WO2022052497A1 - 一种处理废旧锂电池隔膜纸的方法 - Google Patents

一种处理废旧锂电池隔膜纸的方法 Download PDF

Info

Publication number
WO2022052497A1
WO2022052497A1 PCT/CN2021/093183 CN2021093183W WO2022052497A1 WO 2022052497 A1 WO2022052497 A1 WO 2022052497A1 CN 2021093183 W CN2021093183 W CN 2021093183W WO 2022052497 A1 WO2022052497 A1 WO 2022052497A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
pickling
copper
separator paper
speed
Prior art date
Application number
PCT/CN2021/093183
Other languages
English (en)
French (fr)
Inventor
蔡海兵
李强
李长东
陈若葵
陈嵩
Original Assignee
湖南邦普循环科技有限公司
广东邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南邦普循环科技有限公司, 广东邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 湖南邦普循环科技有限公司
Priority to US18/043,881 priority Critical patent/US11870095B2/en
Priority to EP21865558.7A priority patent/EP4199184A4/en
Publication of WO2022052497A1 publication Critical patent/WO2022052497A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/30Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/30Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
    • B09B3/35Shredding, crushing or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/52Reclaiming serviceable parts of waste cells or batteries, e.g. recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/15Electronic waste
    • B09B2101/16Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to the field of waste lithium battery recycling, in particular to a method for processing waste lithium battery separator paper.
  • Lithium battery is a kind of chemical battery that relies on lithium ions to shuttle between the positive and negative electrodes to achieve the purpose of charging and discharging. It has the advantages of high energy density, high working voltage, long cycle life, large charge and discharge rate, etc.
  • the main components of a lithium-ion battery include positive electrode, negative electrode, casing, electrolyte and separator paper. A large amount of valuable metals are still left in the recovered separator paper in the existing dry process to treat waste lithium batteries, which will cause serious environmental pollution and waste of resources if not utilized.
  • the most commonly used method for treating diaphragm paper is the incineration method, which has high energy consumption, long process and low metal recovery rate.
  • the incineration method is used to treat the separator paper.
  • the residual metal aluminum of the positive current collector is very easy to melt during the heat treatment process due to its low melting point, and it will penetrate into the battery powder, making the separation of valuable metals difficult, which is not conducive to industrial production.
  • the incineration method cannot recycle the separator paper, resulting in a waste of resources.
  • the purpose of the present invention is to provide a method for treating waste lithium battery separator paper, which combines physical and chemical methods and can meet the industrial production requirements of environmental friendliness, low energy consumption, and high resource recovery.
  • the present invention adopts the following technical solutions:
  • a method for processing waste lithium battery separator paper comprising the following steps:
  • the size of the crushed material after shearing and crushing is 1-3 mm.
  • the speed of the air separation is 2-3 m/s.
  • step (1) it also includes putting the copper-aluminum mixture into an eddy current separator for sorting to obtain metallic copper and metallic aluminum.
  • the rotor speed of the eddy current separator is 20-40Hz
  • the belt speed is 10-15Hz
  • the feeding speed is 30%-40% of the processing capacity of the eddy current separator per unit time.
  • the stirring speed of the flotation machine is 200-400 r/min, and the scraper speed of the flotation machine is 40-80 r/min.
  • the battery powder is made into a slurry with a mass concentration of 30-35%.
  • the specific operation steps of the wet leaching are: making the battery powder into a slurry and adding it to a pickling solution for pickling, then adding a reducing agent to carry out reduction leaching, and adjusting the pH to acidity to obtain Leachate.
  • the pickling solution is sulfuric acid; the reducing agent is one of hydrogen peroxide or sodium sulfite; and the pH adjustment is to adjust the pH to 1.5-2.0.
  • the pickling solution used in the pickling is 0.5-1.5 mol/L sulfuric acid.
  • the mass ratio of the diaphragm paper to the pickling solution is 1:(5-10).
  • the rotation speed of the pickling is 200-400 r/min, and the pickling time is 10-30 min.
  • the mesh number of the filter screen used in the filtering process is 60-100 mesh; the drying process uses a centrifuge, and the rotating speed of the centrifuge is 4000-5000 r/min.
  • both the pickled pickling solution and the spin-dried pickling solution can be used for wet leaching of battery slurry.
  • the separator paper obtained in step (4) can be used for plastic granulation.
  • the invention uses the method of combining physics and chemistry to process the diaphragm paper, firstly, the waste diaphragm paper is sheared and crushed, and then air-sorted to obtain light material and heavy material; the light material diaphragm paper and battery powder are floated and separated.
  • the method of the invention uses a combination of physics and chemistry to process the separator paper, effectively recovers the valuable metals in the waste lithium battery separator paper, and the recovered separator paper can be reused in the lithium battery, which satisfies the requirements of environmental friendliness, low energy consumption and resources. High recycling demand for industrial production.
  • FIG. 1 is a process flow diagram of Embodiment 1 of the present invention.
  • a method for processing waste lithium battery separator paper comprising the following steps:
  • the battery powder is made into pulp, and then the battery powder is made into a slurry and then added to sulfuric acid for pickling, and then hydrogen peroxide is added for reduction leaching, and the pH is adjusted to 1.5 to obtain a leachate, and the diaphragm paper is used 0.5mol/L Dilute sulfuric acid for pickling, the mass ratio of diaphragm paper and pickling solution is 1:10, the rotation speed is 200r/min, the pickling time is 10min, filtered with a 60-mesh linear sieve, and the horizontal screw unloading with a rotation speed of 5000r/min is used. The material is centrifuged and dried to obtain diaphragm paper.
  • the separator paper, metal copper, metal aluminum and battery powder slurry are obtained through the above steps, wherein the content of each metal in the separator paper: copper 0.12%, aluminum 0.26%, nickel 0.14%, cobalt 0.23%; the metal content of the metal copper: Copper 98.22%, aluminum 0.68%, nickel 0.32%, cobalt 0.51%; each metal content in metal aluminum: copper 4.86%, aluminum 90.93%, nickel 0.82%, cobalt 1.33%; battery powder slurry impurity content detection: copper 1.05% , aluminum 0.84%, nickel 15.22%, cobalt 21.08%.
  • Separator paper, metal copper and metal aluminum can be sold directly, and valuable metals can be recovered by wet leaching of battery powder slurry. The separation rate of metal copper and metal aluminum is 92.3%.
  • a method for processing waste lithium battery separator paper comprising the following steps:
  • the battery powder is made into pulp, and then the battery powder is made into a slurry and then added to sulfuric acid for pickling, and then hydrogen peroxide is added for reduction leaching, and the pH is adjusted to 1.5 to obtain a leachate, and the diaphragm paper is used 1.0mol/L.
  • the material is centrifuged and dried to obtain diaphragm paper.
  • the separator paper, metal copper, metal aluminum and battery powder slurry are obtained through the above steps, wherein the content of each metal in the separator paper: copper 0.11%, aluminum 0.22%, nickel 0.12%, cobalt 0.13%; the metal content in the metal copper: Copper 98.26%, aluminum 0.78%, nickel 0.36%, cobalt 0.41%; each metal content in metal aluminum: copper 3.86%, aluminum 92.93%, nickel 0.82%, cobalt 1.23%; battery powder slurry impurity content detection: copper 1.15% , aluminum 0.74%, nickel 16.21%, cobalt 20.32%.
  • Separator paper, metal copper and metal aluminum can be sold directly, and valuable metals can be recovered by wet leaching of battery powder slurry. The separation rate of metal copper and metal aluminum is 94.3%.
  • a method for processing waste lithium battery separator paper comprising the following steps:
  • the battery powder is made into pulp, and then the battery powder is made into a slurry and then added to sulfuric acid for pickling, and then hydrogen peroxide is added for reduction leaching, and the pH is adjusted to 1.5 to obtain the leaching solution, and the diaphragm paper is used 1.5mol/L
  • Dilute sulfuric acid for pickling the mass ratio of diaphragm paper and pickling solution is 1:5, the rotation speed is 300r/min, the pickling time is 30min, filtered with a 100-mesh linear sieve, and a horizontal screw discharger with a rotation speed of 4000r/min is used.
  • the material is centrifuged and dried to obtain diaphragm paper.
  • the separator paper, metal copper, metal aluminum and battery powder slurry are obtained through the above steps, wherein the content of each metal in the separator paper: copper 0.11%, aluminum 0.32%, nickel 0.12%, cobalt 0.08%; the metal content in the metal copper: Copper 98.66%, aluminum 0.68%, nickel 0.46%, cobalt 0.39%; content of each metal in metal aluminum: copper 3.46%, aluminum 93.13%, nickel 0.62%, cobalt 0.73%; battery powder slurry impurity content detection: copper 0.98% , aluminum 0.76%, nickel 16.02%, cobalt 20.58%.
  • Separator paper, metal copper and metal aluminum can be sold directly, and valuable metals can be recovered by wet leaching of battery powder slurry. The separation rate of metal copper and metal aluminum is 94.83%.
  • the content of valuable metals in the diaphragm paper treated by the method of the present invention is very small, which can be used for the granulation of plastics, and the current treatment methods of the diaphragm paper are all through incineration, which wastes resources.
  • the recovery rate of metal copper can reach more than 98.2%
  • the recovery rate of metal aluminum can reach more than 90.9%
  • the battery powder slurry can be recovered by wet leaching, and the nickel, cobalt, and manganese can be reused as battery cathode materials. preparation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Primary Cells (AREA)

Abstract

一种处理废旧锂电池隔膜纸的方法,包括以下步骤:(1)将废旧隔膜纸进行剪切破碎,再进行气流分选,得到轻料和铜铝混合料;(2)将轻料投入浮选机内进行分选,得到隔膜纸和电池粉料;(3)将电池粉料制浆,再进行湿法浸出,将隔膜纸进行酸洗,再过滤,甩干,得到隔膜纸。该方法利用物理与化学相结合的方法处理隔膜纸,有效回收了废旧锂电池隔膜纸中的有价金属,满足了环境友好,低能耗,资源高回收的工业生产需求。

Description

一种处理废旧锂电池隔膜纸的方法 技术领域
本发明涉及废旧锂电池回收领域,特别是涉及一种处理废旧锂电池隔膜纸的方法。
背景技术
锂电池是一类依靠锂离子在正负极之间穿梭来达到充电、放电目的的化学电池,具有高能量密度、高工作电压、长循环寿命、大充放电倍率等优势,被广泛应用于新能源汽车、3C消费类产品以及储能电池领域,其中3C是指计算机、通讯和消费电子产品三类电子产品的简称。锂离子电池的主要组成部分包括正极、负极、外壳、电解液和隔膜纸。现有干法工艺处理废旧锂电池,回收的隔膜纸中仍残余大量的有价金属,若不加以利用会造成严重的环境污染以及资源浪费。
目前处理隔膜纸最常用的是焚烧法,该方法能耗高,流程长,金属回收率低。特别地,采用焚烧法处理隔膜纸,一方面残存的正极集流体金属铝由于熔点较低,热处理过程极易熔融,会渗入电池粉中,造成有价金属分离困难,不利于工业生产。另一方面,焚烧法无法回收隔膜纸,造成资源的浪费。
发明内容
本发明的目的在于提供一种处理废旧锂电池隔膜纸的方法,该方法结合物理与化学方法,能满足环境友好,低能耗,资源高回收的工业生产需求。
为实现上述目的,本发明采用以下技术方案:
一种处理废旧锂电池隔膜纸的方法,包括以下步骤:
(1)将废旧隔膜纸进行剪切破碎,再进行气流分选,得到轻料和铜铝混合料;
(2)将轻料投入浮选机内进行分选,得到隔膜纸和电池粉料;
(3)将电池粉料制浆,再进行湿法浸出,将隔膜纸进行酸洗,再过滤,甩干,得到隔膜纸。
优选地,步骤(1)中,所述剪切破碎后的破碎料的尺寸为1-3mm。
优选地,步骤(1)中,所述气流分选的速率为2-3m/s。
优选地,步骤(1)中,还包括将所述铜铝混合料投入涡电流分选机中进行分选,得到金属铜和金属铝。
更优选地,所述涡电流分选机的转子转速为20-40Hz,皮带转速为10-15Hz,给 料速度为涡电流分选机单位时间处理量的30%-40%。
优选地,步骤(2)中,所述浮选机的搅拌速度200-400r/min,浮选机的刮板速度40-80r/min。
优选地,步骤(3)中,所述将电池粉料制浆,是将电池粉料制得质量浓度为30-35%的浆体。
优选地,步骤(3)中,所述湿法浸出的具体操作步骤为:将电池粉制成浆料加入酸洗液中进行酸洗,再加入还原剂进行还原浸出,调节pH至酸性,得到浸出液。
更优选地,所述酸洗液为硫酸;所述还原剂为双氧水或亚硫酸钠中的一种;所述调pH至酸性是将pH调至1.5-2.0。
优选地,步骤(3)中,所述酸洗使用的酸洗液为0.5-1.5mol/L的硫酸。
优选地,步骤(3)中,所述将隔膜纸进行酸洗的过程中,隔膜纸和酸洗液的质量比为1:(5-10)。
优选地,步骤(3)中,所述酸洗的转速200-400r/min,酸洗的时间为10-30min。
优选地,步骤(3)中,所述过滤的过程使用的滤网的目数为60-100目;所述甩干的过程使用离心机,所述离心机的转速为4000-5000r/min。
更优选地,所述酸洗后的酸洗液和甩干出来的酸洗液都可用于电池浆料的湿法浸出。
优选地,步骤(4)中得到的隔膜纸可用于塑料造粒。
本发明的处理原理:
本发明利用物理与化学相结合的方法处理隔膜纸,先将废旧隔膜纸进行剪切式破碎,进行气流分选,得到轻料和重料;将轻料隔膜纸、电池粉进行浮选,分离得到电池粉浆料和隔膜纸;将重料铜铝混合料进行涡电流分选;将分选后的电池粉浆料用泵运送至湿法段处理,将分选后的隔膜纸进行酸洗,将酸洗后隔膜纸过滤并用离心机甩干,售出,用于塑料造粒;利用物理方法将隔膜纸中的金属铜与金属铝分离、隔膜纸与电池粉分离;再利用化学法将隔膜纸中粘附的有价金属镍钴锰分离,有效回收了废旧隔膜纸中的有价金属,生产过程中无三废产生,满足了环境友好,低能耗,资源高回收的工业生产需求。
本发明的优点:
本发明方法利用物理与化学相结合的方法处理隔膜纸,有效回收了废旧锂电池隔膜纸中的有价金属,回收的隔膜纸能再次用于锂电池中,满足了环境友好,低能耗, 资源高回收的工业生产需求。
附图说明
图1为本发明实施例1的工艺流程图。
具体实施方式
为了对本发明进行深入的理解,下面结合实例对本发明优选实验方案进行描述,以进一步的说明本发明的特点和优点,任何不偏离本发明主旨的变化或者改变能够为本领域的技术人员理解,本发明的保护范围由所属权利要求范围确定。
实施例1
一种处理废旧锂电池隔膜纸的方法,包括以下步骤:
(1)取金属含量为铜15.72%、铝8.26%、镍4.84%、钴8.92%的废旧隔膜纸,投入剪切式破碎机中进行破碎,破碎成大小为3mmx3mm的规则形状,再投入气流速度为2.2m/s的旋风分离器内,进行气流分选,分选得轻料和铜铝混合料;
(2)将铜铝混合料投入转子转速为40Hz、皮带转速为12Hz的涡电流分选机进行分选,得到金属铜和金属铝;
(3)将轻料投入搅拌速度为300r/min、刮板速度为50r/min的浮选机内进行分选,得到隔膜纸和电池粉料;
(4)将电池粉料制浆,再将电池粉制成浆料后加入硫酸中进行酸洗,再加入双氧水进行还原浸出,调节pH至1.5,得到浸出液,将隔膜纸用0.5mol/L的稀硫酸进行酸洗,隔膜纸和酸洗液的质量比为1:10,转速200r/min,酸洗的时间为10min,用60目直线筛过滤,用转速为5000r/min的卧式螺旋卸料离心机甩干,即得隔膜纸。
经上述步骤处理得到隔膜纸、金属铜、金属铝及电池粉浆料,其中隔膜纸中各金属含量:铜0.12%、铝0.26%、镍0.14%、钴0.23%;金属铜中各金属含量:铜98.22%、铝0.68%、镍0.32%、钴0.51%;金属铝中各金属含量:铜4.86%、铝90.93%、镍0.82%、钴1.33%;电池粉浆料杂质含量检测:铜1.05%、铝0.84%、镍15.22%、钴21.08%。隔膜纸、金属铜及金属铝可直接售出,电池粉浆料湿法浸出回收有价金属。金属铜与金属铝的分离率92.3%。
实施例2
一种处理废旧锂电池隔膜纸的方法,包括以下步骤:
(1)取金属含量为铜13.72%、铝8.86%、镍5.84%、钴7.92%的废旧隔膜纸,投入剪切式破碎机中进行破碎,破碎成大小为3mmx3mm的规则形状,再投入气流速 度为2.2m/s的旋风分离器内,进行气流分选,分选得轻料、铜铝混合料;
(2)将铜铝混合料投入转子转速为40Hz、皮带转速为12Hz的涡电流分选机进行分选,得到金属铜和金属铝;
(3)将轻料投入搅拌速度为400r/min、刮板速度为60r/min的浮选机内进行分选,得到隔膜纸和电池粉料;
(4)将电池粉料制浆,再将电池粉制成浆料后加入硫酸中进行酸洗,再加入双氧水进行还原浸出,调节pH至1.5,得到浸出液,将隔膜纸用1.0mol/L的稀硫酸进行酸洗,隔膜纸和酸洗液的质量比为1:10,转速300r/min,酸洗的时间为20min,用80目直线筛过滤,用转速为5000r/min的卧式螺旋卸料离心机甩干,即得隔膜纸。
经上述步骤处理得到隔膜纸、金属铜、金属铝及电池粉浆料,其中隔膜纸中各金属含量:铜0.11%、铝0.22%、镍0.12%、钴0.13%;金属铜中各金属含量:铜98.26%、铝0.78%、镍0.36%、钴0.41%;金属铝中各金属含量:铜3.86%、铝92.93%、镍0.82%、钴1.23%;电池粉浆料杂质含量检测:铜1.15%、铝0.74%、镍16.21%、钴20.32%。隔膜纸、金属铜及金属铝可直接售出,电池粉浆料湿法浸出回收有价金属。金属铜与金属铝的分离率94.3%。
实施例3
一种处理废旧锂电池隔膜纸的方法,包括以下步骤:
(1)取金属含量为铜9.72%、铝10.86%、镍6.84%、钴6.92%的废旧隔膜纸,投入剪切式破碎机中进行破碎,破碎成大小为3mmx3mm的规则形状,再投入气流速度为2.8m/s的旋风分离器内,进行气流分选,分选得轻料、铜铝混合料;
(2)将铜铝混合料投入转子转速为40Hz、皮带转速为12Hz的涡电流分选机进行分选,得到金属铜和金属铝;
(3)将轻料投入搅拌速度为400r/min、刮板速度为70r/min的浮选机内进行分选,得到隔膜纸和电池粉料;
(4)将电池粉料制浆,再将电池粉制成浆料后加入硫酸中进行酸洗,再加入双氧水进行还原浸出,调节pH至1.5,得到浸出液,将隔膜纸用1.5mol/L的稀硫酸进行酸洗,隔膜纸和酸洗液的质量比为1:5,转速300r/min,酸洗的时间为30min,用100目直线筛过滤,用转速为4000r/min的卧式螺旋卸料离心机甩干,即得隔膜纸。
经上述步骤处理得到隔膜纸、金属铜、金属铝及电池粉浆料,其中隔膜纸中各金属含量:铜0.11%、铝0.32%、镍0.12%、钴0.08%;金属铜中各金属含量:铜98.66%、 铝0.68%、镍0.46%、钴0.39%;金属铝中各金属含量:铜3.46%、铝93.13%、镍0.62%、钴0.73%;电池粉浆料杂质含量检测:铜0.98%、铝0.76%、镍16.02%、钴20.58%。隔膜纸、金属铜及金属铝可直接售出,电池粉浆料湿法浸出回收有价金属。金属铜与金属铝的分离率94.83%。
实施例1处理后的隔膜纸、金属铜、金属铝及电池粉浆料中的各金属含量结果如表1所示:
表1
  铜(%) 铝(%) 镍(%) 钴(%)
隔膜纸 0.12 0.26 0.14 0.23
金属铜 98.22 0.68 0.32 0.51
金属铝 4.86 90.93 0.82 1.33
电池粉浆料 1.05 0.84 15.22 21.08
实施例2处理后的隔膜纸、金属铜、金属铝及电池粉浆料中的各金属含量结果如表2所示:
表2
  铜(%) 铝(%) 镍(%) 钴(%)
隔膜纸 0.11 0.22 0.12 0.13
金属铜 98.26 0.78 0.36 0.41
金属铝 4.86 92.93 0.82 1.23
电池粉浆料 1.15 0.74 16.21 20.32
实施例3处理后的隔膜纸、金属铜、金属铝及电池粉浆料中的各金属含量结果如表3所示:
表3
  铜(%) 铝(%) 镍(%) 钴(%)
隔膜纸 0.11 0.32 0.12 0.08
金属铜 98.66 0.68 0.46 0.39
金属铝 3.46 93.13 0.62 0.73
电池粉浆料 0.98 0.76 16.02 20.58
从表1-3中可得,采用本发明的方法处理后的隔膜纸中的有价金属含量很少,可用于塑料的造粒,而目前的隔膜纸的处理方式都是通过焚烧,浪费资源和污染环境,并且金属铜的回收率可达98.2%以上,金属铝的回收率可达90.9%以上,而电池粉浆料可通过湿法浸出回收其中的镍钴锰可再次用于电池正极材料的制备。
以上对本发明提供的一种处理废旧锂电池隔膜纸的方法进行了详细的介绍,本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,包括最佳方式,并且也使得本领域的任何技术人员都能够实践本发明,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。本发明专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (10)

  1. 一种处理废旧锂电池隔膜纸的方法,其特征在于,包括以下步骤:
    (1)将废旧隔膜纸进行剪切破碎,再进行气流分选,得到轻料和铜铝混合料;
    (2)将轻料投入浮选机中进行分选,得到隔膜纸和电池粉料;
    (3)将电池粉料制浆,再进行湿法浸出,将隔膜纸进行酸洗,再过滤,甩干,得到隔膜纸。
  2. 根据权利要求1所述的方法,其特征在于,步骤(1)中,所述气流分选的速率为2-3m/s。
  3. 根据权利要求1所述的方法,其特征在于,步骤(1)中,还包括将所述铜铝混合料投入涡电流分选机中进行分选,得到金属铜和金属铝;所述涡电流分选机的转子转速为20-40Hz,皮带转速为10-15Hz。
  4. 根据权利要求1所述的方法,其特征在于,步骤(2)中,所述浮选机的搅拌速度为200-400r/min,浮选机的刮板速度为40-80r/min。
  5. 根据权利要求1所述的方法,其特征在于,步骤(3)中,所述湿法浸出的具体操作步骤为:将电池粉制成浆料后,加入酸洗液中进行酸洗,再加入还原剂进行还原浸出,调节pH至酸性,得到浸出液。
  6. 根据权利要求5所述的方法,其特征在于,所述酸洗液为硫酸;所述还原剂为双氧水或亚硫酸钠中的一种;所述调pH至酸性是将pH调至1.5-2.0。
  7. 根据权利要求1所述的方法,其特征在于,步骤(3)中,所述酸洗使用的酸洗液为0.5-1.5mol/L的硫酸;步骤(3)中,所述酸洗的转速为200-400r/min,酸洗的时间为10-30min。
  8. 根据权利要求1所述的方法,其特征在于,步骤(3)中,所述将隔膜纸进行酸洗的过程中,隔膜纸和酸洗液的质量比为1:(5-10)。
  9. 根据权利要求1所述的方法,其特征在于,步骤(4)中,所述过滤的过程使用的滤网的目数为60-100目;所述甩干的过程使用离心机,所述离心机的转速为4000-5000r/min。
  10. 权利要求1-9任一项所述的方法在处理废旧电池隔膜纸中的应用。
PCT/CN2021/093183 2020-09-09 2021-05-12 一种处理废旧锂电池隔膜纸的方法 WO2022052497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/043,881 US11870095B2 (en) 2020-09-09 2021-05-12 Method for treating waste diaphragm paper of lithium battery
EP21865558.7A EP4199184A4 (en) 2020-09-09 2021-05-12 METHOD FOR PROCESSING WASTE PAPER FOR LITHIUM BATTERY SEPARATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010938775.9A CN112275765B (zh) 2020-09-09 2020-09-09 一种处理废旧锂电池隔膜纸的方法
CN202010938775.9 2020-09-09

Publications (1)

Publication Number Publication Date
WO2022052497A1 true WO2022052497A1 (zh) 2022-03-17

Family

ID=74420302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093183 WO2022052497A1 (zh) 2020-09-09 2021-05-12 一种处理废旧锂电池隔膜纸的方法

Country Status (5)

Country Link
US (1) US11870095B2 (zh)
EP (1) EP4199184A4 (zh)
CN (1) CN112275765B (zh)
CL (1) CL2023000684A1 (zh)
WO (1) WO2022052497A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115921503A (zh) * 2022-11-21 2023-04-07 宁德卓高新材料科技有限公司 锂离子电池隔膜废料的回收处理方法
CN117139328A (zh) * 2023-10-31 2023-12-01 中创新航科技集团股份有限公司 一种电芯拆解方法及装置
US11870095B2 (en) 2020-09-09 2024-01-09 Hunan Brunp Recycling Technology Co., Ltd. Method for treating waste diaphragm paper of lithium battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022102919A1 (de) * 2022-02-08 2023-08-10 REDUX Recycling GmbH Aufbereitung von thermisch vorbehandelten und unbehandelten Batterien sowie derer Produktionsausschüsse
CN115156243A (zh) * 2022-07-18 2022-10-11 中国地质科学院郑州矿产综合利用研究所 一种废旧电池正负极材料的回收工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195073A (ja) * 2011-03-15 2012-10-11 Mitsui Mining & Smelting Co Ltd 再生材料の製造方法
CN106591582A (zh) * 2016-11-28 2017-04-26 安徽得盈再生资源回收有限公司 报废手机环保高效回收处理工艺
CN108588423A (zh) * 2018-03-23 2018-09-28 安徽海容电源动力股份有限公司 一种废旧稀土电池的综合回收方法
CN109193064A (zh) * 2018-10-31 2019-01-11 中南大学 一种废旧动力锂电池有价成分分选回收的方法
CN109904545A (zh) * 2017-12-08 2019-06-18 北京有色金属研究总院 从废旧锂离子动力电池中回收隔膜、铜箔和电池正极的方法
CN112275765A (zh) * 2020-09-09 2021-01-29 湖南邦普循环科技有限公司 一种处理废旧锂电池隔膜纸的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101254390B1 (ko) * 2010-11-01 2013-04-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 금속의 회수 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195073A (ja) * 2011-03-15 2012-10-11 Mitsui Mining & Smelting Co Ltd 再生材料の製造方法
CN106591582A (zh) * 2016-11-28 2017-04-26 安徽得盈再生资源回收有限公司 报废手机环保高效回收处理工艺
CN109904545A (zh) * 2017-12-08 2019-06-18 北京有色金属研究总院 从废旧锂离子动力电池中回收隔膜、铜箔和电池正极的方法
CN108588423A (zh) * 2018-03-23 2018-09-28 安徽海容电源动力股份有限公司 一种废旧稀土电池的综合回收方法
CN109193064A (zh) * 2018-10-31 2019-01-11 中南大学 一种废旧动力锂电池有价成分分选回收的方法
CN112275765A (zh) * 2020-09-09 2021-01-29 湖南邦普循环科技有限公司 一种处理废旧锂电池隔膜纸的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199184A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11870095B2 (en) 2020-09-09 2024-01-09 Hunan Brunp Recycling Technology Co., Ltd. Method for treating waste diaphragm paper of lithium battery
CN115921503A (zh) * 2022-11-21 2023-04-07 宁德卓高新材料科技有限公司 锂离子电池隔膜废料的回收处理方法
CN117139328A (zh) * 2023-10-31 2023-12-01 中创新航科技集团股份有限公司 一种电芯拆解方法及装置
CN117139328B (zh) * 2023-10-31 2024-02-06 中创新航科技集团股份有限公司 一种电芯拆解方法及装置

Also Published As

Publication number Publication date
US11870095B2 (en) 2024-01-09
EP4199184A4 (en) 2024-01-24
CN112275765B (zh) 2022-08-16
EP4199184A1 (en) 2023-06-21
US20230246294A1 (en) 2023-08-03
CL2023000684A1 (es) 2023-09-08
CN112275765A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2022052497A1 (zh) 一种处理废旧锂电池隔膜纸的方法
CN105428745B (zh) 一种废旧锂离子动力电池无害化综合回收利用方法
CN108110356B (zh) 一种全自动废旧锂离子电池回收工艺及系统
CN105870533B (zh) 回收锂离子电池正极边角料的方法
CN106191466A (zh) 一种从废旧磷酸铁锂电池中回收锂的方法
CN105826629A (zh) 一种废旧锂电池全组分物料分离收集装置及方法
CN111822140B (zh) 一种废旧软包锂电池的回收方法
CN208226042U (zh) 一种废旧电池的资源化回收利用系统
CN103985919B (zh) 从报废锂离子电池负极片上回收石墨与铜箔的方法
CN205609702U (zh) 一种废旧锂电池全组分物料分离收集装置
CN109818097A (zh) 一种废旧锂电池溶剂萃取处理电解液与粘结剂的工艺
CN105895854A (zh) 锂离子电池正极边角料的回收方法
WO2022068916A1 (zh) 一种废旧锂离子电池的拆解分离方法
CN107546437A (zh) 从废旧锂离子电池中回收锂、镍、钴、锰的方法
CN108461855A (zh) 一种废旧锂电池的拆解回收系统及拆解回收方法
CN111530884A (zh) 一种动力锂电池单体回收方法
WO2022147937A1 (zh) 一种处理废旧锂电池铜铝料的方法和应用
CN107579303A (zh) 从废旧锂离子电池中回收铝箔和正极活性物质的方法
CN107317048A (zh) 从废旧锂离子电池负极材料中回收铜箔和石墨的方法
CN108134153A (zh) 一种废旧锂离子电池的处理方法
CN107706476A (zh) 一种废旧锂离子电池的溶剂分选预处理方法
CN102009054A (zh) 一种废旧锂离子电池高效粉碎新工艺
CN109768344A (zh) 一种废旧磷酸铁锂电池的正极极片的分离方法
CN113067028A (zh) 一种磷酸铁锂退役锂离子电池回收再利用方法
CN102332623B (zh) 锂离子电池正极材料回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021865558

Country of ref document: EP

Effective date: 20230314

NENP Non-entry into the national phase

Ref country code: DE