 예의 반도체 패키지는 도 1a에 개시된 제1 회로 기판(반도체 패키지 기판, 1100)과 제2 회로 기판(인터포저, 1200)가 일체로 형성된 제1 기판층(1100A) 및 제2 기판층(1100B)을 포함할 수 있다. 제2 기판층(1100B)의 절연층의 물질은 제1 기판층(1100A)의 절연층의 물질과 다를 수 있다. 예를 들어, 제2 기판층(1100B)의 절연층의 물질은 광경화성 물질을 포함할 수 있다. 예를 들어, 제2 기판층(1100B)은 PID(Photo Imageable Dielectric)일 수 있다. 그리고 제2 기판층(1100B)은 광경화성 물질을 포함함에 따라 전극의 미세화가 가능할 수 있다. 따라서, 제7 실시 예는 제1 기판층(1100A) 상에 광 경화성 물질의 절연층을 순차적으로 적층하고, 광 경화성 물질의 절연층 상에 미세화된 전극을 형성하는 것에 의해 제2 기판층(1100B)을 형성할 수 있다. 이를 통해 제2 기판(1100B)은 미세화된 전극을 포함하는 재배선층 기능을 포함할 수 있고, 복수의 반도체 소자(1310, 1320)을 수평적으로 연결하는 기능을 포함할 수 있다.
도 2는 제1 실시 예에 따른 회로 기판을 나타낸 단면도이고, 도 3은 도 2의 회로 기판의 일부 층을 나타낸 평면도이고, 도 4는 도 3의 평면도에서 관통 전극과 관통 홀의 관계를 설명하기 위한 평면도이며, 도 5 및 6은 비교 예 및 제1 실시 예의 회로 기판의 밀착력 특성을 설명하기 위한 도면이고, 도 7은 도 3의 회로 기판의 변형 예를 설명하기 위한 평면도이고, 도 8은 제2 실시 예에 따른 도 2의 회로 기판 중 일부 층을 나타낸 평면도이고, 도 9는 제3 실시 예에 따른 도 2의 회로 기판 중 일부 층을 나타낸 평면도이고, 도 10은 도 8의 평면도에서 관통 전극과 관통 홀의 관계를 설명하기 위한 평면도이고, 도 11은 제4 실시 예에 따른 도 2의 회로 기판의 일부 층을 확대한 확대도이고, 도 12는 도 11의 제1 회로층에 구비된 복수의 관통 홀의 직경을 설명하기 위한 평면도이고, 도 13은 도 11의 제2 회로층의 배선 밀도를 설명하기 위한 평면도이고, 도 14는 도 12의 평면도에서 관통 전극과 관통 홀의 관계를 설명하기 위한 평면도이다.
이하에서는 도 2 내지 14를 참조하여 실시 예에 따른 회로 기판을 구체적으로 설명한다. 이하, 첨부된 도면을 참조하여 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고, 이에 대한 중복되는 설명은 생략하기로 한다.
도 2를 참조하면, 실시 예에 따른 회로 기판(100)은 절연 기판(110), 제1 보호층(116), 제2 보호층(117), 회로층(120), 관통 전극(130), 절연 부재(140) 및 본딩부(150)를 포함할 수 있다.
절연 기판(110)은 복수의 층으로 구비될 수 있다. 예시적으로, 절연 기판(110)은 코어층(111)과, 코어층의 일면에 배치된 상부 빌드업 절연층(112, 113)과, 코어층(111)의 타면에 배치된 하부 빌드업 절연층(114, 115)을 포함할 수 있다. 또한, 상부 빌드업층(112, 113)과 하부 빌드업층(114, 115) 각각은 단일층으로 구비될 수 있고, 또는 수직 방향을 따라 복수의 층이 적층된 구조를 가질 수 있다. 코어층(111)은 에폭시 수지 또는 BT(비스말레이미드 트리아진) 등의 수지와 유리 섬유 등의 보강재로 구성되어, 회로 기판(100)의 강성을 개선하는 기능을 한다. 최근의 회로 기판(100) 상에 배치되는 반도체 소자의 단자 수가 증가함에 따라 배선이 복잡해지고, 이에 따라 회로 기판(100)의 두께가 증가하는 추세에 있다. 이에 따라 본 실시 예의 코어층(110)은 회로 기판(100)의 전체적인 강성을 개선하고, 지나친 신호 손실을 방지하기 위해 400㎛ 내지 1200㎛의 두께를 가질 수 있다. 코어층(111)에는 일면과 타면을 관통하는 비아 홀이 형성될 수 있다. 코어층(111)의 비아 홀은 기계적 드릴 공정이나 CO2 레이저 등을 이용하여 형성할 수 있다. 기계적 드릴을 이용하여 코어층(111)의 비아 홀을 형성하는 경우 비아 홀의 내벽의 경사가 코어층(111)의 일면 및/또는 타면에 대하여 수직할 수 있고, CO2 레이저를 이용하여 코어층(111)의 비아 홀을 형성하는 경우, 비아 홀의 내벽은 수직 방향을 따라 교번 적층된 복수의 오목부 및/또는 볼록부를 구비할 수 있다. 여기에서, 오목부는 코어층(111)에 구비된 비아 홀의 수평 방향의 중심으로부터 멀어지는 방향으로 오목한 영역을 의미할 수 있고, 볼록부는 코어층(111)에 구비된 비아 홀의 수평 방향의 중심을 향하여 돌출 및/또는 볼록한 영역을 의미할 수 있다. 기계적 드릴 공정을 이용하여 형성한 비아 홀의 경우, 전기적 신호가 전달되기 위한 경로가 단축되어 전기적 특성에 유리할 수 있으나, 공정 단가가 높아질 수 있다. 또한, CO2 레이저를 이용하여 비아 홀의 내벽에 오목부와 볼록부를 형성하는 경우, 후속 공정에서 코어층(111)의 비아 홀 내벽에 구비되는 코어 관통 전극(131)의 두께를 두껍게 할 수 있어, 임피던스를 낮출 수 있다는 장점과 공정 단가를 낮출 수 있다는 장점을 가질 수 있다. 이에 따라 반도체 패키지의 적용 분야에 따라 코어층(111)에 구비되는 비아 홀의 가공 방식을 자유롭게 선택적으로 이용할 수 있다.
코어층(111)의 비아 홀 내에는 코어 관통 전극(131)이 배치될 수 있다. 코어 관통 전극(131)은 상부 빌드업 절연층(112, 113)에 구비된 회로층과 하부 빌드업 절연층(114, 115)에 구비된 회로층을 전기적으로 연결하는 기능을 한다. 따라서, 코어 관통 전극(131)은 저항이나 방열의 기능을 위해 비아 홀을 조밀하게 채우는 것이 바람직하다. 그러나, 코어층(111)의 두께가 상술한 바와 같이 두꺼워지는 경우, 코어 관통 전극(131)이 비아 홀 내에 조밀하게 채우는 것이 어려워질 수 있다. 예시적으로, 도금 공정에 따라서 상술한 바와 같이 두꺼운 코어층(111)에 구비된 비아 홀을 채우고자 하면, 코어 관통 전극(131)의 내부에 보이드가 발생할 수 있다. 보이드는 반도체 패키지가 작동하는 과정에서 발생하는 열에 의해 팽창하여 회로 기판의 기계적 신뢰성을 저하시키는 요인이 된다. 따라서, 코어층(111)의 비아 홀 내벽에는 소정의 두께를 갖는 코어 관통 전극(131)이 배치되게 된다. 코어 관통 전극(131)의 두께는 상부 빌드업 절연층(112, 113), 코어층(111), 하부 빌드업 절연층(114, 115)이 적층되는 수직 방향에 대한 두께가 아닌, 이에 수직한 수평 방향의 두께를 의미한다. 코어 관통 전극(131)의 두께는 코어층(111)의 두께가 두꺼워짐에 따라 발생하는 전압 강하를 방지하고, 보이드의 발생을 방지하기 위해 5㎛ 내지 20㎛의 두께를 갖도록 배치할 수 있다. 코어 관통 전극(131)의 내측은 도금 등의 공정으로 금속을 조밀하게 채우기 어려워 빈 공간이 생기게 된다. 빈 공간은 상부 빌드업 절연층(112, 113), 회로층(120) 및 하부 빌드업 절연층(114, 115)을 평탄하게 배치하기 어렵게 만드는 문제가 될 수 있다.
따라서, 절연 부재(140)는 코어 관통 전극(131)의 내측에 배치될 수 있고, 이를 통해 코어층(111)의 평탄도를 확보할 수 있도록 한다. 절연 부재(140)의 상면은 코어층(111)의 상면과 동일 평면상에 있을 수 있고, 또는 코어층(111)의 상면보다 수직 방향을 따라 상부 빌드업 절연층(112, 113)에 더 인접하게 배치될 수 있다. 절연 부재(140)의 하면은 코어층(111)의 하면과 동일 평면상에 있거나, 또는 코어층(111)의 하면보다 수직 방향을 따라 하부 빌드업 절연층(114, 115)에 더 인접하게 배치될 수 있다. 이는 상부 빌드업 절연층(112, 113), 하부 빌드업 절연층(114, 115), 및 회로층(120)의 적층 시 평탄도를 해결하거나, 후술될 제1 회로층(121) 및/또는 제4 회로층(124)의 평탄도를 확보하기 위해 자유롭게 설계될 수 있다.
코어층(111)의 일면에는 상부 빌드업 절연층(112, 113), 복수의 회로층(121, 122, 123), 복수의 관통 전극(132, 133) 및 제1 보호층(116)이 배치될 수 있다.
코어층(111)의 일면에 배치된 복수의 회로층(121, 122, 123)은 코어층(111)으로부터 수직 방향을 따라 가장 인접한 제1 회로층(121), 제1 회로층(121)보다 코어층(111)에 수직 방향을 따라 더 멀리 떨어진 제2 회로층(122), 제2 회로층(122)보다 코어층(111)에 수직 방향을 따라 더 멀리 떨어진 제3 회로층(123)을 포함할 수 있다.
제1 내지 제3 회로층(121, 122, 123)은 회로 기판(100) 상에 배치되는 반도체 소자와 전기적으로 연결하는 기능을 할 수 있다. 제1 내지 제3 회로층(121, 122, 123) 각각은 임피던스를 고려하여 자유롭게 설계될 수 있다. 또한, 제1 내지 제3 회로층(121, 122, 123) 각각을 연결하기 위해 관통 전극(132, 133)이 배치될 수 있다. 예시적으로, 제1 관통 전극(132)은 제1 회로층(121)과 제2 회로층(122) 사이에 배치되고, 제2 관통 전극(133)은 제2 회로층(122)과 제3 회로층(123) 사이에 배치되며, 이에 의해 제1 내지 제3 회로층(121, 122, 123)을 전기적으로 연결한다. 제1 내지 제3 회로층(121, 122, 123)은 적어도 하나의 관통 홀을 구비할 수 있다. 예시적으로, 제3 회로층(123)은 제3 회로층(123)의 상면 및 하면을 관통하는 관통 홀(120a)을 구비할 수 있다. 제1 내지 제3 회로층(121, 122, 123)에 구비된 관통 홀(120a)은 제1 내지 제3 회로층(121, 122, 123) 각각의 복수의 회로 패턴들 사이의 이격 영역과는 다른 의미를 가질 수 있다. 구체적으로, 이격 영역은 각각의 회로 패턴의 외측면과 연결될 수 있고, 복수의 회로 패턴의 외측면들 사이에 구비될 수 있다. 이에 반하여, 관통 홀(120a)은 각각의 회로 패턴의 상면 및 하면을 관통하며 구비되고, 각각의 회로 패턴의 외측면과 연결되지 않을 수 있다. 이를 통해, 관통 홀(120a)과 이격 영역을 구분할 수 있다. 예시적으로, 제1 내지 제3 회로층(121, 122, 123) 각각은 복수의 패드 및 복수의 패드 사이를 연결하는 복수의 트레이스를 구비할 수 있다. 그리고, 관통 홀(120a)은 복수의 패드들 사이의 이격 영역, 패드와 트레이스 사이의 이격 영역, 및 복수의 트레이스 사이의 이격 영역과는 다른 의미를 가질 수 있다. 관통 홀(120a)은 제1 및 제2 절연층(112, 113)의 경화 시에 발생하는 가스가 용이하게 배출되도록 할 수 있다. 이에 대해서는 후술하기로 한다.
제1 및 제2 관통 전극(132, 133)은 제2 및 제3 회로층(122, 123)을 배치하는 공정에서 동시에 진행할 수 있다. 예시적으로, 제1 회로층(121) 상에 제2 회로층(122)을 배치하는 공정에서 상부 빌드업 절연층의 제1 절연층(112)에 관통 홀을 형성하여 제1 회로층(121)의 일부를 노출할 수 있고, 이를 통해 상부 빌드업 절연층의 제1 절연층(112)의 관통 홀을 채우는 제1 관통 전극(132)과 함께 제2 회로층(122)을 배치할 수 있다. 따라서, 제1 관통 전극(132)은 제2 회로층(122)의 돌출부로 구분될 수 있다. 이와 마찬가지로, 제2 관통 전극(133)은 제3 회로층(123)의 돌출부로 구분되어 해당 회로층의 아래에 배치된 다른 회로층과 연결될 수 있다.
제1 회로층(121)은 코어층(111)의 일면에 접촉할 수 있다. 이 경우, 제1 회로층(121)의 일부는 상술한 절연 부재(140)를 덮으며 배치될 수 있다. 절연 부재(140)를 덮는 제1 회로층(121)의 일부는 절연 부재(140)와 수직 방향으로 중첩되지 않는 나머지 부분들에 비해 두께가 더 얇을 수 있다. 여기서, 제1 회로층(121)의 두께는 수직 방향을 따른 두께를 의미한다. 제1 회로층(121)의 설계 시 배선의 자유도에 따라 절연 부재(140)를 덮거나, 덮지 않을 수 있으며 이에 따라 배선 연결의 자유가 높아질 수 있다. 제1 회로층(121)이 절연 부재(140)를 덮지 않는 경우, 절연 부재(140)는 상부 빌드업 절연층의 제1절연층(112)과 직접 접촉될 수 있다. 절연 부재(140)와 상부 빌드업 절연층의 제1 절연층(112)이 직접 접촉되는 경우에 비해 제1 회로층(121)과 상부 빌드업 절연층의 제1 절연층(112)이 접촉되는 경우 결합력이 더 좋을 수 있고, 방열에 유리할 수 있다. 다만, 공정 단가의 절감을 위해 제1 회로층(121)이 절연 부재(140)를 덮지 않도록 배치할 수 있다. 나아가, 제1 관통 전극(132)의 설계에 따라 제1 회로층(121)이 절연 부재(140)를 덮거나, 또는 덮지 않을 수 있다. 예시적으로, 제1 회로층(121)과 수직 방향으로 중첩되는 제1 관통 전극(132)이 배치될 경우, 제1 회로층(121)과 제1 관통 전극(132)의 전기적 연결성 및/또는 기계적 결합성을 확보하기 위해 제1 회로층(121)이 절연 부재(140)를 덮으며 구비될 수 있다. 또한, 제1 회로층(121)과 수직 방향으로 중첩되는 제1 관통 전극(132)이 배치되지 않을 경우, 제1 회로층(121)은 절연 부재(140)를 덮지 않으며 구비될 수 있다.
상부 빌드업 절연층(112, 113)은 수직 방향을 따라 복수의 층이 적층된 구조를 가질 수 있다. 상부 빌드업 절연층(112, 113)은 코어층(111)으로부터 수직한 방향을 따라 가장 인접한 제1 절연층(112)과, 제1 절연층(112)보다 코어층(111)에 수직 방향을 따라 멀리 떨어진 제2 절연층(113)을 포함할 수 있다.
제1 및 제2 절연층(112, 113)은 상술한 제1 내지 제3 회로층(121, 122, 123)간의 수직 방향으로의 절연을 위해 배치된다. 예시적으로 제1 및 제2 절연층(112, 113)은 수지 내에 무기물 필러가 함유된 열경화성 절연 물질이 이용될 수 있고, 아지노모토 사의 ABF(Ajinomoto Build-up Film)가 이용될 수 있다. 다만, 실시 예는 이에 한정되지 않고, 미세한 패턴을 형성하기 위한 광경화성 절연 물질 (Photo Imageable Dielectric, PID)이 이용될 수 있다.
제1 보호층(116)은 외부의 습기나 오염물질로부터 제3 회로층(123)을 보호할 수 있다. 또한, 회로 기판(100) 상에 반도체 소자가 솔더 등의 물질로 배치되는 경우, 제1 보호층(116)은 솔더와의 낮은 젖음성에 의하여 솔더 간 단락을 방지하는 기능을 한다. 제1 보호층(116)은 광경화성 절연 물질이 이용될 수 있고, 예시적으로 솔더 레지스트가 이용될 수 있다.
코어층(111)의 타면에는 하부 빌드업 절연층(114, 115), 복수의 회로층(124, 125, 126), 복수의 관통 전극(134, 135) 및 제2 보호층(117)이 배치될 수 있다.
코어층(111)의 타면에 배치된 복수의 회로층(124, 125, 126)은 코어층(111)으로부터 수직 방향을 따라 가장 인접한 제4 회로층(124), 제4 회로층(124)보다 코어층(111)에 수직 방향을 따라 멀리 떨어진 제5 회로층(125), 제5 회로층(125)보다 코어층(111)에 수직 방향을 따라 더 멀리 떨어진 제6 회로층(126)을 포함할 수 있다.
제4 내지 제6 회로층(124, 125, 126)은 전자 디바이스의 메인보드(미도시)와 회로 기판(100) 상에 배치된 반도체 소자 간을 전기적으로 연결하는 기능을 할 수 있다. 제4 내지 제6 회로층(124, 125, 126) 각각은 임피던스를 고려하여 자유롭게 설계될 수 있다. 제4 내지 제6 회로층(124, 125, 126)은 적어도 하나의 관통 홀을 구비할 수 있다. 또한, 상술한 제1 내지 제3 회로층(121, 122, 123)에 구비된 관통 홀(120a)과 마찬가지로, 제4 내지 제6 회로층(124, 125, 126)에 구비된 관통 홀도 제4 내지 제6 회로층(124, 125, 126) 각각의 복수의 회로 패턴들 사이의 이격 영역과는 다른 의미를 가질 수 있다. 예시적으로, 제4 내지 제6 회로층(124, 125, 126) 각각은 복수의 패드 및 복수의 패드 사이를 연결하는 복수의 트레이스를 구비할 수 있다. 그리고, 제4 내지 제6 회로층(124, 125, 126)에 구비된 관통 홀은 제4 내지 제6 회로층(124, 125, 126) 각각의 복수의 패드들 사이의 이격 공간, 패드와 트레이스 사이의 이격 공간, 및 복수의 트레이스 사이의 이격 공간과는 다른 의미를 가질 수 있다. 제4 내지 제6 회로층(124, 125, 126)에 구비된 관통 홀은 제3 및 제4 절연층(114, 115)의 경화 시에 발생하는 가스가 용이하게 배출되도록 할 수 있다. 이에 대해서는 후술하기로 한다.
또한, 제4 내지 제6 회로층(124, 125, 126) 각각을 연결하기 위해 관통 전극(134, 135)이 배치될 수 있다. 예시적으로, 제3 관통 전극(134)은 제4 회로층(124)과 제5 회로층(125) 사이에 배치되고, 제4 관통 전극(135)은 제5 회로층(125)과 제6 회로층(126) 사이에 배치되며, 이에 의해 제4 내지 제6 회로층(124, 125, 126)을 전기적으로 연결한다.
제1 및 제2 관통 전극(132, 133)에 대하여 상술한 바와 마찬가지로, 제3 및 제4 관통 전극(134, 135)도 제5 및 제6 회로층(125, 126)을 배치하는 공정에서 동시에 진행할 수 있다. 예시적으로, 앞서 상술한 바와 마찬가지로, 제3 관통 전극(134)은 제5 회로층(125)의 돌출부로 구분될 수 있다. 또한, 제4 관통 전극(135)은 제6 회로층(126)의 돌출부로 구분될 수 있다. 코어층(111)의 상부에 배치된 층들과 코어층(111)의 하부에 배치된 층들은 서로 다른 방향으로 적층되는 공정이 진행되며, 제3 및 제4 관통 전극(134, 135)이 갖는 경사 방향은 제1 및 제2 관통 전극(132, 133)이 갖는 경사 방향과 반대되는 방향을 가질 수 있다. 예시적으로, 제1 및 제2 관통 전극(132, 133)은 코어층(111)을 향할수록 폭이 좁아지는 경사를 가질 수 있고, 제3 및 제4 관통 전극(134, 135)도 코어층(111)을 향할수록 폭이 좁아지는 경사를 가질 수 있다. 제1 및 제2 관통 전극(132, 133)의 경사는 코어층(111)을 기준으로 제3 및 제4 관통 전극(134, 135)에 경사와 대칭될 수 있다.
제4 회로층(124)은 코어층(111)의 타면에 접촉할 수 있다. 이 경우, 제4 회로층(124)의 일부는 상술한 절연 부재(140)를 덮으며 배치될 수 있다. 절연 부재(140)를 덮는 제4 회로층(124)의 일부는 절연 부재(140)와 수직 방향으로 중첩되지 않는 나머지 부분들에 비해 두께가 더 얇을 수 있다. 여기서, 제4 회로층(124)의 두께는 수직 방향을 따른 두께를 의미한다. 제4 회로층(124)의 설계 시 배선의 자유도에 따라 절연 부재(140)를 덮거나, 덮지 않을 수 있으며 이에 따라 배선 연결의 자유가 높아질 수 있다. 제4 회로층(124)이 절연 부재(140)를 덮지 않는 경우, 절연 부재(140)는 제3 절연층(114)과 직접 접촉될 수 있다. 절연 부재(140)와 제3 절연층(114)이 직접 접촉되는 경우에 비해 제4 회로층(124)과 제3 절연층(114)이 접촉되는 경우 결합력이 더 좋을 수 있고, 방열에 유리할 수 있다. 다만, 공정 단가의 절감을 위해 제4 회로층(124)이 절연 부재(140)를 덮지 않도록 배치할 수 있다. 나아가, 제3 관통 전극(134)의 설계에 따라 제4 회로층(124)이 절연 부재(140)를 덮거나, 또는 덮지 않을 수 있다. 예시적으로, 제4 회로층(124)과 수직 방향으로 중첩되는 제3 관통 전극(134)이 배치될 경우, 제4 회로층(124)과 제3 관통 전극(134)의 전기적 연결성 및/또는 기계적 결합성을 확보하기 위해 제4 회로층(124)이 절연 부재(140)를 덮으며 구비될 수 있다. 또한, 제4 회로층(124)과 수직 방향으로 중첩되는 제3 관통 전극(134)이 배치되지 않을 경우, 제4 회로층(124)은 절연 부재(140)를 덮지 않으며 구비될 수 있다.
하부 빌드업 절연층(114, 115)은 수직 방향을 따라 복수의 층이 적층된 구조를 가질 수 있다. 하부 빌드업 절연층(114, 115)은 코어층(111)으로부터 수직한 방향을 따라 가장 인접한 제3 절연층(114)과, 제3 절연층(114)보다 코어층(111)에 수직 방향을 따라 멀리 떨어진 제4 절연층(115)을 포함할 수 있다.
제3 및 제4 절연층(114, 115)은 상술한 제4 내지 제6 회로층(124, 125, 126)간의 수직 방향으로의 절연을 위해 배치된다. 예시적으로 제3 및 제4 절연층(114, 115)은 수지 내에 무기물 필러가 함유된 열경화성 절연 물질이 이용될 수 있고, 아지노모토 사의 ABF(Ajinomoto Build-up Film)가 이용될 수 있다. 다만, 실시 예는 이에 한정되지 않고, 미세한 패턴을 형성하기 위한 광경화성 절연 물질 (Photo Imageable Dielectric, PID)이 이용될 수 있다.
제2 보호층(117)은 외부의 습기나 오염물질로부터 제6 회로층(126)을 보호할 수 있다. 또한, 회로 기판(100) 상에 반도체 소자가 솔더 등의 물질로 배치되는 경우, 제2 보호층(117)은 솔더와의 낮은 젖음성에 의하여 솔더 간 단락을 방지하는 기능을 한다. 제2 보호층(117)은 광경화성 절연 물질이 이용될 수 있고, 예시적으로 솔더 레지스트가 이용될 수 있다.
제3 회로층(123)의 일부 영역은 제1 보호층(116)으로부터 노출된 패드부를 포함할 수 있다. 또한, 반도체 소자의 단자의 밀도가 증가함에 따라 종래의 솔더 본딩으로는 서로 인접한 패드부 사이에서 솔더의 단락 문제가 발생할 수 있다. 따라서, 반도체 소자의 단자의 밀도가 증가함에 따라 솔더의 사용량을 줄이기 위해, 반도체 소자와 회로 기판(100)은 열 압착 본딩(Thermal Compression Bonding) 방식을 통해 서로 결합될 수 있다. 열 압착 본딩(Thermal Compression Bonding)을 이용하는 경우, 회로 기판(100)은 제1 보호층(116) 상에 돌출된 본딩부(150)를 포함할 수 있다. 본딩부(150)는 제1 보호층(116) 상으로 돌출된 돌출부(151)와, 제1 보호층(116)을 관통하여 제3 회로층(123)과 접촉하는 관통부(152)를 가질 수 있다. 또한, 회로 기판(100)과 반도체 소자 간 열압착본딩(Thermal Compression Bonding) 방식으로 결합하는 경우, 이로 인해 발생하는 하중에 의해 본딩부(150)의 관통부(152)에서 크랙이 발생할 수 있다. 따라서, 본딩부(150)의 관통부(152)는 제3 회로층(123)에 인접한 부분에 제3 회로층(123)의 탄성력보다 높은 탄성력을 갖는 물질을 배치하여 크랙을 방지할 수 있다. 이러한 물질은 니켈(Ni)을 이용하여도 좋으나, 무전해 도금에 의해 결정립의 밀도가 높지 않은 구리층을 배치할 수 있다. 이때, 본딩부(150)의 돌출부(151) 및 관통부(152)는 다양한 방법으로 배치할 수 있다. 예시적으로, 제1 보호층(116)을 노광하고, 현상하여 제1 보호층(116)의 개구부를 형성하고, 이후 개구부에 본딩부(150)과 관통부(152)를 배치하는 공정을 진행할 수 있다. 또한, 제1 보호층(116)의 관통 홀을 레이저를 이용하여 형성하고, 이후 개구부에 본딩부(150)의 돌출부(151)와 관통부(152)를 배치하는 공정을 진행할 수 있다. 또한, DFR(Dry Film resist)를 이용하여 DFR을 관통부(152)가 배치되어야 하는 영역에 먼저 배치하고, 이후 제1 보호층(116)을 DFR이 덮이도록 배치한 후, 제1 보호층(116)의 일부를 약액으로 식각하여 DFR을 노출하고, 이후 DFR을 박리함으로써 제1 보호층(116)에 개구부를 형성하고, 이후 본딩부(150)의 돌출부(151) 및 관통부(152)를 배치할 수 있다. 따라서, 본딩부(150)의 관통부(152)는 공정 방법에 따라 다양한 형태를 가질 수 있다. 예시적으로, 제1 보호층(116)의 개구부를 노광 공정을 통해 형성하는 경우, 본딩부(150)의 관통부(152)의 측면은 제3 회로층(123)을 향할수록 폭이 점차 좁아진 구조를 가질 수 있고, 레이저 공정을 통해 제1 보호층(116)의 개구부를 형성하는 경우, 관통부(152)의 측면은 수직한 측면과 제3 회로층(123)에 인접한 부분이 패인 만곡부를 가질 수 있고, DFR을 이용하여 제1 보호층(116)의 개구부를 형성하는 경우, 관통부(152)의 측면은 수직한 측면만을 가질 수 있다. 상술한 바와 같이 반도체 소자를 회로 기판(100)에 열압착본딩을 통해 결합하는 경우 관통부(152)에 하중이 인가될 수 있는데, 이때 DFR을 이용한 관통부(152)의 경우 응력이 균일하게 인가될 수 있도록 할 수 있어 제조 수율이 높아질 수 있다.
상술한 회로 기판(100)의 구조는 본 발명의 설명을 위한 실시 예일 뿐이며, 본 발명의 기술적 사상은 본 실시 예의 적층 구조에 제한되지 않는다.
또한, 회로 기판(100)의 회로층(120) 중에서 최상부 및 최하부에 배치된 제3 회로층(123) 및 제6 회로층(126) 각각이 제2 절연층(113)의 상면 및 제4 절연층(115)의 하면에서 돌출된 구조를 가지는 것으로 설명하였으나, 이에 한정되는 것은 아니다. 예시적으로, 제3 회로층(123) 및 제6 회로층(126) 중 적어도 하나의 회로층은 ETS(Embedded Trace Substrate) 구조를 가질 수 있다. 예시적으로, 제3 회로층(123)은 제2 절연층(113)의 상면에 구비된 리세스 내에 배치될 수 있다. 상술한 ETS 구조는 매립 구조라고도 할 수 있다. ETS 구조는 일반적인 돌출 구조를 가지는 회로층 대비 미세화에 유리하다. 이에 따라, 실시 예는 반도체 소자에 구비된 단자들의 사이즈 및 피치에 대응하게 회로층들의 형성이 가능하도록 한다. 이를 통해 실시 예는 회로 집적도를 향상시킬 수 있다. 나아가, 실시 예는 반도체 소자를 통해 전달되는 신호의 전송 거리를 최소화할 수 있고, 이를 통해 신호 전송 손실을 최소화할 수 있도록 한다.
상술한 회로 기판(100)은 공정 중에 가스가 발생할 수 있고, 이를 통해 제1 내지 제4 절연층(112, 113, 114, 115)과 제1 내지 제6 회로층(121, 122, 123, 124, 125, 126) 사이의 밀착력이 저하될 수 있다. 또한, 밀착력이 저하되는 경우, 제1 내지 제4 절연층(112, 113, 114, 115)과 제1 내지 제6 회로층(121, 122, 123, 124, 125, 126) 사이의 계면이 박리되는 기계적 신뢰성 및/또는 전기적 신뢰성 문제가 발생할 수 있다. 이를 통해, 제1 내지 제6 회로층(121, 122, 123, 124, 125, 126) 중 적어도 하나는 관통 홀(120a)을 구비할 수 있다. 이때, 관통 홀(120a)은 제1 내지 제6 회로층(121, 122, 123, 124, 125, 126) 각각에 구비될 수 있고, 이를 통해 제1 내지 제4 절연층(112, 113, 114, 115)의 경화 시에 발생하는 가스가 용이하게 배출되도록 할 수 있다.
도 2를 참조하면, 회로 기판은 절연층(210) 및 절연층(210) 상에 배치된 회로층(220)을 포함할 수 있다. 이때, 절연층(210)은 도 1에서 설명한 제1 내지 제4 절연층(112, 113, 114, 115) 중 어느 하나를 지칭할 수 있고, 회로층(220)은 제1 내지 제6 회로층(121, 122, 123, 124, 125, 126) 중 어느 하나를 지칭할 수 있다.
회로층(220)은 수평 방향으로 상호 이격된 복수의 회로 패턴들을 포함할 수 있다. 이 경우, 관통 홀(1220a)은 복수의 회로 패턴 사이의 이격 영역과는 다른 의미를 가질 수 있다. 회로층(220)은 절연층(210)의 동일 평면 상에 배치되고 수평 방향으로 상호 이격된 복수의 회로 패턴을 포함할 수 있다. 그리고 복수의 회로 패턴 사이의 이격 영역은 관통 홀(220a)과는 다른 의미를 가질 수 있다. 이격 영역은 서로 전기적으로 분리되어야 하는 복수의 회로 패턴 사이에 구비되는 홀을 의미할 수 있다. 그리고, 관통 홀(220a)은 하나의 회로 패턴의 상면 및 하면을 관통하는 홀을 의미할 수 있다. 또한, 이격 영역은 복수의 회로 패턴 사이의 간격으로도 표현될 수 있다. 간격은 회로층(220)의 미세화를 위해 20㎛ 이하, 18㎛ 이하, 15㎛ 이하, 또는 12㎛ 이하의 범위를 가질 수 있다.
관통 홀(220a)은 회로층(220)에 구비되며, 절연층(210)에서 발생하는 가스를 배출하는 가스 배출 홀로 기능할 수 있다. 따라서, 관통 홀(220a)은 기능적으로 디가싱 홀(degassing hole)이라고도 할 수 있다.
일 실시 예에서, 관통 홀(220a)의 평면 형상은 원형 형상일 수 있다. 다만, 실시 예는 이에 한정되지 않는다. 다른 실시 예에서의 관통 홀(220a)의 평면 형상은 삼각형, 사각형, 타원형, 마름모, 다각형 형상을 가질 수도 있을 것이다. 또한, 회로층(220)에 구비되는 복수의 관통 홀(220a) 중 적어도 하나는 제1 평면 형상을 가질 수 있고, 적어도 다른 하나의 관통 홀(220a)은 제1 평면 형상과 다른 제2 평면 형상을 가질 수도 있을 것이다.
회로층(220)의 관통 홀(220a)은 절연층(210)에서 발생한 가스를 배출하는 가스 배출구로 기능할 수 있다.
예를 들어, 회로 기판(100)의 제조 공정을 간단히 살펴보면, 절연층(210)은 반경화 상태로 제공될 수 있다. 그리고 회로층(220)은 반경화 상태의 절연층(210) 상에 배치될 수 있다. 이 경우, 회로층(220)이 배치된 이후에 절연층(210)을 완전 경화하는 공정을 진행할 수 있다.
이때, 절연층(210)을 완전 경화하는 공정을 진행하는 경우, 절연층(210)에서 가스가 발생할 수 있다. 이때, 발생한 가스는 절연층(210)으로부터 회로 기판(100)의 외부로 배출되어야 한다. 이때, 절연층(210) 상에는 회로층(220)이 배치된 상태이다. 이에 따라, 절연층(210)에서 발생한 가스는 회로층(220)에 의해 회로 기판(100)의 외부로 배출되지 못하는 문제가 발생할 수 있다.
따라서, 실시 예의 회로층(220)은 상면 및 하면을 관통하는 관통 홀(220a)을 구비할 수 있다. 회로층(220)의 관통 홀(220a)은 절연층(210)에서 발생한 가스를 회로 기판(100)의 외부(예를 들어, 절연층(210)으로부터 멀어지는 회로층의 상측 방향)로 배출하는 가스 배출구로 기능할 수 있다. 실시 예는 회로층(220)에 관통 홀(220a)이 구비됨으로써, 절연층(210)에서 발생한 가스가 회로 기판(100)의 외부로 용이하게 배출될 수 있도록 한다. 이를 통해, 실시 예는 절연층(210)에 가스가 잔류함에 따라 발생하는 물리적 신뢰성 문제를 해결할 수 있다. 예를 들어, 절연층(210)에서 발생한 가스가 배출되지 못하는 경우, 절연층(210) 및 회로층(220) 중 적어도 하나가 가스로 인해 부풀어오르는 문제가 발생할 수 있다.
예를 들어, 도 5의 (a)를 참조하면, 비교 예의 회로 기판의 회로층에는 관통 홀이 구비되지 않았다. 이에 의해, 비교 예의 회로 기판은 절연층(10)에서 발생한 가스가 회로층(20)의 상측으로 배출되지 못하는 문제가 발생할 수 있다. 이에 따라, 비교 예의 회로 기판은 가스로 인해 절연층(10) 및 회로층(20)이 부풀어오르는 부분을 포함할 수 있다. 예를 들어, 비교 예의 회로 기판의 절연층(10)은 일 영역이 상측으로 부풀어오른 볼록 영역(10P) 및/또는 볼록 영역(10P)에 대응하게 오목하게 함몰된 오목 영역(A)을 포함할 수 있다. 또한, 비교 예의 회로 기판의 회로층(20)은 볼록 영역(10P)에 대응되도록 일 영역이 상측으로 부풀어오른 볼록 영역(20P)을 포함할 수 있다. 볼록 영역(10P, 20P)에서 절연층(10)과 회로층(20) 사이의 밀착력이 저하되고, 이에 의해 회로층(20)과 절연층(10) 간의 박리 등의 물리적 신뢰성 문제가 발생할 수 있다. 또한, 오목 영역(A)에 의해 복수의 절연층들 사이의 밀착력이 저하되고, 이에 따라 복수의 절연층들이 상호 물리적으로 분리되는 밀착력 문제가 발생할 수 있다.
또한, 도 5의 (b)를 참조하면, 비교 예의 회로 기판은 가스로 인해 절연층(10) 및/또는 회로층(20)이 부풀어오르는 부분을 포함한다. 예를 들어, 비교 예의 회로 기판의 회로층(20)은 일 영역이 절연층(10)으로부터 상측으로 부풀어오른 볼록 영역(20P)을 포함할 수 있다. 그리고, 회로층(20)의 볼록 영역(20P)에 대응하는 표면(B)은 절연층(10)과 접촉하지 않을 수 있다. 이에 의해, 회로층(20)은 볼록 영역(20P)에 의해 절연층(10)과의 밀착력이 저하될 수 있고, 이에 의해 절연층(10)으로부터 분리되는 물리적 신뢰성 문제가 발생할 수 있다.
이에 반하여, 도 6을 참조하면, 실시 예의 회로층(220)은 관통 홀(220a)을 구비되며, 관통 홀(220a)을 통해 절연층(210)에서 발생한 가스가 회로 기판(100)의 외측으로 원활히 배출될 수 있도록 한다. 이를 통해, 실시 예는 절연층(210) 및/또는 회로층(220)이 가스로 인해 부풀어오르는 영역을 포함하지 않도록 할 수 있다. 이에 따라, 실시 예는 복수의 절연층들 사이의 밀착력, 및 절연층과 회로층 사이의 밀착력을 향상시킬 수 있다. 이를 통해, 실시 예는 기판의 물리적 신뢰성을 향상시킬 수 있다.
이때, 회로층(220)의 관통 홀(220a)은 절연 물질로 채워질 수 있다. 즉, 회로층(220)의 관통 홀(220a)은 회로 기판(110)의 적층 공정에서 이의 상부에 적층되는 다른 절연층 및/또는 보호층으로 채워질 수 있다.
회로층(220)에 아무런 조건 없이 관통 홀(220a)이 구비되는 것만으로 가스의 배출 특성을 개선하기 어려울 수 있다. 나아가, 회로층(220)에 관통 홀(220a)이 구비될 경우, 회로층(220)의 배선 밀도가 낮아질 수 있고, 이로 인해 회로 기판(100)이 특정 방향으로 크게 휘어지는 문제가 발생할 수 있다. 예시적으로, 회로층(220)에 구비된 관통 홀(220a)의 직경(W3)에 따라 가스의 배출 특성 및/또는 회로 기판(100)의 휨(warpage) 특성이 결정될 수 있다.
예를 들어, 관통 홀(220a)의 직경(W3)이 너무 작을 경우, 절연층(210)에서 발생한 가스가 회로 기판(200)의 외부로 잘 배출되지 못할 수 있고, 이에 의해 절연층(210)과 회로층(220) 사이의 밀착력 개선 효과가 미비할 수 있다.
예를 들어, 관통 홀(220a)의 직경(W3)이 너무 클 경우, 절연층(210) 중 단일 층 상에서의 회로층(220)의 면적 또는 배선 밀도가 감소할 수 있다. 그리고, 회로층(220)의 면적 또는 밀도가 감소하는 경우, 회로 기판(100)의 휨 특성이 저하될 수 있고, 이에 의해 회로 기판(100)이 특정 방향으로 크게 휘어질 수 있다. 회로 기판(100)이 특정 방향으로 크게 휘어질 경우, 반도체 패키지가 메인보드에 실장될 때 균일한 접촉면을 확보하기 어렵거나, 반도체 소자의 동작 중 발생하는 열에 의해 회로 기판(100)의 휨이 발생하는 경우 반도체 소자의 동작을 원활히 하기 어려울 수 있고, 서버나 전자 제품의 동작이 원활히 이루어지기 어려울 수 있다. 따라서, 회로 기판(100)의 평면 면적 대비 관통 홀(220a)의 직경(W3)은 반도체 패키지가 적용되는 서버와 같은 전자 제품의 신뢰성과 직결될 수 있어 기술적 연동성 또는 기능적 일체성을 가질 수 있다. 또한, 회로 기판(100)이 특정 방향으로 크게 휘어질 경우, 회로 기판(100)의 제조 공정 시 공정 오차가 발생하여 수율이 저하되는 문제점이 발생할 수 있다.
따라서, 실시 예는 회로 기판(100)의 평면 면적을 기준으로 관통 홀(220a)이 가지는 직경(W3)을 결정한다. 이를 통해, 실시 예는 회로 기판(100)이 휘어지는 문제를 해결하면서, 절연층(210)에서 발생한 가스가 회로 기판(100)의 외부로 잘 배출될 수 있도록 한다.
회로 기판(100)의 평면 면적은 절연층(210)의 평면 면적을 의미할 수 있다. 절연층(210)은 제1 수평 방향(예를 들어, x축 방향, 또는 가로 방향)으로 제1 폭(W1)을 가질 수 있다. 또한, 절연층(210)은 제1 수평 방향과 수직한 제2 수평 방향(예를 들어, y축 방향, 또는 세로 방향)으로 제2 폭(W2)을 가질 수 있다.
그리고 제1 폭(W1) 및 제2 폭(W2)을 가지는 회로 기판(100)의 평면 면적은 1500mm2 내지 2000mm2일 수 있다. 바람직하게, 제1 폭(W1) 및 제2 폭(W2)을 가지는 회로 기판(100)의 평면 면적은 1550mm2 내지 1950mm2일 수 있다. 더욱 바람직하게, 제1 폭(W1) 및 제2 폭(W2)을 가지는 회로 기판(100)의 평면 면적은 1580mm2 내지 1900mm2일 수 있다.
그리고 회로 기판(100)이 상술한 바와 같은 평면 면적을 가지는 경우, 회로층(220)에 구비된 관통 홀(220a)의 직경(W3)의 최소값이 일정 수준을 가져야, 절연층(210)에서 발생한 가스가 회로 기판(100)의 외부로 원활히 배출될 수 있다.
예를 들어, 회로층(220)에 구비된 관통 홀(220a)은 복수 개일 수 있다. 그리고, 복수 개의 관통 홀(220a) 중 적어도 하나는 일정 수준 이상의 직경(W3)을 가져야 하고, 적어도 하나의 관통 홀(220a)이 직경(W3)을 가짐에 따라 절연층(210)에서 발생한 가스가 외부로 용이하게 배출될 수 있다.
관통 홀(220a)이 가지는 직경(W3)은 최소 165㎛ 이상일 수 있다. 관통 홀(220a)이 가지는 직경(W3)이 165㎛보다 작을 경우, 상기와 같은 평면 면적을 가지는 절연층(210)에서 발생한 가스가 회로층(220)의 상측으로 잘 배출되지 못할 수 있다. 그리고, 가스가 배출되지 못할 경우, 회로층(220) 및/또는 절연층(210)이 부풀어오르는 문제가 발생할 수 있다. 이에 의해, 회로층(220)과 절연층(210) 사이의 밀착력이 저하될 수 있다.
한편, 관통 홀(220a)이 가지는 직경(W3)이 크면 클수록 절연층(210)에서 발생한 가스가 외부로 잘 배출될 수 있다. 그러나, 관통 홀(220a)이 직경이 너무 커지면, 절연층(210) 상에서의 회로층(220)의 배선 밀도 또는 면적이 감소할 수 있다. 그리고, 회로층(220)의 배선 밀도 또는 면적이 감소하는 경우, 회로층(220)의 특성이 변화하거나 회로 기판(100)의 휨 특성이 저하될 수 있다. 여기에서, 회로층(220)의 특성은 임피던스 특성을 의미할 수 있으나, 이에 한정되지는 않는다. 또한, 회로층(220)은 배선 기능을 하면서, 회로 기판(100)이 휘어지는 것을 방지하는 기능도 할 수 있다. 그리고, 회로층(220)에 구비된 관통 홀(220a)의 직경(W3)이 너무 크면, 회로 기판(100)이 휘어지는 것을 방지할 수 없고, 이에 따라 회로 기판(100)이 특정 방향으로 크게 휘어지는 문제가 발생할 수 있다.
관통 홀(220a)의 직경(W3)은 165㎛ 내지 220㎛의 범위를 만족할 수 있다. 바람직하게, 관통 홀(220a)의 직경(W3)은 165㎛ 내지 210㎛의 범위를 만족할 수 있다. 더욱 바람직하게, 관통 홀(220a)의 직경(W3)은 165㎛ 내지 205㎛의 범위를 만족할 수 있다. 관통 홀(220a)의 직경(W3)이 165㎛ 미만이면, 설명한 바와 같이 절연층(210)에서 발생한 가스가 회로 기판(100)의 외부로 잘 배출되지 못하고, 이에 의해 절연층(210)에 가스가 잔류하는 문제가 발생할 수 있다. 그리고, 가스가 잔류하는 경우, 이에 의해 절연층(210) 및/또는 회로층(220)이 부풀어오름에 따른 물리적 신뢰성 문제가 발생할 수 있다. 또한, 관통 홀(220a)의 직경(W3)이 220㎛를 초과하면, 회로층(220)의 면적 또는 밀도가 감소하고, 이에 따라 복수의 회로층들 사이의 임피던스 특성이 변화하거나, 회로 기판(100)의 강성이 저하될 수 있다.
또한, 절연층(210)의 평면 면적에 대한 관통 홀(220a)의 직경의 비율은, 0.0000825 내지 0.000147의 범위를 만족할 수 있다. 또한, 절연층(1210)의 평면 면적에 대한 관통 홀(200a)의 평면 면적의 비율은, 0.00025905 내지 0.0004605의 범위를 만족할 수 있다. 즉, 절연층(210)의 평면 면적은 1500mm2 내지 2000mm2일 수 있고, 복수의 관통 홀(220a) 중 적어도 하나는 165㎛ 내지 220㎛의 직경을 가질 수 있으며, 복수의 관통 홀(220a) 중 적어도 하나의 평면 면적은 518.1㎛2 내지 690.8㎛2의 범위를 만족할 수 있다.
이를 통해 실시 예는 절연층(210)에서 발생한 가스가 회로 기판(100)의 외부로 잘 배출되어 가스가 잔류하는 문제를 해결할 수 있도록 있으며, 나아가 회로층의 면적 또는 배선 밀도가 감소하는 문제를 해결할 수 있고, 복수의 회로층들 사이의 임피던스 특성이 변화하는 것을 해결할 수 있으며, 나아가 회로 기판(100)의 강성이 저하되는 문제를 해결할 수 있다.
도 4를 참조하면, 관통 전극(230)은 절연층(210)을 관통하며 구비될 수 있다. 이때, 관통 홀(220a)을 구비한 회로층(220)은 수직 방향으로 관통 전극(230)과 중첩될 수 있다. 이때, 회로층(220)에 구비된 관통 홀(220a)은 관통 전극(230)과 수직 방향으로 중첩되지 않을 수 있다. 이때, 회로층(220)의 관통 홀(220a)이 관통 전극(230)과 수직 방향으로 중첩되는 경우, 관통 전극(230)에 의한 복수의 회로층들 사이의 전기적 연결 특성이 저하될 수 있다. 즉, 관통 전극(230)은 서로 다른 절연층에 배치된 회로층들 사이를 연결할 수 있다. 그리고, 회로층(220)의 관통 홀(220a)이 관통 전극(230)과 수직 방향으로 중첩되는 경우, 관통 전극(230)을 통해 전달되는 신호의 전송 손실이 증가할 수 있고, 이에 따른 신호 전달 신뢰성이 저하될 수 있다. 따라서, 실시 예의 회로층(220)에 구비된 관통 홀(220a)은 절연층(210)을 관통하는 관통 전극(230)과 수직 방향으로 중첩되지 않도록 할 수 있다.
나아가, 회로층(220)에 구비된 관통 홀(220a)의 직경(W3)은 관통 전극(230)의 직경보다 클 수 있다. 이때, 관통 전극(230)은 도 2에 도시된 바와 같이 절연층(210)의 상면에서 하면을 향하여 폭이 점진적으로 변화하는 경사를 가질 수 있다. 그리고 관통 홀(220a)의 직경(W3)은 관통 전극(230)의 수직 방향으로의 전체 영역에서 가장 큰 폭을 가지는 영역의 폭(W4)보다 클 수 있다.
예를 들어, 관통 전극(230)의 폭(W4)은 60㎛ 내지 90㎛의 범위를 만족할 수 있다. 예를 들어, 관통 전극(230)의 폭(W4)은 60㎛ 내지 85㎛의 범위를 만족할 수 있다. 예를 들어, 관통 전극(230)의 폭(W4)은 60㎛ 내지 80㎛의 범위를 만족할 수 있다. 관통 전극(230)의 폭(W4)이 60㎛ 미만이면, 관통 전극(230)을 통해 전달될 수 있는 신호의 허용 전류가 감소하고, 이에 따른 회로 기판 및 반도체 패키지의 전기적 특성이 저하될 수 있다. 관통 전극(230)의 폭(W4)이 90㎛를 초과하면, 관통 전극(230)을 전도성 물질로 충진하는 공정 시간이 증가하고, 이에 따른 제품 생산 수율이 감소할 수 있다. 그리고, 관통 전극(230)의 폭(W4)이 90㎛를 초과하면, 수평 방향으로 이격된 복수의 관통 전극 사이의 피치가 증가하고, 이에 따른 회로 집적도가 감소할 수 있다.
이를 정리하면, 회로층(220)에 구비된 관통 홀(220a)의 직경(W3)은 관통 전극(230)의 폭(W4)의 2.5배 이상을 가질 수 있다. 그리고, 회로층(220)에 구비된 관통 홀(220a)의 직경(W3)이 관통 전극(230)의 폭(W4)의 2.5배 미만이면, 절연층(210)에서 발생한 가스가 회로 기판(100)의 외부로 용이하게 배출되지 못할 수 있다.
또한, 도 7의 실시 예에 따르면, 회로층(220)에는 원형 형상이 아닌 마름모 형상의 관통 홀(220a)이 구비될 수 있다. 그리고, 회로층(220)에 구비된 관통 홀(220a)이 마름모 형상일 경우, 관통 홀(220a)의 직경(W3)은 관통 홀(220a)의 평면에서, 서로 마주보는 꼭지점 사이의 거리를 의미할 수 있다.
또한, 도 8의 실시 예에 따르면, 회로층(320)에 구비된 복수의 관통 홀(320a)의 각각의 직경(W3)은 복수의 관통 홀(320a) 중 상호 인접한 2개의 관통 홀 사이의 이격 거리(W4) 이상일 수 있다. 즉, 회로층(320)에 구비된 복수의 관통 홀(320a)의 각각의 직경(W3)은 복수의 관통 홀(320a) 중 상호 인접한 2개의 관통 홀 사이의 이격 거리(W4)와 같거나, 이보다 클 수 있다. 이때, 복수의 관통 홀(320a)의 각각의 직경(W3)이 복수의 관통 홀(320a) 중 상호 인접한 2개의 관통 홀 사이의 이격 거리(W4)보다 작으면, 절연층(310)에서 발생한 가스가 회로 기판(100)의 외측으로 용이하게 배출되지 못할 수 있다. 관통 홀(320a)의 직경(W3)이 이격 거리(W4)보다 작다는 것은, 회로층(320)에서 관통 홀(320a)이 배치된 영역을 기준으로, 관통 홀(320a)을 통해 가스가 배출될 수 있는 영역보다 복수의 관통 홀(320a) 사이의 이격 거리(W4)에서 가스가 배출되지 못하는 영역이 더 크다는 것을 의미할 수 있다. 그리고, 관통 홀(320a)의 직경(W3)이 복수의 관통 홀(320a)들 사이의 이격 거리(W4)보다 클 경우, 가스가 잘 배출되지 못하고 절연층(310) 내에 잔류할 수 있으며, 이에 따른 물리적 특성이 저하될 수 있다.
이때, 이격 거리(W4)는 복수의 관통 홀(320a)의 배치 방향 및/또는 배치 형태에 따라 다를 수 있다. 예를 들어, 도 8과 같이 대각 방향으로 지그재그 형태로 복수의 관통 홀(320a)이 구비된 경우, 이격 거리(W4)는 복수의 관통 홀 중 서로 대각 방향에 위치한 2개의 관통 홀들 사이의 이격 거리를 의미할 수 있다.
예를 들어, 도 9의 실시 예와 같이, 복수의 관통 홀(320a)이 회로 기판의 제1 측면과 평행한 제1 수평 방향 또는 제1측면과 수직한 제2 수평 방향으로 일정 간격을 가지고 구비된 경우, 이격 거리(W4)는 복수의 관통 홀 중 제1 수평 방향 또는 제2 수평 방향에 위치한 2개의 관통 홀들 사이의 이격 거리를 의미할 수 있다.
이때, 복수의 관통 홀(320a) 중 적어도 하나의 직경은 적어도 다른 하나의 직경과 다를 수 있다. 복수의 관통 홀 중 서로 인접한 복수의 관통 홀들의 이격 거리는 서로 다를 수 있다. 이 경우, 직경(W3)은 복수의 관통 홀(320a) 중 가장 작은 직경을 가지는 관통 홀의 직경을 의미할 수 있다. 그리고, 이격 거리는 서로 인접한 복수의 관통 홀 사이의 이격 거리 중 가장 큰 이격 거리를 의미할 수 있다.
다시 말해서, 실시 예의 복수의 관통 홀(320a) 각각의 직경 중 가장 작은 직경은 서로 인접한 복수의 관통 홀 사이의 이격 거리 중 가장 큰 이격 거리와 같거나 클 수 있다. 이를 통해, 실시 예는 절연층(310)에서 발생한 가스가 더욱 잘 배출될 수 있도록 하고, 이에 따른 회로 기판 및 반도체 패키지의 물리적 신뢰성을 더욱 향상시킬 수 있다.
이때, 관통 홀(320a)의 직경(W3)에 대해서는 도 3을 참조하여 설명하였으므로, 이의 상세한 설명은 생략하기로 한다.
이격 거리(W4)는 관통 홀(320a)의 직경(W3) 및 관통 전극(330)의 폭(W5)을 기준으로 결정될 수 있다. 이격 거리(W4)는 관통 홀(320a)의 직경(W3) 이하이면서, 관통 전극(330)의 폭(W5) 이상일 수 있다. 이격 거리(W4)가 관통 전극(330)의 폭(W5) 미만이면, 관통 홀(320a)과 관통 전극(330)이 수직 방향으로 중첩되거나, 수직 방향으로 중첩되는 영역의 면적이 증가할 수 있다. 그리고, 수직 방향으로 중첩되는 영역의 면적이 증가하는 경우, 관통 전극(330)의 신호 전달 특성이 저하될 수 있다. 나아가, 상술한 바와 같이, 이격 거리(W4)는 복수의 관통 홀(320a) 중 서로 인접하게 배치된 2개의 관통 홀 사이의 이격 거리를 의미할 수 있다. 예를 들어, 하나의 제1 관통 홀을 기준으로, 제1 관통 홀과 가장 인접하게 배치된 제2 관통 홀은 제1 관통 홀의 대각 수평 방향에 위치할 수 있다. 따라서, 이격 거리(W4)는 대각 수평 방향으로 상호 이격된 2개의 관통 홀들 사이의 이격 거리를 의미할 수 있다. 다만, 실시 예는 이에 한정되지 않는다. 예를 들어, 제1 관통 홀을 기준으로 이와 가장 인접한 제2 관통 홀이 가로 수평 방향(예를 들어, x축 방향) 또는 세로 수평 방향(예를 들어, y축 방향)에 위치한 경우, 이격 거리는 가로 수평 방향 세로 수평 방향에 위치한 제1 및 제2 관통 홀들 사이의 이격 거리를 의미할 수 있다.
또한, 도 10의 실시 예에 따르면, 관통 전극(330)은 절연층(310)을 관통하며 구비될 수 있고, 관통 홀(320a)을 구비한 회로층(320)은 수직 방향으로 관통 전극(330)과 중첩될 수 있다. 이때, 회로층(320)에 구비된 관통 홀(320a)은 관통 전극(330)과 수직 방향으로 중첩되지 않을 수 있다. 이때, 회로층(320)의 관통 홀(320a)이 관통 전극(330)과 수직 방향으로 중첩되는 경우, 관통 전극(330)에 의한 복수의 회로층들 사이의 전기적 연결 특성이 저하될 수 있다. 즉, 관통 전극(330)은 서로 다른 절연층에 배치된 회로층들 사이를 연결할 수 있다. 그리고, 회로층(320)의 관통 홀(320a)이 관통 전극(330)과 수직 방향으로 중첩되는 경우, 관통 전극(330)를 통해 전달되는 신호의 전송 손실이 증가할 수 있고, 이에 따른 신호 전달 신뢰성이 저하될 수 있다. 따라서, 실시 예의 회로층(320)에 구비된 관통 홀(320a)은 절연층(310)을 관통하는 관통 전극(330)과 수직 방향으로 중첩되지 않도록 하거나, 중첩되더라도 중첩되는 영역의 면적이 최소화될 수 있도록 한다.
또한, 도 11 및 도 12의 실시 예에 따르면, 회로 기판은 절연층(411)상에 배치된 제1 회로층(421)을 포함할 수 있다. 제1 회로층(421)은 복수의 영역으로 구분될 수 있다. 예를 들어, 제1 회로층(421)은 제2 회로층(422)에 구비된 복수의 회로 패턴을 기준으로 복수의 영역으로 구분될 수 있다. 예를 들어, 제1 회로층(421)은 제1 내지 제3 영역(R1, R2, R3)을 포함할 수 있다. 제1 회로층(421)의 제1 영역(R1)은 제1 영역(R1)의 상면 및 하면을 관통하는 복수의 제1 관통 홀(421-1)을 포함할 수 있다. 복수의 제1 관통 홀(421-1)은 제1 직경(W3)을 가질 수 있다. 제1 영역(R1)에 구비된 복수의 제1 관통 홀(421-1)의 회로 기판(100)의 평면 면적을 기준으로 결정될 수 있다. 이때, 제1 관통 홀(421-1)이 가지는 제1 직경(W3)은 도 3, 도 4, 도 6, 도 7, 도 8, 도 9, 및 도 10의 실시 예 중 적어도 하나의 실시 예에서 설명한 관통 홀(220a, 320a)의 직경에 대응할 수 있다.
제1 회로층(421)은 절연층(411) 상에서 제1 영역(R1)과 구분되는 제2 영역(R2)을 포함할 수 있다. 일 실시 예에서, 제1 영역(R1)과 제2 영역(R2)은 제1 회로층(421)에서, 서로 연결된 하나의 회로 패턴을 영역별로 구분한 것일 수 있다. 다른 실시 예에서, 제1 영역(R1)과 제2 영역(R2)은 제1 회로층(421)에서, 서로 이격된 복수의 회로 패턴을 기준으로 구분한 것일 수 있다. 제2 영역(R2)은 제1 회로층(421)의 제2 영역(R2)의 상면 및 하면을 관통하는 복수의 제2 관통 홀(421-2)을 포함할 수 있다. 이때, 제2 영역(R2)에 구비된 복수의 제2 관통 홀(421-2)은 제2 직경(W4)을 가질 수 있다. 이때, 제2 영역(R2)에 구비된 복수의 제2 관통 홀(421-2)의 각각의 제2 직경(W4)은 제1 영역(R1)에 구비된 복수의 제1 관통 홀(421-1)의 각각의 제1 직경(W3)과 다를 수 있다. 바람직하게, 제2 영역(R2)에 구비된 복수의 제2 관통 홀(421-2)의 각각의 제2 직경(W4)은 제1 영역(R1)에 구비된 복수의 제1 관통 홀(421-1)의 각각의 제1 직경(W3)보다 클 수 있다. 이는, 제1 회로층(421)의 제1 영역(R1) 및 제2 영역(R2)과 각각 수직 방향으로 중첩되는 제2 회로층(422)의 회로 패턴들의 특성에 의한 것일 수 있다. 제2 회로층(422)의 회로 패턴들의 특성은 회로 패턴들이 배선 밀도, 회로 패턴들의 폭/간격, 및 회로 패턴들의 기능 중 어느 하나를 의미할 수 있다. 또한, 제1 회로층(421)은 제1 영역(R1) 및 제2 영역(R2)과 구분되는 제3 영역(R3)을 포함할 수 있다. 제1 회로층(421)의 제3 영역(R3)은 절연층(411) 상에서의 배치 위치에 따라 제1 영역(R1) 및 제2 영역(R2)과 구분될 수 있다. 제3 영역(R3)은 제1 영역(R1) 및 제2 영역(R2)과 연결될 수 있으나, 이에 한정되는 것은 아니다. 제3 영역(R3)은 제1 영역(R1) 및 제2 영역(R2)과 서로 물리적 및/또는 전기적으로 분리될 수 있다. 제3 영역(R3)은 제1 영역(R1) 및 제2 영역(R2)보다 회로 기판(100)의 외곽에 인접하게 배치될 수 있다. 제3 영역(R3)은 제1 회로층(421)의 상면의 테두리 및/또는 둘레 방향을 따라 구비될 수 있다. 예를 들어, 제3 영역(R3)은 제1 회로층(421)의 상면의 테두리 영역을 의미할 수 있다. 이를 다르게 표현하면, 절연층(411)의 상면은 테두리에 인접한 테두리 영역을 포함할 수 있다. 그리고, 제3 영역(R3)은 제1 회로층(421) 중에서 절연층(411)의 테두리 영역과 수직 방향으로 중첩된 영역을 의미할 수 있다.
제1 영역(R1) 및 제2 영역(R2)은 제3 영역(R3)에 대응하는 테두리 영역의 내측 영역을 의미할 수 있다. 제1 회로층(421)의 제3 영역(R3)은 제3 영역(R3)의 상면 및 하면을 관통하는 복수의 제3 관통 홀(421-3)을 포함할 수 있다. 제3 영역(R3)에 구비된 복수의 제3 관통 홀(421-3) 각각은 제3 직경(W5)을 가질 수 있다. 이때, 제3 영역(R3)에 구비된 복수의 제3 관통 홀(421-3)의 각각의 제3 직경(W5)은 제1 영역(R1)에 구비된 복수의 제1 관통 홀(421-1)의 각각의 제1 직경(W3) 및 제2 영역(R2)에 구비된 복수의 제2 관통 홀(421-2)의 각각의 제2 직경(W4)과 다를 수 있다. 바람직하게, 제3 영역(R3)에 구비된 복수의 제3 관통 홀(421-3)의 각각의 제3 직경(W5)은 제1 영역(R1)에 구비된 복수의 제1 관통 홀(421-1)의 각각의 제1 직경(W3) 및 제2 영역(R2)에 구비된 복수의 제2 관통 홀(421-2)의 각각의 제2 직경(W4)보다 작을 수 있다.
이를 정리하면, 제1 회로층(421)은 절연층(411)상에 배치되고 수평 방향으로 제1 영역(R1), 제2 영역(R2) 및 제3 영역(R3)으로 구분될 수 있다. 그리고, 제1 회로층(421)의 제1 영역(R1)은 복수의 제1 관통 홀(421-1)을 구비할 수 있다. 또한, 제1 회로층(421)의 제2 영역(R2)은 복수의 제2 관통 홀(421-2)을 구비할 수 있다. 또한, 제1 회로층(421)의 제3 영역(R3)은 복수의 제3 관통 홀(421-3)을 구비할 수 있다. 이때, 제1 관통 홀(421-1), 제2 관통 홀(421-2) 및 제3 관통 홀(421-3) 중에서 제2 관통 홀(421-2)이 가장 큰 직경을 가질 수 있고, 제3 관통 홀(421-3)이 가장 작은 직경을 가질 수 있다. 이는, 제1 회로층(421)의 제1 영역(R1), 제2 영역(R2) 및 제3 영역(R3)의 위치 및/또는 이와 수직 방향으로 중첩되는 제2 회로층(422)의 회로 패턴의 특성에 의한 것일 수 있다.
절연층(411)의 하면에는 제2 회로층(422)이 배치될 수 있다. 제2 회로층(422)은 복수의 회로 패턴을 포함할 수 있다. 제2 회로층(422)의 회로 패턴들은 서로 다른 배선 밀도를 가질 수 있다. 배선 밀도는 절연층(411)의 특정 단위 면적 내에서 제2 회로층(422)이 차지하는 면적을 의미할 수 있다. 제2 회로층(422)은 제1 회로층(421)의 제1 영역(R1)과 수직 방향으로 중첩되는 제1 회로 패턴(422-1)을 포함할 수 있다. 또한, 제2 회로층(422)은 제1 회로층(421)의 제2 영역(R2)과 수직 방향으로 중첩되며 제1 회로 패턴(422-1)과 수평 방향으로 이격된 제2 회로 패턴(422-2)을 포함할 수 있다. 또한, 제2 회로층(422)은 제1 회로층(421)의 제3 영역(R3)과 수직 방향으로 중첩되는 제3 회로 패턴(422-3)을 포함할 수 있다. 제3 회로 패턴(422-3)은 제1 회로층(421)의 제3 영역(R3)에 대응하게, 절연층(411)의 하면의 테두리 영역에 배치된 회로 패턴을 의미할 수 있다. 또한, 제2 회로층(422)의 제1 회로 패턴(422-1) 및 제2 회로 패턴(422-2)은 제2 회로층(422) 중에서, 절연층(411)의 하면의 테두리 영역의 내측에 배치된 회로 패턴을 의미할 수 있다.
이때, 제2 회로층(422)의 제1 회로 패턴(422-1)과 제2 회로 패턴(422-2)은 서로 다른 배선 밀도를 가질 수 있다. 구체적으로, 제2 회로층(422)의 제2 회로 패턴(422-2)은 제1 회로 패턴(422-1)보다 큰 밀도를 가질 수 있다. 제2 영역에서의 회로 패턴(422-2)의 폭 및 간격은 제1 영역에서의 회로 패턴(422-1)의 폭 및 간격보다 작을 수 있다. 그리고 제2 회로 패턴(422-2)과 수직 방향으로 중첩된 제1 회로층(421)의 제2 영역(R2)에 상대적으로 작은 직경을 가진 관통 홀이 구비되는 경우, 상대적으로 높은 배선 밀도를 가진 제2 회로 패턴(422-2)들의 특성이 변화할 수 있다. 예를 들어, 제2 회로 패턴(422-2)은 임피던스 매칭을 위한 회로 패턴일 수 있다. 이때, 제2 회로 패턴(422-2)과 수직 방향으로 중첩된 제1 회로층(421)의 제2 영역(R2)에 상대적으로 작은 직경의 관통 홀이 구비되는 경우, 제2 회로층(422)의 제2 회로 패턴(422-2)이 가지는 임피던스 특성이 변화할 수 있다. 또한, 제2 회로 패턴(422-2)과 수직 방향으로 중첩된 제1 회로층(421)의 제2 영역(R2)에 상대적으로 작은 직경의 관통 홀이 구비되는 경우, 제2 회로 패턴(422-2)이 손상될 수 있다. 또한, 제2 회로 패턴(422-2)과 수직 방향으로 중첩된 제1 회로층(421)의 제2 영역(R2)에 상대적으로 작은 직경의 관통 홀이 구비되는 경우, 제3 영역(R3)에 대응하는 절연층(411) 내의 가스가 외측으로 용이하게 배출되지 못할 수 있고, 이에 의한 회로 기판 및 반도체 패키지의 물리적 특성 및/또는 전기적 특성이 저하될 수 있다.
이에 따라, 실시 예는 제1 회로층(421)의 제2 영역(R2)에 구비된 복수의 제2 관통 홀(421-2)의 각각의 제2 직경(W4)이 제1 회로층(421)의 제1 영역(R1)에 구비된 복수의 제1 관통 홀(421-1)의 각각의 제1 직경(W3)보다 크도록 한다. 이를 통해, 실시 예는 제2 회로 패턴(422-2)이 가지는 임피던스 특성에 영향을 주지 않으면서, 절연층(411)에서 발생한 가스를 제1 회로층(421)의 상측으로 배출할 수 있도록 한다.
다만, 실시 예는 제1 회로층(421)에서의 영역별로 가스 배출량에 차이를 두어, 제1 회로층(421) 아래에 배치된 제2 회로층(422)이 가지는 특성을 변화시키지 않으면서 절연층(411) 에서 발생한 가스가 완전히 제거될 수 있도록 한다.
구체적으로, 실시 예의 절연층(411)에서 발생한 가스는 상대적으로 큰 직경을 가진 제1 회로층(421)의 제2 영역(R2)에 구비된 복수의 제2 관통 홀(421-2)을 통해 집중 배출될 수 있다. 즉, 제2 영역(R2)과 절연층(411) 사이의 밀착력이 저하될 경우, 제2 회로 패턴(422-2)의 전기적 특성이 저하될 수 있다. 따라서, 실시 예는 제2 영역(R2)에 구비된 복수의 제2 관통 홀(421-2)의 직경이 다른 영역에 구비된 관통 홀의 직경보다 크도록 한다. 다만, 절연층(411)에서 발생한 가스가 제2 영역(R2)의 제2 관통 홀(421-2)을 통해서만 배출되는 경우, 절연층(411)내의 가스가 완전히 배출되지 못할 수 있다. 따라서, 실시 예는 상대적으로 작은 직경을 가진 제1 회로층(421)의 제1 영역(R1)의 제1 관통 홀(421-1)을 통해서도 절연층(411)의 가스의 일부가 배출되도록 할 수 있다. 이를 통해, 실시 예는 절연층(411)에서 발생한 가스가 회로 기판(100)의 외부로 완전히 배출될 수 있다. 따라서, 실시 예는 회로 기판 및 반도체 패키지의 물리적 특성 및/또는 전기적 특성을 더욱 향상시킬 수 있다.
나아가, 제1 회로층(421)의 제3 영역(R3)은 절연층(411)의 표면의 테두리 영역에 배치된 부분일 수 있다. 이때, 절연층(411)의 테두리 영역에 배치된 회로 패턴은 회로 기판 및 반도체 패키지의 강성에 영향을 줄 수 있다. 즉, 제1 회로층(421)의 제3 영역(R3)에 구비된 제3 관통 홀(421-3)의 직경이 크면, 절연층(411)의 테두리 영역에서의 제3 영역(R3)의 면적도 감소할 수 있다. 그리고, 테두리 영역에서의 제3 영역(R3)의 면적이 감소하는 경우, 회로 기판 및 반도체 패키지의 강성이 저하될 수 있다. 예를 들어, 테두리 영역에서의 제3 영역(R3)의 면적이 감소하는 경우, 회로 기판 및 반도체 패키지가 특정 방향으로 크게 휘어지는 문제가 발생할 수 있다. 따라서, 실시 예는 제3 영역(R3)에 구비된 제3 관통 홀(421-3)이 제1 관통 홀(421-1) 및 제2 관통 홀(421-2)의 각각의 직경보다 작은 직경을 가지도록 한다. 따라서, 실시 예는 회로 기판 및 반도체 패키지가 특정 방향으로 휘어지는 것을 방지하면서, 절연층(411)에서 발생하는 가스가 완전히 회로 기판(100)의 외부로 배출될 수 있도록 한다. 이를 통해, 실시 예는 회로 기판 및 반도체 패키지의 물리적 특성 및/또는 전기적 특성을 더욱 향상시킬 수 있다.
이때, 제3 영역(R3)이 절연층(411)의 테두리 영역에 배치된 회로 패턴인 것으로 설명하였으나, 이에 한정되지 않는다. 예를 들어, 제3 영역(R3)은 제1 영역(R1) 및 제2 영역(R2)과 다른 절연층의 테두리 영역에 배치된 회로 패턴을 의미할 수도 있을 것이다.
또한, 제1 영역(R1)에 구비된 복수의 제1 관통 홀(421-1) 중 서로 인접한 2개의 제1 관통 홀들은 제1 이격 거리를 가지고 상호 이격될 수 있다. 또한, 제2 영역(R2)에 구비된 복수의 제2 관통 홀(421-2) 중 서로 인접한 2개의 제2 관통 홀들은 제2 이격 거리를 가지고 상호 이격될 수 있다. 또한, 제3 영역(R3)에 구비된 복수의 제3 관통 홀(421-3) 중 서로 인접한 2개의 제3 관통 홀은 제3 이격 거리를 가지고 상호 이격될 수 있다. 이때, 제1 이격 거리, 제2 이격 거리 및 제3 이격 거리는 서로 다를 수 있다. 바람직하게, 제1 이격 거리, 제2 이격 거리 및 제3 이격 거리 중 제2 이격 거리가 가장 작을 수 있다. 또한, 제1 이격 거리, 제2 이격 거리 및 제3 이격 거리 중 제3 이격 거리가 가장 클 수 있다. 즉, 실시 예는 복수의 제2 관통 홀(421-2)들 사이의 이격 거리가 가장 작도록 하여, 제2 영역(R2)에 더 많은 면적의 제2 관통 홀(421-2)이 구비될 수 있도록 한다. 이에 의해, 실시 예는 절연층(411)에서 발생한 가스를 완전히 배출할 수 있도록 하면서, 제2 회로 패턴(422-2)의 전기적 특성을 향상시킬 수 있도록 한다. 또한, 실시 예는 제1 관통 홀(421-1)이 가지는 제1 이격 거리가 제2 이격 거리보다 크도록 하여, 제1 관통 홀(421-1)에 의해 절연층(411)에서 발생한 가스가 완전히 배출되도록 할 수 있다. 또한, 실시 예는 제3 관통 홀(421-3)이 가지는 제3 이격 거리가 제1 이격 거리 및 제2 이격 거리 각각보다 크도록 하여, 회로 기판 및 반도체 패키지의 강성에 영향을 주지 않으면서, 절연층(411)에서 발생한 가스가 완전히 배출되도록 할 수 있다.
이때, 제1 영역(R1)에 구비된 복수의 제1 관통 홀(421-1)의 직경(W3) 및 복수의 제1 관통 홀들 사이의 제1 이격 거리에 대해 설명하기로 한다. 그리고, 제2 영역(R2)에 구비된 복수의 제2 관통 홀(421-2)의 직경(W4) 및 이격 거리, 그리고 제3 영역(R3)에 구비된 복수의 제3 관통 홀(421-3)의 직경(W5) 및 이격 거리는 아래의 설명에 기초하여 조건을 만족하는 범위를 가질 수 있다.
제1 회로층(421)의 제1 영역(R1)에 구비된 복수의 제1 관통 홀(421-1)의 각각의 직경(W3)은 복수의 제1 관통 홀(421-1) 중 상호 인접한 2개의 제1 관통 홀 사이의 이격 거리 이상일 수 있다. 즉, 제1 영역(R1)에 구비된 복수의 제1 관통 홀(421-1)의 각각의 직경(W3)은 복수의 제1 관통 홀(421-1) 중 상호 인접한 2개의 제1 관통 홀 사이의 이격 거리와 같거나, 이보다 클 수 있다. 이때, 복수의 제1 관통 홀(421-1)의 각각의 직경(W3)이 복수의 제1 관통 홀(421-1) 중 상호 인접한 2개의 관통 홀 사이의 이격 거리보다 작으면, 절연층(411)에서 발생한 가스가 회로 기판(100)의 외측으로 용이하게 배출되지 못할 수 있다. 즉, 제1 관통 홀(421-1)의 직경(W3)이 복수의 제1 관통홀들 사이의 이격 거리보다 작다는 것은, 제1 영역(R1)에서 제1 관통 홀(421-1)이 배치된 영역을 기준으로, 제1 관통 홀(421-1)을 통해 가스가 배출될 수 있는 영역보다 복수의 제1 관통 홀(421-1) 사이의 이격 거리에서 가스가 배출되지 못하는 영역이 더 크다는 것을 의미할 수 있다. 그리고, 제1 관통 홀(421-1)의 직경(W3)보다 복수의 제1 관통 홀(421-1)들 사이의 이격 거리가 클 경우, 가스가 잘 배출되지 못하고 절연층(411) 내에 잔류할 수 있으며, 이에 따른 물리적 특성이 저하될 수 있다. 이때, 이격 거리는 복수의 제1 관통 홀(421-1)의 배치 방향을 따라 다를 수 있다. 예를 들어, 복수의 제1 관통 홀(421-1)이 제1 영역(R1)에서 대각 방향으로 지그재그 형태로 배치된 경우, 이격 거리는 복수의 제1 관통 홀 중 서로 대각 방향에 위치한 2개의 제1 관통 홀들 사이의 이격 거리를 의미할 수 있다. 또한, 복수의 제1 관통 홀(421-1)이 회로 기판의 제1 측면과 평행한 제1 수평 방향 또는 제1측면과 수직한 제2 수평 방향으로 일정 간격을 가지고 구비된 경우, 이격 거리는 복수의 제1 관통 홀 중 제1 수평 방향 또는 제2 수평 방향으로 인접하게 위치한 2개의 제1 관통 홀들 사이의 이격 거리를 의미할 수 있다.
또한, 실시 예는 제1 관통 홀(421-1)의 직경(W3)이 관통 홀들 사이의 이격 거리 이상이 되도록 하면서, 복수의 제1 관통 홀(421-1) 중 적어도 하나의 제1 관통 홀(421-1)의 직경(W3)이 일정 수준 이상을 가지도록 한다. 제1 관통 홀(421-1)의 직경(W3)은 회로 기판(100)의 평면 면적을 기준으로 결정될 수 있다. 즉, 회로 기판(100)의 평면 면적 대비 제1 관통 홀(421-1)의 직경(W3)이 너무 작을 경우, 절연층(411)에서 발생한 가스가 회로 기판(100)의 외부로 잘 배출되지 못할 수 있고, 이에 의해 절연층(411)과 회로층들 사이의 밀착력 개선 효과가 미비할 수 있다.
그리고, 이전의 실시 예에 기초하여 상술한 바와 같이, 제1 관통 홀(421-1)이 가지는 직경(W3)은 최소 165㎛ 이상일 수 있다. 나아가, 상술한 바와 같이 제1 관통 홀(421-1)의 직경(W3)은 165㎛ 내지 220㎛의 범위를 만족할 수 있다. 바람직하게, 제1 관통 홀(421-1)의 직경(W3)은 165㎛ 내지 210㎛의 범위를 만족할 수 있다. 더욱 바람직하게, 제1 관통 홀(421-1)의 직경(W3)은 165㎛ 내지 205㎛의 범위를 만족할 수 있다. 또한, 상술한 바와 같이 절연층(411)의 면적에 대한 제1 관통 홀(421-1)의 직경의 비율은, 0.0000825 내지 0.000147의 범위를 만족할 수 있다. 또한, 상술한 바와 같이 절연층(411)의 평면 면적에 대한 제1 관통 홀(421-1)의 평면 면적의 비율은, 0.00025905 내지 0.0004605의 범위를 만족할 수 있다. 즉, 절연층(411)의 평면 면적은 1500mm2 내지 2000mm2일 수 있고, 복수의 제1 관통 홀(421-1) 중 적어도 하나는 165㎛ 내지 220㎛의 직경을 가질 수 있으며, 복수의 제1 관통 홀(421-1) 중 적어도 하나의 평면 면적은 518.1㎛2 내지 690.8㎛2의 범위를 만족할 수 있다. 또한, 복수의 제1 관통 홀(421-1)들 사이의 이격 거리는 제1 관통 홀(421-1)의 직경(W3) 이하이면서, 관통 전극(430)의 폭 이상일 수 있다. 이격 거리가 관통 전극(430)의 폭 미만이면, 제1 관통 홀(421-1)과 관통 전극(430)이 수직 방향으로 중첩되거나, 수직 방향으로 중첩되는 영역의 면적이 증가할 수 있다. 그리고, 수직 방향으로 중첩되는 영역의 면적이 증가하는 경우, 관통 전극(430)의 신호 전달 특성이 저하될 수 있다.
예를 들어, 도 14의 실시 예를 참조하면, 관통 전극(430)은 절연층(411)을 관통하며 구비될 수 있다. 이때, 제1 회로층(421)에 구비된 제1 관통 홀(421-1), 제2 관통 홀(421-2), 및 제3 관통 홀(421-3)은 절연층의 제1층에 배치된 관통 전극(430)과 수직 방향으로 중첩되지 않을 수 있다. 이를 통해 실시 예는 관통 전극(430)를 통해 전달되는 신호의 전송 손실을 최소화하도록 한다. 또한, 상술한 각각의 회로 패턴에 구비된 관통 홀의 직경은 관통 전극(430)의 직경보다 클 수 있다.
즉, 제1 영역(R1)에 구비된 제1 관통 홀(421-1)의 직경(W3), 제2 영역(R2)에 구비된 제2 관통 홀(421-2)의 직경(W4) 및 제3 영역(R3)에 구비된 제3 관통 홀(421-3)의 직경(W5) 각각은 관통 전극(430)이 가지는 직경보다 클 수 있다.
이때, 관통 전극(430)은 절연층(411)의 상면에서 하면을 향하여 폭이 점진적으로 변화하는 경사를 가질 수 있다. 그리고 제1 영역(R1)에 구비된 제1 관통 홀(421-1)의 직경(W3), 제2 영역(R2)에 구비된 제2 관통 홀(421-2)의 직경(W4) 및 제3 영역(R3)에 구비된 제3 관통 홀(421-3)의 직경(W5) 각각은 관통 전극(430)에서 가장 큰 폭을 가지는 영역의 폭보다 클 수 있다.
나아가, 제1 회로층(421)은 관통 전극(430)과 수직 방향으로 중첩되는 패드(421-5)를 포함할 수 있다. 패드(421-5)는 관통 전극(430)과 연결되는 회로 패턴일 수 있다. 그리고, 제1 회로층(421)은 패드(421-5)가 배치된 영역에 대응하게 구비된 제4 관통 홀(121-4)을 포함할 수 있다. 이때, 제4 관통 홀(421-4)은 제1 내지 제3 관통 홀(421-1, 421-2, 421-3)과 다른 기능을 할 수 있다.
즉, 제1 내지 제3 관통 홀(421-1, 421-2, 421-3)은 가스 배출구로 기능할 수 있고, 이에 따라 제1 내지 제3 관통 홀(421-1, 421-2, 421-3)의 내측 영역에는 제1 회로층(421)의 다른 회로 패턴이 배치되지 않을 수 있다. 즉, 제1 내지 제3 관통 홀(421-1, 421-2, 421-3)의 내측 영역에는 이의 상부에 배치된 다른 절연층으로 채워질 수 있다.
이와 다르게, 제4 관통 홀(421-4)은 패드(421-5)와 다른 회로 패턴 사이를 이격시키기 위한 이격 영역일 수 있다. 따라서, 제4 관통 홀(421-4)의 내측 영역에는 제1 회로층(421)의 다른 회로 패턴이 배치될 수 있다. 예를 들어, 제4 관통 홀(421-4)의 내측 영역에는 제1 회로층(421)의 패드(421-5)가 배치될 수 있다. 그리고 제4 관통 홀(421-4)의 직경은 제1 내지 제3 관통 홀(421-1, 421-2, 421-3)의 직경보다 작을 수 있다.
이를 정리하면, 제1 영역(R1)에 구비된 제1 관통 홀(421-1)의 직경(W3), 제2 영역(R2)에 구비된 제2 관통 홀(421-2)의 직경(W4) 및 제3 영역(R3)에 구비된 제3 관통 홀(421-3)의 직경(W5) 각각은 관통 전극(430)의 폭보다 클 수 있다. 그리고, 제2 영역(R2)에 구비된 제2 관통 홀(421-2)의 직경(W4)은 제1 영역(R1)에 구비된 제1 관통 홀(421-1)의 직경(W3) 및 제3 영역(R3)에 구비된 제3 관통 홀(421-3)의 직경(W5) 각각보다 클 수 있다. 또한, 제3 영역(R3)에 구비된 제3 관통 홀(421-3)의 직경(W5)은 제1 영역(R1)에 구비된 제1 관통 홀(421-1)의 직경(W3) 및 제2 영역(R2)에 구비된 제2 관통 홀(421-2)의 직경(W4) 각각보다 작을 수 있다. 또한, 복수의 제2 관통 홀(421-2) 중 서로 인접한 2개의 제2 관통 홀들 사이의 이격 거리는 복수의 제1 관통 홀(421-1) 중 서로 인접한 2개의 제1 관통 홀들 사이의 이격 거리 및 복수의 제3 관통 홀(421-3) 중 서로 인접한 2개의 제3 관통 홀들 사이의 이격 거리(W8) 각각보다 작을 수 있다. 또한, 복수의 제3 관통 홀(421-3) 중 서로 인접한 2개의 제3 관통 홀들 사이의 이격 거리는 복수의 제1 관통 홀(421-1) 중 서로 인접한 2개의 제1 관통 홀들 사이의 이격 거리 및 복수의 제2 관통 홀(421-2) 중 서로 인접한 2개의 제2 관통 홀들 사이의 이격 거리 각각보다 클 수 있다. 나아가, 각각의 관통 홀의 직경 및 각각의 관통 홀의 이격 거리는 관통 전극(430)의 폭보다 클 수 있다.
한편, 상술한 발명의 특징을 갖는 회로기판이 스마트폰, 서버용 컴퓨터, TV 등의 IT 장치나 가전제품에 이용되는 경우, 신호 전송 또는 전력 공급 등의 기능을 안정적으로 할 수 있다. 예를 들어, 본 발명의 특징을 갖는 회로기판이 반도체 패키지 기능을 수행하는 경우, 반도체 칩을 외부의 습기나 오염 물질로부터 안전하게 보호하는 기능을 할 수 있고, 누설전류 혹은 단자 간의 전기적인 단락 문제나 혹은 반도체 칩에 공급하는 단자의 전기적인 개방의 문제를 해결할 수 있다. 또한, 신호 전송의 기능을 담당하는 경우 노이즈 문제를 해결할 수 있다. 이를 통해, 상술한 발명의 특징을 갖는 회로기판은 IT 장치나 가전제품의 안정적인 기능을 유지할 수 있도록 함으로써, 전체 제품과 본 발명이 적용된 회로기판은 서로 기능적 일체성 또는 기술적 연동성을 이룰 수 있다.
상술한 발명의 특징을 갖는 회로기판이 차량 등의 운송 장치에 이용되는 경우, 운송 장치로 전송되는 신호의 왜곡 문제를 해결할 수 있고, 또는 운송 장치를 제어하는 반도체 칩을 외부로부터 안전하게 보호하고, 누설전류 혹은 단자 간의 전기적인 단락 문제나 혹은 반도체 칩에 공급하는 단자의 전기적인 개방의 문제를 해결하여 운송 장치의 안정성을 더 개선할 수 있다. 따라서, 운송 장치와 본 발명이 적용된 회로기판은 서로 기능적 일체성 또는 기술적 연동성을 이룰 수 있다.
이상에서 실시 예들에 설명된 특징, 구조, 효과 등은 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용은 실시 예의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 실시 예를 한정하는 것이 아니며, 실시 예가 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 설정하는 실시 예의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 절연층; 및
    상기 절연층 상에 배치되고, 상기 절연층과 접촉하는 하면 및 상기 하면과 마주보는 상면을 구비한 회로층을 포함하고,
    상기 회로층은 상기 상면 및 상기 하면을 관통하는 복수 개의 관통 홀을 구비하고,
    상기 복수의 관통 홀의 각각의 직경은 상기 복수의 관통 홀 중 서로 인접하게 배치된 2개의 관통홀 간의 이격 거리 이상인, 회로 기판.
  2. 제1항에 있어서,
    상기 복수의 관통 홀의 각각의 직경은 서로 다르고,
    상기 복수의 관통 홀 중 서로 인접하게 배치된 각각의 2개의 관통 홀 사이의 이격 거리는 서로 다르며,
    상기 복수의 관통 홀 중에서 가장 작은 관통 홀의 직경은, 상기 서로 인접하게 배치된 각각의 2개의 관통 홀 간의 이격 거리 중 가장 큰 이격 거리 이상인, 회로 기판.
  3. 제1항에 있어서,
    상기 절연층의 평면 면적에 대한 상기 관통 홀의 직경의 비율은 0.0000825 내지 0.000147의 범위를 만족하는, 회로 기판.
  4. 제1항에 있어서,
    상기 절연층의 평면 면적에 대한 상기 관통 홀의 평면 면적의 비율은 0.00025905 내지 0.0004605의 범위를 만족하는, 회로 기판.
  5. 제3항 또는 제4항에 있어서,
    상기 절연층의 평면 면적은 1500mm2 내지 2000mm2인 회로 기판.
  6. 제3항 또는 제4항에 있어서,
    상기 복수의 관통 홀 중 적어도 하나는 165㎛ 내지 220㎛의 직경을 가지는, 회로 기판.
  7. 제3항 또는 제4항에 있어서,
    상기 복수의 관통 홀 중 적어도 하나의 평면 면적은 518.1㎛2 내지 690.8㎛2의 범위를 만족하는, 회로 기판.
  8. 제3항에 있어서,
    상기 회로층은 수평 방향으로 이격된 복수의 회로 패턴을 구비하고,
    상기 복수의 관통 홀은 상기 복수의 회로 패턴에 각각 구비되며,
    상기 복수의 회로 패턴들 사이의 간격은 상기 관통 홀의 직경보다 작은, 회로 기판.
  9. 제1항에 있어서,
    상기 절연층을 관통하고 상기 회로층과 연결된 관통 전극을 더 포함하고,
    상기 관통 홀의 직경은 상기 관통 전극의 수평 방향의 폭보다 큰, 회로 기판.
  10. 제9항에 있어서,
    상기 복수의 관통 홀 각각은 상기 회로층의 외측면과 연결되지 않고 상기 관통 전극과 수직 방향으로 중첩되지 않는, 회로 기판.
PCT/KR2023/012495 2022-08-23 2023-08-23 회로 기판 및 이를 포함하는 반도체 패키지 WO2024043693A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020220105318A KR20240027289A (ko) 2022-08-23 2022-08-23 반도체 패키지
KR10-2022-0105318 2022-08-23
KR1020220105922A KR20240027990A (ko) 2022-08-24 2022-08-24 반도체 패키지
KR10-2022-0105922 2022-08-24
KR1020220109537A KR20240030463A (ko) 2022-08-30 2022-08-30 반도체 패키지
KR10-2022-0109537 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024043693A1 true WO2024043693A1 (ko) 2024-02-29

Family

ID=90013774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012495 WO2024043693A1 (ko) 2022-08-23 2023-08-23 회로 기판 및 이를 포함하는 반도체 패키지

Country Status (1)

Country Link
WO (1) WO2024043693A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136347A (ja) * 2003-10-31 2005-05-26 Denso Corp 多層基板及びその製造方法
KR100972589B1 (ko) * 2009-12-08 2010-07-28 에스맥 (주) 가스배출수단을 구비한 bga용 인쇄회로기판
KR101003391B1 (ko) * 2008-04-11 2010-12-23 삼성전기주식회사 인쇄회로기판의 홀 가공방법
KR20120074902A (ko) * 2010-12-28 2012-07-06 에스케이하이닉스 주식회사 반도체 장치의 패턴 형성방법
JP2020004791A (ja) * 2018-06-26 2020-01-09 新光電気工業株式会社 配線基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136347A (ja) * 2003-10-31 2005-05-26 Denso Corp 多層基板及びその製造方法
KR101003391B1 (ko) * 2008-04-11 2010-12-23 삼성전기주식회사 인쇄회로기판의 홀 가공방법
KR100972589B1 (ko) * 2009-12-08 2010-07-28 에스맥 (주) 가스배출수단을 구비한 bga용 인쇄회로기판
KR20120074902A (ko) * 2010-12-28 2012-07-06 에스케이하이닉스 주식회사 반도체 장치의 패턴 형성방법
JP2020004791A (ja) * 2018-06-26 2020-01-09 新光電気工業株式会社 配線基板

Similar Documents

Publication Publication Date Title
WO2021251795A1 (ko) 회로기판
EP2856501A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2024043693A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2021242012A1 (ko) 패키지기판
WO2021251794A1 (ko) 회로기판
WO2021235920A1 (ko) 회로기판
WO2024035111A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2024058641A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2021080325A1 (ko) 인쇄회로기판
WO2024025401A1 (ko) 회로기판 및 이를 포함하는 반도체 패키지
WO2024076211A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2024072186A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2024072190A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2024112180A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2023239162A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2024085687A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2024128875A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2024072184A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2024014877A1 (ko) 반도체 패키지
WO2024035176A1 (ko) 반도체 패키지 기판 및 이를 포함하는 반도체 패키지
WO2023239172A1 (ko) 반도체 패키지
WO2024035151A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2024039228A1 (ko) 회로 기판 및 이를 포함하는 반도체 패키지
WO2023239224A1 (ko) 회로기판 및 이를 포함하는 반도체 패키지
WO2023043172A1 (ko) 회로기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857725

Country of ref document: EP

Kind code of ref document: A1