WO2024027074A1 - 一种连续反应装置及应用 - Google Patents

一种连续反应装置及应用 Download PDF

Info

Publication number
WO2024027074A1
WO2024027074A1 PCT/CN2022/139174 CN2022139174W WO2024027074A1 WO 2024027074 A1 WO2024027074 A1 WO 2024027074A1 CN 2022139174 W CN2022139174 W CN 2022139174W WO 2024027074 A1 WO2024027074 A1 WO 2024027074A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
micro
unit
maleic anhydride
raw material
Prior art date
Application number
PCT/CN2022/139174
Other languages
English (en)
French (fr)
Inventor
张英杰
杜斌
胡清
蔡玉东
陈商涛
石行波
荔栓红
何盛宝
高克京
张风波
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2024027074A1 publication Critical patent/WO2024027074A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations

Definitions

  • This application relates to a continuous reaction device and its application, belonging to the field of chemical engineering technology.
  • C4-C10 ⁇ -monoolefin-maleic anhydride copolymer is a widely used chemical product because of its different molecular weights and different functional groups (amide-ammonium type, imide type, cross-linked type, hydrolyzable type, ionic type and other derivatives) whose uses are also different.
  • isobutylene maleic anhydride copolymer low molecular weight isobutylene maleic anhydride copolymer can be used as a scale inhibitor, dispersant, and water reducing agent for cement slurry, and medium and high molecular weight isobutylene maleic anhydride copolymer can be used for wood and paper processing.
  • isobutylene maleic anhydride copolymer Used in adhesives, emulsion polymerization stabilizers, etc.
  • the anhydride groups in the isobutylene maleic anhydride copolymer can undergo esterification, amidation, imidization and ionization reactions, further expanding its application scope.
  • isobutylene maleic anhydride copolymer can be used as adhesives, water-based coatings, etc. after ammoniation. After imine modification, it can be used as polymerization stabilizer and adhesive latex. After cross-linking, it can be used as water-absorbent resin with excellent performance. , widely used and has important application prospects.
  • C4-C10 ⁇ -monoolefin is usually directly introduced into a reaction kettle containing a maleic anhydride solution to prepare a C4-C10 ⁇ -monoolefin-maleic anhydride copolymer.
  • This method takes a long time to dissolve C4-C10 ⁇ -monoolefins, and it is difficult to release the heat generated by the polymerization reaction in time. Therefore, not only is the raw material utilization efficiency low, but it also has certain safety risks.
  • This application provides a continuous reaction device that can effectively improve common problems such as low raw material utilization and poor safety in chemical reactions. It also provides a more suitable reaction environment for different types of raw materials and realizes continuous processing. materials, greatly improving production efficiency and reducing production costs.
  • This application also provides an application of the above-mentioned continuous reaction device in polymer preparation.
  • This continuous reaction device can improve the utilization rate of raw materials and achieve precise control of reaction temperature and degree, which not only avoids thermal runaway caused by uncontrollable polymerization, but also achieves stable production of target products.
  • the continuous feeding advantage of this continuous reaction device also significantly improves production efficiency and reduces production costs.
  • This application also provides a preparation method of C4-C10 ⁇ -monoolefin-maleic anhydride copolymer, which is prepared by using the above-mentioned continuous reaction device. Therefore, it has the advantages of high safety, high yield, high product stability and low cost.
  • This application provides a continuous reaction device, including a T-shaped micro-mixing unit, a channel switching unit, and N different micro-reaction units, N ⁇ 2;
  • the liquid phase outlet of the T-shaped micro-mixing unit is connected to the inlet of the channel switching unit, and the N outlets of the channel switching unit are connected to the inlets of the N micro-reaction units one by one;
  • the channel switching unit is used to guide the liquid phase output through the liquid phase outlet into one of the micro-reaction units.
  • the continuous reaction device as described above further includes an ultrasonic unit, which is used to perform ultrasonic treatment on at least one of the micro-reaction units.
  • the continuous reaction device as above which further includes a first pressure regulating unit;
  • the first pressure adjustment unit is located at the liquid phase outlet and is used to adjust the pressure in the T-shaped micro-mixing unit.
  • the continuous reaction device as above which also includes a second pressure regulating unit;
  • the second pressure adjustment unit is located at the reaction liquid outlet of the micro-reaction unit and is used to adjust the pressure in the micro-reaction unit.
  • each of the N micro-reaction units is selected from one of micro-channel reactors, capillary micro-reactors, falling film micro-reactors, and membrane-dispersed micro-reactors.
  • T-shaped micro-mixing unit also includes a first raw material inlet and a gas phase outlet;
  • the gas phase outlet is connected with the first raw material inlet.
  • T-shaped micro-mixing unit also includes a second raw material inlet and a gas phase outlet;
  • the gas phase outlet is connected with the second raw material inlet.
  • T-shaped micro-mixing unit also includes a first raw material inlet, a second raw material inlet and a gas phase outlet;
  • the gas phase outlet is connected to the first raw material inlet and the second raw material inlet respectively.
  • This application also provides an application of the continuous reaction device described in any one of the above in polymer preparation.
  • This application also provides a method for preparing a C4-C10 ⁇ -monoolefin-maleic anhydride copolymer, which is prepared by using any of the above continuous reaction devices.
  • reaction pressure of the pre-reaction is 0.5-2MPa
  • time is 1-4s
  • temperature is 55-100°C.
  • step 2 the flow rate of the mixed liquid entering the micro-reaction unit is 20-40 ml/min.
  • the continuous reaction device of the present application can increase the mass transfer speed of raw materials and shorten the dissolution time of raw materials, thereby significantly improving the utilization rate of raw materials, thereby saving raw material costs, and is conducive to achieving high yields of products;
  • the continuous reaction device of this application can accurately control the reaction temperature, timely evacuate the heat generated during the reaction process, avoid thermal runaway caused by heat accumulation, and lay the foundation for the safe conduct of the reaction;
  • the continuous reaction device of this application can accurately control the reaction time. Especially when used for the preparation of polymers, it can greatly avoid the phenomenon of out-of-control polymerization due to uncontrollable polymerization reactions. Through precise control of reaction nodes, Ensure product consistency and optimize product stability in different batches;
  • the continuous reaction device of this application can realize the production mode of continuous feeding, can increase the product output per unit time without adding a reaction device, and has the advantages of small floor space, low equipment cost and low labor cost. ;
  • the continuous reaction device of this application integrates the suitable reaction environments of multiple different raw materials, and realizes various reactions to the greatest extent with the lowest equipment cost and smallest device volume. forward progress.
  • Figure 1 is a schematic structural diagram of a continuous reaction device in an embodiment of the present application.
  • Figure 2 is an infrared spectrum of the copolymer obtained in Example 5 of the present application at a copolymerization temperature of 55°C.
  • This application provides a continuous reaction device, including a T-shaped micro-mixing unit, a channel switching unit, and N different micro-reaction units, N ⁇ 2;
  • the liquid phase outlet of the T-shaped micro-mixing unit is connected to the inlet of the channel switching unit, and the N outlets of the channel switching unit are connected to the inlets of the N micro-reaction units one by one;
  • the channel switching unit is used to guide the liquid phase output through the liquid phase outlet into one of the micro-reaction units.
  • the T-shaped micro-mixing unit is used to provide a place for mixing and pre-reaction of raw materials
  • the micro-reaction unit is used to provide a place for deep reaction of the mixed liquid coming from the T-shaped micro-mixing unit.
  • the continuous reaction device of the present application includes N different micro-reaction units, each micro-reaction unit has different structures or structural parameters, and the inlet of each micro-reaction unit is connected to an outlet in the channel switching unit, that is, There are N channels between the channel switching unit and the micro-reaction unit.
  • the channel switching unit In the specific application process, it is necessary to control the channel switching unit to close the channels between the entrance of the channel switching unit and the (N-1) outlets of the channel switching unit, so that only the entrance of the channel switching unit and the channels of the channel switching unit are closed.
  • One outlet is connected, so that the mixed liquid from the T-shaped micro-mixing unit can be efficiently directed into a micro-reaction unit for reaction.
  • the continuous reaction device of this application integrates N different micro-reaction units and channel switching units, it is possible to select a micro-reaction more suitable for the reaction of the current raw materials by simply controlling the channel switching unit according to the property parameters of the real-time reaction raw materials.
  • the unit greatly improves reaction efficiency by improving the adaptability of raw materials and reaction environment.
  • This application does not limit the specific form of the channel switching unit.
  • it can be a dovetail tube with one inlet and N outlets.
  • the inlet is connected to the liquid phase outlet of the T-shaped micro-mixing unit, and the N outlets are connected to one micro-reaction unit respectively.
  • you need to select a suitable and unique micro-reaction unit you only need to rotate the dovetail tube so that the target micro-reaction unit is located below the dovetail tube inlet, while other micro-reaction units are located above the dovetail tube inlet.
  • the T-type micro-mixing The mixed liquid of the unit will flow directly into the target micro-reaction unit for reaction under the action of gravity; alternatively, the channel switching unit can be an (N+1) valve, with one inlet connected to the liquid phase outlet of the T-shaped micro-mixing unit, N Each outlet is connected to a micro-reaction unit respectively.
  • the channel switching unit can be an (N+1) valve, with one inlet connected to the liquid phase outlet of the T-shaped micro-mixing unit, N Each outlet is connected to a micro-reaction unit respectively.
  • the T-shaped micro-mixing unit is used to provide a place for mixing and pre-reaction of raw materials.
  • the T-shaped micro-mixing unit has two opposite first raw material inlets and second raw material inlets. After the raw materials enter through the first raw material inlet and the second raw material inlet respectively, reverse contact and mixing will occur, and the mixed raw material liquid will flow along the It continues to flow in the direction perpendicular to the feed direction to the liquid phase outlet. During the entire mixing process, the raw materials undergo reverse contact and diverted flow, which not only increases the mass transfer rate of the raw materials and shortens the mixing time, but also speeds up the dissolution rate of the raw materials and improves the utilization rate of the raw materials.
  • the T-shaped micro mixing unit may be a T-shaped micro mixer.
  • the T-shaped micromixer has a feed channel and a mixing channel that are vertical and connected to each other.
  • the feed channel has two opposite feed inlets (a first raw material inlet and a second raw material inlet) located at both ends.
  • One end of the mixing channel It is connected to the side wall of the feed channel, and the other end is a liquid phase outlet connected to the inlet of the channel switching unit.
  • the T-shaped micro-mixing unit also includes a gas phase outlet, which is disposed on the side wall of the mixing channel and is used together with the first raw material inlet and/or the second raw material inlet to return the insufficiently dissolved gas phase raw material to the third.
  • the first raw material inlet and/or the second raw material inlet are mixed again to improve raw material utilization.
  • the total length of the T-shaped micro-mixing unit (the total length of the feed channel and the mixing channel) is 2 to 5 m, and the inner diameters of the feed channel and the mixing channel are 1 to 3 mm.
  • the micro-reaction unit in this application refers to a reactor with micron-scale fluid channels or dispersed dimensions inside.
  • Micron-level flow can effectively strengthen the mixing process, ensure full mixing and uniform distribution of materials in the reactor, and thus ensure the consistency of the reaction process.
  • the specific surface area of the fluid in the micro-reaction unit can reach the order of 104 to 106 m 2 /m 3 , so it can conduct efficient heat exchange with the wall surface to effectively control the reaction temperature.
  • the channel-type reactor structure can not only ensure that the reaction operates under conditions close to plug flow, achieve precise control of millisecond-level residence time, but also enable the reaction mode of continuous injection of raw materials. Therefore, this application combines a T-type micro-mixing unit and a micro-reaction unit to significantly improve the safety and efficiency of chemical reactions by improving the mixing degree of raw materials, accurately controlling the reaction temperature and time of raw materials, and continuously injecting raw materials. improve.
  • This application does not limit the specific selection of the N micro-reaction units, as long as the N micro-reaction units are different from each other.
  • one of microfluidic reactors, capillary microreactors, falling film microreactors, and membrane dispersion microreactors can be selected.
  • the microfluidic reactor is a reactor with a linear hollow channel;
  • the capillary microreactor is a reactor made of metal and has a hollow spiral tube structure;
  • the falling film microreactor is made of stainless steel and has multiple straight lines.
  • Type hollow channel reactor (the inlets and outlets of multiple hollow channels are connected in parallel);
  • the membrane-dispersed microreactor includes a first stainless steel layer, a microfiltration membrane layer and a second stainless steel layer, wherein the microfiltration membrane The microfiltration membrane layer is sandwiched between the first stainless steel layer and the second stainless steel layer, and the microfiltration membrane layer is composed of a microfiltration membrane and a stainless steel gasket.
  • the cross section of the linear hollow channel of the microfluidic reactor is a square with a side length of 100 ⁇ m, and the total length is 2 to 8 m; the total length of the capillary microreactor is 3 to 10 m, and the inner diameter is 10 to 1000 ⁇ m;
  • the size of the membrane microreactor is 120mm ⁇ 76mm ⁇ 40mm, the number of channels is 64, the length of each channel section is 200 ⁇ 400 ⁇ m, and the width is 50 ⁇ 200 ⁇ m.
  • a more appropriate micro-reaction unit can be selected through the channel conversion unit according to the type of raw materials.
  • the raw material as C4-C10 ⁇ -monoolefin as an example, gaseous C4 ⁇ -monoolefin is more suitable for microfluidic reactor, C5-C6 ⁇ -monoolefin is more suitable for capillary reactor, and C7-C8 ⁇ -monoolefin is more suitable for falling film microreactor. , C9-C10 ⁇ -monoolefin is more suitable for membrane dispersed microreactor.
  • this application integrates multiple different micro-reaction units into one reaction device, which can not only provide a more suitable reaction environment for different raw materials, but also reduce device costs and site costs.
  • the preparation of chemical products with high yield and low cost is realized.
  • the continuous reaction device of the present application further includes an ultrasonic unit.
  • the ultrasonic unit can be arranged inside the micro-reaction unit to directly perform ultrasonic treatment on the raw material system, or the micro-reaction unit can be located inside the ultrasonic unit to perform ultrasonic treatment on the entire micro-reaction unit.
  • the ultrasonic unit can be, for example, an ultrasonic reactor.
  • the continuous reaction device of the present application also includes a first pressure adjustment unit and/or a second pressure adjustment unit; the first pressure adjustment unit is located at the liquid phase outlet and is used to adjust the T-shaped micro-mixing unit The second pressure adjustment unit is located at the reaction liquid outlet of the micro-reaction unit and is used to adjust the pressure within the micro-reaction unit.
  • the first pressure unit and the second pressure unit may be pressure regulating valves.
  • the raw materials enter the T-shaped micro-mixing unit through the first raw material inlet and the second raw material inlet of the T-shaped micro-mixing unit respectively.
  • the pressure in the T-shaped micro-mixing unit is controlled by adjusting the first pressure unit to ensure that the raw materials are at the first pressure.
  • Mixing and pre-reaction are performed under the conditions to obtain a mixed liquid; the mixed liquid is output through the liquid phase outlet of the T-shaped micro-mixing unit, enters the only conductive micro-reaction unit controlled by the channel switching unit, and synchronously adjusts the second pressure adjustment unit so that The mixed liquid enters the micro-reaction unit and reacts under the second pressure, and the obtained reaction liquid is output through the outlet of the micro-reaction unit to obtain the target product.
  • metering units can also be provided at the first raw material inlet and the second raw material inlet, thereby accurately controlling the amount of raw materials entering the T-shaped micro-mixing unit.
  • a buffer unit and a metering unit are sequentially provided between the liquid phase outlet and the channel switching unit.
  • the buffer unit serves as a transfer storage unit for receiving the mixed liquid from the T-shaped micro mixing unit, and the metering unit is used for storing the mixed liquid.
  • the mixed liquid in the buffer unit is input into the micro-reaction unit through the channel switching unit in a more precise amount for reaction.
  • the metering unit can be a metering pump, and the buffer unit can be a buffer tank.
  • the micro-reaction unit may also include a gas phase outlet, which is connected to the first raw material inlet and/or the second raw material inlet, and is used to remove the unreacted gas phase.
  • the raw materials are returned to the T-shaped micro-mixing unit for recycling.
  • a second aspect of the present application provides an application of any of the above-mentioned continuous reaction devices in polymer preparation.
  • the continuous reaction device of the present application can effectively divert the heat of the system, and further improves the efficiency of the polymerization reaction by controlling the reaction time, temperature, and concentration distribution of the reactants, shortens the reaction time of further polymerization, reduces the reaction cost, and improves It improves the formation rate of reactants and provides a more feasible method for efficient production of polymers.
  • the third aspect of the present application provides a method for preparing a C4-C10 ⁇ -monoolefin-maleic anhydride copolymer, which is prepared by using the above-mentioned continuous reaction device.
  • C4-C10 ⁇ -monoolefins and maleic anhydride solutions containing initiators can be blended and initially reacted in the T-type micro-mixing unit.
  • the T-type micro-mixing unit can fully and quickly dissolve C4-C10 ⁇ -monoolefins and maleic anhydride solutions containing initiators into each other, and complete the preliminary polar copolymerization reaction.
  • the C4-C10 ⁇ -monoolefin referred to in this application refers to at least one of C4-C10 ⁇ -monoolefins.
  • the channel switching unit and N micro-reaction units in the continuous reaction device can select among N micro-reaction units according to the differences in raw materials (especially the differences between C4-C10 ⁇ -monoolefins) React with a more appropriate micro-reaction unit to achieve more efficient utilization of raw materials.
  • the micro-reaction unit used in this application can effectively remove the polymerization heat of the copolymerization reaction and better control the polymerization reaction temperature; provide the necessary residence time for the reaction materials; and provide the necessary material mixing conditions. It ensures that the concentration distribution in the reaction unit is relatively uniform; and the production cost is low.
  • the preparation method includes the following steps:
  • the raw material including C4-C10 ⁇ -monoolefin can enter the T-type micro-mixing unit from the first raw material inlet, and the raw material including maleic anhydride can enter the T-type micro-mixing unit from the second raw material inlet. Mix in a T-shaped micro-mixing unit to obtain a mixed solution.
  • the raw material including maleic anhydride refers to the maleic anhydride solution containing the initiator.
  • the volume ratio of C4 ⁇ -monoolefin to the maleic anhydride solution containing the initiator is (50-500):1, or the mass ratio of C4-C10 ⁇ -monoolefin to maleic anhydride is (0.2 ⁇ 5):1, preferably, the mass ratio is (0.5 ⁇ 3):1.
  • the mass of the initiator is 1% to 20% of the mass of maleic anhydride
  • the initiator is a thermal decomposition initiator, including dibenzoyl peroxide, dicumyl peroxide, ditert-butyl peroxide, and peroxide.
  • Maleic anhydride solution refers to an amide solution in which maleic anhydride is dissolved. Among them, the mass percentage of maleic anhydride in the maleic anhydride solution containing the initiator is 3wt% to 25wt%.
  • the C4-C10 ⁇ -monoolefin and the maleic anhydride solution containing the initiator can be heated separately and then injected into the T-shaped micro-mixing unit.
  • the heating temperature is 55-100°C.
  • step 2) according to the specific type of raw materials, a more suitable micro-reaction unit is determined, and the channel switching unit is controlled so that there is only one path inside the channel switching unit that is connected to the target micro-reaction unit, thereby converting the T-type
  • the mixed liquid of the micro-mixing unit is directed into the target micro-reaction unit for polymerization reaction to obtain a reaction liquid including a C4-C10 ⁇ -monoolefin-maleic anhydride copolymer.
  • the mixing pressure of the mixing process is 0.5-2MPa, the time is 1-4s, and the temperature is 55-100°C; and/or the reaction pressure of the polymerization reaction is 0.2-2MPa, the time is 30-90min, and the temperature is 50-100°C.
  • the flow rate of the mixed liquid into the micro-reaction unit is 20-40 ml/min, which helps to further improve the monomer conversion rate and avoid clogging of the micro-reaction unit.
  • the reaction solution including the C4-C10 ⁇ -monoolefin-maleic anhydride copolymer needs to be post-processed after being output from the outlet of the target micro-reaction unit to obtain the C4-C10 ⁇ -monoolefin-maleic anhydride copolymer.
  • the post-processing sequentially includes precipitation treatment, solid-liquid separation treatment, washing, and drying, and finally a C4-C10 ⁇ -monoolefin-maleic anhydride copolymer is obtained.
  • the precipitation treatment refers to adding poor solvents such as alcohols and/or alkanes to the reaction solution including the C4-C10 ⁇ -monoolefin-maleic anhydride copolymer, so that the reaction solution includes the C4-C10 ⁇ -monoolefin-maleic anhydride copolymer.
  • a solid precipitated out of the reaction solution can be performed by filtration or centrifugal separation, and then an alcohol liquid is used as a washing liquid to wash the separated solid precipitate.
  • the continuous reaction device in the embodiment is shown in Figure 1 and includes a heat-exchanged olefin storage unit 11, a heat-exchanged maleic anhydride solution containing an initiator storage tank 12, a first metering pump 21, and a second metering pump. 22.
  • T-shaped micromixer 3 buffer tank 4, third metering pump 23, channel switching unit 5, 4 microreactors (microflow channel reactor 61, membrane dispersed microreactor 62, falling film microreactor 63 , a capillary microreactor 64) connected to the ultrasonic reactor 7.
  • the outlets of the first metering pump 21 and the second metering pump 22 are respectively connected with the first raw material inlet and the second raw material inlet of the T-shaped micromixer 3, and the gas phase outlet of the T-shaped micromixer 3 is connected with the heat-exchanged olefin.
  • the storage unit 11 is connected (the gas phase outlet is opened and closed controlled by a valve).
  • the liquid phase outlet of the T-shaped micromixer 3 is connected to the inlet of the buffer tank 4
  • the outlet of the buffer tank 4 is connected to the inlet of the third metering pump 23
  • the outlet of the third metering pump 23 is connected to the inlet of the channel switching unit 5 .
  • the channel switching unit 5 in this embodiment is a dovetail tube with four outlets.
  • the liquid phase product obtained from the T-type micromixer passes through the buffer tank and the third metering pump, it is introduced into the microfluidic reactor through the channel switching unit to continue the copolymerization of isobutylene and maleic anhydride.
  • the reaction temperature is 60 °C
  • the reaction pressure is 0.6MPa
  • the liquid phase inlet flow rate is 30ml/min
  • the reaction time is 60min.
  • Table 1 shows the yield and molecular weight of the finally obtained copolymer under different residence times of gas and liquid in the T-type micromixer.
  • the liquid phase product obtained from the T-type micromixer passes through the buffer tank and the third metering pump, it is introduced into the capillary microreactor through the channel switching unit to continue the copolymerization of isobutylene and maleic anhydride.
  • the reaction temperature is 60°C.
  • the reaction pressure is 0.6MPa
  • the liquid phase inlet flow rate is 30ml/min
  • the reaction time is 60min.
  • Table 2 shows the yield and molecular weight of the final copolymer under different gas-liquid ratios (volume ratio of isobutylene to maleic anhydride solution containing initiator) in a T-type micromixer.
  • the liquid phase product obtained from the T-type micromixer passes through the buffer tank and the third metering pump, it is introduced into the falling film microreactor through the channel switching unit to continue the copolymerization of isobutylene and maleic anhydride.
  • the reaction temperature is 60 °C
  • the reaction pressure is 0.6MPa
  • the liquid phase inlet flow rate is 30ml/min
  • the reaction time is 60min.
  • Table 3 shows the yield and molecular weight of the final copolymer under different operating pressures of the T-type micromixer.
  • N, N-dimethylformamide solution containing 2.5g benzoyl peroxide and 157g maleic anhydride enters through the first metering pump after heat exchange.
  • T-type micromixer, isobutylene enters the T-type micromixer through the second metering pump after heat exchange, and the gas and liquid are fully mixed in the T-type micromixer and undergo a preliminary reaction; among them, the gas in the T-type micromixer
  • the liquid ratio is 300:1 (v/v), the operating pressure is 0.6Mpa, and the residence time is 2.5s.
  • the liquid phase product obtained from the T-type micromixer passes through the buffer tank and the third metering pump, it is introduced into the membrane dispersion microreactor through the channel switching unit to continue the copolymerization of isobutylene and maleic anhydride.
  • the reaction temperature is 60 °C
  • the reaction pressure is 0.6MPa
  • the liquid phase inlet flow rate is 30ml/min
  • the reaction time is 60min.
  • Table 4 shows the yield and molecular weight of the final copolymer under different conditions of T-type micromixer inlet temperature (heat exchange temperature of raw materials).
  • the liquid phase product obtained from the T-type micromixer passes through the buffer tank and the third metering pump, it is introduced into the capillary microreactor located in the ultrasonic reactor through the channel switching unit to continue the copolymerization reaction of isobutylene and maleic anhydride.
  • the reaction pressure is 0.6MPa
  • the liquid phase inlet flow rate is 30ml/min
  • the reaction time is 60min.
  • Table 5 shows the yield and molecular weight of the final copolymers at different copolymerization temperatures.
  • serial number microreactor temperature Copolymer quality Copolymer number average molecular weight 1 55°C 220g 65000 2 70°C 241g 51000 3 90°C 232g 45000
  • Figure 2 is the infrared spectrum of the copolymer obtained at the copolymerization temperature of 55°C in Example 5 of the present application.
  • the liquid phase product obtained from the T-type micromixer passes through the buffer tank and the third metering pump, it is introduced into the capillary microreactor located in the ultrasonic reactor through the channel switching unit to continue the process of 1-pentene and maleic anhydride.
  • the reaction temperature was 70°C
  • the liquid phase inlet flow rate was 30ml/min
  • the reaction time was 60min.
  • Table 6 shows the yield and molecular weight of the copolymer finally obtained under different operating pressures of the microreactor.
  • serial number microreactor pressure Copolymer quality Copolymer number average molecular weight 1 0.2MPa 210g 39000 2 0.6Mpa 222g 41000 3 2MPa 201g 43000
  • the liquid phase product obtained from the T-type micromixer passes through the buffer tank and the third metering pump, it is introduced into the capillary microreactor located in the ultrasonic reactor through the channel switching unit to continue the process of 1-hexene and maleic anhydride.
  • the reaction temperature is 70°C and the reaction pressure is 0.6MPa.
  • Table 7 shows the yield and molecular weight of the final copolymer under different liquid phase inlet flow rates and reaction times of the microreactor.
  • the 1.1L N, N-dimethylformamide solution containing a certain amount of azobisisobutyronitrile and 157g maleic anhydride was heated to 70°C and passed through the second A metering pump enters the T-type micromixer.
  • 1-heptene enters the T-type micromixer through the second metering pump.
  • 1-heptene and the maleic anhydride solution containing the initiator are mixed in the T-type micromixer.
  • the mass ratio in the mixer is 3:1, the mixture is fully mixed and the preliminary reaction is carried out in the T-type micro mixer, the operating pressure is 0.6Mpa, and the residence time is 2.5s.
  • the liquid phase product obtained from the T-type micromixer passes through the buffer tank and the third metering pump, it is introduced into the capillary microreactor located in the ultrasonic reactor through the channel switching unit to continue the process of 1-heptene and maleic anhydride.
  • the reaction temperature is 70°C
  • the reaction pressure is 0.6MPa
  • the liquid phase inlet flow rate is 30ml/min
  • the reaction time is 60min.
  • Table 8 shows the yield and molecular weight of the final copolymer under different initiator dosages.
  • the liquid phase product obtained from the T-type micromixer passes through the buffer tank and the third metering pump, it is introduced into the capillary microreactor located in the ultrasonic reactor through the channel switching unit to continue the process of 1-octene and maleic anhydride.
  • the reaction temperature is 70°C
  • the reaction pressure is 0.6MPa
  • the liquid phase inlet flow rate is 30ml/min
  • the reaction time is 60min.
  • Table 9 shows the yield and molecular weight of the finally obtained copolymer under different mass fractions of maleic anhydride solution.
  • the 1.1L N, N-dimethylformamide solution containing a certain amount of azobisisobutyronitrile and 157g maleic anhydride was heated to 70°C and passed through the second A metering pump enters the T-type micromixer.
  • 1-nonene enters the T-type micromixer through the second metering pump.
  • 1-nonene and the maleic anhydride solution containing the initiator are mixed in the T-type micromixer.
  • the mass ratio in the mixer is 1:1, the mixture is fully mixed and the preliminary reaction is carried out in the T-type micro mixer, the operating pressure is 0.6Mpa, and the residence time is 2.5s.
  • the liquid phase product obtained from the T-type micromixer passes through the buffer tank and the third metering pump, it is introduced into the capillary microreactor located in the ultrasonic reactor through the channel switching unit to continue the process of 1-nonene and maleic anhydride.
  • the reaction temperature is 70°C
  • the reaction pressure is 0.6MPa
  • the liquid phase inlet flow rate is 30ml/min
  • the reaction time is 60min.
  • Table 10 shows the yield and molecular weight of the final copolymer under different initiator dosages.
  • serial number Initiator quality Copolymer quality Copolymer number average molecular weight 1 2.5g 198g 45000 2 12.5g 215g 37000 3 25g 229g 31000
  • the liquid phase product obtained from the T-type micromixer passes through the buffer tank and the third metering pump, it is introduced into the capillary microreactor located in the ultrasonic reactor through the channel switching unit to continue the process of 1-decene and maleic anhydride.
  • the reaction temperature is 70°C
  • the reaction pressure is 0.6MPa
  • the liquid phase inlet flow rate is 30ml/min
  • the reaction time is 60min;
  • Table 11 shows the yield and molecular weight of the finally obtained copolymer under different mass fractions of maleic anhydride solution.
  • the device of this comparative example does not include a T-shaped micromixer. That is, 1.1L N, N-dimethylformamide solution containing 2.5g azobisisobutyronitrile and 157g maleic anhydride is heated to 70°C after heat exchange, and 1-hexene is heated to 70°C after heat exchange. Finally, it is directly introduced into the microfluidic reactor through a buffer tank and a metering pump to perform a copolymerization reaction of 1-hexene and maleic anhydride, in which the mass ratio of 1-hexene to the maleic anhydride solution containing the initiator is 4 :1, the reaction temperature is 70°C, and the reaction pressure is 0.6MPa.
  • Table 12 shows the final yield of the copolymer under different microreactor flow rates and reaction times.
  • the microreactor Compared with the conditions with a T-type micromixer (the gas-liquid ratio is 300:1 (v/v), the operating pressure is 0.6Mpa), if the quality of isobutylene maleic anhydride copolymer powder is obtained is almost the same, the microreactor The flow rate of the internal liquid phase needs to be significantly reduced, and the reaction time needs to be increased by more than 1 times.
  • This comparative example is basically consistent with Example 5. The only difference is that this comparative example uses a reactor to replace the microreactor in Example 5 and does not contain an ultrasonic reactor.
  • Table 13 shows the output of isobutylene maleic anhydride copolymer under the same experimental conditions and the same reaction time in the external field enhanced microreactor and reactor.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection.
  • Indirect connection through an intermediary can be the internal connection between two elements or the interaction between two elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种连续反应装置及采用该装置制备C4-C10α-单烯烃-马来酸酐共聚物的方法,装置包括T型微混合单元(3)、通道切换单元(5)、N个互不相同的微反应单元(61、62、63、64),N≥2;T型微混合单元(3)的液相出口与通道切换单元(5)的入口连通,通道切换单元(5)的N个出口分别和N个微反应单元(61、62、63、64)的入口一一连通;通道切换单元(5)用于将经液相出口输出的液相导向一个微反应单元(61、62、63、64)中。

Description

一种连续反应装置及应用
本申请要求于2022年08月05日提交中国专利局、申请号为202210940045.1、申请名称为“一种连续反应装置及应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种连续反应装置及应用,属于化工技术领域。
背景技术
C4-C10α-单烯烃-马来酸酐共聚物是一种用途广泛的化工产品,因其分子量不同、功能基团不同(酰胺-氨型、酰亚胺型、交联型、水解型、离子型等衍生产品)其用途也不同。以异丁烯马来酸酐共聚物为例,低分子量异丁烯马来酸酐共聚物可作为阻垢剂、分散剂、水泥浆的减水剂使用,中高分子量异丁烯马来酸酐共聚物可作为木材和纸加工用粘接剂、乳液聚合稳定剂等使用。此外,异丁烯马来酸酐共聚物中的酸酐基团可以发生酯化反应、酰胺化反应、亚胺化反应和离子化反应,进一步拓展其应用范围。例如,异丁烯马来酸酐共聚物氨化后可作为黏合剂、水性涂料等使用,亚胺改性后可作为聚合稳定剂、粘接用乳胶使用,交联后用做吸水性树脂使用,性能优异、应用广泛,具有重要的应用前景。
现阶段,通常是将C4-C10α-单烯烃直接通入到含有马来酸酐溶液的反应釜中以制备C4-C10α-单烯烃-马来酸酐共聚物。这种方式C4-C10α-单烯烃溶解时间较长,且难以及时释放聚合反应产生的热量,因此不仅原料利用效率较低,也具有一定的安全隐患。
此外,不同单烯烃原料的性状、粘度等参数不同,而目前的反应釜难以针对原料的差异给出更为合适的反应环境。并且传统反应釜制备化工产品的方式效率也不高,只能通过增加反应釜的同步运行数量而提高单位时间的产量,不仅占地面积大,也耗费了大量的设备成本和人力成本。
发明内容
本申请提供一种连续反应装置,该连续反应装置能够有效改善化工反应中常见的原料利用率低、安全性差等问题,而且通过为不同类型的原料提供更为适宜的反应环境、以及实现连续进料,极大程度的提高了生产效率,降低了生产成本。
本申请还提供一种上述连续反应装置在聚合物制备中的应用。该连续反应装置能够提高原料利用率,并且实现反应温度和程度的精确控制,既避免了聚合反应不可控导致的热失控现象,也能够实现目标产物的稳定生产。此外,该连续反应装置连续进料的优势也显著提升了生产效率,降低了生产成本。
本申请还提供一种C4-C10α-单烯烃-马来酸酐共聚物的制备方法,该制备方法采用上述连续反应装置制备得到。因此,具有高安全、高收率、高产品稳定性、低成本的优势。
本申请提供一种连续反应装置,包括T型微混合单元、通道切换单元、N个互不相同的微反应单元,N≥2;
所述T型微混合单元的液相出口与所述通道切换单元的入口连通,所述通道切换单元的N个出口分别和N个所述微反应单元的入口一一连通;
所述通道切换单元用于将经所述液相出口输出的液相导向一个所述微反应单元中。
如上所述的连续反应装置,其中,还包括超声波单元,所述超声波单元用于对至少一个所述微反应单元进行超声波处理。
如上所述的连续反应装置,其中,还包括第一压力调节单元;
所述第一压力调节单元位于所述液相出口处,用于调节所述T型微混合单元内的压力。
如上所述的连续反应装置,其中,还包括第二压力调节单元;
所述第二压力调节单元位于所述微反应单元的反应液出口处,用于调节所述微反应单元内的压力。
如上所述的连续反应装置,其中,N个所述微反应单元各自选自微流道反应器、毛细管微反应器、降膜式微反应器、膜分散式微反应器中的一种。
如上所述的连续反应装置,其中,所述T型微混合单元还包括第一原料 入口以及气相出口;
所述气相出口与所述第一原料入口连通。
如上所述的连续反应装置,其中,所述T型微混合单元还包括第二原料入口以及气相出口;
所述气相出口与所述第二原料入口连通。
如上所述的连续反应装置,其中,所述T型微混合单元还包括第一原料入口、第二原料入口以及气相出口;
所述气相出口分别与所述第一原料入口和第二原料入口连通。
本申请还提供一种上述任一项所述的连续反应装置在聚合物制备中的应用。
本申请还提供一种C4-C10α-单烯烃-马来酸酐共聚物的制备方法,采用上述任一项所述连续反应装置制备。
如上所述的制备方法,其中,包括以下步骤:
1)将包括C4-C10α-单烯烃和马来酸酐的原料通入所述T型微混合单元中进行混合处理,得到混合液;
2)控制所述通道切换单元,使所述混合液从所述液相出口输出后进入一个所述微反应单元中进行聚合反应,得到包括C4-C10α-单烯烃-马来酸酐共聚物的反应液。
如上所述的制备方法,其中,所述预反应的反应压力为0.5-2MPa,时间为1-4s,温度为55-100℃。
如上所述的制备方法,其中,所述聚合反应的反应压力为0.2-2MPa,时间为30-90min,温度为50-100℃。
如上所述的制备方法,其中,步骤2)中,所述混合液进入所述微反应单元的流速为20-40ml/min。
本申请的实施,至少具有以下优势:
1、本申请的连续反应装置能够提升原料的传质速度、缩短原料的溶解时间,因此显著改善了原料的利用率,从而节约了原料成本,且有利于实现产物的高收率;
2、本申请的连续反应装置能够精确控制反应温度,及时疏散反应过程的产热,避免由于热量聚集而引发的热失控现象,为反应的安全进行奠定了基 础;
3、本申请的连续反应装置能够精确控制反应时间,尤其当用于聚合物的制备时,极大程度的避免了由于聚合反应不可控导致的聚合失控的现象,通过对反应节点的精准控制,保证了产物的一致性,优化了不同批次的产物稳定性;
4、本申请的连续反应装置能够实现连续进料的生产模式,能够在无需增加反应装置的基础上提升单位时间的产品产出量,具有占地面积小、设备成本低、人力成本低的优势;
5、考虑到不同原料的不同反应需求,本申请的连续反应装置将多种不同原料的适宜反应环境集成于一体,以最低的设备成本、最小的装置体积,最大程度的实现了各种不同反应的正向推进。
附图说明
图1为本申请实施例中的连续反应装置的结构示意图;
图2为本申请实施例5在55℃共聚反应温度下得到的共聚物的红外谱图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请提供一种连续反应装置,包括T型微混合单元、通道切换单元、N个互不相同的微反应单元,N≥2;
所述T型微混合单元的液相出口与所述通道切换单元的入口连通,所述通道切换单元的N个出口分别和N个所述微反应单元的入口一一连通;
所述通道切换单元用于将经所述液相出口输出的液相导向一个所述微反应单元中。
本申请的连续反应装置中,T型微混合单元用于为原料提供混合以及预反应的场所,微反应单元用于为来自于T型微混合单元的混合液提供深度反应 的场所。本申请的连续反应装置中包括N个互不相同的微反应单元,每个微反应单元具有不同的结构或结构参数,每个微反应单元的入口与通道切换单元中的一个出口连通,即,通道切换单元和微反应单元之间具有N个通道。在具体应用过程中,需要通过控制通道切换单元,以封闭通道切换单元的入口和通道切换单元的(N-1)个出口之间的通道,仅使封闭通道切换单元的入口和通道切换单元的一个出口导通,从而能够将来自于T型微混合单元的混合液高效的导流入一个微反应单元中进行反应。
由于本申请的连续反应装置集成了N个不同的微反应单元以及通道切换单元,可以根据实时反应原料的性状参数,通过对通道切换单元进行简单控制,从而选择更适宜当前原料进行反应的微反应单元,通过改善原料和反应环境的适配性极大程度的提升了反应效率。
本申请不限定通道切换单元的具体表现形式。例如可以是具有一个入口和N个出口的燕尾管,该入口和T型微混合单元的液相出口连通,N个出口分别和一个微反应单元连通。当需要选择适合且唯一的微反应单元时,仅需要通过旋转燕尾管使目标微反应单元位于燕尾管入口的下方,而其他微反应单元位于燕尾管入口的上方,此时来自于T型微混合单元的混合液在重力的作用下会直接流入目标微反应单元中进行反应;或者,通道切换单元可以是(N+1)通阀门,一个入口与T型微混合单元的液相出口连通,N个出口分别和一个微反应单元连通。当需要选择适合且唯一的微反应单元时,仅需要通过合理控制阀门的开合方向和开合角度,使入口和一个出口导通而封闭入口和其他出口之间的通道,此时来自于T型微混合单元的混合液经过(N+1)通阀门中唯一的导通的通道直接流入目标微反应单元中进行反应。
如前所述,T型微混合单元用于为原料提供混合以及预反应的场所。其中,T型微混合单元具有相对的两个第一原料入口和第二原料入口,原料分别经第一原料入口和第二原料入口进入后会发生逆向接触并混合,混合后的原料液会沿着与进料方向垂直的方向继续流动至液相出口。在整个混合过程中,原料经过了逆向接触以及转向流动,因此不仅有利于增加原料的传质速度以及缩短混合时间,还加快了原料的溶解速度,提升了原料的利用率。该T型微混合单元可以是T型微混合器。其中,T型微混合器具有互相垂直且连通的进料通道和混合通道,进料通道具有两个相对且位于两端的进料口(第一原 料入口和第二原料入口),混合通道的一端与进料通道的侧壁连通,另一端为与通道切换单元的入口连通的液相出口。进一步地,该T型微混合单元还包括气相出口,该气相出口设置在混合通道的侧壁上,且与第一原料入口和/或第二原料入口用于将未充分溶解的气相原料返回第一原料入口和/或第二原料入口再次进行混合处理以提高原料利用率。
在一种实施方式中,T型微混合单元的总长度(进料通道和混合通道的总长度)为2~5m,进料通道和混合通道各自的内径为1~3mm。
本申请的微反应单元是指内部具有微米量级的流体通道或分散尺度的反应器。微米级流动能够有效地强化混合过程,保证反应器内物料的充分混合和均匀分布,进而保证反应过程的一致性。并且,微反应单元内流体的比表面积可以达到104~106m 2/m 3的量级,因此可以和壁面进行高效的热交换从而有效的控制反应温度。此外,通道式的反应器结构既可以保证反应在接近平推流的条件下操作,实现毫秒级停留时间的精确控制,又能够实现原料连续注入的反应模式。因此,本申请将T型微混合单元和微反应单元联合使用,通过改善原料的混合程度、精确控制原料的反应温度和时间并连续注入原料,使化工反应的安全性、反应效率得到了显著的改善。
本申请不限定N个微反应单元的具体选择,只要N个微反应单元彼此不同即可。例如,可以选自微流道反应器、毛细管微反应器、降膜式微反应器、膜分散式微反应器中的一种。
其中,微流道反应器为具有一个直线型中空通道的反应器;毛细管微反应器为金属材质的、具有中空螺旋管结构的反应器;降膜式微反应器为不锈钢材质、且具有多个直线型中空通道的反应器(多个中空通道的入口之间、出口之间为并联关系);膜分散式微反应器包括第一不锈钢层、微滤膜层以及第二不锈钢层,其中,微滤膜层夹设在第一不锈钢层和第二不锈钢层之间,且微滤膜层由微滤膜片和不锈钢垫片组成。
进一步地,微流道反应器的直线型中空通道的横截面为边长为100μm的正方形,总长度为2~8m;毛细管微反应器的总长度为3~10m,内径为10~1000μm;降膜式微反应器的尺寸为120mm×76mm×40mm,通道数为64,每个通道截面的长度为200~400μm,宽度为50~200μm。
在具体应用过程中,可以根据原料的类型通过通道转换单元选择更为合 适的微反应单元。以原料为C4-C10α-单烯烃为例,气态C4α-单烯烃更适宜微流道反应器,C5-C6α-单烯烃更适宜毛细管反应器,C7-C8α-单烯烃更适宜降膜式微反应器,C9-C10α-单烯烃更适宜膜分散式微反应器。
基于原料多样性以及生产成本的考虑,本申请将多个不同的微反应单元集成于一个反应装置中,既能够为不同的原料提供更为适宜的反应环境,还能够降低装置成本、场地成本,实现了化工产品高收率低成本的制备。
在一种实施方式中,为了进一步提高反应的正向推进,本申请的连续反应装置还包括超声波单元。该超声波单元可以设置于微反应单元内部直接对原料体系进行超声波处理,或者微反应单元位于超声波单元内部以对整个微反应单元进行超声波处理。超声波单元例如可以为超声波反应器。
进一步地,本申请的连续反应装置还包括第一压力调节单元和/或第二压力调节单元;所述第一压力调节单元位于所述液相出口处,用于调节所述T型微混合单元内的压力;所述第二压力调节单元位于所述微反应单元的反应液出口处,用于调节所述微反应单元内的压力。例如,第一压力单元和第二压力单元可以为压力调节阀。
以下,对本申请的连续反应装置的工作流程进行介绍。
原料分别经T型微混合单元的第一原料入口和第二原料入口进入T型微混合单元中,通过调节第一压力单元对T型微混合单元内的压力进行控制,保证原料在第一压力下进行混合以及预反应,得到混合液;混合液经T型微混合单元的液相出口输出,进入经通道切换单元控制的唯一导通的微反应单元中,同步调节第二压力调节单元,使进入微反应单元中发混合液在第二压力下进行反应,得到的反应液经微反应单元的出口输出,得到目标产物。
为了更为精确控制反应的进行,还可以在第一原料入口和第二原料入口处设置计量单元,从而精确的控制进入T型微混合单元中的原料的用量。此外,在液相出口和通道切换单元之间依次设置缓冲单元和计量单元,其中,缓冲单元作为中转容置单元用于接收来自于T型微混合单元的混合液,计量单元用于将容置于缓冲单元中的混合液以更为精确的用量通过通道切换单元输入至微反应单元中进行反应。其中,计量单元可以为计量泵、缓冲单元可以为缓冲罐。
进一步地,为了保证原料的高效利用,当包括气相原料时,微反应单元 也可以包括气相出口,该气相出口与第一原料入口和/或第二原料入口连通,用于将未反应完全的气相原料返回T型微混合单元中进行循环利用。
本申请第二方面提供一种上述任一所述的连续反应装置在聚合物制备中的应用。
由于聚合反应的一般在高压条件下进行、且随着生成物分子量的不断升高,体系产热越明显且高粘度体系的导热性越差,因此反应安全性较差。而本申请的连续反应装置能够有效疏导体系的热量,并且通过控制反应的时间、温度、反应物的浓度分布进一步提高了聚合反应的效率,缩短了进一步聚合的反应时间,降低了反应成本,提高了反应物的生成率,为高效生产聚合物提供了更可行的方法。
本申请第三方面提供一种C4-C10α-单烯烃-马来酸酐共聚物的制备方法,采用上述所述连续反应装置制备。
C4-C10α-单烯烃与含有引发剂的马来酸酐溶液在T型微混合单元中可以进行共混和初步反应。T型微混合单元可使C4-C10α-单烯烃与含有引发剂的马来酸酐溶液充分且快速的互溶,并完成初步的极性共聚反应。本申请所指的C4-C10α-单烯烃是指C4-C10α-单烯烃中的至少一种。
除了T型微混合单元之外,连续反应装置中的通道切换单元和N个微反应单元能够针对原料的差异(尤其是C4-C10α-单烯烃之间的差异)在N个微反应单元中选择和切换更为合适的微反应单元进行反应,实现原料更为高效的利用。
此外,本申请使用的微反应单元相较于普通的反应釜,能有效的去除共聚反应的聚合热,较好的控制聚合反应温度;提供反应物料必要的停留时间;提供必要的物料混合条件,保证反应单元内浓度分布较为均匀;且生产成本较低。
在一种实施方式中,该制备方法包括以下步骤:
1)将包括C4-C10α-单烯烃和马来酸酐的原料通入所述T型微混合单元中进行混合,得到混合液;
2)控制所述通道切换单元,使所述混合液从所述液相出口输出后进入一个所述微反应单元中进行聚合反应,得到包括C4-C10α-单烯烃-马来酸酐共聚物的反应液。
步骤1)中,包括C4-C10α-单烯烃的原料可以从第一原料入口进入T型微混合单元中,包括马来酸酐的原料可以从第二原料入口进入T型微混合单元中,二者在T型微混合单元中混合,得到混合液。其中,包括马来酸酐的原料是指含有引发剂的马来酸酐溶液。
在一种实施方式中,C4α-单烯烃与含有引发剂的马来酸酐溶液的体积比为(50-500):1,或者,C4-C10α-单烯烃与马来酸酐的质量比为(0.2~5):1,优选地,质量比为(0.5~3):1。
进一步地,引发剂质量为马来酸酐质量的1%~20%,引发剂为热分解型引发剂,包括过氧化二苯甲酰、过氧化二异丙苯、过氧化二特丁基、过氧化十二酰、过氧化苯甲酸特丁酯、过氧化二碳酸二异丙基酯、过氧化二碳二环己酯、偶氮二异丁腈和偶氮二异庚腈中的至少一种。
马来酸酐溶液是指溶解有马来酸酐的酰胺类溶液。其中,马来酸酐在含有引发剂的马来酸酐溶液中的质量百分含量为3wt%~25wt%。
为了保证进一步保证混合处理的高效进行,可以将C4-C10α-单烯烃与含有引发剂的马来酸酐溶液分别加热后再注入T型微混合单元中。例如,加热温度为55-100℃。
步骤2)中,根据原料的具体类型,确定更为适合的微反应单元,并通过控制通道切换单元使通道切换单元内部仅具有与目标微反应单元导通的一条通路,从而将来自于T型微混合单元的混合液导流入目标微反应单元中进行聚合反应,得到包括C4-C10α-单烯烃-马来酸酐共聚物的反应液。
进一步地,混合处理的混合压力为0.5-2MPa,时间为1-4s,温度为55-100℃;和/或,所述聚合反应的反应压力为0.2-2MPa,时间为30-90min,温度为50-100℃。
进一步地,混合液进入微反应单元的流速为20-40ml/min,有助于进一步提高单体转化率,并且避免微反应单元出现堵塞的现象。
能够理解,包括C4-C10α-单烯烃-马来酸酐共聚物的反应液经目标微反应单元的出口输出后还需要进行后处理,以得到C4-C10α-单烯烃-马来酸酐共聚物。在一种实施方式中,后处理依次包括沉淀处理、固液分离处理、洗涤、干燥,最终得到C4-C10α-单烯烃-马来酸酐共聚物。
其中,沉淀处理是指向包括C4-C10α-单烯烃-马来酸酐共聚物的反应液中 加入醇类和/或烷烃类的不良溶剂,以使包括C4-C10α-单烯烃-马来酸酐共聚物的反应液中析出固体沉淀。此外,固液分离处理可以采用过滤或离心分离,随后采用醇类液体作为洗涤液对分离得到的固体沉淀进行洗涤。
以下,通过具体实施例对本申请进行更为详细的介绍。
实施例中的连续反应装置如图1所示,包括换热后的烯烃储存单元11、换热后的含有引发剂的马来酸酐溶液的储存罐12、第一计量泵21、第二计量泵22、T型微混合器3、缓冲罐4、第三计量泵23、通道切换单元5、4个微反应器(微流道反应器61、膜分散式微反应器62、降膜式微反应器63、与超声波反应器7连接的毛细管微反应器64)。其中,第一计量泵21、第二计量泵22的出口分别和T型微混合器3的第一原料入口、第二原料入口连通,T型微混合器3的气相出口和换热后的烯烃储存单元11连通(气相出口通过阀门控制开合)。T型微混合器3的液相出口与缓冲罐4的入口连通,缓冲罐4的出口与第三计量泵23的入口连通,第三计量泵23的出口与通道切换单元5的入口连通。本实施例中的通道切换单元5为具有4个出口的燕尾管。
实施例1
在氮气吹扫T型微反应器后,将含有2.5g偶氮二异丁腈和157g马来酸酐的1.1L N,N-二甲基甲酰胺溶液经过换热后至60℃,经由第一计量泵进入T型微混合器;异丁烯经过换热至60℃后经由第二计量泵进入T型微混合器,气液在T型微混合器内充分混合并进行初步反应;其中,T型微混合器内的气液比为400:1(v/v,异丁烯与含有引发剂的马来酸酐溶液的体积比),操作压力为0.6Mpa。
将T型微混合器得到的液相产物通过缓冲罐和第三计量泵后,经过通道切换单元导流通入到微流道反应器中继续进行异丁烯与马来酸酐的共聚反应,反应温度为60℃,反应压力为0.6MPa,液相进口流速为30ml/min,反应时间为60min。
将得到的液相产物加入乙醇析出固体后进行过滤分离,再用乙醇对固相产物进行洗涤、干燥,得到白色异丁烯马来酸酐共聚物粉末。
表1为气液在T型微混合器中的不同的停留时间下,最终得到的共聚物的产量以及分子量。
表1
序号 停留时间 共聚物质量 共聚物数均分子量
1 4s 193g 58000
2 2.5s 217g 56000
3 2s 208g 53000
4 1s 202g 49000
实施例2
在氮气吹扫超T型微混合器后,将含有2.5g偶氮二异丁腈和157g马来酸酐的1.1L N,N-二甲基甲酰胺溶液经过换热后至60℃,经由第一计量泵进入T型微混合器;异丁烯经过换热至60℃后经由第二计量泵进入T型微混合器,气液在T型微混合器内充分混合并进行初步反应;其中,在T型微混合器中的操作压力为0.6Mpa,气液停留时间为2.5秒。
将T型微混合器得到的液相产物通过缓冲罐和第三计量泵后,经过通道切换单元导流通入到毛细管微反应器中继续进行异丁烯与马来酸酐的共聚反应,反应温度为60℃,反应压力为0.6MPa,液相进口流速为30ml/min,反应时间为60min。
将得到的液相产物加入乙醇析出固体后进行过滤分离,再用乙醇对固相产物进行洗涤、干燥,得到白色异丁烯马来酸酐共聚物粉末。
表2为T型微混合器中不同的气液比(异丁烯与含有引发剂的马来酸酐溶液的体积比)下,最终得到的共聚物的产量和分子量。
表2
序号 气液比 共聚物质量 共聚物数均分子量
1 100 197g 53000
2 300 224g 58000
3 400 217g 51000
4 500 210g 55000
实施例3
在氮气吹扫超T型微混合器后,将含有2.5g过氧化苯甲酰和157g马来酸 酐的1.1L N,N-二甲基甲酰胺溶液经过换热后至60℃,经由第一计量泵入T型微混合器,异丁烯经过换热后至60℃,经由第二计量泵进入T型微混合器,气液在T型微混合器内充分混合并进行初步反应;其中,在T型微混合器内的气液比为300:1(v/v),气液停留时间为2.5s。
将T型微混合器得到的液相产物通过缓冲罐和第三计量泵后,经过通道切换单元导流通入到降膜式微反应器中继续进行异丁烯与马来酸酐的共聚反应,反应温度为60℃,反应压力为0.6MPa,液相进口流速为30ml/min,反应时间为60min。
将得到的液相产物加入乙醇析出固体后进行过滤分离,再用乙醇对固相产物进行洗涤、干燥,得到白色异丁烯马来酸酐共聚物粉末。
表3为T型微混合器不同的操作压力下,最终得到的共聚物的产量和分子量。
表3
Figure PCTCN2022139174-appb-000001
实施例4
在氮气吹扫超T型微混合器后,将含有2.5g过氧化苯甲酰和157g马来酸酐的1.1L N,N-二甲基甲酰胺溶液经过换热后,经由第一计量泵进入T型微混合器,异丁烯经过换热后经由第二计量泵进入T型微混合器,气液在T型微混合器内充分混合并进行初步反应;其中,在T型微混合器内的气液比为300:1(v/v),操作压力为0.6Mpa,停留时间为2.5s。
将T型微混合器得到的液相产物通过缓冲罐和第三计量泵后,经过通道切换单元导流通入到膜分散式微反应器中继续进行异丁烯与马来酸酐的共聚反应,反应温度为60℃,反应压力为0.6MPa,液相进口流速为30ml/min,反应时间为60min。
将得到的液相产物加入乙醇析出固体后进行过滤分离,再用乙醇对固相 产物进行洗涤、干燥,得到白色异丁烯马来酸酐共聚物粉末。
表4为T型微混合器入口温度(原料的换热温度)不同的条件下,最终得到的共聚物的产量和分子量。
表4
序号 T型微混合器入口温度 共聚物质量 共聚物数均分子量
1 55℃ 197g 72000
2 75℃ 232g 59000
3 90℃ 220g 43000
实施例5
在氮气吹扫T型微混合器后,将含有2.5g偶氮二异丁腈和157g马来酸酐的1.1L N,N-二甲基甲酰胺溶液经过换热后至70℃,经由第一计量泵进入T型微混合器;异丁烯经过换热后至70℃,经由第二计量泵进入T型微混合器,气液在T型微混合器内充分混合并进行初步反应;其中,在T型微混合器内的气液比为300:1(v/v),操作压力为0.6Mpa,停留时间为2.5s。
将T型微混合器得到的液相产物通过缓冲罐和第三计量泵后,经过通道切换单元导流通入到位于超声波反应器内的毛细管微反应器中继续进行异丁烯与马来酸酐的共聚反应。反应压力为0.6MPa,液相进口流速为30ml/min,反应时间为60min。
将得到的液相产物加入乙醇析出固体后进行离心分离,再用乙醇对固相产物进行洗涤、干燥,得到白色异丁烯马来酸酐共聚物粉末。
表5为不同共聚反应的温度下,最终得到的共聚物的产量和分子量。
表5
序号 微反应器温度 共聚物质量 共聚物数均分子量
1 55℃ 220g 65000
2 70℃ 241g 51000
3 90℃ 232g 45000
图2为本申请实施例5在55℃共聚反应温度下得到的共聚物的红外谱图,1771cm -1和1852cm -1为酸酐的C=O伸缩振动吸收峰,3000cm-1附近为甲基和亚甲基的伸缩振动吸收峰。
实施例6
在氮气吹扫T型微混合器后,将含有2.5g过氧化二碳二环己酯和157g马来酸酐的1.1L N,N-二甲基甲酰胺溶液经过换热后至70℃,经由第一计量泵进入T型微混合器,1-戊烯经过换热至70℃后经由第二计量泵进入T型微混合器,1-戊烯与含有引发剂的马来酸酐溶液在T型微混合器内的质量比为5:1,在T型微混合器内充分混合并进行初步反应,操作压力为0.6Mpa,停留时间为2.5s。
将T型微混合器得到的液相产物通过缓冲罐和第三计量泵后,经过通道切换单元导流通入到位于超声波反应器内的毛细管微反应器中继续进行1-戊烯与马来酸酐的共聚反应,反应温度为70℃,液相进口流速为30ml/min,反应时间为60min。
将得到的液相产物加入乙醇析出固体后进行离心分离,再用乙醇对固相产物进行洗涤、干燥,得到白色异丁烯马来酸酐共聚物粉末。
表6为微反应器在不同的操作压力下,最终得到的共聚物的产量和分子量。
表6
序号 微反应器压力 共聚物质量 共聚物数均分子量
1 0.2Mpa 210g 39000
2 0.6Mpa 222g 41000
3 2Mpa 201g 43000
实施例7
在氮气吹扫T型微混合器后,将含有2.5g偶氮二异丁腈和157g马来酸酐的1.1L N,N-二甲基甲酰胺溶液经过换热后至70℃,经由第一计量泵进入T型微混合器,1-己烯经过换热至70℃后经由第二计量泵进入T型微混合器,1-己烯与含有引发剂的马来酸酐溶液在T型微混合器内的质量比为4:1,在T型微混合器内充分混合并进行初步反应,操作压力为0.6Mpa,停留时间为2.5s。
将T型微混合器得到的液相产物通过缓冲罐和第三计量泵后,经过通道切换单元导流通入到位于超声波反应器内的毛细管微反应器中继续进行1-己烯与马来酸酐的共聚反应,反应温度为70℃,反应压力为0.6MPa。
将得到的液相产物加入乙醇析出固体后进行离心分离,再用乙醇对固相产物进行洗涤、干燥,得到白色异丁烯马来酸酐共聚物粉末。
表7为不同的微反应器的液相进口流速下和反应时间下,最终得到的共聚物的产量和分子量。
表7
序号 微反应器液相进口流速 反应时间 共聚物质量 共聚物数均分子量
1 10ml/min 2.5h 219g 45000
2 20ml/min 1.5h 221g 50000
3 30ml/min 1h 214g 39000
4 40ml/min 30min 209g 34000
实施例8
在氮气吹扫T型微混合器后,将含有一定量的偶氮二异丁腈和157g马来酸酐的1.1L N,N-二甲基甲酰胺溶液经过换热后至70℃,经由第一计量泵进入T型微混合器,1-庚烯经过换热至70℃后经由第二计量泵进入T型微混合器,1-庚烯与含有引发剂的马来酸酐溶液在T型微混合器内的质量比为3:1,在T型微混合器内充分混合并进行初步反应,操作压力为0.6Mpa,停留时间为2.5s。
将T型微混合器得到的液相产物通过缓冲罐和第三计量泵后,经过通道切换单元导流通入到位于超声波反应器内的毛细管微反应器中继续进行1-庚烯与马来酸酐的共聚反应,反应温度为70℃,反应压力为0.6MPa,液相进口流速为30ml/min,反应时间为60min。
将得到的液相产物加入乙醇析出固体后进行过滤分离,再用乙醇对固相产物进行洗涤、干燥,得到白色异丁烯马来酸酐共聚物粉末。
表8为不同引发剂用量下,最终得到的共聚物的产量和分子量。
表8
序号 引发剂质量 共聚物质量 共聚物数均分子量
1 2.5g 201g 44000
2 12.5g 213g 35000
3 25g 225g 29000
实施例9
在氮气吹扫超T型微混合器后,将含有2.5g偶氮二异丁腈和一定量的马来酸酐的1.1L N,N-二甲基甲酰胺溶液经过换热后至70℃,经由第一计量泵进入T型微混合器,1-辛烯经过换热至70℃后经由第二计量泵进入T型微混合器,1-辛烯与含有引发剂的马来酸酐溶液在T型微混合器内的质量比为2:1,在T型微混合器内充分混合并进行初步反应,操作压力为0.6Mpa,停留时间为2.5s。
将T型微混合器得到的液相产物通过缓冲罐和第三计量泵后,经过通道切换单元导流通入到位于超声波反应器内的毛细管微反应器中继续进行1-辛烯与马来酸酐的极性共聚反应,反应温度为70℃,反应压力为0.6MPa,液相进口流速为30ml/min,反应时间为60min。
将得到的液相产物加入乙醇析出固体后进行过滤分离,再用乙醇对固相产物进行洗涤、干燥,得到白色异丁烯马来酸酐共聚物粉末。
表9为不同的马来酸酐溶液的质量分数下,最终得到的共聚物的产量和分子量。
表9
Figure PCTCN2022139174-appb-000002
实施例10
在氮气吹扫T型微混合器后,将含有一定量的偶氮二异丁腈和157g马来酸酐的1.1L N,N-二甲基甲酰胺溶液经过换热后至70℃,经由第一计量泵进入T型微混合器,1-壬烯经过换热至70℃后经由第二计量泵进入T型微混合 器,1-壬烯与含有引发剂的马来酸酐溶液在T型微混合器内的质量比为1:1,在T型微混合器内充分混合并进行初步反应,操作压力为0.6Mpa,停留时间为2.5s。
将T型微混合器得到的液相产物通过缓冲罐和第三计量泵后,经过通道切换单元导流通入到位于超声波反应器内的毛细管微反应器中继续进行1-壬烯与马来酸酐的共聚反应,反应温度为70℃,反应压力为0.6MPa,液相进口流速为30ml/min,反应时间为60min。
将得到的液相产物加入乙醇析出固体后进行过滤分离,再用乙醇对固相产物进行洗涤、干燥,得到白色异丁烯马来酸酐共聚物粉末。
表10为不同引发剂用量下,最终得到的共聚物的产量和分子量。
表10
序号 引发剂质量 共聚物质量 共聚物数均分子量
1 2.5g 198g 45000
2 12.5g 215g 37000
3 25g 229g 31000
实施例11
在氮气吹扫超T型微混合器后,将含有2.5g偶氮二异丁腈和一定量的马来酸酐的1.1L N,N-二甲基甲酰胺溶液经过换热后至70℃,经由第一计量泵进入T型微混合器,1-癸烯经过换热至70℃后经由第二计量泵进入T型微混合器,1-癸烯与含有引发剂的马来酸酐溶液在T型微混合器内的质量比为0.5:1,在T型微混合器内充分混合并进行初步反应,操作压力为0.6Mpa,停留时间为2.5s。
将T型微混合器得到的液相产物通过缓冲罐和第三计量泵后,经过通道切换单元导流通入到位于超声波反应器内的毛细管微反应器中继续进行1-癸烯与马来酸酐的极性共聚反应,反应温度为70℃,反应压力为0.6MPa,液相进口流速为30ml/min,反应时间为60min;
将得到的液相产物加入乙醇析出固体后进行过滤分离,再用乙醇对固相产物进行洗涤、干燥,得到白色异丁烯马来酸酐共聚物粉末。
表11为不同的马来酸酐溶液的质量分数下,最终得到的共聚物的产量和 分子量。
表11
Figure PCTCN2022139174-appb-000003
对比例1
本对比例的装置不包括T型微混合器。即将含有2.5g偶氮二异丁腈和157g的马来酸酐的1.1L N,N-二甲基甲酰胺溶液经过换热后至70℃,1-己烯经过换热后至温度为70℃后,直接通过缓冲罐和计量泵通入到微流道反应器中进行1-己烯与马来酸酐的共聚反应,其中1-己烯与含有引发剂的马来酸酐溶液的质量比为4:1,反应温度为70℃,反应压力为0.6MPa。
将得到的液相产物加入乙醇析出固体后进行过滤分离,再用乙醇对固相产物进行洗涤、干燥,得到白色异丁烯马来酸酐共聚物粉末。
表12为不同微反应器的流速和反应时间下,最终得到的共聚物的产量。
表12
Figure PCTCN2022139174-appb-000004
与在有T型微混合器条件下(气液比为300:1(v/v),操作压力为0.6Mpa)相比,若得到质量相差无几的异丁烯马来酸酐共聚物粉末,微反应器内液相流速需大幅降低,反应时间需增加1倍以上。
对比例2
本对比例与实施例5基本一致,唯一不同在于:本对比例采用反应釜替 换实施例5中的微反应器,且不含有超声波反应器。
表13是外场强化微反应器与反应釜在相同的实验条件及相同的反应时间下,异丁烯马来酸酐共聚物的产量。
表13
Figure PCTCN2022139174-appb-000005
由表13可知:微反应器相较于反应釜,在相同的实验条件和相同的反应时间下,异丁烯马来酸酐共聚物粉末产率会得到显著提高。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以使固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种连续反应装置,其中,包括T型微混合单元、通道切换单元、N个互不相同的微反应单元,N≥2;
    所述T型微混合单元的液相出口与所述通道切换单元的入口连通,所述通道切换单元的N个出口分别和N个所述微反应单元的入口一一连通;
    所述通道切换单元用于将经所述液相出口输出的液相导向一个所述微反应单元中。
  2. 根据权利要求1所述的连续反应装置,其中,还包括超声波单元,所述超声波单元用于对至少一个所述微反应单元进行超声波处理。
  3. 根据权利要求1或2所述的连续反应装置,其中,还包括第一压力调节单元;
    所述第一压力调节单元位于所述液相出口处,用于调节所述T型微混合单元内的压力。
  4. 根据权利要求1-3任一项所述的连续反应装置,其中,还包括第二压力调节单元;
    所述第二压力调节单元位于所述微反应单元的反应液出口处,用于调节所述微反应单元内的压力。
  5. 根据权利要求1所述的连续反应装置,其中,N个所述微反应单元各自选自微流道反应器、毛细管微反应器、降膜式微反应器、膜分散式微反应器中的一种。
  6. 根据权利要求1所述的连续反应装置,其中,所述T型微混合单元还包括第一原料入口以及气相出口;
    所述气相出口与所述第一原料入口连通。
  7. 根据权利要求1所述的连续反应装置,其中,所述T型微混合单元还包括第二原料入口以及气相出口;
    所述气相出口与所述第二原料入口连通。
  8. 根据权利要求1所述的连续反应装置,其中,所述T型微混合单元还包括第一原料入口、第二原料入口以及气相出口;
    所述气相出口分别与所述第一原料入口和第二原料入口连通。
  9. 一种权利要求1-8任一项所述的连续反应装置在聚合物制备中的应用。
  10. 一种C4-C10α-单烯烃-马来酸酐共聚物的制备方法,其中,采用权利要求1-8任一项所述连续反应装置制备。
  11. 根据权利要求10所述的制备方法,其中,包括以下步骤:
    1)将包括C4-C10α-单烯烃和马来酸酐的原料通入所述T型微混合单元中进行混合处理,得到混合液;
    2)控制所述通道切换单元,使所述混合液从所述液相出口输出后进入一个所述微反应单元中进行聚合反应,得到包括C4-C10α-单烯烃-马来酸酐共聚物的反应液。
  12. 根据权利要求11所述的制备方法,其中,所述混合处理的混合压力为0.5-2MPa,时间为1-4s,温度为55-100℃。
  13. 根据权利要求11或12所述的制备方法,其中,所述聚合反应的反应压力为0.2-2MPa,时间为30-90min,温度为50-100℃。
  14. 根据权利要求11-13任一项所述的制备方法,其中,步骤2)中,所述混合液进入所述微反应单元的流速为20-40ml/min。
PCT/CN2022/139174 2022-08-05 2022-12-15 一种连续反应装置及应用 WO2024027074A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210940045.1 2022-08-05
CN202210940045.1A CN115253954B (zh) 2022-08-05 2022-08-05 一种连续反应装置及应用

Publications (1)

Publication Number Publication Date
WO2024027074A1 true WO2024027074A1 (zh) 2024-02-08

Family

ID=83748124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139174 WO2024027074A1 (zh) 2022-08-05 2022-12-15 一种连续反应装置及应用

Country Status (2)

Country Link
CN (1) CN115253954B (zh)
WO (1) WO2024027074A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115253954B (zh) * 2022-08-05 2024-04-16 中国石油天然气股份有限公司 一种连续反应装置及应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051543A (ja) * 2012-09-05 2014-03-20 Kaneka Corp 重合体の連続的製造方法
CN104844748A (zh) * 2015-05-12 2015-08-19 清华大学 一种丁基橡胶的制备方法
JP2015208718A (ja) * 2014-04-25 2015-11-24 大陽日酸株式会社 気液反応方法及びアミノシランの製造方法
CN108380150A (zh) * 2018-03-21 2018-08-10 上海交通大学 制备低分子量聚苯乙烯的多通道微反应器系统及方法
CN109293858A (zh) * 2018-09-27 2019-02-01 南京工业大学 一种连续流聚合-聚合耦合制备功能化聚烯烃的方法
CN111777700A (zh) * 2019-04-03 2020-10-16 中国科学院化学研究所 微反应器中配位聚合制备聚烯烃的方法
CN112206727A (zh) * 2019-07-10 2021-01-12 中国石油化工股份有限公司 一种微通道气液反应装置和强化气液反应的方法及制备己二酸的方法
CN112851588A (zh) * 2021-01-28 2021-05-28 复旦大学 一种微反应系统及使用其连续制备2-甲基-4-氨基-5-氰基嘧啶的方法
CN113264845A (zh) * 2021-04-26 2021-08-17 复旦大学 一种使用微反应系统连续制备氯霉素的方法
CN115253954A (zh) * 2022-08-05 2022-11-01 中国石油天然气股份有限公司 一种连续反应装置及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098193A (ja) * 2005-09-30 2007-04-19 Yokogawa Electric Corp 化学反応評価装置および化学反応評価方法
JP2008080306A (ja) * 2006-09-29 2008-04-10 Hitachi Ltd 化学合成装置
JP4449997B2 (ja) * 2007-03-12 2010-04-14 株式会社日立製作所 マイクロリアクタシステム
WO2020044359A1 (en) * 2018-08-25 2020-03-05 Ganapati Dadasaheb Yadav Dual function multiphase microreactor
CN111617710A (zh) * 2020-06-08 2020-09-04 山东微井化工科技股份有限公司 一种工业多功能的微通道反应器生产系统
CN114426639A (zh) * 2020-10-15 2022-05-03 中国石油化工股份有限公司 α-烯烃-马来酸酐共聚物及其制备方法与应用
CN113045518A (zh) * 2021-02-05 2021-06-29 上海昶法新材料有限公司 一种微通道反应器连续制备烯基琥珀酸酐的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051543A (ja) * 2012-09-05 2014-03-20 Kaneka Corp 重合体の連続的製造方法
JP2015208718A (ja) * 2014-04-25 2015-11-24 大陽日酸株式会社 気液反応方法及びアミノシランの製造方法
CN104844748A (zh) * 2015-05-12 2015-08-19 清华大学 一种丁基橡胶的制备方法
CN108380150A (zh) * 2018-03-21 2018-08-10 上海交通大学 制备低分子量聚苯乙烯的多通道微反应器系统及方法
CN109293858A (zh) * 2018-09-27 2019-02-01 南京工业大学 一种连续流聚合-聚合耦合制备功能化聚烯烃的方法
CN111777700A (zh) * 2019-04-03 2020-10-16 中国科学院化学研究所 微反应器中配位聚合制备聚烯烃的方法
CN112206727A (zh) * 2019-07-10 2021-01-12 中国石油化工股份有限公司 一种微通道气液反应装置和强化气液反应的方法及制备己二酸的方法
CN112851588A (zh) * 2021-01-28 2021-05-28 复旦大学 一种微反应系统及使用其连续制备2-甲基-4-氨基-5-氰基嘧啶的方法
CN113264845A (zh) * 2021-04-26 2021-08-17 复旦大学 一种使用微反应系统连续制备氯霉素的方法
CN115253954A (zh) * 2022-08-05 2022-11-01 中国石油天然气股份有限公司 一种连续反应装置及应用

Also Published As

Publication number Publication date
CN115253954A (zh) 2022-11-01
CN115253954B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
US6555629B1 (en) Method and device for continuous production of polymers
WO2024027074A1 (zh) 一种连续反应装置及应用
Asua Challenges for industrialization of miniemulsion polymerization
CN106660006A (zh) 丙烯酸类聚合物在流动反应器中的合成
CN105143276B (zh) 制备基于c3-c8单烯属不饱和单-或二羧酸或其酸酐和盐的高度支化聚合物的连续方法
CN109651539B (zh) 用于生产聚氯乙烯的微反应系统及基于该系统的聚氯乙烯生产方法
US20060036047A1 (en) Device and method of producing low molecular polymers
JP4718185B2 (ja) 物質変換のためのテイラー反応器
AU2013357527B2 (en) Continuous process for preparing copolymers
WO2024055630A1 (zh) 一种有机磷腈催化高分子量聚硅氧烷连续生产装置
DE19960389B4 (de) Verfahren zur Polymerisation olefinisch ungesättigter Monomere mittels eines Taylorreaktors
CN100500701C (zh) 制备聚合物的连续方法
CN207567151U (zh) 一种丙烯多段聚合装置
CN107353370B (zh) 一种微流控光诱导聚合物改性的方法
CN115181201B (zh) 一种C4-C8α-单烯烃与马来酸酐的共聚方法
WO2021047049A1 (zh) 一种强化乙烯聚合的系统和工艺
CN114716358A (zh) 一种利用微反应器连续合成过氧乙酸的方法
CN115636886B (zh) 微反应器系统及利用其制备聚合物的方法和eva的应用
CN108311088A (zh) 喷射式环管反应器及制备丁基橡胶类聚合物的方法
CN209501640U (zh) 悬浮法聚氯乙烯连续合成系统
CN115197356B (zh) 一种C4-C6α-单烯烃与马来酸酐的共聚方法
CN115181200B (zh) 一种C4-C8α-单烯烃—马来酸酐共聚物的制备方法
CN214390102U (zh) 一种适用于乳液聚合反应教学的微反应器
CN116637584A (zh) 一种静态混合反应器
WO2024002393A1 (zh) 烯烃自由基聚合的方法与烯烃自由基聚合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953862

Country of ref document: EP

Kind code of ref document: A1