WO2024037290A1 - 一种剪切增稠流体的制备方法及其流体应用 - Google Patents

一种剪切增稠流体的制备方法及其流体应用 Download PDF

Info

Publication number
WO2024037290A1
WO2024037290A1 PCT/CN2023/108879 CN2023108879W WO2024037290A1 WO 2024037290 A1 WO2024037290 A1 WO 2024037290A1 CN 2023108879 W CN2023108879 W CN 2023108879W WO 2024037290 A1 WO2024037290 A1 WO 2024037290A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
shear thickening
nanoparticles
freeze
mix
Prior art date
Application number
PCT/CN2023/108879
Other languages
English (en)
French (fr)
Inventor
张赶年
石正兵
Original Assignee
中山莱圃新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山莱圃新材料有限公司 filed Critical 中山莱圃新材料有限公司
Publication of WO2024037290A1 publication Critical patent/WO2024037290A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the invention relates to a preparation method of shear thickening fluid and its fluid application, and belongs to the technical field of nanofluid materials.
  • Shear thickening fluids are stable particle suspensions composed of nanoparticles and solvent.
  • the particles gather together to form particle clusters, and the viscosity of the fluid increases exponentially with the formation of particle clusters.
  • the particle clusters disband, the particles return to the dispersed and suspended state, and the fluid viscosity also reduces to the equilibrium state.
  • This characteristic enables the fluid to absorb and dissipate a large amount of external impact energy, and has potential application markets in many fields such as stab-proof, bullet-proof and impact-proof.
  • the formation and dissolution of particle clusters do not require the use of external force fields (electric fields, magnetic fields, etc.).
  • the fluid concentration of shear thickening fluids is usually expressed in terms of the volume fraction of nanoparticles ⁇ . Only when ⁇ reaches a certain critical value, the concentration of the fluid will increase dramatically under high shear stress, showing the effect of "discontinuous shear thickening". However, the process of preparing high-concentration shear thickening fluid is relatively cumbersome. The efficiency is also relatively low.
  • the purpose of the present invention is to solve the deficiencies of the prior art and provide a method for preparing a shear thickening fluid.
  • the shear thickening fluid prepared by this method has a fluid concentration of 0.30-0.55 and has discontinuous shear thickening characteristics. , has significant promotion value.
  • Another object of the present invention is to provide an application of the fluid prepared by the method.
  • a method for preparing shear thickening fluid characterized by comprising the following steps:
  • Pretreatment of nanoparticles Disperse the nanoparticles in a small molecule alcohol pretreatment solvent, then centrifuge and freeze-dry to obtain a freeze-dried powder;
  • Premix nanoparticles Slowly add the freeze-dried nanoparticle powder to the polypolyol, stir and mix slowly until there are no lumps visible to the naked eye, and obtain the initial fluid;
  • Impurity removal Vacuum dry the fluid so that the total content of water and small molecular alcohol impurities does not exceed 4wt%, thereby producing a shear thickening fluid.
  • the nanoparticles are ultrasonically dispersed in the pretreatment solvent.
  • the nanoparticles in the present invention are one of nanosilica spheres, light calcium carbonate powder and nanocellulose crystals.
  • the polypolyol in the present invention is a liquid polyol with a viscosity of 10-130 mPa.s at 20°C, and polyethylene glycol with a relative molecular mass of 100, 200, 300, or 400 is preferred.
  • the pretreatment solvent in the present invention is one or a mixture of ethanol, methanol, n-butanol and isobutanol.
  • Small molecule alcohol pretreatment solvent can be adsorbed on the surface of most particles through van der Waals force.
  • the molecules of small molecule alcohol are relatively small. When the fluid shear thickens under high shear stress, the nanoparticles will rub against the nanoparticles. This is a Rigid friction, small molecule alcohols will not affect rigid contact because of their small molecules, so the shear thickening properties of the fluid are very obvious. However, if it is a slightly larger molecule such as a coupling agent, it will affect the rigid contact between particles and the shear thickening properties will not be so obvious.
  • the boiling point of small molecular alcohols is generally below 120°C, and they can volatilize quickly when heated to 90-105°C, making it easy to control the amount of alcohol in the fluid.
  • the content of small molecular alcohols also ensures that the polypolyol will not be oxidized due to excessive heating temperature, which is beneficial to the discontinuous shear thickening properties of the fluid.
  • step b of the present invention the amount of pretreated nanoparticles added each time increases the fluid concentration by 1-5%. Initially, a slightly larger amount of nanoparticles can be added to the solvent, because the concentration is smaller at this time and it is easier to mix. As the number of nanoparticles gradually increases, the concentration of the mixed solution also gradually increases. At this time, the nanoparticles can be added to each batch. The amount added is gradually reduced to ensure the mixing effect.
  • An application of the shear thickening fluid prepared by the above method is characterized by being applied to composite anti-thorn materials or anti-collision protection bodies.
  • the present invention has the following advantages:
  • the preparation method of the invention has simple steps and is easy to control.
  • the prepared shear thickening fluid can have discontinuous shear thickening characteristics when the concentration of the fluid is between 0.30-0.55.
  • Figure 1 is a graph showing the relationship between the viscosity of the fluid in Example 1 and Comparative Example 1 as a function of the shear rate
  • a method for preparing shear thickening fluid including the following steps:
  • Pretreatment of nanoparticles Disperse the nanoparticles in a small molecule alcohol pretreatment solvent, then centrifuge and freeze-dry to obtain a freeze-dried powder;
  • Premix nanoparticles Slowly add the freeze-dried nanoparticle powder to the polypolyol. Stir slowly until there are no lumps visible to the naked eye to obtain the initial fluid;
  • Impurity removal Vacuum dry the fluid so that the total content of water and small alcohol impurities does not exceed 4wt%.
  • the nanoparticles can be nanosilica spheres, light calcium carbonate powder or nanocellulose crystals
  • the small molecular alcohol pretreatment solvent is one or a mixture of ethanol, methanol, n-butanol and isobutanol.
  • polypolyol is a liquid polyol with a viscosity of 10-130mPa.s (20°C).
  • the raw material is silica spheres with a particle size of 500nm ⁇ 27nm.
  • the solvent during pretreatment is a mixed solvent of ethanol and n-butanol with a mass ratio of 4:1, and the polypolyol is relatively Polyethylene glycol with a molecular weight of 200 is prepared as follows:
  • Pretreatment nanoparticles Mix the silica balls and the pretreatment solvent in a probe-type ultrasonic crusher for 3 hours at 20kHz and set the crusher T on / T off to 8s/5s to obtain about 35wt%.
  • Silica ball pre-treatment dispersion then centrifuge the pre-treatment dispersion at 20,000 RPM for 2 hours to obtain the silica ball deposition layer, mash and freeze-dry to obtain freeze-dried powder;
  • Pre-mixed nanoparticles Slowly add the freeze-dried powder to the polyol and mix slowly until there are no lumps visible to the naked eye. The amount of freeze-dried powder added each time increases the fluid concentration by 2% to obtain the initial fluid. ;
  • Impurity removal Vacuum dry the fluid at 85°C for 8 hours so that the total content of water and small alcohol impurities does not exceed 4wt%.
  • the raw material is silica spheres with a particle size of 500nm ⁇ 27nm, and the polypolyol is polyethylene glycol with a relative molecular mass of 200.
  • the preparation method is as follows:
  • Premix nanoparticles Slowly add the silica balls into the polyol and mix slowly until there are no lumps visible to the naked eye. The amount of nanoparticles added each time increases the fluid concentration by 2% to prepare the initial fluid;
  • Impurity removal Vacuum dry the comparison fluid at 85°C for 8 hours so that the total content of water and small alcohol impurities does not exceed 4wt%.
  • Comparative fluid cannot eliminate the graininess even if the mixing time is extended to 13-15 days.
  • a rheometer (MCR302, Anton Paar) was used to test the rheological properties of the fluids of Example 1 and Comparative Example 1.
  • the stress control (Control Stress) mode of the rheometer was used to scan the stress in the range of 10 -2 -10 3 Pa, and the results were compared with traditional The log-log plot of "viscosity-shear rate" is presented, as shown in Figure 1.
  • the concentrations of both fluids are both 0.52, the viscosity of the fluid made from unpretreated silica spheres does not change smoothly with the shear rate and the viscosity does not increase significantly, indicating that the silica spheres are not well dispersed in the polymer.
  • the test was forced to terminate because the rheometer could not detect too small changes in the viscosity of the fluid in the stress control mode; and the pretreated silica spheres were obtained fluid
  • the shear rate is 20 s -1 , the viscosity increases abruptly. Not only does the viscosity increase greatly, but also the shear rate itself basically remains unchanged as the viscosity increases, showing typical discontinuous shear thickening characteristics.
  • the raw material is light calcium carbonate particles with a particle size of 873nm ⁇ 58nm.
  • the pretreatment solvent is a mixed solvent of methanol and n-butanol with a mass ratio of 5:2.
  • the polypolyol uses polyethylene glycol with a relative molecular weight of 200.
  • the fluid is prepared as follows:
  • Pretreatment of nanoparticles Use a probe-type ultrasonic crusher to mix the light calcium carbonate particles with the pretreatment solvent for 2.5 hours at a frequency of 20kHz and the crusher setting T on / T off to 3s/2s. Obtain 35wt% nanoparticle pre-treatment dispersion, centrifuge the pre-treatment dispersion at 20,000 RPM ultra-high speed for 2 hours to obtain the silica sphere deposition layer, crush and freeze-dry to obtain freeze-dried powder;
  • Premixed nanoparticles Slowly add the freeze-dried powder of light calcium carbonate particles into polyethylene glycol with a relative molecular mass of 200, and slowly stir and mix until there are no lumps visible to the naked eye. The amount of light carbonic acid added each time The amount of calcium particle freeze-dried powder increases the fluid concentration by 1.5% to obtain the initial fluid;
  • Impurity removal Vacuum dry the fluid at 90°C for 7.5 hours so that the total content of water and small alcohol impurities does not exceed 4wt%.
  • Example 2 The rheological properties of the fluid of Example 2 were tested according to the method of Example 1. The results are shown in the relationship between viscosity and shear rate in Figure 2. When the shear rate is about 4s -1 , the viscosity of the fluid shows a jump. growth and the shear rate remains basically unchanged, showing strong discontinuous shear thickening properties.
  • the raw material is nanocellulose crystals with a particle size of 942nm ⁇ 75nm.
  • the pretreatment solvent is a mixed solvent of ethanol and isobutanol with a mass ratio of 4:1.
  • the polypolyol uses polyethylene glycol with a relative molecular mass of 100.
  • the fluid is prepared as follows:
  • Pretreatment nanoparticles Use a high-speed disperser to mix the nanocellulose crystals and the pretreatment solvent at a rotation speed of 3500RPM for 3.5 hours to prepare a 20wt% nanocellulose crystal pretreatment dispersion. Obtain the crystal deposition layer after ultra-high speed centrifugation at 16,000RPM for 2 hours, crush and freeze-dry to obtain crystal freeze-dried powder;
  • Premix nanoparticles Slowly add the crystal freeze-dried powder to polyethylene glycol with a relative molecular mass of 100, and slowly stir and mix until there are no lumps visible to the naked eye. The amount of crystal freeze-dried powder added each time is Increase the fluid concentration by 1.0% to obtain the initial fluid;
  • Impurity removal Vacuum dry the fluid at 90°C for 7.5 hours so that the total content of water and small alcohol impurities does not exceed 4wt%.
  • the raw material is calcium carbonate micropowder with a particle size of 942nm ⁇ 75nm.
  • the pretreatment solvent is ethanol.
  • the polypolyol uses polyethylene glycol with a relative molecular mass of 200.
  • the fluid is prepared as follows:
  • Pretreatment of nanoparticles Use a probe-type ultrasonic crusher to mix calcium carbonate powder and ethanol for 4 hours at a frequency of 15 kHz and the crusher setting T on / T off to 5s/3s to prepare calcium carbonate powder. Pretreatment dispersion with a content of 25wt%, centrifuge the pretreatment dispersion at 16,000 RPM ultra-high speed for 2 hours to obtain a particle deposition layer, crush it and freeze-dry it to obtain a freeze-dried powder;
  • Premixed nanoparticles Slowly add the pretreated freeze-dried powder to polyethylene glycol with a relative molecular mass of 200, while slowly stirring and mixing until there are no lumps visible to the naked eye. Add the amount of freeze-dried powder each time. Increase the fluid concentration by 1.0% to obtain the initial fluid;
  • Impurity removal Vacuum dry the fluid at 90°C for 7.5 hours so that the total content of water and small alcohol impurities does not exceed 4wt%.
  • the rheological properties of the fluid were tested according to the method of Example 1, and the results were presented in the form of the relationship between viscosity and shear rate. As shown in Figure 4, the fluid exhibited strong discontinuous shear thickening properties. .
  • the raw material has a particle size of 104nm ⁇ 12nm
  • the pretreatment solvent is a mixed solvent of methanol and n-butanol with a mass ratio of 3:1, and polyethylene glycol with a relative molecular weight of 200 is used as the polypolyol.
  • the fluid is prepared as follows:
  • Pretreatment of nanoparticles Use a probe-type ultrasonic crusher to mix the nanosilica balls with the pretreatment solvent for 4 hours at a frequency of 20kHz and the crusher setting T on / T off to 5s/5s to obtain A pre-treated dispersion with a nano-silica sphere content of approximately 20wt%.
  • the pre-treated dispersion is centrifuged at 16,000 RPM for 2 hours to obtain a silica sphere deposition layer, which is crushed and freeze-dried to obtain a freeze-dried powder;
  • Pre-mixed nanoparticles Slowly add the freeze-dried powder to polyethylene glycol with a relative molecular mass of 200, while slowly stirring and mixing until there are no lumps visible to the naked eye. The amount of freeze-dried powder added each time should make the fluid concentration Increase by 1.0% to obtain the initial fluid;
  • Impurity removal Vacuum dry the fluid at 80°C for 8 hours so that the total content of water and small alcohol impurities does not exceed 4wt%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

本发明公开了一种剪切增稠流体的制备方法及其流体应用,该流体制备时先将纳米粒子分散在小分子醇类预处理溶剂中,然后离心、冻干得到冻干粉,再将纳米粒子冻干粉缓慢加入聚多元醇中,缓慢搅拌混合至无肉眼可见的块状物,然后用旋涡振荡仪或滚瓶器混匀制得均一度良好的流体,最后干燥除杂使水及小分子醇类杂质的含量的总和不超过4wt%,即制得剪切增稠流体。本发明制备方法步骤简单,易控,制备的剪切增稠流体的流体在浓度0.30-0.55之间,就可以具有非连续性剪切增稠的特性。

Description

一种剪切增稠流体的制备方法及其流体应用 技术领域
本发明涉及一种剪切增稠流体的制备方法及其流体应用,属于纳米流体材料技术领域。
背景技术
剪切增稠流体是由纳米粒子和溶剂构成的稳定的粒子悬浮液。当外力作用在流体上时,粒子聚集在一起形成粒子簇,流体粘度随粒子簇的形成成倍上升。当外力撤去后,粒子簇解散,粒子重新恢复到分散悬浮状态,流体粘度也降低到平衡态。该特性使流体能够大量吸收、消散外界冲击能量,在防刺防弹防撞击等诸多领域有着潜在的应用市场。此外,粒子簇的形成与解散无需借助外力场(电场、磁场等)。
剪切增稠流体的流体浓度通常用纳米粒子的体积分数φ来表示。只有当φ达到某一临界值后,流体在高剪应力下浓度才会跳跃式增加,展现“非连续性剪切增稠”的效果,而制备高浓度的剪切增稠流体工艺较为繁琐,效率也相对较低。
发明内容
本发明目的是为了解决现有技术的不足,提供一种剪切增稠流体的制备方法,该方法制备出的流体浓度为0.30-0.55的剪切增稠流体具有非连续性剪切增稠特征,具有显著的推广价值。
本发明的另一个目的是提供一种所述方法制备的流体的应用。
本发明的目的是通过以下技术方案实现的:
一种剪切增稠流体的制备方法,其特征在于包括以下步骤:
a.预处理纳米粒子:将纳米粒子分散在小分子醇类预处理溶剂中,然后离心、冻干得到冻干粉;
b.预混合纳米粒子:将纳米粒子冻干粉缓慢加入聚多元醇中,缓慢搅拌混合至无肉眼可见的块状物,得到初流体;
b.混匀分散初流体:用旋涡振荡仪或滚瓶器混匀初流体,制得均一度良好的流体,流动时不会局部分层;
d.除杂:真空干燥流体使水及小分子醇类杂质的含量的总和不超过4wt%,即制得剪切增稠流体。
本发明中预处理纳米粒子时将纳米粒子超声分散在预处理溶剂中。
本发明中的纳米粒子为纳米二氧化硅球,轻质碳酸钙微粉和纳米纤维素晶中的一种。
本发明中的聚多元醇为液体多元醇,粘度在20℃时为10-130mPa.s,优选相对分子质量为100、200、300、400的聚乙二醇。
本发明中的预处理溶剂为乙醇、甲醇、正丁醇和异丁醇中的一种或几种的混合物。小分子醇类预处理溶剂能通过范德华力吸附在大部分粒子的表面,小分子醇类的分子比较小,在高剪应力下流体剪切增稠时,纳米粒子会摩擦纳米粒子,这是一个刚性摩擦,小分子醇类因为分子小不会影响到刚性接触,因此流体的剪切增稠性质非常明显。但是如果是偶联剂一类的稍大的分子,则会影响到粒子与粒子之间的刚性接触,剪切增稠性质不会那么明显。并且,小分子醇类的沸点一般在120℃以下,加热至90-105℃就能迅速挥发,既容易控制流体中 的小分子醇类含量,又能保证聚多元醇不会因为加热温度过高而氧化,有利于流体的非连续性剪切增稠特性。
本发明步骤b中,每次加入的预处理的纳米粒子的量使得流体浓度提升1-5%。最初可加稍大量的纳米粒子至溶剂中,因为此时浓度较小,比较容易混匀,而随着纳米粒子逐渐增加,混匀液的浓度也逐渐升高,此时可以将纳米粒子每批次加入的量逐渐减少,以保证混匀效果。
一种上述方法所制备的剪切增稠流体的应用,其特征在于应用于复合防刺材料或防撞保护体。
与现有技术相比,本发明有如下优点:
本发明制备方法步骤简单,易控,制备的剪切增稠流体的流体在浓度0.30-0.55之间,就可以具有非连续性剪切增稠的特性。
附图说明
图1为实施例1和对比例1的流体粘度随剪切速率的变化关系图;图2为实施例2φ=0.49流体的粘度随剪切速率变化关系图;
图3为实施例3φ=0.30流体的粘度随剪切速率变化关系图;
图4为实施例4φ=0.36流体的粘度随剪切速率变化关系图;
图5为实施例5φ=0.44流体的粘度随剪切速率变化关系图。
具体实施方式
一种剪切增稠流体的制备方法,包括以下步骤:
a.预处理纳米粒子:将纳米粒子分散在小分子醇类预处理溶剂中,然后离心、冻干得到冻干粉;
b.预混合纳米粒子:将纳米粒子冻干粉缓慢加入聚多元醇中, 缓慢搅拌混合至无肉眼可见的块状物,得到初流体;
b.混匀分散初流体:用旋涡振荡仪或滚瓶器混匀初流体,制得均一度良好的流体;
d.除杂:真空干燥流体使水及小分子醇类杂质的含量的总和不超过4wt%,即可。
其中,纳米粒子可以为纳米二氧化硅球,轻质碳酸钙微粉或纳米纤维素晶,小分子醇类预处理溶剂为乙醇、甲醇、正丁醇和异丁醇中的一种或几种的混合物,聚多元醇为粘度10-130mPa.s(20℃)的液体聚多元醇。
下面结合具体实施例对本发明作进一步地详细说明。
实施例1:
制备浓度φ=0.52的剪切增稠流体,原材料是粒径为500nm±27nm的二氧化硅球,预处理时溶剂为乙醇和正丁醇质量比为4:1的混合溶剂,聚多元醇为相对分子质量为200的聚乙二醇,制备方法如下:
a.预处理纳米粒子:将二氧化硅球与预处理溶剂于探针式超声波破碎机中,在20kHz、破碎机设置Ton/Toff为8s/5s的条件混合3h,得到35wt%左右的二氧化硅球预处理分散液,然后将预处理分散液于20,000RPM离心2h后得到硅球沉积层,捣碎、冻干后制得冻干粉;
b.预混合纳米粒子:将冻干粉缓慢加入聚多元醇中,同时缓慢搅拌混合至无肉眼可见的块状物,每次加入的冻干粉的量使流体浓度提升2%,得到初流体;
c.混匀分散初流体:将初流体密封后用旋涡振荡仪或滚瓶机混 匀5-7日,制得均一度良好的流体,均一度良好是指流体流动时不会局部分层,具有很强的“丁达尔效应”;
d.除杂:于85℃下真空干燥流体8h,使水及小分子醇类杂质的含量的总和不超过4wt%,即可。
对比例1:
制备浓度φ=0.52的流体。原材料是粒径为500nm±27nm的二氧化硅球,聚多元醇为相对分子质量为200的聚乙二醇,制备方法如下:
a.预混合纳米粒子:将二氧化硅球缓慢加入聚多元醇中,同时缓慢搅拌混合至无肉眼可见的块状物,每次加入的纳米粒子的量使流体浓度提升2%,制得初流体;
b.混匀分散初流体:将初流体密封后用旋涡振荡仪或滚瓶机混匀5-7日,制得对比流体,该流体不太均匀,类似冰沙状,有颗粒感;
c.除杂:在85℃下真空干燥对比流体8h,使水及小分子醇类杂质的含量的总和不超过4wt%,即可。
对比流体即使混匀时间延长至13-15日也无法消除颗粒感。
使用流变仪(MCR302,Anton Paar)测试实施例1和对比例1流体的流变性能。为了更准确地体现在高剪应力条件下流体粘度的变化情况,使用流变仪的应力控制(Control Stress)模式,对应力为10-2-103Pa范围内进行扫描,并将结果以传统的“粘度-剪切速率”的log-log图呈现,如图1所示。虽然两个流体的浓度均为0.52,但未经过预处理的二氧化硅球制得的流体粘度随剪切速率变化曲线不顺滑且粘度无明显增幅,表明硅球未很好地分散在聚乙二醇中,且当测试的应力超过55Pa后,因应力控制模式下,流变仪无法感知该流体粘度太过于细小的变化而被迫终止了测试;而预处理后的二氧化硅球制得的流体 在剪切速率为20s-1时粘度跳跃性增长,不但粘度的增幅很大,而且随着粘度增长,剪切速率本身基本保持不变,呈现出典型的非连续性剪切增稠特性。
实验证明,如果纳米粒子的表面有小分子醇类覆盖,则只通过混匀就能分散在聚多元醇里,同时配制的流体在φ=0.30-0.55范围内就能具有非连续性剪切增稠性质,但是如果粒子表面没有小分子醇类覆盖,则要在φ≥0.62时才能达到非连续性剪切增稠性质。
实施例2
制备浓度φ=0.49的剪切增稠流体。原材料是粒径为873nm±58nm的轻质碳酸钙粒子,预处理溶剂为甲醇和正丁醇质量比为5:2的混合溶剂,聚多元醇选用相对分子质量为200的聚乙二醇。该流体的制备方法如下:
a.预处理纳米粒子:使用探针式超声波破碎机,在20kHz的频率,破碎机设置Ton/Toff为3s/2s的条件下,将轻质碳酸钙粒子与预处理溶剂混合2.5h,得到35wt%的纳米粒子预处理分散液,将预处理分散液于20,000RPM超高速离心2h后得到硅球沉积层,捣碎、冻干后制得冻干粉;
b.预混合纳米粒子:将轻质碳酸钙粒子冻干粉缓慢加入相对分子质量为200的聚乙二醇中,同时缓慢搅拌混合至无肉眼可见的块状物,每次加入的轻质碳酸钙粒子冻干粉的量使流体浓度提升1.5%,得到初流体;
c.混匀分散初流体:将初流体密封在容器内,置于旋涡振荡仪或滚瓶机上混匀5-7日,至流动时不会局部分层,且有很强的“丁达 尔效应”时,得到均一度良好的流体;
d.除杂:在90℃下真空干燥流体7.5h,使水及小分子醇类杂质的含量的总和不超过4wt%,即可。
按实施例1的方法测试实施例2流体的流变性能,其结果如图2中粘度与剪切速率的变化关系图显示,该流体在剪切速率大约为4s-1时,粘度呈跳跃式增长且剪切速率基本保持不变,呈现出很强的非连续性剪切增稠性质。
实施例3
制备浓度φ=0.30的剪切增稠流体。原材料是粒径为942nm±75nm的纳米纤维素晶,预处理溶剂为乙醇和异丁醇质量比为4:1的混合溶剂,聚多元醇选用相对分子质量为100的聚乙二醇。该流体的制备方法如下:
a.预处理纳米粒子:使用高速分散机,在3500RPM的转速下,将纳米纤维素晶与预处理溶剂混合3.5h,制得20wt%的纳米纤维素晶预处理分散液,将预处理分散液于16,000RPM超高速离心2h后得到晶体沉积层,捣碎、冻干后制得晶体冻干粉;
b.预混合纳米粒子:将晶体冻干粉缓慢加入相对分子质量为100的聚乙二醇中,同时缓慢搅拌混合至无肉眼可见的块状物,每次加入的晶体冻干粉的量使流体浓度提升1.0%,得到初流体;
c.混匀分散初流体:将初流体密封在容器内,置于旋涡振荡仪或滚瓶机上混匀5-7日,至流体流动时不会局部分层,且有很强的“丁达尔效应”,得到均一度良好的流体;
d.除杂:在90℃下真空干燥流体7.5h,使水及小分子醇类杂质的含量的总和不超过4wt%,即可。
按实施例1的方法测试该流体的流变性能,其结果如图3所示。从粘度与剪切速率的关系可看出,该流体呈现出较强的非连续性剪切增稠特性。
实施例4.
制备浓度φ=0.36的剪切增稠流体。原材料是粒径为942nm±75nm的碳酸钙微粉,预处理溶剂为乙醇,聚多元醇选用相对分子质量为200的聚乙二醇。该流体的制备方法如下:
a.预处理纳米粒子:使用探针式超声波破碎机,在15kHz的频率,破碎机设置Ton/Toff为5s/3s的条件下,将碳酸钙微粉与乙醇混合4h,制得碳酸钙微粉含量25wt%的预处理分散液,将预处理分散液于16,000RPM超高速离心2h后得到粒子沉积层,捣碎冻干制得冻干粉;
b.预混合纳米粒子:将预处理的冻干粉缓慢加入相对分子质量为200的聚乙二醇中,同时缓慢搅拌混合至无肉眼可见的块状物,每次加入冻干粉的量使流体浓度提升1.0%,得到初流体;
c.混匀分散初流体:将初流体密封在容器内,置于旋涡振荡仪或滚瓶机上混匀5-7日,至流体流动时不会局部分层,且有很强的“丁达尔效应”,得到均一度良好的流体;
d.除杂:在90℃下真空干燥流体7.5h,使水及小分子醇类杂质的含量的总和不超过4wt%,即可。
按实施例1的方法测试该流体的流变性能,并将结果以粘度和剪切速率的关系的方式呈现,如图4所示,该流体展现出很强的非连续性剪切增稠性质。
实施例5.
制备浓度φ=0.44的剪切增稠流体。原材料是粒径为104nm±12nm 的纳米二氧化硅球,预处理溶剂为甲醇和正丁醇质量比为3:1的混合溶剂,聚多元醇选用相对分子质量为200的聚乙二醇。该流体的制备方法如下:
a.预处理纳米粒子:使用探针式超声波破碎机,在20kHz的频率,破碎机设置Ton/Toff为5s/5s的条件下,将纳米二氧化硅球与预处理溶剂混合4h,得到纳米二氧化硅球含量约为20wt%的预处理分散液,将预处理分散液于16,000RPM高速离心2h后得到硅球沉积层,捣碎冻干后制得冻干粉;
b.预混合纳米粒子:将冻干粉缓慢加入相对分子质量为200的聚乙二醇中,同时缓慢搅拌混合至无肉眼可见的块状物,每次加入的冻干粉的量使流体浓度提升1.0%,得到初流体;
c.混匀分散初流体:将初流体密封在容器内,置于旋涡振荡仪或滚瓶机上混匀5-7日,至流体流动时不会局部分层,且有很强的“丁达尔效应”,得到均一度良好的流体;
d.除杂:在80℃下真空干燥流体8h,使水及小分子醇类杂质的含量的总和不超过4wt%,即可。
按实施例1的方法测试该流体的流变性能,并将结果与粘度vs剪切速率的方式呈现出来,如图5所示,从图中的曲线可以看出,该流体呈现出很强的非连续性剪切增稠性质。

Claims (7)

  1. 一种剪切增稠流体的制备方法,其特征在于包括以下步骤:
    a.预处理纳米粒子:将纳米粒子分散在小分子醇类预处理溶剂中,然后离心、冻干得到冻干粉;
    b.预混合纳米粒子:将纳米粒子冻干粉缓慢加入聚多元醇中,缓慢搅拌混合至无肉眼可见的块状物,得到初流体;
    c.混匀分散初流体:用旋涡振荡仪或滚瓶器混匀初流体,制得均一度良好的流体;
    d.除杂:真空干燥流体使水及小分子醇类杂质的含量的总和不超过4wt%,即可。
  2. 根据权利要求1所述的一种剪切增稠流体的制备方法,其特征在于预处理纳米粒子时将纳米粒子超声分散在预处理溶剂中。
  3. 根据权利要求1所述的一种剪切增稠流体的制备方法,其特征在于所述的纳米粒子为纳米二氧化硅球,轻质碳酸钙微粉和纳米纤维素晶中的一种。
  4. 根据权利要求1所述的一种剪切增稠流体的制备方法,其特征在于所述聚多元醇为液体多元醇,粘度在20℃时为10-130mPa.s。
  5. 根据权利要求1所述的一种剪切增稠流体的制备方法,其特征在于所述的预处理溶剂为乙醇、甲醇、正丁醇和异丁醇中的一种或几种的混合物。
  6. 根据权利要求1所述的一种剪切增稠流体的制备方法,其特 征在于所述步骤b中,每次加入的预处理的纳米粒子的量使得流体浓度提升1-5%。
  7. 一种权利要求1-6中任一方法所制备的剪切增稠流体的应用。
PCT/CN2023/108879 2022-08-19 2023-07-24 一种剪切增稠流体的制备方法及其流体应用 WO2024037290A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210997861.6 2022-08-19
CN202210997861.6A CN115477924A (zh) 2022-08-19 2022-08-19 一种剪切增稠流体的制备方法及其流体应用

Publications (1)

Publication Number Publication Date
WO2024037290A1 true WO2024037290A1 (zh) 2024-02-22

Family

ID=84423200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108879 WO2024037290A1 (zh) 2022-08-19 2023-07-24 一种剪切增稠流体的制备方法及其流体应用

Country Status (2)

Country Link
CN (1) CN115477924A (zh)
WO (1) WO2024037290A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477924A (zh) * 2022-08-19 2022-12-16 中山莱圃新材料有限公司 一种剪切增稠流体的制备方法及其流体应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110283433A1 (en) * 2010-05-21 2011-11-24 Presidium Athletics LLC Impact resistant, torsion-reducing protective athletic gear using shear thickening fluid
KR20120108390A (ko) * 2011-03-24 2012-10-05 한국생산기술연구원 전단농화유체를 포함하는 복합섬유와 이를 이용한 충격완화용 시이트 및 방탄소재
CN203196568U (zh) * 2012-03-27 2013-09-18 浩华科技实业有限公司 一种纳米二氧化硅剪切增稠液的制备装置
CN103359740A (zh) * 2012-03-27 2013-10-23 浩华科技实业有限公司 一种二氧化硅剪切增稠液的制备方法
WO2014007782A2 (en) * 2012-07-02 2014-01-09 Keceli Alper A non-newtonian material with shock absorption property
CN104327795A (zh) * 2014-01-08 2015-02-04 中物功能材料研究院有限公司 剪切增稠液的制备方法
CN108130043A (zh) * 2016-12-01 2018-06-08 盐城工学院 一种二氧化硅和聚乙二醇增稠分散体系的制备方法
CN115477924A (zh) * 2022-08-19 2022-12-16 中山莱圃新材料有限公司 一种剪切增稠流体的制备方法及其流体应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191680B (zh) * 2011-03-15 2012-07-11 深圳航天科技创新研究院 一种基于SiO2微纳米球的剪切增稠流体的制备方法
CN103422341A (zh) * 2012-05-15 2013-12-04 常熟宝盾高性能纤维材料制品有限公司 一种剪切增稠液的制备方法
CN104213322A (zh) * 2013-12-17 2014-12-17 盐城工学院 一种抗冲击柔性防护结构及制造方法
CN104047162B (zh) * 2014-06-26 2016-03-23 浙江理工大学 一种新型剪切增稠流体的制备方法
CN107502288A (zh) * 2017-08-28 2017-12-22 湖南沃美新材料科技有限公司 一种纳米二氧化硅剪切增稠液体的制备方法
CN108221382B9 (zh) * 2018-02-01 2020-06-12 江南大学 一种电磁屏蔽型剪切增稠液体及其制备方法
US11926959B2 (en) * 2018-07-06 2024-03-12 Stf Technologies, Llc High tenacity textiles containing shear thickening fluid and uses thereof
CN111454488B (zh) * 2019-01-22 2022-03-18 南京理工大学 细菌纤维素基复合防护材料及其制备方法
CN112391690B (zh) * 2020-09-21 2024-05-14 江苏六甲科技有限公司 一种超高分子量聚乙烯与剪切增稠流体复合纤维的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110283433A1 (en) * 2010-05-21 2011-11-24 Presidium Athletics LLC Impact resistant, torsion-reducing protective athletic gear using shear thickening fluid
KR20120108390A (ko) * 2011-03-24 2012-10-05 한국생산기술연구원 전단농화유체를 포함하는 복합섬유와 이를 이용한 충격완화용 시이트 및 방탄소재
CN203196568U (zh) * 2012-03-27 2013-09-18 浩华科技实业有限公司 一种纳米二氧化硅剪切增稠液的制备装置
CN103359740A (zh) * 2012-03-27 2013-10-23 浩华科技实业有限公司 一种二氧化硅剪切增稠液的制备方法
WO2014007782A2 (en) * 2012-07-02 2014-01-09 Keceli Alper A non-newtonian material with shock absorption property
CN104327795A (zh) * 2014-01-08 2015-02-04 中物功能材料研究院有限公司 剪切增稠液的制备方法
CN108130043A (zh) * 2016-12-01 2018-06-08 盐城工学院 一种二氧化硅和聚乙二醇增稠分散体系的制备方法
CN115477924A (zh) * 2022-08-19 2022-12-16 中山莱圃新材料有限公司 一种剪切增稠流体的制备方法及其流体应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GROVER GUNJAN, VERMA SANJEEV K., THAKUR ANUPAMA, BISWAS IPSITA, BHATACHARJEE DEBARATI: "The effect of particle size and concentration on the ballistic resistance of different shear thickening fluids", MATERIALS TODAY: PROCEEDINGS, ELSEVIER, NL, vol. 28, 1 January 2020 (2020-01-01), NL , pages 1472 - 1476, XP093141019, ISSN: 2214-7853, DOI: 10.1016/j.matpr.2020.04.823 *
LIANG GAOYONG; SUN RUNJUN; WANG QIUSHI; WEI XIAOXIAO: "Effect of Temperature on the Rheological Properties of SiO2/PEG-based Shear Thickening Fluids", BASIC SCIENCES JOURNAL OF TEXTILE UNIVERSITIES, vol. 33, no. 1, 30 March 2020 (2020-03-30), pages 15 - 20, XP009552966, ISSN: 1006-8341, DOI: 10.13338/j.issn.1006-8341.2020.01.003 *
SURUI DU, LIU YAQING; FAN YIZE; HAN GUANYU; ZHAO GUIZHE: "Influence of the dispersibility of fumed silica on the steady-state rheological property of STF", NEW CHEMICAL MATERIALS, vol. 50, no. 4, 15 April 2022 (2022-04-15), pages 220 - 224, XP093141020 *

Also Published As

Publication number Publication date
CN115477924A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2024037290A1 (zh) 一种剪切增稠流体的制备方法及其流体应用
CN104845301B (zh) 一种紫外线屏蔽剂及其制备方法和包含该紫外线屏蔽剂的聚乳酸薄膜及其制备方法
CN110606961B (zh) 一种具有两亲性淀粉纳米粒子及其制备方法
CN106118039A (zh) 一种石墨烯改性pa6复合材料及其制备方法
CN110305340A (zh) 一种气凝胶复合塑料母粒及其制备方法和应用
JP2009107857A (ja) 分散性シリカナノ中空粒子及びシリカナノ中空粒子の分散液の製造方法
CN109810323A (zh) 一种白炭黑/氧化石墨烯纳米杂化填料的制备方法和纳米杂化填料及其应用
CN107915257A (zh) 一种钨青铜纳米分散体的制备方法及其应用
WO2024037289A1 (zh) 一种超高浓度剪切增稠流体及其制备方法和应用
CN107934949A (zh) 一种用于浸渍陶瓷基复合材料的石墨烯分散液的制备方法
CN108410017A (zh) 一种用于塑料母料中的高分散硫酸钡复合材料的制备方法
CN108033476A (zh) 一种纳米碳酸钙的制备方法
CN113388245B (zh) 一种防水堵漏灌浆材料及其制备方法、应用
CN104497609B (zh) 一种全纤维可降解复合材料的制备方法
WO2019105287A1 (zh) 一种纳米纤维素及其制备方法和用途
CN105601757B (zh) 一种药物载体交联改性大米淀粉纳米晶的制备方法
CN105524489A (zh) 一种聚氨酯密封胶用纳米碳酸钙的原位乳化改性方法
CN114436307B (zh) 橡胶专用轻质碳酸钙的制备方法
CN113185721B (zh) 射流空化辅助酶解制备的淀粉纳米粒子及制备方法、应用
CN105601758B (zh) 一种酯化大米淀粉纳米晶的制备方法
CN106947292A (zh) 一种表面改性的纳米二氧化硅的制备方法
CN113817222A (zh) 一种提升石墨烯粉体分散程度及其改性沥青制备的方法
CN105440325A (zh) 一种耐热疏水改性淀粉pvc复合降解塑料及其制备方法
CN106349761A (zh) 一种耐磨性复合碳酸钙及其制备方法
CN113801415A (zh) 一种聚四氟乙烯复合微粉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854195

Country of ref document: EP

Kind code of ref document: A1