WO2024040703A1 - 粗硫酸钠的资源化利用方法 - Google Patents

粗硫酸钠的资源化利用方法 Download PDF

Info

Publication number
WO2024040703A1
WO2024040703A1 PCT/CN2022/124380 CN2022124380W WO2024040703A1 WO 2024040703 A1 WO2024040703 A1 WO 2024040703A1 CN 2022124380 W CN2022124380 W CN 2022124380W WO 2024040703 A1 WO2024040703 A1 WO 2024040703A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
sodium sulfate
solution
crude
resource utilization
Prior art date
Application number
PCT/CN2022/124380
Other languages
English (en)
French (fr)
Inventor
李永战
黄际洪
刘霞
许义军
Original Assignee
湖南福尔程环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南福尔程环保科技有限公司 filed Critical 湖南福尔程环保科技有限公司
Priority to US18/013,381 priority Critical patent/US20240067522A1/en
Publication of WO2024040703A1 publication Critical patent/WO2024040703A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/06Preparation of sulfur; Purification from non-gaseous sulfides or materials containing such sulfides, e.g. ores
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • C25B1/16Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation

Definitions

  • the present disclosure relates to the technical fields of environmental protection and solid waste treatment and utilization, and in particular to a resource utilization method of crude sodium sulfate.
  • a large amount of sodium sulfate is produced as a by-product in many chemical production processes.
  • 0.5-0.8 tons of Na 2 SO 4 are produced for every ton of chemical fiber produced.
  • the total output of chemical fiber in the country reaches tens of millions of tons.
  • the by-product Na 2 SO The amount of 4 reaches tens of millions of tons.
  • the ternary precursor material is nickel cobalt manganese hydroxide Ni x Co y Mn (1-xy) (OH) 2 , which is generally Sulfates of nickel, cobalt, and manganese are used as raw materials, and are produced by the reaction of sodium hydroxide and ammonia water as precipitants.
  • the production process requires a large amount of sodium hydroxide, and at the same time, a large amount of sodium sulfate is produced in the process wastewater.
  • the wastewater treatment process A large amount of by-product sodium sulfate (yuanming powder) will be obtained.
  • Some of these by-product sodium sulfate contain sodium chloride, ammonium sulfate and other salts, and some also retain a small amount of organic impurities and heavy metals. They cannot be used directly. Downstream production can only do solid waste disposal, which is expensive and can easily cause secondary pollution. We refer to this industrial by-product sodium sulfate as crude sodium sulfate.
  • the main treatment methods for crude sodium sulfate are: safe landfill and recrystallization purification for sale as a product.
  • the former occupies valuable land resources and easily causes soil salinization and groundwater pollution; the latter has large equipment, high energy consumption, high cost, and the value generated is not enough to cover the cost expenditure, which brings a great economic burden to the enterprise.
  • the added value of sodium sulfate is low, the sales market is limited, and the process is easy to cause pollution.
  • the disposal of crude sodium sulfate has become a problem for related industries. Solve this problem, realize the resource utilization of crude sodium sulfate, and create good economic benefits and environment Benefits are of great significance.
  • sodium sulfate is calcined at high temperature and reduced to sodium sulfide; in the second step, the generated sodium sulfide is dissolved into a solution and mixed with Zinc oxide reacts to generate sodium hydroxide solution and water-insoluble zinc sulfide. The obtained sodium hydroxide solution is then used in chemical fiber production; in the third step, the zinc sulfide obtained in the second step is calcined to obtain zinc oxide and sulfur dioxide. Further conversion yields sulfuric acid, and zinc oxide is returned to the first step for the preparation of sodium hydroxide.
  • this method mainly has the following shortcomings: this method can only process sodium sulfate as a single component salt, and cannot process the mixed salt of sodium chloride and sodium sulfate.
  • the main purpose of the present disclosure is to provide a method for resource utilization of crude sodium sulfate to solve the technical problem in related technologies that only sodium sulfate can be processed as a single component salt.
  • the present disclosure provides a resource utilization method of crude sodium sulfate, which includes the following steps:
  • the crude sodium sulfate is reduced and a sodium sulfide solution is formed.
  • the sodium sulfide solution and chlorine gas are reacted first to obtain sulfur and sodium chloride solutions.
  • the sodium chloride solution is electrolyzed to obtain a sodium hydroxide solution and chlorine gas, and the generated chlorine gas is provided to the sodium sulfide solution to perform the first reaction.
  • the steps of reducing crude sodium sulfate and forming a sodium sulfide solution include:
  • the alkali solution is a solution containing Na 2 S, the concentration of the alkali solution is 3%-5%, and the temperature of the alkali solution is 20-50°C.
  • the pulverized coal is anthracite, and the fixed carbon content is greater than 70%.
  • the concentration of the sodium sulfide solution is 15-23%, the flow rate of the chlorine gas is 7m 3 /min ⁇ 11m 3 /min, and the sulfur and sodium chloride solution obtained in the first reaction are separated.
  • the electrolysis conditions for electrolysis of sodium chloride solution are: the voltage is 5V to 15V.
  • the concentration of sodium chloride solution is 21% to 26%.
  • it also includes: oxidizing sulfur to produce sulfuric acid.
  • the steps of producing sulfuric acid after oxidizing sulfur include:
  • the sulfur is melted and burned at a pressure of 3.5 to 4.5MPa and a temperature of 800 to 1000°C to generate flue gas.
  • Compress the flue gas cool it to 140 ⁇ 150°C, adjust the pressure to 7.3 ⁇ 8.6Mpa, and react with water to obtain sulfuric acid.
  • the above resource utilization method of crude sodium sulfate is combined to generate sodium hydroxide through relatively simple and mature process steps, which can effectively convert crude sodium sulfate containing sodium chloride and sodium sulfate into sodium hydroxide with high market demand. It achieves a complete cycle of sodium and sulfur elements, which can not only make full use of resources, protect the environment, but also create great economic and environmental benefits, which is of great significance to the green development of related industries.
  • Figure 1 is a schematic process flow diagram of a method for resource utilization of crude sodium sulfate according to an embodiment of the present application.
  • One embodiment of the present application discloses a resource utilization method of crude sodium sulfate, which includes the following steps:
  • the step of reducing crude sodium sulfate and forming a sodium sulfide solution includes:
  • crude sodium sulfate is calcined with pulverized coal for reduction, and a sodium sulfide solution is formed.
  • the pulverized coal is anthracite
  • the fixed carbon content is greater than 70%, preferably >80%.
  • Sodium sulfate calcination reduction includes calcination process, alkali treatment process, sedimentation separation process, primary and secondary slag washing processes, etc.
  • the main equipment of the calcination process is the converter.
  • Anhydrous crude sodium sulfate is evenly mixed according to the mass ratio of pulverized coal to pure sodium sulfate of 19 to 25%, and is continuously fed into the converter from the furnace head using an automatic loading machine.
  • Natural gas is injected counter-currently into the furnace from the furnace tail for combustion.
  • the materials in the furnace are heated to 1050-1100°C for calcination and reduction into crude alkali hot melt.
  • the main chemical reactions are as follows:
  • the crude alkali hot melt is continuously discharged from the end of the furnace, naturally cooled to about 700°C, smashed into pieces by an alkali smashing machine, and sent to the hot melt tank of the alkali treatment process to be washed with slag-washing alkali solution (that is, containing Na 2 S solution (such as an aqueous solution containing Na 2 S) is leached, and the concentrated alkali containing 15% to 23% of Na 2 S mass fraction produced by thermal dissolution enters the sedimentation separation process. After natural sedimentation, the supernatant liquid is It is concentrated brine (sodium sulfide solution) and is sent to the chlorination process.
  • slag-washing alkali solution that is, containing Na 2 S solution (such as an aqueous solution containing Na 2 S) is leached
  • the concentrated alkali containing 15% to 23% of Na 2 S mass fraction produced by thermal dissolution enters the sedimentation separation process.
  • the supernatant liquid is It is concentrated
  • waste residue will be produced.
  • the waste residue includes sludge produced in the alkali treatment process and filter residue produced in the settling and separation processes.
  • the sludge undergoes a sludge washing process to obtain waste 1.
  • the filter residue is washed once and twice to obtain waste residue 2.
  • Waste residue 1 and waste residue 2 are washed with water until the sodium sulfide content is less than 1%, neutralized and sent out as brick-making materials.
  • S200 Perform a first reaction between the sodium sulfide solution and chlorine gas to obtain sulfur and sodium chloride solutions.
  • the concentration of the sodium sulfide solution is 15-23%, the flow rate of the chlorine gas is 7-11 m 3 /min, and the sulfur and sodium chloride solution obtained in the first reaction are separated.
  • the 15% to 23% sodium sulfide solution is sent to a chlorination reactor, and chlorine gas is introduced into the reactor for chlorination.
  • chlorine gas is introduced into the reactor for chlorination.
  • the reaction temperature is controlled to 60-80°C
  • the reaction pressure is normal pressure
  • the chlorine gas flow is 7m 3 /min-11m 3 /min
  • the reaction time is about 2 hours
  • the reaction end point pH 7.0
  • the chemical reaction is as follows :
  • the fine granular sulfur is washed with water until Cl - passes the AgNO 3 test, and is dried, melted and granulated to become the finished sulfur.
  • the finished sulfur can be sold or used to make acid.
  • the washing water can be returned to one or more of S100's sludge washing, first filter residue washing and second filter residue washing processes.
  • the filtrate is crude sodium chloride solution, containing 21% to 26% sodium chloride. All indicators meet the requirements of crude brine for electrolysis and is sent to the electrolysis process.
  • S300 Electrolyze the sodium chloride solution to obtain sodium hydroxide solution and chlorine gas, and provide the generated chlorine gas to the sodium sulfide solution to perform the first reaction.
  • the electrolysis conditions for electrolysis of the sodium chloride solution are: the voltage is 5V-15V; the concentration of the sodium chloride solution is 21%-26%.
  • the crude sodium chloride solution prepared in step S200 is crude brine, which contains Ca 2+ , Mg 2+ and SO 4 2- ions, free chlorine and suspended matter. It can meet the electrolysis requirements after two refinements.
  • Primary refining first add 10% Na 2 SO 3 to remove free chlorine, then add the refining preparations Na 2 CO 3 , NaOH, and BaCl 2 in sequence to generate CaCO from Ca 2+ , Mg 2+ and SO 4 2- ions in the brine. 3 , Mg(OH) 2 and BaSO 4 precipitate out in sequence.
  • the clarified solution is filtered through membrane and then enters secondary brine for purification. Its main process equipment is a chelating resin tower, which adopts a three-tower process.
  • the operation and regeneration treatment of the tower and its periodic switching program control are realized by the program controller PLC.
  • the refined brine is pumped into the high-level tank, heated to 65-85°C and then injected into the electrolytic cell.
  • the refined brine is electrolyzed under the action of direct current to produce chlorine, hydrogen and 32% caustic soda.
  • the electrolysis reaction is as follows:
  • Chlorine gas is returned to S200 for chlorination of sodium sulfide solution.
  • the light brine produced by the electrolytic cell is returned to the chlorination process. Before chlorination, it is mixed with sodium sulfide solution to form a mixed solution. After chlorination, the concentration of brine is 21% to 26%. Mido 23 ⁇ 24.
  • it also includes:
  • S400 Oxidize sulfur to produce sulfuric acid.
  • the steps to produce sulfuric acid from sulfur include:
  • S401 Melt sulfur and burn it at a pressure of 3.5 to 4.5 MPa and a temperature of 800 to 1000°C to generate flue gas.
  • S402 Compress the flue gas, cool it to 140 ⁇ 150°C, adjust the pressure to 7.3 ⁇ 8.6Mpa, react with water to obtain sulfuric acid.
  • the sulfur is melted into a liquid state, and refined liquid sulfur can be prepared through a blade-type liquid sulfur filter, and then sprayed into the sulfur incineration furnace through an atomized sulfur gun, at a pressure of 3.5 to 4.5 MPa and a temperature of 800 to 1000°C. Burns under certain conditions and generates smoke.
  • refined liquid sulfur first reacts with oxygen to generate SO 2 , which is further oxidized to generate SO 3 under the action of high pressure and high temperature. That is, the main component in flue gas is SO 3 . SO 3 reacts with water to form sulfuric acid.
  • the above resource utilization method of crude sodium sulfate is combined to generate sodium hydroxide through relatively simple and mature process steps, which can effectively convert crude sodium sulfate containing sodium chloride and sodium sulfate into sodium hydroxide with high market demand. It achieves a complete cycle of sodium and sulfur elements, which can not only make full use of resources, protect the environment, but also create great economic and environmental benefits, which is of great significance to the green development of related industries.
  • this method has the following shortcomings: 1.
  • the sodium hydroxide solution produced by this method contains a certain amount of Zn (usually in the form of ZnO 2 2- ). There is no problem in using this sodium hydroxide solution to produce chemical fibers, because chemical fiber production When adding ZnSO 4 , it is obviously not suitable for other industries; 2.
  • This method uses zinc oxide as an intermediate material and is realized through the cyclic conversion of zinc oxide.
  • Zinc oxide has a high value and there are losses in the cyclic conversion process. In this way, on the one hand, there will be losses This leads to increased costs. On the other hand, most of the lost zinc is emitted in the form of dust, which causes pollution to the atmosphere and surface water.
  • the crude sodium sulfate described in the present disclosure can be understood as a sodium sulfate mixture, that is, the crude sodium sulfate includes sodium sulfate and other impurities, and the content of sodium sulfate is relatively high.
  • Crude sodium sulfate can be Glauber's salt, Yuanming powder and by-product sodium sulfate, etc.
  • Crude sodium sulfate usually contains certain amounts of sodium chloride, ammonium chloride and ammonium sulfate.
  • crude sodium sulfate In some conventional methods of resource utilization of crude sodium sulfate, sodium chloride and other salts will interfere with the progress of some reactions and affect the final product. Therefore, crude sodium sulfate needs to be pretreated, and sodium chloride and other salts must be processed in advance. Salts are separated, and this separation is more difficult. For example, it needs to be separated through a specific permeable membrane, and the separation efficiency is low. This makes the resource utilization method of crude sodium sulfate less efficient, resulting in higher final costs. Obviously, the crude sodium sulfate used in the present disclosure does not require early separation of sodium chloride and sodium sulfate (because sodium chloride is the target product of the next step S200).
  • the hydrogen produced by electrolysis can be used as clean energy and can also be used as a hydrogen source for hydrogenation products, such as the production of hydrogen peroxide.
  • the calcining reduction system includes calcination 1, alkali treatment 2, sedimentation separation 3, sludge washing 4, filter residue first washing 5 and filter residue second washing 6.
  • the reactor tail gas is introduced into the liquid alkali absorption bottle to absorb the acidic gas and then discharged.
  • the reactor first flows in N 2 for about 10 minutes to replace the air in the furnace. Continue to flow in N 2 and start to heat up.
  • the chlorination system includes sodium sulfide solution chlorination 7, filtration 8 and sulfur washing 9.
  • the sodium sulfide solution prepared above and add it to a 250ml stainless steel stirred high-pressure reactor.
  • the autoclave is equipped with a pressure gauge, a thermometer, a pH meter, a chlorine gas inlet and a tail gas outlet.
  • the chlorine gas pipeline and pH meter are inserted below the liquid level, and the stirring is started.
  • the temperature in the kettle is 28°C and the pH is >14.
  • the sodium sulfide solution reacts with the chlorine gas.
  • the pH value of the solution begins to decrease.
  • the temperature of the material in the kettle rises slowly.
  • the chlorination of the sodium sulfide solution is completed, open the autoclave, pour the material into a 500ml beaker, and then filter with suction.
  • Use the filtrate to wash the material in the autoclave into the above-mentioned beaker, and then pour it into the Buchner funnel. Filter, wash the filter cake with clean water twice, 10ml of water each time, and merge the washing water into the filtrate.
  • the filter cake is fine granular sulfur. After drying at 100°C, the weight is 16.8g.
  • the sulfur recovery rate is 94.2%.
  • the filtrate is crude chlorinated Sodium solution, weight 236g, sodium chloride content 25.23%, sodium sulfate 0.23%, sodium chloride yield 98.25%.
  • Sodium chloride solution electrolysis Take the crude sodium chloride solution prepared above, which is crude brine, which contains Ca 2+ , Mg 2+ and SO 4 2- ions, free chlorine and suspended solids. After two refinements, it can meet the requirements electrolysis requirements.
  • Primary refining first add 10% Na 2 SO 3 to remove free chlorine, then add refining agents Na 2 CO 3 , NaOH, and BaCl 2 respectively to generate CaCO 3 from Ca 2+ , Mg 2+ and SO 4 2- ions in the brine. , Mg(OH) 2 and BaSO 4 precipitate out, and the clarified solution is filtered through membrane.
  • the main process equipment is the chelating resin tower, which adopts a three-tower process.
  • the operation and regeneration treatment of the tower and its periodic switching program control are realized by the program controller PLC.
  • the refined brine is pumped into the high-level tank, heated to 65-85°C and then injected into the electrolytic cell.
  • the refined brine is electrolyzed under the action of direct current at a voltage of 5V to 15V, producing chlorine, hydrogen and sodium hydroxide.
  • Example 1 The difference from Example 1 is that the raw material crude sodium sulfate comes from the by-product Yuanming powder recovered from the wastewater of producing the ternary precursor Ni x Co y Mn (1-xy) from nickel sulfate, manganese sulfate and cobalt sulfate, where Contains 95% sodium sulfate, 3.5% sodium chloride, and 1.5% moisture.
  • the calcination reduction step 244.3g of sodium sulfide solution was obtained.
  • the sodium sulfide content was analyzed to be 20.0%, the sodium chloride content was 1.2%, and the sodium sulfide yield was 93.64%.
  • the filtrate is a crude sodium chloride solution with a weight of 239g, a sodium chloride content of 25.56%, and a sodium sulfate content of 0.35%.
  • the sodium chloride yield is 97.90%, and 15.7g of sulfur is obtained, with a content of 99.5%.
  • the sulfur yield is 99.5%.
  • the rate is 95.12%.
  • Example 1 The difference from Example 1 is that 1.
  • the raw material crude sodium sulfate comes from the by-product sodium sulfate recovered from the wastewater of vanadium smelting, which contains 68% sodium sulfate, 20.2% ammonium sulfate, 0.8% ammonium chloride, and 9% moisture. ; 2. 18g of soda ash is added to the raw material, which is used to convert the ammonium sulfate and ammonium chloride in the crude sodium sulfate into ammonia gas, which enters the tail gas system to recover ammonia water. 3. 22g of white coal.
  • the filtrate is a crude sodium chloride solution with a weight of 251g, a sodium chloride content of 24.46%, and a sodium sulfate content of 0.18%.
  • the sodium chloride yield is 98.39%, and 16.31g of sulfur is obtained, with a content of 99.1%.
  • the sulfur yield is 99.1%.
  • the rate is 96.1%.
  • sodium chloride industrial salt is sodium chloride industrial salt that complies with the national standard GB/T5462-2015.
  • the raw materials used in the embodiments of the present disclosure are derived from chemical fibers, ternary precursors and hydrosmelting industries. Although crude sodium sulfate contains different salt impurities, qualified sodium chloride can be produced. solution, the prepared sulfur basically meets the quality requirements of qualified products; 2. The various quality indicators of the prepared sodium chloride solution are better than the industrial salt standards, and fully meet the requirements of the ion exchange membrane method of caustic soda, prepared by using the method of the present disclosure
  • the sodium chloride solution can be used as the raw material of ion exchange membrane caustic soda, that is, it can be used in the ion exchange membrane method to electrolyze salt water to make caustic soda.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Treating Waste Gases (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本公开提供了一种粗硫酸钠的资源化利用方法。该方法包括以下步骤:将粗硫酸钠进行还原,并形成硫化钠溶液。将硫化钠溶液与氯气进行第一反应得到硫磺和氯化钠溶液。将氯化钠溶液进行电解,得到氢氧化钠溶液和氯气,并将产生的氯气提供至硫化钠溶液以进行第一反应。上述粗硫酸钠的资源化利用方法,通过较为简单成熟的工艺步骤,组合起来生成氢氧化钠,可以有效地将包含氯化钠和硫酸钠的粗硫酸钠转化成市场需求大的氢氧化钠,实现了钠元素和硫元素的完全循环,既可充分利用资源,保护环境,又可创造很大的经济效益和环境效益,对实现相关行业绿色发展具有重大的意义。

Description

粗硫酸钠的资源化利用方法
相关申请的交叉引用
本公开要求于2022年08月24日提交中国专利局的申请号为CN202211017891.2、名称为“粗硫酸钠的资源化利用方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及环境保护和固体废物处理利用技术领域,尤其涉及一种粗硫酸钠的资源化利用方法。
背景技术
许多化工生产过程中会产生大量的副产物硫酸钠,如化纤行业,每生产1吨化纤就有0.5-0.8吨Na 2SO 4产生,全国化纤总产量达数千万吨,副产物Na 2SO 4的量达数千万吨之大,迅猛发展的新能源产业,如三元前驱体材料是镍钴锰的氢氧化物Ni xCo yMn (1-x-y)(OH) 2,一般是以镍、钴、锰的硫酸盐为原料,用氢氧化钠和氨水为沉淀剂反应生成的,其生产工艺过程需要消耗大量的氢氧化钠,同时产生大量的硫酸钠于工艺废水中,废水处理工艺将得到大量的副产物硫酸钠(元明粉),这些副产物硫酸钠,有的其中含有氯化钠、硫酸铵等其他盐类,有的还残留小部分有机杂质和重金属,不能直接用于下游生产,只能做固废处置,费用高且易造成二次污染,我们把这种工业副产物硫酸钠统称为粗硫酸钠。
目前,粗硫酸钠的处理方法主要有:安全填埋和重结晶提纯作为产品销售。前者占用宝贵的土地资源且容易造成土壤盐碱化和地下水污染;后者设备庞大,能耗大,成本高,产生的价值不足以弥补成本支出,给企业带来很大的经济负担,制得的硫酸钠附加值低,销售市场有限,并且工艺过程易造成污染,粗硫酸钠的处置成为相关行业的难题,解决这一难题,实现粗硫酸钠的资源化利用,创造好的经济效益和环境效益具有重要意义。
相关技术中提供了一种化纤行业大量副产物硫酸钠的资源化利用方法,该方法第一步,将硫酸钠高温煅烧还原成硫化钠;第二步,将生成的硫化钠溶解成溶液,与氧化锌反应,生成氢氧化钠溶液和不溶于水的硫化锌,制得的氢氧化钠溶液再用于化纤生产;第三步,将第二步得到的硫化锌煅烧得到氧化锌和二氧化硫,二氧化硫进一步转化得到硫酸,氧化锌返回到第一步用于制备氢氧化钠。
然而该方法主要存在如下缺点:该方法只能处理硫酸钠为单一组分的盐,不能处理氯化 钠和硫酸钠的混合盐。
发明内容
本公开的主要目的是提供一种粗硫酸钠资源化利用的方法,以解决相关技术中只能处理硫酸钠为单一组分的盐的技术问题。
本公开提供一种粗硫酸钠的资源化利用方法,包括以下步骤:
将粗硫酸钠进行还原,并形成硫化钠溶液。
将硫化钠溶液与氯气进行第一反应得到硫磺和氯化钠溶液。
将氯化钠溶液进行电解,得到氢氧化钠溶液和氯气,并将产生的氯气提供至硫化钠溶液以进行第一反应。
根据本申请的实施方式,将粗硫酸钠进行还原,并形成硫化钠溶液的步骤包括:
将粗硫酸钠与煤粉按重量比100:21~23的比例混合,于800~1100℃煅烧还原,将反应物粗碱熔体冷却至700℃,破碎后于75~80℃用碱液热溶成液体,再经静置、过滤得到硫化钠溶液。
根据本申请的实施方式,碱液为包含Na 2S的溶液,碱液的浓度为3%-5%,碱液的温度为20~50℃。
根据本申请的实施方式,煤粉为无烟煤,固定碳含量大于70%。
根据本申请的实施方式,在将硫化钠溶液与氯气进行第一反应得到硫磺和氯化钠溶液的步骤中:
硫化钠溶液的浓度为15-23%,氯气的流量为7m 3/min~11m 3/min,将第一反应得到的硫磺和氯化钠溶液分离。
根据本申请的实施方式,氯化钠溶液进行电解的电解条件为:电压为5V~15V。氯化钠溶液的浓度为21%~26%。
根据本申请的实施方式,还包括:将硫磺氧化后生产硫酸。
根据本申请的实施方式,将硫磺氧化后生产硫酸的步骤包括:
将硫磺熔融,在压力为3.5~4.5MPa、温度为800~1000℃的条件下燃烧,生成烟气。
将烟气压缩,降温至140~150℃,调节压强至7.3~8.6Mpa,与水反应,得到硫酸。
上述粗硫酸钠的资源化利用方法,通过较为简单成熟的工艺步骤,组合起来生成氢氧化钠,可以有效地将包含氯化钠和硫酸钠的粗硫酸钠转化成市场需求大的氢氧化钠,实现了钠元素和硫元素的完全循环,既可充分利用资源,保护环境,又可创造很大的经济效益和环境效益,对实现相关行业绿色发展具有重大的意义。
附图说明
为了更清楚地说明本公开实施方式、实施例或现有技术中的技术方案,下面将对实施方式、实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是本申请一实施方式的粗硫酸钠资源化利用的方法的工艺流程示意图。
具体实施方式
下面将结合本公开实施方式中的附图,对本公开实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本公开的一部分实施方式,而不是全部的实施方式。基于本公开中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本公开保护的范围。
本申请一实施方式公开一种粗硫酸钠的资源化利用方法,包括以下步骤:
S100:将粗硫酸钠进行还原,并形成硫化钠溶液。
在一些实施方式中,所述将粗硫酸钠进行还原,并形成硫化钠溶液的步骤包括:
将粗硫酸钠与煤粉按重量比100:21~23的比例混合,于800~1100℃煅烧还原,将反应物粗碱熔体冷却至700℃,破碎后于75~80℃用碱液热溶成液体,再经静置、过滤得到硫化钠溶液。
可选地,将粗硫酸钠与煤粉煅烧还原,并形成硫化钠溶液。其中,煤粉为无烟煤,固定碳含量大于70%,最好>80%。硫酸钠煅烧还原包含有煅烧工序、化碱工序、沉降分离工序、一、二级洗渣工序等。
所述煅烧工序主要设备是转炉。无水粗硫酸钠按照煤粉与纯硫酸钠质量比为19~25%的比例配料混合均匀,用自动上料机从炉头连续送入转炉内,天然气从炉尾逆流喷入炉膛内燃烧,将炉内物料加热到1050-1100℃煅烧还原成粗碱热熔体。主要化学反应如下:
Na 2SO 4+2C=Na 2S+2 CO 2    (1)
粗碱热熔体从炉尾连续排出,自然冷却至700℃左右,由砸碱机砸成碎块,送入所述化碱工序的热溶槽中用洗渣的碱液(即包含Na 2S的溶液,如包含Na 2S的水溶液)进行浸取,热溶产生的含Na 2S质量分数15%~23%的浓碱进入所述沉降分离工序,经自然沉降后,上层清液即为浓卤(硫化钠溶液),送入氯化工序。
在硫酸钠煅烧还原的过程会产生废渣,废渣包括化碱工序产生的泥渣和沉降、分离工序产生的滤渣。泥渣经过泥渣洗涤工序,得到废渣1。滤渣经过滤渣一洗和滤渣二洗,得到废 渣2。废渣1和废渣2水洗至硫化钠含量低于1%,中和处理后外送做为制砖材料。
S200:将所述硫化钠溶液与氯气进行第一反应得到硫磺和氯化钠溶液。
在一些实施方式中,在所述将所述硫化钠溶液与氯气进行第一反应得到硫磺和氯化钠溶液的步骤中:
所述硫化钠溶液的浓度为15-23%,所述氯气的流量为7~11m 3/min,将第一反应得到的硫磺和氯化钠溶液分离。
可选地,将所述15%~23%的硫化钠溶液送入氯化反应器,反应器通入氯气氯化。通过调节氯气流量和冷却水冷却,控制反应温度60-80℃,反应压力为常压,氯气流量7m 3/min-11m 3/min,反应时间约2小时,反应终点pH=7.0,化学反应如下:
Na 2S+Cl 2=2NaCl+S   (2)
反应终止后继续搅拌30分钟,反应物经真空过滤,滤渣为细粒状硫磺,滤液即为粗氯化钠溶液。
细粒状硫磺用水洗涤至Cl -经AgNO 3检测合格,经干燥、熔融造粒后为成品硫磺。成品硫磺可出售或用于制酸。洗水可以返回S100的泥渣洗涤、滤渣一洗和滤渣二洗中的一个或几个工序。
滤液即为粗氯化钠溶液,含氯化钠21%~26%,各项指标达到电解用粗盐水的要求,送入电解工序。
S300:将所述氯化钠溶液进行电解,得到氢氧化钠溶液和氯气,并将产生的氯气提供至所述硫化钠溶液以进行所述第一反应。
所述氯化钠溶液进行电解的电解条件为:电压为5V~15V;所述氯化钠溶液的浓度为21%~26%。
可选地,在S200步骤制得的粗氯化钠溶液为粗盐水,其中含有Ca 2+、Mg 2+以及SO 4 2-离子、游离氯和悬浮物。经过两次精制可以满足电解要求。一次精制:先加入10%Na 2SO 3脱除游离氯,然后依次分别加入精制剂Na 2CO 3,NaOH,BaCl 2,使盐水中Ca 2+、Mg 2+以及SO 4 2-离子生成CaCO 3,Mg(OH) 2和BaSO 4沉淀依次析出,澄清后的溶液经膜过滤后,进入二次盐水精制。其主要工艺设备是螯合树脂塔,采用三塔式流程,塔的运行与再生处理及其周期性切换程序控制,由程序控制器PLC实现。精制盐水泵入高位槽,经加热至65-85℃后注入电解槽,精盐水在直流电作用下进行电解,产生出氯气,氢气和32%烧碱,电解反应如下:
2NaCl+2H 2O=2NaOH+H 2+Cl 2  (3)
氯气返回S200用于硫化钠溶液氯化,电解槽产出的淡盐水返回到氯化工序,在氯化前 与硫化钠溶液混合配成混合溶液,氯化后盐水浓度21%~26%,波美度23~24。
在一些实施方式中,还包括:
S400:将硫磺氧化后生产硫酸。
将硫磺氧化后生产硫酸的步骤包括:
S401:将硫磺熔融,在压力为3.5~4.5MPa、温度为800~1000℃的条件下燃烧,生成烟气。
S402:将烟气压缩,降温至140~150℃,调节压强至7.3~8.6Mpa,与水反应,得到硫酸。
可选地,硫磺熔融呈液态,可以经叶片式液硫过滤器制取精制液硫,再通过雾化磺枪喷入焚硫炉,在压力为3.5~4.5MPa、温度为800~1000℃的条件下燃烧,生成烟气。在该过程中,精制液硫首先与氧气反应生成SO 2,SO 2在高压和高温作用下进一步氧化生成SO 3。即烟气中主要成分为SO 3。SO 3与水反应生成硫酸。
上述粗硫酸钠的资源化利用方法,通过较为简单成熟的工艺步骤,组合起来生成氢氧化钠,可以有效地将包含氯化钠和硫酸钠的粗硫酸钠转化成市场需求大的氢氧化钠,实现了钠元素和硫元素的完全循环,既可充分利用资源,保护环境,又可创造很大的经济效益和环境效益,对实现相关行业绿色发展具有重大的意义。
而在相关技术中如化纤行业大量副产物硫酸钠的资源化利用方法中,除了该方法只能处理硫酸钠为单一组分的盐,不能处理氯化钠和硫酸钠的混合盐的不足之外,该方法存在如下缺点:1.利用该方法生产的氢氧化钠溶液含有一定量的Zn(一般是以ZnO 2 2-形式存在),该氢氧化钠溶液用于生产化纤没有问题,因为化纤生产时要添加ZnSO 4,显然不适用其他行业;2.该方法是利用氧化锌作为中间物料,通过氧化锌的循环转化实现的,氧化锌价值较高,循环转化过程有损失,这样,一方面会导致成本升高,另一方面,损失的锌绝大部分是以粉尘的形式排放,对大气和地表水会造成污染。
与相关技术相比,本公开的有益效果是:
1.本公开所述的粗硫酸钠可以理解为硫酸钠混合物,即粗硫酸钠包括硫酸钠和其他杂质,其中的硫酸钠的含量相对较高。粗硫酸钠可以是芒硝、元明粉和副产物硫酸钠等等。粗硫酸钠通常包含一定量的氯化钠、氯化铵和硫酸铵。
在一些常规的粗硫酸钠的资源化利用方法中,氯化钠等其他盐类会干扰部分反应的进行,影响最终的产物,故而需要将粗硫酸钠进行预处理,提前将氯化钠等其他盐类进行分离,这种分离较为困难,如需要通过特定渗透膜进行分离,分离效率较低,这使得粗硫酸钠的资源化利用方法的效率较低,导致最终的成本较高。显然,本公开使用的粗硫酸钠不需要对氯化钠和硫酸钠进行提前分离(因为氯化钠是下一步骤S200的目标产物),对于含硫酸铵或 氯化铵的粗硫酸钠,在煅烧时混入相应量的纯碱一起煅烧,然后将尾气中的氨回收即可,这样节省了工序,降低了生成成本。
2.利用电解产生的氯气将硫化钠溶液氯化,如此一来,电解副产物氯气得到了综合利用,避免了氯碱工业由于氯气消耗不平衡带来的限产问题,使得氢氧化钠的生产不受氯气滞销的制约。
3.硫化钠氯化产生了硫磺,硫磺可以直接销售,现场使用硫酸的也可以制成硫酸供现场生产使用。
4.电解产生的氢气可以作为清洁能源使用,也可以用作加氢产品的氢源,如双氧水的生产等。
实施例
实施例1
煅烧还原:如图1所示,煅烧还原系统包括煅烧1、化碱2、沉降分离3、泥渣洗涤4、滤渣一洗5和滤渣二洗6。将100g化纤副产物无水芒硝(含95%硫酸钠)与23g固定碳含量为70%的白煤混合磨碎至-200目后,将其置于200ml刚玉坩埚中,然后放入气氛保护高温反应炉中,反应炉尾气导入到液碱吸收瓶中吸收酸性气体后排放,反应炉先通入N 2约10分钟,置换炉内空气,继续通入N 2,开始升温,当温度升至920℃时,吸收瓶中气泡突然增多,反应开始,继续升温,气泡剧烈增加,约10分钟后,气泡减少,至炉温升至1050℃时,气泡平稳(基本是N 2),此时反应基本结束,继续升温至1150℃并保温30分钟后停止加热,煅烧1反应完成,反应耗时约60分钟。继续通入N 2,在N 2保护下冷却至250℃以下,打开炉门,取出干锅,将干锅中物料转移至180ml75℃的热水中于75℃搅拌浸出6小时,化碱2完成,过滤得到硫化钠溶液,滤饼用自来水洗涤2次,每次用水10ml,洗水并入硫化钠溶液中(这些操作相当于沉降分离3、泥渣洗涤4和滤渣一洗5和滤渣二洗6),得硫化钠溶液241.7g,分析硫化钠含量为20.2%,硫化钠收率为93.56%。
硫化钠氯化:如图1所示,氯化系统包含有硫化钠溶液氯化7、过滤8和硫磺洗涤9。取200g上述制得的硫化钠溶液加到250ml不锈钢搅拌高压反应釜中,高压釜配有压力表、温度计、pH计、氯气入口和尾气出口,氯气管道和pH计插入液面以下,开启搅拌,此时釜内温度28℃,pH>14,缓慢通入氯气保持釜内微正压,硫化钠溶液与氯气反应,溶液pH值开始下降,釜内物料温度缓慢上升,当pH=7时,停止通氯气,此时温度为43℃,通氯时间45分钟。继续搅拌30分钟,硫化钠溶液氯化7完成,打开高压釜,将物料倒入500ml烧杯中,然后抽滤,用滤液将高压釜中的物料洗至上述烧杯中,再倒入布氏漏斗中过滤,滤饼用清水洗涤2次,每次用水10ml,洗水并入滤液中,滤饼为细粒状硫磺,在100℃下干燥后重 量16.8g,硫磺回收率94.2%,滤液为粗氯化钠溶液,重量236g,氯化钠含量25.23%,含硫酸钠0.23%,氯化钠收率98.25%。
氯化钠溶液电解:取上述制得的粗氯化钠溶液,其为粗盐水,其中含有Ca 2+、Mg 2+以及SO 4 2-离子、游离氯和悬浮物,经过两次精制可以满足电解要求。一次精制:先加入10%Na 2SO 3脱除游离氯,然后分别加入精制剂Na 2CO 3,NaOH,BaCl 2,使盐水中Ca 2+、Mg 2+以及SO 4 2-离子生成CaCO 3,Mg(OH) 2和BaSO 4沉淀析出,澄清后的溶液经膜过滤后。进入二次盐水精制,其主要工艺设备是螯合树脂塔,采用三塔式流程,塔的运行与再生处理及其周期性切换程序控制,由程序控制器PLC实现。精制盐水泵入高位槽,经加热至65-85℃后注入电解槽,精盐水在直流电作用下进行电解,电压为5V~15V,产生出氯气,氢气和氢氧化钠。
实施例2
和实施例1不同之处在于,原料粗硫酸钠来自由硫酸镍、硫酸锰和硫酸钴生产三元前驱体Ni xCo yMn (1-x-y)的废水中回收的副产物元明粉,其中含硫酸钠95%,氯化钠3.5%,水份1.5%。
其余步骤同实施例1。
其中,在煅烧还原步骤中,得硫化钠溶液244.3g,分析硫化钠含量为20.0%,氯化钠含量为1.2%,硫化钠收率为93.64%。
硫化钠氯化步骤中,滤液为粗氯化钠溶液,重量239g,氯化钠含量25.56%,含硫酸钠0.35%,氯化钠收率97.90%,得硫磺15.7g,含量99.5%,硫磺收率95.12%。
实施例3
和实施例1不同之处在于,1.原料粗硫酸钠来自钒冶炼的废水中回收的副产物硫酸钠,其中含硫酸钠68%,硫酸铵20.2%,氯化铵0.8%,水份9%;2.原料中配纯碱18g,用来将粗硫酸钠中的硫酸铵和氯化铵转化成氨气,进入尾气系统回收氨水,3.白煤22g。
其余步骤同实施例1。
其中,在煅烧还原步骤中,得硫化钠溶液229.3g,分析硫化钠含量为20.5%,硫化钠收率为95.33%。
硫化钠氯化步骤中,滤液为粗氯化钠溶液,重量251g,氯化钠含量24.46%,含硫酸钠0.18%,氯化钠收率98.39%,得硫磺16.31g,含量99.1%,硫磺收率96.1%。
实施例结果如表1、表2所示:
表1.原料来源及主要质量指标
Figure PCTCN2022124380-appb-000001
表2.产品粗氯化钠溶液和硫磺的收率和主要质量指标
Figure PCTCN2022124380-appb-000002
注:“综合回收率”是S100和S200两个步骤回收率的乘积。
其中,氯化钠工业盐为符合国标GB/T5462-2015规定的氯化钠工业盐。
上述结果表明,1.本公开实施例使用的原料来源于化学纤维、三元前驱体和湿法冶炼行业,虽然粗硫酸钠所含其他盐类杂质不同,但都可以制得合格的氯化钠溶液,制得的硫磺基本达到合格品质量要求;2.所制得的氯化钠溶液各项质量指标优于工业盐的标准,完全满足离子交换膜法烧碱的要求,利用本公开所制得的氯化钠溶液完全可以用于离子交换膜烧碱的原料,即可以用于离子交换膜法电解食盐水而制成烧碱。
本公开的上述技术方案中,以上仅为本公开的可选的实施例,并非因此限制本公开的专利范围,凡是在本公开的技术构思下,利用本公开说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本公开的专利保护范围。

Claims (8)

  1. 一种粗硫酸钠的资源化利用方法,其特征在于,包括以下步骤:
    将粗硫酸钠进行还原,并形成硫化钠溶液;
    将所述硫化钠溶液与氯气进行第一反应得到硫磺和氯化钠溶液;
    将所述氯化钠溶液进行电解,得到氢氧化钠溶液和氯气,并将产生的氯气提供至所述硫化钠溶液以进行所述第一反应。
  2. 根据权利要求1所述的粗硫酸钠的资源化利用方法,其特征在于,所述将粗硫酸钠进行还原,并形成硫化钠溶液的步骤包括:
    将粗硫酸钠与煤粉按重量比100:21~23的比例混合,于800~1100℃煅烧还原,将反应物粗碱熔体冷却至700℃,破碎后于75~80℃用碱液热溶成液体,再经静置、过滤得到硫化钠溶液。
  3. 根据权利要求2所述的粗硫酸钠的资源化利用方法,其特征在于,所述碱液为包含Na 2S的溶液,所述碱液的浓度为3%-5%,所述碱液的温度为常温~50℃。
  4. 根据权利要求2所述的粗硫酸钠的资源化利用方法,其特征在于,所述煤粉为无烟煤,固定碳含量大于70%。
  5. 根据权利要求2所述的粗硫酸钠的资源化利用方法,其特征在于,在所述将所述硫化钠溶液与氯气进行第一反应得到硫磺和氯化钠溶液的步骤中:
    所述硫化钠溶液的浓度为15%~23%,所述氯气的流量为7m 3/min~11m 3/min,将第一反应得到的硫磺和氯化钠溶液分离。
  6. 根据权利要求1所述的粗硫酸钠的资源化利用方法,其特征在于,所述氯化钠溶液进行电解的电解条件为:电压为5V~15V;所述氯化钠溶液的浓度为21%~26%。
  7. 根据权利要求1所述的粗硫酸钠的资源化利用方法,其特征在于,还包括:将硫磺氧化后生产硫酸。
  8. 根据权利要求7所述的粗硫酸钠的资源化利用方法,其特征在于,所述将硫磺氧化后生产硫酸的步骤包括:
    将所述硫磺熔融,在压力为3.5~4.5MPa、温度为800~1000℃的条件下燃烧,生成烟气;
    将所述烟气压缩,降温至140~150℃,调节压强至7.3~8.6Mpa,与水反应,得到硫酸。
PCT/CN2022/124380 2022-08-24 2022-10-10 粗硫酸钠的资源化利用方法 WO2024040703A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/013,381 US20240067522A1 (en) 2022-08-24 2022-10-10 Resource utilization method of crude sodium sulfate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211017891.2 2022-08-24
CN202211017891.2A CN115246629B (zh) 2022-08-24 2022-08-24 粗硫酸钠的资源化利用方法

Publications (1)

Publication Number Publication Date
WO2024040703A1 true WO2024040703A1 (zh) 2024-02-29

Family

ID=83699673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124380 WO2024040703A1 (zh) 2022-08-24 2022-10-10 粗硫酸钠的资源化利用方法

Country Status (2)

Country Link
CN (1) CN115246629B (zh)
WO (1) WO2024040703A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1045082A (zh) * 1989-02-27 1990-09-05 山东省人才开发服务中心化工技术开发公司 一种优化组合法生产烧碱新工艺
CN101585512A (zh) * 2009-06-18 2009-11-25 赵志军 一种零污染生产无水硫化钠的方法
CN104118850A (zh) * 2014-07-24 2014-10-29 铜陵铜冠神虹化工有限责任公司 一种高效、低污染制备硫化钠的方法
CN104445090A (zh) * 2013-09-22 2015-03-25 南风化工集团股份有限公司 炭黑或超低灰纯煤还原硫酸钠一步法制备无水硫化钠的方法
CN110669560A (zh) * 2019-11-15 2020-01-10 河南工程学院 一种联合氯碱工业脱除气体中硫化氢的绿色生产工艺及其生产系统
CN112010266A (zh) * 2020-08-04 2020-12-01 攀钢集团攀枝花钢铁研究院有限公司 一种工业硫酸钠熔融还原制备硫化钠的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149038A (zh) * 2020-01-22 2021-07-23 浙江龙盛集团股份有限公司 一种利用硫酸处理工业混杂废盐的资源化利用方法
CN114560446A (zh) * 2022-03-18 2022-05-31 金川集团股份有限公司 一种利用交流电弧炉生产粗硫化钠的方法
CN114769293B (zh) * 2022-04-11 2023-02-28 深圳星河环境股份有限公司 一种工业固废协同处置与资源化利用工业废盐的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1045082A (zh) * 1989-02-27 1990-09-05 山东省人才开发服务中心化工技术开发公司 一种优化组合法生产烧碱新工艺
CN101585512A (zh) * 2009-06-18 2009-11-25 赵志军 一种零污染生产无水硫化钠的方法
CN104445090A (zh) * 2013-09-22 2015-03-25 南风化工集团股份有限公司 炭黑或超低灰纯煤还原硫酸钠一步法制备无水硫化钠的方法
CN104118850A (zh) * 2014-07-24 2014-10-29 铜陵铜冠神虹化工有限责任公司 一种高效、低污染制备硫化钠的方法
CN110669560A (zh) * 2019-11-15 2020-01-10 河南工程学院 一种联合氯碱工业脱除气体中硫化氢的绿色生产工艺及其生产系统
CN112010266A (zh) * 2020-08-04 2020-12-01 攀钢集团攀枝花钢铁研究院有限公司 一种工业硫酸钠熔融还原制备硫化钠的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANG-SHENG ZHOU: "Study and improvement of the production process of sodium sulphide", CHEMICAL ENGINEERING(CHINA), vol. 33, no. 1, 25 February 2015 (2015-02-25), pages 75 - 78, XP093142310 *

Also Published As

Publication number Publication date
CN115246629A (zh) 2022-10-28
CN115246629B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN105129822B (zh) 一种处理氯碱生产副产盐泥的系统和方法
CN104445311B (zh) 高含量二氧化硅质粉煤灰多联产洁净制备方法
CN101235440A (zh) 一种综合利用蛇纹石的方法
CN109290060A (zh) 一种磷矿浮选尾矿的再加工方法及磷矿浮选方法
CN102225775A (zh) 一种白云石转化法生产氢氧化镁和碳酸钙的方法
CN108557877B (zh) 一种钛白、铁红、聚合氯化硫酸亚铁的联产工艺
CN110040757A (zh) 一种利用电石渣制备轻质碳酸钙的方法
CN101092240A (zh) 一种烧碱的制备新工艺
CN112340759A (zh) 一种利用二次铝灰制备聚合氯化铝并回收硅单质的方法
CN113816399A (zh) 一种NaCl循环利用及钛渣中Fe、Mn、Mg资源一同回收的方法
CN102602974A (zh) 一种利用天青石生产低钡精细锶盐产品的生产方法
CN110526263A (zh) 一种铝基富锂渣制备碳酸锂的方法
CN112551561A (zh) 一种香料废渣生产活性氧化镁的方法
CN112981100A (zh) 赤泥全湿法综合利用方法
CN101845549A (zh) 一种石煤清洁转化方法
CN111115673A (zh) 一种碱渣全组分利用方法
CN109694092A (zh) 一种含氯固废的综合治理方法
CN105883884A (zh) 一种以硫脲废渣为原料制备工业氯化钙的方法
CN108842053A (zh) 低品位氧化锰矿与电解锰结晶复盐的综合利用方法
CN101760638B (zh) 从硫酸镁溶液中回收镁的方法
CN108585057A (zh) 一种基于超细氢氧化铁胶体分离砷碱渣中砷与碱的方法
WO2024040703A1 (zh) 粗硫酸钠的资源化利用方法
KR100516976B1 (ko) 중유회 또는 오리멀젼회로 부터 산화바나듐 플레이크를회수하는 방법
CN102795701A (zh) 硫酸法制取钛白粉的酸性废水治理的方法
CN109930003A (zh) 一种硫化砷渣资源化利用的综合处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956243

Country of ref document: EP

Kind code of ref document: A1