WO2024029516A1 - 多孔質キャリア粒子、機能性成分担持粒子及び多孔質キャリア粒子の製造方法 - Google Patents

多孔質キャリア粒子、機能性成分担持粒子及び多孔質キャリア粒子の製造方法 Download PDF

Info

Publication number
WO2024029516A1
WO2024029516A1 PCT/JP2023/028068 JP2023028068W WO2024029516A1 WO 2024029516 A1 WO2024029516 A1 WO 2024029516A1 JP 2023028068 W JP2023028068 W JP 2023028068W WO 2024029516 A1 WO2024029516 A1 WO 2024029516A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier particles
particles
water
porous carrier
functional component
Prior art date
Application number
PCT/JP2023/028068
Other languages
English (en)
French (fr)
Inventor
智明 奥嶋
豊 奥田
Original Assignee
東和薬品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東和薬品株式会社 filed Critical 東和薬品株式会社
Publication of WO2024029516A1 publication Critical patent/WO2024029516A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles

Definitions

  • the present invention relates to porous carrier particles, functional component-supporting particles, and a method for producing porous carrier particles.
  • Methods for administering functional ingredients such as medicinal ingredients into the body include local administration, enteral administration, and parenteral administration.
  • the administered functional ingredient needs to be transported from the place where it is introduced into the body to the target site where its function is expressed.
  • oral administration which is one type of enteral administration
  • the functional ingredient passes through the mouth and stomach and is absorbed in the small intestine. Therefore, functional components need to be transported to the small intestine.
  • a mechanism in which functional ingredients are supported on a carrier called a carrier is useful.
  • the carrier is required to exhibit a large capacity for functional ingredients, for example, with a small particle size. Porous inorganic materials are being considered as such materials.
  • Patent Document 1 discloses a crystalline mesoporous silica material that has a zeolite-type micropore skeleton (expressed as a nanometer-sized structural unit) and does not cause Bragg diffraction in X-ray diffraction, and a material that transmits a drug. Discloses the use of materials.
  • US Pat. No. 5,001,501 discloses that when using zeolite materials, the drug release rate is less than 80%.
  • Porous materials formed from inorganic compounds tend to increase the specific surface area.
  • inorganic compounds are water-insoluble and cannot be dissolved in the body. In this case, there is a problem that not all of the functional ingredients supported by the carrier are released, making it impossible to administer the desired dose into the body.
  • the present invention was made in view of the above circumstances, and an object of the present invention is to provide water-soluble porous carrier particles that can support functional components and have a high BET specific surface area.
  • the present invention includes the following [1] to [7].
  • [1] Porous carrier particles containing a water-soluble polymer having a helical structure with glucose as a unit and having a BET specific surface area of 1 m 2 /g or more.
  • [2] The porous carrier particle according to [1], wherein the water-soluble polymer is a water-soluble polysaccharide.
  • [3] The porous carrier particle according to [1] or [2], wherein the water-soluble polysaccharide is one or more selected from the group consisting of dextrin, dextran, agarose, and pullulan.
  • water-soluble porous carrier particles that can support functional components and have a high BET specific surface area.
  • Example 1 is an electron micrograph of porous carrier particles produced in Example 1.
  • 3 is an electron micrograph of porous carrier particles produced in Example 2.
  • porous carrier particles of the present invention contain a water-soluble polymer and are water-soluble.
  • the porous carrier particles of the present invention may be referred to as "carrier particles”.
  • Water-soluble carrier particles completely dissolve in vivo. Therefore, both the supported functional component and the carrier particles are completely dissolved in the living body, and the functional component can be completely released. Moreover, since it is porous, the contact area with the surrounding medium becomes large, so that it can also exhibit quick dissolution properties.
  • water-soluble porous particles As water-soluble porous particles, the known water-soluble porous particles described in, for example, JP-A-4-335870 have a BET specific surface area of 0.2 m 2 /g or less, which is very small.
  • the carrier particles of the present invention have a higher specific surface area than conventional water-soluble porous particles. Therefore, the amount of functional components supported can be increased compared to conventional water-soluble porous particles.
  • Water-soluble means having a solubility of 1 g or more in 100 g of distilled water at 25° C. and 1 atm.
  • Porous means a state in which it has a large number of pores and a BET specific surface area of 1 m 2 /g or more.
  • the carrier particles consist essentially of a water-soluble polymer.
  • substantially consisting of a water-soluble polymer refers to a form in which the carrier particle consists only of a water-soluble polymer, and a form in which the carrier particle contains other components to the extent that it does not reduce its function as a carrier for functional ingredients. means.
  • Does not reduce its function as a carrier for functional ingredients, etc. means that it does not reduce the amount of functional ingredients supported, and that it can be administered in vivo when used as a pharmaceutical. Specifically, this means that the content of other components is 1% by mass or less based on the entire carrier particles, and preferably 0.1% by mass or less. Each component will be explained below.
  • the water-soluble polymer in this embodiment has a helical structure with glucose as a unit. Whether or not the carrier particles contain a water-soluble polymer having a helical structure in which glucose is a unit can be confirmed by the following method.
  • the carrier particles According to the dextrin confirmation method described in the 18th Japanese Pharmacopoeia, page 1150, add 100 mL of water to 0.1 g of carrier particles, and add 1 drop of iodine test solution. If the liquid exhibits a light reddish brown or light reddish purple color after adding the iodine test solution, it is determined that the carrier particles contain a water-soluble polymer having a helical structure with glucose units as units.
  • the water-soluble polymer used in this embodiment is preferably a natural polymer from the viewpoint of safe administration when the carrier particles are used for pharmaceutical purposes.
  • water-soluble polysaccharide can be used as the natural polymer.
  • the water-soluble polysaccharide used in this embodiment is a water-soluble polymer in which glucose is polymerized into a chain and has a helical structure. It is preferable that the water-soluble polysaccharide has a multi-branched three-dimensional network structure.
  • the water-soluble polysaccharide having a three-dimensional network structure is preferably one or more selected from the group consisting of dextrin, dextran, agarose, and pullulan, and among them, dextrin is more preferable.
  • the water-soluble polymer does not contain metal elements. Further, it is preferable that the entire carrier particle does not contain any metal element.
  • carrier particles After spray-drying a solution containing a water-soluble polymer to obtain precursor particles, the obtained precursor particles are mixed with an organic solvent to obtain a mixture. Carrier particles are obtained by removing the liquid from the resulting mixture.
  • a portion of the glucose chains (e.g., maltose, maltotriose, etc.) contained in the three-dimensional network structure (precursor particles) are extracted and removed with an organic solvent.
  • the locations where the extract was present become micropores, and carrier particles are formed.
  • the carrier particles preferably do not contain the organic acid described below, but may contain a small amount. "The carrier particles do not contain organic acid” means that when the amount of organic acid contained in the carrier particles is measured, the amount of organic acid measured is below the detection limit.
  • an organic acid may or may not be used, but if used, it is ultimately removed. Depending on the removal method, a small amount of organic acid may remain in the carrier particles. In this case, it is preferable that the amount of organic acid in the carrier particles is 1% or less, as measured by the method described below.
  • Organic acids can be detected by dissolving carrier particles in an aqueous phosphoric acid solution and then analyzing the resulting solution using high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • the carrier particles have a BET specific surface area of 1 m 2 /g or more, preferably 40 m 2 /g or more, more preferably 50 m 2 /g or more, particularly preferably 100 m 2 /g or more, and even more preferably 150 m 2 /g or more.
  • the upper limit of the BET specific surface area is, for example, 1000 m 2 /g or less, 900 m 2 /g or less, or 800 m 2 /g or less. The above upper and lower limits of the BET specific surface area can be arbitrarily combined.
  • Examples of combinations include 1 m 2 /g to 1000 m 2 /g, 40 m 2 /g to 1000 m 2 /g, 50 m 2 /g to 1000 m 2 /g, 100 m 2 /g to 900 m 2 /g, Examples include 150 m 2 /g or more and 800 m 2 /g or less.
  • the BET specific surface area of the carrier particles is measured by the nitrogen adsorption BET (Brunauer, Emmett, Teller) method using a specific surface area measuring device.
  • a specific surface area measuring device manufactured by Mountech device name: Macsorb
  • Mountech device name: Macsorb
  • the shape of the carrier particles is not particularly limited, it is preferably spherical. Particle shape can be confirmed by static image analysis. Static image analysis can be performed by a static automatic image analysis device. As a static automatic image analysis device, for example, Morphologi 4 manufactured by Malvern Panalytical can be used.
  • the average particle diameter of the carrier particles can be, for example, in the range of 5 ⁇ m or more and 1000 ⁇ m or less, 10 ⁇ m or more and 800 ⁇ m or less, 20 ⁇ m or more and 600 ⁇ m or less, 30 ⁇ m or more and 500 ⁇ m or less, 40 ⁇ m or more and 400 ⁇ m or less, and 50 ⁇ m or more and 300 ⁇ m or less.
  • the average particle diameter of carrier particles can be measured by laser diffraction or laser scattering.
  • Method for manufacturing carrier particles will be explained using an example in which spherical carrier particles are manufactured. Examples of the method for manufacturing carrier particles include Manufacturing Method 1 or Manufacturing Method 2 below.
  • Method 1 for manufacturing carrier particles includes a step of obtaining precursor particles using a water-soluble polymer (manufacturing raw material) and a step of obtaining carrier particles.
  • a water-soluble polymer as a manufacturing raw material is dissolved in water to obtain an aqueous solution. Thereafter, the obtained aqueous solution is spray-dried to obtain precursor particles.
  • a known spray drying device can be used for spray drying.
  • the concentration of solid content (solute) contained in the aqueous solution is preferably in the range of 30% or more and 80% or less, more preferably 40% or more and 60% or less.
  • the concentration of solids in the aqueous solution is equal to or higher than the above lower limit, precursor particles with a solid structure filled with contents will be obtained, and when the liquid is removed by mixing with an organic solvent in a later step, more particles will be obtained. Pores are formed.
  • the solid content concentration of the aqueous solution is below the above upper limit, spray drying is easy, and the precursor particles and the carrier particles obtained in the subsequent step become close to spherical.
  • An example of spray drying conditions is that the inlet temperature is 120° C. to 160° C., the outlet temperature is 80° C. to 120° C., and the aqueous solution supply rate is 5 kg/hour to 25 kg/hour.
  • the water-soluble polymer is the same as described in ⁇ Porous carrier particles> above.
  • the precursor particles and organic solvent are mixed and the liquid is removed from the mixture.
  • organic solvent known organic solvents can be used.
  • a hydrophilic organic solvent is preferable, and as the hydrophilic organic solvent, for example, ethanol and methanol are preferable.
  • the precursor particles and the organic solvent can be mixed by suspending the precursor particles in a heated organic solvent and holding the suspension for a predetermined period of time or longer.
  • the heating temperature and time can be adjusted as appropriate depending on the organic solvent used, but for example, the heating temperature is maintained at 0° C. to 70° C. for 10 minutes or more and 120 minutes or less.
  • a part of the glucose chain e.g., a sugar whose basic unit is glucose such as maltose or maltotriose
  • a part of the glucose chain e.g., a sugar whose basic unit is glucose such as maltose or maltotriose
  • the removal marks become pores, and carrier particles are obtained.
  • the liquid to be removed here is an organic solvent containing a portion of the glucose chains that constitute the water-soluble polymer (manufacturing raw material).
  • the water-soluble polymer used as a production raw material includes, for example, dextrin.
  • the starch saccharification rate of dextrin as a manufacturing raw material is not particularly limited, and may be dextrin with a DE value of 10 or less, maltodextrin with a DE value of more than 10 and 20 or less, and There may be more than 20 dextrins.
  • a known method can be used to remove the liquid from the mixture, such as a filtration method or a decantation method. Further, by repeating mixing the particles obtained by removing the liquid with an organic solvent and removing the liquid from the mixture, it is possible to increase the specific surface area of the obtained carrier particles.
  • the carrier particle manufacturing method 2 includes a step of obtaining precursor particles that are particles of a water-soluble polymer (manufacturing raw material), and a step of obtaining carrier particles.
  • a template is added to the aqueous solution in the step of obtaining precursor particles.
  • Organic acids, sugars or sugar alcohols can be used as templates.
  • organic acid is preferably citric acid, malic acid, tartaric acid, succinic acid, or adipic acid, and more preferably citric acid, malic acid, or tartaric acid.
  • Sugars are, for example, monosaccharides or disaccharides. Glucose, fructose, and galactose can be used as monosaccharides.
  • disaccharides examples include sucrose, lactose, maltose, trehalose, and cellobiose. Among these, the disaccharide is preferably maltose or trehalose, and trehalose is particularly preferred.
  • Sugar alcohols include mannitol, erythritol, or xylitol.
  • Production method 2 is preferably used when a dextrin with a low content of maltose or maltotriose is used as a production raw material.
  • this production method 2 instead of maltose or maltotriose in the dextrin used as a production raw material, the removal traces of the added template become pores, making it easier to obtain carrier particles with a high BET specific surface area.
  • the present invention provides functional component-supporting particles in which the above carrier particles support a functional component.
  • functional ingredients include medicinal medicinal ingredients, pharmaceutical additives, functional food ingredients, pigments, fragrances, and the like.
  • the carrier particles of this embodiment have rapid solubility and can release all supported components, so they can be suitably used as carriers for pharmaceutically effective ingredients.
  • Examples of medicinal active ingredients carried include antipyretic, analgesic, and antiinflammatory drugs, psychotropic drugs, antianxiety drugs, antidepressants, sleep sedatives, antispasmodics, central nervous system agents, cerebral metabolism improving drugs, cerebral circulation improving drugs, and antispasmodic drugs.
  • Epilepsy drugs sympathomimetic drugs, gastrointestinal drugs, antacids, antiulcer drugs, antitussive expectorants, antiemetics, respiratory stimulants, bronchodilators, allergy drugs, dental and oral drugs, antihistamines, cardiac drugs, arrhythmia drugs , diuretics, antihypertensive agents, vasoconstrictors, coronary vasodilators, peripheral vasodilators, antihyperlipidemia agents, choleretic agents, antibiotics, chemotherapeutic agents, antidiabetic agents, osteoporosis agents, One or more ingredients selected from rheumatism drugs, antispasmodics, hormonal drugs, alkaloid drugs, sulfa drugs, gout treatment drugs, blood clotting inhibitors, anti-malignant tumor drugs, nutritional and tonic health drugs, etc. are used. .
  • Functional food ingredients include vitamins such as vitamin A, vitamin D, and vitamin E, and higher unsaturated fatty acids such as DHA (docosahexaenoic acid), EPA (eicosapentaenoic acid), and cod liver oil.
  • DHA docosahexaenoic acid
  • EPA eicosapentaenoic acid
  • cod liver oil cod liver oil
  • the method for supporting the functional component on the carrier particles is preferably to impregnate the carrier particles with the desired functional component.
  • a method for example, the method described in US 10004682B2 can be used.
  • a functional component is dissolved in an organic solvent to obtain a functional component solution.
  • the organic solvent is, for example, ethanol.
  • a small amount of water (about 1% based on the total amount of the functional component solution) may be added to the organic solvent for the purpose of improving the solubility of the functional component.
  • the carrier particles and the functional component solution are mixed.
  • the method of mixing the carrier particles and the functional component solution include a method of dropping or spraying the obtained functional component solution onto the carrier particles. After mixing a predetermined amount of a functional component solution and carrier particles, the mixture is dried under reduced pressure at a temperature of 20° C. or higher and 60° C. or lower, thereby obtaining carrier particles carrying a functional component.
  • the carrier particles of this embodiment have a high affinity with oily substances and can be suitably used as a powder base material for oily substances.
  • the carrier particles of this embodiment may be used as a catalyst or as a catalyst carrier.
  • supported catalysts include catalysts containing platinum, palladium, and iridium as main components, and titanium oxide.
  • Aqueous solution 1 was obtained by dissolving 2.0 kg of dextrin (GLUCIDEX IT47) in 3.0 kg of water heated to 70°C. Note that the DE value of the dextrin used was 47. Aqueous solution 1 was sprayed with a spray dryer under the following conditions to obtain precursor particles 1. (Spraying conditions) Inlet temperature: 140°C Outlet temperature: 96-100°C Disc rotation speed: 5000 rpm Aqueous solution supply rate: Liquid rate 7kg/hour
  • Carrier Particle 1 satisfied the water solubility and porous conditions defined herein.
  • carrier particles 1 were spherical.
  • the specific surface area of carrier particles 1 measured by the above [Method for measuring BET specific surface area] was 174 m 2 /g.
  • the pore diameter of carrier particle 1 was 11.9 nm, and the pore volume was 0.52 cm 3 /g.
  • Example 2 [Step of obtaining precursor particles] 9 kg of water (water temperature 70°C), 12.6 kg of trehalose (manufactured by Hayashibara Co., Ltd., Trehalose P), 6.3 kg of dextrin (manufactured by Sanwa Starch Industries Co., Ltd., Sandek #300), and 2.1 kg of Anhydrous citric acid was mixed to obtain aqueous solution 2 with a solid content concentration of 70%. The DE of the dextrin used was 27. Aqueous solution 2 obtained under the following conditions was sprayed with a spray dryer to obtain precursor particles 2. (Spraying conditions) Inlet temperature: 140°C Outlet temperature: 101°C Disc rotation speed: 8000rpm Aqueous solution supply rate: 23kg/hour
  • Carrier particles 2 met the water-soluble and porous conditions defined herein.
  • carrier particles 2 were spherical.
  • the specific surface area of carrier particles 2 measured by the above [Method for measuring BET specific surface area] was 144 m 2 /g.
  • the pore diameter of carrier particle 2 was 13.8, and the pore volume was 0.50 cm 3 /g.
  • Example 3 [Step of obtaining precursor particles]
  • An aqueous solution 3 having a solid content concentration of 60% was obtained.
  • the DE of the dextrin used was 25.
  • Aqueous solution 3 obtained under the following conditions was sprayed with a spray dryer to obtain precursor particles 3.
  • Aqueous solution supply rate 100ml/min
  • Carrier particles 3 satisfied the water-soluble and porous conditions defined herein.
  • the specific surface area of the carrier particles 3 measured by the above [Method for measuring BET specific surface area] was 7.64 m 2 /g.
  • Example 4 [Step of obtaining precursor particles] 1000 g of water (water temperature 70°C), 1500 g of trehalose (Trehalose P, manufactured by Hayashibara Co., Ltd.), 600 g of dextrin (GLUCIDEX IT29, manufactured by ROQUETTE), and 233 g of anhydrous citric acid were mixed, and the solid content concentration was 70. A 4% aqueous solution was obtained. The DE of the dextrin used was 29. Aqueous solution 4 obtained under the following conditions was sprayed with a spray dryer to obtain precursor particles 4. (Spraying conditions) Inlet temperature: 140°C Outlet temperature: 99-100°C Disc rotation speed: 13000rpm Aqueous solution supply rate: 100ml/min
  • Carrier particles 4 met the water-soluble and porous conditions defined herein.
  • the specific surface area of the carrier particles 4 measured by the above [Method for measuring BET specific surface area] was 67.29 m 2 /g.
  • Carrier particles 5 were obtained in the same manner as in Example 4, except that dextrin was changed to dextrin (GLUCIDEX IT33, ROQUETTE).
  • Carrier particles 5 met the water-soluble and porous conditions defined herein.
  • the specific surface area of the carrier particles 5 measured by the above [Method for measuring BET specific surface area] was 82.17 m 2 /g.
  • the carrier particles of Examples 1 to 5 are porous and have a high specific surface area, it is possible to increase the amount of functional components supported. Further, since the porous carrier particles of Examples 1 to 5 are water-soluble, they completely dissolve in vivo. Therefore, both the supported functional component and the carrier particles are completely dissolved in the living body, and the functional component can be completely released.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)

Abstract

グルコースを単位とする螺旋構造を有する水溶性高分子を含有し、BET比表面積が1m2/g以上である、多孔質キャリア粒子。前記水溶性高分子は水溶性多糖であることが好ましい。前記水溶性多糖は、デキストリン、デキストラン、アガロース、及びプルランからなる群より選択される1種以上であることが好ましい。

Description

多孔質キャリア粒子、機能性成分担持粒子及び多孔質キャリア粒子の製造方法
 本発明は、多孔質キャリア粒子、機能性成分担持粒子及び多孔質キャリア粒子の製造方法に関する。
 本願は、2022年8月1日に、日本に出願された特願2022-122676号に基づき優先権を主張し、その内容をここに援用する。
 医薬品薬効成分等の機能性成分を体内に投与する方法としては、局所投与、経腸投与、及び非経口投与がある。投与された機能性成分は、体内に導入された場所からその機能が発現する目的の部位へと輸送される必要がある。
 経腸投与の一つである経口投与の場合、機能性成分は口と胃を通過して、小腸で吸収される。このため、機能性成分は小腸まで輸送される必要がある。
 体内の目的の部位に機能性成分を輸送するため、キャリアと呼ばれる担体に機能性成分を担持する仕組みが有用である。キャリアには、例えば小さい粒径で、大きな機能性成分の容量を発揮することが求められる。このような材料として、多孔質の無機材料が検討されている。
 例えば特許文献1は、ゼオライト型のミクロ孔の骨格(ナノメートルサイズの構造ユニットと明示)を有する、X線回折においてブラッグ回折を生じない結晶性メソ多孔質シリカ材料と、薬剤を伝達する、該材料の使用を開示している。特許文献1は、ゼオライト材料を用いた場合に、薬剤の放出率は80%未満であることを開示している。
特表2007-523817号公報
 無機化合物から形成される多孔質材料は比表面積を増大させやすい。
 一方、無機化合物は非水溶性であり、体内で溶解することができない。この場合、キャリアに担持された機能性成分が全て放出されず、所望の用量を体内に投与できないという課題がある。
 本発明は上記事情に鑑みてなされたものであって、機能性成分の担持が可能であり、高いBET比表面積を有する水溶性の多孔質キャリア粒子を提供することを目的とする。
 本発明は以下の[1]~[7]を包含する。
[1]グルコースを単位とする螺旋構造を有する水溶性高分子を含有し、BET比表面積が1m/g以上である、多孔質キャリア粒子。
[2]前記水溶性高分子は水溶性多糖である、[1]に記載の多孔質キャリア粒子。
[3]前記水溶性多糖は、デキストリン、デキストラン、アガロース、及びプルランからなる群より選択される1種以上である、[1]又は[2]に記載の多孔質キャリア粒子。[4]球形である、[1]~[3]のいずれか1つに記載の多孔質キャリア粒子。
[5][1]~[4]のいずれか1つに記載の多孔質キャリア粒子に機能性成分を担持させた、機能性成分担持粒子。
[6]前記機能性成分は医薬品薬効成分である、[5]に記載の機能性成分担持粒子。
[7]BET比表面積が1m/g以上である水溶性の多孔質キャリア粒子の製造方法であって、グルコースを単位とする螺旋構造を有する水溶性高分子を含む溶液を噴霧乾燥して、前駆体粒子を得る工程と、前記前駆体粒子に有機溶媒を混合し、混合物を得た後、前記混合物から液体を除去する工程とを含む製造方法。
 本発明によれば、機能性成分の担持が可能であり、高いBET比表面積を有する水溶性の多孔質キャリア粒子を提供することができる。
実施例1で製造した多孔質キャリア粒子の電子顕微鏡写真である。 実施例2で製造した多孔質キャリア粒子の電子顕微鏡写真である。
<多孔質キャリア粒子>
 本発明の多孔質キャリア粒子は水溶性高分子を含有しており、水溶性である。以下において、本発明の多孔質キャリア粒子を「キャリア粒子」と呼称する場合がある。水溶性のキャリア粒子は生体内で完全に溶解する。このため、担持させた機能性成分とキャリア粒子の双方が生体内で完全に溶解し、機能性成分を完全に放出することができる。また、多孔質であることにより、周囲の媒液との接触面積が大きくなるため、速溶性も発揮できる。
 水溶性の多孔質粒子として、例えば特開平4-335870に記載されている公知の水溶性の多孔質粒子はBET比表面積が0.2m/g以下と比表面積が非常に小さい。
 これに対し、本発明のキャリア粒子は従来の水溶性の多孔質粒子よりも比表面積が高い。このため、従来の水溶性の多孔質粒子よりも機能性成分の担持量を増大することができる。
 「水溶性」とは、25℃、1気圧における蒸留水100gに対して、1g以上の溶解度を有することを意味する。
 「多孔質」とは、多数の細孔を有し、BET比表面積が1m/g以上である状態を意味する。
 キャリア粒子は実質的に水溶性高分子からなることが好ましい。
 ここで、「実質的に水溶性高分子からなる」とは、キャリア粒子が水溶性高分子のみからなる形態と、機能性成分の担体としての機能を低下させない程度の他の成分を含む形態とを意味する。
 「機能性成分等の担体としての機能を低下させない」とは、機能性成分の担持量を低下させないことや、医薬品として用いた場合に生体内に投与可能であること等を意味する。具体的には、他の成分の含有割合が、キャリア粒子全体に対して1質量%以下であることを意味し、0.1質量%以下であることが好ましい。
 以下、各成分について説明する。
≪水溶性高分子≫
 本実施形態における水溶性高分子は、グルコースを単位とする螺旋構造をもつ。
 キャリア粒子がグルコースを単位とする螺旋構造を有する水溶性高分子を含むか否かは、以下の方法により確認できる。
 第十八回生日本薬局方、1150頁に記載のデキストリンの確認方法に従い、0.1gのキャリア粒子に水100mLを加え、ヨウ素試液1滴を加える。ヨウ素試液を加えた後、液が淡赤褐色又は淡赤紫色を呈した場合には、キャリア粒子がグルコースを単位とする螺旋構造を有する水溶性高分子を含むと判断する。
 本実施形態に用いる水溶性高分子は、キャリア粒子を医薬品用途で使用する場合に安全に服用する観点から、天然高分子が好ましい。天然高分子としては、具体的には水溶性多糖を使用できる。
 本実施形態に用いる水溶性多糖は、グルコースが鎖状に重合し、螺旋構造を有する水溶性の高分子である。水溶性多糖は、多岐に分岐した3次元網目構造を有することが好ましい。
 3次元網目構造を有する水溶性多糖は、デキストリン、デキストラン、アガロース、及びプルランからなる群より選択される1種以上が好ましく、なかでもデキストリンがより好ましい。
 また、安全に服用する観点から、水溶性高分子は金属元素を含まないことが好ましい。また、キャリア粒子全体中にも金属元素を含まないことが好ましい。
 キャリア粒子の製造方法の詳細は後述するが、水溶性高分子を含む溶液を噴霧乾燥して、前駆体粒子を得た後、得られた前駆体粒子を有機溶媒と混合し、混合物を得る。得られた混合物から液体を除去することでキャリア粒子が得られる。
 水溶性高分子が3次元網目構造を有すると、その3次元網目構造(前駆体粒子)中に含まれるグルコース鎖の一部(例えば、マルトース、マルトトリオース等)が有機溶媒で抽出除去され、被抽出物が存在した箇所が微細孔となり、キャリア粒子が形成される。
≪任意成分≫
 キャリア粒子は、後述する有機酸を含まないことが好ましいが、わずかに含んでいてもよい。
 「キャリア粒子が有機酸を含まない」とは、キャリア粒子に含まれる有機酸の量を測定した際に、測定される有機酸の量が検出限界以下であることを意味する。
 キャリア粒子の製造工程において、有機酸は使用してもよく、使用しなくてもよいが、使用した場合は最終的には除去される。除去方法によっては、有機酸がキャリア粒子内にわずかに残留する場合がある。この場合には、下記の方法により測定される、キャリア粒子中の有機酸の量が、1%以下であることが好ましい。
[キャリア粒子中の有機酸の測定方法]
 有機酸は、キャリア粒子をリン酸水溶液に溶解させた後、高速液体クロマトグラフ(HPLC)で分析することにより検出できる。
≪BET比表面積≫
 キャリア粒子は、BET比表面積が1m/g以上であり、40m/g以上が好ましく、50m/g以上がより好ましく、100m/g以上が特に好ましく、150m/g以上がさらに好ましい。BET比表面積の上限値は、例えば1000m/g以下、900m/g以下、800m/g以下である。
 BET比表面積の上記上限値及び下限値は任意に組み合わせることができる。組み合わせの例としては、1m/g以上1000m/g以下、40m/g以上1000m/g以下、50m/g以上1000m/g以下、100m/g以上900m/g以下、150m/g以上800m/g以下が挙げられる。
[BET比表面積の測定方法]
 キャリア粒子のBET比表面積は、比表面積測定装置を用い、窒素吸着BET(Brunauer,Emmett,Teller)法により測定する。比表面積測定装置としては、例えばマウンテック社製の比表面積測定装置(装置名;Macsorb)が使用できる。
≪形状≫
 キャリア粒子の形状は特に限定されないが、球状であることが好ましい。
 粒子形状は、静的画像解析により確認できる。
 静的画像解析は、静的自動画像分析装置により行うことができる。静的自動画像分析装置としては例えば、マルバーン・パナリティカル社製のモフォロギ4が使用できる。
≪粒子径≫
 キャリア粒子の平均粒子径は、例えば、5μm以上1000μm以下、10μm以上800μm以下、20μm以上600μm以下、30μm以上500μm以下、40μm以上400μm以下、50μm以上300μm以下の範囲とすることができる。
[平均粒子径の測定方法]
 キャリア粒子の平均粒子径は、レーザー回折、レーザー散乱によって測定できる。
 以下、本発明のキャリア粒子の製造方法を説明する。
<キャリア粒子の製造方法>
 キャリア粒子の製造方法について、球状のキャリア粒子を製造する場合を例に説明する。
 キャリア粒子の製造方法は、下記の製造方法1または製造方法2が挙げられる。
≪製造方法1≫
 キャリア粒子の製造方法1は、水溶性高分子(製造原料)を用いて前駆体粒子を得る工程と、キャリア粒子を得る工程と、を含む。
[前駆体粒子を得る工程]
 まず、製造原料としての水溶性高分子を水に溶解させ、水溶液を得る。その後、得られた水溶液を噴霧乾燥し、前駆体粒子を得る。噴霧乾燥には公知の噴霧乾燥装置が使用できる。
 水溶液が含む固形分(溶質)の濃度は、30%以上80%以下の範囲が好ましく、40%以上60%以下がより好ましい。
 水溶液中の固形分の濃度が上記下限値以上であると、中身の詰まった中実構造の前駆体粒子が得られ、後の工程で有機溶媒と混合して液体を除去した時に、より多くの細孔が形成される。水溶液の固形分の濃度が上記上限値以下であると、噴霧乾燥がし易く、且つ、前駆体粒子及び後工程で得られるキャリア粒子が球状に近づく。
 噴霧乾燥条件の一例は、入口温度を120℃~160℃とし、出口温度を80℃~120℃とし、水溶液の供給速度を5kg/時間~25kg/時間とする条件である。
 水溶性高分子は、上記<多孔質キャリア粒子>における説明と同様である。
[キャリア粒子を得る工程]
 前駆体粒子と有機溶媒とを混合し、混合物から液体を除去する。
 有機溶媒としては、公知の有機溶媒が使用できる。本実施形態においては、親水性の有機溶媒が好ましく、親水性の有機溶媒としては例えばエタノール、メタノールが好ましい。
 加熱した有機溶媒に前駆体粒子を懸濁し、所定時間以上、保持することにより前駆体粒子と有機溶媒とを混合できる。加熱温度及びその時間は、使用する有機溶媒に合わせて、適宜、調整可能だが、例えば、0℃~70℃で、10分間以上120分間以下で保持する。
 続いて、混合物から液体を除去することで、前駆体粒子から、水溶性高分子(製造原料)を構成するグルコース鎖の一部(例えば、マルトース、マルトトリオースといったグルコースを基本単位とした糖)が除去され、その除去痕が細孔となり、キャリア粒子が得られる。
 ここで除去する液体は、水溶性高分子(製造原料)を構成するグルコース鎖の一部を含む有機溶媒である。
 製造方法1において、製造原料として用いる水溶性高分子としては、例えばデキストリンが挙げられる。
 製造原料としてのデキストリンのデンプンの糖化率は、特に限定されず、DE値が10以下のデキストリンであってもよく、DE値が10を超え20以下のマルトデキストリンであってもよく、DE値が20を超えるデキストリンであってもよい。
 混合物からの液体の除去法としては、公知の方法を使用でき、例えば、濾過法、デカンテーション法が適用可能である。また、液体を除去して得られた粒子に、再度、有機溶媒を混合し、混合物から液体を除去することを繰り返すことで、得られるキャリア粒子の比表面積を高めることが可能である。
 なかでも、製造原料として用いるデキストリンに、マルトースやマルトトリオースの含有量が高いデキストリンを使用すると、マルトースやマルトトリオースの除去痕が細孔となり、BET比表面積が高いキャリア粒子が得られやすくなる。
≪製造方法2≫
 キャリア粒子の製造方法2は、水溶性高分子(製造原料)の粒子である前駆体粒子を得る工程と、キャリア粒子を得る工程と、を含む。
 上記製造方法1との相違点は、前駆体粒子を得る工程において、水溶液にテンプレート(型剤)を添加する点である。テンプレートとしては、有機酸、糖又は糖アルコールが使用できる。
 (有機酸)
 有機酸は、クエン酸、リンゴ酸、酒石酸、コハク酸、アジピン酸が好ましく、クエン酸、リンゴ酸、酒石酸がより好ましい。
(糖又は糖アルコール)
 糖は、例えば単糖又は二糖である。
 単糖は、グルコース、フルクトース、ガラクトースが使用できる。
 二糖は、例えばスクロース、ラクトース、マルトース、トレハロース、セロビオースが使用できる。中でも二糖は、マルトース又はトレハロースが好ましく、トレハロースが特に好ましい。
 糖アルコールとしては、マンニトール、エリスリトール、又はキシリトールが挙げられる。
 製造方法2は、マルトースやマルトトリオースの含有量の低いデキストリンを製造原料に用いる場合に好ましく用いられる。この製造方法2では、製造原料として用いたデキストリン中のマルトースやマルトトリオースの代わりに、添加したテンプレートの除去痕が細孔となり、BET比表面積が高いキャリア粒子が得られやすくなる。
<機能性成分担持粒子>
 本発明は、上記キャリア粒子に、機能性成分を担持させた機能性成分担持粒子である。
 機能性成分としては、医薬品薬効成分、医薬品添加物、機能性食品成分、色素、香料等が挙げられる。
 本実施形態のキャリア粒子は、速溶性を備え、担持した成分を全て放出できるため、医薬品薬効成分の担体として好適に使用できる。
 担持させる医薬品薬効成分としては、例えば、解熱鎮痛消炎薬、向精神薬、抗不安薬、抗うつ薬、睡眠鎮静薬、鎮痙薬、中枢神経作用薬、脳代謝改善薬、脳循環改善薬、抗てんかん薬、交感神経興奮薬、胃腸薬、制酸剤、抗潰瘍剤、鎮咳去痰剤、制吐剤、呼吸促進剤、気管支拡張剤、アレルギー用薬、歯科口腔用薬、抗ヒスタミン剤、強心剤、不整脈用剤、利尿薬、血圧降下剤、血管収縮薬、冠血管拡張薬、末梢血管拡張薬、高脂血症用剤、利胆剤、抗生物質、化学療法剤、糖尿病用剤、骨粗しょう用剤、抗リウマチ薬、鎮けい剤、ホルモン剤、アルカロイド系麻薬、サルファ剤、痛風治療剤、血液凝固阻止剤、抗悪性腫瘍剤、滋養強壮保健薬などから選ばれた1種もしくは2種以上の成分が用いられる。
 機能性食品成分としては、ビタミンA、ビタミンD、ビタミンE等のビタミン類、DHA(ドコサヘキサエン酸)、EPA(エイコサペンタエン酸)、肝油等の高級不飽和脂肪酸類が挙げられる。
 キャリア粒子に機能性成分を担持させる方法は、キャリア粒子に所望の機能性成分を含浸させることが好ましい。このような方法としては、例えばUS10004682B2に記載の方法が使用できる。
 また、キャリア粒子に機能性成分を担持させる方法の例として、以下の方法が挙げられる。
 まず、機能性成分を有機溶媒に溶解させ、機能性成分溶液を得る。有機溶媒は、例えばエタノールである。この際、機能性成分の溶解度を向上させる目的で、有機溶媒に少量の水(機能性成分溶液の全量に対して1%前後)を添加してもよい。
 その後、キャリア粒子と機能性成分溶液とを混合する。
 キャリア粒子と機能性成分溶液とを混合する方法としては、キャリア粒子に対して、得られた機能性成分溶液を滴下又は噴霧する方法が挙げられる。
 所定量の機能性成分溶液とキャリア粒子とを混合した後、20℃以上60℃以下の温度で減圧乾燥することで、機能性成分を担持したキャリア粒子が得られる。
<油性物質の粉末化基材>
 本実施形態のキャリア粒子は、油性物質との親和性が高く、油性物質の粉末化基材として好適に使用できる。
<触媒又は触媒担体>
 本実施形態のキャリア粒子は、触媒として使用してもよく、触媒担体として使用してもよい。
 担持する触媒としては、例えば白金、パラジウム、イリジウムを主成分とする触媒、酸化チタン等が挙げられる。
 次に、本発明を実施例によりさらに詳細に説明する。
<実施例1>
[前駆体粒子を得る工程]
 70℃に加温した3.0kgの水にデキストリン(GLUCIDEX IT47) 2.0kgを溶解させ、水溶液1を得た。なお、使用したデキストリンのDE値は47であった。
 下記条件で水溶液1をスプレードライヤーで噴霧し、前駆体粒子1を得た。
(噴霧条件)
入口温度:140℃
出口温度:96~100℃
ディスク回転数:5000 rpm
水溶液の供給速度:液速7kg/時間
[キャリア粒子を得る工程]
 前駆体粒子3gに無水エタノール60mlを加え、50℃の水浴内で10分間振盪混合した。振盪終了後、2分間静置し、上清をデカンテーションにて除去した。ここに、再度、無水エタノール60mlを加え、上記と同様に振盪、デカンテーションし、これを最初からのトータルで10回繰り返した。最終のデカンテーション後、40℃、-0.1MPaで終夜乾燥し、83M篩を通してキャリア粒子1を得た。
 キャリア粒子1は、本明細書に定義する水溶性と多孔質の条件を満たしていた。
 キャリア粒子1の電子顕微鏡写真(倍率2000倍)を図1に示す。図1に示す通り、キャリア粒子1は球状であった。
 上記[BET比表面積の測定方法]により測定したキャリア粒子1の比表面積は、174m/gであった。
 キャリア粒子1の細孔径は11.9nmであり、細孔容積は0.52cm/gであった。
<実施例2>
[前駆体粒子を得る工程]
 9kgの水(水温70℃)と、12.6kgのトレハロース(株式会社林原社製、トレハロースP)と、6.3kgのデキストリン(三和澱粉工業株式会社製、サンデック♯300)及び2.1kgの無水クエン酸を混合し、固形分濃度70%の水溶液2を得た。
 使用したデキストリンのDEは、27であった。
 下記条件で得られた水溶液2をスプレードライヤーで噴霧し、前駆体粒子2を得た。
(噴霧条件)
入口温度:140℃
出口温度:101℃
ディスク回転数:8000rpm
水溶液の供給速度:23kg/時間
[キャリア粒子を得る工程]
 得られた前駆体粒子15gに無水エタノール300mlを加え、50℃の水浴内で15分間振盪混合した。振盪終了後、2分間静置し、上清をデカンテーションにて除去した。ここに再度、無水エタノール300mlを加え、上記と同様に振盪、デカンテーションし、これを最初からのトータルで10回繰り返した。最終のデカンテーション後、40℃、-0.1MPaで2時間乾燥し、83M篩を通し、キャリア粒子2を得た。
 キャリア粒子2は、本明細書に定義する水溶性と多孔質の条件を満たしていた。
 キャリア粒子2の電子顕微鏡写真(倍率2000倍)を図2に示す。図2に示す通り、キャリア粒子2は球状であった。
 上記[BET比表面積の測定方法]により測定したキャリア粒子2の比表面積は、144m/gであった。
 キャリア粒子2の細孔径は13.8であり、細孔容積は0.50cm/gであった。
<実施例3>
[前駆体粒子を得る工程]
 400gの水(水温70℃)と、390gのトレハロース(株式会社林原社製、トレハロースP)と、180gのデキストリン(パインデックス♯3、松谷化学工業株式会社製)及び30gの無水クエン酸を混合し、固形分濃度60%の水溶液3を得た。
 使用したデキストリンのDEは、25であった。
 下記条件で得られた水溶液3をスプレードライヤーで噴霧し、前駆体粒子3を得た。
(噴霧条件)
入口温度:140℃
出口温度:98℃
ディスク回転数:10000rpm
水溶液の供給速度:100ml/分
[キャリア粒子を得る工程]
 得られた前駆体粒子5gに無水エタノール20mlを加え、60℃の水浴内で30分間から1時間振盪混合した。振盪終了後静置し、上清をデカンテーションにて除去した。ここに再度、無水エタノール20mlを加え、上記と同様に振盪、デカンテーションし、これを最初からのトータルで11回繰り返した。最終のデカンテーション後、無水エタノール20mlを加え軽く混合して静置した後、デカンテーションし、上清を除去した。50℃、-0.08MPaで乾燥し、キャリア粒子3を得た。
 キャリア粒子3は、本明細書に定義する水溶性と多孔質の条件を満たしていた。
 上記[BET比表面積の測定方法]により測定したキャリア粒子3の比表面積は、7.64m/gであった。
<実施例4>
[前駆体粒子を得る工程]
 1000gの水(水温70℃)と、1500gのトレハロース(株式会社林原社製、トレハロースP)と、600gのデキストリン(GLUCIDEX IT29、ROQUETTE社製)及び233gの無水クエン酸を混合し、固形分濃度70%の水溶液4を得た。
 使用したデキストリンのDEは、29であった。
 下記条件で得られた水溶液4をスプレードライヤーで噴霧し、前駆体粒子4を得た。
(噴霧条件)
入口温度:140℃
出口温度:99-100℃
ディスク回転数:13000rpm
水溶液の供給速度:100ml/分
[キャリア粒子を得る工程]
 得られた前駆体粒子6gに無水エタノール120mlを加え、40℃の水浴内で10分間振盪混合した。振盪終了後5分間静置し、上清をデカンテーションにて除去した。ここに再度、無水エタノール120mlを加え、上記と同様に振盪、デカンテーションし、これを最初からのトータルで10回繰り返した。最終のデカンテーション後、無水エタノール120mlを加え軽く混合して5分間静置した後、デカンテーションし、上清を除去した。50℃、-0.08MPaで乾燥し、キャリア粒子4を得た。
 キャリア粒子4は、本明細書に定義する水溶性と多孔質の条件を満たしていた。
 上記[BET比表面積の測定方法]により測定したキャリア粒子4の比表面積は、67.29m/gであった。
<実施例5>
 デキストリンをデキストリン(GLUCIDEX IT33、ROQUETTE社)に変更した以外は実施例4と同様の方法により、キャリア粒子5を得た。
 キャリア粒子5は、本明細書に定義する水溶性と多孔質の条件を満たしていた。
 上記[BET比表面積の測定方法]により測定したキャリア粒子5の比表面積は、82.17m/gであった。
 実施例1~5のキャリア粒子は多孔質であり、比表面積が高いため、機能性成分の担持量を増大することができる。また、実施例1~5の多孔質キャリア粒子は水溶性であるため、生体内で完全に溶解する。このため、担持させた機能性成分とキャリア粒子の双方が生体内で完全に溶解し、機能性成分を完全に放出することができる。

Claims (7)

  1.  グルコースを単位とする螺旋構造を有する水溶性高分子を含有し、BET比表面積が1m/g以上である、多孔質キャリア粒子。
  2.  前記水溶性高分子は水溶性多糖である、請求項1に記載の多孔質キャリア粒子。
  3.  前記水溶性多糖は、デキストリン、デキストラン、アガロース、及びプルランからなる群より選択される1種以上である、請求項2に記載の多孔質キャリア粒子。
  4.  球形である、請求項1又は2に記載の多孔質キャリア粒子。
  5.  請求項1又は2に記載の多孔質キャリア粒子に機能性成分を担持させた、機能性成分担持粒子。
  6.  前記機能性成分は医薬品薬効成分である、請求項5に記載の機能性成分担持粒子。
  7.  BET比表面積が1m/g以上である多孔質キャリア粒子の製造方法であって、
     グルコースを単位とする螺旋構造を有する水溶性高分子を含む溶液を噴霧乾燥して、前駆体粒子を得る工程と、
     前記前駆体粒子と有機溶媒とを混合して混合物を得た後、前記混合物から液体を除去する工程とを含む製造方法。
PCT/JP2023/028068 2022-08-01 2023-08-01 多孔質キャリア粒子、機能性成分担持粒子及び多孔質キャリア粒子の製造方法 WO2024029516A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-122676 2022-08-01
JP2022122676 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024029516A1 true WO2024029516A1 (ja) 2024-02-08

Family

ID=89849365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028068 WO2024029516A1 (ja) 2022-08-01 2023-08-01 多孔質キャリア粒子、機能性成分担持粒子及び多孔質キャリア粒子の製造方法

Country Status (1)

Country Link
WO (1) WO2024029516A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623752A (ja) * 1985-06-28 1987-01-09 Kao Corp 高吸油性多孔質粉体の製造方法
JPH0343052A (ja) * 1988-12-12 1991-02-25 Suntory Ltd 穀粉類α化物およびその製造方法
JPH08277230A (ja) * 1993-12-27 1996-10-22 Sanei Touka Kk 粉末製剤及びその製造方法
JPH09511531A (ja) * 1994-01-14 1997-11-18 フイズ テクノロジーズ リミテッド 多孔性粒子集合体及びその調製方法
JP2006506357A (ja) * 2002-10-11 2006-02-23 ヴェクトゥラ リミテッド 有機高分子物質との組み合わせで無機粒子を含み、かつ固体の網目状マトリックスを形成する医薬賦形剤、その組成物、製造および使用
JP2009518110A (ja) * 2005-12-09 2009-05-07 エスセーアー・ハイジーン・プロダクツ・アーベー 吸収性製品
JP2009524646A (ja) * 2006-01-27 2009-07-02 ザ・プロヴォスト,フェローズ・アンド・スカラーズ・オブ・ザ・カレッジ・オブ・ザ・ホーリー・アンド・アンディヴァイデッド・トリニティー・オブ・クイーン・エリザベス,ニア・ダブリン 多孔性微粒子の製造方法
JP2022055783A (ja) * 2020-09-29 2022-04-08 セイコーエプソン株式会社 成形体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623752A (ja) * 1985-06-28 1987-01-09 Kao Corp 高吸油性多孔質粉体の製造方法
JPH0343052A (ja) * 1988-12-12 1991-02-25 Suntory Ltd 穀粉類α化物およびその製造方法
JPH08277230A (ja) * 1993-12-27 1996-10-22 Sanei Touka Kk 粉末製剤及びその製造方法
JPH09511531A (ja) * 1994-01-14 1997-11-18 フイズ テクノロジーズ リミテッド 多孔性粒子集合体及びその調製方法
JP2006506357A (ja) * 2002-10-11 2006-02-23 ヴェクトゥラ リミテッド 有機高分子物質との組み合わせで無機粒子を含み、かつ固体の網目状マトリックスを形成する医薬賦形剤、その組成物、製造および使用
JP2009518110A (ja) * 2005-12-09 2009-05-07 エスセーアー・ハイジーン・プロダクツ・アーベー 吸収性製品
JP2009524646A (ja) * 2006-01-27 2009-07-02 ザ・プロヴォスト,フェローズ・アンド・スカラーズ・オブ・ザ・カレッジ・オブ・ザ・ホーリー・アンド・アンディヴァイデッド・トリニティー・オブ・クイーン・エリザベス,ニア・ダブリン 多孔性微粒子の製造方法
JP2022055783A (ja) * 2020-09-29 2022-04-08 セイコーエプソン株式会社 成形体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KADOTA KAZUNORI, YANAGAWA YUKO, TACHIKAWA TOMOKO, DEKI YUTO, UCHIYAMA HIROMASA, SHIRAKAWA YOSHIYUKI, TOZUKA YUICHI: "Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin", INTERNATIONAL JOURNAL OF PHARMACEUTICS, ELSEVIER, NL, vol. 555, 1 January 2019 (2019-01-01), NL , pages 280 - 290, XP093134779, ISSN: 0378-5173, DOI: 10.1016/j.ijpharm.2018.11.055 *

Similar Documents

Publication Publication Date Title
JP2820239B2 (ja) 制御放出パウダー及びその製法
TWI291877B (en) Porous cellulose aggregate and molded composition thereof
JP3549197B2 (ja) ユビキノン含有製剤
ES2590807T3 (es) Composición que comprende una mezcla de principios activos y procedimiento de preparación
WO2012006961A1 (zh) 一种控释制剂
EP3862318A1 (en) Porous silica particle composition
CA2273275A1 (en) Improved dosage units
JP4976500B2 (ja) 漢方エキス、生薬エキスあるいは天然物抽出エキスまたはそれらの混合物等の天然物由来物質を含有する顆粒物の製造方法およびその顆粒物から製造する錠剤の製造方法
WO2010095494A1 (ja) 難溶性物質を含有する顆粒、錠剤、及び難溶性物質の可溶化方法
JP2008525389A (ja) 活性成分移送のための新規ガレン製剤系、その製造方法および用途
ES2325599T3 (es) Sistema de enmascaramiento del sabor para farmacos no plastificantes.
WO2024029516A1 (ja) 多孔質キャリア粒子、機能性成分担持粒子及び多孔質キャリア粒子の製造方法
CN109010361A (zh) 碳酸钙维生素d3制剂及其制备方法
KR0133531B1 (ko) 액체 약제 제형용 서방성 치료 시스템
CN103263418B (zh) 一种双氢青蒿素磷酸哌喹片剂及其制备方法
EP2000152A2 (en) Solid preparation having improved solubility
Mehta et al. Solvent evaporation technique: An innovative approach to increase gastric retention
JP2005255619A (ja) 昇華性活性成分および多孔質セルロース粒子含有固形製剤組成物
John et al. Preparation, evaluation and bioavailability studies of propafenonr hydrochloride loaded with gum microspheres for controlled study
JP2005255618A (ja) 水難溶性活性成分および多孔質セルロース粒子含有固形製剤組成物。
CN108186563A (zh) 苯妥英钠缓释混悬剂及其制备方法
JP2002037727A (ja) 脂溶性薬物を配合した速崩性固形製剤及びその製造方法
US20210121405A1 (en) Methods for Formulating an API, Composite Materials, and Solid Unit Dosage Forms
JPWO2006106799A1 (ja) ポリビニルアルコール共重合体を用いたマイクロカプセル
JP2022538068A (ja) メソ多孔質ポリマー性粒子状材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850070

Country of ref document: EP

Kind code of ref document: A1