WO2024031790A1 - 一种处理废旧锂电池正极片的方法及应用 - Google Patents
一种处理废旧锂电池正极片的方法及应用 Download PDFInfo
- Publication number
- WO2024031790A1 WO2024031790A1 PCT/CN2022/120359 CN2022120359W WO2024031790A1 WO 2024031790 A1 WO2024031790 A1 WO 2024031790A1 CN 2022120359 W CN2022120359 W CN 2022120359W WO 2024031790 A1 WO2024031790 A1 WO 2024031790A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- lithium battery
- battery positive
- aluminum foil
- cathode
- Prior art date
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 48
- 239000002699 waste material Substances 0.000 title claims abstract description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 91
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 91
- 239000011888 foil Substances 0.000 claims abstract description 77
- 239000003513 alkali Substances 0.000 claims abstract description 56
- 238000005406 washing Methods 0.000 claims abstract description 39
- 239000000843 powder Substances 0.000 claims abstract description 34
- 239000007774 positive electrode material Substances 0.000 claims abstract description 30
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 9
- 238000012216 screening Methods 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 5
- 239000010406 cathode material Substances 0.000 claims description 56
- 239000007787 solid Substances 0.000 claims description 43
- 239000012634 fragment Substances 0.000 claims description 20
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 16
- 238000004064 recycling Methods 0.000 claims description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 238000004140 cleaning Methods 0.000 claims description 14
- 239000003444 phase transfer catalyst Substances 0.000 claims description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 8
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 4
- SHFJWMWCIHQNCP-UHFFFAOYSA-M hydron;tetrabutylazanium;sulfate Chemical compound OS([O-])(=O)=O.CCCC[N+](CCCC)(CCCC)CCCC SHFJWMWCIHQNCP-UHFFFAOYSA-M 0.000 claims description 4
- 239000007800 oxidant agent Substances 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 claims description 4
- 239000006210 lotion Substances 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- VFTFKUDGYRBSAL-UHFFFAOYSA-N 15-crown-5 Chemical compound C1COCCOCCOCCOCCO1 VFTFKUDGYRBSAL-UHFFFAOYSA-N 0.000 claims description 2
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 claims description 2
- 229920000858 Cyclodextrin Polymers 0.000 claims description 2
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 claims description 2
- 229910001863 barium hydroxide Inorganic materials 0.000 claims description 2
- 150000001983 dialkylethers Chemical class 0.000 claims description 2
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 claims description 2
- XKBGEWXEAPTVCK-UHFFFAOYSA-M methyltrioctylammonium chloride Chemical compound [Cl-].CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC XKBGEWXEAPTVCK-UHFFFAOYSA-M 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 238000002161 passivation Methods 0.000 claims description 2
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 claims description 2
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 2
- MPNXSZJPSVBLHP-UHFFFAOYSA-N 2-chloro-n-phenylpyridine-3-carboxamide Chemical compound ClC1=NC=CC=C1C(=O)NC1=CC=CC=C1 MPNXSZJPSVBLHP-UHFFFAOYSA-N 0.000 claims 1
- 239000000920 calcium hydroxide Substances 0.000 claims 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims 1
- KKWUACQXLWHLCX-UHFFFAOYSA-N hydron;tetradecan-1-amine;chloride Chemical compound Cl.CCCCCCCCCCCCCCN KKWUACQXLWHLCX-UHFFFAOYSA-N 0.000 claims 1
- ARAAJMVUIASFJM-UHFFFAOYSA-M triethyl(2-phenylethyl)azanium;chloride Chemical compound [Cl-].CC[N+](CC)(CC)CCC1=CC=CC=C1 ARAAJMVUIASFJM-UHFFFAOYSA-M 0.000 claims 1
- 238000002386 leaching Methods 0.000 abstract 1
- 238000011085 pressure filtration Methods 0.000 abstract 1
- 239000002002 slurry Substances 0.000 abstract 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical group OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 42
- 230000018044 dehydration Effects 0.000 description 25
- 238000006297 dehydration reaction Methods 0.000 description 25
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 24
- 238000003756 stirring Methods 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 238000011084 recovery Methods 0.000 description 16
- 239000012535 impurity Substances 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000001569 carbon dioxide Substances 0.000 description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 description 12
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 12
- HTZCNXWZYVXIMZ-UHFFFAOYSA-M benzyl(triethyl)azanium;chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC1=CC=CC=C1 HTZCNXWZYVXIMZ-UHFFFAOYSA-M 0.000 description 10
- 239000002033 PVDF binder Substances 0.000 description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000011010 flushing procedure Methods 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000000197 pyrolysis Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- SXGBREZGMJVYRL-UHFFFAOYSA-N butan-1-amine;hydrobromide Chemical compound [Br-].CCCC[NH3+] SXGBREZGMJVYRL-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 235000021110 pickles Nutrition 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- CEYYIKYYFSTQRU-UHFFFAOYSA-M trimethyl(tetradecyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[N+](C)(C)C CEYYIKYYFSTQRU-UHFFFAOYSA-M 0.000 description 1
- 239000010926 waste battery Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/30—Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
- B09B3/35—Shredding, crushing or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/40—Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/70—Chemical treatment, e.g. pH adjustment or oxidation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B2101/00—Type of solid waste
- B09B2101/15—Electronic waste
- B09B2101/16—Batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Definitions
- the invention belongs to the technical field of recycling waste lithium-ion batteries, and particularly relates to a method and application for processing positive electrode sheets of waste lithium batteries.
- Lithium-ion battery is an environmentally friendly recyclable battery with the characteristics of high energy density, light weight, small size, long cycle life, and no memory. It is widely used in communications, medical care, transportation, aerospace, energy storage and other fields. Wide range of applications. Lithium-ion batteries are composed of positive and negative electrode sheets, electrolyte, separator paper and casing. The positive electrode sheet contains nickel cobalt manganese cathode material, which is the core component of lithium batteries. In recent years, with the steady growth of lithium-ion battery market demand, lithium-ion battery production capacity has continued to expand, and a large number of used lithium battery pole pieces have appeared in the production and use process. It is a kind of industrial waste containing high cobalt and nickel. Improper handling will not only cause a waste of resources, but also cause environmental pollution. Therefore, recycling used pole pieces is of great significance to reducing environmental pollution and alleviating the shortage of cobalt and nickel resources.
- the present invention aims to solve at least one of the technical problems existing in the prior art.
- the present invention proposes a method and application for processing the positive electrode sheets of used lithium batteries. This method can separate the aluminum foil and positive electrode materials in the positive electrode sheets of used lithium batteries and then reuse them.
- a method for processing used lithium battery positive electrode sheets including the following steps:
- step (1) the crushing is carried out under a protective atmosphere.
- the protective atmosphere is at least one of nitrogen or carbon dioxide.
- the mesh size of the sieve used for screening in step (1) is 50-100 mesh.
- the mesh size of the sieve used for screening in step (1) is 60-80 mesh.
- the baking temperature in step (2) is 100-150°C.
- the baking temperature in step (2) is 110-130°C.
- the passivation is to use an oxidizing agent to oxidize and passivate the cathode fragments.
- the oxidizing agent is hydrogen peroxide.
- the concentration of the hydrogen peroxide is 5%-10%
- the liquid-to-solid ratio mL/g of the hydrogen peroxide and the cathode piece fragments is (2-30):1
- the reaction time is 15-10%. 60 minutes.
- the concentration of hydrogen peroxide is 7%-9%
- the liquid-to-solid ratio mL/g of the hydrogen peroxide and the cathode fragments is (15-20):1
- the reaction time is 20 -45min.
- the alkali washing liquid used in the alkali washing is at least one of sodium hydroxide solution, potassium hydroxide solution, barium hydroxide solution and calcium hydroxide solution.
- the concentration of the alkali washing solution is 0.5-5mol/L.
- the concentration of the alkali washing solution is 1-3 mol/L.
- the liquid-to-solid ratio mL/g of the alkali washing solution and the cathode material is (5-10):1.
- liquid-to-solid ratio mL/g of the alkali cleaning solution and the positive electrode material is (6-9):1.
- the alkali washing further includes adding a phase transfer catalyst to the alkali washing liquid used.
- the liquid-to-solid ratio mL/g of the alkali washing liquid and the phase transfer catalyst is (5-30):1.
- liquid-to-solid ratio mL/g of the alkali washing liquid and the phase transfer catalyst is (10-20):1.
- the phase transfer catalyst is chain polyethylene glycol, chain polyethylene glycol dialkyl ether, benzyl triethylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium chloride, Tetrabutylammonium bisulfate, trioctylmethylammonium chloride, dodecyltrimethylammonium chloride, tetradecyltrimethylammonium chloride, 18-crown-6, 15-crown-5, At least one kind of cyclodextrin.
- the alkali cleaning process is also combined with ultrasonic cleaning.
- the ultrasonic frequency of the ultrasonic wave is 30-120 KHz, and the ultrasonic time is 30-120 minutes.
- the ultrasonic frequency of the ultrasonic wave is 50-90 KHz, and the ultrasonic time is 30-60 minutes.
- step (2) stirring is also included during the alkali washing process, and the stirring speed is 200-800 r/min.
- the mesh size of the sieve used for screening is 30-80 mesh.
- the mesh size of the sieve used for screening is 50-60 mesh.
- the dehydration can be carried out by using a centrifuge, and the rotation speed of the centrifuge during dehydration is 700-960 r/min.
- step (2) the dehydration can be carried out by using a centrifuge, and the rotation speed of the centrifuge during dehydration is 800-900 r/min.
- the drying temperature is 80-150°C. Further preferably, in step (2), the drying temperature is 90-120°C.
- the pressure intensity of the filter press is 2-8MPa. Further preferably, in step (3), the pressure intensity of the filter press is 5-6MPa.
- the present invention uses a strong alkali to degrade PVDF to separate the aluminum foil and the cathode material. Specifically, the hydroxyl radical of the strong alkali attacks the hydrogen atom on the ⁇ carbon of the PVDF molecular chain, and at the same time the fluorine atom leaves to form a double bond. The double bond is It continues to be oxidized in a strong alkali environment, forming hydroxyl and carbonyl groups on the conjugated polyene carbon chain, and finally forming an unsaturated ketone structure on the molecular chain, thereby destroying PVDF and changing its properties.
- the alkali degradation reaction only occurs on the surface polymer chain.
- the nature of the boundary layer greatly affects the progress of the reaction, so the purpose of accelerating the degradation reaction is achieved by adding a phase transfer catalyst.
- the positive electrode sheet is broken through hydrogen peroxide treatment, so that a dense oxide film is formed on the surface of the aluminum foil to passivate it, preventing the reaction of alkali and aluminum foil to generate hydrogen, and improving the safety of industrial production.
- the present invention currently uses high-temperature pyrolysis as the main method for treating waste lithium battery cathode sheets.
- This method uses low-temperature heat treatment of waste lithium battery cathode sheets, which is relatively Compared with high-temperature pyrolysis treatment, this method requires lower energy consumption; high-temperature pyrolysis will produce more waste gas.
- This method uses low-temperature heat treatment to produce basically no waste gas. Compared with high-temperature pyrolysis treatment, this method is more energy-saving and environmentally friendly.
- the present invention obtains the cathode material by separating the cathode material of the waste lithium battery cathode sheet from the aluminum foil.
- the process is simple and easy for industrial production.
- the cathode material of the waste lithium battery cathode sheet is efficiently recycled and reused, which can It solves the pollution problem of used lithium battery cathode sheets, and can recycle the cathode materials of used lithium battery cathode sheets, providing raw materials for lithium battery manufacturing, and realizing the resource reuse of used lithium ion battery cathode sheets.
- Figure 1 is a process flow diagram of the present invention
- FIG. 2 is a schematic diagram of the cathode piece fragments in Embodiment 1 of the present invention.
- FIG. 3 is a schematic diagram of the aluminum foil scraps obtained in Example 1 of the present invention.
- a method for processing used lithium battery cathode sheets includes the following steps:
- the positive electrode material is washed, hydraulically filtered, and then pulped and leached.
- the pressure intensity of the filter press is 2MPa.
- the weight of aluminum foil in unused lithium battery cathode sheets accounts for about 14% of the weight of the cathode sheets.
- the calculated recovery rate of the cathode material powder is 99.5%, and the impurity aluminum content is 0.2%.
- the recycling rate of aluminum foil is 99.7%.
- a method for processing used lithium battery positive electrode sheets including the following steps:
- the positive electrode material is washed, hydraulically filtered, and then pulped and leached.
- the pressure intensity of the filter press is 8MPa.
- the recovery rate of cathode material powder is 99.6%, and the impurity aluminum content is 0.12%.
- the recycling rate of aluminum foil is 99.5%.
- a method for processing used lithium battery positive electrode sheets including the following steps:
- the positive electrode material is washed, hydraulically filtered, and then pulped and leached.
- the pressure intensity of the filter press is 5MPa.
- the recovery rate of cathode material powder is 99.7%, and the impurity aluminum content is 0.15%.
- the recycling rate of aluminum foil is 99.5%.
- a method for processing used lithium battery positive electrode sheets including the following steps:
- the positive electrode material is washed, hydraulically filtered, and then pulped and leached.
- the pressure intensity of the filter press is 6MPa.
- the recovery rate of cathode material powder is 99.5%, and the impurity aluminum content is 0.08%.
- the recycling rate of aluminum foil is 99.6%.
- a method for processing used lithium battery positive electrode sheets including the following steps:
- the positive electrode material is washed, hydraulically filtered, and then pulped and leached.
- the pressure intensity of the filter press is 5.5MPa.
- the recovery rate of cathode material powder is 99.7%, and the impurity aluminum content is 0.06%.
- the recycling rate of aluminum foil is 99.7%.
- a method for processing used lithium battery positive electrode sheets including the following steps:
- the positive electrode material is washed, hydraulically filtered, and then pulped and leached.
- the pressure intensity of the filter press is 5.5MPa.
- the recovery rate of cathode material powder is 99.6%, and the impurity aluminum content is 0.16%.
- the recycling rate of aluminum foil is 99.4%.
- a method for processing used lithium battery positive electrode sheets including the following steps:
- the positive electrode material is washed, hydraulically filtered, and then pulped and leached.
- the pressure intensity of the filter press is 5.5MPa.
- the recovery rate of cathode material powder is 99.9%, and the impurity aluminum content is 0.032%.
- the recycling rate of aluminum foil is 99.9%.
- a method for processing used lithium battery positive electrode sheets including the following steps:
- the positive electrode material is washed, hydraulically filtered, and then pulped and leached.
- the pressure intensity of the filter press is 5MPa.
- the recovery rate of the cathode material powder is 99.9%, and the impurity aluminum content is approximately 0.035%.
- the recycling rate of aluminum foil is 99.9%.
- a method for processing used lithium battery positive electrode sheets including the following steps:
- the positive electrode material is washed, hydraulically filtered, and then pulped and leached.
- the pressure intensity of the filter press is 6MPa.
- the recovery rate of the cathode material powder is 99.9%, and the impurity aluminum content is approximately 0.036%.
- the recycling rate of aluminum foil is 99.9%.
- Example 10 (Compared with Example 9, no phase transfer catalyst is added during the treatment process, and the remaining steps remain unchanged)
- a method for processing used lithium battery positive electrode sheets including the following steps:
- the mesh number of the vibrating water sieve cleaning sieve is 60 meshes to wash away the residual alkali positive electrode material on the aluminum foil; then dehydrate, and the centrifuge speed during dehydration is 900r/min, and finally dried at 120°C to obtain aluminum foil scraps and collect the cathode material washing liquid obtained after rinsing;
- the positive electrode material is washed, hydraulically filtered, and then pulped and leached.
- the pressure intensity of the filter press is 6MPa.
- the recovery rate of cathode material powder is 83%, and the impurity aluminum content is about 0.1%.
- the recycling rate of aluminum foil is 87%.
- Comparative Example 1 (Compared with Example 9, alkali washing was changed to acid washing during the treatment process, and the remaining steps remained unchanged)
- a method for processing used lithium battery positive electrode sheets including the following steps:
- the positive electrode material is washed, hydraulically filtered, and then pulped and leached.
- the pressure intensity of the filter press is 6MPa.
- the recovery rate of cathode material powder is 94%, and the impurity aluminum content is approximately 33%.
- the recycling rate of aluminum foil is 75%.
- the method described in the present invention is used to treat the positive electrode sheet with hydrogen peroxide, so that a dense oxide film is formed on the surface of the aluminum foil of the positive electrode sheet to passivate it, preventing alkali from reacting with the aluminum foil to produce hydrogen, and hydrogen peroxide decomposes to produce oxygen.
- the bubbling promotes the separation of the cathode material and the aluminum foil, and a phase transfer catalyst is added to promote the hydroxide radicals to attack the hydrogen atoms on the ⁇ carbon of the PVDF molecular chain, thereby destroying PVDF and changing its properties.
- This invention not only greatly reduces the generation of combustible gas hydrogen, improves the safety of industrial production, but also reduces the consumption of alkali, and can directly recycle aluminum foil, improve the separation process and also reduce the cost of recycling, which is good for cathode material powder and
- the recovery rate of aluminum foil reaches more than 99%, and the impurity aluminum content in the obtained positive electrode material powder is less than 0.2%.
- the concentration of hydrogen peroxide as the oxidant used in the present invention is 7%-9%
- the hydrogen peroxide and the positive electrode sheet The liquid-to-solid ratio mL/g of the crushed materials is (15-20):1, the reaction time is 20-45min, the liquid-to-solid ratio mL/g of the alkali washing solution and the cathode material is (6-9):1, and the alkali washing solution
- the liquid-to-solid ratio mL/g of the phase transfer catalyst is (10-20):1
- the recovery rate of the positive electrode material powder and aluminum foil of the present invention can reach 99.9%
- the impurity aluminum content in the obtained positive electrode material powder is less than 0.03 %.
- Example 9 Comparing Example 9 and Comparative Example 1 It can be seen that after changing alkali washing to acid washing during the treatment process, the impurity aluminum content in the final cathode material powder will increase significantly.
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Primary Cells (AREA)
Abstract
本发明公开了一种处理废旧锂电池正极片的方法及应用,该方法包括以下步骤:(1)将废旧锂电池正极片进行破碎、筛分,得到筛上物和筛下物,所述筛上物为正极片碎料,所述筛下物为正极材料粉;(2)对所述正极片碎料进行烘焙、钝化、碱洗、筛分、脱水,烘干得到铝箔碎料和正极材料洗液;(3)将所述正极材料洗液压滤后制浆浸出。该方法能将废旧锂电池正极片中铝箔与正极材料分离后再利用。
Description
本发明属于废旧锂离子电池的回收技术领域,特别涉及一种处理废旧锂电池正极片的方法及应用。
锂离子电池是一种环保型的可循环使用电池,具有能量密度高、重量轻、体积小、循环寿命长、无记忆性等特点,在通讯、医疗、交通、航天、储能等领域都有着广泛的应用。锂离子电池由正负极片、电解液、隔膜纸和外壳组成,其中正极片中含有镍钴锰正极材料,是锂电池核心组成部分。近年来,随着锂离子电池市场需求的稳定增长,锂离子电池产能不断扩大,生产和使用过程中出现了大批废旧锂电池极片,它是一种含钴、镍较高的工业垃圾品,如果处理不当不仅会造成资源的浪费,还会造成环境污染。因此,回收废旧极片对减少环境污染、缓解钴、镍资源匮乏具有重要意义。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种处理废旧锂电池正极片的方法及应用,该方法能将废旧锂电池正极片中铝箔与正极材料分离后再利用。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种处理废旧锂电池正极片的方法,包括以下步骤:
(1)将废旧锂电池正极片进行破碎、筛分,得到筛上物和筛下物,所述筛上物为正极片碎料,所述筛下物为正极材料粉;
(2)对所述正极片碎料进行烘焙、钝化、碱洗、筛分、脱水,烘干得到铝箔碎料和正极材料洗液;
(3)将所述正极材料洗液压滤后制浆浸出。
优选的,步骤(1)中,所述破碎为在保护气氛下进行破碎。
优选的,所述保护气氛为氮气或二氧化碳中的至少一种。
优选的,步骤(1)中所述筛分所用到的筛网目数为50-100目。
进一步优选的,步骤(1)中所述筛分所用到的筛网目数为60-80目。
优选的,步骤(2)中所述烘焙的温度为100-150℃。
进一步优选的,步骤(2)中所述烘焙的温度为110-130℃。
优选的,步骤(2)中,所述钝化是使用氧化剂对所述正极片碎料进行氧化钝化。
优选的,所述氧化剂为过氧化氢。
优选的,所述过氧化氢的浓度为5%-10%,所述过氧化氢与所述正极片碎料的液固比mL/g为(2-30):1,反应时间为15-60min。
进一步优选的,所述过氧化氢的浓度为7%-9%,所述过氧化氢与所述正极片碎料的液固比mL/g为(15-20):1,反应时间为20-45min。
优选的,所述碱洗使用的碱洗液为氢氧化钠溶液、氢氧化钾溶液、氢氧化钡溶液及氢氧化钙溶液中的至少一种。
优选的,所述碱洗液的浓度为0.5-5mol/L。
进一步优选的,所述碱洗液的浓度为1-3mol/L。
优选的,所述碱洗液与所述正极材料的液固比mL/g为(5-10):1。
进一步优选的,所述碱洗液与所述正极材料的液固比mL/g为(6-9):1。
优选的,步骤(2)中,所述碱洗还包括在使用的碱洗液中添加相转移催化剂。
优选的,所述碱洗液与所述相转移催化剂的液固比mL/g为(5-30):1。
进一步优选的,所述碱洗液与所述相转移催化剂的液固比mL/g为(10-20):1。
优选的,所述相转移催化剂为链状聚乙二醇、链状聚乙二醇二烷基醚、苄基三乙基氯化铵、四丁基溴化铵、四丁基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵、十四烷基三甲基氯化铵、18-冠-6、15-冠-5、环糊精中的至少一种。
优选的,步骤(2)中,所述碱洗过程还配合超声波进行清洗。优选的,所述超声波的超声频率为30-120KHz,超声时间为30-120min。
进一步优选的,所述超声波的超声频率为50-90KHz,超声时间为30-60min。
优选的,步骤(2)中,所述碱洗过程中还配合搅拌,所述搅拌转速为200-800r/min。优选的,步骤(2)中,所述筛分所用到的筛网目数为30-80目。进一步优选的,步骤(2)中,所述筛分所用到的筛网目数为50-60目。
优选的,步骤(2)中,所述脱水可采用离心机进行脱水,脱水时离心机的转速为700-960r/min。
进一步优选的,步骤(2)中,所述脱水可采用离心机进行脱水,脱水时离心机的转速为800-900r/min。
优选的,步骤(2)中,所述烘干的温度为80-150℃。进一步优选的,步骤(2)中,所述烘干的温度为90-120℃。
优选的,步骤(3)中,压滤的压力强度为2-8MPa。进一步优选的,步骤(3)中,压滤的压力强度为5-6MPa。
如上所述的方法在废旧电池回收中的应用。
本发明的有益效果是:
(1)本发明是利用强碱降解PVDF从而分离铝箔与正极材料,具体是通过强碱的氢氧根进攻PVDF分子链β碳上的氢原子,同时氟原子离去形成双键,双键在强碱环境下继续被氧化,在轭多烯碳链上形成了羟基与羰基,最后在分子链上形成了不饱和酮结构,达到破坏PVDF改变其性质的目的。因为PVDF的碱降解大都发生在碱性环境中,参加反应的物质分别处于两相(固相-液相),因此碱降解反应仅仅发生在表层的高分子链上,对于这种两相界面反应,界层的性质较大影响反应的进行,因此通过加入相转移催化剂达到加速降解反应的目的。为保证碱洗过程中氢气产生量较少,因此通过过氧化氢处理破碎正极片,让铝箔表面生成致密的氧化膜使其钝化,防止碱与铝箔反应产生氢气,提高了工业生产的安全。
反应方程式(氢氧根与PVDF分子反应):
(2)本发明与现有的处理废旧锂电池正极片方法相比,目前处理废旧锂电池正极片的主要方法,多使用高温热解的方法,本方法采用低温热处理废旧锂电池正极片,相比高温热解处理,本方法所需能耗较低;高温热解中会产生较多废气,本方法采用低温热处理基本不产生废气,相较与高温热解处理本方法更节能和环保。
(3)本发明通过将废旧锂电池正极片的正极材料与铝箔分离,得到正极材料,其工艺简单,易于工业化生产,同时对废旧锂电池正极片的正极材料进行高效化回收再用,既可以解决废旧锂电池正极片的污染问题,又能回收废旧锂电池正极片的正极材料,为锂电池制造提供原料,实现了废旧锂离子电池正极片的资源化再利用。
图1为本发明工艺流程图;
图2为本发明实施例1的正极片碎料示意图;
图3为本发明实施例1中得到的铝箔碎料的示意图。
下面结合具体实施例对本发明做进一步的说明。
实施例1:
如图1所示,一种处理废旧锂电池正极片的方法,包括以下步骤:
(1)在氮气与二氧化碳保护下,将1kg废旧锂电池正极片破碎至2cm、通过60目圆振筛进行筛分,得到筛上物和筛下物,筛上物为正极片碎料,筛下物为正极材料粉,正极片碎料如图2所示;
(2)将正极片碎料在温度为120℃下,烘焙60min;向热处理后的正极片碎料中,先加入液固比mL/g为2:1的10%过氧化氢,搅拌15min使烘焙后的正极片碎料中的铝箔充分氧化钝化,再加入液固比mL/g为10:1、5mol/L的氢氧化钠溶液,再加入苄基三乙基氯化铵,其中氢氧化钠溶液与苄基三乙基氯化铵的液固比mL/g为30:1,以400r/min搅拌均匀后60KHz超声碱洗60min;再用振动水筛清洗筛分碱洗后的铝箔,振动水筛清洗筛的筛网目数为30目,洗掉铝箔上残余的碱与正极材料;然后进行离心脱水,脱水时离心机的转速为700r/min,最后100℃烘干得到铝箔碎料并收集冲洗后得到的正极材料洗液,铝箔碎料如图3所示;
(3)将正极材料洗液压滤后制浆浸出,其中压滤的压力强度为2MPa。
其中未使用的锂电池正极片(全新)中铝箔重量约占正极片重量的14%,以以下公式分别计算正极材料粉及铝箔的回收率:W1=M2/(M0-M1)%;W2=(M1/0.14M0)%,其中M2为烘干正极材料粉重量,M0为原料重量,M1为烘干铝箔重量,W1为正极材料粉收率,W2为铝箔收率。
计算得的正极材料粉的回收率为99.5%,杂质铝含量为0.2%。铝箔的回收率为99.7%。
实施例2:
一种处理废旧锂电池正极片的方法,包括以下步骤:
(1)在氮气与二氧化碳保护下,将1kg废旧锂电池正极片破碎至2cm、通过80目圆振筛进行筛分,得到筛上物和筛下物,筛上物为正极片碎料,筛下物为正极材料粉;
(2)将正极片碎料在温度为150℃下,烘焙60min;再向热处理后的正极片碎料中,先加入液固比mL/g为10:1的5%过氧化氢,搅拌30min使烘焙后的正极片碎料中的铝箔充分氧化钝化,再加入液固比mL/g为10:1、0.5mol/L的氢氧化钠溶液,再加入苄基三乙基氯化铵,其中氢氧化钠溶液与苄基三乙基氯化铵的液固比mL/g为20:1,以400r/min搅拌均匀后60KHz超声碱洗30min;再用振动水筛清洗筛分碱洗后的铝箔,振动水筛清洗筛的筛网目数为80目,洗掉铝箔上残余的碱正极材料;然后进行脱水,脱水时离心机的转速为960r/min,最后100℃烘干得到铝箔碎料并收集冲洗后得到的正极材料洗液;
(3)将正极材料洗液压滤后制浆浸出,其中压滤的压力强度为8MPa。
正极材料粉的回收率为99.6%,杂质铝含量为0.12%。铝箔的回收率为99.5%。
实施例3:
一种处理废旧锂电池正极片的方法,包括以下步骤:
(1)在氮气与二氧化碳保护下,将1kg废旧锂电池正极片破碎至2cm、通过80目圆振筛进行筛分,得到筛上物和筛下物,筛上物为正极片碎料,筛下物为正极材料粉;
(2)将正极片碎料在温度为150℃下,烘焙60min;再向热处理后的正极片碎料中,先加入液固比mL/g为10:1的10%过氧化氢,搅拌60min使烘焙后的正极片碎料中的铝箔充分氧化钝化,再加入液固比mL/g为10:1、5mol/L的氢氧化钙溶液,再加入四丁基溴化铵,其中氢氧化钙溶液与四丁基溴化铵的液固比mL/g为10:1,以400r/min搅拌均匀后60KHz超声碱洗30min;再用振动水筛清洗筛分碱洗后的铝箔,振动水筛清洗筛的筛网目数为50目,洗掉铝箔上残余的碱正极材料;然后进行脱水,脱水时离心机的转速为800r/min,最后100℃烘干得到铝箔碎料并收集冲洗后得到的正极材料洗液;
(3)将正极材料洗液压滤后制浆浸出,其中压滤的压力强度为5MPa。
正极材料粉的回收率为99.7%,杂质铝含量为0.15%。铝箔的回收率为99.5%。
实施例4:
一种处理废旧锂电池正极片的方法,包括以下步骤:
(1)在氮气与二氧化碳保护下,将1kg废旧锂电池正极片破碎至2cm、通过80目圆振筛进行筛分,得到筛上物和筛下物,筛上物为正极片碎料,筛下物为正极材料粉;
(2)将正极片碎料在温度为150℃下,烘焙60min;再向热处理后的正极片碎料中,先加入液固比mL/g为15:1的5%过氧化氢,搅拌30min使烘焙后的正极片碎料中的铝箔充分氧化钝化,再加入液固比mL/g为5:1、0.5mol/L的氢氧化钙溶液,再加入四丁基溴化铵,其中氢氧化钙溶液与四丁基溴化铵的液固比mL/g为10:1,以400r/min搅拌均匀后60KHz超声碱洗60min;再用振动水筛清洗筛分碱洗后的铝箔,振动水筛清洗筛的筛网目数为60目,洗掉铝箔上残余的碱正极材料;然后进行脱水,脱水时离心机的转速为900r/min,最后100℃烘干得到铝箔碎料并收集冲洗后得到的正极材料洗液;
(3)将正极材料洗液压滤后制浆浸出,其中压滤的压力强度为6MPa。
正极材料粉的回收率为99.5%,杂质铝含量为0.08%。铝箔的回收率为99.6%。
实施例5:
一种处理废旧锂电池正极片的方法,包括以下步骤:
(1)在氮气与二氧化碳保护下,将1kg废旧锂电池正极片破碎至2cm、通过80目圆振筛进行筛分,得到筛上物和筛下物,筛上物为正极片碎料,筛下物为正极材料粉;
(2)将正极片碎料在温度为120℃下,烘焙60min;再向热处理后的正极片碎料中,先加入液固比mL/g为15:1的5%过氧化氢,搅拌30min使烘焙后的正极片碎料中的铝箔充分氧化钝化,再加入液固比mL/g为5:1、5mol/L的氢氧化钾溶液,再加入四丁基溴化铵,其中氢氧化钾溶液与四丁基溴化铵的液固比mL/g为10:1,以600r/min搅拌均匀后60KHz超声碱洗60min;再用振动水筛清洗筛分碱洗后的铝箔,振动水筛清洗筛的筛网目数为60目,洗掉铝箔上残余的碱正极材料;然后进行脱水,脱水时离心机的转速为850r/min,最后100℃烘干得到铝箔碎料并收集冲洗后得到的正极材料洗液;
(3)将正极材料洗液压滤后制浆浸出,其中压滤的压力强度为5.5MPa。
正极材料粉的回收率为99.7%,杂质铝含量为0.06%。铝箔的回收率为99.7%。
实施例6:
一种处理废旧锂电池正极片的方法,包括以下步骤:
(1)在氮气与二氧化碳保护下,将1kg废旧锂电池正极片破碎至2cm、通过80目圆振筛进行筛分,得到筛上物和筛下物,筛上物为正极片碎料,筛下物为正极材料粉;
(2)将正极片碎料在温度为150℃下,烘焙60min;再向热处理后的正极片碎料中,先加入液固比mL/g为20:1的5%过氧化氢,搅拌30min使烘焙后的正极片碎料中的铝箔充分氧化钝化,再加入液固比mL/g为10:1、5mol/L的氢氧化钾溶液,再加入四丁基溴化铵,其中氢氧化钾溶液与四丁基溴化铵的液固比mL/g为15:1,以400r/min搅拌均匀后60KHz超声碱洗60min;再用振动水筛清洗筛分碱洗后的铝箔,振动水筛清洗筛的筛网目数为60目,洗掉铝箔上残余的碱正极材料;然后进行脱水,脱水时离心机的转速为850r/min,最后100℃烘干得到铝箔碎料并收集冲洗后得到的正极材料洗液;
(3)将正极材料洗液压滤后制浆浸出,其中压滤的压力强度为5.5MPa。
正极材料粉的回收率为99.6%,杂质铝含量为0.16%。铝箔的回收率为99.4%。
实施例7:
一种处理废旧锂电池正极片的方法,包括以下步骤:
(1)在氮气与二氧化碳保护下,将1kg废旧锂电池正极片破碎至2cm、通过70目圆振筛进行筛分,得到筛上物和筛下物,筛上物为正极片碎料,筛下物为正极材料粉;
(2)将正极片碎料在温度为120℃下,烘焙60min;再向热处理后的正极片碎料中,先加入液固比mL/g为18:1的8%过氧化氢,搅拌30min使烘焙后的正极片碎料中的铝箔充分氧化钝化,再加入液固比mL/g为8:1、2mol/L的氢氧化钾溶液,再加入四丁基溴化铵,其中氢氧化钾溶液与四丁基溴化铵的液固比mL/g为15:1,以400r/min搅拌均匀后60KHz超声碱洗60min;再用振动水筛清洗筛分碱洗后的铝箔,振动水筛清洗筛的筛网目数为60目,洗 掉铝箔上残余的碱正极材料;然后进行脱水,脱水时离心机的转速为850r/min,最后110℃烘干得到铝箔碎料并收集冲洗后得到的正极材料洗液;
(3)将正极材料洗液压滤后制浆浸出,其中压滤的压力强度为5.5MPa。
正极材料粉的回收率为99.9%,杂质铝含量为0.032%。铝箔的回收率为99.9%。
实施例8:
一种处理废旧锂电池正极片的方法,包括以下步骤:
(1)在氮气与二氧化碳保护下,将1kg废旧锂电池正极片破碎至2cm、通过60目圆振筛进行筛分,得到筛上物和筛下物,筛上物为正极片碎料,筛下物为正极材料粉;
(2)将正极片碎料在温度为110℃下,烘焙60min;再向热处理后的正极片碎料中,先加入液固比mL/g为15:1的7%过氧化氢,搅拌20min使烘焙后的正极片碎料中的铝箔充分氧化钝化,再加入液固比mL/g为6:1、1mol/L的氢氧化钾溶液,再加入四丁基溴化铵,其中氢氧化钾溶液与四丁基溴化铵的液固比mL/g为10:1,以400r/min搅拌均匀后60KHz超声碱洗60min;再用振动水筛清洗筛分碱洗后的铝箔,振动水筛清洗筛的筛网目数为60目,洗掉铝箔上残余的碱正极材料;然后进行脱水,脱水时离心机的转速为800r/min,最后90℃烘干得到铝箔碎料并收集冲洗后得到的正极材料洗液;
(3)将正极材料洗液压滤后制浆浸出,其中压滤的压力强度为5MPa。
正极材料粉的回收率为99.9%,杂质铝含量约为0.035%。铝箔的回收率为99.9%。
实施例9:
一种处理废旧锂电池正极片的方法,包括以下步骤:
(1)在氮气与二氧化碳保护下,将1kg废旧锂电池正极片破碎至2cm、通过80目圆振筛进行筛分,得到筛上物和筛下物,筛上物为正极片碎料,筛下物为正极材料粉;
(2)将正极片碎料在温度为130℃下,烘焙60min;再向热处理后的正极片碎料中,先加入液固比mL/g为20:1的9%过氧化氢,搅拌45min使烘焙后的正极片碎料中的铝箔充分氧化钝化,再加入液固比mL/g为9:1、3mol/L的氢氧化钾溶液,再加入四丁基溴化铵,其中氢氧化钾溶液与四丁基溴化铵的液固比mL/g为20:1,以400r/min搅拌均匀后60KHz超声碱洗60min;再用振动水筛清洗筛分碱洗后的铝箔,振动水筛清洗筛的筛网目数为60目,洗掉铝箔上残余的碱正极材料;然后进行脱水,脱水时离心机的转速为900r/min,最后120℃烘干得到铝箔碎料并收集冲洗后得到的正极材料洗液;
(3)将正极材料洗液压滤后制浆浸出,其中压滤的压力强度为6MPa。
正极材料粉的回收率为99.9%,杂质铝含量约为0.036%。铝箔的回收率为99.9%。
实施例10:(与实施例9相比处理过程中不加入相转移催化剂,其余步骤不变)
一种处理废旧锂电池正极片的方法,包括以下步骤:
(1)在氮气与二氧化碳保护下,将1kg废旧锂电池正极片破碎至2cm、通过80目圆振筛进行筛分,得到筛上物和筛下物,筛上物为正极片碎料,筛下物为正极材料粉;
(2)将正极片碎料在温度为130℃下,烘焙60min;再向热处理后的正极片碎料中,先加入液固比mL/g为20:1的9%过氧化氢,搅拌45min使烘焙后的正极片碎料中的铝箔充分氧化钝化,再加入液固比mL/g为9:1、3mol/L的氢氧化钾溶液,以400r/min搅拌均匀后60KHz超声碱洗60min;再用振动水筛清洗筛分碱洗后的铝箔,振动水筛清洗筛的筛网目数为60目,洗掉铝箔上残余的碱正极材料;然后进行脱水,脱水时离心机的转速为900r/min,最后120℃烘干得到铝箔碎料并收集冲洗后得到的正极材料洗液;
(3)将正极材料洗液压滤后制浆浸出,其中压滤的压力强度为6MPa。
正极材料粉的回收率为83%,杂质铝含量约为0.1%。铝箔的回收率为87%。
对比例1:(与实施例9相比处理过程中将碱洗改为酸洗,其余步骤不变)
一种处理废旧锂电池正极片的方法,包括以下步骤:
(1)在氮气与二氧化碳保护下,将1kg废旧锂电池正极片破碎至2cm、通过80目圆振筛进行筛分,得到筛上物和筛下物,筛上物为正极片碎料,筛下物为正极材料粉;
(2)将正极片碎料在温度为130℃下,烘焙60min;再向热处理后的正极片碎料中,先加入液固比mL/g为20:1的9%过氧化氢,搅拌45min使烘焙后的正极片碎料中的铝箔充分氧化钝化,再加入液固比mL/g为9:1、3mol/L的硫酸溶液,再加入四丁基溴化铵,其中硫酸溶液与四丁基溴化铵的液固比mL/g为20:1,以400r/min搅拌均匀后60KHz超声酸洗60min;再用振动水筛清洗筛分酸洗后的铝箔,振动水筛清洗筛的筛网目数为60目,洗掉铝箔上残余的酸正极材料;然后进行脱水,脱水时离心机的转速为900r/min,最后120℃烘干得到铝箔碎料并收集冲洗后得到的正极材料洗液;
(3)将正极材料洗液压滤后制浆浸出,其中压滤的压力强度为6MPa。
正极材料粉的回收率为94%,杂质铝含量约为33%。铝箔的回收率为75%。
综上所述,使用本发明所表述的方法通过过氧化氢处理正极片,让正极片铝箔表面生成致密的氧化膜使其钝化,防止碱与铝箔反应产生氢气,并且过氧化氢分解产生氧气起泡促进了正极材料与铝箔的分离,同时加入相转移催化剂促进氢氧根进攻PVDF分子链β碳上的氢原子,达到破坏PVDF改变其性质的目的。该发明不仅极大地减少了可燃气体氢气的产生,提高了工业生产的安全,同时降低了碱的消耗,并可以直接回收铝箔,提高分离工艺的同时也降低了回收的成本,对正极材料粉及铝箔的回收率均达到99%以上,且得到的正极材料粉中杂质铝含量小于0.2%,同时当本发明中使用的氧化剂过氧化氢的浓度为7%-9%,过氧化氢与正极片碎料的液固比mL/g为(15-20):1,反应时间为20-45min,碱洗液与正极材料的液 固比mL/g为(6-9):1且碱洗液与相转移催化剂的液固比mL/g为(10-20):1时,本发明对正极材料粉及铝箔的回收率均能达到99.9%,且得到的正极材料粉中杂质铝含量小于0.03%。
此外,对比实施例9与实施例10可知,当处理过程中不加入相转移催化剂时,最终得到的正极材料粉的回收率及铝箔的回收率均会大幅度下降;对比实施例9与对比例1可知,处理过程中将碱洗改为酸洗后,最终得到的正极材料粉中杂质铝含量会大幅度上升。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
- 一种处理废旧锂电池正极片的方法,其特征在于:包括以下步骤:(1)将废旧锂电池正极片进行破碎、筛分,得到筛上物和筛下物,所述筛上物为正极片碎料,所述筛下物为正极材料粉;(2)对所述正极片碎料进行烘焙、钝化、碱洗、筛分、脱水,烘干得到铝箔碎料和正极材料洗液;(3)将所述正极材料洗液压滤后制浆浸出。
- 根据权利要求1所述的一种处理废旧锂电池正极片的方法,其特征在于:步骤(1)中,所述破碎为在保护气氛下进行破碎。
- 根据权利要求1所述的一种处理废旧锂电池正极片的方法,其特征在于:步骤(2)中,所述钝化是使用氧化剂对所述正极片碎料进行氧化钝化。
- 根据权利要求1所述的一种处理废旧锂电池正极片的方法,其特征在于:所述碱洗使用的碱洗液为氢氧化钠溶液、氢氧化钾溶液、氢氧化钡溶液及氢氧化钙溶液中的至少一种。
- 根据权利要求4所述的一种处理废旧锂电池正极片的方法,其特征在于:所述碱洗液的浓度为0.5-5mol/L。
- 根据权利要求4所述的一种处理废旧锂电池正极片的方法,其特征在于:所述碱洗液与所述正极材料的液固比mL/g为(5-10):1。
- 根据权利要求1所述的一种处理废旧锂电池正极片的方法,其特征在于:步骤(2)中,所述碱洗还包括在使用的碱洗液中添加相转移催化剂。
- 根据权利要求7所述的一种处理废旧锂电池正极片的方法,其特征在于:所述相转移催化剂为链状聚乙二醇、链状聚乙二醇二烷基醚、苄基三乙基氯化铵、四丁基溴化铵、四丁基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵、十四烷基三甲基氯化铵、18-冠-6、15-冠-5、环糊精中的至少一种。
- 根据权利要求1所述的一种处理废旧锂电池正极片的方法,其特征在于:步骤(2)中,所述碱洗过程还配合超声波进行清洗。
- 权利要求1-9任一项所述的方法在废旧电池回收中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210943179.9 | 2022-08-08 | ||
CN202210943179.9A CN115332661A (zh) | 2022-08-08 | 2022-08-08 | 一种处理废旧锂电池正极片的方法及应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024031790A1 true WO2024031790A1 (zh) | 2024-02-15 |
Family
ID=83921970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/120359 WO2024031790A1 (zh) | 2022-08-08 | 2022-09-21 | 一种处理废旧锂电池正极片的方法及应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115332661A (zh) |
WO (1) | WO2024031790A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118248979A (zh) * | 2024-04-12 | 2024-06-25 | 江苏天能新材料有限公司 | 废旧锂离子电池中分离正极材料的方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103261455A (zh) * | 2010-12-14 | 2013-08-21 | 住友金属矿山株式会社 | 正极活性物质的分离方法和从锂离子电池中回收有价金属的方法 |
JP2014199777A (ja) * | 2013-03-29 | 2014-10-23 | Jx日鉱日石金属株式会社 | リチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法 |
JP2014199776A (ja) * | 2013-03-29 | 2014-10-23 | Jx日鉱日石金属株式会社 | リチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法 |
CN105098280A (zh) * | 2015-08-28 | 2015-11-25 | 郭建 | 一种从废旧锂离子电池中回收集流体的方法 |
CN108711651A (zh) * | 2018-05-23 | 2018-10-26 | 荆门市格林美新材料有限公司 | 一种废旧电池的资源化回收利用工艺和系统 |
CN110289456A (zh) * | 2019-05-05 | 2019-09-27 | 江苏大学 | 一种无害化回收废旧动力锂电正/负极极片的方法 |
CN112397803A (zh) * | 2020-11-27 | 2021-02-23 | 唐山学院 | 一种从锂电池正极回收正极材料的方法 |
-
2022
- 2022-08-08 CN CN202210943179.9A patent/CN115332661A/zh active Pending
- 2022-09-21 WO PCT/CN2022/120359 patent/WO2024031790A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103261455A (zh) * | 2010-12-14 | 2013-08-21 | 住友金属矿山株式会社 | 正极活性物质的分离方法和从锂离子电池中回收有价金属的方法 |
JP2014199777A (ja) * | 2013-03-29 | 2014-10-23 | Jx日鉱日石金属株式会社 | リチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法 |
JP2014199776A (ja) * | 2013-03-29 | 2014-10-23 | Jx日鉱日石金属株式会社 | リチウムイオン電池用正極材から集電体及び正極活物質を分離回収する方法 |
CN105098280A (zh) * | 2015-08-28 | 2015-11-25 | 郭建 | 一种从废旧锂离子电池中回收集流体的方法 |
CN108711651A (zh) * | 2018-05-23 | 2018-10-26 | 荆门市格林美新材料有限公司 | 一种废旧电池的资源化回收利用工艺和系统 |
CN110289456A (zh) * | 2019-05-05 | 2019-09-27 | 江苏大学 | 一种无害化回收废旧动力锂电正/负极极片的方法 |
CN112397803A (zh) * | 2020-11-27 | 2021-02-23 | 唐山学院 | 一种从锂电池正极回收正极材料的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115332661A (zh) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111439748B (zh) | 再生石墨材料及其制备方法 | |
CN109437172A (zh) | 一种钠离子插层Ti3C2 MXene材料及其制备方法 | |
CN113072052B (zh) | 一种废磷酸铁锂补锂修复方法和应用 | |
WO2022052497A1 (zh) | 一种处理废旧锂电池隔膜纸的方法 | |
WO2022134423A1 (zh) | 一种动力电池逆向定位制备镍钴锰酸锂的方法和应用 | |
WO2024031790A1 (zh) | 一种处理废旧锂电池正极片的方法及应用 | |
CN105870533B (zh) | 回收锂离子电池正极边角料的方法 | |
WO2020103140A1 (zh) | 基于生物质的钠离子电池硬碳负极材料及其制备方法和应用 | |
CN105355996A (zh) | 一种从废锂电池负极材料中分离锂和石墨并资源化利用的方法 | |
CN105895854A (zh) | 锂离子电池正极边角料的回收方法 | |
CN113651320A (zh) | 一种回收废旧锂离子电池负极石墨材料制备氮掺杂多孔还原氧化石墨烯的方法 | |
CN110444830B (zh) | 一种废旧锂离子电池负极和隔膜的联合处理方法 | |
CN113421775B (zh) | 一种NiO@CoMoO4/NF电容电极的制备方法 | |
WO2023050801A1 (zh) | 三元材料微粉回收处理的方法及其应用 | |
CN106058182B (zh) | 一种倍率性能良好的钛酸锂/聚苯胺复合材料的制备方法 | |
CN109768344A (zh) | 一种废旧磷酸铁锂电池的正极极片的分离方法 | |
CN111252757A (zh) | 利用废旧锂离子动力电池制备石墨烯的方法 | |
CN110190351A (zh) | 一种废钴酸锂电极材料的再生方法 | |
CN109449007A (zh) | 一种用于超级电容器电极的硫、氮共掺杂薄纳米碳片的制备方法 | |
CN107706003A (zh) | 一种水热法制备石墨烯/CaTi2O4(OH)2复合粉体的方法及其制得的产品 | |
CN108987839B (zh) | 一种对锂电池正极失效钴酸锂结构重整修复的方法 | |
CN113200541A (zh) | 一种回收废旧电池石墨负极的方法 | |
CN117477083A (zh) | 废旧锂离子电池石墨负极材料的回收再生方法及其应用 | |
CN114835109B (zh) | 一种废锂电池石墨负极的绿色回收利用方法及石墨烯 | |
WO2022083090A1 (zh) | 一种废轮胎裂解炭黑除杂改性的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22954736 Country of ref document: EP Kind code of ref document: A1 |