WO2022068916A1 - 一种废旧锂离子电池的拆解分离方法 - Google Patents

一种废旧锂离子电池的拆解分离方法 Download PDF

Info

Publication number
WO2022068916A1
WO2022068916A1 PCT/CN2021/122034 CN2021122034W WO2022068916A1 WO 2022068916 A1 WO2022068916 A1 WO 2022068916A1 CN 2021122034 W CN2021122034 W CN 2021122034W WO 2022068916 A1 WO2022068916 A1 WO 2022068916A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
positive
wet
materials
negative
Prior art date
Application number
PCT/CN2021/122034
Other languages
English (en)
French (fr)
Inventor
刘训兵
欧阳剑君
张超文
王子
周群成
陈赞
吴山木
董雄武
刘畅
刘席卷
Original Assignee
湖南金源新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南金源新材料股份有限公司 filed Critical 湖南金源新材料股份有限公司
Priority to EP21874570.1A priority Critical patent/EP4129509A4/en
Priority to JP2022568550A priority patent/JP2023525095A/ja
Priority to KR1020237004008A priority patent/KR20230038506A/ko
Publication of WO2022068916A1 publication Critical patent/WO2022068916A1/zh
Priority to US17/969,575 priority patent/US20230052068A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/30Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0412Disintegrating plastics, e.g. by milling to large particles, e.g. beads, granules, flakes, slices
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0002Preliminary treatment
    • C22B15/0004Preliminary treatment without modification of the copper constituent
    • C22B15/0008Preliminary treatment without modification of the copper constituent by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B2101/00Type of solid waste
    • B09B2101/15Electronic waste
    • B09B2101/16Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B2017/001Pretreating the materials before recovery
    • B29B2017/0021Dividing in large parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • B29B2017/0224Screens, sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0268Separation of metals
    • B29B2017/0272Magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0468Crushing, i.e. disintegrating into small particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to a recycling and processing process for waste and used lithium ion batteries, in particular to a dismantling and separation method for waste and used lithium ion batteries.
  • the technology disclosed by the new material industry (NO.092017, P43-46, Zhu Guocai, He Xiangming, Institute of Nuclear and New Energy, Tsinghua University, dismantling and cascade utilization of waste lithium-ion power batteries) is: “Currently there are mature dismantling The dismantling technology mainly adopts the method of crushing and sorting, and its technological process is followed by discharge, high temperature pyrolysis, mechanical crushing, particle size sorting, density sorting, etc.” Another example is the publication number CN201510823758.X (20151124) high-voltage liquid cutting system and its use, the dismantling method of waste lithium-ion batteries.
  • Step 1 soaking and discharging: soaking the waste lithium-ion batteries in dilute salt water for 7 to 14 days , and stir once a day; step 2, dismantling: drying the waste lithium-ion battery after soaking and discharging at low temperature, then dismantling, separating the outer casing, and obtaining the coil core of the waste lithium-ion battery; step 3, separating the active material: The roll core obtained in step 2 is placed in a closed reaction vessel, an appropriate amount of organic solvent is introduced, and stirring and low-temperature heating are performed to peel off the active material from the current collector, and then physical separation is performed to obtain copper foil, aluminum foil and For the separator, positive and negative electrode powder materials are obtained after solid-liquid separation, and the separated organic solvent system is treated and recycled; step
  • the purpose of the present invention is to solve the technical problems of the prior art that must be discharged and must be dried during the disassembly process, as well as the technical problems of fire danger and incomplete separation in disassembly, and discloses a technology that does not require discharge and drying, and can make each component The dismantling and separation method of waste lithium-ion batteries that have been completely separated.
  • the technical solution of the present invention is: a method for dismantling and separating waste lithium ion batteries, the special feature of which is that the battery packs or cells of the waste lithium ion batteries after the shells are removed do not need to be discharged, and are directly charged with water and torn. , and then perform the first wet sieving. After the recovery of the electrolyte and magnetic separation for iron removal, the wet degumming is performed directly without drying. After the second wet sieving, the first water pulverization and the third The first wet sieving and the second water pulverization, and finally jigging to obtain copper powder, aluminum powder, positive and negative electrode materials, plastic powder and separator pulp.
  • the no-discharge requirement means that the voltage of the battery cell or battery pack is within 36 volts, and there is no need to reduce or disappear through physical and chemical means.
  • the directly charged tearing with water the waste lithium-ion battery pack or cell after disassembling does not need to be discharged, and the mass ratio is 1-10 times, preferably 2-9 times, 3-8 times, 4-7 times.
  • the mass ratio is 1-10 times, preferably 2-9 times, 3-8 times, 4-7 times.
  • This kind of debris is a mixture of copper foil, aluminum foil, iron sheet, plastic sheet, separator paper sheet, etc. with positive and negative electrode materials and water.
  • the mixed fragments after the tear are pushed by water, pass through the trommel screen of 150 mesh screen, and carry out wet sieving, and the sieve is water, electrolyte, tearing
  • the positive and negative electrode materials that fall off during the cracking process the sieve is a mixture of fragments of copper foil, aluminum foil, iron shell, plastic casing, separator paper, etc., which are adhered to the positive and negative electrode materials.
  • the electrolyte is collected: oil-water separation is carried out on the undersize of the wet sieving, the light liquid is the electrolyte, the heavy liquid and the precipitation are water and thick positive and negative materials 1, and a plate and frame filter press is used. After separation, the filter cake is the crude positive and negative electrode material 1, and the filtrate is returned to this section as tearing water.
  • the electrolyte is packed in airtight iron drums, stored in the warehouse, and sent to qualified units for disposal as waste electrolyte.
  • the magnetic separation for iron removal for the wet sieved material, through two-stage magnetic separation, the torn iron pieces of the battery pack and the battery core are selected, packaged and put into storage; the two-stage magnetic separation
  • the purpose of the selection is that other non-magnetic objects entrained by the iron sheet in the first stage of magnetic separation will be displaced under the action of water when switching to the second stage of magnetic separation, and the non-magnetic objects will automatically break away from the entrainment and separate from the iron sheet.
  • the described wet degumming the fragments after the battery are torn, soaked and stirred with a degumming agent in the degumming barrel for a certain period of time, so that the positive and negative electrodes are separated from the copper foil and aluminum foil or the adhesive fails, so that the easy to peel off.
  • the material to remove iron after magnetic separation is a mixture of scraps of copper foil, aluminum foil, plastic, diaphragm paper, etc. with positive and negative materials, which are put into the degumming bucket, and a certain concentration of degumming is added. Soak and stir the agent for a certain time, so that the positive and negative materials are separated from the copper foil and aluminum foil, or the positive and negative films are foamed and degummed.
  • the degumming agent is an organic solvent, such as a mixture of one or more of acetone, tetrahydrofuran, N-dimethylacetamide, and dimethyl sulfoxide.
  • the degumming agent is that the organic solvent is tetrahydrofuran.
  • a certain concentration in the wet degumming step is 1-20% by volume, preferably 5-15%, 10%.
  • the soaking and stirring for a certain period of time the time is 5-60 minutes, preferably 10-50 minutes, 20-40 minutes, 30 minutes, and the stirring speed is 15-60 rpm, Preferably 20-55 rpm, 25-50 rpm, 35-45 rpm.
  • the material after wet degumming is passed through a trommel sieve with a 150-mesh screen, and the material under the sieve is the sol liquid and the separated positive and negative materials, which are passed through a plate and frame filter press.
  • the filter cake is the crude positive and negative electrode material 3; the filtrate is water containing degumming agent, which is recycled by adding a certain amount of degumming agent. , diaphragm paper and other debris mixture, into a crushing and sieving.
  • the sieve after the second wet sieving is added with water in a mass ratio of 3-5 times, preferably 4 times, and pulverized to below 200 mesh.
  • the material after being pulverized with water for the first time is passed through a trommel sieve with a 150-mesh screen, and the material under the sieve is positive and negative electrode materials and water, and is filtered by a plate and frame filter press,
  • the filter cake is the coarse positive and negative electrode material 2;
  • the filtrate is the crushing and sieving process where water is returned to this section, and is recycled;
  • the material on the sieve is copper powder, aluminum powder and plastic powder, diaphragm paper paddle, positive and negative electrode material powder, etc.
  • the sieve material after the third wet sieving continues to be pulverized with water to be below 200 mesh.
  • the described jig separation is that the sieve after the second water pulverization, together with the thick positive and negative materials 1, the thick positive and negative materials 2, and the thick positive and negative materials 3, enter the beneficiation jig together.
  • the jigging re-selection with water is carried out, and copper powder, aluminum powder, positive and negative electrode materials, plastic powder and diaphragm slurry are sorted out.
  • Filtration, the filter cake is the positive and negative electrode materials, plastic powder, and diaphragm pulp, which are packaged and stored, and the filtrate is water, which is returned to the crushing process of this section as added water for recycling.
  • the present invention does not need to discharge and dry, so that the components can be completely separated, and solves the problems that the prior art must be discharged and must be dried during the dismantling process. As well as the difficulty of dismantling techniques that present fire hazards and incomplete separation.
  • Fig. 1 is the process flow diagram of the present invention.
  • a method for dismantling and separating waste and old lithium-ion batteries the following steps are taken: a. Code registration: code and register the recycled waste and old lithium-ion batteries.
  • Live tearing Weigh a 18650 waste lithium-ion battery with a weight of 20kg, place it in water to submerge it, and tear it into pieces of 15 ⁇ 15mm with a roller machine.
  • Electrolyte collection carry out oil-water separation through an oil-water separator for the under-screen of step c with water sieving, the light liquid is electrolyte, and the volume measured by the graduated cylinder is: 1150mL, heavy liquid and precipitation are water and thick positive and negative electrode material 1, and the dry powder after separating and drying with a suction filter is 325.1g.
  • Magnetic separation to remove iron sieve the trommel screen with water in step c, and use a magnet to select iron in the mixture of fragments, and the weight of scrap iron pieces is 4792.1g.
  • the material to remove iron after magnetic separation is a mixture of copper foil, aluminum foil, plastic, diaphragm paper, etc. with positive and negative materials, put it into a 0.2m3 reaction barrel, add 0.15m3 , Add 0.01m 3 of tetrahydrofuran, stir for 15 minutes, and see obvious foaming phenomenon on the surface of the positive electrode material.
  • the filter cake is the coarse positive and negative materials 3, and weighed as 1425.8g, the sieve material (32.7% water content) is a mixture of scraps of copper foil, aluminum foil, plastic, separator paper, etc. with positive and negative materials adhered to, and enters the crushing operation with water.
  • Material 2 weighed to 4028.7g (25.65% water content), the material on the sieve continued to add water and pulverized to 200 mesh, together with the coarse positive and negative materials 1, the coarse positive and negative materials 2, and the coarse positive and negative materials 3.
  • the eliminator separates copper powder, aluminum powder, positive and negative electrode materials, plastic powder and diaphragm for pulping.
  • the positive and negative electrode materials, plastic powder and diaphragm pulp are filtered through the suction filter respectively.
  • Embodiment 1 A method for dismantling and separating waste lithium-ion batteries. After removing the outer casing of the waste lithium-ion battery, the battery pack or cell does not need to be discharged. , after the recovery of electrolyte and magnetic separation for iron removal without drying, direct wet degumming, followed by the second wet sieving, the first water pulverization, the third wet sieving and the second Water pulverization, and finally jigging to obtain copper powder, aluminum powder, positive and negative electrode materials, plastic powder and separator pulp.
  • the direct water-charged tearing the used lithium-ion battery packs or cells after dismantling do not need to be discharged, and are directly put into a pair of roller tearing machines under the condition of water spray for live tearing, and tear into smaller than 15 ⁇ 15mm shards.
  • This kind of debris is a mixture of copper foil, aluminum foil, iron sheet, plastic sheet, separator paper sheet, etc. with positive and negative electrode materials and water.
  • the torn fragments of the mixture pass through a trommel screen with a 150-mesh screen for wet sieving.
  • the positive and negative electrode materials that fell off; the sieve is a mixture of fragments of copper foil, aluminum foil, iron shell, plastic casing, separator paper, etc. containing the positive and negative electrode materials.
  • the collection of the electrolyte solution oil-water separation is carried out on the undersize of the wet sieving, the light liquid is the electrolyte, the heavy liquid and the precipitation are water and the thick positive and negative electrode materials 1, and after separation by a plate and frame filter press, The filter cake is the crude positive and negative electrode material 1, and the filtrate is returned to this section as tearing water.
  • the electrolyte is packed in airtight iron drums, stored in the warehouse, and sent to qualified units for disposal as waste electrolyte.
  • the magnetic separation to remove iron for the wet sieved material, through two-stage magnetic separation, the torn iron pieces of the battery pack and the battery core are selected, packaged and put into storage; the purpose of the two-stage magnetic separation It is that other non-magnetic substances entrained by the iron sheets in the first stage of magnetic separation will be displaced under the action of water when they are converted to the second stage of magnetic separation, and the non-magnetic substances will automatically break away from the entrainment and separate from the iron sheets.
  • the wet degumming method is to soak and stir the broken pieces of the battery with a degumming agent in the degumming barrel for a certain period of time, so that the positive and negative electrode materials are separated from the copper foil and aluminum foil or the adhesive fails, so that they can be easily peeled off. .
  • the material to remove iron after magnetic separation is a mixture of scraps of copper foil, aluminum foil, plastic, diaphragm paper, etc. with positive and negative materials, which are put into the degumming bucket, and a certain concentration of degumming is added. Soak and stir the agent for a certain time, so that the positive and negative materials are separated from the copper foil and aluminum foil, or the positive and negative films are foamed and degummed.
  • the degumming agent is an organic solvent, which is a mixture of one or more of acetone, tetrahydrofuran, N-dimethylacetamide, and dimethyl sulfoxide, and is preferably tetrahydrofuran.
  • the certain concentration in the wet degumming step is 1%-20% by volume, preferably 5-15%, 10%.
  • the soaking and stirring in the wet degumming step are for a certain time, the time is 5-60 minutes, preferably 10-50 minutes, 20-40 minutes, 30 minutes, and the stirring speed is 15-60 rpm, preferably 20-55 minutes rpm, 25-50 rpm, 35-45 rpm.
  • the material after wet degumming is passed through a trommel sieve with a 150-mesh screen, and the material under the sieve is the sol liquid and the separated positive and negative materials, which are filtered by a plate and frame filter press.
  • the filter cake is the crude positive and negative electrode material 3;
  • the filtrate is water containing degumming agent, and a certain amount of degumming agent is added back for recycling. and other debris mixture, enter a crushing and sieving.
  • the first pulverization with water add 3-5 times water according to the mass ratio of the sieve after the second wet sieving, and pulverize it to below 200 mesh.
  • the material after the first water pulverization is passed through a trommel sieve with a 150-mesh sieve, and the material under the sieve is positive and negative electrode materials and water, and is filtered by a plate and frame filter press, and the filter cake is Coarse positive and negative electrode material 2; the filtrate is water returned to the pulverization and screening process of this section, and recycled; the sieve material is copper powder, aluminum powder and plastic powder, diaphragm paper paddle, positive and negative electrode material powder, etc.
  • the material on the sieve after the third wet sieving continues to be pulverized with water to be below 200 mesh.
  • the jigging separation is to enter the sieve material after the second water pulverization, together with the thick positive and negative electrode materials 1, the thick positive and negative electrode materials 2, and the thick positive and negative electrode materials 3, into the beneficiation jig machine for carrying out.
  • water jigging and re-selection copper powder, aluminum powder, positive and negative electrode materials, plastic powder and diaphragm are separated for pulping.
  • the cake is the positive and negative electrode materials, plastic powder, and diaphragm pulp, which are packaged and put into storage.
  • the filtrate is water, which is returned to the crushing process of this section as added water and recycled.
  • Embodiment 1 a kind of dismantling and separating method of waste and old lithium ion battery, take the following steps: a. Code registration: code registration is carried out with the waste and old lithium ion battery that reclaims.
  • Electrolyte collection the undersize of the wet sieving in step d, oil-water separation is carried out through a separatory funnel, and the light liquid is an electrolyte, and the volume measured by the graduated cylinder is 120. mL, the heavy liquid and precipitation were water and crude positive and negative electrode materials 1, which were separated by a suction filter, and the dry powder after drying was 47.46 g.
  • step d the wet-screened trommel sieves, using a magnet, selects the iron in the mixture of fragments, which is 0.0 g.
  • the material to remove iron after magnetic separation is a mixture of copper foil, aluminum foil, plastic, diaphragm paper, etc. with positive and negative materials. Put it into a 5000mL beaker, add 3000mL, add 150mL of tetrahydrofuran, and stir for 30 minutes. Within minutes, it was seen that the positive electrode material was obviously peeled off from the aluminum foil, and there was obvious foaming of the positive electrode material. Use a 150-mesh sieve to carry out the second wet sieving, and the material under the sieve is the sol solution and the separated positive and negative materials.
  • the filter cake is the coarse positive and negative materials 3, and weighed as 324.25g, (41.4% water content), the sieve is a mixture of scraps of copper foil, aluminum foil, plastic, separator paper, etc. with positive and negative materials attached, which enters the crushing operation with water.
  • step g the copper foil, aluminum foil and plastic, separator paper, etc. adhered to the scrap mixture of positive and negative materials are mixed 2060.2g (21% water content), add 10kg of water, pulverize it to below 200 mesh in a pulverizer, and then use a 150-mesh sieve for the third wet sieving.
  • the material under the sieve is positive and negative electrode materials and water.
  • the filter cake is coarse positive and negative material 2, weighing 536.91g (38.5% water content), 1944.2g on the sieve, continue to add 10kg of water, pulverize to 200 mesh, together with coarse positive and negative materials 1, coarse positive Negative electrode material 2, crude positive and negative electrode material 3, use a vibrating jig to sort out copper powder, aluminum powder, positive and negative electrode materials, plastic powder and diaphragm pulp, and the positive and negative electrode materials are separated from plastic powder and diaphragm pulp.
  • the filter cake was dried to 228.60 g of copper powder, 428.44 g of aluminum powder, 943.10 g of positive and negative electrode materials, and 251.40 g of plastic powder and diaphragm slurry.
  • Embodiment 2 a kind of dismantling and separating method of waste and old lithium ion battery, take the following steps: a. Code registration: code registration is carried out with the waste and old lithium ion battery that reclaims.
  • Live tearing remove the shell of the waste lithium-ion battery numbered H-52187, take out all 7 battery packs, weigh 13867g, place them in water to submerge them, tear them with a hob and scratch them into pieces smaller than 15 ⁇ 15mm.
  • Electrolyte collection Step 2. The undersize of the wet sieve is separated from oil and water by an oil-water separator. The light liquid is the electrolyte, and the volume measured by the graduated cylinder is 835 mL. The heavy liquid and precipitate are water and thick positive and negative electrodes. Material 1, the dry powder after separation and drying with a suction filter is 355.1 g.
  • step (2) the material on the trommel screen is wet-screened, and the iron in the mixture of fragments is selected by a magnet, which is 0.0 g.
  • the material to remove iron after magnetic separation is a mixture of copper foil, aluminum foil, plastic, diaphragm paper, etc. with positive and negative materials, put it into a 0.1m3 reaction barrel, add 0.5m3 of water , 12.5kg each of tetrahydrofuran and N-dimethylacetamide, stirred for 10 minutes, and it was seen that there was obvious foaming on the surface of the positive electrode material.
  • Use a 150-mesh sieve to carry out the second wet sieving, and the material under the sieve is the sol solution and the separated positive and negative materials.
  • the filter cake is the coarse positive and negative materials 3, and weighed as 1075.3g, the moisture content of the sieve is 38.1%, it is a mixture of scraps of copper foil, aluminum foil, plastic, separator paper, etc. with positive and negative materials adhered to it, and it enters the crushing operation with water.
  • the filter cake is the coarse positive and negative electrode material 2, weighing 2701.8g (water content 32.6%), the sieve material 15840.1g (water content 15%), continue to add 10kg of water, pulverize to 200 mesh, together with the coarse positive and negative electrode material 1, Coarse positive and negative materials 2, crude positive and negative materials 3, use a vibrating jig to sort out copper powder, aluminum powder, positive and negative materials, plastic powder and diaphragm to make pulp, positive and negative materials and plastic powder, diaphragm
  • the pulp was filtered through a suction filter respectively, and the sorted materials were 1596.3g of copper powder, 2993.5g of aluminum powder, 6580.4g of positive and negative electrode materials, 1861.5g of plastic powder and diaphragm pulping after drying.
  • Embodiment 3 A kind of dismantling and separating method of waste and old lithium ion battery, take the following steps: a. Code registration: code registration is carried out with the waste and old lithium ion battery that reclaims.
  • Live tearing Weigh the waste lithium-ion batteries numbered H-50321 and H-57106, weighing 68.6kg, put them in water together with the outer shell to submerge them, and tear them with a roller machine and cut them into smaller than 15 x 15mm fragments.
  • Electrolyte collection Step 2. The undersize of the wet sieve is separated from oil and water by an oil-water separator. The light liquid is the electrolyte, and the volume measured by the graduated cylinder is 1600 mL. The heavy liquid and the precipitate are water and coarse positive and negative electrodes. Material 1, the dry powder after being separated and dried by a suction filter is 710.4 g.
  • Step 2 Magnetic separation to remove iron: Step 2.
  • the trommel screen is wet-screened, and a magnet is used to select the iron in the mixture of fragments, and the weight of the scrap iron is 41.88kg.
  • the material to remove iron after magnetic separation is a mixture of copper foil, aluminum foil, plastic, diaphragm paper, etc. with positive and negative materials, put it into a 0.2m3 reaction barrel, add 0.15m3 , Add 0.01m 3 of tetrahydrofuran, stir for 30 minutes, and see obvious foaming phenomenon on the surface of positive electrode material.
  • the filter cake is the coarse positive and negative materials 3, and weighed as 2112.3g, the moisture content of the sieve is 35.4%, which is a mixture of scraps of copper foil, aluminum foil, plastic, separator paper, etc. with positive and negative materials, and enters the crushing operation with water.
  • Thick positive and negative electrode material 2 weighed as 8287.6g (31.5% water content), continue to add 10kg of water on the sieve, pulverize to 200 mesh, together with thick positive and negative electrode material 1, thick positive and negative electrode material 2, thick positive and negative electrodes Material 3, use a vibrating jig machine to sort out copper powder, aluminum powder, positive and negative electrode materials, plastic powder and diaphragm pulp, and the positive and negative electrode materials, plastic powder, and diaphragm pulp are respectively filtered through a suction filter, and the filter cake is filtered. After drying, they were 3192.8g of copper powder, 6008.1g of aluminum powder, 13155.4g of positive and negative electrode materials, and 3720.9g of plastic powder and diaphragm slurry.
  • Embodiment 4 A kind of dismantling and separating method of waste and old lithium ion battery, take the following steps: a. Code registration: code registration is carried out with the waste and old lithium ion battery that reclaims.
  • Live tearing Weigh a 18650 waste lithium-ion battery with a weight of 20kg, place it in water to submerge it, and tear it into pieces of 15 ⁇ 15mm with a roller machine.
  • Electrolyte collection carry out oil-water separation through an oil-water separator for the under-screen of step c with water sieving, the light liquid is electrolyte, and the volume measured by the graduated cylinder is: 1150mL, heavy liquid and precipitation are water and thick positive and negative electrode material 1, and the dry powder after separating and drying with a suction filter is 325.1g.
  • Magnetic separation to remove iron sieve the trommel screen with water in step c, and use a magnet to select iron in the mixture of fragments, and the weight of scrap iron pieces is 4792.1g.
  • the material to remove iron after magnetic separation is a mixture of copper foil, aluminum foil, plastic, diaphragm paper, etc. with positive and negative materials, put it into a 0.2m3 reaction barrel, add 0.15m3 , Add 0.01m 3 of tetrahydrofuran, stir for 15 minutes, and see obvious foaming phenomenon on the surface of the positive electrode material.
  • the filter cake is the coarse positive and negative materials 3, and weighed as 1425.8g, the sieve material (32.7% water content) is a mixture of scraps of copper foil, aluminum foil, plastic, separator paper, etc. with positive and negative materials adhered to, and enters the crushing operation with water.
  • Material 2 weighed to 4028.7g (25.65% water content), the material on the sieve continued to add water and pulverized to 200 mesh, together with the coarse positive and negative materials 1, the coarse positive and negative materials 2, and the coarse positive and negative materials 3.
  • the eliminator separates copper powder, aluminum powder, positive and negative electrode materials, plastic powder and diaphragm for pulping.
  • the positive and negative electrode materials, plastic powder and diaphragm pulp are filtered through the suction filter respectively.
  • roller counter and trommel screen used in the embodiment of the present invention are market products produced by Henan Zhengkuang Machinery Co., Ltd.
  • the counter roller machine model is 2PG0425, and the trommel screen is GTS-0608 type.
  • Table 1 Dismantling component detection data table of the present invention.
  • the technology of the present invention has completed a large test.

Abstract

一种废旧锂离子电池的拆解分离方法,废旧锂离子电池经去除外壳后的电池包或电芯,无需放电,直接带水带电撕裂,然后进行第一次湿法筛分,在回收电解液和磁选除铁后无需干燥,直接湿法脱胶,接着第二次湿法筛分后,再进行第一次带水粉碎、第三次湿法筛分和第二次带水粉碎,最后跳汰分离得到铜粉、铝粉、正负极材料、塑料粉和隔膜纸浆。

Description

一种废旧锂离子电池的拆解分离方法 技术领域
本发明涉及一种废旧锂离子电池的回收处理工艺,特别是废旧锂离子电池的拆解分离方法。
背景技术
在废旧锂离子动力电池回收综合利用领域中,废旧锂离子电池的拆解一般采用的方案是:退役锂离子电池—编码登记—拆除外壳—放电—粉碎—烘干—筛分。如新材产业 (NO.092017,P43-46,朱国才, 何向明,清华大学核能与新能源研究院,废旧锂离子动力电池的拆解及梯次利用)公开的技术为:“目前已经有成熟的拆解技术,主要采用破碎分选的方法进行拆解,其工艺流程依次为放电、高温热解、机械破碎、粒径分选、密度分选等”。又如公开号为CN201510823758.X(20151124)高压液体切割系统及其用途、废旧锂离子电池的拆解方法发明专利说明书第[0047],公开的技术:步骤1:对所述废旧锂离子电池进行放电处理,使其到达指定的电压范围,得到待切割的废旧锂离子电池。再如公开号CN202010294915.3(20200415)公开的技术为:一种回收废旧锂离子电池的方法,包括以下步骤:步骤一,浸泡放电:将废旧锂离子电池置于稀盐水中浸泡7~14天,且每天搅拌一次;步骤二,拆解:将浸泡放电后的废旧锂离子电池在低温下烘干,然后拆解,分离外壳,获得废旧锂离子电池的卷芯;步骤三,活性物质分离:将步骤二获得的卷芯置于密闭的反应容器中,通入适量的有机溶剂,并进行搅拌及低温加热,使活性物质从集流体上剥离,然后进行物理分选,获得铜箔、铝箔及隔膜,固液分离后获得正负极粉体材料,分离后的有机溶剂体系经处理后循环利用;步骤四,干燥、粉碎:将步骤三获得的正负极粉体材料经低温干燥后进行破碎,获得浸出用原材料;步骤五,浸出:采用酸浸的方法,加入浸出剂,将步骤四获得的原材料中的金属元素浸出至液相中,经固液分离后获得碳负极粉与含金属元素的浸出液,其中,碳负极粉经烧结制备成锂离子电池用负极材料;步骤六,沉淀:步骤五的浸出液经净化、除杂后,调整浸出液中过渡金属元素的比例和过渡金属离子浓度,加入沉淀剂与络合剂,得到锂离子电池正极材料用前驱体;步骤七,初步蒸氨:将步骤六的废水进行初步蒸氨浓缩,得到的氨水输送至步骤六循环使用;步骤八,电解:初步蒸氨浓缩后的废水,经膜电解生成酸与碱,得到的酸输送至步骤五循环使用,得到的碱输送至步骤六循环使用。
技术问题
以上现有技术,在拆解前都需要进行放电。采用电阻法放电无法实现大规模生产,湿法放电时间太长,且残余电压都在2.5V左右,粉碎前由于放电带有一定量的水分,还需要烘干,才能粉碎,烘干时还有发生铝热反应的可能,一但发生铝热反应,就有火灾危险;即便是粉碎后,也还存在拆解后各组成部分的分离及各个因素的收得率问题;粉碎后的物料太粗或太细,都有各组分分离不彻底的问题:机械筛分不能充分分开同一粒度的各个组分,存在铝中含铜,铜中含铝和正负极材料混在铜和铝中,使得各组分的收得率降低,也影响各组分的质量。
本发明的目的在于解决现有技术所存的在拆解过程中必须放电、必须干燥,以及拆解存在火灾危险和分离不彻底的技术的难题,公开一种无需放电和干燥,能使各组分分离彻底的废旧锂离子电池的拆解分离方法。
技术解决方案
本发明的技术解决方案是:一种废旧锂离子电池的拆解分离方法,其特殊之处在于:废旧锂离子电池经去除外壳后的电池包或电芯,无需放电,直接带水带电撕裂,然后进行第一次湿法筛分,在回收电解液和磁选除铁后无需干燥,直接湿法脱胶,接着第二次湿法筛分后,再进行第一次带水粉碎、第三次湿法筛分和第二次带水粉碎,最后跳汰分离得到铜粉、铝粉、正负极材料、塑料粉和隔膜纸浆。
进一步地,所述无需放电:是指电芯或电池包所带的电压在36伏特以内,无需通过物理和化学手段使之下降或消失。
进一步地,所述直接带水带电撕裂:拆壳后的废旧锂离子电池包或电芯无需放电,在质量比为1-10倍,优选2-9倍,3-8倍,4-7倍,5-6倍水的保护下,或者直接在喷水条件下放入对辊撕裂机中进行带电撕裂,撕裂成小于15×15mm的碎片。这种碎片是粘附有正负极材料的铜箔、铝箔、铁片、塑料片、隔膜纸片等与水的混合物。
进一步地,在所述第一次湿法筛分:撕裂后的混合物碎片在水的推动下,通过150目筛网的滚筒筛,进行湿法筛分,筛下为水、电解液、撕裂过程中脱落的正负极材料;筛上为粘附有正负极材料的铜箔、铝箔、铁壳、塑料外壳、隔膜纸等的碎片混合物。
进一步地,所述电解液收集:对所述湿法筛分的筛下物进行油水分离,轻液为电解液,重液和沉淀为水和粗正负极材料1,用板框压滤机分离后,滤饼为粗正负极材料1,滤液返回本工段作为撕裂用水。电解液用密闭的铁桶承装,放置于仓库中存放,作为废电解液送有资质的单位处理。
进一步地,所述磁选除铁:对所述湿法筛分的筛上物,通过两段磁选,将电池包和电芯撕裂后的铁片选出,包装入库;两段磁选的目的是第一段磁选中被铁片夹带的其他非磁性物在转换到第二段磁选时在水的作用下发生位移,非磁性物自动脱离夹带与铁片分离。
进一步地,所述的湿法脱胶:是将电池撕裂后的碎片,在脱胶桶内用脱胶剂浸泡和搅拌一定时间,使正负极材料与铜箔、铝箔脱离或其粘胶失效,使之容易剥离。
更进一步地,所述湿法脱胶:通过磁选后除去铁的物料是粘有正负极材料的铜箔、铝箔、以及塑料、隔膜纸等的碎片混合物,进入脱胶桶,加入一定浓度的脱胶剂浸泡和搅拌一定时间,使正负极材料与铜箔、铝箔脱离或正负极胶片起泡,脱胶。
更进一步地,所述的脱胶剂为有机溶剂,如丙酮、四氢呋喃、N-二甲基乙酰胺、二甲基亚砜中的一种或多种的混合物。
更进一步地,所述的脱胶剂为有机溶剂为四氢呋喃。
更进一步地,所述湿法脱胶步骤中的一定浓度为体积比1-20%,优选5-15%,10%。
更进一步地,在湿法脱胶步骤中的所述浸泡和搅拌一定时间,时间为5-60分钟,优选10-50分钟,20-40分钟,30分钟,搅拌速度为15-60转/分钟,优选20-55转/分钟,25-50转/分钟,35-45转/分钟。
进一步地,所述第二次湿法筛分,对湿法脱胶后的物料通过150目筛网的滚筒筛,筛下物为溶胶液和脱离出的正负极材料,通过板框压滤机压滤后,滤饼为粗正负极材料3;滤液为含有脱胶剂的水,返回补加一定量脱胶剂循环使用,筛上物是粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物,进入一次粉碎、筛分。
进一步地,所述第一次带水粉碎:将第二次湿法筛分后的筛上物,加质量比为3-5倍水,优选4倍,粉碎到200目以下。
进一步地,所述第三次湿法筛分,将第一次带水粉碎后的物料通过150目筛网的滚筒筛,筛下物是正负极材料和水,通过板框压滤机压滤,滤饼为粗正负极材料2;滤液为水返回本工段的粉碎、筛分工序,循环使用;筛上物是铜粉、铝粉和塑料粉、隔膜纸桨、正负极材料粉等。
进一步地,所述第二次带水粉碎,是将第三次湿法筛分后的筛上物继续再加水粉碎到200目以下。
进一步地,所述跳汰分离,是将第二次带水粉碎后的筛上物,连同粗正负极材料1、粗正负极材料2、粗正负极材料3,一齐进入选矿跳汰机,进行带水跳汰重选,分选出铜粉、铝粉、正负极材料、塑料粉末和隔膜制浆,正负极材料与塑料粉末、隔膜制浆分别通过板框压滤机压滤,滤饼为分别为正负极材料与塑料粉末、隔膜纸浆,包装入库,滤液为水,返回本工段的粉碎工序作为添加水,循环使用。
有益效果
本发明由于采取了以上技术方案,在废旧锂离子电池拆解过程中,无需放电和干燥,能使各组分分离彻底,解决了现有技术所存的在拆解过程中必须放电、必须干燥,以及拆解存在火灾危险和分离不彻底的技术的难题。
附图说明
图1为本发明工艺流程图。
本发明的最佳实施方式
一种废旧锂离子电池的拆解分离方法,采取如下步骤:a.编码登记:将回收的废旧锂离子电池进行编码登记。
b.带电撕裂:将型号为18650的废旧锂离子电池,称量为20kg,放置于水中将其淹没,用对辊机将其撕裂并划成15×15mm的碎片。
c.带水筛分:撕裂后的混合物碎片在流水的推动下,用150目筛片,进行湿法筛分,筛下为水、电解液、撕裂过程中脱落的正负极材料;筛上为含有正负极材料的铜箔、铝箔、铁壳、塑料外壳、隔膜纸等的碎片混合物。
d.电解液收集:将步骤c带水筛分的筛下物,通过油水分离器进行油水分离,轻液为电解液,量筒量得体积为 1150m L,重液和沉淀为水和粗正负极材料1,用抽滤机分离烘干后的干粉为325.1g。
e.磁选除铁:将步骤c带水筛分的滚筒筛筛上物,用磁铁,选出碎片混合物中的铁,废铁片重量为4792.1g。
f.湿法脱胶:通过磁选后除去铁的物料是粘有正负极材料的铜箔、铝箔、以及塑料、隔膜纸等的碎片混合物,放入0.2m 3反应桶内,加入0.15m 3,加入四氢呋喃0.01m 3,搅拌15分钟,看到明显的正极材料表面有起泡现象。用150目筛片进行第二次湿法筛分,筛下物为溶胶液和脱离出的正负极材料,用抽滤机抽滤后,滤饼为粗正负极材料3,称重为1425.8g,筛上物(含水32.7%)是粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物,进入带水粉碎操作。
g.带水粉碎、筛分:将步骤⑤第二次湿法筛分后,粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物14833.3g(含水16.2%),加水10kg,在粉碎机中粉碎到200目以下,再用一个150目筛片的进行湿法筛分,筛下物是正负极材料和水,用抽滤机压滤,滤饼为粗正负极材料2,称重为 4028.7g(含水25.65%),筛上物继续再加水粉碎到200目,连同粗正负极材料1、粗正负极材料2、粗正负极材料3,用震动跳汰机进行分选出铜粉、铝粉、正负极材料、塑料粉末和隔膜制浆,正负极材料与塑料粉末、隔膜纸浆分别通过抽滤机抽滤,滤饼干燥后,分别为铜粉1612.4g,铝粉3004.9g,  正负极材料6412.1g和塑料粉末、隔膜制浆4172.6g。
本发明的实施方式
为了更清楚地理解本发明,下面结合附图1用具体实施例对本发明作进一步的说明。
实施方式1:一种废旧锂离子电池的拆解分离方法,废旧锂离子电池经去除外壳后的电池包或电芯,无需放电,直接带水带电撕裂,然后进行第一次湿法筛分,在回收电解液和磁选除铁后无需干燥,直接湿法脱胶,接着第二次湿法筛分后,再进行第一次带水粉碎、第三次湿法筛分和第二次带水粉碎,最后跳汰分离得到铜粉、铝粉、正负极材料、塑料粉和隔膜纸浆。
所述无需放电:是指电芯或电池包所带的电压在36伏特以内,无需通过物理和化学手段使之下降或消失。也就是说现有技术需要放电才能拆解的电池,本发明无需放电就能直接拆解。
所述直接带水带电撕裂:拆壳后的废旧锂离子电池包或电芯无需放电,直接在喷水条件下放入对辊撕裂机中进行带电撕裂,撕裂成小于15×15mm的碎片。这种碎片是粘附有正负极材料的铜箔、铝箔、铁片、塑料片、隔膜纸片等与水的混合物。
在所述第一次湿法筛分:撕裂后的混合物碎片在水的推动下,通过150目筛片的滚筒筛,进行湿法筛分,筛下为水、电解液、撕裂过程中脱落的正负极材料;筛上为含有正负极材料的铜箔、铝箔、铁壳、塑料外壳、隔膜纸等的碎片混合物。
所述电解液收集:对所述湿法筛分的筛下物进行油水分离,轻液为电解液,重液和沉淀为水和粗正负极材料1,用板框压滤机分离后,滤饼为粗正负极材料1,滤液返回本工段作为撕裂用水。电解液用密闭的铁桶承装,放置于仓库中存放,作为废电解液送有资质的单位处理。
所述磁选除铁:对所述湿法筛分的筛上物,通过两段磁选,将电池包和电芯撕裂后的铁片选出,包装入库;两段磁选的目的是第一段磁选中被铁片夹带的其他非磁性物在转换到第二段磁选时,在水的作用下发生位移,非磁性物自动脱离夹带与铁片分离。
所述的湿法脱胶:是将电池撕裂后的碎片,在脱胶桶内用脱胶剂浸泡和搅拌一定时间,使正负极材料与铜箔、铝箔脱离或其粘胶失效,使之容易剥离。
更进一步地,所述湿法脱胶:通过磁选后除去铁的物料是粘有正负极材料的铜箔、铝箔、以及塑料、隔膜纸等的碎片混合物,进入脱胶桶,加入一定浓度的脱胶剂浸泡和搅拌一定时间,使正负极材料与铜箔、铝箔脱离或正负极胶片起泡,脱胶。
所述的脱胶剂为有机溶剂,为丙酮、四氢呋喃、N-二甲基乙酰胺、二甲基亚砜中的一种或多种的混合物,最佳为四氢呋喃。
所述湿法脱胶步骤中的一定浓度为体积比1%-20%,优选5-15%,10%。
在湿法脱胶步骤中的所述浸泡和搅拌一定时间,时间为5-60分钟,优选10-50分钟,20-40分钟,30分钟,搅拌速度为15-60转/分钟,优选20-55转/分钟,25-50转/分钟,35-45转/分钟。
所述第二次湿法筛分,对湿法脱胶后的物料过150目筛网的滚筒筛,筛下物为溶胶液和脱离出的正负极材料,通过板框压滤机压滤后,滤饼为粗正负极材料3;滤液为含有脱胶剂的水,返回补加一定量脱胶剂循环使用,筛上物是粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物,进入一次粉碎、筛分。
所述第一次带水粉碎:将第二次湿法筛分后的筛上物,按质量比加3-5倍水,粉碎到200目以下。
所述第三次湿法筛分,将第一次带水粉碎后的物料过150目筛网的滚筒筛,筛下物是正负极材料和水,通过板框压滤机压滤,滤饼为粗正负极材料2;滤液为水返回本工段的粉碎、筛分工序,循环使用;筛上物是铜粉、铝粉和塑料粉、隔膜纸桨、正负极材料粉等。
所述第二次带水粉碎,是将第三次湿法筛分后的筛上物继续再加水粉碎到200目以下。
所述跳汰分离,是将第二次带水粉碎后的筛上物,连同粗正负极材料1、粗正负极材料2、粗正负极材料3,一齐进入选矿跳汰机,进行带水跳汰重选,分选出铜粉、铝粉、正负极材料、塑料粉末和隔膜制浆,正负极材料与塑料粉末、隔膜制浆分别通过板框压滤机压滤,滤饼为分别为正负极材料与塑料粉末、隔膜纸浆,包装入库,滤液为水,返回本工段的粉碎工序作为添加水,循环使用。
实施例1:一种废旧锂离子电池的拆解分离方法,采取如下步骤:a.编码登记:将回收的废旧锂离子电池进行编码登记。
b. 拆除外壳:将电池编号为H-52201的电池去除外壳,取出7个电池包其中的一个,称量为1958.0g。
c.带水带电撕裂:无需放电,直接放置于水中将其淹没,用刀片将其划破,并划成小于15×15mm的碎片。
d.带水筛分:撕裂后的混合物碎片用150目筛片,进行湿法筛分,筛下为水、电解液、撕裂过程中脱落的正负极材料;筛上为含有正负极材料的铜箔、铝箔、铁壳、塑料外壳、隔膜纸等的碎片混合物。
e.电解液收集:步骤d中的湿法筛分的筛下物,通过分液漏斗进行油水分离,轻液为电解液,量筒量得体积为 120 mL,重液和沉淀为水和粗正负极材料1,用抽滤机分离,烘干后的干粉为47.46g。
f.磁选除铁:步骤d中的湿法筛分的滚筒筛筛上物,用磁铁,选出碎片混合物中的铁,为0.0g。
g.湿法脱胶:通过磁选后除去铁的物料是粘有正负极材料的铜箔、铝箔、以及塑料、隔膜纸等的碎片混合物,放入5000mL烧杯中,加入3000mL,加入四氢呋喃150mL,搅拌30分钟,看到有明显的正极材料从铝箔上脱落,并有明显的正极材料起泡现象。用150目筛片进行第二次湿法筛分,筛下物为溶胶液和脱离出的正负极材料,用抽滤机抽滤后,滤饼为粗正负极材料3,称重为324.25g,(含水41.4%)筛上物是粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物,进入带水粉碎操作。
h.带水粉碎和筛分:在步骤g中的第二次湿法筛分后,将粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物 2060.2g(含水21%),加水 10kg,在粉碎机中粉碎到200目以下,再用一个150目筛片的进行第三次湿法筛分,筛下物是正负极材料和水,用抽滤机压滤,滤饼为粗正负极材料2,称重为536.91g(含水38.5%),筛上物1944.2g,继续加水10kg,粉碎到200目,连同粗正负极材料1、粗正负极材料2、粗正负极材料3,用震动跳汰机进行分选出铜粉、铝粉、正负极材料、塑料粉末和隔膜制浆,正负极材料与塑料粉末、隔膜纸浆分别通过抽滤机抽滤,滤饼干燥后为分别为铜粉228.60g、铝粉428.44、正负极材料943.10g和塑料粉末、隔膜制浆251.40g。
实施例2:一种废旧锂离子电池的拆解分离方法,采取如下步骤:a.编码登记:将回收的废旧锂离子电池进行编码登记。
b.带电撕裂:将编号为H-52187的废旧锂离子电池去除外壳,取出全部的7个电池包,称量为13867g,放置于水中将其淹没,用滚刀机将其撕裂并划成小于15×15mm的碎片。
c.带水筛分:撕裂后的混合物碎片在流水的推动下,用150目筛片,进行湿法筛分,筛下为水、电解液、撕裂过程中脱落的正负极材料;筛上为含有正负极材料的铜箔、铝箔、铁壳、塑料外壳、隔膜纸等的碎片混合物。
d.电解液收集:步骤②湿法筛分的筛下物,通过油水分离器进行油水分离,轻液为电解液,量筒量得体积为 835 mL,重液和沉淀为水和粗正负极材料1,用抽滤机分离烘干后的干粉为355.1g。
e.磁选除铁:步骤②湿法筛分的滚筒筛筛上物,用磁铁,选出碎片混合物中的铁,为0.0g。
f.湿法脱胶:通过磁选后除去铁的物料是粘有正负极材料的铜箔、铝箔、以及塑料、隔膜纸等的碎片混合物,放入0.1m 3反应桶内,加水0.5m 3、四氢呋喃和N-二甲基乙酰胺各12.5kg,搅拌10分钟,看到明显的正极材料表面有起泡现象。用150目筛片进行第二次湿法筛分,筛下物为溶胶液和脱离出的正负极材料,用抽滤机抽滤后,滤饼为粗正负极材料3,称重为1075.3g,筛上物含水率38.1%,是粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物,进入带水粉碎操作。
g.带水粉碎、筛分:在湿法脱胶步骤的第二次湿法筛分后,将粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物 21150g(含水15%),加水 10kg,在粉碎机中粉碎到200目以下,再用一个150目筛片的进行湿法筛分,筛下物是正负极材料和水,用抽滤机压滤,滤饼为粗正负极材料2,称重为2701.8g(含水32.6%),筛上物 15840.1g(含水15%),继续再加水10kg,粉碎到200目,连同粗正负极材料1、粗正负极材料2、粗正负极材料3,用震动跳汰机进行分选出铜粉、铝粉、正负极材料、塑料粉末和隔膜制浆,正负极材料与塑料粉末、隔膜纸浆分别通过抽滤机抽滤,分选物干燥后分别为铜粉1596.3g,铝粉2993.5g,  正负极材料6580.4g和塑料粉末、隔膜制浆1861.5g。
实施例3: 一种废旧锂离子电池的拆解分离方法,采取如下步骤:a.编码登记:将回收的废旧锂离子电池进行编码登记。
b.带电撕裂:将编号为H-50321、H-57106的废旧锂离子电池,称量为68.6kg,连同外壳放置于水中将其淹没,用对辊机将其撕裂并划成小于15×15mm的碎片。
c.带水筛分:撕裂后的混合物碎片在流水的推动下,用150目筛片,进行湿法筛分,筛下为水、电解液、撕裂过程中脱落的正负极材料;筛上为含有正负极材料的铜箔、铝箔、铁壳、塑料外壳、隔膜纸等的碎片混合物。
d.电解液收集:步骤②湿法筛分的筛下物,通过油水分离器进行油水分离,轻液为电解液,量筒量得体积为 1600 mL,重液和沉淀为水和粗正负极材料1,用抽滤机分离烘干后的干粉为710.4g。
e.磁选除铁:步骤②湿法筛分的滚筒筛筛上物,用磁铁,选出碎片混合物中的铁,废铁片重量为41.88kg。
f.湿法脱胶:通过磁选后除去铁的物料是粘有正负极材料的铜箔、铝箔、以及塑料、隔膜纸等的碎片混合物,放入0.2m 3反应桶内,加入0.15m 3,加入四氢呋喃0.01m 3,搅拌30分钟,看到明显的正极材料表面有起泡现象。用150目筛片进行第二次湿法筛分,筛下物为溶胶液和脱离出的正负极材料,用抽滤机抽滤后,滤饼为粗正负极材料3,称重为2112.3g,筛上物含水率35.4%,是粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物,进入带水粉碎操作。
g.带水粉碎、筛分:将湿法脱胶步骤中的第二次湿法筛分后,粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物(含水14.1%) 40915.4g,加水 10kg,在粉碎机中粉碎到200目以下,再用一个150目筛片的进行湿法筛分,筛下物是正负极材料和水,用抽滤机压滤,滤饼为粗正负极材料2,称重为 8287.6g(含水31.5%),筛上物继续再加水10kg,粉碎到200目,连同粗正负极材料1、粗正负极材料2、粗正负极材料3,用震动跳汰机进行分选出铜粉、铝粉、正负极材料、塑料粉末和隔膜制浆,正负极材料与塑料粉末、隔膜纸浆分别通过抽滤机抽滤,滤饼干燥后分别为铜粉3192.8g,铝粉6008.1g,正负极材料13155.4g和塑料粉末、隔膜制浆3720.9g。
实施例4: 一种废旧锂离子电池的拆解分离方法,采取如下步骤:a.编码登记:将回收的废旧锂离子电池进行编码登记。
b.带电撕裂:将型号为18650的废旧锂离子电池,称量为20kg,放置于水中将其淹没,用对辊机将其撕裂并划成15×15mm的碎片。
c.带水筛分:撕裂后的混合物碎片在流水的推动下,用150目筛片,进行湿法筛分,筛下为水、电解液、撕裂过程中脱落的正负极材料;筛上为含有正负极材料的铜箔、铝箔、铁壳、塑料外壳、隔膜纸等的碎片混合物。
d.电解液收集:将步骤c带水筛分的筛下物,通过油水分离器进行油水分离,轻液为电解液,量筒量得体积为 1150m L,重液和沉淀为水和粗正负极材料1,用抽滤机分离烘干后的干粉为325.1g。
e.磁选除铁:将步骤c带水筛分的滚筒筛筛上物,用磁铁,选出碎片混合物中的铁,废铁片重量为4792.1g。
f.湿法脱胶:通过磁选后除去铁的物料是粘有正负极材料的铜箔、铝箔、以及塑料、隔膜纸等的碎片混合物,放入0.2m 3反应桶内,加入0.15m 3,加入四氢呋喃0.01m 3,搅拌15分钟,看到明显的正极材料表面有起泡现象。用150目筛片进行第二次湿法筛分,筛下物为溶胶液和脱离出的正负极材料,用抽滤机抽滤后,滤饼为粗正负极材料3,称重为1425.8g,筛上物(含水32.7%)是粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物,进入带水粉碎操作。
g.带水粉碎、筛分:将步骤⑤第二次湿法筛分后,粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物14833.3g(含水16.2%),加水10kg,在粉碎机中粉碎到200目以下,再用一个150目筛片的进行湿法筛分,筛下物是正负极材料和水,用抽滤机压滤,滤饼为粗正负极材料2,称重为 4028.7g(含水25.65%),筛上物继续再加水粉碎到200目,连同粗正负极材料1、粗正负极材料2、粗正负极材料3,用震动跳汰机进行分选出铜粉、铝粉、正负极材料、塑料粉末和隔膜制浆,正负极材料与塑料粉末、隔膜纸浆分别通过抽滤机抽滤,滤饼干燥后,分别为铜粉1612.4g,铝粉3004.9g,  正负极材料6412.1g和塑料粉末、隔膜制浆4172.6g。
本发明实施例采用的对辊机、滚筒筛均匀河南郑矿机器有限公司生产的市场产品,对辊机型号为2PG0425型,滚筒筛型号为GTS-0608型。
表1本发明拆解组分检测数据表。
Figure 564204dest_path_image001
表2本发明实例4各组分成分检测数据表。
Figure 825421dest_path_image002
以上所述,仅为本发明的说明实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,做出的若干改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明精神和范围的情况下,利用以上所揭示的技术内容做出的些许更改、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所做的任何等同变化的更改、修饰与演变,均仍属于本发明的保护范围。
工业实用性
本发明技术已完成了大试。

Claims (10)

  1. 一种废旧锂离子电池的拆解分离方法,其特征在于:废旧锂离子电池经去除外壳后的电池包或电芯,无需放电,直接带水带电撕裂,然后进行第一次湿法筛分,在回收电解液和磁选除铁后无需干燥,直接湿法脱胶,接着第二次湿法筛分后,再进行第一次带水粉碎、第三次湿法筛分和第二次带水粉碎,最后跳汰分离得到铜粉、铝粉、正负极材料、塑料粉和隔膜纸浆。
  2. 根据权利要求1所述的一种废旧锂离子电池的拆解分离方法,其特征在于:所述无需放电:是指电芯或电池包所带的电压在36伏特以内,无需通过物理和化学手段使之下降或消失。
  3. 根据权利要求1所述的一种废旧锂离子电池的拆解分离方法,其特征在于:所述直接带水带电撕裂:拆壳后的废旧锂离子电池包或电芯无需放电,在质量比为1-10倍水的保护下,或者直接在喷水条件下放入对辊撕裂机中进行带电撕裂,撕裂成小于15×15mm的碎片。
  4. 根据权利要求1所述的一种废旧锂离子电池的拆解分离方法,其特征在于:在所述第一次湿法筛分:撕裂后的混合物碎片在水的推动下,通过150目筛片的滚筒筛,进行湿法筛分,筛下为水、电解液、撕裂过程中脱落的正负极材料;筛上为含有正负极材料的铜箔、铝箔、铁壳、塑料外壳、隔膜纸等的碎片混合物。
  5. 根据权利要求1所述的一种废旧锂离子电池的拆解分离方法,其特征在于:所述电解液收集:对所述湿法筛分的筛下物进行油水分离,轻液为电解液,重液和沉淀为水和粗正负极材料1,用板框压滤机分离后,滤饼为粗正负极材料1,滤液返回本工段作为撕裂用水,电解液用密闭的铁桶承装,放置于仓库中存放,作为电解液送有资质的单位处理。
  6. 根据权利要求1所述的一种废旧锂离子电池的拆解分离方法,其特征在于:所述磁选除铁:对所述湿法筛分的筛上物,通过两段磁选,将电池包和电芯撕裂后的铁片选出,包装入库;两段磁选的目的是第一段磁选中被铁片夹带的其他非磁性物在转换到第二段磁选时在水的作用下发生位移,非磁性物自动脱离夹带与铁片分离。
  7. 根据权利要求1所述的一种废旧锂离子电池的拆解分离方法,其特征在于:所述的湿法脱胶:是将电池撕裂后的碎片,在脱胶桶内用脱胶剂浸泡和搅拌一定时间,使正负极材料与铜箔、铝箔脱离或其粘胶失效,使之容易剥离。
  8. 根据权利要求1所述的一种废旧锂离子电池的拆解分离方法,其特征在于:所述第二次湿法筛分,对湿法脱胶后的物料过150目筛网的滚筒筛,筛下物为溶胶液和脱离出的正负极材料,通过板框压滤机压滤后,滤饼为粗正负极材料3;滤液为含有脱胶剂的水,返回补加一定量脱胶剂循环使用,筛上物是粘附有正负极材料的铜箔、铝箔和塑料、隔膜纸等的碎片混合物,进入一次粉碎、筛分。
  9. 根据权利要求1所述的一种废旧锂离子电池的拆解分离方法,其特征在于:所述第三次湿法筛分,将第一次带水粉碎后的物料过150目筛网的滚筒筛,筛下物是正负极材料和水,通过板框压滤机压滤,滤饼为粗正负极材料2;滤液为水返回本工段的粉碎、筛分工序,循环使用;筛上物是铜粉、铝粉和塑料粉、隔膜纸桨、正负极材料粉。
  10. 根据权利要求1所述的一种废旧锂离子电池的拆解分离方法,其特征在于:所述跳汰分离,是将第二次带水粉碎后的筛上物,连同粗正负极材料1、粗正负极材料2、粗正负极材料3,一齐进入选矿跳汰机,进行带水跳汰重选,分选出铜粉、铝粉、正负极材料、塑料粉末和隔膜制浆,正负极材料与塑料粉末、隔膜制浆分别通过板框压滤机压滤,滤饼为分别为正负极材料与塑料粉末、隔膜纸浆,包装入库,滤液为水,返回本工段的粉碎工序作为添加水,循环使用。
PCT/CN2021/122034 2020-10-04 2021-09-30 一种废旧锂离子电池的拆解分离方法 WO2022068916A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21874570.1A EP4129509A4 (en) 2020-10-04 2021-09-30 METHOD FOR DISASSEMBLY AND SEPARATION OF WASTE LITHIUM-ION BATTERIES
JP2022568550A JP2023525095A (ja) 2020-10-04 2021-09-30 使用済みリチウムイオン電池の解体分離方法
KR1020237004008A KR20230038506A (ko) 2020-10-04 2021-09-30 폐 리튬 이온 배터리의 분해 분리 방법
US17/969,575 US20230052068A1 (en) 2020-10-04 2022-10-19 Method for disassembling and separating waste lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011067024.0 2020-10-04
CN202011067024.0A CN112246835B (zh) 2020-10-04 2020-10-04 一种废旧锂离子电池的拆解分离方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/969,575 Continuation US20230052068A1 (en) 2020-10-04 2022-10-19 Method for disassembling and separating waste lithium-ion battery

Publications (1)

Publication Number Publication Date
WO2022068916A1 true WO2022068916A1 (zh) 2022-04-07

Family

ID=74234812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122034 WO2022068916A1 (zh) 2020-10-04 2021-09-30 一种废旧锂离子电池的拆解分离方法

Country Status (6)

Country Link
US (1) US20230052068A1 (zh)
EP (1) EP4129509A4 (zh)
JP (1) JP2023525095A (zh)
KR (1) KR20230038506A (zh)
CN (1) CN112246835B (zh)
WO (1) WO2022068916A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198692A1 (de) * 2022-04-13 2023-10-19 REELEMENTS GmbH Verfahren sowie anlage zum recycling von batterie-zellen oder teilen hiervon

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112246835B (zh) * 2020-10-04 2022-03-04 湖南金源新材料股份有限公司 一种废旧锂离子电池的拆解分离方法
CN113927529B (zh) * 2021-11-08 2023-07-25 武汉蔚能电池资产有限公司 电池包拆解方法
CN114204129B (zh) * 2021-12-03 2023-06-30 湖北亿纬动力有限公司 一种回收利用正极制胶过程形成团聚或板结胶状物的方法
CN116315232A (zh) * 2023-03-29 2023-06-23 盐城工学院 一种废旧动力电池环保回收再利用方法
CN116904762B (zh) * 2023-09-14 2023-12-08 中南大学 废旧锂电池粉正极材料与集流体剥离回收铝的方法
CN117577991A (zh) * 2024-01-16 2024-02-20 深圳市杰成镍钴新能源科技有限公司 不良正极材料的湿式回收方法、正极材料及磷酸铁锂电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637921A (zh) * 2012-04-19 2012-08-15 西南科技大学 一种新型高效废旧锂离子电池资源化综合利用方法
CN105789724A (zh) * 2014-12-24 2016-07-20 中国电子工程设计院 一种废锂离子电池的处理方法
CN106391267A (zh) * 2016-11-29 2017-02-15 哈尔滨巴特瑞资源再生科技有限公司 一种报废锂离子动力锂电池带电破碎组合装置
CN108461855A (zh) * 2018-02-26 2018-08-28 荆门市格林美新材料有限公司 一种废旧锂电池的拆解回收系统及拆解回收方法
CN110120560A (zh) * 2019-04-16 2019-08-13 福建常青新能源科技有限公司 一种废旧三元锂电池回收分选工艺
CN210079631U (zh) * 2019-04-17 2020-02-18 广东邦普循环科技有限公司 一种废旧动力锂电池液下带电破碎装置
CN111085334A (zh) * 2019-12-10 2020-05-01 银隆新能源股份有限公司 一种重选法回收废旧动力电池的方法及跳汰设备
CN112246835A (zh) * 2020-10-04 2021-01-22 湖南金源新材料股份有限公司 一种废旧锂离子电池的拆解分离方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716199B1 (ko) * 2006-06-23 2007-05-10 한국지질자원연구원 폐 리튬 일차전지 처리장치 및 그 방법
JP5664043B2 (ja) * 2010-09-09 2015-02-04 住友金属鉱山株式会社 廃リチウムイオン電池電解液の再利用方法
KR101275849B1 (ko) * 2011-05-13 2013-06-17 엘에스니꼬동제련 주식회사 리튬이온전지의 재생공정을 위한 전처리방법
JP6859598B2 (ja) * 2016-03-18 2021-04-14 三菱マテリアル株式会社 使用済みリチウムイオン電池からの有価物回収方法
JP6198027B1 (ja) * 2017-01-24 2017-09-20 三菱マテリアル株式会社 使用済みリチウムイオン電池からの有価物回収方法
CN107293817A (zh) * 2017-06-08 2017-10-24 深圳市恒创睿能环保科技有限公司 一种废旧锂离子电池各组分高效解离与分类回收方法
JP7122093B2 (ja) * 2017-08-23 2022-08-19 住友大阪セメント株式会社 使用済みリチウムイオン電池からの有価物回収方法
JP6748274B2 (ja) * 2018-10-11 2020-08-26 Dowaエコシステム株式会社 リチウムイオン二次電池からの有価物の回収方法
CN109585963B (zh) * 2018-11-30 2021-12-21 先进储能材料国家工程研究中心有限责任公司 废旧锂离子电池电解液回收处理方法
CN109834107B (zh) * 2019-02-22 2021-06-11 合肥国轩高科动力能源有限公司 一种带电废旧动力电池破碎分选装置及方法
JP6651115B1 (ja) * 2019-05-07 2020-02-19 株式会社アサカ理研 リチウムイオン電池からのリチウムの回収方法
CN110976495A (zh) * 2020-01-15 2020-04-10 湖南江冶新能源科技股份有限公司 一种废旧动力锂电池全湿法带电破碎分选工艺及装备
CN111430832B (zh) * 2020-03-11 2021-06-29 中南大学 一种废旧三元锂离子电池无需放电预处理的全资源回收方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637921A (zh) * 2012-04-19 2012-08-15 西南科技大学 一种新型高效废旧锂离子电池资源化综合利用方法
CN105789724A (zh) * 2014-12-24 2016-07-20 中国电子工程设计院 一种废锂离子电池的处理方法
CN106391267A (zh) * 2016-11-29 2017-02-15 哈尔滨巴特瑞资源再生科技有限公司 一种报废锂离子动力锂电池带电破碎组合装置
CN108461855A (zh) * 2018-02-26 2018-08-28 荆门市格林美新材料有限公司 一种废旧锂电池的拆解回收系统及拆解回收方法
CN110120560A (zh) * 2019-04-16 2019-08-13 福建常青新能源科技有限公司 一种废旧三元锂电池回收分选工艺
CN210079631U (zh) * 2019-04-17 2020-02-18 广东邦普循环科技有限公司 一种废旧动力锂电池液下带电破碎装置
CN111085334A (zh) * 2019-12-10 2020-05-01 银隆新能源股份有限公司 一种重选法回收废旧动力电池的方法及跳汰设备
CN112246835A (zh) * 2020-10-04 2021-01-22 湖南金源新材料股份有限公司 一种废旧锂离子电池的拆解分离方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198692A1 (de) * 2022-04-13 2023-10-19 REELEMENTS GmbH Verfahren sowie anlage zum recycling von batterie-zellen oder teilen hiervon

Also Published As

Publication number Publication date
EP4129509A4 (en) 2023-11-15
JP2023525095A (ja) 2023-06-14
US20230052068A1 (en) 2023-02-16
CN112246835B (zh) 2022-03-04
CN112246835A (zh) 2021-01-22
EP4129509A1 (en) 2023-02-08
KR20230038506A (ko) 2023-03-20

Similar Documents

Publication Publication Date Title
WO2022068916A1 (zh) 一种废旧锂离子电池的拆解分离方法
CN108110356B (zh) 一种全自动废旧锂离子电池回收工艺及系统
CN108011146B (zh) 废旧锂电池再资源化回收方法
CN208226042U (zh) 一种废旧电池的资源化回收利用系统
WO2017145099A1 (en) Process for recovery of pure cobalt oxide from spent lithium ion batteries with high manganese content
CN104577249A (zh) 一种废旧钴酸锂锂离子电池资源化的处理方法
US11870095B2 (en) Method for treating waste diaphragm paper of lithium battery
CN106191466A (zh) 一种从废旧磷酸铁锂电池中回收锂的方法
CN108711651A (zh) 一种废旧电池的资源化回收利用工艺和系统
JPH06207227A (ja) ニッケル−カドミウム電池或いはニッケル−水素化物−電池を処理する方法
CN107069078B (zh) 一种锂离子电池极片材料的回收方法
CN109818097A (zh) 一种废旧锂电池溶剂萃取处理电解液与粘结剂的工艺
CN108461855A (zh) 一种废旧锂电池的拆解回收系统及拆解回收方法
CN102009054A (zh) 一种废旧锂离子电池高效粉碎新工艺
CN108134153A (zh) 一种废旧锂离子电池的处理方法
CN105870533A (zh) 回收锂离子电池正极边角料的方法
CN110694771A (zh) 一种废旧三元锂电池柔性气流脱粉方法
CN111180821B (zh) 一种废旧锂离子电池无害化回收分选方法
WO2022147937A1 (zh) 一种处理废旧锂电池铜铝料的方法和应用
WO2021209074A1 (zh) 锂离子动力电池回收方法
CN116425150A (zh) 一种微波处理废旧石墨制备石墨烯的方法
CN208208918U (zh) 一种废旧锂电池的拆解回收系统
CN112207118A (zh) 一种废旧锂电池拆解物料的湿法脱胶方法
CN115970848B (zh) 一种锂离子电池的回收分选方法及系统
KR102499905B1 (ko) 폐리튬이온배터리팩 재활용시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021874570

Country of ref document: EP

Effective date: 20221031

ENP Entry into the national phase

Ref document number: 2022568550

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237004008

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE