WO2024027415A1 - 一种玻纤增强聚碳酸酯材料及其制备方法和应用 - Google Patents

一种玻纤增强聚碳酸酯材料及其制备方法和应用 Download PDF

Info

Publication number
WO2024027415A1
WO2024027415A1 PCT/CN2023/104764 CN2023104764W WO2024027415A1 WO 2024027415 A1 WO2024027415 A1 WO 2024027415A1 CN 2023104764 W CN2023104764 W CN 2023104764W WO 2024027415 A1 WO2024027415 A1 WO 2024027415A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
parts
polycarbonate material
fiber reinforced
optionally
Prior art date
Application number
PCT/CN2023/104764
Other languages
English (en)
French (fr)
Inventor
刘春艳
刘向东
Original Assignee
上海中镭新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海中镭新材料科技有限公司 filed Critical 上海中镭新材料科技有限公司
Publication of WO2024027415A1 publication Critical patent/WO2024027415A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • This application belongs to the technical field of polymer materials, and specifically relates to a glass fiber reinforced polycarbonate material and its preparation method and application.
  • High-frequency and high-speed transmission also places requirements on the composite materials used in smartphones. They need to have low dielectric loss under high-frequency voltage and be more suitable for processing and molding of thin-walled parts; therefore, lowering the dielectric constant of the material and Dielectric loss and improving material processing fluidity are urgent needs to cope with the new era of 5G.
  • PC Polycarbonate
  • Polycarbonate (PC) is a polymer containing carbonate groups in the main chain. It has good mechanical properties, dimensional stability, heat resistance and insulation properties. It is one of the general engineering plastics and can be used in rear cases, Almost all plastic parts of smartphones such as the middle frame, internal support frame, and side buttons. However, polycarbonate is mostly composed of aromatic polymers. The molecular chain has high rigidity, low fatigue strength, is sensitive to notches, and is prone to stress cracking. There is still a lot of room for improvement in terms of toughness and strength. Fiber fillers or other polymers are used to Its enhancement is a common method in the industry.
  • CN105440628A discloses a reinforced flame-retardant PC/PPO composite material with the following components: 20-30 parts PC resin, 14.9-22 parts PPO (polyphenylene ether), 3-5.2 parts PC-PPO block copolymer, 5- 8 SEBS Graft, 5-8 parts polypropylene elastomer graft, 0.5-1 part amino-modified silicone oil, 0.5-1 part aminosilane coupling agent, 20-30 parts glass fiber; and composite flame retardant, antioxidant agents and light stabilizers.
  • This composite material has good tensile strength, rigidity and high and low temperature toughness, but the PPO material has high viscosity and high rigidity, which results in low processing fluidity of the material and difficulty in preparing thin-walled parts; and PPO is incompatible with PC and glass fiber. Poor tolerance requires PPO pretreatment, which increases costs.
  • CN109206875A discloses a polycarbonate composition, including the following components: 50-90% polycarbonate, 5-45% glass fiber group, 0-5% auxiliary agent; the glass fiber group is long glass fiber or short One or a combination of two types of fiberglass.
  • the polycarbonate composition uses glass fibers of different lengths to toughen and modify PC to improve the flatness of the material, but the glass fibers used include M-glass fiber, E-glass fiber, A-glass fiber, S -Glass fiber, R-glass fiber or C-glass fiber, etc.
  • the dielectric constant and dielectric loss of glass fiber are high, resulting in poor dielectric properties of the polycarbonate composition, making it difficult to meet the performance requirements of high-frequency electronic equipment.
  • CN101875772A discloses a glass fiber reinforced PC composite material with the following components: polycarbonate 45-61%, saturated polyester 5-20%, toughening agent 3-4%, heat stabilizer 0.1-0.3%, lubricant 0.7-1.1%, glass fiber 25-35%.
  • This composite material has good toughness, strength and surface finish, but its notched impact strength is below 180J/m, its impact toughness is poor, and its dielectric constant and dielectric loss are high, which is not conducive to applications in high-frequency electronic equipment.
  • the purpose of this application is to provide a glass fiber reinforced polycarbonate material and its preparation method and application.
  • Polycarbonate is modified with a combination of alkali-free glass fiber and porous glass fiber, so that the glass fiber reinforced polycarbonate material has lower dielectric loss, higher impact strength and good processing characteristics, fully satisfying The performance requirements of composite materials in the fields of high-frequency and high-speed communication equipment, automotive parts and electrical appliances have been met.
  • embodiments of the present application provide a glass fiber reinforced polycarbonate material, which includes the following components in parts by weight: Polycarbonate (PC) 40-95 parts alkali-free glass fiber 1-40 parts porous glass fiber 1-40 parts;
  • PC Polycarbonate
  • the mass percentage of SiO 2 in the porous glass fiber is ⁇ 95%.
  • alkali-free glass fiber and porous glass fiber are compounded and the polycarbonate is modified; wherein, the alkali-free glass fiber contains SiO 2 and part of Al 2 O 3 , B 2 O 3 and CaO, etc., basically do not contain MgO, Li 2 O, Na 2 O, K 2 O and TiO 2 , and have low dielectric constant and low dielectric loss; the porous glass fiber contains a large amount of Microscopic pores, SiO2 content ⁇ 95%, have extremely low dielectric constant and dielectric loss.
  • the glass fiber reinforced polycarbonate material is compounded with specific glass fibers and polycarbonate, giving it a low dielectric constant and low dielectric loss, and improving the material's processability, strength, toughness and impact resistance.
  • the surface floating fiber condition is greatly improved, and it has both excellent dielectric properties and comprehensive mechanical properties.
  • the weight part of the polycarbonate is 40-95 parts, for example, it can be 45 parts, 50 parts, 55 parts, 60 parts, 65 parts, 70 parts, 75 parts, 80 parts servings, 85 servings or 90 servings,
  • the embodiments of this application will not exhaustively list the specific point values included in the range, preferably 55-85 parts, and further preferably 60-80 parts.
  • the weight part of the alkali-free glass fiber is 1-40 parts, for example, it can be 3 parts, 5 parts, 8 parts, 10 parts, 12 parts, 15 parts, 18 parts, 20 parts, 22 parts, 25 parts, 28 parts , 30 parts, 32 parts, 35 parts or 38 parts, as well as specific point values between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range. Preferably it is 3-30 parts, More preferably, it is 5-25 parts.
  • the weight part of the porous glass fiber is 1-40 parts, for example, it can be 3 parts, 5 parts, 8 parts, 10 parts, 12 parts, 15 parts, 18 parts, 20 parts, 22 parts, 25 parts, 28 parts, 30 parts, 32 parts, 35 parts or 38 parts, as well as specific point values between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range. Preferably 3-30 parts, more preferably 5-25 parts.
  • the mass percentage of SiO 2 in the porous glass fiber is ⁇ 95%, for example, it can be 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5% or 99%, etc.
  • the polycarbonate includes bisphenol A polycarbonate.
  • the melt index of the polycarbonate at 300°C and 1.2kg is 5-40g/10min, for example, it can be 8g/10min, 10g/10min, 15g/10min, 20g/10min, 25g/10min , 30g/10min, 35g/10min or 38g/10min, as well as specific point values between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range.
  • the mass percentage of SiO 2 in the alkali-free glass fiber is ⁇ 90%, for example, it can be 90.5%, 91%, 91.5%, 92%, 92.5%, 93%, 93.5%, 94% , 94.5%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5% or 99%, etc.
  • E-glass fiber is a kind of borosilicate glass fiber, which has good electrical insulation and mechanical properties, but poor dielectric properties.
  • the constant D k is 3.3-3.6, and the dielectric loss D f is 0.009;
  • D-glass fiber is a chopped low-dielectric glass fiber with fewer polar groups in its structural composition and has a lower dielectric than E-glass fiber. Loss, the dielectric constant D k is 4.2-4.8 at 1MHz, and the dielectric loss D f is 0.001.
  • the dielectric constant D k of glass fiber used for resin reinforcement is generally 3.5-6 and the dielectric loss D f is 0.0032 at room temperature 1MHz; when added to the PC resin matrix, the dielectric constant D k of the PC resin itself is 2.8-3.2, and the dielectric loss D f is 0.002-0.001; the dielectric loss increases under high-frequency conditions.
  • Conventional glass fiber reinforced PC materials have dielectric losses in the range of 0.01-0.02 at 5GHz, which cannot meet the requirements for polymer-modified engineering plastics for communication equipment in the 5G era.
  • the alkali-free glass fiber contains more than 90% SiO 2 and part of Al 2 O 3 , B 2 O 3 and CaO, etc., and basically does not contain MgO, Li 2 O, Na 2 O, K 2 O and TiO 2 have very low dielectric constant and dielectric loss, especially at high frequency (5GHz).
  • the dielectric loss of the alkali-free glass fiber at 5 GHz is 0.0030-0.0035, for example, it can be 0.0031, 0.0032, 0.0033 or 0.0034, and specific points between the above points are limited by space and presentation. For the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range.
  • the dielectric constant of the alkali-free glass fiber at 5 GHz is 4.2-4.8, for example, it can be 4.25, 4.3, 4.35, 4.4, 4.45, 4.5, 4.55, 4.6, 4.65, 4.7 or 4.75, and
  • the specific point values between the above points are limited by space and for the sake of simplicity. The embodiments of this application will not exhaustively list the specific point values included in the range.
  • the pore diameter of the porous glass fiber is 0.5-3 ⁇ m, for example, it can be 0.55 ⁇ m, 0.6 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.2 ⁇ m, 1.5 ⁇ m, 1.8 ⁇ m, 2 ⁇ m, 2.2 ⁇ m, 2.5 ⁇ m or 2.8 ⁇ m, and specific point values between the above-mentioned point values. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range.
  • the specific surface area of the porous glass fiber is 300-600m 2 /g, for example For 320m 2 /g, 350m 2 /g, 380m 2 /g, 400m 2 /g, 420m 2 /g, 450m 2 /g, 480m 2 /g, 500m 2 /g, 520m 2 /g, 550m 2 /g or 580m 2 /g, as well as specific point values between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range.
  • the SiO 2 content in the porous glass fiber is ⁇ 95%, and contains a large number of microscopic pores (air, dielectric constant is 1, and dielectric loss is 0), making the porous glass fiber Glass fiber has low dielectric constant and dielectric loss; moreover, the micropores in the porous glass fiber can produce capillary phenomena, which enhances the bonding with PC resin in the molten state and greatly improves the processing characteristics and performance of the material. Comprehensive mechanical properties.
  • PC resin has non-Newtonian fluid characteristics in the molten state of the polymer, the molten PC cannot completely enter the porous glass fiber and retain enough air components, thus giving the glass fiber reinforced polycarbonate material a lower dielectric constant and dielectric loss.
  • the dielectric loss of the porous glass fiber at 5 GHz is 0.002-0.003, for example, it can be 0.0021, 0.0023, 0.0024, 0.0025, 0.0026, 0.0027, 0.0028 or 0.0029, and any specific value between the above points Point values, due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range.
  • the dielectric constant of the porous glass fiber at 5 GHz is 3.7-4.2, for example, it can be 3.75, 3.8, 3.85, 3.9, 3.95, 4, 4.05, 4.1 or 4.15, and between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range.
  • the mass ratio of the porous glass fiber to the alkali-free glass fiber is 1:(0.3-1.3), for example, it can be 1:0.4, 1:0.5, 1:0.6, 1:0.7, 1:0.8 , 1:0.9, 1:1, 1:1.1 or 1:1.2, etc.
  • the mass ratio of the porous glass fiber and the alkali-free glass fiber is 1: (0.3-1.3), and the two are compounded to make the glass fiber reinforced polycarbonate material both It has excellent dielectric properties, toughness, strength and processability, achieving a good balance in comprehensive performance. If both If the mass ratio exceeds the above range, too much porous glass fiber will affect the reinforcing and toughening effect of glass fiber on PC resin, resulting in a slight reduction in the mechanical properties of glass fiber reinforced polycarbonate materials; too much alkali-free glass fiber will The dielectric loss of the material increases.
  • the sum of the mass percentages of alkali-free glass fibers and porous glass fibers in the glass fiber reinforced polycarbonate material is 5-50%, for example, it can be 8%, 10%, 15%, 20% %, 25%, 30%, 35%, 40% or 45%, as well as specific point values between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the ranges included. Specific point value.
  • the porous glass fiber is obtained by creating pores in an acidic solution through reinforced glass fiber.
  • the Young's modulus of the reinforced glass fiber is 50-90GPa, for example, it can be 55GPa, 60GPa, 65GPa, 70GPa, 75GPa, 80GPa or 85GPa, as well as specific point values between the above points, Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range.
  • the strength ratio of the porous glass fiber to the reinforced glass fiber is (0.5-0.8):1, for example, it can be 0.52:1, 0.55:1, 0.58:1, 0.6:1, 0.62: 1, 0.65:1, 0.68:1, 0.7:1, 0.72:1, 0.75:1 or 0.78:1, etc.
  • the porous glass fiber is obtained by pore-making with reinforced glass fiber; after pore-making, compared with the original reinforced glass fiber, the strength of the porous glass fiber can be retained by 50-80%, and the specific surface area is from 1m 2 /g is increased to 300-600m 2 /g.
  • the porous glass fiber is prepared by the following method, which method includes: sequentially treating the reinforced glass fiber in an acid solution and an alkaline salt solution, and then drying to obtain the porous glass fiber.
  • the pH value of the acid solution is 2-5, for example, it can be 2.2, 2.5, 2.8, 3, 3.2, 3.5, 3.8, 4, 4.2, 4.5 or 4.8, as well as specific point values between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range. .
  • the acid solution includes any one or a combination of at least two of hydrochloric acid solution, sulfuric acid solution or nitric acid solution.
  • the treatment time in the acid solution is 1-8h, for example, it can be 1.25h, 1.5h, 1.75h, 2h, 2.25h, 2.5h, 2.75h, 3h, 3.25h, 3.5h, 3.75h, 4h, 4.25h, 4.5h, 4.75h, 5h, 5.25h, 5.5h, 5.75h, 6h, 6.5h, 7h or 7.5h, as well as specific points between the above points, limited by space and publication. For the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range.
  • the treatment temperature in the acid solution is 30-80°C, for example, it can be 35°C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C or 75°C, As well as the specific point values between the above points, due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range.
  • the treatment in the acid solution is performed under stirring conditions.
  • the acid solution treatment further includes a cleaning step.
  • the pH value of the alkaline salt solution is 7.5-9, for example, it can be 7.6, 7.8, 8, 8.1, 8.3, 8.5, 8.7 or 8.9, as well as specific point values between the above points, Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range.
  • the salts in the alkaline salt solution include acid salts.
  • the acid salt includes any one or a combination of at least two of sodium bicarbonate, potassium bicarbonate or sodium biborate.
  • the treatment time in the alkaline salt solution is 0.5-6h, for example, it can be 0.75h, 1h, 1.25h, 1.5h, 1.75h, 2h, 2.25h, 2.5h, 2.75h, 3h ,3.25h,3.5h, 3.75h, 4h, 4.25h, 4.5h, 4.75h, 5h, 5.25h, 5.5h or 5.75h, as well as specific point values between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not The specific point values included in the stated range are then exhaustively enumerated.
  • the treatment temperature in the alkaline salt solution is 30-80°C, for example, it can be 35°C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C or 75°C °C, and specific point values between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range.
  • the treatment with the alkaline salt solution further includes a cleaning step.
  • the drying temperature is 400-700°C, for example, it can be 420°C, 450°C, 480°C, 500°C, 520°C, 550°C, 580°C, 600°C, 620°C, 650°C or 680°C, and specific point values between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range.
  • the drying time is 0.5-2h, for example, it can be 0.75h, 1h, 1.25h, 1.5h or 1.75h, and specific points between the above points are limited by space and for the sake of simplicity. For consideration, the embodiments of this application will not exhaustively list the specific point values included in the stated range.
  • the preparation of the porous glass fiber includes sequentially subjecting the reinforced glass fiber to acid solution treatment, alkaline salt solution treatment and drying; the acid solution treatment removes the reinforced glass fiber from the Alkali metals such as Na + and K + gradually dissolve.
  • the acid solution treatment removes the reinforced glass fiber from the Alkali metals such as Na + and K + gradually dissolve.
  • different degrees and numbers of micropores will be generated inside the glass fiber. Control the treatment time in the acid solution to 1-6h to control the number of micropores.
  • the product treated with the acid solution is centrifuged and cleaned to remove the solution, and then treated with an acid salt solution, hydrolyzed to produce OH - , neutralized and diluted the residual acid solution, and thoroughly cleaned and added to ensure product purity; the treatment is completed Afterwards, it is washed with multiple rounds of centrifugation and dried at 400-700°C. Since water and glass easily form hydrated glass, polar hydroxyl radicals are easy to remain on the surface of the glass fiber. This uses a high temperature of 400-700°C to achieve sufficient drying to obtain the porous glass fiber.
  • the glass fiber reinforced polycarbonate material also includes 0.1-1 parts by weight of a toughening agent.
  • the toughening agent can be 0.2 parts, 0.3 parts, 0.4 parts, 0.5 parts, 0.6 parts, 0.7 parts, 0.8 parts or 0.9 parts, as well as specific point values between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range. It is further preferably 0.1- 0.5 servings.
  • the toughening agent includes methyl methacrylate-butadiene-styrene copolymer (MBS), maleic anhydride grafted ethylene-octene copolymer elastomer, ethylene-butyl acrylate- Any one or a combination of at least two of glycidyl methacrylate copolymer, ethylene-methyl acrylate-glycidyl methacrylate copolymer or methyl methacrylate-styrene-organic silicone copolymer.
  • MBS methyl methacrylate-butadiene-styrene copolymer
  • maleic anhydride grafted ethylene-octene copolymer elastomer ethylene-butyl acrylate- Any one or a combination of at least two of glycidyl methacrylate copolymer, ethylene-methyl acrylate-glycidyl methacrylate copolymer or methyl methacrylate-sty
  • the glass fiber reinforced polycarbonate material also includes 0.3-10 parts by weight of a coupling agent.
  • the coupling agent can be 0.5 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts, 4.5 parts, 5 parts, 5.5 parts, 6 parts, 7 parts, 8 parts or 9 parts, as well as the specific points between the above points, limited by space and for the sake of conciseness, The embodiments of this application will not exhaustively enumerate the specific point values included in the range, and further preferably 0.5-6.5 parts.
  • the coupling agent performs surface treatment on the alkali-free glass fiber and porous glass fiber to further improve the compatibility and bonding of the glass fiber and the PC resin matrix, thereby making the glass fiber
  • the overall mechanical and dielectric properties of fiber-reinforced polycarbonate materials are improved.
  • the coupling agent includes any one or a combination of at least two of a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent.
  • the silane coupling agent includes ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane or ⁇ -glycidyloxypropyltrimethoxysilane. Any one or a combination of at least two of glyceryl etheroxypropyltriethoxysilane.
  • the titanate coupling agent includes isopropyl dioleic acid acyloxy (dioctyl phosphoryl acyl Oxygen) titanate.
  • the glass fiber reinforced polycarbonate material also includes 0.01-5 parts by weight of antioxidants.
  • the antioxidants can be 0.03 parts, 0.05 parts, 0.08 parts, 0.1 parts, 0.3 parts, 0.5 parts, 0.8 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts or 4.5 parts, as well as specific points between the above points, limited by space and for the sake of conciseness, The embodiments of this application will not exhaustively enumerate the specific point values included in the range, and further preferably 0.01-0.5 parts.
  • the antioxidants include any one or at least two of hindered phenolic antioxidants, hindered amine antioxidants, phosphite antioxidants or thioester antioxidants. combination.
  • the hindered phenolic antioxidant includes ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) n-octadecanol propionate (antioxidant 1076), 2, 6-tributyl-4-methylphenol, bis(3,5-tributyl-4-hydroxyphenyl) sulfide, 2,6-di-tert-butyl-p-cresol, 1,3,5-tris Methyl-2,4,6-(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl) )isocyanuric acid, 2,2'-thiobis(4-methyl-6-tert-butylphenol), triethylene glycol bis- ⁇ -(3-tert-butyl-4-hydroxy-5- Methylphenyl)propionate, 4,4'-butylene-bis(2-(1,1-dimethyl
  • the aromatic amine antioxidant includes N,N'-bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl)hexanediamine (antioxidant 1098).
  • the phosphite antioxidants include tris(2,4-di-tert-butylphenyl) phosphite (antioxidant 168), bis(2,4-di-tert-butylphenyl) base) pentaerythritol diphosphite (antioxidant 626), pentaerythritol distearyl diphosphite or tetrakis (2,4-di-tert-butylphenyl-4,4'-biphenyl) bisphosphate Any one or a combination of at least two.
  • the glass fiber reinforced polycarbonate material further includes 0.01-5 parts by weight.
  • Lubricant for example, the lubricant can be 0.03 parts, 0.05 parts, 0.08 parts, 0.1 parts, 0.3 parts, 0.5 parts, 0.8 parts, 1 part, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts or 4.5 parts, as well as specific points between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific points included in the range, and 0.01-0.5 parts is further preferred.
  • the lubricant includes any one or a combination of at least two of pentaerythritol stearate (such as PETS), vinyl wax or silicone oil.
  • the glass fiber reinforced polycarbonate material includes the following components in parts by weight:
  • embodiments of the present application provide a method for preparing a glass fiber reinforced polycarbonate material as described in the first aspect.
  • the preparation method includes: mixing polycarbonate, alkali-free glass fiber and porous glass fiber. Melt extrusion to obtain the glass fiber reinforced polycarbonate material.
  • the temperature of the melt extrusion is 240-290°C, for example, it can be 245°C, 250°C, 255°C, 260°C, 265°C, 270°C, 275°C, 280°C or 285°C, and
  • the specific point values between the above points are limited by space and for the sake of simplicity. The embodiments of this application will not exhaustively list the specific point values included in the range.
  • the melt extrusion is performed in a screw extruder.
  • the screw speed of the screw extruder is 350-750 rpm, for example, it can be 400rpm, 450rpm, 500rpm, 550rpm, 600rpm, 650rpm or 700rpm, as well as specific point values between the above points. Due to space limitations and for the sake of simplicity, the embodiments of this application will not exhaustively list the specific point values included in the range. .
  • the mixing is performed in a mixer.
  • the mixing speed is 300-700rpm, for example, it can be 350rpm, 400rpm, 450rpm, 500rpm, 550rpm, 600rpm or 650rpm, and specific points between the above points are limited by space and for the sake of simplicity. For consideration, the embodiments of this application will not exhaustively list the specific point values included in the stated range.
  • the mixing time is 3-15 min, for example, it can be 4 min, 5 min, 6 min, 8 min, 10 min, 12 min or 14 min, and specific points between the above points are limited by space and for the sake of conciseness. For consideration, the embodiments of this application will not exhaustively list the specific point values included in the stated range.
  • the mixed materials further include any one or a combination of at least two of toughening agents, coupling agents, antioxidants or lubricants.
  • the polycarbonate is pre-baked before mixing at a temperature of 100-120°C.
  • the melt extrusion further includes cooling, drying and granulating steps.
  • embodiments of the present application provide an application of the glass fiber reinforced polycarbonate material as described in the first aspect in communication equipment, automobile parts or electrical appliance casings.
  • low dielectric loss alkali-free glass fiber and porous glass fiber are compounded and the polycarbonate is modified, which comprehensively improves the dielectric properties, mechanical properties and Processability, its tensile strength is ⁇ 105MPa, elongation at break is 4.2-6%, flexural modulus is ⁇ 5600MPa, flexural strength is ⁇ 170MPa, cantilever notch impact strength is 198-220J/m, high impact toughness and good mechanical properties , 300°C, 1.2mm melt index is 9.6-15g/10min, with good processing characteristics and Lower dielectric loss and dielectric constant, the dielectric constant at 5GHz is ⁇ 3.25, and the dielectric loss is 0.0015-0.0042.
  • the glass fiber reinforced polycarbonate material has excellent dielectric properties, processability, toughness, strength, impact resistance and other comprehensive mechanical properties, significantly improves surface floating fibers and other conditions, and can meet the needs of high-frequency communication equipment and automobile parts. and electrical appliances and other fields of performance requirements.
  • a kind of porous glass fiber G1 prepared by the following method:
  • step (2) Dip the alkali-free reinforced glass fiber obtained in step (1) into a sodium bicarbonate solution with a pH value of 8.0 for 2 hours, and then perform centrifugation to remove the solution; use deionized water to perform centrifugal cleaning more than 10 times to obtain porous fiberglass preform;
  • step (3) Air-dry the porous glass fiber preform obtained in step (2) at 600°C for 0.8 hours to obtain the porous glass fiber G1.
  • a porous glass fiber G2-G9 is different from Preparation Example 1 only in that the preparation process parameters are different, and the specific parameters are as shown in Table 1A and Table 1B.
  • the porous glass fiber provided in Preparation Examples 1-9 was subjected to the following performance tests, and the untreated reinforced glass fiber (denoted as G0) was used as a comparison:
  • Pore size Use scanning electron microscope (SEM) to test the morphology of porous glass fiber. Statistically calculate pore size;
  • the reinforced glass fiber is sequentially treated in an acid solution and an acid salt solution and then dried to obtain a porous glass fiber with a large number of microscopic pores and low dielectric loss.
  • the dielectric loss, Young's modulus and other properties of the porous glass fiber can be further adjusted and optimized.
  • the porous glass fiber G8 of Preparation Example 8 was not treated with an acid salt solution during preparation, resulting in a large dielectric constant and dielectric loss of the porous glass fiber; the drying temperature of the porous glass fiber G9 of Preparation Example 9 was too high during preparation. Low, resulting in a smaller Young's modulus of porous glass fiber.
  • Polycarbonate bisphenol A polycarbonate, the melt index of 300°C, 1.2kg is 20g/10min;
  • Alkali-free glass fiber that is, low dielectric loss glass fiber, has a dielectric constant D k at 5 GHz of 4.5 and a dielectric loss D f of 0.0032;
  • the dielectric loss D f at 1MHz is 0.009, commercially available, self-tested dielectric constant at 5GHz is 6, and the dielectric loss is 0.035;
  • the dielectric loss D f at 1MHz is 0.001
  • commercially available, self-tested dielectric constant at 5GHz is 5, and the dielectric loss is 0.02;
  • Reinforced glass fiber with Young's modulus at 90GHz, is commercially available.
  • the self-tested dielectric constant at 5GHz is 4.5 and the dielectric loss is 0.006;
  • Toughening agent commercially available maleic anhydride grafted ethylene-octene copolymer elastomer
  • Antioxidants Antioxidants 168;
  • Lubricant commercially available silicone oil.
  • a glass fiber reinforced polycarbonate material including the following components in parts by weight:
  • the preparation method of the glass fiber reinforced polycarbonate material is as follows: according to the formula, combine the baked polycarbonate, alkali-free glass fiber, porous glass fiber G3, toughening agent, coupling agent, antioxidant and lubricant. Mix in the mixer, the mixing speed is 500 rpm, and the mixing time is 10 minutes; add the mixed materials to the twin-screw extruder, and set the temperature of each zone as follows: the temperature of the first zone is 260°C, and the temperature of the second zone is 270°C , The temperature in zone three is 280°C, the temperature in zone four is 280°C, the temperature in zone five is 280°C, the temperature in zone six is 280°C, the temperature in zone seven is 280°C, the temperature in zone eight is 275°C, the temperature in zone nine is 275°C, and the temperature in zone ten is 275°C. The temperature in zone 275°C, the temperature in zone 11 is 270°C, and the screw speed is 550 rpm. After ex
  • a glass fiber reinforced polycarbonate material the components, dosage (unit is "part") and performance test data are shown in Table 2, Table 3 and Table 4 respectively.
  • the porous glass fiber in Examples 6-8 is porous glass fiber G3 (Preparation Example 3)
  • the porous glass fiber in Example 9 is porous glass fiber G6 (Preparation Example 6); in Examples 10-11
  • the porous glass fibers are respectively porous glass fibers G8 (Preparation Example 8) and G9 (Preparation Example 9).
  • Examples 1-9 of the present application combine low dielectric loss alkali-free glass fibers with porous
  • the glass fiber is compounded, and the composite glass fiber material is used to modify the polycarbonate, so that the tensile strength of the glass fiber reinforced polycarbonate material is 105-118MPa, and the tensile elongation at break is 4.2-6%.
  • the flexural modulus is 5600-7800MPa
  • the flexural strength is 170-193MPa
  • the notched Izod impact strength is 198-220J/m
  • the impact toughness is high
  • the mechanical properties are good
  • the melt index of 300°C, 1.2mm is 9.6-15g/10min
  • It has good processing characteristics, with lower dielectric loss and dielectric constant.
  • the dielectric constant at 5GHz is 2.9-3.25
  • the dielectric loss with 20% glass fiber content is 0.0015-0.0042. It has excellent dielectric properties and processing Comprehensive mechanical properties such as toughness, toughness, strength, and impact resistance.
  • the mechanical properties of glass fiber reinforced polycarbonate materials can be improved.
  • the mechanical properties and dielectric properties can be adjusted, and the glass fiber addition ratio can be adjusted to expand the development of a wider range of glass fiber reinforced materials.
  • the porous glass fiber in order to obtain a glass fiber reinforced polycarbonate material with better performance, preferably has a pore size of 0.5-3 ⁇ m and a specific surface area of 300-600 m 2 /g, and is preferably passed through the reinforced glass fiber through an acid solution in sequence.
  • the glass fiber reinforced polycarbonate material will be The dielectric properties and mechanical properties are reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本申请提供一种玻纤增强聚碳酸酯材料及其制备方法和应用,所述玻纤增强聚碳酸酯材料以重量份计包括如下组分:聚碳酸酯40-95份,无碱玻璃纤维1-40份,多孔玻璃纤维1-40份;所述多孔玻璃纤维中SiO2的质量百分含量≥95%。本申请将低介电损耗的无碱玻璃纤维与多孔玻璃纤维复配并对聚碳酸酯进行改性,全面提升了材料的介电性能、机械性能和加工性,使其冲击韧性高,机械性能好,加工特性良好,具有更低的介电损耗和介电常数,在优异的介电性能、加工性、综合机械性能等多个方面取得性能平衡,能够满足高频通讯设备、汽车部件和电器等领域的要求。

Description

一种玻纤增强聚碳酸酯材料及其制备方法和应用 技术领域
本申请属于聚合物材料技术领域,具体涉及一种玻纤增强聚碳酸酯材料及其制备方法和应用。
背景技术
近年来,随着移动设备的激增,移动通讯供应商常用的3G以下的工作频率已无法满足要求,3GHz以下频段越来越拥堵。随着5G时代的到来,全球部署更宽频段,可从3G拓宽到高频4.4-5GHz,以及毫米波26-39GHz,以实现高传输速率、大容量信号传播、低信息延迟的增强网络服务。在5G高频电磁波的信号传输条件下,传输电磁波波长逐渐变短,绕射能力变差,这就要求5G核心基站数量增加,同时传播介质的介电常数与介电损耗低,以实现有效接受与传输。高频高速传输同样对智能手机中使用的复合材料提出要求,需要在高频电压下具有低介电损耗,还需同时更适宜薄壁制件的加工成型;因此,降低材料的介电常数与介电损耗,提升材料加工流动性,是应对5G新时代的迫切需求。
聚碳酸酯(Polycarbonate,PC)是主链中含有碳酸酯基的聚合物,具有良好的机械性能、尺寸稳定性、耐热性与绝缘特性,是通用工程塑料之一,可应用于后壳、中框、内部支撑架、侧按键等几乎全部智能手机塑胶制件上。但聚碳酸酯以芳香族聚合物居多,分子链刚性大,疲劳强度低,对缺口敏感,容易产生应力开裂,在韧性和强度方面还具有很大的提升空间,采用纤维填料或其他聚合物对其进行增强是业内的常规方法。
CN105440628A公开了一种增强阻燃PC/PPO复合材料,组分如下:20-30份PC树脂,14.9-22份PPO(聚苯醚),3-5.2份PC-PPO嵌段共聚物,5-8份SEBS 接枝物,5-8份聚丙烯弹性体接枝物,0.5-1份氨基改性硅油,0.5-1份氨基硅烷偶联剂,20-30份玻璃纤维;以及复合阻燃剂、抗氧剂和光稳定剂。该复合材料具有良好的拉伸强度、刚性和高低温韧性,但PPO材料的粘度高,刚性大,导致材料的加工流动性较低,难以制备薄壁制件;而且PPO与PC以及玻纤相容性差,需要对PPO进行预处理,成本增加。
CN109206875A公开了一种聚碳酸酯组合物,包括如下组分:聚碳酸酯50-90%,玻璃纤维组5-45%,助剂0-5%;所述玻璃纤维组为长玻璃纤维或短玻璃纤维中的一种或两种的组合。所述聚碳酸酯组合物采用不同长度的玻璃纤维对PC进行增韧改性,提高材料的平整度,但其使用的玻璃纤维包括M-玻璃纤维、E-玻璃纤维、A-玻璃纤维、S-玻璃纤维、R-玻璃纤维或C-玻璃纤维等,玻璃纤维的介电常数和介电损耗高,导致聚碳酸酯组合物的介电性能不佳,难以满足高频电子设备的性能要求。
CN101875772A公开了一种玻纤增强PC复合材料,组分如下:聚碳酸酯45-61%,饱和聚酯5-20%,增韧剂3-4%,热稳定剂0.1-0.3%,润滑剂0.7-1.1%,玻璃纤维25-35%。该复合材料具有较好的韧性、强度和表面光洁度,但其缺口冲击强度在180J/m以下,冲击韧性不佳,介电常数和介电损耗较高,不利于高频电子设备中的应用。
因此,提高聚碳酸酯材料的冲击韧性、加工性和介电性能,降低材料的介电损耗,是本领域的研究重点。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种玻纤增强聚碳酸酯材料及其制备方法和应用, 采用无碱玻璃纤维和多孔玻璃纤维的复配对聚碳酸酯进行改性,使所述玻纤增强聚碳酸酯材料具有更低的介电损耗、更高的冲击强度和良好的加工特性,充分满足了复合材料在高频高速通讯设备、汽车部件和电器等领域的性能要求。
为达此目的,本申请采用以下技术方案:
第一方面,本申请实施例提供一种玻纤增强聚碳酸酯材料,所述玻纤增强聚碳酸酯材料以重量份计包括如下组分:
聚碳酸酯(PC)                            40-95份
无碱玻璃纤维                            1-40份
多孔玻璃纤维                            1-40份;
所述多孔玻璃纤维中SiO2的质量百分含量≥95%。
本申请实施例提供的玻纤增强聚碳酸酯材料中,将无碱玻璃纤维与多孔玻璃纤维复配并对聚碳酸酯进行改性;其中,所述无碱玻璃纤维包含SiO2,以及部分Al2O3、B2O3和CaO等,基本不含有MgO、Li2O、Na2O、K2O以及TiO2,具有低介电常数和低介电损耗;所述多孔玻璃纤维含有大量微观孔洞,SiO2的含量≥95%,在具有极低的介电常数和介电损耗的同时,孔洞的存在增强了玻璃纤维与基体PC的结合性,可显著提升材料的加工特性,并使材料在接受外界冲击时获得能量缓冲,极大地提高材料的冲击韧性。所述玻纤增强聚碳酸酯材料以特定的玻璃纤维与聚碳酸酯进行复配,赋予其低介电常数和低介电损耗,并提升了材料的加工性、强度、韧性和耐冲击性,同时由于聚碳酸酯与填料(无碱玻璃纤维和多孔玻璃纤维)的良好结合,表面浮纤情况获得极大改善,兼具优异的介电性能和综合机械性能。
所述玻纤增强聚碳酸酯材料中,所述聚碳酸酯的重量份为40-95份,例如可以为45份、50份、55份、60份、65份、70份、75份、80份、85份或90份, 以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值,优选55-85份,进一步优选60-80份。
所述无碱玻璃纤维的重量份为1-40份,例如可以为3份、5份、8份、10份、12份、15份、18份、20份、22份、25份、28份、30份、32份、35份或38份,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值,优选3-30份,进一步优选5-25份。
所述多孔玻璃纤维的重量份为1-40份,例如可以为3份、5份、8份、10份、12份、15份、18份、20份、22份、25份、28份、30份、32份、35份或38份,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值,优选3-30份,进一步优选5-25份。
所述孔玻璃纤维中SiO2的质量百分含量≥95%,例如可以为95.5%、96%、96.5%、97%、97.5%、98%、98.5%或99%等。
在一个实施例中,所述聚碳酸酯包括双酚A聚碳酸酯。
在一个实施例中,所述聚碳酸酯在300℃、1.2kg下的熔融指数为5-40g/10min,例如可以为8g/10min、10g/10min、15g/10min、20g/10min、25g/10min、30g/10min、35g/10min或38g/10min,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述无碱玻璃纤维中SiO2的质量百分含量≥90%,例如可以为90.5%、91%、91.5%、92%、92.5%、93%、93.5%、94%、94.5%、95%、95.5%、96%、96.5%、97%、97.5%、98%、98.5%或99%等。
玻璃纤维的种类繁多,一般含有大量极性基团,导致介电常数与介电损耗较高;目前常用的玻纤填料包括有E-玻纤和D-玻纤等。E-玻纤是一种硼硅酸盐玻纤,具有良好的电气绝缘性能和机械性能,但介电性能较差,1MHz下介电 常数Dk为3.3-3.6,介电损耗Df为0.009;D-玻纤属于短切低介电玻纤,结构组成中极性基团较少,具有比E-玻纤更低的介电损耗,1MHz下介电常数Dk为4.2-4.8,介电损耗Df为0.001。总体来说,用于树脂增强的玻纤在常温1MHz下,介电常数Dk一般为3.5-6,介电损耗Df为0.0032;添加到PC树脂基体中,PC树脂本身介电常数Dk为2.8-3.2,介电损耗Df为0.002-0.001;高频条件下介电损耗增加。常规玻纤增强PC材料,在5GHz下,介电损耗在0.01-0.02范围内,无法满足5G时代通讯设备对高分子改性工程塑料的要求。作为本申请实施例的可选技术方案,所述无碱玻璃纤维包含90%以上SiO2,以及部分Al2O3、B2O3和CaO等,基本不含有MgO、Li2O、Na2O、K2O以及TiO2,本身介电常数和介电损耗很低,尤其在高频(5GHz)下具有极低的介电损耗。
在一个实施例中,所述无碱玻璃纤维在5GHz下的介电损耗为0.0030-0.0035,例如可以为0.0031、0.0032、0.0033或0.0034,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述无碱玻璃纤维在5GHz下的介电常数为4.2-4.8,例如可以为4.25、4.3、4.35、4.4、4.45、4.5、4.55、4.6、4.65、4.7或4.75,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述多孔玻璃纤维的孔径为0.5-3μm,例如可以为0.55μm、0.6μm、0.8μm、1μm、1.2μm、1.5μm、1.8μm、2μm、2.2μm、2.5μm或2.8μm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述多孔玻璃纤维的比表面积为300-600m2/g,例如可以 为320m2/g、350m2/g、380m2/g、400m2/g、420m2/g、450m2/g、480m2/g、500m2/g、520m2/g、550m2/g或580m2/g,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
作为本申请实施例的可选技术方案,所述多孔玻璃纤维中SiO2含量≥95%,并且含有大量的微观孔洞(空气,介电常数为1,介电损耗为0),使所述多孔玻璃纤维具有低的介电常数和介电损耗;而且,所述多孔玻璃纤维中的微孔能够产生毛细现象,增强了熔融状态下与PC树脂的结合性,极大地改善了材料的加工特性和综合机械性能。此外,由于PC树脂具有高分子聚合物熔融状态下的非牛顿流体特征,熔融态PC无法完全进入多孔玻璃纤维中,保留足够的空气组分,从而赋予所述玻纤增强聚碳酸酯材料较低的介电常数和介电损耗。
在一个实施例中,所述多孔玻璃纤维在5GHz下的介电损耗为0.002-0.003,例如可以为0.0021、0.0023、0.0024、0.0025、0.0026、0.0027、0.0028或0.0029,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述多孔玻璃纤维在5GHz下的介电常数为3.7-4.2,例如可以为3.75、3.8、3.85、3.9、3.95、4、4.05、4.1或4.15,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述多孔玻璃纤维与无碱玻璃纤维的质量比为1:(0.3-1.3),例如可以为1:0.4、1:0.5、1:0.6、1:0.7、1:0.8、1:0.9、1:1、1:1.1或1:1.2等。
作为本申请实施例的可选技术方案,所述多孔玻璃纤维与无碱玻璃纤维的质量比为1:(0.3-1.3),二者进行复配,使所述玻纤增强聚碳酸酯材料兼具优异的介电性能、韧性、强度和加工性,在综合性能上获得良好的平衡。如果二者的 质量比超出上述范围,多孔玻璃纤维的含量过多会影响玻纤对PC树脂的增强增韧效果,导致玻纤增强聚碳酸酯材料的机械性能略有降低;无碱玻璃纤维的含量过多会使材料的介电损耗有所上升。
在一个实施例中,所述玻纤增强聚碳酸酯材料中无碱玻璃纤维与多孔玻璃纤维的质量百分含量之和为5-50%,例如可以为8%、10%、15%、20%、25%、30%、35%、40%或45%,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述多孔玻璃纤维通过增强型玻璃纤维在酸性溶液中造孔得到。
在一个实施例中,所述增强型玻璃纤维的杨氏模量为50-90GPa,例如可以为55GPa、60GPa、65GPa、70GPa、75GPa、80GPa或85GPa,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述多孔玻璃纤维与增强型玻璃纤维的强度之比为(0.5-0.8):1,例如可以为0.52:1、0.55:1、0.58:1、0.6:1、0.62:1、0.65:1、0.68:1、0.7:1、0.72:1、0.75:1或0.78:1等。
在一个实施例中,所述多孔玻璃纤维通过增强型玻璃纤维造孔得到;造孔后与原始的增强型玻璃纤维相比,所述多孔玻璃纤维的强度可保留50-80%,比表面积从1m2/g提升到300-600m2/g。
在一个实施例中,所述多孔玻璃纤维通过如下方法进行制备,所述方法包括:将增强型玻璃纤维依次在酸溶液和碱性盐溶液中处理后,干燥,得到所述多孔玻璃纤维。
在一个实施例中,所述酸溶液的pH值为2-5,例如可以为2.2、2.5、2.8、3、 3.2、3.5、3.8、4、4.2、4.5或4.8,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述酸溶液包括盐酸溶液、硫酸溶液或硝酸溶液中的任意一种或至少两种的组合。
在一个实施例中,所述酸溶液中的处理时间为1-8h,例如可以为1.25h、1.5h、1.75h、2h、2.25h、2.5h、2.75h、3h、3.25h、3.5h、3.75h、4h、4.25h、4.5h、4.75h、5h、5.25h、5.5h、5.75h、6h、6.5h、7h或7.5h,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述酸溶液中的处理温度为30-80℃,例如可以为35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃或75℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述酸溶液中的处理在搅拌条件下进行。
在一个实施例中,所述酸溶液处理后还包括清洗的步骤。
在一个实施例中,所述碱性盐溶液的pH值为7.5-9,例如可以为7.6、7.8、8、8.1、8.3、8.5、8.7或8.9,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述碱性盐溶液中的盐包括酸式盐。
在一个实施例中,所述酸式盐包括碳酸氢钠、碳酸氢钾或硼酸氢钠中的任意一种或至少两种的组合。
在一个实施例中,所述碱性盐溶液中的处理时间为0.5-6h,例如可以为0.75h、1h、1.25h、1.5h、1.75h、2h、2.25h、2.5h、2.75h、3h、3.25h、3.5h、 3.75h、4h、4.25h、4.5h、4.75h、5h、5.25h、5.5h或5.75h,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述碱性盐溶液中的处理温度为30-80℃,例如可以为35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃或75℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述碱性盐溶液处理后还包括清洗的步骤。
在一个实施例中,所述干燥的温度为400-700℃,例如可以为420℃、450℃、480℃、500℃、520℃、550℃、580℃、600℃、620℃、650℃或680℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述干燥的时间为0.5-2h,例如可以为0.75h、1h、1.25h、1.5h或1.75h,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
作为本申请实施例的可选技术方案,所述多孔玻璃纤维的制备包括将增强型玻璃纤维依次进行酸溶液处理、碱性盐溶液处理和干燥;所述酸溶液的处理将增强型玻璃纤维中的Na+、K+等碱金属逐渐溶解,随处理时间的不同,玻纤内部会产生不同程度与数量的微孔,将酸溶液中的处理时间控制在1-6h,从而控制微孔数量、形态以及玻纤强度;将酸溶液处理后的产物离心清洗去除溶液,然后进行酸式盐溶液处理,水解产生OH-,中和并稀释残留酸溶液,彻底清洗添加溶液,保证产品纯度;处理完成后,多轮离心清洗,并在400-700℃条件下干燥,由于水与玻璃易形成水合玻璃,导致玻纤表面易残留极性羟基自由基,因 此采用400-700℃的高温以实现充分干燥,得到所述多孔玻璃纤维。
在一个实施例中,所述玻纤增强聚碳酸酯材料以重量份计还包括0.1-1份增韧剂,例如增韧剂可以为0.2份、0.3份、0.4份、0.5份、0.6份、0.7份、0.8份或0.9份,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值,进一步优选0.1-0.5份。
在一个实施例中,所述增韧剂包括甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物(MBS)、马来酸酐接枝乙烯-辛烯共聚物弹性体、乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物、乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚物或甲基丙烯酸甲酯-苯乙烯-有机硅共聚物中的任意一种或至少两种的组合。
在一个实施例中,所述玻纤增强聚碳酸酯材料以重量份计还包括0.3-10份偶联剂,例如偶联剂可以为0.5份、1份、1.5份、2份、2.5份、3份、3.5份、4份、4.5份、5份、5.5份、6份、7份、8份或9份,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值,进一步优选0.5-6.5份。
作为本申请实施例的可选技术方案,所述偶联剂对无碱玻璃纤维和多孔玻璃纤维进行表面处理,进一步提升玻璃纤维与PC树脂基体的相容性与结合性,从而使所述玻纤增强聚碳酸酯材料的整体机械性能与介电性能得到改善。
在一个实施例中,所述偶联剂包括硅烷偶联剂、钛酸酯偶联剂或铝酸酯偶联剂中的任意一种或至少两种的组合。
在一个实施例中,所述硅烷偶联剂包括γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷或γ-缩水甘油醚氧丙基三乙氧基硅烷中的任意一种或至少两种的组合。
在一个实施例中,所述钛酸酯偶联剂包括异丙基二油酸酰氧基(二辛基磷酰 氧基)钛酸酯。
在一个实施例中,所述玻纤增强聚碳酸酯材料以重量份计还包括0.01-5份抗氧剂,例如抗氧剂可以为0.03份、0.05份、0.08份、0.1份、0.3份、0.5份、0.8份、1份、1.5份、2份、2.5份、3份、3.5份、4份或4.5份,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值,进一步优选0.01-0.5份。
在一个实施例中,所述抗氧剂包括受阻酚类抗氧剂、受阻胺类抗氧剂、亚磷酸酯类抗氧剂或硫酯类抗氧剂中的任意一种或至少两种的组合。
在一个实施例中,所述受阻酚类抗氧剂包括β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯(抗氧剂1076)、2,6-三丁基-4-甲基苯酚、双(3,5-三丁基-4-羟基苯基)硫醚、2,6-二叔丁基对甲酚、1,3,5-三甲基-2,4,6-(3,5-二叔丁基-4-羟基苯甲基)苯、1,3,5-三(3,5-二叔丁基-4-羟基苄基)异氰尿酸、2,2'-硫代双(4-甲基-6-叔丁基苯酚)、二缩三乙二醇双-β-(3-特丁基-4-羟基-5-甲基苯基)丙酸酯、4,4'-亚丁基-双(2-(1,1-二甲基乙基)-5-甲基)苯酚、(3,5-二丁基-4-羟基-苯基丙酸十八烷基)酯、四(β-(3,5-二叔丁基-4-羟基苯基)丙酸)季戊四醇酯(抗氧剂1010)或二缩三乙二醇双(β-(3-叔丁基-4-羟基-5-甲基苯基)丙酸酯)中的任意一种或至少两种的组合。
在一个实施例中,所述芳香胺类抗氧剂包括N,N'-双(3-(3,5-二叔丁基-4-羟基苯基)丙酰基)己二胺(抗氧剂1098)。
在一个实施例中,所述亚磷酸酯类抗氧剂包括三(2,4-二叔丁基苯基)亚磷酸酯(抗氧剂168)、双(2,4-二叔丁基苯基)季戊四醇二亚磷酸酯(抗氧剂626)、季戊四醇二亚磷酸二硬脂基酯或四(2,4-二叔丁基苯基-4,4'-联苯基)双磷酸酯中的任意一种或至少两种的组合。
在一个实施例中,所述玻纤增强聚碳酸酯材料以重量份计还包括0.01-5份 润滑剂,例如润滑剂可以为0.03份、0.05份、0.08份、0.1份、0.3份、0.5份、0.8份、1份、1.5份、2份、2.5份、3份、3.5份、4份或4.5份,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值,进一步优选0.01-0.5份。
在一个实施例中,所述润滑剂包括季戊四醇硬脂酸酯(例如PETS)、乙烯蜡或硅油中的任意一种或至少两种的组合。
在一个实施例中,所述玻纤增强聚碳酸酯材料以重量份计包括如下组分:
第二方面,本申请实施例提供一种如第一方面所述的玻纤增强聚碳酸酯材料的制备方法,所述制备方法包括:将聚碳酸酯、无碱玻璃纤维和多孔玻璃纤维混合后熔融挤出,得到所述玻纤增强聚碳酸酯材料。
在一个实施例中,所述熔融挤出的温度为240-290℃,例如可以为245℃、250℃、255℃、260℃、265℃、270℃、275℃、280℃或285℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述熔融挤出在螺杆挤出机中进行。
在一个实施例中,所述螺杆挤出机的螺杆转速为350-750rpm,例如可以为 400rpm、450rpm、500rpm、550rpm、600rpm、650rpm或700rpm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述混合在混料机中进行。
在一个实施例中,所述混合的转速为300-700rpm,例如可以为350rpm、400rpm、450rpm、500rpm、550rpm、600rpm或650rpm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述混合的时间为3-15min,例如可以为4min、5min、6min、8min、10min、12min或14min,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本申请实施例不再穷尽列举所述范围包括的具体点值。
在一个实施例中,所述混合的物料还包括增韧剂、偶联剂、抗氧剂或润滑剂中的任意一种或至少两种的组合。
在一个实施例中,所述聚碳酸酯在混合前预先烘料,温度为100-120℃。
在一个实施例中,所述熔融挤出后还包括冷却、干燥和造粒的步骤。
第三方面,本申请实施例提供一种如第一方面所述的玻纤增强聚碳酸酯材料在通讯设备、汽车部件或电器壳体中的应用。
相对于现有技术,本申请具有以下有益效果:
本申请提供的玻纤增强聚碳酸酯材料中,将低介电损耗的无碱玻璃纤维与多孔玻璃纤维复配并对聚碳酸酯进行改性,全面提升了材料的介电性能、机械性能和加工性,其拉伸强度≥105MPa,断裂伸长率为4.2-6%,弯曲模量≥5600MPa,弯曲强度≥170MPa,悬臂梁缺口冲击强度为198-220J/m,冲击韧性高,机械性能好,300℃、1.2mm熔融指数为9.6-15g/10min,加工特性良好,具有 更低的介电损耗和介电常数,5GHz下的介电常数≤3.25,介电损耗为0.0015-0.0042。所述玻纤增强聚碳酸酯材料兼具优异的介电性能、加工性、韧性、强度、耐冲击性等综合机械性能,显著改善了表面浮纤等情况,能够满足高频通讯设备、汽车部件和电器等领域的性能要求。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
制备例1
一种多孔玻璃纤维G1,采用如下方法制备得到:
(1)将水洗后的增强型玻璃纤维(杨氏模量90GPa)浸入pH值为2.0的盐酸溶液中,60℃搅拌条件下处理1h后,离心清洗去除溶液,得到去碱增强玻纤;
(2)将步骤(1)得到的去碱增强玻纤浸入pH值为8.0的碳酸氢钠溶液中处理2h,再进行离心处理,去除溶液;使用去离子水进行10次以上的离心清洗,得到多孔玻纤预制品;
(3)将步骤(2)得到的多孔玻纤预制品在600℃鼓风干燥0.8h,得到所述多孔玻璃纤维G1。
制备例2-9
一种多孔玻璃纤维G2-G9,其与制备例1的区别仅在于,制备的工艺参数有所不同,具体参数如表1A和表1B所示。
对制备例1-9提供的多孔玻璃纤维进行如下性能测试,并以未经处理的增强型玻璃纤维(记为G0)作为对比:
(1)孔隙粒径:采用扫描电子显微镜(SEM)测试多孔玻璃纤维的形貌, 统计计算孔隙粒径;
(2)比表面积:采用SEM进行测试,统计计算;
(3)介电常数Dk和介电损耗Df:采用SPDR谐振腔法进行测试;
(4)杨氏模量:采用标准GB/T 7962.6中的方法进行测试,分别测试干燥(即步骤(3))之前和干燥之后的杨氏模量;
测试结果如表1A和表1B所示:
表1A
表1B

表1B中,“--”代表未进行该步骤;G0的杨氏模量即增强型玻璃纤维的初始杨氏模量。
结合表1A和表1B的性能测试数据可知,本申请将增强型玻璃纤维依次在酸溶液和酸式盐溶液中处理后进行干燥,能够得到含有大量的微观孔洞的低介电损耗的多孔玻璃纤维;同时,根据制备例1-7可知,通过对处理温度和时间等工艺参数的调整,能够实现多孔玻璃纤维的介电损耗、杨氏模量等性能的进一步调节和优化。制备例8的多孔玻璃纤维G8在制备中没有进行酸式盐溶液的处理,导致多孔玻璃纤维的介电常数和介电损耗较大;制备例9的多孔玻璃纤维G9在制备中的干燥温度过低,导致多孔玻璃纤维的杨氏模量较小。
本申请以下实施例和对比例所涉及的物料包括:
(1)聚碳酸酯:双酚A聚碳酸酯,300℃、1.2kg的熔融指数为20g/10min;
(2)玻璃纤维:
无碱玻璃纤维,即低介损玻璃纤维,5GHz下的介电常数Dk为4.5,介电损耗Df为0.0032;
E-玻璃纤维,1MHz下的介电损耗Df为0.009,市售,自检5GHz的介电常数为6,介电损耗为0.035;
D-玻璃纤维,1MHz下的介电损耗Df为0.001,市售,自检5GHz的介电常数为5,介电损耗为0.02;
增强型玻璃纤维,杨氏模量在90GHz,市售,自检5GHz的介电常数为4.5,介电损耗为0.006;
(3)增韧剂:市售的马来酸酐接枝乙烯-辛烯共聚物弹性体;
(4)偶联剂:γ-氨丙基三甲氧基硅烷;
(5)抗氧剂:抗氧化剂168;
(6)润滑剂:市售的硅油。
实施例1
一种玻纤增强聚碳酸酯材料,以重量份计包括如下组分:
所述玻纤增强聚碳酸酯材料的制备方法如下:按照配方量将烘料后的聚碳酸酯、无碱玻璃纤维、多孔玻璃纤维G3、增韧剂、偶联剂、抗氧剂和润滑剂在混料机中混合,混料速度为500rpm,混合时间为10min;将混合后的物料加到双螺杆挤出机中,设置各区温度如下:一区温度为260℃,二区温度为270℃, 三区温度为280℃,四区温度为280℃,五区温度为280℃,六区温度为280℃,七区温度为280℃,八区温度为275℃,九区温度为275℃,十区温度275℃,十一区温度270℃,螺杆转速为550rpm,经挤出后冷却、干燥、切粒,得到所述玻纤增强聚碳酸酯材料。
对所述玻纤增强聚碳酸酯材料进行如下性能测试:
(1)拉伸性能:按照ISO 527-1中的方法测试材料的断裂伸长率(%)和拉伸强度(MPa);
(2)弯曲性能:按照ISO 178中的方法测试材料的弯曲模量(MPa)和弯曲强度(MPa);
(3)冲击性能:按照ASTM D256-2010中的方法测试材料的ASTM 3.2mm悬臂梁缺口冲击强度,测试的环境温度为23℃;
(4)熔融指数:按照ISO 1183-1中的方法测试300℃、1.2mm的熔融指数;
(5)介电性能:按照SPDR谐振腔法测试5GHz下材料的介电常数Dk和介电损耗Df;具体测试数据如表2所示。
实施例2-11,对比例1-5
一种玻纤增强聚碳酸酯材料,组分、用量(单位为“份”)和性能测试数据分别如表2、表3和表4所示。
表2

表3

表3中,实施例6-8中的多孔玻璃纤维为多孔玻璃纤维G3(制备例3),实施例9中的多孔玻璃纤维为多孔玻璃纤维G6(制备例6);实施例10-11中的多孔玻璃纤维分别为多孔玻璃纤维G8(制备例8)、G9(制备例9)。
表4

由表2、表3和表4的性能测试数据可知,与仅含有一种玻璃纤维的对比例1-5相比,本申请实施例1-9将低介电损耗的无碱玻璃纤维与多孔玻璃纤维进行复配,采用复合的玻纤材料对聚碳酸酯进行改性,使所述玻纤增强聚碳酸酯材料的拉伸强度为105-118MPa,拉伸断裂伸长率为4.2-6%,弯曲模量为5600-7800MPa,弯曲强度为170-193MPa,悬臂梁缺口冲击强度为198-220J/m,冲击韧性高,机械性能好,300℃、1.2mm熔融指数为9.6-15g/10min,加工特性良好,具有更低的介电损耗和介电常数,5GHz下的介电常数为2.9-3.25,20%玻纤含量的介电损耗为0.0015-0.0042,兼具优异的介电性能、加工性、韧性、强度、耐冲击性等综合机械性能。同时,结合实施例1-5可知,通过调整低介电损耗的无碱玻璃纤维与多孔玻璃纤维的比例,以及材料中玻璃纤维的总量占比,可以对玻纤增强聚碳酸酯材料的机械力学性能和介电性能进行调整,调试玻纤添加配比可拓宽到更宽范围玻纤增强材料的开发。此外,为了获得性能更好的玻纤增强聚碳酸酯材料,所述多孔玻璃纤维的孔径优选为0.5-3μm,比表面积为300-600m2/g,并优选通过增强型玻璃纤维依次经酸溶液处理、酸式盐溶液处理 和高温干燥得到,使其具有良好的孔径结构和低介电损耗特性;如果多孔玻璃纤维没有采用本申请优选的方法制备得到(实施例10-11),则会使玻纤增强聚碳酸酯材料的介电性能和力学性能有所降低。
申请人声明,本申请通过上述实施例来说明本申请的一种玻纤增强聚碳酸酯材料及其制备方法和应用,但本申请并不局限于上述实施例,即不意味着本申请必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (14)

  1. 一种玻纤增强聚碳酸酯材料,所述玻纤增强聚碳酸酯材料以重量份计包括如下组分:
    聚碳酸酯40-95份
    无碱玻璃纤维1-40份
    多孔玻璃纤维1-40份;
    所述多孔玻璃纤维中SiO2的质量百分含量≥95%。
  2. 根据权利要求1所述的玻纤增强聚碳酸酯材料,其中,所述聚碳酸酯包括双酚A聚碳酸酯;
    可选地,所述聚碳酸酯在300℃、1.2kg下的熔融指数为5-40g/10min。
  3. 根据权利要求1或2所述的玻纤增强聚碳酸酯材料,其中,所述无碱玻璃纤维中SiO2的质量百分含量≥90%;
    可选地,所述无碱玻璃纤维在5GHz下的介电损耗为0.0030-0.0035;
    可选地,所述无碱玻璃纤维在5GHz下的介电常数为4.2-4.8。
  4. 根据权利要求1-3任一项所述的玻纤增强聚碳酸酯材料,其中,所述多孔玻璃纤维的孔径为0.5-3μm;
    可选地,所述多孔玻璃纤维的比表面积为300-600m2/g;
    可选地,所述多孔玻璃纤维在5GHz下的介电损耗为0.002-0.003;
    可选地,所述多孔玻璃纤维在5GHz下的介电常数为3.7-4.2。
  5. 根据权利要求1-4任一项所述的玻纤增强聚碳酸酯材料,其中,所述多孔玻璃纤维与无碱玻璃纤维的质量比为1:(0.3-1.3);
    可选地,所述玻纤增强聚碳酸酯材料中无碱玻璃纤维与多孔玻璃纤维的质量百分含量之和为5-50%。
  6. 根据权利要求1-5任一项所述的玻纤增强聚碳酸酯材料,其中,所述多 孔玻璃纤维通过增强型玻璃纤维在酸性溶液中造孔得到;
    可选地,所述增强型玻璃纤维的杨氏模量为50-90GPa;
    可选地,所述多孔玻璃纤维与增强型玻璃纤维的强度之比为(0.5-0.8):1。
  7. 根据权利要求1-6任一项所述的玻纤增强聚碳酸酯材料,其中,所述多孔玻璃纤维通过如下方法进行制备,所述方法包括:将增强型玻璃纤维依次在酸溶液和碱性盐溶液中处理后,干燥,得到所述多孔玻璃纤维;
    可选地,所述酸溶液的pH值为2-5;
    可选地,所述酸溶液包括盐酸溶液、硫酸溶液或硝酸溶液中的任意一种或至少两种的组合;
    所述酸溶液中的处理时间为1-8h;
    所述酸溶液中的处理温度为30-80℃;
    所述酸溶液中的处理在搅拌条件下进行;
    所述碱性盐溶液的pH值为7.5-9;
    所述碱性盐溶液中的盐包括酸式盐;
    所述酸式盐包括碳酸氢钠、碳酸氢钾或硼酸氢钠中的任意一种或至少两种的组合;
    所述碱性盐溶液中的处理时间为0.5-6h;
    所述碱性盐溶液中的处理温度为30-80℃;
    所述干燥的温度为400-700℃;
    所述干燥的时间为0.5-2h。
  8. 根据权利要求1-7任一项所述的玻纤增强聚碳酸酯材料,其中,所述玻纤增强聚碳酸酯材料以重量份计还包括0.1-1份增韧剂;
    所述增韧剂包括甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物、马来酸酐接枝乙烯 -辛烯共聚物弹性体、乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物、乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚物或甲基丙烯酸甲酯-苯乙烯-有机硅共聚物中的任意一种或至少两种的组合。
  9. 根据权利要求1-8任一项所述的玻纤增强聚碳酸酯材料,其中,所述玻纤增强聚碳酸酯材料以重量份计还包括0.3-10份偶联剂;
    所述偶联剂包括硅烷偶联剂、钛酸酯偶联剂或铝酸酯偶联剂中的任意一种或至少两种的组合;
    可选地,所述硅烷偶联剂包括γ-氨丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷或γ-缩水甘油醚氧丙基三乙氧基硅烷中的任意一种或至少两种的组合;
    可选地,所述钛酸酯偶联剂包括异丙基二油酸酰氧基(二辛基磷酰氧基)钛酸酯。
  10. 根据权利要求1-9任一项所述的玻纤增强聚碳酸酯材料,其中,所述玻纤增强聚碳酸酯材料以重量份计还包括0.01-5份抗氧剂;
    所述抗氧剂包括受阻酚类抗氧剂、受阻胺类抗氧剂、亚磷酸酯类抗氧剂或硫酯类抗氧剂中的任意一种或至少两种的组合。
  11. 根据权利要求1-10任一项所述的玻纤增强聚碳酸酯材料,其中,所述玻纤增强聚碳酸酯材料以重量份计还包括0.01-5份润滑剂;
    所述润滑剂包括季戊四醇硬脂酸酯、乙烯蜡或硅油中的任意一种或至少两种的组合。
  12. 一种如权利要求1-11任一项所述的玻纤增强聚碳酸酯材料的制备方法,所述制备方法包括:将聚碳酸酯、无碱玻璃纤维和多孔玻璃纤维混合后熔融挤出,得到所述玻纤增强聚碳酸酯材料。
  13. 根据权利要求12所述的制备方法,其中,所述熔融挤出的温度为240-290℃;
    可选地,所述熔融挤出在螺杆挤出机中进行;
    可选地,所述螺杆挤出机的螺杆转速为350-750rpm;
    可选地,所述混合的物料还包括增韧剂、偶联剂、抗氧剂或润滑剂中的任意一种或至少两种的组合。
  14. 一种如利要求1-11任一项所述的玻纤增强聚碳酸酯材料在通讯设备、汽车部件或电器壳体中的应用。
PCT/CN2023/104764 2022-08-02 2023-06-30 一种玻纤增强聚碳酸酯材料及其制备方法和应用 WO2024027415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210920280.2 2022-08-02
CN202210920280.2A CN115124826A (zh) 2022-08-02 2022-08-02 一种玻纤增强聚碳酸酯材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024027415A1 true WO2024027415A1 (zh) 2024-02-08

Family

ID=83385187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104764 WO2024027415A1 (zh) 2022-08-02 2023-06-30 一种玻纤增强聚碳酸酯材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115124826A (zh)
WO (1) WO2024027415A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124826A (zh) * 2022-08-02 2022-09-30 上海中镭新材料科技有限公司 一种玻纤增强聚碳酸酯材料及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694414A (zh) * 2016-04-12 2016-06-22 东莞市奥能工程塑料有限公司 一种高含量玻纤增强无卤阻燃pc复合材料及其制备方法
CN107459805A (zh) * 2016-06-06 2017-12-12 华为技术有限公司 一种基站天线罩及其制造方法
CN109312113A (zh) * 2016-05-26 2019-02-05 沙特基础工业全球技术公司 用于电子或电信应用的热塑性组合物和其成型物品
CN110655792A (zh) * 2019-10-29 2020-01-07 中广核高新核材科技(苏州)有限公司 适用于5g通讯低介电激光直接成型复合材料及其制备方法
CN111484719A (zh) * 2019-10-17 2020-08-04 四川鑫达企业集团有限公司 一种高抗冲阻燃增强聚碳酸酯复合材料及其制备方法
CN112521056A (zh) * 2020-12-24 2021-03-19 南通市交通建设工程有限公司 一种抗渗水型沥青混凝土超薄耐磨面层及其施工方法
CN112897959A (zh) * 2021-04-06 2021-06-04 常州科鉴建设工程质量检测有限公司 一种透水高强型沥青混凝土及其制备方法
CN113416401A (zh) * 2021-06-10 2021-09-21 华南理工大学 低介电玻纤增强pc/ppo复合材料及其制备方法
CN114479405A (zh) * 2021-12-15 2022-05-13 金发科技股份有限公司 一种聚碳酸酯复合材料及其制备方法和应用
CN115124826A (zh) * 2022-08-02 2022-09-30 上海中镭新材料科技有限公司 一种玻纤增强聚碳酸酯材料及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09309741A (ja) * 1996-05-20 1997-12-02 Nitto Boseki Co Ltd 低誘電率ガラス繊維パウダ−及びプリント配線板
JP2002293579A (ja) * 2001-03-28 2002-10-09 Nitto Boseki Co Ltd 高誘電率ガラス繊維
JP2014062346A (ja) * 2012-09-24 2014-04-10 Japan Carlit Co Ltd グラスファイバーの表面処理方法、および該方法により表面修飾されたグラスファイバー並びにそれを用いたプリント配線基板
CN106867225A (zh) * 2017-03-08 2017-06-20 宁波公牛电器有限公司 一种玻璃纤维增强聚碳酸酯复合材料及制备方法
CN108504069B (zh) * 2018-04-25 2020-06-26 宁波坚锋新材料有限公司 玻纤增韧聚碳酸酯材料
JP2021017533A (ja) * 2019-07-23 2021-02-15 住化ポリカーボネート株式会社 繊維強化ポリカーボネート樹脂組成物
CN113135666B (zh) * 2020-11-18 2021-11-19 南京玻璃纤维研究设计院有限公司 低介电玻璃纤维及制备方法、玻璃纤维制品、复合材料及应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105694414A (zh) * 2016-04-12 2016-06-22 东莞市奥能工程塑料有限公司 一种高含量玻纤增强无卤阻燃pc复合材料及其制备方法
CN109312113A (zh) * 2016-05-26 2019-02-05 沙特基础工业全球技术公司 用于电子或电信应用的热塑性组合物和其成型物品
CN107459805A (zh) * 2016-06-06 2017-12-12 华为技术有限公司 一种基站天线罩及其制造方法
CN111484719A (zh) * 2019-10-17 2020-08-04 四川鑫达企业集团有限公司 一种高抗冲阻燃增强聚碳酸酯复合材料及其制备方法
CN110655792A (zh) * 2019-10-29 2020-01-07 中广核高新核材科技(苏州)有限公司 适用于5g通讯低介电激光直接成型复合材料及其制备方法
CN112521056A (zh) * 2020-12-24 2021-03-19 南通市交通建设工程有限公司 一种抗渗水型沥青混凝土超薄耐磨面层及其施工方法
CN112897959A (zh) * 2021-04-06 2021-06-04 常州科鉴建设工程质量检测有限公司 一种透水高强型沥青混凝土及其制备方法
CN113416401A (zh) * 2021-06-10 2021-09-21 华南理工大学 低介电玻纤增强pc/ppo复合材料及其制备方法
CN114479405A (zh) * 2021-12-15 2022-05-13 金发科技股份有限公司 一种聚碳酸酯复合材料及其制备方法和应用
CN115124826A (zh) * 2022-08-02 2022-09-30 上海中镭新材料科技有限公司 一种玻纤增强聚碳酸酯材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115124826A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
US11479498B2 (en) Glass composition and glass fiber having the same
WO2024027415A1 (zh) 一种玻纤增强聚碳酸酯材料及其制备方法和应用
CN107216042B (zh) 一种高模量玻璃纤维组合物以及玻璃纤维
CA2961678A1 (en) Glass fiber composition, glass fiber and composite material therefrom
CN111286176A (zh) 液晶聚合物组合物及其制备方法
JP2003171143A (ja) ガラス繊維用ガラス組成物
EP2462069A1 (en) Improved modulus, lithium free glass
CN113195422A (zh) 玻璃纤维及其制造方法
CN102040807A (zh) 高灼热丝环保型阻燃增强pbt复合材料及其制备方法
CN101863617B (zh) 一种光学玻璃及光学元件
CN104927199A (zh) 一种纤维增强高分子电缆材料及其制备方法
JP2022503330A (ja) 電子グレードガラス繊維組成物、そのガラス繊維及び電子グレードガラス繊維布
CN113416401B (zh) 低介电玻纤增强pc/ppo复合材料及其制备方法
CN114105525B (zh) 一种阻燃型玻璃纤维复合材料及其制备方法
JP6406567B2 (ja) フィラー粉末および樹脂組成物
CN111423723A (zh) 用于5g的增强聚苯硫醚组合物及其制备方法
CN102942738A (zh) 一种高cti值、高gwit值环保阻燃玻纤增强pp/ppo合金材料及其制备方法
JP2019112246A (ja) ガラス繊維及びその製造方法
CN105542317B (zh) 一种高cti环保阻燃玻纤增强pp材料及其制备方法
JP2003054993A (ja) 繊維用ガラス組成物
CN104761149B (zh) 低拉丝温度低介电常数的玻璃纤维
CN108609859B (zh) 一种新型高模量玻璃纤维组合物以及玻璃纤维
CN110760176A (zh) Ppo/hips合金材料及其制备方法
CN115093123B (zh) 一种低膨胀高模量玻璃纤维组合物以及玻璃纤维
CN115785642B (zh) 一种耐低温高模量电磁屏蔽材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849125

Country of ref document: EP

Kind code of ref document: A1