WO2024041121A1 - 焊球检测装置、印刷电路板、射频芯片及电子设备 - Google Patents

焊球检测装置、印刷电路板、射频芯片及电子设备 Download PDF

Info

Publication number
WO2024041121A1
WO2024041121A1 PCT/CN2023/100265 CN2023100265W WO2024041121A1 WO 2024041121 A1 WO2024041121 A1 WO 2024041121A1 CN 2023100265 W CN2023100265 W CN 2023100265W WO 2024041121 A1 WO2024041121 A1 WO 2024041121A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder ball
radio frequency
signal
detection device
reference signal
Prior art date
Application number
PCT/CN2023/100265
Other languages
English (en)
French (fr)
Inventor
刘正东
周文婷
Original Assignee
加特兰微电子科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加特兰微电子科技(上海)有限公司 filed Critical 加特兰微电子科技(上海)有限公司
Publication of WO2024041121A1 publication Critical patent/WO2024041121A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • This application relates to the field of chip detection technology, specifically to a solder ball detection device, a printed circuit board, a radio frequency chip and an electronic device.
  • An integrated circuit chip is a micro electronic structure with the required circuit functions formed by integrating the electronic components required in a circuit on a dielectric substrate through a certain process design, and forming it through packaging technology.
  • Integrated circuit chips need to be soldered to printed circuit boards when used.
  • the integrated circuit chip is soldered to the printed circuit board through solder balls to provide physical support between the integrated circuit chip and the printed circuit board and to realize the electrical connection between the two.
  • solder balls may have problems such as solder ball abnormalities, such as solder ball defects, solder leakage, aging, and shedding. Abnormal solder balls will affect the normal use of integrated circuit chips.
  • radio frequency chips and millimeter wave chips are generally soldered to printed circuit boards through solder balls.
  • the quality of solder balls has a great impact on the impedance of the input/output terminals of radio frequency chips, such as millimeter wave chips, which in turn will have a greater impact on the performance of the radiated electromagnetic waves.
  • a first aspect of this application provides a solder ball detection device.
  • the signal pins of the radio frequency chip are fixed to the printed circuit board through solder balls.
  • the solder ball detection device is used to detect the welding state of the solder balls.
  • the solder ball detection device is electrically connected to the solder balls.
  • the solder ball detection device includes: a reference signal generating unit, which generates Reference signal, where the reference signal is used to represent the welding state of the solder ball under at least one loss condition; the sampling unit collects the sampling signal of the circuit loop where the solder ball is located; the detection unit uses the reference signal to detect the sampling signal to output a reflection of the solder ball Status information of welding status.
  • a second aspect of the present application provides a printed circuit board, including a radio frequency chip, a solder ball for fixing the radio frequency chip on the printed circuit board, and the solder ball detection device as described above.
  • a third aspect of the present application provides a radio frequency chip, including the solder ball detection device as described above.
  • the radio frequency chip is a radar sensor chip.
  • a fourth aspect of the present application provides an electronic device, including a printed circuit board and a radio frequency chip as described above.
  • Figure 1 shows a schematic diagram of the connection between an existing radio frequency chip and a printed circuit board
  • Figure 2 shows a schematic structural diagram of a solder ball detection device according to an example embodiment of the present application
  • Figure 3 shows a schematic diagram of the welding state of multiple solder balls
  • Figure 4 shows a schematic diagram of a solder ball detection device installed on a radio frequency chip according to an exemplary embodiment of the present application
  • Figure 5 shows a schematic diagram of the connection between multiple solder balls and a solder ball detection device according to an example embodiment of the present application
  • Figure 6 shows a radar sensor including a solder ball detection device according to an exemplary embodiment of the present application. Structural diagram of the sensor;
  • FIG. 7 shows a schematic diagram of the damage degree of a solder ball according to an example embodiment of the present application.
  • This application provides a solder ball detection device, a printed circuit board, a radio frequency chip and electronic equipment, which can perform real-time status detection of the solder balls in the chip.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concepts of the example embodiments. To those skilled in the art.
  • the same reference numerals in the drawings represent the same or similar parts, and thus their repeated description will be omitted.
  • the radar sensor is equipped with a radio frequency chip and an antenna array.
  • the radar sensor chip uses The detection signal wave emitted by the antenna array and the echo signal wave received measure the physical quantities between it and the obstacles in the surrounding environment, such as measuring relative speed, relative angle, relative distance, and measuring at least one of the three-dimensional contours of the obstacle. A kind of wait.
  • the signal pins of the radio frequency chip (such as the radar sensor chip) are fixed on the printed circuit board through solder balls to realize the electrical connection between the circuit inside the radio frequency chip and the electrical components of the printed circuit board.
  • the radio frequency transmission signal emitted by the signal transmitter in the radio frequency chip is transmitted to the transmitting antenna provided on the printed circuit board through solder balls; or the receiving antenna provided on the printed circuit board transmits the radio frequency receiving signal to the radio frequency chip through solder balls. signal receiver inside.
  • Figure 1 shows a schematic diagram of the connection between an existing radio frequency chip and a printed circuit board.
  • Figure 1 includes a radio frequency chip 11, a solder ball 13 and a printed circuit board 15.
  • the printed circuit board 15 is provided with a copper cladding layer 151.
  • the signal pins of the radio frequency chip 11 are soldered to the copper coating 151 of the printed circuit board 15 through the solder balls 13 to achieve electrical connection between the radio frequency chip 11 and the printed circuit board 15 .
  • the radio frequency signal emitted by the transceiver antenna on the radio frequency chip 11 is transmitted to the printed circuit board 15 through the solder ball 13 , so that the radio frequency signal is transmitted to the internal circuit of the printed circuit board 15 .
  • the radio frequency signal is a modulated continuous radio wave signal configured with a certain transmission frequency.
  • the solder ball detection device determines the state of the solder ball by detecting the sampling signal of the internal circuit of a radio frequency device (such as a radar sensor) that forms a circuit loop through the solder ball.
  • the solder ball detection device uses the transmission line between the radio frequency chip and the printed circuit board to construct a detection circuit with the solder ball to be detected as the circuit loop.
  • the internal circuit 153 is provided on the printed circuit board 15 .
  • the copper cladding layer 151 is electrically connected to the internal circuit 153, and the radio frequency chip 11 is electrically connected to the internal circuit 153 on the printed circuit board 15 through the solder balls 13. That is, the radio frequency chip 11 is connected to the internal circuit 153, thereby ensuring that the radio frequency chip 11 can pass through the internal circuit. 153 works normally.
  • the internal circuit can also be integrated in a radio frequency chip, and be electrically connected to the circuit of the printed circuit board through the pins of the radio frequency chip and the solder balls fixing the pins.
  • the internal circuit is a circuit structure determined by the radio frequency chip based on the surrounding environment measured by the radar sensor to send out detection signals and receive radio frequency signals in a preset frequency band or fixed frequency.
  • the internal circuit includes at least one of the following: a transmitting antenna, a receiving antenna, a local oscillator generating circuit, a clock signal generating circuit, a control signal generating circuit, etc.
  • the transmitting antenna and the receiving antenna are energy converters, which can be arranged on the PCB together with the radio frequency chip (such as a radar chip).
  • the radio frequency chip connects the transmitting antenna/receiving antenna with the corresponding signal transmitter/transmitter inside the chip through solder balls.
  • the signal receivers are electrically connected to form a radio frequency transmitting link/a radio frequency receiving link.
  • the signal transmitter is an example of a millimeter wave radio frequency transmitting circuit
  • the signal receiver is an example of a millimeter wave radio frequency receiving circuit.
  • the signal terminal of the local oscillator generation circuit, the clock signal generation circuit, the control signal generation circuit and other internal circuits integrated in the radar chip also have corresponding external terminals to communicate with each other through solder balls and PCB. Corresponding signal transmission lines are electrically connected to multiple radar chips.
  • the solder ball detection device constructs a detection loop of the solder ball and the ground wire connected to the corresponding internal circuit, so as to utilize the ground wire of the radio frequency chip and the ground wire of the fixed PCB board to be the same reference ground voltage, and detect the ground wire used in the radio frequency chip. The welding status of the solder balls that transmit key signals is detected.
  • examples of key signals include at least one of the following: radar sensors used to detect radio frequency transmission signals and/or radio frequency reception signals of surrounding objects; a variety of synchronization signals required for multiple chips to work together, such as local oscillator signals , at least one of a synchronous clock signal, a synchronous control signal, etc.
  • radio frequency chips such as vehicle automatic driving systems, intrusion detection systems, and aircraft
  • the stable transmission of radio frequency signals emitted by radio frequency chips is of great significance to the detection accuracy of electronic detection equipment.
  • solder balls that are connected between the RF chip and the printed circuit board will suffer from human factors (such as solder balls missing or missing solder) and/or environmental factors (such as solder balls). Aging, falling off) causing abnormal soldering state of solder balls.
  • Abnormal solder ball welding status will directly affect the radio frequency signal transmission of the radio frequency chip, which will affect the normal use of the radio frequency chip, thereby affecting the performance and use of electronic detection equipment using the radio frequency chip.
  • optical imaging methods are used, such as ultrasound, X-ray, CT and infrared imaging. Using optical imaging The state of the solder ball is photographed, and the state of the solder ball is detected through a preset computer image algorithm or manual recognition method.
  • the above method can further analyze the solder balls that have been initially determined to be abnormal, but it is not suitable for detecting solder ball abnormalities at the first time the circuit device is used, so it cannot achieve real-time detection of the solder ball status;
  • the optical imaging test equipment is relatively complex and bulky, making the detection work more complicated.
  • one aspect of the present application provides a solder ball detection device for detecting signal changes of a circuit to which the solder ball is connected in real time, thereby determining the loss of the solder ball.
  • FIG. 2 shows a schematic structural diagram of a solder ball detection device according to an example embodiment of the present application.
  • the solder ball detection device is electrically connected to the solder ball, and is used to detect the soldering state of the solder ball connected to the signal pin of the radio frequency chip.
  • a solder ball detection device includes a reference signal generation unit, a sampling unit, and a detection unit.
  • the solder ball detection device 20 is electrically connected to the solder ball 13 .
  • the solder ball detection device 20 includes a reference signal generation unit 21 , a sampling unit 23 and a detection unit 25 .
  • the sampling unit acquires the sampling signal of the circuit loop where the solder ball is located.
  • the sampling unit obtains a sampling signal representing the actual measured voltage/power by coupling to the circuit loop where the detected solder ball is located.
  • One part of the circuit loop is located on the PCB board, and the other part is connected to the inside of the chip through the solder ball to be tested and the grounded solder ball.
  • the ground wire of the circuit loop is the ground wire on the PCB board.
  • the circuit loop includes part of a radio frequency signal transmission path.
  • the sampling unit 23 can be configured on the PCB board or inside the radio frequency chip.
  • the sampling unit is a coupling circuit containing a balun device, which obtains representation through inductive coupling Sampled signal of actual measured power.
  • the sampling unit is a circuit including a voltage dividing resistor to obtain a sampling signal representing the actual measured voltage.
  • the sampling unit is a transmission line connecting the radio frequency signal transmitting end/receiving end and a power supply.
  • the sampling signal includes the actual measured voltage, actual measured current, or actual measured power signal of the circuit loop (such as a radio frequency circuit loop) where the solder ball is located; or the reference signal generating unit 21 is used as a power source in the detection circuit loop. Generated current, voltage and other signals.
  • the reference signal generation unit 21 is used to generate a reference signal.
  • the reference signal is used to represent the soldering state of the solder ball under at least one loss condition.
  • the welding status of solder balls includes normal connection status, detachment status and abnormal connection status.
  • the detachment state such as the solder ball being weakly soldered or falling off, can be represented by the electrical characteristics of the circuit loop where the solder ball is located;
  • the normal connection state such as the solder ball being intact, can be represented by the electrical characteristics of the circuit loop where the solder ball is located.
  • the amplitude of the electrical signal is represented by the electrical characteristics of the preset threshold level; different from the normal connection state, abnormal connection states, such as partial detachment of the solder ball, etc., can be represented by the electrical signal of the circuit loop where the solder ball is located. Amplitudes that do not meet the threshold level and electrical characteristics of an open circuit are indicated.
  • FIG. 3 shows a schematic diagram of the soldering state of multiple solder balls.
  • Figure 3 shows four solder balls in different welding states, such as solder ball a, solder ball b, solder ball c and solder ball d.
  • Solder ball a is a solder ball in a normal connection state, and has good contact with both the radio frequency chip 11 and the printed circuit board 15 .
  • the solder ball b is a solder ball in a detached state, and is completely separated from the radio frequency chip 11 and the printed circuit board 15 .
  • the soldering state of a solder ball whose soldering state is between the normal connection state and the detached state is the abnormal connection state.
  • solder ball c and solder ball d are solder balls in an abnormal connection state.
  • the problem may be that the upper solder ball is missing or the lower solder ball is missing.
  • Solder ball c and solder ball d are related to the radio frequency chip 11 and the printed circuit. The contact performance of plate 15 is poor.
  • the reference signal generating unit provides a reference signal that can reflect that the acquired sampling signal represents at least one soldering state of the solder ball, so as to distinguish at least two soldering states accordingly.
  • the reference signal includes at least a first reference signal and a second reference signal.
  • the first reference signal indicates that the soldering state of the solder ball is in a normal connection state
  • the The second reference signal indicates that the soldering state of the solder ball is in a falling-off state.
  • the first reference signal is a signal value obtained through practice in actual application scenarios that indicates that the solder ball is in a normal connection state with the radio frequency chip and the printed circuit board.
  • the second reference signal is a signal value obtained through practice in actual application scenarios that indicates when the solder ball is in a detached state from the radio frequency chip and the printed circuit board.
  • the first reference signal and the second reference signal can be known in advance according to actual application scenarios.
  • the reference signal is a reference voltage signal or a reference current signal.
  • the reference voltage signal includes a first reference voltage and a second reference voltage.
  • the first reference voltage is the voltage value when the solder ball welding state is in a normal connection state.
  • the second reference voltage is the voltage value when the solder ball is in a detached state.
  • the reference signal generating unit may be configured as a circuit to provide each reference signal separately. Or use the same power supply and multiple voltage divider circuits connected to the power supply to provide different reference signals respectively.
  • the reference signal generating unit includes a signal generator, a first resistor and a second resistor connected in series.
  • the detection unit detects the sampling signal using the reference signal to output status information reflecting the welding status of the solder ball.
  • the detection unit uses preset welding detection logic to detect the received signal to output status information reflecting the welding status of the measured solder ball.
  • the detection logic is constructed based on the comparison result between the reference signal and the sampling signal and the logic based on the comparison result.
  • the detection logic is, for example, a circuit constructed using logic devices such as flip-flops and gate circuits, or a program file that performs logical operations through a processor such as an MCU.
  • the status information is, for example, represented by at least one bit of binary signal; or encoded data information, etc.
  • each reference signal and sampling signal are input to the detection unit respectively.
  • the detection unit detects the sampling signal according to the welding state corresponding to the corresponding reference signal.
  • the detection unit includes circuits configured with devices such as comparators, flip-flops, logic gates, etc., to detect the welding state of the detected solder ball corresponding to the received sampling signal according to the preset signal processing logic, and output status information.
  • the reference signal generation unit and the sampling unit are connected to an output end; the output end is connected to a detection unit to output a deviation signal between the reference signal and the sampling signal; the detection unit is based on the The received deviation signal outputs the status status information.
  • the sampling unit and the reference signal generating unit are connected in series, parallel, or through a subtractor.
  • the path formed is provided with a voltage difference/current difference that can reflect the sampling signal and the reference signal as a deviation signal, and the deviation signal is output to Detection unit; the detection unit determines the welding status of the detected solder ball by detecting at least one of the voltage value, current value, flow rate, etc. of the deviation signal, and outputs status information.
  • the solder ball detection device further includes an analog-to-digital converter (ADC) that can be disposed on the input end or output end of the detection unit, which converts the received analog signal into a digital sampling signal for
  • ADC analog-to-digital converter
  • the detection unit performs detection or generates status information. For example, if the ADC is located at each input end of the detection unit, the sampling signal, each reference signal, or deviation signal, etc., is converted into a corresponding digital signal and provided to the detection unit.
  • the detection unit may be a data processor such as an MCU to detect the welding status of the corresponding solder balls.
  • the analog signal representing the status information is encoded into a multi-bit digital signal, so that the interval corresponding to at least one high bit in the digital signal is used to represent the detected welding status.
  • the detection unit detects the sampling signal using the reference signal to output status information reflecting the soldering status of the solder ball.
  • the detection unit receives the sampling signal and the corresponding first reference signal and/or the second reference signal respectively, and detects the relationship between the sampling signal and the corresponding first reference signal and/or the second reference signal.
  • the signal difference is used to determine whether the soldering state of the solder ball is a normal connection state, a detached state, or an abnormal connection state, and corresponding status information is output.
  • the reference signal generation unit 21 can provide at least one reference signal, and the sampling unit 23 samples the signal flowing through the solder ball to be detected; the reference signal generation unit 21 and the sampling unit 23 respectively input the detection unit 25, For the detection unit to perform signal comparison to output status information reflecting the detected solder ball.
  • the sampling signal is the actual measured voltage Vr at the solder ball
  • the first reference signal is the first reference voltage V1 when the solder ball is in a normal connection state
  • the second reference voltage signal is the third reference voltage when the solder ball is in a detached state.
  • Reference voltage V2 The detection unit determines the magnitude relationship between the actual measured voltage Vr and the first reference voltage V1 and the second reference voltage V2. When the detection unit determines that the voltage of the sampling signal is lower than the voltage of the second reference signal, it determines that the soldering state of the solder ball is in a detached state, and outputs corresponding status information.
  • the detection unit When it is determined that the voltage of the sampling signal is higher than the voltage of the first reference signal, it is determined that the welding state of the solder ball is in a normal state, and corresponding state information is output. When the detection unit determines that the voltage of the sampling signal is between the voltage of the first reference signal and the second reference signal, it determines that the welding state of the solder ball is in a semi-connected abnormal state, and outputs corresponding status information.
  • the detection unit subtracts the sampling signal from the corresponding first reference signal and/or the second reference signal to obtain a corresponding signal difference, and the detection unit uses an ADC to convert the signal difference into a digital signal, so as to Digital signal processing is performed based on the welding status, and corresponding status information is determined thereby.
  • the reference signal generation unit and the sampling unit are connected to an output end; the output end is connected to a detection unit to output a deviation signal between the reference signal and the sampling signal; the detection unit is based on the The received deviation signal outputs the status information.
  • the reference signal generating unit 21 includes a signal generator 211.
  • the signal generator 211 is, for example, a current source, a voltage source, or a power supply provided by a chip power supply system.
  • the sampling unit 23 is a voltage dividing resistor (such as a first resistor 233 and a second resistor 235) connected to an output end of the differential transmission circuit 14.
  • the differential transmission circuit 14 is a circuit that provides differential signals in a radio frequency link, such as a balun.
  • Each transmission line in the radio frequency link is connected to an internal circuit 153 (such as an antenna) on the PCB through a corresponding solder ball (such as solder ball 131).
  • the solder ball detection device forms a detection circuit loop through the solder balls 131 and 133 and the transmission lines of the internal circuit on the PCB board.
  • the solder ball 131 is a solder ball to be detected.
  • the sampling unit 23 is connected in series with the reference signal generating unit 21, and an output terminal is provided on the series path, and the output terminal is connected to the detection unit 25 through the ADC 29.
  • the sampling unit 23 divides the reference signal generated by the reference signal generating unit 21 and converts it into a sampling signal, Output to the ADC, and the ADC converts it into a digital signal and inputs it into the detection unit.
  • the detection unit can determine whether the welding state of the solder ball 131 is a normal state, an abnormal state, or At least one of the disconnected states. Taking the disconnection of the solder ball 131 as an example, the sampling signal output by the voltage dividing resistor (233, 235) has the same voltage as the reference signal. The detection unit can determine the soldering voltage by detecting the voltage value of the sampling signal, etc.
  • the welded state of the ball 131 is a detached state.
  • the judgment operation of the sampling signal using the reference signal mentioned in the above examples is only an example. Affected by changes in the ambient temperature of the radio frequency chip, the actual working voltage, etc., the acquired sampling signal is used as a basis for judgment. There should be a tolerable error between the reference signals, so that the detection unit can obtain equal (or consistent) judgment results within the corresponding error. And/or, the reference signal generating unit includes an adjustable circuit to adaptively adjust the output reference signal affected by the PVT.
  • the solder ball detection device further includes an alarm unit for receiving status information and issuing alarm information based on the status information.
  • the solder ball detection device 20 further includes an alarm unit 27 .
  • the alarm unit 27 is electrically connected to the detection unit 25 and receives the status information output by the detection unit 25 .
  • the alarm unit 27 When the status information received by the alarm unit 27 is the detachment status information or the abnormal connection status, the alarm unit 27 sends an alarm message to remind the operator that the detected solder ball is abnormal, so that the operator can check the abnormal solder ball in time. And maintenance.
  • the solder ball detection device is disposed on the printed circuit board and is electrically connected to the copper coating of the printed circuit board.
  • the solder balls are solder balls that transmit radio frequency signals in the circuit loop where the radio frequency chip is located.
  • the solder ball detection device 20 is disposed on the copper cladding 151 so as to be electrically connected to the solder balls 13 on the copper cladding 151 .
  • the solder ball 13 is a solder ball used for transmitting radio frequency signals in the circuit loop of the radio frequency chip 11 .
  • the solder ball 13 receives the radio frequency signal through the signal pin of the radio frequency chip 11 and transmits the radio frequency signal to the internal circuit 153 of the printed circuit board 15 .
  • the internal circuit 153 and the solder ball detection device 20 are arranged in parallel on the copper coating 151 electrically connected to the solder ball 13 . Such an arrangement can make the solder ball detection device 20 and the internal circuit 153 of the radio frequency chip 11 relatively independent without interfering with each other. In this way, the solder ball detection device 20 does not affect the normal operation of the radio frequency chip 11 when detecting the solder ball status.
  • the solder ball detection device is disposed on the radio frequency chip and is electrically connected to an internal circuit in the radio frequency chip that transmits radio frequency signals.
  • the solder ball detection device 20 can also be disposed on the radio frequency chip 11 and be electrically connected to the internal circuit in the radio frequency chip 11 that transmits radio frequency signals.
  • the internal circuit for transmitting radio frequency signals in the radio frequency chip 11 includes a driving amplifier circuit for radio frequency signals.
  • the sampling unit 23 is a balun circuit 14 coupled to the output end of the driving amplifier circuit for transmitting differential signals.
  • the solder ball detection device 20 can be disposed on the printed circuit board 15 connected to the solder ball array 13 , or can also be disposed on the radio frequency chip 11 connected to the solder ball array 13 .
  • the specific position of the solder ball detection device 20 is set according to different actual needs.
  • the detection unit also receives a self-test instruction from the radio frequency chip, and starts solder ball status detection according to the self-test instruction.
  • the detection unit receives a self-test instruction from the radio frequency chip, the solder ball to be detected is connected to the radio frequency link in the radio frequency chip, and is connected to the circuit loop where the solder ball detection device is located.
  • the radio frequency chip issues a self-test command, causing the radio frequency chip to be in self-test mode.
  • the detection unit starts detecting the status of the solder balls according to the self-test instructions.
  • the radar chip generates self-test instructions in the gap between transmitting adjacent valid Chirp signals.
  • the effective chirp signal refers to the frequency rising stage (or frequency falling stage) of the chirp signal emitted by the radar chip, which is a signal wave used by the radar chip to detect relative distance, relative speed, relative angle and other measurement data of surrounding objects. interval; while other signal wave intervals of the chirp signal and the idle interval between two chirp signals are the gaps between adjacent valid chirp signals.
  • the obtained detection results can be output to a signal processing circuit such as an alarm unit (such as a CPU, or a buzzer, etc.), so that when the signal of the detection result indicates that the welding state of the solder ball is abnormal, it can be triggered for the user (or after-sales service of the car manufacturer). remote users), or for vehicle autonomous driving systems/aircrafts, etc. to adjust the data trust of the sensing system, etc.
  • a signal processing circuit such as an alarm unit (such as a CPU, or a buzzer, etc.)
  • the radio frequency chip can self-trigger solder ball status detection.
  • radio frequency chips When radio frequency chips are used in electronic detection equipment such as vehicle automatic driving systems/aircrafts, they can enable the vehicle automatic driving systems/aircrafts to have a self-test mode and automatically provide information on the welding status of the solder balls on the equipment.
  • the working mode of the solder ball is switched and other alternative solder balls are selected for transmission of radio frequency signals.
  • the detection unit also receives a preset instruction from the printed circuit board, and starts the solder ball state detection according to the preset instruction.
  • the detection unit receives a preset instruction from the printed circuit board, and the preset instruction is a detection instruction set according to the preset signal detection logic on the printed circuit board.
  • the preset instructions include start detection instructions, specific solder ball detection instructions and detection logic sequence instructions.
  • the start detection command refers to triggering solder ball status detection on demand.
  • the specific solder ball detection instructions include performing solder ball status detection only on solder balls that transmit radio frequency signals emitted by the radio frequency chip.
  • the detection logic sequence instruction is to detect the status of the solder balls according to a certain preset order.
  • the solder ball detection device can detect the solder ball status according to the received self-test instructions from the radio frequency chip and the preset instructions from the printed circuit board, and can meet the solder ball status detection requirements in different environments.
  • the solder ball detection device may connect one or more solder balls. After the detection unit 25 starts the solder ball status detection, it performs status detection on the solder balls according to the corresponding instructions.
  • FIG. 5 shows a schematic diagram of the connection between multiple solder balls and a solder ball detection device according to an example embodiment of the present application.
  • solder ball detection device 20 switches the communication sequence with the multiple solder balls 13 accordingly according to the preset signal detection logic to detect the status of the multiple solder balls 13 .
  • the preset signal detection logic may be to detect the status of all solder balls 13 , and then the solder ball detection device 20 completes the status detection of all solder balls 13 sequentially or simultaneously. Or if the preset signal detection logic is to detect the state of the designated solder ball 13, the solder ball detection device 20 will correspondingly complete the state detection of the designated solder ball 13 sequentially or simultaneously.
  • FIG. 6 shows a schematic structural diagram of an internal circuit of a printed circuit board according to an example embodiment of the present application.
  • the solder ball detection device can detect the soldering state of the solder balls connected to the antenna 1531 .
  • One end of the antenna 1531 is connected to the solder ball 131 to be tested through an antenna feeder 1533 .
  • the printed circuit board includes a first top layer 151 , a second bottom layer 152 and through holes 154 . sky The other end of the wire 1531 passes through the first top layer 151 through the through hole 154 and is electrically connected to the ground solder ball 133 through the second bottom layer 152 through the through hole 154 .
  • the reference signal generated by the reference signal generating unit 21 shown in FIG. 2 is a reference voltage signal, and the reference voltage signal includes a first reference voltage and a second reference voltage.
  • the sampling unit 23 detects that the sampling signal is the actual measured voltage Vr at the solder ball 13, the first reference voltage is the first reference voltage V1 when the solder ball is in a normal connection state, and the second reference voltage is when the solder ball is in a detached state.
  • the second reference voltage V2 in the state.
  • the measured voltage Vr is equal to the first reference voltage V1.
  • the radio frequency chip 11 and the printed circuit board 15 are in a disconnected state
  • the measured voltage Vr is equal to the second reference voltage V2.
  • the value of the actual measured voltage Vr is between the first reference voltage V1 and the second reference voltage V2.
  • the solder ball 13 When the solder ball 13 is in the detached state, the solder ball 13 is equivalent to an open circuit, that is, the reference signal generating unit 21 loses connection with the ground terminal. At this time, the voltage value at the solder ball 13 is the reference signal generated by the reference signal generating unit 21. The measured voltage Vr is equal to the second reference voltage V2.
  • the impedance at the solder ball 13 becomes larger, so it will have a voltage dividing effect together with the first resistor 233 and the second resistor 235. Therefore, the actual measurement at this time
  • the voltage Vr will be greater than the first reference voltage V1, but will not exceed the second reference voltage V2.
  • FIG. 7 shows a schematic diagram of the damage degree of a solder ball according to an example embodiment of the present application.
  • the horizontal axis is the sampling signal Vr
  • the vertical axis is the damage degree of the solder ball.
  • the solder ball 13 When the measured voltage Vr is between the first reference voltage V1 and the second reference voltage V2, the solder ball 13 is partially damaged, that is, the soldering state of the solder ball 13 is in an abnormal connection state.
  • the sampling unit includes a first analog signal converter for converting the circuit analog signal into a digital signal to generate a sampling signal.
  • the solder ball detection device provided by the technical solution of the present application generates a reference signal at the solder ball and detects the sampling signal at the solder ball. According to the size relationship between the sampling signal and the reference signal, the soldering state of the solder ball is determined. Reflected in the form of electrical signal quantity, the current welding status of the solder ball can be judged intuitively and accurately.
  • the solder ball detection device provided by this application has the advantages of being able to detect the status of the solder balls in real time and determine the degree of damage of the solder balls. It does not affect the normal operation of the radio frequency chip during the detection process and is small in size.
  • a printed circuit board includes a radio frequency chip and a solder ball for fixing the radio frequency chip on the printed circuit board, and a solder ball as described above connecting the solder ball. Ball detection device.
  • a radio frequency chip which includes the solder ball detection device as described above.
  • the radio frequency chip is a radar sensor chip applied to a radar sensor.
  • its antenna 1531 and antenna feeder 1533 are arranged on the PCB board 151, and the radar chip is fixed on the PCB board 151 through solder balls 131, 133, etc.
  • the solder ball 133 is connected to the radio frequency link where the antenna 1531 is located through the transmission line of the PCB board 151, and forms a circuit loop with the solder ball detection device integrated in the radar chip.
  • the solder ball detection device can detect the usage of the solder ball 131 after the radar chip leaves the factory, and output status information to the subsequent circuit.
  • an electronic device which includes a printed circuit board or a radio frequency chip as described above.
  • the above-mentioned electronic devices may be components and products used in fields such as smart residences, transportation, smart homes, consumer electronics, monitoring, industrial automation, in-cabin detection, and health care.
  • the electronic device can be intelligent transportation equipment (such as cars, bicycles, motorcycles, ships, subways, trains, etc.), security equipment (such as cameras), liquid level/flow rate detection equipment, smart wearable devices (such as bracelets, glasses, etc.), smart home equipment (such as sweeping robots, door locks, TVs, air conditioners, smart lights, etc.), various communication devices (such as mobile phones, tablets, etc.), as well as barriers such as gates, smart traffic lights, smart indicators, etc. signs, traffic cameras and various industrial robotic arms (or robots), etc. It can also be various instruments used to detect vital characteristic parameters and various devices equipped with the instruments, such as car cabin detection, indoor personnel monitoring, intelligent medical equipment, consumer electronic equipment, etc.
  • the radar sensor as a vehicle-mounted sensor can provide the ADAS system with functions such as automatic braking assistance (i.e., AEB) and blind spot detection and warning. (i.e. BSD), auxiliary lane change warning (i.e. LCA), reversing auxiliary warning (i.e. RCTA) and other functional safety guarantees.
  • AEB automatic braking assistance
  • BSD blind spot detection and warning
  • LCA auxiliary lane change warning
  • RCTA reversing auxiliary warning
  • the vehicle also includes a vehicle housing and a vehicle drive system.
  • the vehicle shell is provided with at least one assembly hole.
  • the mounting hole is used to assemble the radar sensor.
  • the assembly holes are set at one or more positions on the vehicle shell according to ADAS's needs for measurement information provided by the radar sensor. For example, there are a plurality of mounting holes, and they are provided at four body angle positions of the vehicle shell and/or at the rearview mirror position; they may also be provided at the front and rear of the vehicle, and/or at the door position, etc.
  • the drive system of the vehicle is used to drive the vehicle to move as a whole, such as forward, reverse, turn, etc.
  • Examples of the driving system include: engine, transmission mechanism, wheels, etc.
  • the ADAS is used to provide warning information and/or control the vehicle drive system to perform safety emergency operations based on the measurement information.
  • the ADAS includes a radar warning device of the vehicle (ie, the aforementioned alarm unit).
  • the radar sensor connected to a radar warning device as an example, when the radar sensor detects an abnormal state or detachment of the solder ball during the self-checking process, on the one hand, the alarm unit displays device abnormality, and on the other hand, it can also control the vehicle to decelerate. , or even stop waiting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

一种焊球检测装置(20)、印刷电路板(15)、射频芯片(11)及电子设备。射频芯片(11)的信号引脚通过焊球(13)固定于印刷电路板(15),焊球检测装置(20)用于检测焊球(13)的焊接状态,焊球检测装置(20)与焊球(13)电连接,焊球检测装置(20)包括:参考信号产生单元(21),产生参考信号,其中参考信号用于表示焊球(13)在至少一损耗情况下的焊接状态;采样单元(23),采集焊球(13)所在的电路回路的采样信号;检测单元(25),利用参考信号检测采样信号,以输出反映焊球(13)焊接状态的状态信息。

Description

焊球检测装置、印刷电路板、射频芯片及电子设备
相关申请的交叉引用
本申请基于申请号为“202211028338.9”、申请日为2022年08月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及芯片检测技术领域,具体而言,涉及一种焊球检测装置、印刷电路板、射频芯片及电子设备。
背景技术
集成电路芯片为通过一定的工艺设计,将一个电路中所需的电子元件集成制作于介质基片上,并通过封装技术形成的具有所需电路功能的微型电子结构。
集成电路芯片在使用时需要焊接在印刷电路板上。一般常通过焊球将集成电路芯片焊接在印刷电路板,以提供集成电路芯片和印刷电路板之间的物理支撑和实现两者的电气连接。
但在集成电路芯片的生产制造和实际使用过程中,焊球可能会存在焊球虚焊、漏焊、老化以及脱落等焊球异常等问题。焊球异常将会影响集成电路芯片的正常使用。
例如,目前射频芯片和毫米波芯片在使用时一般通过焊球以焊接到印刷电路板上。焊球的质量对于射频芯片,如毫米波芯片,其输入/输出端的阻抗具有很大的影响,进而会对所辐射的电磁波的性能产生较大的影响。
发明内容
本申请的第一方面提供了一种焊球检测装置。射频芯片的信号引脚通过焊球固定于印刷电路板,焊球检测装置用于检测焊球的焊接状态,焊球检测装置与焊球电连接,焊球检测装置包括:参考信号产生单元,产生参考信号,其中参考信号用于表示焊球在至少一损耗情况下的焊接状态;采样单元,采集焊球所在的电路回路的采样信号;检测单元,利用参考信号检测采样信号,以输出反映焊球焊接状态的状态信息。
本申请的第二方面提供了一种印刷电路板,包括射频芯片、将射频芯片固定在印刷电路板上的焊球,以及如上文所述的焊球检测装置。
本申请的第三方面提供了一种射频芯片,包括如上文所述的焊球检测装置。
根据本申请第三方面的一些实施例,该射频芯片为雷达传感器芯片。
本申请的第四方面提供了一种电子设备,包括如上文所述的印刷电路板和射频芯片。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出一现有射频芯片和印刷电路板的连接示意图;
图2示出根据本申请示例实施例的焊球检测装置的结构示意图;
图3示出多个焊球的焊接状态示意图;
图4示出根据本申请示例实施例的焊球检测装置设置于射频芯片上的示意图;
图5示出根据本申请示例实施例的多个焊球与焊球检测装置的连接示意图;
图6示出根据本申请示例实施例的包含焊球检测装置的雷达传 感器的结构示意图;
图7示出根据本申请示例实施例的焊球的损坏程度示意图。
具体实施方式
本申请提供了一种焊球检测装置、印刷电路板、射频芯片及电子设备,能够对芯片中的焊球进行实时状态检测。
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本申请将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有这些特定细节中的一个或更多,或者可以采用其它的方式、组元、材料、装置等。在这些情况下,将不详细示出或描述公知结构、方法、装置、实现、材料或者操作。
此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
下面结合本申请实施例中的附图,对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
雷达传感器上配置有射频芯片和天线阵列,雷达传感器芯片利用 天线阵列所发射的探测信号波和所接收的回波信号波测量其与周围环境障碍物之间的物理量,例如,测量相对速度、相对角度、相对距离,以及测量障碍物的三维轮廓中的至少一种等。
在实际产品中,射频芯片(如雷达传感器芯片)的信号引脚通过焊球固定于印刷电路板上以实现射频芯片内部的电路与印刷电路板的电器件之间的电气连接。例如,射频芯片中的信号发射器所发出的射频发射信号通过焊球传输至设置在印刷电路板的发射天线;或者设置在印刷电路板上的接收天线将射频接收信号通过焊球传输至射频芯片内的信号接收器。
例如,图1示出一现有射频芯片和印刷电路板的连接示意图。参见图1,图1中包括射频芯片11、焊球13和印刷电路板15,印刷电路板15上设置有铜覆层151。
射频芯片11的信号引脚通过焊球13焊接至印刷电路板15的铜覆层151上,以实现射频芯片11与印刷电路板15的电连接。
例如,射频芯片11上的收发天线发出的射频信号通过焊球13传输至印刷电路板15,以将射频信号传输至印刷电路板15的内部电路中。其中,射频信号为经过调制的,配置有一定发射频率的调频连续电波信号。
焊球检测装置通过检测藉由焊球构成电路回路的射频装置(如雷达传感器)的内部电路的采样信号,以确定焊球的状态。所述焊球检测装置利用射频芯片与印刷电路板的传输线,构建以待检测的焊球为电路回路的检测电路。
以图1为例,内部电路153设置在印刷电路板15上。铜覆层151与内部电路153电连接,射频芯片11通过焊球13电连接至印刷电路板15上的内部电路153,即射频芯片11与内部电路153连接,从而保证射频芯片11可以通过内部电路153正常工作。
又如,该内部电路还可以集成在射频芯片中,且通过射频芯片的引脚和固定引脚的焊球与印刷电路板的电路电连接。
内部电路为射频芯片根据雷达传感器所测量的周围环境而确定的电路结构,以在预设频段、或定频发出探测信号和接收射频信号。 例如,所述内部电路包括以下至少一种:发射天线、接收天线、本振产生电路、时钟信号产生电路、控制信号产生电路等。其中,发射天线、和接收天线为能量转换器,其可与射频芯片(如雷达芯片)一起布置在PCB板上,射频芯片通过焊球将发射天线/接收天线与芯片内部的相应信号发射器/信号接收器电连接,以形成射频发射链路/射频接收链路。其中,信号发射器举例为毫米波射频发射电路;信号接收器举例为毫米波射频接收电路。
以雷达芯片支持芯片级联为例,雷达芯片所集成的本振产生电路的信号端、时钟信号产生电路、控制信号产生电路等内部电路还具有相应的各外接端,以借由焊球和PCB上的对应信号传输线电连接多颗雷达芯片。所述焊球检测装置构建与相应内部电路连接的焊球与地线的检测回路,以利用射频芯片的地线与所固定的PCB板的地线为同一参考地电压,对射频芯片中用于传输关键信号的焊球的焊接状态进行检测。其中,关键信号举例包括以下至少一种:雷达传感器用于探测周围物体的射频发射信号、和/或射频接收信号;用于供多颗芯片协同工作所需要的多种同步信号,如本振信号、同步时钟信号、同步控制信号中的至少一种等。
在一些包括上述射频芯片的电子探测设备中,如车辆自动驾驶系统、入侵检测系统、飞行器,对于射频芯片所传输的射频信号的稳定性要求很高。
例如射频芯片发出的射频信号的稳定传输对于电子探测设备的探测精准度具有重要意义。
而在射频芯片的工作过程中,连接射频芯片与印刷电路板之间的电气元件如焊球,会存在一些因人为因素(如焊球虚焊、漏焊)和/或环境因素(如焊球老化、脱落)造成焊球焊接状态异常的问题。
焊球焊接状态异常会直接影响射频芯片的射频信号传输,而会影响射频芯片的正常使用,从而会影响到使用该射频芯片的电子探测设备的性能和使用。
为了对焊球的焊接状态进行检测,在一些示例中采用光学成像的方式,例如超声、X光、CT和红外成像等成像方式。利用光学成像原 理对焊球进行状态摄像,通过预设计算机图像算法或人工识别方式对焊球状态进行检测。
但本申请发明人发现,通过光学成像的方式对焊球状态进行检测存在以下不足。
1.上述方法可以对已初步判断为异常的焊球进行进一步分析,但是不适合在电路装置使用的第一时间检测出焊球异常,因此不能实现对焊球状态的实时检测;
2.通过光学成像设备对焊球状态检测时需要中断集成电路芯片的焊接状态,会影响集成电路芯片的正常工作,特别是干扰射频信号传输和电磁波辐射;
3.光学成像的测试设备相对复杂和体积庞大,使得检测工作较为复杂。
基于上述问题,本申请的一方面提供了一种焊球检测装置,用于实时检测焊球所接入的电路的信号变化,从而判断焊球的损耗情况。
下面将参照附图,对本申请的具体实施例进行详细说明。
图2示出根据本申请示例实施例的焊球检测装置的结构示意图。焊球检测装置与焊球电连接,用于检测连接射频芯片的信号引脚的焊球的焊接状态。
根据示例实施例,焊球检测装置包括参考信号产生单元、采样单元和检测单元。
例如,参见图2,焊球检测装置20与焊球13电连接。焊球检测装置20包括参考信号产生单元21、采样单元23和检测单元25。
根据示例实施例,采样单元获取焊球所在电路回路的采样信号。所述采样单元通过耦接所检测的焊球所在电路回路的方式来获取表示实测电压/功率的采样信号。所述电路回路的一部分位于PCB板上,以及另一部分通过待测焊球和接地的焊球连接到芯片内部。例如,所述电路回路的地线为PCB板上的地线。又如,所述电路回路包含有部分射频信号传输路径。
所述采样单元23可配置在PCB板上或者射频芯片内部。比如,采样单元为一种包含巴伦器件的耦合电路,其通过感应耦合获取表示 实测功率的采样信号。又如,采样单元为一种包含分压电阻的电路,以获取表示实测电压的采样信号。再如,采样单元为连接射频信号发射端/接收端与一电源之间的传输线等。为此,所述采样信号包括焊球所在的电路回路(如射频电路回路)的实测电压、实测电流、或实测的功率信号等;或者由参考信号产生单元21作为电源而在检测电路回路中所产生的电流、电压等信号。
根据示例实施例,参考信号产生单元21用来产生参考信号。其中参考信号用于表示焊球在至少一损耗情况下的焊接状态。焊球的焊接状态包括正常连接状态、脱落状态和异常连接状态。其中,脱落状态,如焊球虚焊、脱落等,可通过焊球所在的电路回路断路的电性特征来表示;正常连接状态,如焊球完整地存在,可通过焊球所在的电路回路的电信号的幅值符合预设的阈值电平的电性特征来表示;与正常连接状态不同的是,异常连接状态,如焊球部分脱落等,可通过焊球所在的电路回路的电信号的幅值不符合所述阈值电平和断路的电性特征来表示。
例如,图3示出多个焊球的焊接状态示意图。图3中示出四个处于不同焊接状态的焊球,如焊球a、焊球b、焊球c和焊球d。
焊球a为焊接状态处于正常连接状态的焊球,其与射频芯片11和印刷电路板15均有良好的接触。
焊球b为焊接状态处于脱落状态的焊球,其与射频芯片11和印刷电路板15完全脱离。
焊接状态处于正常连接状态和脱落状态之间的焊球的焊接状态为异常连接状态。
例如,焊球c和焊球d为焊接状态处于异常连接状态的焊球,其存在的问题可为上部焊球缺失或下部焊球缺失,焊球c和焊球d与射频芯片11和印刷电路板15的接触性能较差。
为此,参考信号产生单元提供可反映所获取的采样信号表示焊球至少一种焊接状态的参考信号,以据此区分至少两种焊接状态。在一些示例中,参考信号至少包括第一参考信号和第二参考信号。
例如,第一参考信号表征焊球的焊接状态处于正常连接状态,第 二参考信号表征焊球的焊接状态处于脱落状态。第一参考信号为在实际应用场景中通过实践得到的表征焊球与射频芯片和印刷电路板处于正常连接状态时的信号值。第二参考信号为在实际应用场景中通过实践得到的表征焊球与射频芯片和印刷电路板处于脱落状态时的信号值。第一参考信号和第二参考信号可根据实际应用场景预先得知。举例,参考信号为参考电压信号、或参考电流信号。参考电压信号包括第一参考电压和第二参考电压。第一参考电压为焊球焊接状态处于正常连接状态时的电压值。第二参考电压为焊球焊接状态处于脱落状态时的电压值。
参考信号产生单元可配置为单独提供每一种参考信号的电路。或者利用同一电源和连接该电源的多路分压电路以分别提供不同的参考信号。例如,参考信号产生单元包括串联的信号产生器、第一电阻和第二电阻。
检测单元利用所述参考信号检测所述采样信号,以输出反映所述焊球焊接状态的状态信息。
所述检测单元为利用预设的焊接检测逻辑,对所接收的信号进行检测,以输出反映所测焊球的焊接状态的状态信息。其中,所述检测逻辑举例为根据参考信号和采样信号之间的比较结果和基于比较结果的逻辑而构建的。所述检测逻辑举例利用包含触发器、门电路等逻辑器件而构建的电路,或者藉由如MCU等处理器而进行逻辑运算的程序文件。所述状态信息举例以至少一位二进制信号表示;或经编码的数据信息表示等。
在一些示例中,每一路参考信号和采样信号分别输入检测单元。由检测单元依据相应参考信号所对应的焊接状态,检测所述采样信号。例如,所述检测单元包括如比较器、触发器、逻辑门等器件所配置的电路,以按照预设的信号处理逻辑来检测所接收的采样信号对应所检测的焊球的焊接状态,并输出状态信息。
在另一些示例中,所述参考信号产生单元与采样单元相连于一输出端;所述输出端连接检测单元,以输出所述参考信号与采样信号之间的偏差信号;所述检测单元依据所接收的偏差信号输出所述状 态信息。例如,采样单元与参考信号产生单元串联、并联、或通过减法器连接,所形成的路径上设有一能反映采样信号和参考信号的电压差/电流差,以作为偏差信号,该偏差信号输出至检测单元;所述检测单元通过检测偏差信号的电压值、电流值、流量等中的至少一种,来确定所检测的焊球的焊接状态,并输出状态信息。
在另一些示例中,所述焊球检测装置还包括模拟数字转换器(ADC)可设置在检测单元的输入端或输出端所在线路,其将所接收的模拟信号转换为数字采样信号,以供所述检测单元进行检测或生成状态信息。例如,ADC位于检测单元的各输入端,则将采样信号、各参考信号、或偏差信号等转换成相应的数字信号,并提供给检测单元。所述检测单元可为MCU等数据处理器,以对相应的焊球进行焊接状态检测。又如,ADC位于检测单元的输出端,则将表示状态信息的模拟信号编码呈多位的数字信号,以利用数字信号中的至少一个高位所对应的区间表示所检测到的焊接状态。
根据示例实施例,检测单元利用参考信号检测采样信号,以输出反映焊球的焊接状态的状态信息。
在一些示例中,所述检测单元分别接收所述采样信号与相应第一参考信号和/或第二参考信号,并检测所述采样信号与相应第一参考信号和/或第二参考信号之间的信号差异,以确定所述焊球的焊接状态处于正常连接状态、脱落状态、或异常连接状态,并输出相应的状态信息。例如,如图2所示,参考信号产生单元21可提供至少一种参考信号,以及采样单元23采样流经待检测焊球的信号;参考信号产生单元21和采样单元23分别输入检测单元25,以供检测单元进行信号比较,以输出反映所检测的焊球的状态信息。
例如,采样信号为焊球处的实测电压Vr,第一参考信号为焊球焊接状态处于正常连接状态时的第一参考电压V1,第二参考电压信号为焊球焊接状态处于脱落状态时的第二参考电压V2。检测单元判断实测电压Vr与第一参考电压V1、第二参考电压V2的大小关系。当检测单元判断出采样信号的电压低于第二参考信号的电压时,确定焊球的焊接状态处于脱落状态,并输出相应的状态信息。当检测单元 判断出采样信号的电压高于第一参考信号的电压时,确定焊球的焊接状态处于正常状态,并输出相应的状态信息。当检测单元判断出采样信号的电压位于第一参考信号和第二参考信号的电压之间时,确定焊球的焊接状态处于半连接的异常状态,并输出相应的状态信息。
又如,所述检测单元将所述采样信号与相应第一参考信号和/或第二参考信号进行减处理,以得到相应的信号差,检测单元利用ADC将该信号差转为数字信号,以基于焊接状态进行数字信号处理,并由此确定相应的状态信息。
在另一些示例中,所述参考信号产生单元与采样单元相连于一输出端;所述输出端连接检测单元,以输出所述参考信号与采样信号之间的偏差信号;所述检测单元依据所接收的偏差信号输出所述状态信息。
以图4示为例,其示出根据本申请示例实施例的焊球检测装置的结构示意图。其中,参考信号产生单元21包括信号产生器211。信号产生器211举例为电流源、电压源、或藉由芯片供电系统所设置的电源等。采样单元23为接入差分传输电路14一输出端的分压电阻(如第一电阻233和第二电阻235)。该差分传输电路14为射频链路中提供差分信号的电路,如巴伦等。该射频链路中的每一传输线通过对应的焊球(如焊球131)连接位于PCB板上的内部电路153(如天线)。该焊球检测装置通过焊球131和133、以及内部电路在PCB板上的传输线构成检测电路回路。焊球131为待检测的焊球。采样单元23与参考信号产生单元21串联,且所串联的路径上设有输出端,该输出端通过ADC29连接检测单元25。若焊球131电连接在电路中,采样单元23、参考信号产生单元21和焊球131形成检测电路回路,采样单元23将参考信号产生单元21所产生的参考信号分压并转成采样信号,输出至ADC,ADC将其转成数字信号输入检测单元,该检测单元可通过检测电压值与参考信号的电压值之间的偏差,来确定焊球131的焊接状态为正常状态、异常状态、或断开状态中的至少一种。以焊球131断开为例,分压电阻(233,235)所输出的采样信号与参考信号的电压相同,该检测单元可通过检测采样信号的电压值等来确定焊 球131的焊接状态为脱落状态。
需要说明的是,上述各示例中所提到的利用参考信号对采样信号的判断操作仅为举例,受射频芯片所在环境温度、实际工作电压等变化影响,所获取的采样信号与用作判断依据的参考信号之间应有可容忍的误差,以使得检测单元在相应误差内得到相等(或称相符)的判断结果。和/或,参考信号产生单元包含可调电路,以受PVT影响而适应性调整所输出的参考信号。
可选地,焊球检测装置还包括报警单元,用于接收状态信息,并根据状态信息发出报警信息。
例如,参见图2,焊球检测装置20还包括报警单元27。报警单元27与检测单元25电连接,接收检测单元25输出的状态信息。
当报警单元27接收到的状态信息为脱落状态信息或异常连接状态时,报警单元27发出报警信息,以提示操作人员被检测焊球出现了异常,以使得操作人员可以及时对异常焊球进行查看和维护。
在一些示例中,焊球检测装置设置于印刷电路板上,并与印刷电路板的铜覆层电连接。其中,焊球为射频芯片所在电路回路中传输射频信号的焊球。
例如,参见图2,焊球检测装置20设置于铜覆层151上,从而可以与铜覆层151上的焊球13进行电连接。
焊球13为射频芯片11的电路回路中用于传输射频信号的焊球。焊球13通过射频芯片11的信号引脚接收射频信号,并将射频信号传输至印刷电路板15的内部电路153中。
内部电路153与焊球检测装置20并联设置于与焊球13电连接的铜覆层151上。这样的设置可以使得焊球检测装置20与射频芯片11的内部电路153是相对独立的,且互不干扰。如此可以使得焊球检测装置20在进行焊球状态检测时,不影响射频芯片11的正常工作。
在另一些示例中,焊球检测装置设置于射频芯片上,并与射频芯片内传输射频信号的内部电路电连接。
例如,参见图4,焊球检测装置20还可设置于射频芯片11上,并与射频芯片11内传输射频信号的内部电路电连接。例如,参见图 4,射频芯片11内传输射频信号的内部电路包括射频信号的驱动放大电路。图4所示,采样单元23为耦接于驱动放大电路输出端的传输差分信号的巴伦电路14。
通过上述示例实施例,焊球检测装置20可以设置于与焊球阵列13连接的印刷电路板15上,也可以设置于焊球阵列13所连接的射频芯片11上。根据不同的实际需求设置焊球检测装置20的具体位置。
可选地,检测单元还接收来自射频芯片的自检指令,并根据自检指令启动焊球状态检测。
例如,检测单元接收来自射频芯片的自检指令,待检测的焊球与射频芯片中的射频链路连接,以及连接焊球检测装置所在电路回路。
射频芯片发出自检指令,使得射频芯片处于自检模式。检测单元根据自检指令启动对焊球的状态检测。以雷达芯片为例,雷达芯片在发射相邻的有效Chirp信号之间的间隙产生自检指令。其中,所述有效chirp信号是指雷达芯片所发出的chirp信号的频率上升阶段(或频率下降阶段)是供雷达芯片用来探测周围物体的相对距离、相对速度、相对角度等测量数据的信号波区间;而chirp信号的其他信号波区间,以及两个chirp信号之间的空闲区间则为相邻的有效chirp信号之间的间隙。由此实现雷达传感器在工作期间自检焊球的焊接状态的目的。所得到的检测结果可输出至如报警单元等信号处理电路(如CPU,或蜂鸣器等),以便在检测结果的信号表示焊球的焊接状态异常时,触发供使用用户(或如车厂售后等远程用户)及时获知的提示消息,或者供车辆自动驾驶系统/飞行器等调整感知系统数据信任度等。
通过上述示例实施例,射频芯片可以自触发焊球状态检测。当射频芯片应用于电子探测设备如车辆自动驾驶系统/飞行器时,可以使得车辆自动驾驶系统/飞行器具备自检模式,可以自动对其设备上的焊球的焊接状态信息。
这样可以使得车辆自动驾驶系统/飞行器获取焊球所在的电路回路的正常/异常的状态信息,并根据状态信息进行判断是否需要报警处理和应急处理,如通过一定的补偿机制或切换工作模式以应对异常事故。
例如,当确定连接射频芯片的焊球发生异常时,则切换该焊球的工作模式,选取其它替代焊球进行射频信号的传输。
可选地,检测单元还接收来自印刷电路板的预设指令,根据预设指令启动焊球状态检测。
例如,检测单元接收来自印刷电路板的预设指令,预设指令为在印刷电路板上按照预设信号检测逻辑设置的检测指令。如预设指令包括启动检测指令、特定焊球检测指令和检测逻辑顺序指令。
启动检测指令是指按需触发焊球状态检测。特定焊球检测指令包括只对传输射频芯片发出的射频信号的焊球进行焊球状态检测。检测逻辑顺序指令为按照一定预设顺序对焊球进行焊球状态检测。
通过上述示例实施例,焊球检测装置可以根据所接收的来自射频芯片的自检指令,和来自印刷电路板的预设指令进行焊球状态检测,可以应对不同环境中的焊球状态检测需求。
可选地,焊球检测装置可以连接一个或多个焊球。检测单元25启动焊球状态检测后,根据相应的指令对焊球执行状态检测。
图5示出根据本申请示例实施例的多个焊球与焊球检测装置的连接示意图。
参见图5,多个焊球13通过线路与焊球检测装置20电连接。检测单元25启动焊球状态检测后,焊球检测装置20根据预设信号检测逻辑,相应的切换与多个焊球13的通讯顺序,以进行多个焊球13的状态检测。
例如,预设信号检测逻辑可以为检测所有的焊球13的状态,则焊球检测装置20依次或同时完成所有焊球13的状态检测。或者预设信号检测逻辑为检测指定焊球13的状态,则焊球检测装置20相应的依次或同时完成所述指定焊球13的状态检测。
图6示出根据本申请示例实施例的印刷电路板的内部电路的结构示意图。结合图2、6所示,所述焊球检测装置可检测天线1531所连接的焊球的焊接状态。天线1531的一端通过天线馈线1533连接待测焊球131。
印刷电路板包括第一顶层151、第二底层152以及通孔154。天 线1531的另一端通过通孔154穿过第一顶层151,以及穿过第二底层152通过通孔154与接地焊球133电连接。
根据示例实施例,图2所示的参考信号产生单元21产生的参考信号为参考电压信号,参考电压信号包括第一参考电压和第二参考电压。
例如,采样单元23检测采样信号为焊球13处的实测电压Vr,第一参考电压为焊球焊接状态处于正常连接状态时的第一参考电压V1,第二参考电压为焊球焊接状态处于脱落状态时的第二参考电压V2。当射频芯片11和印刷电路板15处于正常连接状态时,实测电压Vr等于第一参考电压V1。当射频芯片11和印刷电路板15处于断开连接状态时,实测电压Vr等于第二参考电压V2。当射频芯片11和印刷电路板15处于异常连接状态时,实测电压Vr的值介于第一参考电压V1和第二参考电压V2之间。
当焊球13处于脱落状态时,焊球13处相当于断路,即参考信号产生单元21与接地端失去连通,此时焊球13处的电压值为参考信号产生单元21的产生的参考信号,实测电压Vr等于第二参考电压V2。
当焊球13处于异常连接状态时,即焊球13为局部缺失时,焊球13处的阻抗变大,因此会和第一电阻233和第二电阻235共同具有分压作用,因此此时实测电压Vr会大于第一参考电压V1,但不会超过第二参考电压V2。
图7示出根据本申请示例实施例的焊球的损坏程度示意图。图7中横轴为采样信号Vr,纵轴为焊球的损坏程度。
由图7可知,当实测电压Vr等于第一参考电压V1时,焊球13为完全无损,即焊球13的焊接状态处于正常连接状态。当实测电压Vr等于第二参考信号V2时,焊球13为完全损坏,即焊球13的焊接状态处于脱落状态。
当实测电压Vr处于第一参考电压V1和第二参考电压V2之间时,焊球13为部分损坏,即焊球13的焊接状态处于异常连接状态。
可选地,采样单元包括第一模拟信号转换器,用于将电路模拟信号转换为数字信号,以生成采样信号。
通过上述示例实施例,本申请技术方案提供的焊球检测装置通过在焊球处产生参考信号,以及检测焊球处的采样信号,根据采样信号与参考信号的大小关系,将焊球的焊接状态以电信号量的形式体现出来,可以直观准确的实现对焊球当前的焊接状态的判断。
本申请提供的焊球检测装置具有可以实时对焊球状态进行检测和可以判断焊球的损毁程度等优势,以及检测过程中不影响射频芯片的正常工作、体积小等特点。
根据本申请的又一方面,提供了一种印刷电路板,该印刷电路板包括射频芯片和将射频芯片固定在印刷电路板上的焊球,以及连接所述焊球的如上文所述的焊球检测装置。
根据本申请的又一方面,提供了一种射频芯片,该射频芯片包括如上文所述的焊球检测装置。
可选地,该射频芯片为应用于雷达传感器的雷达传感器芯片。参考图6所示的雷达传感器,其天线1531、天线馈线1533布置在PCB板151,雷达芯片通过焊球131、133等固定在PCB板151上。其中,为检测焊球131,焊球133通过PCB板151的传输线连接天线1531所在的射频链路,并与集成在雷达芯片的焊球检测装置形成电路回路。如此,按照雷达芯片的自检系统所提供的某一时隙,焊球检测装置可在雷达芯片出厂后检测所述焊球131的使用情况,并向后级电路输出状态信息。
根据本申请的又一方面,提供了一种电子设备,该电子设备包括如上文所述的印刷电路板或射频芯片。
在一个可选的实施例中,上述电子设备可为应用于诸如智能住宅、交通、智能家居、消费电子、监控、工业自动化、舱内检测及卫生保健等领域的部件及产品。例如,该电子设备可为智能交通运输设备(如汽车、自行车、摩托车、船舶、地铁、火车等)、安防设备(如摄像头)、液位/流速检测设备、智能穿戴设备(如手环、眼镜等)、智能家居设备(如扫地机器人、门锁、电视、空调、智能灯等)、各种通信设备(如手机、平板电脑等)等,以及诸如道闸、智能交通指示灯、智能指示牌、交通摄像头及各种工业化机械臂(或机器人)等, 也可为用于检测生命特征参数的各种仪器以及搭载该仪器的各种设备,例如汽车舱内检测、室内人员监控、智能医疗设备、消费电子设备等。
在又一个可选的实施例中,当上述的电子设备应用于先进驾驶辅助系统(即ADAS)时,作为车载传感器的雷达传感器可为ADAS系统提供诸如自动刹车辅助(即AEB)、盲点检测预警(即BSD)、辅助变道预警(即LCA)、倒车辅助预警(即RCTA)等各种功能安全提供保障。
以配置有所述ADAS的车辆为例,所述车辆还包括车辆壳体、车辆驱动系统。
其中,车辆壳体上设有至少一个装配孔。所述装配孔用于装配雷达传感器。所述装配孔根据ADAS对雷达传感器所提供的测量信息的需要,而设置在车辆壳体上的一个或多个位置。例如,所述装配孔为多个,并设置在车辆壳体的四个体角位置、和/或后视镜位置等;还可以设置在车辆的正前方和正后方,和/或车门位置等。
所述车辆的驱动系统用于驱动车辆整体移动,如前进、倒退、转弯等。所述驱动系统举例包括:发动机、传动机构、和车轮等。
所述ADAS用于根据所述测量信息提供警示信息和/或控制车辆驱动系统执行安全紧急操作。
在此,所述ADAS包括车辆的雷达警示器(即前述提及的报警单元)。以所述雷达传感器连接雷达警示器为例,当所述雷达传感器在自检过程中检测到焊球异常状态或脱落状态,则一方面通过报警单元显示器件异常,另一方面还可以控制车辆减速、甚至停止等。
最后应说明的是,以上所述仅为本申请的优选实施例而已,并不用于限制本申请,尽管参照前述实施例对本申请进行详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申申请的保护范围之内。

Claims (14)

  1. 一种焊球检测装置,射频芯片的信号引脚通过焊球固定于印刷电路板,所述焊球检测装置用于检测所述焊球的焊接状态,所述焊球检测装置与焊球电连接,所述焊球检测装置包括:
    参考信号产生单元,产生参考信号,其中所述参考信号用于表示所述焊球在至少一损耗情况下的焊接状态;
    采样单元,采集所述焊球所在的电路回路的采样信号;
    检测单元,利用所述参考信号检测所述采样信号,以输出反映所述焊球焊接状态的状态信息。
  2. 根据权利要求1所述的焊球检测装置,其中,所述参考信号包括以下至少一种:第一参考信号,表征所述焊球的焊接状态处于正常连接状态;第二参考信号,表征所述焊球的焊接状态处于脱落状态;
    所述检测单元通过检测所述采样信号与相应第一参考信号和/或第二参考信号之间的信号差异,确定所述焊球的焊接状态处于正常连接状态、脱落状态、或异常连接状态,并输出相应的状态信息。
  3. 根据权利要求1所述的焊球检测装置,其中,所述参考信号产生单元与采样单元相连于一输出端;所述输出端连接检测单元,以输出所述参考信号与采样信号之间的偏差信号;
    所述检测单元依据所接收的偏差信号输出所述状态信息。
  4. 根据权利要求1所述的焊球检测装置,其中,所述焊球检测装置还包括:
    报警单元,接收所述状态信息,并根据所述状态信息发出报警信息。
  5. 根据权利要求1所述的焊球检测装置,其中,所述焊球设置于印刷电路板的铜覆层上,所述焊球检测装置设置于所述印刷电路板上,并与所述印刷电路板的铜覆层电连接;
    其中,所述焊球为所述射频芯片与印刷电路板所在电路回路中传输射频信号的焊球。
  6. 根据权利要求1所述的焊球检测装置,其中,所述焊球检测装置设置于所述射频芯片上,并与所述射频芯片内传输射频信号的内部电路电连接。
  7. 根据权利要求1所述的焊球检测装置,其中,所述检测单元还接收来自所述射频芯片的自检指令,并根据所述自检指令启动焊球状态检测。
  8. 根据权利要求1所述的焊球检测装置,其中,所述检测单元还接收来自所述印刷电路板的预设指令,根据所述预设指令启动焊球状态检测。
  9. 根据权利要求1所述的焊球检测装置,其中,所述参考信号产生单元包括:
    信号产生器,用于产生参考信号;
    第一电阻和第二电阻,与所述信号产生器串联连接,用于进行电路分压。
  10. 根据权利要求1所述的焊球检测装置,其中,所述焊球检测装置还包括:模拟信号转换器,与所述检测单元电连接,将所接收的模拟信号转换为数字采样信号,以供所述检测单元进行检测或生成状态信息。
  11. 一种印刷电路板,包括射频芯片、将射频芯片固定在印刷电路板上的焊球,以及连接所述焊球的如权利要求1-10任一所述的焊球检测装置。
  12. 一种射频芯片,包括如权利要求5所述的焊球检测装置。
  13. 根据权利要求12所述的射频芯片,其中,所述射频芯片为雷达传感器芯片。
  14. 一种电子设备,包括如权利要求11所述的印刷电路板;或权利要求12或13所述的射频芯片。
PCT/CN2023/100265 2022-08-25 2023-06-14 焊球检测装置、印刷电路板、射频芯片及电子设备 WO2024041121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211028338.9 2022-08-25
CN202211028338.9A CN117665528A (zh) 2022-08-25 2022-08-25 焊球检测装置、印刷电路板、射频芯片及电子设备

Publications (1)

Publication Number Publication Date
WO2024041121A1 true WO2024041121A1 (zh) 2024-02-29

Family

ID=90012361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100265 WO2024041121A1 (zh) 2022-08-25 2023-06-14 焊球检测装置、印刷电路板、射频芯片及电子设备

Country Status (2)

Country Link
CN (1) CN117665528A (zh)
WO (1) WO2024041121A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135938A (ja) * 1997-10-28 1999-05-21 Matsushita Electric Ind Co Ltd 半導体装置の検査方法および実装基板
CN2590168Y (zh) * 2002-12-18 2003-12-03 技嘉科技股份有限公司 检测装置
CN1828281A (zh) * 2005-03-01 2006-09-06 株式会社电装 X射线检查设备和x射线检查方法
CN101261948A (zh) * 2007-03-08 2008-09-10 株式会社新川 焊接装置的压焊球检测装置及焊接部的压焊球检测方法
CN102473659A (zh) * 2009-07-24 2012-05-23 惠普开发有限公司 有效管脚连接监测系统和方法
US20140176392A1 (en) * 2012-12-20 2014-06-26 Samsung Electro-Mechanics Co., Ltd. Antenna and front end module
US20150276854A1 (en) * 2014-03-27 2015-10-01 Freescale Semiconductor, Inc. Integrated circuit interconnect crack monitor circuit
CN108205081A (zh) * 2018-01-19 2018-06-26 桂林电子科技大学 一种用于微尺度焊球回波损耗测量的装置
CN109192675A (zh) * 2018-09-11 2019-01-11 长江存储科技有限责任公司 封装体检测方法
CN109192677A (zh) * 2018-09-11 2019-01-11 长江存储科技有限责任公司 封装体检测装置
CN210863561U (zh) * 2019-05-31 2020-06-26 福建省三明市德聚码业设备制造有限公司 一种bga焊球阵列的光纤检测仪
CN114512463A (zh) * 2022-02-18 2022-05-17 维沃移动通信有限公司 芯片组件及电子设备

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135938A (ja) * 1997-10-28 1999-05-21 Matsushita Electric Ind Co Ltd 半導体装置の検査方法および実装基板
CN2590168Y (zh) * 2002-12-18 2003-12-03 技嘉科技股份有限公司 检测装置
CN1828281A (zh) * 2005-03-01 2006-09-06 株式会社电装 X射线检查设备和x射线检查方法
CN101261948A (zh) * 2007-03-08 2008-09-10 株式会社新川 焊接装置的压焊球检测装置及焊接部的压焊球检测方法
CN102473659A (zh) * 2009-07-24 2012-05-23 惠普开发有限公司 有效管脚连接监测系统和方法
US20140176392A1 (en) * 2012-12-20 2014-06-26 Samsung Electro-Mechanics Co., Ltd. Antenna and front end module
US20150276854A1 (en) * 2014-03-27 2015-10-01 Freescale Semiconductor, Inc. Integrated circuit interconnect crack monitor circuit
CN108205081A (zh) * 2018-01-19 2018-06-26 桂林电子科技大学 一种用于微尺度焊球回波损耗测量的装置
CN109192675A (zh) * 2018-09-11 2019-01-11 长江存储科技有限责任公司 封装体检测方法
CN109192677A (zh) * 2018-09-11 2019-01-11 长江存储科技有限责任公司 封装体检测装置
CN210863561U (zh) * 2019-05-31 2020-06-26 福建省三明市德聚码业设备制造有限公司 一种bga焊球阵列的光纤检测仪
CN114512463A (zh) * 2022-02-18 2022-05-17 维沃移动通信有限公司 芯片组件及电子设备

Also Published As

Publication number Publication date
CN117665528A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US20220043139A1 (en) Vehicular sensing system using mimo radar sensor units
CN106926779B (zh) 一种车辆变道辅助系统
US20150234037A1 (en) Radar circuit, radar system and method for testing
CN105242263A (zh) 一种车辆存在检测装置及方法
CN203133194U (zh) 车辆外辐射源抗干扰测试系统
CN102906591A (zh) 车辆的驾驶员辅助设备和运行雷达设备的方法
CN101357688A (zh) 改善的紧急事件信号台
CN202837484U (zh) 变电站智能巡检机器人超声局放检测系统
WO2024041121A1 (zh) 焊球检测装置、印刷电路板、射频芯片及电子设备
US20210103053A1 (en) Hostless parking radar system
CN109775572A (zh) 一种基于uwb的非同轨道起重防撞保护装置及方法
Kulke et al. 24 GHz radar sensor integrates patch antenna and frontend module in single multilayer LTCC substrate
CN219285416U (zh) 一种探测传感器及无人飞行器
CN208698731U (zh) 新型车载警卫系统
CN114184898A (zh) 一种便携式多功能人工电缆巡检装置及其电缆巡检方法
CN202854284U (zh) 基于超声探测技术的变电站智能巡检机器人
CN111983615A (zh) 一种分布式的雷达信号处理系统及装置
CN205843841U (zh) 开关柜远程测温系统
CN213183222U (zh) 一种汽车空档信号识别装置
CN216209884U (zh) 一种通过切换发射天线来切换探测范围的雷达系统
JP2002022833A (ja) 反射測定装置
CN214752257U (zh) 一种基于lora无线通信技术的多功能爬架控制遥控器
CN110823361A (zh) 一种基于超声波注入的变压器振动检测系统及其检测方法
CN221039425U (zh) 一种内置蓝牙通讯调试的车载盲区毫米波雷达
CN114257317B (zh) 一种测试设备及测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856213

Country of ref document: EP

Kind code of ref document: A1