WO2024027191A1 - 聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板 - Google Patents

聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板 Download PDF

Info

Publication number
WO2024027191A1
WO2024027191A1 PCT/CN2023/087230 CN2023087230W WO2024027191A1 WO 2024027191 A1 WO2024027191 A1 WO 2024027191A1 CN 2023087230 W CN2023087230 W CN 2023087230W WO 2024027191 A1 WO2024027191 A1 WO 2024027191A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated film
polyphenylene ether
ether resin
substrate
indene
Prior art date
Application number
PCT/CN2023/087230
Other languages
English (en)
French (fr)
Inventor
伍得
王�义
廖述杭
苏峻兴
Original Assignee
武汉市三选科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉市三选科技有限公司 filed Critical 武汉市三选科技有限公司
Priority to US18/459,006 priority Critical patent/US11978686B2/en
Priority to US18/459,383 priority patent/US20240052098A1/en
Publication of WO2024027191A1 publication Critical patent/WO2024027191A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Definitions

  • the present disclosure relates to the technical field of integrated circuits, and in particular to a method for modifying polyphenylene ether resin, a laminated film composite, a laminated film, and a substrate.
  • feature size refers to the smallest size in a semiconductor device.
  • the smaller the feature size the higher the integration level of the chip, the better the performance, and the lower the power consumption.
  • the characteristic size of the integrated circuit decreases, the parasitic resistance and capacitance of the interconnection will cause signal delay, crosstalk and increase energy consumption, which will lead to the leakage current of the integrated circuit becoming larger, the capacitance effect between the wires will be enhanced, and the integrated circuit will heat up. Enhance. Improving circuit design cannot fully meet the application requirements for high-speed signal transmission and signal integrity at high frequencies. Therefore, reducing dielectric constant and dielectric loss has become a hot pursuit for substrate manufacturers.
  • the integrated circuit packaging substrate is a bridge connecting chip manufacturing and complete electronic products.
  • One side is connected to the chip and the other side is connected to the PCB board to achieve optimized output of chip functions.
  • Commonly used polyphenylene ether has a larger molecular weight, poor solubility at room temperature, and poor compatibility when used with other resins such as epoxy resin, which affects the mechanical properties, heat resistance, and dielectric properties of composite materials. have negative impacts in all aspects.
  • a method for modifying polyphenylene ether resin, a laminated film composite, a laminated film, and a substrate are provided to solve the problem in the prior art when polyphenylene ether resin is used in integrated circuits.
  • Technical problems such as leakage and heating caused by the reduction of integrated circuit feature size.
  • a method for modifying polyphenylene ether resin which includes: mixing indene oligomer, polyphenylene ether and benzene organic solvent and then heating and dissolving to obtain a mixed solution; adding peroxide The initiator is added to the mixed solution and kept warm to obtain an indene oligomer-modified polyphenylene ether resin to reduce the molecular weight of the polyphenylene ether; the structural formula of the indene oligomer is:
  • a laminated film composite including: indene oligomer modified polyphenylene ether tree Grease is obtained by the modification method of polyphenylene ether resin described in the first aspect.
  • a laminated film formed from the laminated film composite material of the second aspect.
  • a substrate including: a substrate body, and the laminated film described in the third aspect, attached to at least part of the surface of the substrate body.
  • a surface treatment method for a substrate which includes: laminating the laminated film described in the third aspect to at least part of the surface of the substrate, and performing vacuum hot pressing and curing after lamination. , obtain a laminated film; make holes, plate copper and make circuits on the laminated film; the process parameters of the vacuum hot pressing include: the temperature is 80°C to 100°C, the vacuum time is 50s to 70s; the curing The operating process parameters include: curing temperature is 170 ⁇ 190°C, and curing time is 1.8h ⁇ 2.2h.
  • Figure 1 shows a schematic flow diagram of a method for modifying polyphenylene ether resin according to some embodiments of the present disclosure
  • FIG. 2 shows a schematic flowchart of a substrate surface treatment method according to some embodiments of the present disclosure.
  • At least one means one or more, and “plurality” means two or more.
  • At least one means one or more, and “plurality” means two or more.
  • At least one means at least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c or “at least one of a, b, and c” can mean: a, b, c, a ⁇ b (that is, a and b), a ⁇ c, b ⁇ c, or a ⁇ b ⁇ c, where a, b, and c can be single or multiple respectively.
  • the present disclosure provides a method for modifying polyphenylene ether resin, including: S11, mixing indene oligomer, polyphenylene ether and benzene organic solvent and then heating and dissolving to obtain a mixed Solution; S12. Add a peroxide initiator to the mixed solution and keep it warm to obtain an indene oligomer-modified polyphenylene ether resin to reduce the molecular weight of the polyphenylene ether; the structural formula of the indene oligomer is:
  • This method uses indene oligomer to modify polyphenylene ether to reduce the molecular weight of polyphenylene ether to obtain indene oligomer modified polyphenylene ether resin; the modified polyphenylene ether with smaller molecular weight has a lower softening point and melting point, has better interface adhesion, and can fit better with the substrate of the integrated circuit. At the same time, because it has a lower dielectric constant and dielectric loss, it can reduce the dielectric constant and dielectric loss of the substrate. This further solves the technical problems of current leakage and heat generation caused by the reduction of the characteristic size of the integrated circuit when the existing polyphenylene ether resin is used in the integrated circuit.
  • the molecular structure diagram of the indene oligomer used is shown above, and it can be purchased from Nippon Steel Co., Ltd., model: IP-100.
  • Polyphenylene ether has a low dielectric constant and dielectric loss, but its temperature resistance, processability and interface adhesion are relatively poor.
  • Indene oligomers can be used to reduce the molecular weight of polyphenylene ether and improve the processability of polyphenylene ether. , and improve the interfacial adhesion of the material without affecting the dielectric constant and dielectric loss.
  • the heating process parameters include: a temperature of 90°C to 110°C; and the heat preservation process parameters include: a heat preservation time of 4h to 8h.
  • the weight ratio of the indene oligomer and the polyphenylene ether is 5-15:90-110.
  • the molecular weight of the product is moderate.
  • the dielectric constant and dielectric loss of the laminated film are low and the performance is good.
  • the present disclosure provides a laminated film composite material, including an indene oligomer-modified polyphenylene ether resin, which is obtained by the modification method of the polyphenylene ether resin described in the first aspect.
  • the indene oligomer-modified polyphenylene ether resin contained in the laminated film composite material is obtained by the above-mentioned modification method of the polyphenylene ether resin, because the laminated film composite material adopts part or all of the technology of the above embodiments.
  • the solution therefore, has at least all the beneficial effects brought by the technical solutions of the above embodiments, and will not be described again one by one.
  • Indene oligomer-modified polyphenylene ether resin has a low dielectric constant and dielectric loss
  • spherical silica as a filler, has a low dielectric constant and low dielectric loss, which can reduce the thermal expansion coefficient of the laminated film
  • the main chain structure of liquid rubber modified epoxy resin is polybutadiene, which has good dielectric properties and is conducive to film formation
  • the active ester curing agent can react with hydroxyl groups in the system to reduce polar groups, lower dielectric constant and dielectric Loss
  • silane coupling agent is beneficial to the compatibility of silica and epoxy resin system
  • curing accelerator can promote the completion of curing reaction.
  • the laminated film has good fluidity and can fill the cavities and surface gaps of the substrate; it has a low dielectric constant and dielectric loss, which can reduce the leakage current of the integrated circuit, reduce the capacitance effect between the wires, and reduce the concentration of the integrated circuit. Integrated circuit heating, etc.
  • the laminated film composite further includes: spherical silica, liquid rubber modified epoxy resin, active ester curing agent, silane coupling agent and curing accelerator.
  • Liquid rubber modified epoxy resin can be purchased from Laohe High-tech Materials (Shanghai) Co., Ltd., model number: EPP-175.
  • Liquid rubber modified epoxy resin is a high-purity flexible epoxy resin formed by grafting low-viscosity liquid polybutadiene rubber onto the molecular chain of bisphenol A epoxy resin.
  • the indene oligomer modified polyphenylene ether resin, the spherical silica, the liquid rubber modified epoxy resin, the active ester curing agent, the silane coupling agent The weight ratio to the curing accelerator is 50-70:140-18:10-20:20-40:0.1-5:1-5.
  • Laminated film composites can generally be prepared by the following method, which includes: indene oligomer modified polyphenylene ether resin, spherical silica, liquid rubber modified epoxy resin, active ester curing agent, Silane coupling agent and curing accelerator are mixed to obtain a laminated film composite.
  • the preparation method of the laminated film composite material is simple.
  • the present disclosure provides a laminated film formed from the laminated film composite material according to any one of claims 4 to 6.
  • the laminated film is formed from the above-mentioned laminated film composite material, and the indene oligomer-modified polyphenylene ether resin contained in the laminated film composite material is obtained by the above-mentioned modification method of the polyphenylene ether resin. Therefore, This laminated film adopts part or all of the technical solutions of the above embodiments, and therefore has at least all the beneficial effects brought by the technical solutions of the above embodiments, which will not be described again one by one.
  • the laminated film can be produced by coating the laminated film composite on a PET base film and drying it.
  • the present disclosure provides a substrate, including: a substrate body; and the laminated film according to claim 7, attached to at least part of the surface of the substrate body.
  • the substrate includes a laminated film, and the laminated film is formed from the above-mentioned laminated film composite material, and the indene oligomer-modified polyphenylene ether resin contained in the laminated film composite material is made from the above-mentioned polyphenylene ether resin. Therefore, the laminated film adopts part or all of the technical solutions of the above embodiments, and therefore has at least all the beneficial effects brought by the technical solutions of the above embodiments, which will not be described again one by one. Attaching a laminated film to the surface of the substrate makes it have a lower dielectric constant and dielectric loss. When preparing a high-density integrated circuit, it is beneficial to reduce the leakage current of the integrated circuit, reduce the capacitance effect between wires, and reduce the cost of the integrated circuit. Fever, etc.
  • the present disclosure provides a surface treatment method for a substrate, including: S21. Applying the laminated film of claim 7 to at least part of the surface of the substrate; S22. After combining, vacuum hot pressing and solidification are performed to obtain a laminated film; S23, opening holes, copper plating and making circuits on the laminated film; the process parameters of the vacuum hot pressing include: a temperature of 80°C to 100°C, The vacuum time is 50s to 70s; the process parameters of the curing operation include: the curing temperature is 170°C to 190°C, and the curing time is 1.8h to 2.2h.
  • the film material fills the holes on the substrate, and then holes are opened on the laminated film, copper is plated, lines are made, and wiring is formed through various processes to prepare high-density integrated circuits.
  • Embodiment 1 A substrate and its surface treatment method, including the following steps: (1) Raw material selection: 50 parts of indene oligomer modified polyphenylene ether resin, 180 parts of spherical silica, liquid rubber modified epoxy 15 parts of resin (EPP ⁇ 175), 35 parts of active ester curing agent (HPC ⁇ 8000 ⁇ 65T), 1 part of silane coupling agent (KBM ⁇ 403) and 2 parts of curing accelerator (2E ⁇ 4MI); (2) Volume Layer film preparation: Mix indene oligomer modified polyphenylene ether resin, spherical silica, liquid rubber modified epoxy resin, active ester curing agent, silane coupling agent and curing accelerator to obtain a laminated film composite material; coat the laminated film composite on the PET base film, and dry at 110°C for 7 minutes; (3) Substrate surface treatment: laminate the laminated film to the surface of the substrate, and vacuum at 90°C after lamination Hot press for 60 seconds, and then solidify at 180°C for 2 hours to obtain a laminated film;
  • the modification method of polyphenylene ether resin includes the following steps: (1) raw material selection: 10 parts of indene oligomer, 100 parts of polyphenylene ether, 3.3 parts of benzoyl peroxide and 100 parts of toluene; (2) indene oligomer Preparation of oligomer-modified polyphenylene ether resin: Mix indene oligomer, polyphenylene ether and toluene, and heat at 100°C until completely dissolved to obtain a mixed solution; divide benzoyl peroxide into the mixed solution three times evenly Neutralize and keep incubated for 6 hours, then lower to room temperature to obtain indene oligomer modified polyphenylene ether resin.
  • Example 1 Performance testing: The test results of the copper interface adhesion, fluidity, dielectric constant and dielectric loss of the laminated film are shown in Table 1.
  • Embodiment 2 A substrate and its surface treatment method, including the following steps: (1) Raw material selection: 60 parts of indene oligomer modified polyphenylene ether resin, 160 parts of spherical silica, liquid rubber modified epoxy 15 parts of resin (EPP ⁇ 175), 25 parts of active ester curing agent (HPC ⁇ 8000 ⁇ 65T), 1 part of silane coupling agent (KBM ⁇ 403) and 2 parts of curing accelerator (2E ⁇ 4MI); (2) Volume Layer film preparation: Mix indene oligomer modified polyphenylene ether resin, spherical silica, liquid rubber modified epoxy resin, active ester curing agent, silane coupling agent and curing accelerator to obtain a laminated film composite material; coat the laminated film composite on the PET base film, and dry at 80°C for 10 minutes; (3) Substrate surface treatment: laminate the laminated film to the surface of the substrate, and vacuum at 80°C after lamination Hot press for 70 seconds, then solidify at 170°C for 2.2 hours to obtain a laminated film
  • the modification method of polyphenylene ether resin includes the following steps: (1) Raw material selection: 5 parts of indene oligomer, 90 parts of polyphenylene ether, 3.3 parts of benzoyl peroxide and 100 parts of toluene; (2) Indene Preparation of oligomer-modified polyphenylene ether resin: Mix indene oligomer, polyphenylene ether and toluene, and heat at 90°C until completely dissolved to obtain a mixed solution; add benzoyl peroxide equally into the mixed solution three times Neutralize and keep incubated for 4 hours, then lower to room temperature to obtain indene oligomer modified polyphenylene ether resin.
  • Example 2 Performance testing The test results of the copper interface adhesion, fluidity, dielectric constant and dielectric loss of the laminated film are shown in Table 1.
  • Embodiment 3 A substrate and its surface treatment method, including the following steps: (1) Raw material selection: 70 parts of indene oligomer modified polyphenylene ether resin, 140 parts of spherical silica, liquid rubber modified epoxy 10 parts of resin (EPP ⁇ 175), 20 parts of active ester curing agent (HPC ⁇ 8000 ⁇ 65T), 1 part of silane coupling agent (KBM ⁇ 403) and 2 parts of curing accelerator (2E ⁇ 4MI); (2) Volume Layer film preparation: Mix indene oligomer modified polyphenylene ether resin, spherical silica, liquid rubber modified epoxy resin, active ester curing agent, silane coupling agent and curing accelerator to obtain a laminated film composite material; coat the laminated film composite on the PET base film, and dry at 140°C for 4 minutes; (3) Substrate surface treatment: laminate the laminated film to the surface of the substrate, and vacuum at 100°C after lamination Hot press for 50 seconds, then solidify at 190°C for 1.8 hours to obtain a laminated film
  • the modification method of polyphenylene ether resin includes the following steps: (1) raw material selection: 15 parts of indene oligomer, 110 parts of polyphenylene ether, 3.3 parts of benzoyl peroxide and 100 parts of toluene; (2) indene oligomer Preparation of oligomer-modified polyphenylene ether resin: Mix indene oligomer, polyphenylene ether and toluene, and heat at 110°C until completely dissolved to obtain a mixed solution; add benzoyl peroxide into the mixed solution in three equal portions Neutralize and keep incubated for 8 hours, then lower to room temperature to obtain indene oligomer modified polyphenylene ether resin.
  • Example 3 Performance testing The test results of the copper interface adhesion, fluidity, dielectric constant and dielectric loss of the laminated film are shown in Table 1.
  • Embodiment 4 A substrate and its surface treatment method, including the following steps: (1) Raw material selection: 50 parts of indene oligomer modified polyphenylene ether resin, 180 parts of spherical silica, liquid rubber modified epoxy 15 parts of resin (EPP ⁇ 175), 40 parts of active ester curing agent (HPC ⁇ 8000 ⁇ 65T), 0.1 part of silane coupling agent (KBM ⁇ 403) and 5 parts of curing accelerator (2E ⁇ 4MI); (2) Volume Layer film preparation: Mix indene oligomer modified polyphenylene ether resin, spherical silica, liquid rubber modified epoxy resin, active ester curing agent, silane coupling agent and curing accelerator to obtain a laminated film composite material; coat the laminated film composite on the PET base film, and dry at 120°C for 6 minutes; (3) Substrate surface treatment: laminate the laminated film to the surface of the substrate, and vacuum at 90°C after lamination Hot press for 60 seconds, and then solidify at 180°C for 2 hours to obtain a laminated film
  • the modification method of polyphenylene ether resin includes the following steps: (1) raw material selection: 10 parts of indene oligomer, 100 parts of polyphenylene ether, 3.3 parts of benzoyl peroxide and 100 parts of toluene; (2) indene oligomer Preparation of oligomer-modified polyphenylene ether resin: Mix indene oligomer, polyphenylene ether and toluene, and heat at 100°C until completely dissolved to obtain a mixed solution; divide benzoyl peroxide into the mixed solution three times evenly Neutralize and keep incubated for 6 hours, then lower to room temperature to obtain indene oligomer modified polyphenylene ether resin.
  • Example 4 Performance Test The test results of the copper interface adhesion, fluidity, dielectric constant and dielectric loss of the laminated film are shown in Table 1.
  • Embodiment 5 A substrate and its surface treatment method, including the following steps: (1) Raw material selection: 50 parts of indene oligomer modified polyphenylene ether resin, 180 parts of spherical silica, liquid rubber modified epoxy 15 parts of resin (EPP ⁇ 175), 40 parts of active ester curing agent (HPC ⁇ 8000 ⁇ 65T), 5 parts of silane coupling agent (KBM ⁇ 403) and 1 part of curing accelerator (2E ⁇ 4MI); (2) Volume Layer film preparation: Mix indene oligomer modified polyphenylene ether resin, spherical silica, liquid rubber modified epoxy resin, active ester curing agent, silane coupling agent and curing accelerator to obtain a laminated film composite material; coat the laminated film composite on the PET base film, and dry at 100°C for 8 minutes; (3) Substrate surface treatment: laminate the laminated film to the surface of the substrate, and vacuum at 90°C after lamination Hot press for 60 seconds, and then solidify at 180°C for 2 hours to obtain a laminated film;
  • the modification method of polyphenylene ether resin includes the following steps: (1) raw material selection: 10 parts of indene oligomer, 100 parts of polyphenylene ether, 3.3 parts of benzoyl peroxide and 100 parts of toluene; (2) indene oligomer Preparation of oligomer-modified polyphenylene ether resin: Mix indene oligomer, polyphenylene ether and toluene, and heat at 100°C until completely dissolved to obtain a mixed solution; divide benzoyl peroxide into the mixed solution three times evenly Neutralize and keep incubated for 6 hours, then lower to room temperature to obtain indene oligomer modified polyphenylene ether resin.
  • Example 5 Performance Test The test results of the copper interface adhesion, fluidity, dielectric constant and dielectric loss of the laminated film are shown in Table 1.
  • Comparative Example 1 Change the raw materials in Example 1 to 60 parts of polyphenylene ether, 160 parts of spherical silica, 15 parts of liquid rubber modified epoxy resin (EPP ⁇ 175), and active ester curing agent (HPC ⁇ 8000 ⁇ 65T) 35 parts, silane coupling agent 1 part of (KBM ⁇ 403) and 2 parts of curing accelerator (2E ⁇ 4MI); the rest is the same as in Example 1.
  • Comparative Example 2 Change the raw materials in Example 1 to 60 parts of dicyclopentadiene epoxy resin, 160 parts of spherical silica, 15 parts of liquid rubber modified epoxy resin (EPP ⁇ 175), and active ester curing agent 35 parts of (HPC ⁇ 8000 ⁇ 65T), 1 part of silane coupling agent (KBM ⁇ 403) and 2 parts of curing accelerator (2E ⁇ 4MI); the rest is the same as Example 1.
  • the test method for copper interface adhesion is as follows: point the laminated film on a square area of 3 mm ⁇ 3 mm on the test glass interface. After curing at 150°C for 1 hour, use a universal tensile machine to test the shear adhesion. strength.
  • the test method for fluidity is as follows: take a square laminated film with a size of 5 mm ⁇ 5 mm, clamp the laminated film with a copper sheet, bake it at 120°C for 5 minutes, and observe the flow distance of the laminated film on the copper sheet. If the flow distance exceeds 2mm, it indicates good fluidity and is marked as ⁇ ; if it is less than 2mm, it indicates poor fluidity and is marked as ⁇ .
  • Dielectric constant and dielectric loss test 10GHz, resonant cavity method.
  • the present disclosure provides a method for modifying polyphenylene ether resin.
  • it When applied to the surface of a substrate, it can adhere well to the surface of the substrate, reduce the dielectric constant and dielectric loss of the substrate, thereby improving the integrated circuit Leakage and heating problems caused by reduced feature size.
  • the present disclosure provides a method for modifying polyphenylene ether resin, which uses indene oligomer to modify polyphenylene ether. Reduce the molecular weight of polyphenylene ether to obtain indene oligomer modified polyphenylene ether resin; the modified polyphenylene ether with smaller molecular weight has a lower softening point and Melting point, better interface adhesion, and better fit with the substrate of the integrated circuit. At the same time, because of its lower dielectric constant and dielectric loss, it can reduce the dielectric constant and dielectric loss of the substrate, thereby reducing the dielectric constant and dielectric loss of the substrate. It is achieved to solve the technical problems of current leakage and heat generation caused by the reduction of the characteristic size of the integrated circuit when the existing polyphenylene ether resin is used in the integrated circuit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

本公开提供了聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板,该聚苯醚树脂的改性方法使用茚低聚物改性聚苯醚,以降低聚苯醚的分子量,得到茚低聚物改性聚苯醚树脂;较小分子量的改性后的聚苯醚具有更低的软化点和熔点、具有更好的界面粘着力,可与集成电路的基板更好地贴合,同时因其具有较低的介电常数和介电损耗,可以降低基板的介电常数和介电损耗,进而达到解决现有聚苯醚树脂应用于集成电路时,在集成电路特征尺寸减小的情况下引起的漏电、发热的技术问题。

Description

聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板
相关申请的交叉引用
本公开要求于2022年08月04日提交、申请号为2022109301278名称为“聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板”的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开涉及集成电路技术领域,特别涉及聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板。
背景技术
在集成电路领域,特征尺寸是指半导体器件中的最小尺寸。一般来说,特征尺寸越小,芯片的集成度越高,性能越好,功耗越低。但当集成电路的特征尺寸减小时,互连寄生的电阻、电容会引起的信号延迟、串扰并增加能耗,从而导致集成电路的漏电电流变大,导线之间的电容效应增强,集成电路发热增强。通过改善线路设计也无法完全满足高频下的信号高速传递且信号完整的应用需求,因而降低介电常数和介电损耗已成为基板业者的追逐热点。集成电路封装基板是连接芯片制造与整机电子产品的桥梁,一面与芯片连接,一面与PCB板连接,实现芯片功能的优化输出。常用聚苯醚的分子量较大,在常温下的溶解性较差,在与环氧树脂等其他树脂配合使用时相容性较差,对复合材料的机械性能、耐热性、及介电性能等各方面均具有负面影响。
发明内容
通过利用本公开的一个或多个实施方式提供了聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板,以解决现有技术中聚苯醚树脂应用于集成电路时,在集成电路特征尺寸减小的情况下引起的漏电、发热的的技术问题。
在本公开的第一方面,提供了一种聚苯醚树脂的改性方法,包括:将茚低聚物、聚苯醚和苯类有机溶剂混合后加热溶解,得到混合溶液;将过氧化物引发剂加入所述混合溶液中并进行保温,得到茚低聚物改性聚苯醚树脂,以降低聚苯醚的分子量;所述茚低聚物的结构式为:
在本公开的第二方面,提供了一种积层膜复合料,包括:茚低聚物改性聚苯醚树 脂,由第一方面所述的聚苯醚树脂的改性方法得到。
在本公开的第三方面,提供了一种积层膜,由第二方面所述的积层膜复合料形成。
在本公开的第四方面,提供了一种基板,包括:基板本体,以及第三方面所述的积层膜,附着在所述基板本体的至少部分表面。
在本公开的第五方面,提供了一种基板的表面处理方法,包括:将第三方面所述的积层膜贴合于所述基板的至少部分表面,贴合后进行真空热压和固化,得到积层膜;在所述积层膜上开孔、镀铜和做线路;所述真空热压的工艺参数包括:温度为80℃~100℃,真空时间为50s~70s;所述固化操作的工艺参数包括:固化温度为170~190℃,固化时间为1.8h~2.2h。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1示出了依据本公开一些实施方式的聚苯醚树脂的改性方法的流程示意图;
图2示出了依据本公开一些实施方式的基板表面处理方法的流程示意图。
具体实施方式
为使本公开的实施例的目的、技术方案和优点更加清楚,下面将结合本公开的实施例中的附图,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的各种实施例可以以一个范围的形式存在;应当理解,以一范围形式的描述仅仅是因为方便及简洁,不应理解为对本公开范围的硬性限制;因此,应当认为所述范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本公开中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。除非另有特别说明,本公开中用到的各种原材料、试剂、仪器和设备等,均可通过市场购买得到或者可通过现有方法制备得到。
在本公开中,在未作相反说明的情况下,使用的方位词如“上”和“下”具体为附图中的图面方向。另外,在本公开说明书的描述中,术语“包括”“包含”等是指“包括但不限于”。在本公开中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。在本公开中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中 A,B可以是单数或者复数。在本公开中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一种”、“如下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a~b(即a和b),a~c,b~c,或a~b~c,其中a,b,c分别可以是单个,也可以是多个。
第一方面,如图1所示,本公开提供了一种聚苯醚树脂的改性方法,包括:S11、将茚低聚物、聚苯醚和苯类有机溶剂混合后加热溶解,得到混合溶液;S12、将过氧化物引发剂加入所述混合溶液中并进行保温,得到茚低聚物改性聚苯醚树脂,以降低聚苯醚的分子量;所述茚低聚物的结构式为:
该方法用茚低聚物改性聚苯醚,以降低聚苯醚的分子量,得到茚低聚物改性聚苯醚树脂;较小分子量的改性后的聚苯醚具有更低的软化点和熔点、具有更好的界面粘着力,可与集成电路的基板更好地贴合,同时因其具有较低的介电常数和介电损耗,可以降低基板的介电常数和介电损耗,进而达到解决现有聚苯醚树脂应用于集成电路时,在集成电路特征尺寸减小的情况下引起的漏电、发热的技术问题。所用茚低聚物分子结构图如上所示,可采购于新日铁株式会社,型号:IP-100。聚苯醚具有较低的介电常数和介电损耗,但其耐温性、加工性以及界面粘着力相对较差,通过茚低聚物降低聚苯醚的分子量,改善聚苯醚的加工性,并在不影响介电常数和介电损耗的情况下,提高材料的界面粘着力。
在一些实施方式中,所述加热的工艺参数包括:温度为90℃~110℃;所述保温的工艺参数包括:保温时间为4h~8h。
在一些实施方式中,所述茚低聚物和所述聚苯醚的重量比为5~15:90~110。
通过控制茚低聚物和聚苯醚的重量比,使得产物的分子量适中,应用于积层膜时,积层膜的介电常数和介电损耗值低、性能好。
第二方面,本公开提供了一种积层膜复合料,包括茚低聚物改性聚苯醚树脂,由第一方面所述的聚苯醚树脂的改性方法得到。
该积层膜复合料所包含的茚低聚物改性聚苯醚树脂,是由上述聚苯醚树脂的改性方法得到,由于该积层膜复合料采用了上述实施方式的部分或全部技术方案,因此至少具有上述实施方式的技术方案所带来的所有有益效果,在此不再一一赘述。茚低聚物改性聚苯醚树脂具有较低的介电常数和介电损耗;球型二氧化硅作为填料,具有低介电常数、低介电损耗,可以降低积层膜的热膨胀系数;液体橡胶改性环氧树脂主链结构是聚丁二烯,介电性能好,利于成膜;活性酯固化剂可与体系中的羟基反应,减少极性基团,降低介电常数和介电损耗;硅烷偶联剂有利于二氧化硅与环氧树脂体系相容;固化促进剂可促进固化反应完成。该积层膜具有较好的流动性,能够填充基板的空洞、表面间隙;具有较低的介电常数和介电损耗,可以降低集成电路的漏电电流,降低导线之间的电容效应,降低集 成电路发热等。
在一些实施方式中,所述积层膜复合料还包括:球型二氧化硅、液体橡胶改性环氧树脂、活性酯固化剂、硅烷偶联剂和固化促进剂。
液体橡胶改性环氧树脂可采购于络合高新材料(上海)有限公司,型号:EPP-175。液体橡胶改性环氧树脂,是利用低粘度液体聚丁二烯橡胶接枝到双酚A环氧树脂分子链上,形成的高纯柔韧性环氧树脂。
在一些实施方式中,所述茚低聚物改性聚苯醚树脂、所述球型二氧化硅、所述液体橡胶改性环氧树脂、所述活性酯固化剂、所述硅烷偶联剂和所述固化促进剂的重量比为50~70:140~18:10~20:20~40:0.1~5:1~5。
通过控制原料的配比,使得积层膜具有较低的介电常数和介电损耗、低的介电常数和介电损耗,较好的耐温性、加工性以及界面粘着力。积层膜复合料一般可通过以下方法的制备,所述制备方法包括:将茚低聚物改性聚苯醚树脂、球型二氧化硅、液体橡胶改性环氧树脂、活性酯固化剂、硅烷偶联剂和固化促进剂混合,得到积层膜复合料。该积层膜复合料制备方法简单。
第三方面,本公开提供了一种积层膜,由权利要求4~6任意一项所述的积层膜复合料形成。
该积层膜是由上述积层膜复合料形成的,且该积层膜复合料所包含的茚低聚物改性聚苯醚树脂,是由上述聚苯醚树脂的改性方法得到,因此该积层膜采用了上述实施方式的部分或全部技术方案,因此至少具有上述实施方式的技术方案所带来的所有有益效果,在此不再一一赘述。积层膜可通过将积层膜复合料涂覆于PET基膜上并烘干的方式制得。
第四方面,本公开提供了一种基板,包括:基板本体,以及权利要求7所述的积层膜,附着在所述基板本体的至少部分表面。
该基板包括积层膜,而积层膜是由上述积层膜复合料形成的,且该积层膜复合料所包含的茚低聚物改性聚苯醚树脂,是由上述聚苯醚树脂的改性方法得到,因此该积层膜采用了上述实施方式的部分或全部技术方案,因此至少具有上述实施方式的技术方案所带来的所有有益效果,在此不再一一赘述。在基板表面附着积层膜,使其具有较低的介电常数和介电损耗,制备成高密度集成电路时,有利于降低集成电路的漏电电流,降低导线之间的电容效应,降低集成电路发热等。
第五方面,如图2所示,本公开提供了一种基板的表面处理方法,包括:S21、将权利要求7所述的积层膜贴合于所述基板的至少部分表面;S22、贴合后进行真空热压和固化,得到积层膜;S23、在所述积层膜上开孔、镀铜和做线路;所述真空热压的工艺参数包括:温度为80℃~100℃,真空时间为50s~70s;所述固化操作的工艺参数包括:固化温度为170℃~190℃,固化时间为1.8h~2.2h。
积层膜在基板上经层压之后,使膜材填充基板上的空洞,再在积层膜上开孔、镀铜、做线路,通过各种工艺形成布线,能够制备高密度集成电路。
下面结合具体的实施例,进一步阐述本公开。应理解,这些实施例仅用于说明本公开而不用于限制本公开的范围。下列实施例中未注明具体条件的实验方法,通常按照国 家标准测定。若没有相应的国家标准,则按照通用的国际标准、常规条件、或按照制造厂商所建议的条件进行。
实施例1:一种基板及其表面处理方法,包括如下步骤:(1)原料选取:茚低聚物改性聚苯醚树脂50份、球型二氧化硅180份、液体橡胶改性环氧树脂(EPP~175)15份、活性酯固化剂(HPC~8000~65T)35份、硅烷偶联剂(KBM~403)1份和固化促进剂(2E~4MI)2份;(2)积层膜制备:将茚低聚物改性聚苯醚树脂、球型二氧化硅、液体橡胶改性环氧树脂、活性酯固化剂、硅烷偶联剂和固化促进剂混合,得到积层膜复合料;将积层膜复合料涂覆于PET基膜上,并在110℃烘干时间7min;(3)基板表面处理:将积层膜贴合于基板表面,贴合后在90℃进行真空热压60s,再在180℃固化2h,得到积层膜;在积层膜上开孔、镀铜、做线路。其中,聚苯醚树脂的改性方法,包括如下步骤:(1)原料选取:茚低聚物10份、聚苯醚100份、过氧化苯甲酰3.3份和甲苯100份;(2)茚低聚物改性聚苯醚树脂制备:将茚低聚物、聚苯醚和甲苯混合后,在100℃加热至完全溶解,得到混合溶液;将过氧化苯甲酰均分3次加入混合溶液中并保温6h,后降至室温,得到茚低聚物改性聚苯醚树脂。
实施例1性能检测:该积层膜的铜界面接着力、流动性、介电常数和介电损耗测试结果如表1所示。
实施例2:一种基板及其表面处理方法,包括如下步骤:(1)原料选取:茚低聚物改性聚苯醚树脂60份、球型二氧化硅160份、液体橡胶改性环氧树脂(EPP~175)15份、活性酯固化剂(HPC~8000~65T)25份、硅烷偶联剂(KBM~403)1份和固化促进剂(2E~4MI)2份;(2)积层膜制备:将茚低聚物改性聚苯醚树脂、球型二氧化硅、液体橡胶改性环氧树脂、活性酯固化剂、硅烷偶联剂和固化促进剂混合,得到积层膜复合料;将积层膜复合料涂覆于PET基膜上,并在80℃烘干时间10min;(3)基板表面处理:将积层膜贴合于基板表面,贴合后在80℃进行真空热压70s,再在170℃固化2.2h,得到积层膜;在积层膜上开孔、镀铜、做线路。其中,聚苯醚树脂的改性方法,包括如下步骤:(1)原料选取:茚低聚物5份、聚苯醚90份、过氧化苯甲酰3.3份和甲苯100份;(2)茚低聚物改性聚苯醚树脂制备:将茚低聚物、聚苯醚和甲苯混合后,在90℃加热至完全溶解,得到混合溶液;将过氧化苯甲酰均分3次加入混合溶液中并保温4h,后降至室温,得到茚低聚物改性聚苯醚树脂。
实施例2性能检测:该积层膜的铜界面接着力、流动性、介电常数和介电损耗测试结果如表1所示。
实施例3:一种基板及其表面处理方法,包括如下步骤:(1)原料选取:茚低聚物改性聚苯醚树脂70份、球型二氧化硅140份、液体橡胶改性环氧树脂(EPP~175)10份、活性酯固化剂(HPC~8000~65T)20份、硅烷偶联剂(KBM~403)1份和固化促进剂(2E~4MI)2份;(2)积层膜制备:将茚低聚物改性聚苯醚树脂、球型二氧化硅、液体橡胶改性环氧树脂、活性酯固化剂、硅烷偶联剂和固化促进剂混合,得到积层膜复合料;将积层膜复合料涂覆于PET基膜上,并在140℃烘干时间4min;(3)基板表面处理:将积层膜贴合于基板表面,贴合后在100℃进行真空热压50s,再在190℃固化1.8h,得到积层膜; 在积层膜上开孔、镀铜、做线路。其中,聚苯醚树脂的改性方法,包括如下步骤:(1)原料选取:茚低聚物15份、聚苯醚110份、过氧化苯甲酰3.3份和甲苯100份;(2)茚低聚物改性聚苯醚树脂制备:将茚低聚物、聚苯醚和甲苯混合后,在110℃加热至完全溶解,得到混合溶液;将过氧化苯甲酰均分3次加入混合溶液中并保温8h,后降至室温,得到茚低聚物改性聚苯醚树脂。
实施例3性能检测:该积层膜的铜界面接着力、流动性、介电常数和介电损耗测试结果如表1所示。
实施例4:一种基板及其表面处理方法,包括如下步骤:(1)原料选取:茚低聚物改性聚苯醚树脂50份、球型二氧化硅180份、液体橡胶改性环氧树脂(EPP~175)15份、活性酯固化剂(HPC~8000~65T)40份、硅烷偶联剂(KBM~403)0.1份和固化促进剂(2E~4MI)5份;(2)积层膜制备:将茚低聚物改性聚苯醚树脂、球型二氧化硅、液体橡胶改性环氧树脂、活性酯固化剂、硅烷偶联剂和固化促进剂混合,得到积层膜复合料;将积层膜复合料涂覆于PET基膜上,并在120℃烘干时间6min;(3)基板表面处理:将积层膜贴合于基板表面,贴合后在90℃进行真空热压60s,再在180℃固化2h,得到积层膜;在积层膜上开孔、镀铜、做线路。其中,聚苯醚树脂的改性方法,包括如下步骤:(1)原料选取:茚低聚物10份、聚苯醚100份、过氧化苯甲酰3.3份和甲苯100份;(2)茚低聚物改性聚苯醚树脂制备:将茚低聚物、聚苯醚和甲苯混合后,在100℃加热至完全溶解,得到混合溶液;将过氧化苯甲酰均分3次加入混合溶液中并保温6h,后降至室温,得到茚低聚物改性聚苯醚树脂。
实施例4性能检测:该积层膜的铜界面接着力、流动性、介电常数和介电损耗测试结果如表1所示。
实施例5:一种基板及其表面处理方法,包括如下步骤:(1)原料选取:茚低聚物改性聚苯醚树脂50份、球型二氧化硅180份、液体橡胶改性环氧树脂(EPP~175)15份、活性酯固化剂(HPC~8000~65T)40份、硅烷偶联剂(KBM~403)5份和固化促进剂(2E~4MI)1份;(2)积层膜制备:将茚低聚物改性聚苯醚树脂、球型二氧化硅、液体橡胶改性环氧树脂、活性酯固化剂、硅烷偶联剂和固化促进剂混合,得到积层膜复合料;将积层膜复合料涂覆于PET基膜上,并在100℃烘干时间8min;(3)基板表面处理:将积层膜贴合于基板表面,贴合后在90℃进行真空热压60s,再在180℃固化2h,得到积层膜;在积层膜上开孔、镀铜、做线路。其中,聚苯醚树脂的改性方法,包括如下步骤:(1)原料选取:茚低聚物10份、聚苯醚100份、过氧化苯甲酰3.3份和甲苯100份;(2)茚低聚物改性聚苯醚树脂制备:将茚低聚物、聚苯醚和甲苯混合后,在100℃加热至完全溶解,得到混合溶液;将过氧化苯甲酰均分3次加入混合溶液中并保温6h,后降至室温,得到茚低聚物改性聚苯醚树脂。
实施例5性能检测:该积层膜的铜界面接着力、流动性、介电常数和介电损耗测试结果如表1所示。
对比例1:将实施例1中的原料改为聚苯醚60份、球型二氧化硅160份、液体橡胶改性环氧树脂(EPP~175)15份、活性酯固化剂(HPC~8000~65T)35份、硅烷偶联剂 (KBM~403)1份和固化促进剂(2E~4MI)2份;其余与实施例1相同。
对比例2:将实施例1中的原料改为双环戊二烯环氧树脂60份、球型二氧化硅160份、液体橡胶改性环氧树脂(EPP~175)15份、活性酯固化剂(HPC~8000~65T)35份、硅烷偶联剂(KBM~403)1份和固化促进剂(2E~4MI)2份;其余与实施例1相同。
表1积层膜的原料配比及铜界面接着力、流动性、介电常数和介电损耗测试结果表
表1中,铜界面接着力的测试方法为:将积层膜分别点在测试玻璃界面上大小为3mm×3mm的方形区域,经150℃固化1小时后,用万能拉力机测试剪切粘结强度。流动性的测试方法为:取大小5mm×5mm的方形积层膜,用铜片夹住积层膜,于120℃下烘烤5min,观察积层膜在铜片上的流动距离。流动距离超过2mm,表示流动性为良好,记为◎;小于2mm,表示流动性差,记为×。介电常数和介电损耗测试:10GHz,谐振腔法。
由表1可知,对比例1与实施例相比,在Mn相近的条件下,茚低聚物改性聚苯醚树脂具有更好的铜接着力和流动性。对比例2与实施例相比,茚低聚物改性聚苯醚树脂比普通的环氧树脂具有更低的介电常数和介电损耗。
综上所述,本公开提供了一种聚苯醚树脂的改性方法,应用于基板表面时,可很好地附着于基板表面,降低基板的介电常数和介电损耗,从而改善集成电路特征尺寸减小时引起的漏电、发热问题。
本公开的一些实施方式提供的上述技术方案与现有技术相比具有如下优点:本公开提供了一种聚苯醚树脂的改性方法,该方法用茚低聚物改性聚苯醚,以降低聚苯醚的分子量,得到茚低聚物改性聚苯醚树脂;较小分子量的改性后的聚苯醚具有更低的软化点和 熔点、具有更好的界面粘着力,可与集成电路的基板更好地贴合,同时因其具有较低的介电常数和介电损耗,可以降低基板的介电常数和介电损耗,进而达到解决现有聚苯醚树脂应用于集成电路时,在集成电路特征尺寸减小的情况下引起的漏电、发热的技术问题。
以上所述仅是本公开的具体实施方式,以使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本公开中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本公开所示的这些实施例,而是要符合与本公开所申请的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种聚苯醚树脂的改性方法,包括:
    将茚低聚物、聚苯醚和苯类有机溶剂混合后加热溶解,得到混合溶液;
    将过氧化物引发剂加入所述混合溶液中并进行保温,得到茚低聚物改性聚苯醚树脂,以降低聚苯醚的分子量;
    所述茚低聚物的结构式为:
  2. 根据权利要求1所述的聚苯醚树脂的改性方法,其中,
    所述加热的工艺参数包括:温度为90℃~110℃;
    所述保温的工艺参数包括:保温时间为4h~8h。
  3. 根据权利要求1或2所述的聚苯醚树脂的改性方法,其中,所述茚低聚物和所述聚苯醚的重量比为5~15:90~110。
  4. 一种积层膜复合料,包括茚低聚物改性聚苯醚树脂,由权利要求1~3任意一项所述的聚苯醚树脂的改性方法得到。
  5. 根据权利要求4所述的积层膜复合料,还包括:球型二氧化硅、液体橡胶改性环氧树脂、活性酯固化剂、硅烷偶联剂和固化促进剂。
  6. 根据权利要求5所述的积层膜复合料,其中,所述茚低聚物改性聚苯醚树脂、所述球型二氧化硅、所述液体橡胶改性环氧树脂、所述活性酯固化剂、所述硅烷偶联剂和所述固化促进剂的重量比为50~70:140~18:10~20:20~40:0.1~5:1~5。
  7. 一种积层膜,由权利要求4~6任意一项所述的积层膜复合料形成。
  8. 一种基板,包括:
    基板本体,以及
    权利要求7所述的积层膜,附着在所述基板本体的至少部分表面。
  9. 一种基板的表面处理方法,包括:
    将权利要求7所述的积层膜贴合于所述基板本体的至少部分表面;
    贴合后进行真空热压和固化,得到积层膜;
    在所述积层膜上开孔、镀铜和做线路;
    所述真空热压的工艺参数包括:温度为80℃~100℃,真空时间为50h~70s;
    所述固化操作的工艺参数包括:固化温度为170℃~190℃,固化时间为1.8h~2.2h。
PCT/CN2023/087230 2022-07-06 2023-04-10 聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板 WO2024027191A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/459,006 US11978686B2 (en) 2022-07-06 2023-08-30 Chip protective film and method for manufacturing same, and chip
US18/459,383 US20240052098A1 (en) 2022-08-04 2023-08-31 Modification method of polyphenylene ether resin, laminated film composite, laminated film, and substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210930127.8A CN114989418B (zh) 2022-08-04 2022-08-04 聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板
CN202210930127.8 2022-08-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US18/459,006 Continuation US11978686B2 (en) 2022-07-06 2023-08-30 Chip protective film and method for manufacturing same, and chip
US18/459,383 Continuation US20240052098A1 (en) 2022-08-04 2023-08-31 Modification method of polyphenylene ether resin, laminated film composite, laminated film, and substrate

Publications (1)

Publication Number Publication Date
WO2024027191A1 true WO2024027191A1 (zh) 2024-02-08

Family

ID=83023045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087230 WO2024027191A1 (zh) 2022-07-06 2023-04-10 聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板

Country Status (2)

Country Link
CN (1) CN114989418B (zh)
WO (1) WO2024027191A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114989418B (zh) * 2022-08-04 2022-11-08 武汉市三选科技有限公司 聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291148A (ja) * 1996-02-29 1997-11-11 Matsushita Electric Works Ltd 変成ポリフェニレンオキサイドの製法、この製法による変成ポリフェニレンオキサイドを用いたエポキシ樹脂組成物、この組成物を用いたプリプレグ、及びこのプリプレグを用いた積層板
JP2009029928A (ja) * 2007-07-26 2009-02-12 Panasonic Electric Works Co Ltd ポリフェニレンエーテル樹脂組成物、変性低分子量ポリフェニレンエーテルの製造方法、変性低分子量ポリフェニレンエーテル、プリプレグ、及び積層体
JP2009029923A (ja) * 2007-07-26 2009-02-12 Asahi Kasei Chemicals Corp 変性エポキシ化ポリフェニレンエーテル樹脂及びその製造方法
WO2014104742A1 (ko) * 2012-12-26 2014-07-03 주식회사 두산 수지 조성물 및 이를 포함하는 금속박 적층체
CN111315820A (zh) * 2017-11-14 2020-06-19 松下知识产权经营株式会社 半导体芯片包封用树脂组合物和半导体封装体
CN113897163A (zh) * 2021-12-09 2022-01-07 武汉市三选科技有限公司 一种粘接剂、芯片键合膜及其制备方法
CN114989418A (zh) * 2022-08-04 2022-09-02 武汉市三选科技有限公司 聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151861A (ja) * 1999-11-25 2001-06-05 Matsushita Electric Works Ltd エポキシ樹脂組成物及び半導体装置
US6841629B1 (en) * 2000-04-21 2005-01-11 Asahi Kasei Kabushiki Kaisha Modified polyphenylene ether resin
CN106750260B (zh) * 2016-12-29 2019-09-13 广东生益科技股份有限公司 一种改性聚苯醚树脂及其应用
JP2018168217A (ja) * 2017-03-29 2018-11-01 住友ベークライト株式会社 封止用樹脂組成物及びこれを用いた半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291148A (ja) * 1996-02-29 1997-11-11 Matsushita Electric Works Ltd 変成ポリフェニレンオキサイドの製法、この製法による変成ポリフェニレンオキサイドを用いたエポキシ樹脂組成物、この組成物を用いたプリプレグ、及びこのプリプレグを用いた積層板
JP2009029928A (ja) * 2007-07-26 2009-02-12 Panasonic Electric Works Co Ltd ポリフェニレンエーテル樹脂組成物、変性低分子量ポリフェニレンエーテルの製造方法、変性低分子量ポリフェニレンエーテル、プリプレグ、及び積層体
JP2009029923A (ja) * 2007-07-26 2009-02-12 Asahi Kasei Chemicals Corp 変性エポキシ化ポリフェニレンエーテル樹脂及びその製造方法
WO2014104742A1 (ko) * 2012-12-26 2014-07-03 주식회사 두산 수지 조성물 및 이를 포함하는 금속박 적층체
CN111315820A (zh) * 2017-11-14 2020-06-19 松下知识产权经营株式会社 半导体芯片包封用树脂组合物和半导体封装体
CN113897163A (zh) * 2021-12-09 2022-01-07 武汉市三选科技有限公司 一种粘接剂、芯片键合膜及其制备方法
CN114989418A (zh) * 2022-08-04 2022-09-02 武汉市三选科技有限公司 聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN WEN-JING,, LI ZHONG-LUN, ZOU HUA-WEI, LIU PENG-BO: "Modification of epoxy resin by redistribution product of polyphenylene oxide with maleic anhydride", THERMOSETTING RESIN, vol. 30, no. 1, 30 January 2015 (2015-01-30), pages 1 - 4, 12, XP093135268, DOI: 10.13650/j.cnki.rgxsz.2015.01.001 *
HUUB A. M. VAN AERT ET AL.: "Modified poly(2,6-dimethyl-1,4-phenylene ether)s prepared by redistribution", MACROMOLECULES, vol. 30, no. 20, 6 October 1997 (1997-10-06), pages 6056 - 6066, XP000702260, ISSN: 0024-9297, DOI: 10.1021/ma970388r *

Also Published As

Publication number Publication date
CN114989418A (zh) 2022-09-02
CN114989418B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN112552630B (zh) 一种树脂组合物及包含其的树脂胶液、预浸料、层压板、覆铜板和印刷电路板
WO2024027191A1 (zh) 聚苯醚树脂的改性方法、积层膜复合料、积层膜、基板
CN108045022A (zh) Lcp或氟系聚合物高频高传输双面铜箔基板及fpc
WO2012006776A1 (zh) 复合材料、用其制作的高频电路基板及其制作方法
TWI513761B (zh) 樹脂組合物、膠片、及包含其之基材
CN104672448B (zh) 聚酰亚胺树脂及其用途、二层无胶基材及其制备方法
CN111844951A (zh) 一种高频导热基板及其制备方法
CN108012414A (zh) 具有frcc的高频高传输fpc及制备方法
JP7265102B1 (ja) プリント回路基板用材料
CN114410046A (zh) 一种用于高频覆铜板的碳氢树脂基板材料的制备方法
TW202204511A (zh) 預浸片及金屬積層板
CN114905813A (zh) 低介电常数、高导热型高频覆金属箔层压板及制作方法
CN115044041A (zh) 一种聚酰亚胺基改性氮化硼纳米片导热复合材料的制备方法
JP2001288244A (ja) 熱硬化性樹脂組成物、その製法及びそれを用いた製品
JP2012102227A (ja) エポキシ樹脂前駆体組成物、プリプレグ、積層板、樹脂シート、プリント配線板および半導体装置
CN114148048A (zh) 一种高散热铝基覆铜板及其制备方法
JP2001288333A (ja) エポキシ樹脂複合材料及びそれを用いた装置
CN112679936B (zh) 一种热固性树脂组合物及包含其的树脂胶液、预浸料、层压板、覆铜板和印刷电路板
CN110467815A (zh) 低损耗绝缘树脂组合物及绝缘膜和产品
TW201835216A (zh) 聚苯醚樹脂組合物
CN114103306B (zh) 一种无卤无铅高Tg覆铜板及其加工工艺
US20240052098A1 (en) Modification method of polyphenylene ether resin, laminated film composite, laminated film, and substrate
WO2013097127A1 (zh) 电路基板及其制作方法
CN111171771B (zh) 一种粘结片及其制备方法
TWI832554B (zh) 固化物與金屬箔層基板的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848903

Country of ref document: EP

Kind code of ref document: A1