WO2024041327A1 - 一种节能型含盐含重氨氮废水处理系统及工艺 - Google Patents

一种节能型含盐含重氨氮废水处理系统及工艺 Download PDF

Info

Publication number
WO2024041327A1
WO2024041327A1 PCT/CN2023/110483 CN2023110483W WO2024041327A1 WO 2024041327 A1 WO2024041327 A1 WO 2024041327A1 CN 2023110483 W CN2023110483 W CN 2023110483W WO 2024041327 A1 WO2024041327 A1 WO 2024041327A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
wastewater treatment
energy
deamination
evaporator
Prior art date
Application number
PCT/CN2023/110483
Other languages
English (en)
French (fr)
Inventor
吴嘉
Original Assignee
吴嘉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴嘉 filed Critical 吴嘉
Publication of WO2024041327A1 publication Critical patent/WO2024041327A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/022Preparation of aqueous ammonia solutions, i.e. ammonia water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/041Treatment of water, waste water, or sewage by heating by distillation or evaporation by means of vapour compression
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/043Details
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery

Definitions

  • the invention belongs to the technical field of wastewater treatment and energy saving, and specifically relates to an energy-saving salt-containing and heavy ammonia nitrogen-containing wastewater treatment system and process.
  • the preparation process of ternary cathode materials for lithium-ion batteries mainly uses the complex precipitation method to synthesize precursor materials.
  • Ammonia is added to the mixed aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate, and then NaOH solution is added to adjust the pH value of the aqueous solution to make the nickel , cobalt and manganese metal ions form hydroxide precipitates, which are then filtered, dehydrated, heated and aged to obtain a ternary precursor.
  • the wastewater produced by this process contains large amounts of ammonium ions (NH 4 + ) and free ammonia (NH 3 ), unprecipitated nickel, cobalt and manganese ions, as well as Na + and SO 4 2- ions.
  • NH 4 + ammonium ions
  • NH 3 free ammonia
  • unprecipitated nickel, cobalt and manganese ions as well as Na + and SO 4 2- ions.
  • it In order for wastewater to meet discharge standards, it must undergo deamination, degravity and desalination treatments.
  • heavy metal ions are complexed with ammonia in salt-containing wastewater containing heavy ammonia nitrogen
  • heavy metal ions can only be removed by first deaminating the metal ions in the wastewater, and only by removing the heavy metal ions completely can the heavy metals in the inorganic salt obtained from the desalting process be removed.
  • the ions do not exceed the standard, so the treatment process of salt-containing and heavy ammonia-nitrogen wastewater must be deamination-de-gravity-desalination.
  • the patent "A treatment method and system for wastewater from the production of ternary cathode materials” uses a process that combines membrane separation, solid-liquid separation and evaporation crystallization to treat the salty wastewater produced during the production of ternary cathode material precursors.
  • For heavy ammonia nitrogen wastewater first, use sulfuric acid solution as the absorbent and use membrane separation to convert the ammonia nitrogen in the wastewater into ammonium sulfate to achieve deamination; after deamination, the heavy metal ions in the wastewater break down the complex and form precipitates with alkali, which are removed by filtration; after filtration The supernatant liquid is crystallized by evaporation to obtain sodium sulfate.
  • This method can effectively treat the salt-containing wastewater containing heavy ammonia nitrogen produced during the production process of the ternary cathode material precursor.
  • the removal of ammonia nitrogen by membrane separation is not complete, and there are operational problems such as membrane leakage and contamination, as well as solid waste generated by failed membranes. and other secondary environmental issues.
  • the current industry generally uses the method of stripping and rectification to deaminate salt-containing heavy ammonia nitrogen-containing wastewater + filtration degravity + evaporation crystallization desalination to treat salt-containing heavy ammonia nitrogen-containing wastewater.
  • the wastewater is first adjusted to pH and then passed into rectification.
  • the bottom of the tower is heated by steam, the ammonia product is extracted from the top of the tower, and the deamination wastewater is extracted from the bottom of the tower.
  • the pH value of the deamination wastewater is adjusted with alkali solution to turn heavy metal ions into hydroxide precipitates, and is removed by filtration to obtain
  • the salty waste liquid is then desalted through evaporation and crystallization.
  • the main problems include: 1) The heat pumps of the MVR evaporation-crystallization desalination process and the heat pump deamination process are independent of each other, which is not conducive to improving compression. The efficiency of the machine; 2) In the MVR evaporation-crystallization desalination process, the high-temperature condensate water obtained by condensing the heating steam in the evaporator is directly discharged, causing a waste of energy; 3) The filtration and degravity process is operated at normal temperature, and the deamination wastewater enters the degravity process. Cooling is required before the process, and deduplication wastewater needs to be reheated after entering the desalination process, resulting in energy loss.
  • the purpose of the present invention is to provide a heat integration solution for the existing salt-containing and heavy ammonia nitrogen-containing wastewater treatment process, which can effectively achieve energy saving in the treatment of salt-containing and heavy ammonia nitrogen-containing wastewater.
  • the system includes a wastewater treatment subsystem and a heat pump subsystem.
  • the wastewater treatment subsystem includes a deamination tower 01, a reboiler 03, a filter 04, and an evaporator.
  • Device 05 and evaporator separator 06 the bottom of the deamination tower 01 is connected to the cold side of the reboiler 03, the bottom of the deamination tower 01 is connected to the filter 04 and the evaporation separator 06 in sequence through pipelines, the evaporator
  • the cold side of the reactor 05 is connected to the evaporator separator 06.
  • the heat pump subsystem includes a first-level condenser 02 and a compressor 07.
  • the hot side of the first-level condenser 02 is connected to the top of the deamination tower 01.
  • the first-level condensation The cold side of the boiler 02, the compressor 07, and the hot side of the reboiler 03 are connected through pipelines in sequence.
  • the evaporator separator 06 is connected to the inlet of the compressor 07 , and the hot side of the evaporator 05 is connected to the outlet of the compressor 07 .
  • the wastewater treatment subsystem also includes a raw water preheater 10.
  • the raw water preheater 10 is installed on the raw water inlet pipe.
  • the hot side is connected to the hot side of the evaporator 05, and the cold side is connected to the deamination tower 01.
  • the wastewater treatment subsystem also includes a secondary condenser 08 and a spray liquid cooler 09.
  • the hot side of the secondary condenser 08 is connected to the hot side of the primary condenser 02.
  • the hot side of the secondary condenser 08 is connected with Ammonia water discharge pipe and ammonia water spray pipe, the spray liquid cooler 09 is arranged on the ammonia water spray pipe.
  • the wastewater treatment subsystem includes an alkali adding device, and the alkali adding device is arranged on the inlet pipe of the filter 04; the wastewater treatment subsystem includes an acid adding device, and the acid adding device is arranged on the evaporator separator 06. on the import pipeline.
  • the wastewater treatment subsystem includes one or more evaporative separators and corresponding one or more evaporators.
  • An energy-saving salt-containing and heavy ammonia nitrogen-containing wastewater treatment process which includes the following steps:
  • the salt-containing wastewater containing heavy ammonia nitrogen is passed into the deamination tower for deamination.
  • Ammonia-containing steam is extracted from the top of the tower, and the ammonia-containing steam enters the first stage.
  • the condenser exchanges heat with the heat pump circulating water. After partial condensation, dilute ammonia water and concentrated ammonia vapor are obtained. Part or all of the dilute ammonia water refluxes into the deamination tower.
  • the concentrated ammonia vapor enters the secondary condenser, and after condensation and spray absorption, the ammonia water product is obtained;
  • the heat pump circulating water forms heat pump circulating steam after heat exchange in the first-stage condenser. After being pressurized and heated by the compressor to form compressed steam, it enters the reboiler and exchanges heat with the deamination wastewater at the bottom of the deamination tower for condensation. Then return to the primary condenser;
  • the heat pump cycle steam from the first-stage condenser is mixed with the water vapor extracted from the evaporation separator and then pressurized and heated by the compressor to form compressed steam, which is used as the heat source of the evaporator and reboiler respectively.
  • the compressed steam is evaporated during evaporation. After the heat exchange in the device, it becomes condensed water and is discharged out. The compressed steam exchanges heat and condenses in the reboiler and then returns to the primary condenser.
  • the wastewater after deamination at the bottom of the tower first adds alkali to adjust the pH value before entering the filter; after deweighting, the wastewater first adds acid to adjust the pH value before entering the evaporation separator.
  • the condensed water discharged from the evaporator exchanges heat with the feed wastewater to recover heat and then be discharged externally.
  • the evaporation of the wastewater after degravity is set to single-effect evaporation or multiple-effect evaporation according to actual needs.
  • the first effect uses compressed steam as the heat source
  • the wastewater is evaporated step by step
  • the steam generated by the final effect evaporation is directed to the compressor for compression.
  • the invention discloses an energy-saving salt-containing and heavy ammonia nitrogen-containing wastewater treatment system.
  • the heat pump for the deamination and desalination processes of ammonia nitrogen wastewater treatment is integrated into a heat pump system.
  • the heat pump circulating water is condensed at the top of the deamination tower. After heat exchange, a heat pump circulation steam is formed, and together with the steam extracted from the top of the evaporator separator, it enters the compressor to be pressurized and heated.
  • the obtained compressed steam is used as the heat source of the reboiler and evaporator respectively, effectively reducing the energy consumption of the wastewater treatment process. Consumption. Integrating the heat pumps for the deamination and desalination processes into one heat pump system can significantly improve the efficiency of the heat pump compressor and achieve energy saving.
  • the high-temperature condensed water generated in the evaporator is used to preheat the feed raw water, realizing waste heat utilization and improving energy utilization efficiency.
  • Figure 1 is an energy-saving salt-containing and heavy ammonia nitrogen-containing wastewater treatment system according to the present invention
  • Figure 2 is an energy-saving salt-containing and heavy ammonia nitrogen-containing wastewater treatment system according to Embodiment 1 of the present invention
  • Figure 3 is the process flow used in Comparative Example 1;
  • Figure 4 shows the process flow used in Comparative Example 2.
  • deamination tower 01 primary condenser 02, reboiler 03, filter 04, evaporator 05, evaporator separator 06, compressor 07, secondary condenser 08, spray liquid cooler 09, Raw water preheater 10, compressor 11, crystallizer 12, centrifuge 13, pre-filter cooler 14.
  • FIG. 1 shows an energy-saving salt-containing and heavy ammonia nitrogen-containing wastewater treatment system.
  • the system includes a wastewater treatment subsystem and a heat pump subsystem.
  • the wastewater treatment subsystem includes a deamination tower 01, a reboiler 03, a filter Boiler 04, evaporator 05 and evaporator separator 06, the bottom of the deamination tower 01 is connected to the cold side of the reboiler 03, the bottom of the deamination tower 01 is connected to the filter 04 and the evaporation separator 06 in turn through pipelines , the cold side of the evaporator 05 is connected to the evaporation separator 06, the heat pump subsystem includes a first-level condenser 02 and a compressor 07, the hot side of the first-level condenser 02 is connected to the top of the deamination tower 01, so The cold side of the first-stage condenser 02, the compressor 07, and the hot side of the reboiler 03 are connected in sequence
  • the evaporator separator 06 is connected to the inlet of the compressor 07 , and the hot side of the evaporator 05 is connected to the outlet of the compressor 07 .
  • the wastewater treatment subsystem also includes a raw water preheater 10.
  • the raw water preheater 10 is installed on the raw water inlet pipe.
  • the hot side is connected to the hot side of the evaporator 05, and the cold side is connected to the deamination tower 01.
  • the wastewater treatment subsystem also includes a secondary condenser 08 and a spray liquid cooler 09.
  • the secondary condenser The hot side of 08 is connected to the hot side of the primary condenser 02.
  • the hot side of the secondary condenser 08 is connected with an ammonia water discharge pipe and an ammonia water spray pipe.
  • the spray liquid cooler 09 is arranged on the ammonia water spray pipe.
  • the wastewater treatment subsystem includes an alkali adding device, which is installed on the inlet pipe of filter 04; the wastewater treatment subsystem includes an acid adding device, which is installed on the inlet pipe of evaporator separator 06. .
  • the vapor compression process in the heat pump subsystem can be set to a single compressor according to actual needs, or it can be composed of multiple compressors connected in series or in parallel.
  • the energy-saving salt-containing heavy ammonia nitrogen-containing wastewater treatment process using the above-mentioned energy-saving salt-containing heavy ammonia nitrogen-containing wastewater treatment system includes the following steps:
  • Ammonia-containing steam is extracted from the top of the tower.
  • the ammonia-containing steam enters the first-level condenser 02 to exchange heat with the heat pump circulating water. After partial condensation, dilute ammonia water is obtained.
  • concentrated ammonia steam dilute ammonia water partially or completely refluxes into the deamination tower 01.
  • the concentrated ammonia steam enters the secondary condenser 08, and after condensation and spray absorption, the ammonia water product is obtained;
  • the heat pump circulating water forms heat pump circulating steam after heat exchange in the first-level condenser 02. After being pressurized and heated by the compressor 07 to form compressed steam, it enters the reboiler 03 and mixes with the deamination water at the bottom of the deamination tower 01. The wastewater is returned to the primary condenser 02 after heat exchange and condensation;
  • a part of the deamination wastewater at the bottom of the deamination tower 01 is heated to partial vaporization in the reboiler 03 and returned to the deamination tower 01. A part of it enters the filter 04 to separate and remove heavy metal precipitation. After deweighting, the wastewater enters evaporation in turn. Separator 06 and evaporator 05, after evaporation, water vapor and crystallized salt are obtained respectively.
  • the heat pump cycle steam from the primary condenser 02 is mixed with the water vapor extracted from the evaporator separator 06 and then pressurized and heated by the compressor 07 to form compressed steam, which is used as the heat source of the evaporator 05 and reboiler 03 respectively.
  • the compressed steam After exchanging heat in the evaporator 05, it becomes condensed water. It exchanges heat with the feed wastewater to recover heat and then discharges it out.
  • the compressed steam exchanges heat and condenses in the reboiler 03 and returns to the primary condenser 02.
  • the wastewater after deamination at the bottom of the tower first adds alkali to adjust the pH value and then enters the filter 04.
  • the wastewater is first added with acid to adjust the pH value and then enters the evaporation separator 06.
  • Figure 2 shows an optimized energy-saving salt-containing and heavy ammonia nitrogen-containing wastewater treatment system.
  • the system shown in Figure 2 is different from the system shown in Figure 1 in that: the heat pump subsystem in Figure 2 also includes a compressor 11, and the first stage The cold side of the condenser 02, the compressor 07, and the hot side of the evaporator 05 are connected in sequence through pipelines, and the hot sides of the compressor 07, compressor 11, and reboiler 03 are connected in sequence through pipelines.
  • the system shown in Figure 2 is different from the system shown in Figure 1 in that the system shown in Figure 2 also includes a crystallizer 12 and a centrifugal separator 13 for further crystallizing the inorganic salt product.
  • the evaporation separator 06, crystallizer 12 and The centrifuges 13 are connected cyclically.
  • the difference in process is that the heat pump circulating water forms heat pump circulating steam after heat exchange in the first-level condenser 02, which is different from the steam from the steam.
  • the water vapor extracted from the separator 06 is mixed and then pressurized and heated by the compressor 07 to form compressed steam. Part of it is used as the heat source of the evaporator 05, and a part is pressurized and heated by the compressor 11 to form a secondary compressed steam, which is used as a reboiler.
  • 03 heat source; the inorganic salt products extracted from the evaporator separator 06 are further separated and purified through the crystallizer 12 and the centrifugal separator 13, and the separated liquid is returned to the evaporator separator 06 for evaporation treatment.
  • the system shown in Figure 2 is used to remove the following wastewater: the inlet flow rate of salt-containing wastewater containing heavy ammonia nitrogen is 120m 3 /h, the ammonia nitrogen content is 7005.68mg/L, the Na + content is 60023.20mg/L, and the SO 4 2- content is 120004.12mg/L, heavy metal ion content: Ni 2+ is 315.96mg/L, Co 2+ is 78.86mg/L, Mn 3+ is 80.97mg/L.
  • the ammonia nitrogen content in the obtained water is 7.82mg/L
  • the Na + content is 344.41mg/L
  • the SO 4 2- content is 546.71mg/L
  • the heavy metal content Ni 2+ is 0.53 mg/L
  • Co 2+ is 0.72mg/L
  • Mn 3+ is 1.16mg/L, reaching the national first-level emission standard.
  • the mass concentration of the ammonia water product obtained was 20.28%, which met the concentration requirements of industrial ammonia water.
  • the electricity consumption per ton of ammonia nitrogen wastewater treatment is 60.31 degrees, the steam consumption is zero, and the overall energy consumption is significantly reduced.
  • Comparative Example 1 uses the system as shown in Figure 3.
  • the difference in process between Comparative Example 1 and Application Example 1 is that the heat pump cycle steam flowing out of the first-level condenser 02 enters the compressor 07 and is compressed and heated.
  • the compressed steam obtained Send directly to reboiler 03.
  • the inlet flow rate of the ternary cathode material precursor wastewater is 120m 3 /h
  • the ammonia nitrogen content is 7005.68mg/L
  • the Na + content is 60023.20mg/L
  • the SO 4 2- content is 120004.12mg/L
  • Co 2+ is 78.86 mg/L
  • Mn 3+ is 80.97 mg/L.
  • the ammonia nitrogen content in the deamination water obtained was 8.12mg/L
  • the Na + content was 352.43mg/L
  • the SO 4 2- content was 556.78mg/L
  • the heavy metal content Ni 2+ was 0.51mg/L.
  • Co 2+ is 0.72 mg/L
  • Mn 3+ is 1.13 mg/L.
  • the mass concentration of the ammonia water product obtained was 20.57%, which met the concentration requirements of industrial ammonia water.
  • the efficiency of the steam compressor is lower than in Application Example 1, and the power consumption increases.
  • the power consumption per ton of ammonia nitrogen wastewater processed is 81.73 degrees, and the steam consumption is zero.
  • Comparative Example 2 adopts the system as shown in Figure 4.
  • the difference in process from Application Example 1 is that the deweighting adopts a normal temperature filtration process, and the deamination water flowing out from the bottom of the deamination tower 01 is cooled by the pre-filtration cooler 14 to about 40°C, and then adjust the pH with alkali solution to enter the filter 04; pass the raw steam into the hot side of the evaporator 05 to supplement the heat.
  • the wastewater inlet flow rate is 120m 3 /h
  • the ammonia nitrogen content is 7005.68mg/L
  • the Na + content is 60023.20mg/L
  • the SO 4 2- content is 120004.12mg/L
  • the heavy metal ion content Ni 2+ is 315.96mg/L
  • Co 2+ is 78.86mg/L
  • Mn 3+ is 80.97mg/L.
  • the ammonia nitrogen content in the deamination water obtained was 7.91 mg/L, and the Na + content was 352.38 mg/L, SO 4 2- content is 557.82mg/L, heavy metal content: Ni 2+ is 0.48mg/L, Co 2+ is 0.65mg/L, Mn 3+ is 1.09mg/L.
  • the mass concentration of the ammonia water product obtained was 20.16%, which met the concentration requirements of industrial ammonia water.
  • the energy consumption of this embodiment has increased compared with Application Embodiment 1.
  • the electricity consumption per ton of wastewater processed is 68.14 degrees. Since the degravity process is performed at low temperature, resulting in The energy consumption of the desalination process increases, and the steam generated by the heat pump subsystem cannot meet the needs of the entire system. An additional 0.07kg of raw steam (0.40MPa) is required for each ton of wastewater treated for the desalination process.
  • this technical solution integrates the energy of the three processes of deamination, degravity, and desalination, significantly improving the process energy integration and greatly reducing the system energy consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

一种节能型含盐含重氨氮废水处理系统及工艺,包括废水处理子系统和热泵子系统,废水处理子系统通过脱氨、脱重、脱盐过程将废水处理达标,通过热泵子系统将脱氨、脱重、脱盐三个过程的能量集成使用,工艺能量集成度明显提高,大大降低了系统能耗,有效实现了含盐含重氨氮废水处理过程的能源节约。

Description

一种节能型含盐含重氨氮废水处理系统及工艺 技术领域
本发明属于废水处理节能技术领域,具体涉及一种节能型含盐含重氨氮废水处理系统及工艺。
背景技术
在化工、冶金、电镀、材料制备等生产过程中,常常产生同时含有重金属离子、无机盐和氨氮的工业废水。如:锂离子电池三元正极材料制备过程主要采用络合沉淀法合成前驱体材料,在硫酸镍、硫酸钴和硫酸锰的混合水溶液中加入氨水,然后加入NaOH溶液调节水溶液的pH值,使镍、钴和锰金属离子形成氢氧化物沉淀,然后过滤脱水、加热陈化得到三元前驱体。此过程产生的废水中含有大量的铵离子(NH4 +)和游离氨(NH3),未沉淀的镍、钴和锰离子,以及Na+和SO4 2-离子。为使废水达标排放,必须对其进行脱氨、脱重和脱盐处理。
鉴于含盐含重氨氮废水中重金属离子与氨络合,只有首先脱氨使废水中的金属离子破络才能脱除重金属离子,而只有重金属离子脱除干净才能使脱盐工序得到的无机盐中重金属离子不超标,因而含盐含重氨氮废水的处理工序必须为脱氨-脱重-脱盐。专利“一种三元正极材料生产废水的处理方法及处理系统”(ZL202010819833.6)采用膜分离、固液分离和蒸发结晶相结合的工艺处理三元正极材料前驱体生产过程产生的含盐含重氨氮废水,首先,以硫酸溶液为吸收剂,采用膜分离将废水中氨氮转化为硫酸铵,实现脱氨;脱氨后废水中重金属离子破络并与碱形成沉淀,通过过滤去除;过滤后上清液通过蒸发结晶,得到硫酸钠。本方法可有效处理三元正极材料前驱体生产过程产生的含盐含重氨氮废水,但膜分离除氨氮并不彻底,且存在膜的渗漏和污染等运行问题,以及失效膜产生的固废等次生环境问题。据此,目前工业上对含盐含重氨氮废水普遍采用汽提精馏法脱氨+过滤脱重+蒸发结晶脱盐的方法处理含盐含重氨氮废水,先将废水调节pH后通入精馏塔,塔底通入蒸汽加热,塔顶采出氨水产品,塔底采出脱氨废水,脱氨废水用碱液调节pH值使重金属离子变为氢氧化物沉淀,经过滤脱除,得到的含盐废液再通过蒸发结晶脱盐。在上述脱氨、脱重和脱盐三个工序中,汽提精馏脱氨和蒸发结晶脱盐的能耗都很高。
因此,通过开发新技术降低能耗是含盐含重氨氮废水处理工艺技术进步的关键。发明人所申请专利“一种氨氮废水处理和回收氨的方法及装置”(申请号202010819833.6)采用了脱氨精馏塔塔顶蒸汽压缩闭式热泵技术,综合能耗比原有技术可降低30%以上。而目前工业上 的蒸发结晶脱盐工序也普遍采用了MVR蒸发工艺,使该工序的能耗大大降低。
然而,现有含盐含重氨氮废水处理工艺的三个工序相对独立,热集成程度差,主要问题包括:1)MVR蒸发-结晶脱盐工序和热泵脱氨工序的热泵相互独立,不利于提高压缩机的效率;2)MVR蒸发-结晶脱盐工序中,加热蒸汽在蒸发器中冷凝得到的高温冷凝水直接外排,造成能量浪费;3)过滤脱重工序在常温操作,脱氨废水进入脱重工序之前需进行冷却,而脱重废水在进入脱盐工序后又需重新加热,造成能量损失。
因此,针对现有含盐含重氮废水处理工艺中热集成程度低、能耗高的问题,面向我国工业过程节能减碳的重大需求,亟需开发节能型处理工艺,助力国家双碳目标的实现。
发明内容
有鉴于此,本发明的目的在于提供一种针对现有含盐含重氨氮废水处理工艺的热集成解决方案,该方案可有效实现含盐含重氨氮废水处理能源节约。
为达到上述目的,本发明提供如下技术方案:
1.一种节能型含盐含重氨氮废水处理系统,所述系统包括废水处理子系统和热泵子系统,所述废水处理子系统包括脱氨塔01、再沸器03、过滤器04、蒸发器05和蒸发分离器06,所述脱氨塔01塔底与再沸器03冷侧连接,所述脱氨塔01塔底与过滤器04、蒸发分离器06依次通过管道连接,所述蒸发器05冷侧与蒸发分离器06连接,所述热泵子系统包括一级冷凝器02和压缩机07,所述一级冷凝器02热侧与脱氨塔01塔顶连接,所述一级冷凝器02冷侧、压缩机07、再沸器03热侧依次通过管道连接。
优选的,所述蒸发分离器06与压缩机07进口连接,所述蒸发器05热侧与压缩机07出口连接。
优选的,所述废水处理子系统还包括原水预热器10,所述原水预热器10设置于原水进口管道上,热侧与蒸发器05热侧连接,冷侧与脱氨塔01连接。
优选的,所述废水处理子系统还包括二级冷凝器08和喷淋液冷却器09,二级冷凝器08热侧与一级冷凝器02热侧连接,二级冷凝器08热侧连通有氨水排出管道和氨水喷淋管道,喷淋液冷却器09设置于氨水喷淋管道上。
优选的,所述废水处理子系统包括加碱装置,所述加碱装置设置于过滤器04进口管道上;所述废水处理子系统包含加酸装置,所述加酸装置设置于蒸发分离器06进口管道上。
优选的,所述废水处理子系统包含一个或多个蒸发分离器以及对应的一个或多个蒸发器。
2.一种节能型含盐含重氨氮废水处理工艺,所述工艺包括如下步骤:
(1)将含盐含重氨氮废水通入脱氨塔进行脱氨,塔顶采出含氨蒸汽,含氨蒸汽进入一级 冷凝器与热泵循环水换热,部分冷凝后得到稀氨水和浓氨蒸汽,稀氨水部分或全部回流脱氨塔,浓氨蒸汽进入二级冷凝器,经冷凝及喷淋吸收后得到氨水产品;
(2)热泵循环水在一级冷凝器中换热后形成热泵循环蒸汽,经压缩机加压升温形成压缩蒸汽后,进入再沸器,与脱氨塔塔底的脱氨后废水换热冷凝后返回一级冷凝器;
(3)脱氨塔塔底的脱氨后废水一部分在再沸器中被加热至部分汽化,返回脱氨塔,一部分进入过滤器分离除去重金属沉淀,脱重后废水依次进入蒸发分离器和蒸发器,蒸发后得到水蒸汽和结晶盐分别采出。
优选的,来自一级冷凝器的热泵循环蒸汽与从蒸发分离器采出的水蒸汽混合后经压缩机加压升温形成压缩蒸汽,分别用作蒸发器和再沸器的热源,压缩蒸汽在蒸发器中换热后成为冷凝水外排,压缩蒸汽在再沸器中换热冷凝后返回一级冷凝器。
优选的,废水在脱氨塔脱氨后,塔底脱氨后废水先加碱调节pH值后再进入过滤器;脱重后废水先加酸调节pH值后再进入蒸发分离器。
优选的,蒸发器排出的冷凝水与进料废水换热回收热量后外排。
优选的,所述脱重后废水的蒸发根据实际需要设为单效蒸发或多效蒸发。
优选的,当脱重后废水采用多效蒸发时,第一效以压缩蒸汽作为热源,废水进行逐级蒸发,末效蒸发产生的蒸汽通往压缩机进行压缩。
本发明的有益效果在于:
(1)本发明公开的一种节能型含盐含重氨氮废水处理系统,将氨氮废水处理的脱氨和脱盐过程的热泵集成为一个热泵系统,热泵循环水在脱氨塔塔顶一级冷凝器换热后形成热泵循环蒸汽,与蒸发分离器顶部采出的蒸汽一起进入压缩机加压升温,得到的压缩蒸汽分别用作再沸器和蒸发器的热源,有效降低了废水处理过程的能耗。将脱氨和脱盐过程的热泵集成为一个热泵系统,可明显提高热泵压缩机的效率,实现节能。
(2)将蒸发器中产生的高温冷凝水用于预热进料原水,实现了余热利用,提高了能量利用效率。
(3)脱氨塔排出的脱氨后废水不需降温直接送入过滤器进行脱重,避免了现有工艺中脱重过程在常温下操作导致的能量损失,也解决了常温脱重后废水进行脱盐前又需加热升温导致能耗增加的问题。
(4)本技术方案将脱氨、脱重、脱盐三个过程的能量集成使用,工艺能量集成度明显提高,大大降低了系统能耗。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某 种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为本发明所述节能型含盐含重氨氮废水处理系统;
图2为本发明实施例1所述一种节能型含盐含重氨氮废水处理系统;
图3为对比实施例1所采用工艺流程;
图4为对比实施例2所采用工艺流程。
附图标记:脱氨塔01、一级冷凝器02、再沸器03、过滤器04、蒸发器05、蒸发分离器06、压缩机07、二级冷凝器08、喷淋液冷却器09、原水预热器10、压缩机11、结晶器12、离心分离机13、滤前冷却器14。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
为便于更好的理解本发明,通过以下实例进行说明,这些实例属于本发明的保护范围,但不限制本发明的保护范围。
如图1所示为一种节能型含盐含重氨氮废水处理系统,所述系统包括废水处理子系统和热泵子系统,所述废水处理子系统包括脱氨塔01、再沸器03、过滤器04、蒸发器05和蒸发分离器06,所述脱氨塔01塔底与再沸器03冷侧连接,所述脱氨塔01塔底与过滤器04、蒸发分离器06依次通过管道连接,所述蒸发器05冷侧与蒸发分离器06连接,所述热泵子系统包括一级冷凝器02和压缩机07,所述一级冷凝器02热侧与脱氨塔01塔顶连接,所述一级冷凝器02冷侧、压缩机07、再沸器03热侧依次通过管道连接。所述蒸发分离器06与压缩机07进口连接,所述蒸发器05热侧与压缩机07出口连接。所述废水处理子系统还包括原水预热器10,所述原水预热器10设置于原水进口管道上,热侧与蒸发器05热侧连接,冷侧与脱氨塔01连接。所述废水处理子系统还包括二级冷凝器08和喷淋液冷却器09,二级冷凝器 08热侧与一级冷凝器02热侧连接,二级冷凝器08热侧连通有氨水排出管道和氨水喷淋管道,喷淋液冷却器09设置于氨水喷淋管道上。所述废水处理子系统包括加碱装置,所述加碱装置设置于过滤器04进口管道上;所述废水处理子系统包含加酸装置,所述加酸装置设置于蒸发分离器06进口管道上。所述蒸发分离器06以及蒸发器05均为一个。热泵子系统中的蒸汽压缩过程可根据实际需要设置为单台压缩机,或由多台压缩机串、并联组合而成。
采用上述节能型含盐含重氨氮废水处理系统的节能型含盐含重氨氮废水处理工艺,包括如下步骤:
(1)将含盐含重氨氮废水通入脱氨塔01进行脱氨,塔顶采出含氨蒸汽,含氨蒸汽进入一级冷凝器02与热泵循环水换热,部分冷凝后得到稀氨水和浓氨蒸汽,稀氨水部分或全部回流脱氨塔01,浓氨蒸汽进入二级冷凝器08,经冷凝及喷淋吸收后得到氨水产品;
(2)热泵循环水在一级冷凝器02中换热后形成热泵循环蒸汽,经压缩机07加压升温形成压缩蒸汽后,进入再沸器03,与脱氨塔01塔底的脱氨后废水换热冷凝后返回一级冷凝器02;
(3)脱氨塔01塔底的脱氨后废水一部分在再沸器03中被加热至部分汽化,返回脱氨塔01,一部分进入过滤器04分离除去重金属沉淀,脱重后废水依次进入蒸发分离器06和蒸发器05,蒸发后得到水蒸汽和结晶盐分别采出。
来自一级冷凝器02的热泵循环蒸汽与从蒸发分离器06采出的水蒸汽混合后经压缩机07加压升温形成压缩蒸汽,分别用作蒸发器05和再沸器03的热源,压缩蒸汽在蒸发器05中换热后成为冷凝水,与进料废水换热回收热量后外排,压缩蒸汽在再沸器03中换热冷凝后返回一级冷凝器02。
废水在脱氨塔01脱氨后,塔底脱氨后废水先加碱调节pH值后再进入过滤器04。脱重后废水先加酸调节pH值后再进入蒸发分离器06。
应用实施例1
如图2为一种优化的节能型含盐含重氨氮废水处理系统,图2所示系统与图1所示系统不同在于:图2所述热泵子系统还包括压缩机11,所述一级冷凝器02冷侧、压缩机07、蒸发器05热侧依次通过管道连接,所述压缩机07、压缩机11、再沸器03热侧依次通过管道连接。图2所示系统与图1所示系统不同还在于:图2所示系统还包括对无机盐产品进一步进行结晶的结晶器12以及离心分离机13,所述蒸发分离器06、结晶器12以及离心分离机13之间循环连接。
在工艺上的区别在于,热泵循环水在一级冷凝器02中换热后形成热泵循环蒸汽,与从蒸 发分离器06采出的水蒸汽混合后经压缩机07加压升温形成压缩蒸汽,一部分用作蒸发器05的热源,一部分经压缩机11加压升温形成二级压缩蒸汽,用作再沸器03的热源;蒸发分离器06采出的无机盐产品依次经结晶器12及离心分离机13进行进一步的分离提纯处理,分离得到的液体再次返回蒸发分离器06进行蒸发处理。
采用如图2所示系统,用于除去如下所述废水:含盐含重氨氮废水进水流量为120m3/h,氨氮含量为7005.68mg/L,Na+含量为60023.20mg/L,SO4 2-含量为120004.12mg/L,重金属离子含量:Ni2+为315.96mg/L,Co2+为78.86mg/L,Mn3+为80.97mg/L。经过处理后,得到的水中氨氮含量为7.82mg/L,Na+含量为344.41mg/L,SO4 2-含量为546.71mg/L,重金属含量:Ni2+为0.53mg/L,Co2+为0.72mg/L,Mn3+为1.16mg/L,达到国家一级排放标准。得到的氨水产品质量浓度为20.28%,达到了工业氨水的浓度要求。
处理每吨氨氮废水的电耗为60.31度、蒸汽消耗为零,综合能耗显著降低。
对比实施例1:
对比实施例1采用如图3所示系统,对比实施例1与应用实施例1在工艺上的区别在于,一级冷凝器02流出的热泵循环蒸汽进入压缩机07压缩升温后,得到的压缩蒸汽直接送至再沸器03。而蒸发分离器06顶部采出的水蒸汽,进入压缩机11加压升温后用作蒸发器05的热源。
本实施例中,三元正极材料前驱体废水进水流量为120m3/h,氨氮含量为7005.68mg/L,Na+含量为60023.20mg/L,SO4 2-含量为120004.12mg/L,重金属离子含量:Ni2+为315.96mg/L,Co2+为78.86mg/L,Mn3+为80.97mg/L。经过处理后,得到的脱氨后水中氨氮含量为8.12mg/L,Na+含量为352.43mg/L,SO4 2-含量为556.78mg/L,重金属含量:Ni2+为0.51mg/L,Co2+为0.72mg/L,Mn3+为1.13mg/L。得到的氨水产品质量浓度为20.57%,达到了工业氨水的浓度要求。
因脱氨过程和脱盐过程的热泵不集成,蒸汽压缩机的效率相对应用实施例1有所降低,电耗增加,处理每吨氨氮废水的电耗为81.73度,蒸汽消耗为零。
对比实施例2
对比实施例2采用如图4所示系统,与应用实施例1在工艺上的区别在于,脱重采用常温过滤工艺,脱氨塔01塔底流出的脱氨后水经滤前冷却器14冷却至40℃左右,再经碱液调节pH至后进入过滤器04;将生蒸汽通入蒸发器05热侧以补充热量。
本实施例中,废水进水流量为120m3/h,氨氮含量为7005.68mg/L,Na+含量为60023.20mg/L,SO4 2-含量为120004.12mg/L,重金属离子含量:Ni2+为315.96mg/L,Co2+为78.86mg/L,Mn3+为80.97mg/L。经过处理后,得到的脱氨后水中氨氮含量为7.91mg/L,Na+含量为352.38 mg/L,SO4 2-含量为557.82mg/L,重金属含量:Ni2+为0.48mg/L,Co2+为0.65mg/L,Mn3+为1.09mg/L。得到的氨水产品质量浓度为20.16%,达到了工业氨水的浓度要求。
因采用低温过滤,该实施例的能耗,包括电耗和生蒸汽的消耗,相对应用实施例1有所增加,处理每吨废水的电耗为68.14度,因脱重过程在低温进行,导致脱盐过程的能耗增加,热泵子系统产生的蒸汽不能满足整个系统的需要,处理每吨废水另需0.07kg生蒸汽(0.40MPa)用于脱盐过程。
综上可说明,本技术方案将脱氨、脱重、脱盐三个过程的能量进行集成使用,工艺能量集成度明显提高,大大降低了系统能耗。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (12)

  1. 一种节能型含盐含重氨氮废水处理系统,其特征在于,所述系统包括废水处理子系统和热泵子系统,所述废水处理子系统包括脱氨塔(01)、再沸器(03)、过滤器(04)、蒸发器(05)和蒸发分离器(06),所述脱氨塔(01)塔底与再沸器(03)冷侧连接,所述脱氨塔(01)塔底与过滤器(04)、蒸发分离器(06)依次通过管道连接,所述蒸发器(05)冷侧与蒸发分离器(06)连接,所述热泵子系统包括一级冷凝器(02)和压缩机(07),所述一级冷凝器(02)热侧与脱氨塔(01)塔顶连接,所述一级冷凝器(02)冷侧、压缩机(07)、再沸器(03)热侧依次通过管道连接。
  2. 根据权利要求1所述一种节能型含盐含重氨氮废水处理系统,其特征在于,所述蒸发分离器(06)与压缩机(07)进口连接,所述蒸发器(05)热侧与压缩机(07)出口连接。
  3. 根据权利要求1所述一种节能型含盐含重氨氮废水处理系统,其特征在于,所述废水处理子系统还包括原水预热器(10),所述原水预热器(10)设置于原水进口管道上,热侧与蒸发器(05)热侧连接,冷侧与脱氨塔(01)连接。
  4. 根据权利要求1所述一种节能型含盐含重氨氮废水处理系统,其特征在于,所述废水处理子系统还包括二级冷凝器(08)和喷淋液冷却器(09),二级冷凝器(08)热侧与一级冷凝器(02)热侧连接,二级冷凝器(08)热侧连通有氨水排出管道和氨水喷淋管道,喷淋液冷却器(09)设置于氨水喷淋管道上。
  5. 根据权利要求1所述一种节能型含盐含重氨氮废水处理系统,其特征在于,所述废水处理子系统包括加碱装置,所述加碱装置设置于过滤器(04)进口管道上;所述废水处理子系统包含加酸装置,所述加酸装置设置于蒸发分离器(06)进口管道上。
  6. 根据权利要求1所述一种节能型含盐含重氨氮废水处理系统,其特征在于,所述废水处理子系统包含一个或多个蒸发分离器以及对应的一个或多个蒸发器。
  7. 一种节能型含盐含重氨氮废水处理工艺,其特征在于,所述工艺包括如下步骤:
    (1)将含盐含重氨氮废水通入脱氨塔进行脱氨,塔顶采出含氨蒸汽,含氨蒸汽进入一级冷凝器与热泵循环水换热,部分冷凝后得到稀氨水和浓氨蒸汽,稀氨水部分或全部回流脱氨塔,浓氨蒸汽进入二级冷凝器,经冷凝及喷淋吸收后得到氨水产品;
    (2)热泵循环水在一级冷凝器中换热后形成热泵循环蒸汽,经压缩机加压升温形成压缩蒸汽后,进入再沸器,与脱氨塔塔底的脱氨后废水换热冷凝后返回一级冷凝器;
    (3)脱氨塔塔底的脱氨后废水一部分在再沸器中被加热至部分汽化,返回脱氨塔,一部分进入过滤器分离除去重金属沉淀,脱重后废水依次进入蒸发分离器和蒸发器,蒸发后得到水蒸汽和结晶盐分别采出。
  8. 如权利要求7所述的节能型含盐含重氨氮废水处理工艺,其特征在于,来自一级冷凝器的热泵循环蒸汽与从蒸发分离器采出的水蒸汽混合后经压缩机加压升温形成压缩蒸汽,分别用作蒸发器和再沸器的热源,压缩蒸汽在蒸发器中换热后成为冷凝水外排,压缩蒸汽在再沸器中换热冷凝后返回一级冷凝器。
  9. 如权利要求7所述的节能型含盐含重氨氮废水处理工艺,其特征在于,废水在脱氨塔脱氨后,塔底脱氨后废水先加碱调节pH值后再进入过滤器;脱重后废水先加酸调节pH值后再进入蒸发分离器。
  10. 如权利要求8所述的节能型含盐含重氨氮废水处理工艺,其特征在于,蒸发器排出的冷凝水与进料废水换热回收热量后外排。
  11. 如权利要求7所述的节能型含盐含重氨氮废水处理工艺,其特征在于,所述脱重后废水的蒸发根据实际需要设为单效蒸发或多效蒸发。
  12. 如权利要求11所述的节能型含盐含重氨氮废水处理工艺,其特征在于,当脱重后废水采用多效蒸发时,第一效以压缩蒸汽作为热源,废水进行逐级蒸发,末效蒸发产生的蒸汽通往压缩机进行压缩。
PCT/CN2023/110483 2022-08-22 2023-08-01 一种节能型含盐含重氨氮废水处理系统及工艺 WO2024041327A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211009944.6A CN115367943B (zh) 2022-08-22 2022-08-22 一种节能型含盐含重氨氮废水处理系统及工艺
CN202211009944.6 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024041327A1 true WO2024041327A1 (zh) 2024-02-29

Family

ID=84067526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110483 WO2024041327A1 (zh) 2022-08-22 2023-08-01 一种节能型含盐含重氨氮废水处理系统及工艺

Country Status (2)

Country Link
CN (1) CN115367943B (zh)
WO (1) WO2024041327A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115367943B (zh) * 2022-08-22 2024-02-02 吴嘉 一种节能型含盐含重氨氮废水处理系统及工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052370A (ja) * 2011-09-06 2013-03-21 Mitsubishi Chemical Engineering Corp アンモニア分離装置及びアンモニア分離方法
CN103466870A (zh) * 2013-08-22 2013-12-25 苏州苏净环保工程有限公司 含高浓度氨氮和重金属离子废水的物料回收方法及处理系统
CN111825145A (zh) * 2020-08-07 2020-10-27 吴嘉 一种氨氮废水处理和回收氨的方法及装置
CN115367943A (zh) * 2022-08-22 2022-11-22 吴嘉 一种节能型含盐含重氨氮废水处理系统及工艺
CN218146239U (zh) * 2022-08-22 2022-12-27 吴嘉 一种节能型含盐含重氨氮废水处理系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109704366B (zh) * 2019-02-11 2023-08-01 中冶焦耐(大连)工程技术有限公司 一种加压脱酸蒸氨热量耦合的工艺及系统
CN113233529B (zh) * 2021-06-18 2023-06-23 深圳市源禹环保科技有限公司 节能/低能耗的氨氮废水处理和资源化回收工艺及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052370A (ja) * 2011-09-06 2013-03-21 Mitsubishi Chemical Engineering Corp アンモニア分離装置及びアンモニア分離方法
CN103466870A (zh) * 2013-08-22 2013-12-25 苏州苏净环保工程有限公司 含高浓度氨氮和重金属离子废水的物料回收方法及处理系统
CN111825145A (zh) * 2020-08-07 2020-10-27 吴嘉 一种氨氮废水处理和回收氨的方法及装置
CN212609643U (zh) * 2020-08-07 2021-02-26 吴嘉 一种氨氮废水处理和回收氨的装置
CN115367943A (zh) * 2022-08-22 2022-11-22 吴嘉 一种节能型含盐含重氨氮废水处理系统及工艺
CN218146239U (zh) * 2022-08-22 2022-12-27 吴嘉 一种节能型含盐含重氨氮废水处理系统

Also Published As

Publication number Publication date
CN115367943B (zh) 2024-02-02
CN115367943A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
JP7305837B2 (ja) アンモニウム塩含有廃水の処理装置及び方法
CN105585194B (zh) 一种含Na+、K+、NH4+、Cl‑、SO42‑、NO3‑的煤化工高浓废盐水综合利用方法
CN108275819B (zh) 一种三元前驱体洗涤废水回收的方法
WO2024041327A1 (zh) 一种节能型含盐含重氨氮废水处理系统及工艺
CN108715456B (zh) 一种电极箔腐蚀废硝酸的回收利用方法
CN114105392A (zh) 磷酸铁废水处理方法及其系统
CN103819041B (zh) 一种低温浓缩高盐废水的方法
CN101935128A (zh) 一种含高浓度铵盐和钠盐废水的处理工艺
CN111908535B (zh) 硫酸镁生产废水零排放资源化处理系统及处理方法
CN112110591A (zh) 一种高碳酸盐矿井水零排放处理方法及系统
CN104355472A (zh) 一种含无机铵盐废水处理系统、处理工艺及其应用
CN101708870A (zh) 一种硫酸铵废液的浓缩结晶工艺
CN218146239U (zh) 一种节能型含盐含重氨氮废水处理系统
CN105384293A (zh) 一种经过除杂脱氨后的沉钒废水的处理方法
CN105540975B (zh) 一种pcb电路板蚀刻废液的资源化处理方法及其系统
CN108892302B (zh) 咪鲜胺生产废水的综合处理方法
CN213388200U (zh) 一种锂电正极材料前驱体废水处理系统
CN101187030B (zh) 碱金属氯化物盐水的电解方法
CN205222913U (zh) 一种高盐废水零排放及高纯度氯化钠的回收系统
CN111661886A (zh) 一种mvr蒸发分盐系统
CN114949893B (zh) 从盐湖卤水中生产氯化锂的蒸发结晶工艺及装置
CN108996523B (zh) 脱硫废水的分离提纯系统
CN105152405A (zh) 一种烟气脱硫系统排放的脱硫废水的处理方法及设备
CN114230084A (zh) 一种三元前驱体废水处理设备及工艺
CN114835325A (zh) 一种磷酸铁母液及其漂洗水资源化处理工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856417

Country of ref document: EP

Kind code of ref document: A1