WO2021047049A1 - 一种强化乙烯聚合的系统和工艺 - Google Patents

一种强化乙烯聚合的系统和工艺 Download PDF

Info

Publication number
WO2021047049A1
WO2021047049A1 PCT/CN2019/120188 CN2019120188W WO2021047049A1 WO 2021047049 A1 WO2021047049 A1 WO 2021047049A1 CN 2019120188 W CN2019120188 W CN 2019120188W WO 2021047049 A1 WO2021047049 A1 WO 2021047049A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed pipe
ethylene
micro
gas
catalyst
Prior art date
Application number
PCT/CN2019/120188
Other languages
English (en)
French (fr)
Inventor
张志炳
李磊
周政
张锋
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2021047049A1 publication Critical patent/WO2021047049A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/002Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2204/00Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices
    • B01J2204/002Aspects relating to feed or outlet devices; Regulating devices for feed or outlet devices the feeding side being of particular interest
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the technical field of polymer preparation, in particular to a system and process for strengthening ethylene polymerization.
  • a cooler which is connected to the compressor, and is used to cool the material output by the compressor
  • a solvent feed pipe connected to the feed pipe and arranged downstream of the comonomer feed pipe for conveying the solvent to the inside of the gas phase feed pipe;
  • micro-interface generator includes:
  • the catalyst feed pipeline includes:
  • the catalyst feed valve is arranged at the outlet of the catalyst feeder to control the flow rate of the catalyst.
  • reaction unit is a reactor for providing reaction space for micron-sized bubbles, including:
  • a material feed port which is opened at the bottom of the reactor and connected to the material feed pipe, so as to enable the material feed pipe to output the material to the inside of the reactor;
  • a catalyst feed port which is opened on the side wall of the reactor and connected to the catalyst feed pipe, so that the catalyst feed pipe can output the catalyst to the inside of the reactor;
  • Viscosity reducer feed port which is opened on the side wall of the reactor and is connected to the viscosity reducer feed pipe, so that the viscosity reducer feed pipe outputs the viscosity reducer to the inside of the reactor;
  • a material outlet which is opened on the side wall of the lower part of the reactor and is connected to the discharging unit, and is used to output the reacted mixture to the discharging unit;
  • the tail gas outlet is opened on the top of the reactor to discharge the tail gas generated after the reaction out of the system.
  • a reflux pipe is provided between the reaction unit and the material feeding pipeline to return unreacted ethylene in the reaction unit to the material feeding unit for repeated use of ethylene.
  • the discharging unit includes:
  • the tail gas output by the reaction unit and the discharging unit will both enter the flare, and the flare will burn the tail gas to prevent the tail gas from polluting the environment.
  • Step 3 The compressor starts to operate to make ethylene flow in the specified direction in the feed pipe.
  • the solvent is delivered through the solvent feed pipe, and the comonomer is delivered through the comonomer feed pipe.
  • Step 5 Under the action of the catalyst, comonomer and initiator, the ethylene in the mixture will polymerize to form polyethylene.
  • the mixture containing polyethylene will be transported to the discharging unit, where the viscosity reducer will prevent polymerization. Ethylene coagulation;
  • Step 7 The polymerized material is conveyed to the discharging intermediate tank through the discharge port.
  • the discharging intermediate tank will separate the polymerized material from gas to liquid, separate the residual gas in the polymerized material and transport the gas to The torch is used for processing, and after separation, the discharging intermediate tank transports the materials to the product silo;
  • the beneficial effect of the present invention is that the present invention breaks ethylene to form micron-scale bubbles, mixes the ethylene micron-scale bubbles with a solvent to form a gas-liquid emulsion, and breaks the initiator to form a gas-liquid emulsion.
  • the formation of micron-scale micron-scale bubbles, the initiator micron-scale bubbles and the gas-liquid emulsion are mixed to form a mixture material, through the full mixing of the raw materials, the phase boundary area of the gas-liquid two-phase is increased, and the thickness of the liquid film is reduced.
  • the range of preset operating conditions can be flexibly adjusted according to different product requirements or different catalysts, which further ensures the full and effective progress of the reaction, thereby ensuring the reaction rate, and achieving the purpose of strengthening the reaction.
  • the feed unit is also provided with a viscosity-reducing agent feed pipe.
  • a viscosity-reducing agent feed pipe By transporting the viscosity-reducing agent into the material, the reacted polyethylene can maintain fluidity without excessive polymerization and solidification, which improves The polymerization efficiency of the system is improved.
  • the catalyst feed pipe is provided with a catalyst feed valve, and the polymerization rate of ethylene in the system is controlled by adjusting the catalyst flow rate, so that the reaction rate in the system is more stable, thereby making the product distribution more uniform, and further improving The polymerization efficiency of the system.
  • a reflux pipe is also provided between the reaction unit and the feed pipe.
  • the tail gas generated in the reaction process can be transported to the flare for processing, so as to prevent the tail gas from polluting the environment when it is discharged from the system.
  • the system will use nitrogen and ethylene to replace the moisture and oxygen in the system before operation.
  • nitrogen and ethylene to replace the moisture and oxygen in the system before operation.
  • Figure 1 is a schematic diagram of the structure of the system for strengthening ethylene polymerization according to the present invention.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • FIG. 1 is a schematic structural diagram of the system for strengthening ethylene polymerization according to the present invention, which includes a feeding unit 1, a reaction unit 2, a micro-interface generator 3, and a discharging unit 4.
  • the feeding unit 1 is connected to the reaction unit 2 for conveying materials to the reaction unit 2.
  • the micro-interface generator 3 is arranged in the feeding unit 1 to crush the gas phase materials to form micro-scale micro-scale bubbles.
  • the discharging unit 4 is connected to the reaction unit 2 for processing the polymerized materials output by the reaction unit 2.
  • the feeding unit 1 will transport materials to the reaction unit 2.
  • the micro-interface generator 3 will break the gas phase materials into micro-scale micro-sized bubbles.
  • the feed unit 1 will transport the mixed materials to the reaction unit 2 for reaction, and the reaction unit 2 will polymerize the internal materials, and After the reaction, the polymerized material is output to the discharging unit 4, and the discharging unit 4 performs gas-liquid separation and drying treatment on the polymerized material, and then granulates to obtain polyethylene particles.
  • the system can be used not only for the polymerization of ethylene, but also for the polymerization of polyvinyl chloride, propylene or other kinds of organic matter, as long as the system can reach its designated working state. .
  • the feeding unit 1 of the present invention includes a raw material feeding pipe 11, a catalyst feeding pipe 12 and a viscosity reducing agent feeding pipe 13.
  • the raw material feed pipe 11 is connected to the bottom of the reaction unit 2 for conveying mixed materials.
  • the catalyst feed pipe 12 is connected to the side wall of the reaction unit 2 for transporting liquid phase catalyst.
  • the viscosity reducing agent feed pipe 13 is connected to the side wall of the reaction unit 2 for conveying the viscosity reducing agent.
  • the raw material feed pipe 11 fully mixes the gas phase material and the liquid phase material, and transports the mixed material to the reaction unit 2, and the catalyst feed pipe 12 flows to the reaction unit 2.
  • the viscosity-reducing agent feed pipe 13 conveys the viscosity-reducing agent to the reaction unit 2.
  • the raw material feed pipe 11 includes a feed pipe 111, a compressor 112, a cooler 113, a solvent feed pipe 114, a comonomer feed pipe 115 and an initiator feed pipe 116.
  • the compressor 112 is arranged on the feed pipe 111 to provide power for the transportation of materials.
  • the cooler 113 is arranged on the feed pipe 111 and located downstream of the compressor 112 for cooling the ethylene conveyed by the feed pipe 111.
  • the solvent feed pipe 114 is connected to the feed pipe 111 and is located downstream of the cooler 113 for conveying solvent into the feed pipe 111.
  • the comonomer 115 is connected to the feed pipe 111 and is located downstream of the solvent feed pipe 114 for conveying the comonomer into the feed pipe 111.
  • the initiator feed pipe 116 is connected to the feed pipe 111 and is located downstream of the comonomer feed pipe 115 for feeding the initiator into the feed pipe.
  • the initiator feed pipe 116 conveys the initiator to the feed pipe 111, and the initiator is mixed with the mixed monomer.
  • the gas-liquid emulsions with comonomers are mixed to form a mixed material, and the feed pipe 111 conveys the mixed material to the reaction unit 2 after the mixing is completed.
  • the catalyst feed pipeline 12 includes a catalyst feeder 121 and a catalyst feed valve 122.
  • the catalyst feeder 121 is a tank for storing liquid phase catalyst.
  • the catalyst feed valve 122 is a valve, which is set at the outlet of the catalyst feeder 121 to control the flow rate of the catalyst output by the catalyst feeder 121.
  • the opening degree of the catalyst feed valve is adjusted to control the flow rate of the catalyst output from the catalyst feeder 121 to output a specified amount of catalyst to the reaction unit.
  • the reaction unit 2 of the present invention is a reaction tank, which is connected to the feed unit 1 to receive the mixture material, the catalyst and the viscosity reducer respectively, and is used for the polymerization of ethylene in the material. Provide a reaction place.
  • the bottom of the reaction unit 2 is provided with a material inlet, and the material inlet is connected to the raw material feeding pipe 11 to receive the mixed material output by the material feeding pipe 11.
  • the side wall of the reaction unit 2 is provided with a catalyst feed port, and the catalyst feed port is connected to the catalyst feed pipe 12 for receiving the catalyst output from the catalyst feed pipe.
  • the side wall of the reaction unit 2 is also provided with a viscosity-reducing agent inlet, and the viscosity-reducing agent inlet is connected to the viscosity-reducing agent feeding pipe 13 to receive the viscosity-reducing agent output from the viscosity-reducing agent feeding pipe 13 Agent.
  • the side wall of the reaction unit is also provided with a discharge port, and the discharge port is connected to the discharge unit 4 for outputting the polymerized material after polymerization to the discharge unit 4.
  • the top of the reaction unit 2 is provided with a tail gas outlet for outputting the tail gas generated during the reaction to the torch.
  • the top of the reaction unit 2 is also provided with a reflux pipe, which is connected to the feed pipe 111 for returning unpolymerized ethylene in the reaction unit 2 to the feed pipe 111 to reuse the ethylene.
  • the reaction unit 2 When the system is running, the reaction unit 2 will receive the mixture material through the material feed port, the liquid phase catalyst through the catalyst feed port, and the viscosity reducer through the viscosity reducer feed port, The above three raw materials are mixed, the temperature and pressure in the reaction unit are controlled, so that the ethylene in the material undergoes polymerization reaction. After the reaction is completed, the polymerized material is output to the discharge unit 4 through the discharge port. The tail gas is output to the torch through the tail gas outlet for treatment. During the reaction, unpolymerized ethylene is returned to the material pipe 111 through the return pipe, and is cooled by the cooler 113 for reuse. It is understandable that the size and material of the reaction unit 2 are not specifically limited in this embodiment, as long as the reaction unit 2 can reach the specified working state.
  • the micro-interface generator 3 of the present invention includes a first micro-interface generator 31 and a second micro-interface generator 32.
  • the first micro-interface generator 31 is arranged at the confluence of the feed pipe 111 and the solvent feed pipe 114, and is used to crush ethylene to form micron-scale ethylene micro-scale bubbles.
  • the second micro-interface generator 32 is arranged at the confluence of the feed pipe 111 and the initiator feed pipe 116 to break the initiator into micron-scale initiator micron-scale bubbles.
  • the first micro-interface generator 31 When the raw material feed pipe 11 is transporting materials, the first micro-interface generator 31 will break the ethylene to form micro-sized ethylene micro-sized bubbles, and mix the ethylene micro-sized bubbles with a solvent to form a gas-liquid emulsion, The second micro-interface generator 32 will break the initiator to form micron-sized initiator micro-sized bubbles, mix the initiator micro-sized bubbles with the gas-liquid emulsion mixed with comonomers to form a mixture material, and mix the mixture material It is output to the reaction unit 2 for polymerization reaction.
  • micro-interface generator 3 of the present invention can also be used in other multi-phase reactions, such as through micro-interface, micro-nano interface, ultra-micro interface, micro-bubble bioreactor or micro-bubble bioreactor, etc.
  • micro-mixing Use micro-mixing, micro-fluidization, ultra-micro-fluidization, micro-bubble fermentation, micro-bubble bubbling, micro-bubble mass transfer, micro-bubble transfer, micro-bubble reaction, micro-bubble absorption, micro-bubble oxygenation, micro-bubble contact and other processes or Method to make the material form multi-phase micro-mixed flow, multi-phase micro-nano flow, multi-phase emulsified flow, multi-phase micro-structured flow, gas-liquid-solid micro-mixed flow, gas-liquid-solid micro-nano flow, gas-liquid-solid emulsified flow, gas-liquid-solid flow Micro structure flow, micro bubble flow, micro bubble flow, micro bubble, micro bubble flow, micro gas liquid flow, gas liquid micro nano emulsified flow, ultra micro flow, micro dispersion flow, two micro mixed flow, micro turbulent flow, micro bubble Flow, microbubble, microbubble flow, micro-nano bubble and micro-nano bubble flow and other multiphase
  • the discharging unit 4 of the present invention includes a discharging intermediate tank 41 and a product silo 42.
  • the discharging intermediate tank 41 is connected to the discharging port in the reaction unit 2 to receive the polymerized material output by the reaction unit 2 and perform gas-liquid separation of the polymerized material.
  • the product silo 42 is connected to the discharging intermediate tank 41 for drying and granulating the material output from the discharging intermediate tank 41 to produce polyethylene products.
  • the reaction unit 2 outputs the polymerized materials to the discharging intermediate tank 41, and the discharging intermediate tank 41 performs gas-liquid separation of the polymerized materials, and outputs the separated gas to the torch.
  • the product silo 42 Process, and transport the separated liquid phase material to the product silo 42.
  • the product silo 42 will dry the material, evaporate the internal viscosity reducer, and make the material
  • the polyethylene is solidified, thereby completing the preparation of the polyethylene.
  • the discharging intermediate tank 41 is a tank body, which is connected to the reaction unit 2 for gas-liquid separation of the polymerized materials, and the top of the discharging intermediate tank 41 is provided with an exhaust port. It is used to output the separated gas to the torch, and the bottom of the discharging intermediate tank 41 is provided with a discharge port for outputting the separated materials to the product silo 42.
  • the discharging intermediate tank 41 will perform gas-liquid separation of the polymerized material, and output the separated gas to the torch through the exhaust port to remove the liquid phase The material is output to the product silo 42.
  • the product silo 42 is a tank for drying the separated materials and granulating polyethylene. After the discharging intermediate tank 41 completes the gas-liquid separation, the separated materials in the liquid phase are transported to the product silo 42, and the product silo 42 will dry the separated materials to remove the viscosity reducer in the materials. Thus, the polyethylene in the material is solidified, and the polyethylene is pelletized, thereby completing the preparation of the polyethylene.
  • Step 2 After replacement, pass the liquid phase catalyst into the catalyst feed pipe, the catalyst feed pipe outputs the catalyst to the inside of the reaction unit, and the viscosity reducer is passed into the viscosity reducer feed pipe to reduce viscosity
  • the agent feed pipe outputs the viscosity reducer to the inside of the reaction unit, and passes the viscosity reducer into the viscosity reducer feed pipe;
  • Step 4 The first micro-interface generator breaks ethylene to form micro-sized micro-sized bubbles, and mixes the ethylene micro-sized bubbles with a solvent to form a gas-liquid emulsion, and the second micro-interface generator breaks the initiator to form Micron-scale micron-scale bubbles, and mixing initiator micron-scale bubbles and gas-liquid emulsion containing comonomers to form a mixture and transport it to the inside of the reaction unit;
  • Step 6 The tail gas remaining in the polymerization process will enter the flare through the tail gas outlet for treatment, and the unpolymerized ethylene will flow back to the feed pipe through the return pipe, and flow through the cooling by the compressor.
  • the cooler cools the ethylene to a specified temperature for repeated use;
  • Step 8 After separation, the discharging intermediate tank transports the material to the product silo, and the product silo dries the material to remove the viscosity reducing agent, and granulates the polyethylene after drying, and after the granulation is completed Export the polyethylene to the system.
  • the catalyst in step 2 is one or more of titanium tetrachloride and diethyl aluminum chloride.
  • the viscosity reducing agent in the step 2 is n-hexane.
  • the polymerization temperature is 230° C.
  • the reaction pressure is 140 MPa.
  • the viscosity reducing agent in the step 2 is n-hexane.
  • oxygen is selected as the initiator, and the initiator content is 0.004% of the ethylene content.
  • step 2 is a mixed solvent of titanium tetrachloride and diethyl aluminum chloride.
  • the prepared polyethylene was tested, and it was determined that the PDI of the product polyethylene was 1.55, and the ethylene conversion rate was 96.7%.
  • step 2 is a mixed solvent of titanium tetrachloride and diethyl aluminum chloride.
  • a short-chain ⁇ -olefin is selected as the comonomer.
  • the polymerization temperature is 260° C.
  • the reaction pressure is 200 MPa.
  • the prepared polyethylene was tested, and it was determined that the PDI of the product polyethylene was 2.19, and the ethylene conversion rate was 89.94%.

Abstract

本发明涉及一种强化乙烯聚合的系统和工艺,包括:进料单元;与所述进料单元相连的反应单元;设置在所述进料单元内的微界面发生器;与所述反应单元相连的出料单元。本发明通过破碎乙烯使其形成微米尺度的微米级气泡,使乙烯微米级气泡与溶剂混合形成气液乳化物,同时减小了液膜厚度,降低了传质阻力,以通过破碎引发剂使其形成微米尺度的微米级气泡,使引发剂微米级气泡与气液乳化物混合形成混合物料,从而达到在较低预设操作条件范围内强化传质的效果;同时,各所述微米级气泡均能够与溶剂充分混合形成气液乳化物,通过将气液两相充分混合,能够保证系统中的乙烯和引发剂能够与溶剂烯充分接触,进一步提高了所述系统的聚合效率。

Description

一种强化乙烯聚合的系统和工艺 技术领域
本发明涉及聚合物制备技术领域,尤其涉及一种强化乙烯聚合的系统和工艺。
背景技术
聚乙烯(PE)是世界上最常用的塑料聚合物,年消耗率超过每年500亿磅。超过70%的Porex产品使用聚乙烯。以重复的线性分子结构–CH2-CH2-为单位,PE是一种半结晶聚合物,其强韧性在拉伸断裂前得到增强。一般说来,PE是一种坚固的轻量级热塑性材料,拥有极好的耐化学性。耐腐蚀性,电绝缘性(尤其高频绝缘性)优良,可以氯化,辐照改性,可用玻璃纤维增强。低压聚乙烯的熔点,刚性,硬度和强度较高,吸水性小,有良好的电性能和耐辐射性;高压聚乙烯的柔软性,伸长率,冲击强度和渗透性较好,超高分子量聚乙烯冲击强度高、耐疲劳、耐磨。低压聚乙烯适于制作耐腐蚀零件和绝缘零件;高压聚乙烯适于制作薄膜等;超高分子量聚乙烯适于制作减震,耐磨及传动零件。
中国专利公开号:CN101754987A公开了一种用于制备聚乙烯的方法及其制备得到的聚乙烯,包括以下步骤:生产聚乙烯或聚丙烯聚合物或其共聚物的方法,包括使包含单体的介质与聚合催化剂粒子在至少一个高剪切混合装置中接触以形成分散体。所述单体选自乙烯、丙烯及其组合。由此可见,所述方法及系统存在以下问题:
第一,所述系统使用搅拌的方式对催化剂进行破碎,虽提高了催化剂与物料间的接触面积,但乙烯气体仍为大气泡,无法做到乙烯与催化剂的充分接触,导致系统反应不均匀,从而导致系统的聚合效率低。
第二,所述系统将各组分原料混合在一起进行搅拌,多种原料在进入混合装置中无法充分混合。
第三,所述系统中反应后的尾气直接排除,导致乙烯原料的利用率低,增加了系统的运行成本。
发明内容
为此,本发明提供一种强化乙烯聚合的系统和工艺,用以克服现有技术中物料间无法充分混合导致的聚合效率低的问题。
一方面,本发明提供一种强化乙烯聚合的系统,包括:
进料单元,用以分别输送原料和液相催化剂;
反应单元,其与所述进料单元相连,用以接收所述进料单元输出的原料和催化剂的混合溶液以使混合溶液中的乙烯在反应单元内发生聚合反应;
微界面发生器,其设置在所述进料单元内,将气体的压力能和/或液体的动能转变为气泡表面能并传递给气相原料,使气相原料破碎形成直径≥1μm、且<1mm的微米级气泡以提高相界传质面积,减小液膜厚度,降低传质阻力,并在破碎后将物料混合形成气液乳化物,以在预设操作条件范围内强化相界间的传质效率和反应效率;
出料单元,其与所述反应单元相连,用以接受反应单元输出的聚合后物料并对聚合后物料进行后处理。
进一步地,所述进料单元包括:
原料进料管道,其与所述微界面发生器相连,用以将气相原料输送至微界面发生器以使微界面发生器将原料破碎形成微米级气泡;
催化剂进料管道,其与所述反应单元相连,用以将催化剂输送至所述反应单元内部;
减粘剂进料管道,其与所述反应单元相连,用以将减粘剂输送至所述反应单元内部。
进一步地,所述原料进料管道包括:
进料管,用以向所述气相进料管道输送气相原料;
压缩机,其与所述进料管相连,用以为物料的输送提供动力;
冷却器,其与所述压缩机相连,用以对所述压缩机输出的物料进行冷却;
溶剂进料管,其与所述进料管相连并设置在所述共聚单体进料管下游处,用以将溶剂输送至所述气相进料管道内部;
共聚单体进料管,其与所述进料管相连并设置在所述冷却器出口处,用以将共聚单体输送至所述气相进料管道内部;
引发剂进料管,其与所述进料管相连并设置在所述溶剂进料管下游处,用以 将引发剂输送至所述气相进料管道内部。
进一步地,所述微界面发生器包括:
第一微界面发生器,其设置在所述进料管与所述溶剂进料管之间的汇流处,用以将乙烯破碎形成微米尺度的微米级气泡以与溶剂混合形成气液乳化物;
第二微界面发生器,其设置在所述进料管与所述引发剂进料管的汇流处,用以将引发剂破碎形成微米尺度的微米级气泡并与所述第一微界面发生器输出的含有共聚单体的气液乳化物混合形成混合物料。
进一步地,所述催化剂进料管道包括:
催化剂加料器,用以储存和输送液相催化剂;
催化剂进料阀门,其设置在所述催化剂加料器出口处,用以控制催化剂的流量。
进一步地,所述反应单元为一反应器,用以为微米级气泡提供反应空间,包括:
物料进料口,其开设在所述反应器底部并与所述物料进料管道相连,用以使物料进料管道将物料输出至反应器内部;
催化剂进料口,其开设在所述反应器侧壁并与所述催化剂进料管道相连,用以使催化剂进料管道将催化剂输出至反应器内部;
减粘剂进料口,其开设在所述反应器侧壁并与所述减粘剂进料管道相连,用以使减粘剂进料管道将减粘剂输出至反应器内部;
物料出口,其开设在所述反应器下部侧壁并与所述出料单元相连,用以将反应后的混合物输出至所述出料单元;
尾气出口,其开设在所述反应器顶部,用以将反应后生成的尾气排出系统。
进一步地,所述反应单元与所述物料进料管道之间设有回流管,用以将反应单元中未反应的乙烯回流至所述物料进料单元以对乙烯进行重复使用。
进一步地,所述出料单元包括:
出料中间罐,其与所述反应单元相连,用以对反应单元输出的物料进行气液分离;
产品料仓,其设置在所述出料中间罐底部并与出料中间罐相连,用以接收所述出料中间罐输出的液相物料,对物料进行干燥并对物料中聚乙烯进行造粒。
进一步地,所述反应单元和所述出料单元输出的尾气均会进入火炬,火炬会对尾气进行燃烧,以防止尾气污染环境。
另一方面,本发明提供一种强化乙烯聚合的工艺,包括:
步骤1:向所述物料进料管道内通入氮气,使氮气流经系统以置换系统内的水分和氧气,置换完成后,向物料进料管道内通入乙烯以继续进行置换;
步骤2:置换后,将液相催化剂通入所述催化剂进料管道,催化剂进料管道将催化剂输出至所述反应单元内部,将减粘剂通入所述减粘剂进料管道,减粘剂进料管道将减粘剂输出至反应单元内部,将减粘剂通入所述减粘剂进料管道;
步骤3:所述压缩机开始运作,使乙烯在所述进料管内沿指定方向流动,在输送乙烯时,分别通过溶剂进料管输送溶剂,通过所述共聚单体进料管输送共聚单体,通过引发剂进料管输送引发剂;
步骤4:所述第一微界面发生器将乙烯破碎形成微米尺度的微米级气泡,并将乙烯微米级气泡与溶剂混合形成气液乳化物,所述第二微界面发生器将引发剂破碎形成微米尺度的微米级气泡,并将引发剂微米级气泡与含有共聚单体的气液乳化物混合形成混合物料输送至所述反应单元内部;
步骤5:混合物料中的乙烯在催化剂、共聚单体和引发剂的作用下发生聚合反应生成聚乙烯,含有聚乙烯的混合物料会输送至所述出料单元,其中,减粘剂会防止聚乙烯凝固;
步骤6:在聚合过程中残留的尾气会通过所述尾气出口进入火炬以进行处理,未聚合的乙烯通过所述回流管回流至所述进料管,经所述压缩机输送流经所述冷却器,冷却器将乙烯冷却至指定温度以进行重复使用;
步骤7:聚合完成的物料经所述出料口输送至所述出料中间罐,出料中间罐会对聚合后物料进行气液分离,将聚合后物料中残留的气体分离并将气体输送至火炬以进行处理,分离后出料中间罐将物料输送至所述产品料仓;
步骤8:分离后所述出料中间罐将物料输送至所述产品料仓,产品料仓对物料进行干燥以去除减粘剂,并在干燥后对聚乙烯进行造粒,在造粒完成后将聚乙烯输出系统。
与现有技术相比,本发明的有益效果在于,本发明通过破碎乙烯使其形成微米尺度的微米级气泡,使乙烯微米级气泡与溶剂混合形成气液乳化物,并通过破 碎引发剂使其形成微米尺度的微米级气泡,使引发剂微米级气泡与气液乳化物混合形成混合物料,通过各原料间的充分混合,以增大气液两相的相界面积,同时减小了液膜厚度,降低了传质阻力,以达到在较低预设操作条件范围内强化传质的效果;同时,各所述微米级气泡均能够与溶剂充分混合形成气液乳化物,通过将气液两相充分混合,能够保证系统中的乙烯和引发剂能够与溶剂充分接触,进一步提高了所述系统的聚合效率。
此外,可以根据不同的产品要求或不同的催化剂,而对预设操作条件的范围进行灵活调整,进一步确保了反应的充分有效进行,进而保证了反应速率,达到了强化反应的目的。
进一步地,所述原料进料管道内分别设有多根汇流管道,通过顺次向乙烯中添加指定原料,使原料能够顺次与乙烯混合,从而提高所述进料单元中各原料间的混合效率。
尤其,所述第一微界面发生器设置在所述进料管和所述溶剂进料管的汇流处,在系统运行时,第一微界面发生器会将乙烯破碎形成微米级气泡以使乙烯与溶剂充分混合,从而提高所述系统中物料间的混合效率。
尤其,所述第二微界面发生器设置在所述进料管和所述引发剂进料管的汇流处,在系统运行时,第二微界面发生器会将引发剂破碎形成微米级气泡以使引发剂微米级气泡与气液乳化物充分混合,从而进一步提高所述系统中物料间的混合效率。
进一步地,所述进料单元中还设有减粘剂进料管道,通过向物料中输送减粘剂,能够使反应后的聚乙烯保持流动性,不会出现过度聚合而凝固的情况,提高了所述系统的聚合效率。
进一步地,所述催化剂进料管中设有催化剂进料阀门,通过对催化剂流量的调节以控制系统中乙烯的聚合速率,使系统中反应速率更加稳定,从而使产物分布更加均匀,进一步提高了所述系统的聚合效率。
进一步地,所述反应单元与所述进料管之间还设有回流管,在系统运行时,未反应的乙烯能通过回流管回流至进料管,通过对乙烯的充分利用,节约了所述系统的运行成本。
进一步地,所述系统运行时,能够将反应过程中产生的尾气输送至火炬进行 处理,以防止尾气在排出系统时对环境造成污染。
进一步地,所述系统在运行前会分别使用氮气和乙烯对系统内水分和氧气进行置换,通过去除系统内的水分和氧气,能够有效提高系统产物的纯度,从而进一步提高了所述系统的聚合效率。
附图说明
图1为本发明所述强化乙烯聚合的系统的结构示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
请参阅图1所示,其为本发明所述强化乙烯聚合的系统的结构示意图,包括进料单元1、反应单元2、微界面发生器3和出料单元4。其中,所述进料单元1与所述反应单元2相连,用以将物料输送至所述反应单元2。所述微界面发生器3设置在所述进料单元1内,用以将气相物料破碎形成微米尺度的微米级气泡。所述出料单元4与所述反应单元2相连,用以对反应单元2输出的聚合后物料进行处理。当所述系统运行时,所述进料单元1会将物料输送至所述反应单元2,在输送过程中,所述微界面发生器3会将气相物料分别破碎形成微米尺度的微米级气泡,将微米级气泡与液相物料混合形成气液乳化物,混合完成后,进料单元1会将混合物料输送至反应单元2内部进行反应,反应单元2会对使内部的物料 进行聚合反应,并在反应后将聚合后物料输出至所述出料单元4,出料单元4对聚合后物料进行气液分离和干燥处理后,进行造粒以制得聚乙烯颗粒。本领域的技术人员可以理解的是,所述系统不仅能用于乙烯的聚合,也可用于聚氯乙烯、丙烯或其它种类有机物的聚合,只要满足所述系统能够达到其指定的工作状态即可。
请继续参阅图1所示,本发明所述进料单元1包括原料进料管道11、催化剂进料管道12和减粘剂进料管道13。其中,所述原料进料管道11与所述反应单元2底部相连,用以输送混合物料。所述催化剂进料管道12与所述反应单元2侧壁相连,用以输送液相催化剂。所述减粘剂进料管道13与所述反应单元2侧壁相连,用以输送减粘剂。当所述系统运行时,所述原料进料管道11对气相物料和液相物料进行充分混合,并将混合后物料输送至所述反应单元2,所述催化剂进料管道12向所述反应单元2内输送液相催化剂。所述减粘剂进料管道13向所述反应单元2输送减粘剂。
具体而言,所述原料进料管道11包括进料管111、压缩机112、冷却器113、溶剂进料管114、共聚单体进料管115和引发剂进料管116。其中所述压缩机112设置在所述进料管111上,用以为物料的输送提供动力。所述冷却器113设置在所述进料管111上并位于所述压缩机112下游,用以对进料管111输送的乙烯进行降温。所述溶剂进料管114与所述进料管111相连并位于所述冷却器113下游,用以向进料管111中输送溶剂。所述共聚单体115与所述进料管111相连并位于所述溶剂进料管114下游,用以向进料管111中输送共聚单体。所述引发剂进料管116与所述进料管111相连并位于所述共聚单体进料管115下游,用以向进料管中输送引发剂。
当所述原料进料管道11运行时,所述进料管111会输送乙烯,所述压缩机112会运行并将进料管111中乙烯沿指定方向输送,乙烯在流经所述冷却器113时,冷却器113会对乙烯进行降温,降温后,所述溶剂进料管114会将溶剂输送至所述进料管111,溶剂与乙烯充分混合形成气液乳化物,混合后,所述共聚单体进料管115向进料管111中输送共聚单体,共聚单体与气液乳化物混合后,所述引发剂进料管116向进料管111中输送引发剂,引发剂与混有共聚单体的气液乳化物混合,形成混合物料,所述进料管111在混合完成后将混合物料输送至 所述反应单元2。
具体而言,所述催化剂进料管道12包括催化剂加料器121和催化剂进料阀门122。其中,所述催化剂加料器121为一罐体,用以储存液相催化剂。所述催化剂进料阀门122为一阀门,其设置在所述催化剂加料器121出口处,用以控制所述催化剂加料器121输出催化剂的流量。当所述系统运行时,调节所述催化剂进料阀门的开度,从而控制所述催化剂加料器121输出催化剂的流量,以将指定量的催化剂输出至所述反应单元。
请继续参阅图1所示,本发明所述反应单元2为一反应罐,其与所述进料单元1相连,用以分别接收混合物料、催化剂和减粘剂,并为物料中乙烯的聚合提供反应场所。所述反应单元2底部开设有物料进料口,物料进料口与所述原料进料管道11相连,用以接收物料进料管道11输出的混合物料。所述反应单元2侧壁开设有催化剂进料口,催化剂进料口与所述催化剂进料管道12相连,用以接收催化剂进料管道输出的催化剂。所述反应单元2侧壁上还开设有减粘剂进料口,减粘剂进料口与所述减粘剂进料管道13相连,用以接收减粘剂进料管道13输出的减粘剂。所述反应单元侧壁还开设有出料口,所述出料口与所述出料单元4相连,用以将聚合完成的聚合后物料输出至出料单元4。所述反应单元2顶部设有尾气出口,用以将反应时产生的尾气输出至火炬。所述反应单元2顶部还设有回流管,回流管与所述进料管111相连,用以将反应单元2内未聚合的乙烯回流至进料管111以对乙烯进行重复使用。
当所述系统运行时,所述反应单元2会通过所述物料进料口接收混合物料,通过所述催化剂进料口接收液相催化剂,通过所述减粘剂进料口接收减粘剂,将上述三种原料混合,控制反应单元内的温度及压强,使物料中乙烯发生聚合反应,反应完成后的聚合后物料经所述出料口输出至所述出料单元4,反应时生成的尾气经所述尾气出口输出至火炬以进行处理,反应过程中未聚合的乙烯经所述回流管回流至所述物料管111,并经所述冷却器113冷却后进行重复使用。可以理解的是,所述反应单元2的尺寸和材质本实施例均不作具体限制,只要满足所述反应单元2能够达到指定的工作状态即可。
请继续参阅图1所示,本发明所述微界面发生器3包括第一微界面发生器31和第二微界面发生器32。其中,所述第一微界面发生器31设置在所述进料管 111和所述溶剂进料管114的汇流处,用以将乙烯破碎形成微米尺度的乙烯微米级气泡。所述第二微界面发生器32设置在所述进料管111和所述引发剂进料管116的汇流处,用以将引发剂破碎形成微米尺度的引发剂微米级气泡。当所述原料进料管道11在输送物料时,所述第一微界面发生器31会将乙烯破碎形成微米尺度的乙烯微米级气泡,并将乙烯微米级气泡与溶剂混合形成气液乳化物,所述第二微界面发生器32会将引发剂破碎形成微米尺度的引发剂微米级气泡,将引发剂微米级气泡与混有共聚单体的气液乳化物混合形成混合物料,并将混合物料输出至所述反应单元2以进行聚合反应。可以理解的是,本发明所述微界面发生器3还可用于其它多相反应中,如通过微界面、微纳界面、超微界面、微泡生化反应器或微泡生物反应器等设备,使用微混合、微流化、超微流化、微泡发酵、微泡鼓泡、微泡传质、微泡传递、微泡反应、微泡吸收、微泡增氧、微泡接触等工艺或方法,以使物料形成多相微混流、多相微纳流、多相乳化流、多相微结构流、气液固微混流、气液固微纳流、气液固乳化流、气液固微结构流、微米级气泡、微米级气泡流、微泡沫、微泡沫流、微气液流、气液微纳乳化流、超微流、微分散流、两项微混流、微湍流、微泡流、微鼓泡、微鼓泡流、微纳鼓泡以及微纳鼓泡流等由微米尺度颗粒形成的多相流体、或由微纳尺度颗粒形成的多相流体(简称微界面流体),从而有效地增大了反应过程中所述气相和/或液相与液相和/或固相之间的相界传质面积。
请继续参阅图1所示,本发明所述出料单元4包括出料中间罐41和产品料仓42。其中所述出料中间罐41与所述反应单元2中的出料口相连,用以接收所述反应单元2输出的聚合后物料并对聚合后物料进行气液分离。所述产品料仓42与所述出料中间罐41相连,用以对所述出料中间罐41输出的物料进行干燥和造粒以生成聚乙烯产物。当所述反应单元2聚合完成后,反应单元2将聚合后物料输出至所述出料中间罐41,出料中间罐41会对聚合后物料进行气液分离,将分离后气体输出至火炬以进行处理,并将分离后液相物料输送至所述产品料仓42,当物料进入产品料仓42后,产品料仓42会对物料进行干燥,蒸发其内部的减粘剂,使物料内的聚乙烯凝固,从而完成聚乙烯的制备。
具体而言,所述出料中间罐41为一罐体,其与所述反应单元2相连,用以对聚合后物料进行气液分离,所述出料中间罐41顶部设有排气口,用以将分离 后的气体输出至火炬,所述出料中间罐41底部设有出料口,用以将分离后物料输出至所述产品料仓42。当聚合后物料输送至所述出料中间罐41内部时,出料中间罐41会对聚合后物料进行气液分离,并将分离后的气体通过所述排气口输出至火炬,将液相物料输出至所述产品料仓42。
具体而言,所述产品料仓42为一罐体,用以对分离后物料进行干燥并对聚乙烯进行造粒。当所述出料中间罐41完成气液分立后,将液相的分离后物料输送至所述产品料仓42,产品料仓42会对分离后物料进行干燥以去除物料中的减粘剂,从而使物料中的聚乙烯凝固,对聚乙烯进行造粒,从而完成聚乙烯的制备。
为了使本发明的目的和优点更加清楚明白,下面结合实施例对本发明作进一步描述;应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
一种强化乙烯聚合的工艺,包括以下步骤:
步骤1:向所述物料进料管道内通入氮气,使氮气流经系统以置换系统内的水分和氧气,置换完成后,向物料进料管道内通入乙烯以继续进行置换;
步骤2:置换后,将液相催化剂通入所述催化剂进料管道,催化剂进料管道将催化剂输出至所述反应单元内部,将减粘剂通入所述减粘剂进料管道,减粘剂进料管道将减粘剂输出至反应单元内部,将减粘剂通入所述减粘剂进料管道;
步骤3:所述压缩机开始运作,使乙烯在所述进料管内沿指定方向流动,在输送乙烯时,分别通过溶剂进料管输送溶剂,通过所述共聚单体进料管输送共聚单体,通过引发剂进料管输送引发剂;
步骤4:所述第一微界面发生器将乙烯破碎形成微米尺度的微米级气泡,并将乙烯微米级气泡与溶剂混合形成气液乳化物,所述第二微界面发生器将引发剂破碎形成微米尺度的微米级气泡,并将引发剂微米级气泡与含有共聚单体的气液乳化物混合形成混合物料输送至所述反应单元内部;
步骤5:混合物料中的乙烯在催化剂、共聚单体和引发剂的作用下发生聚合反应生成聚乙烯,含有聚乙烯的混合物料会输送至所述出料单元,其中,减粘剂会防止聚乙烯凝固;
步骤6:在聚合过程中残留的尾气会通过所述尾气出口进入火炬以进行处理,未聚合的乙烯通过所述回流管回流至所述进料管,经所述压缩机输送流经所述冷 却器,冷却器将乙烯冷却至指定温度以进行重复使用;
步骤7:聚合完成的物料经所述出料口输送至所述出料中间罐,出料中间罐会对聚合后物料进行气液分离,将聚合后物料中残留的气体分离并将气体输送至火炬以进行处理,分离后出料中间罐将物料输送至所述产品料仓;
步骤8:分离后所述出料中间罐将物料输送至所述产品料仓,产品料仓对物料进行干燥以去除减粘剂,并在干燥后对聚乙烯进行造粒,在造粒完成后将聚乙烯输出系统。
具体而言,所述步骤2中催化剂选用四氯化钛和一氯二乙基铝中的一种或多种。
所述步骤2中的减粘剂选用正己烷。
所述步骤3中共聚单体选用短链α-烯烃、乙酸乙烯酯和丙烯酸酯中的一种。
所述步骤3中选用氧气作为引发剂,且引发剂含量为乙烯量的0.003-0.007%。
所述步骤5中聚合温度为230-260℃,反应压力为140-200MPa。
可以理解的是,可以根据不同的产品要求或不同的催化剂,而灵活地进行预设操作条件的范围调整,以确保反应的充分有效进行,进而保证反应速率,达到了强化反应的目的。同时,本实施例中不具体限定催化剂的种类,只要能够确保强化反应顺利进行即可。
实施例一
使用上述系统和上述工艺进行聚乙烯的制备,其中,所述步骤2中催化剂选用四氯化钛。
所述步骤2中的减粘剂选用正己烷。
所述步骤3中共聚单体选用短链α-烯烃。
所述步骤3中选用氧气作为引发剂,且引发剂含量为乙烯量的0.003%。
所述步骤5中聚合温度为230℃,反应压力为140MPa。
对制得的聚乙烯进行检测,测得产物聚乙烯的PDI为1.93,乙烯转化率为93.5%。
实施例二
使用上述系统和上述工艺进行聚乙烯的制备,其中,所述步骤2中催化剂选用一氯二乙基铝。
所述步骤2中的减粘剂选用正己烷。
所述步骤3中共聚单体选用乙酸乙烯酯。
所述步骤3中选用氧气作为引发剂,且引发剂含量为乙烯量的0.004%。
所述步骤5中聚合温度为245℃,反应压力为160MPa。
对制得的聚乙烯进行检测,测得产物聚乙烯的PDI为1.81,乙烯转化率为94.8%。
实施例三
使用上述系统和上述工艺进行聚乙烯的制备,其中,所述步骤2中催化剂选用四氯化钛和一氯二乙基铝中的混合溶剂。
所述步骤2中的减粘剂选用正己烷。
所述步骤3中共聚单体选用丙烯酸酯。
所述步骤3中选用氧气作为引发剂,且引发剂含量为乙烯量的0.006%。
所述步骤5中聚合温度为255℃,反应压力为180MPa。
对制得的聚乙烯进行检测,测得产物聚乙烯的PDI为1.55,乙烯转化率为96.7%。
实施例四
使用上述系统和上述工艺进行聚乙烯的制备,其中,所述步骤2中催化剂选用四氯化钛和一氯二乙基铝中的混合溶剂。
所述步骤2中的减粘剂选用正己烷。
所述步骤3中共聚单体选用短链α-烯烃。
所述步骤3中选用氧气作为引发剂,且引发剂含量为乙烯量的0.007%。
所述步骤5中聚合温度为260℃,反应压力为200MPa。
对制得的聚乙烯进行检测,测得产物聚乙烯的PDI为1.26,乙烯转化率为98.1%。
对比例
使用现有技术中的系统进行聚乙烯的制备,且制备工艺与实施例四中的工艺相同。
对制得的聚乙烯进行检测,测得产物聚乙烯的PDI为2.19,乙烯转化率为89.94%。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
以上所述仅为本发明的优选实施例,并不用于限制本发明;对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种强化乙烯聚合的系统,其特征在于,包括:
    进料单元,用以分别输送原料和液相催化剂;
    微界面发生器,其设置在所述进料单元内,将气体的压力能和/或液体的动能转变为气泡表面能并传递给气相原料,使气相原料破碎形成直径≥1μm、且<1mm的微米级气泡以提高相界传质面积,减小液膜厚度,降低传质阻力,并在破碎后将物料混合形成气液乳化物,以在预设操作条件范围内强化相界间的传质效率和反应效率;
    反应单元,其与所述进料单元相连,用以接收所述进料单元输出的原料和催化剂的混合溶液以使混合溶液中的乙烯在反应单元内发生聚合反应;
    出料单元,其与所述反应单元相连,用以接受反应单元输出的聚合后物料并对聚合后物料进行后处理。
  2. 根据权利要求1所述的强化乙烯聚合的系统,其特征在于,所述进料单元包括:
    原料进料管道,其与所述微界面发生器相连,用以将气相原料输送至微界面发生器以使微界面发生器将原料破碎形成微米级气泡;
    催化剂进料管道,其与所述反应单元相连,用以将催化剂输送至所述反应单元内部;
    减粘剂进料管道,其与所述反应单元相连,用以将减粘剂输送至所述反应单元内部。
  3. 根据权利要求2所述的强化乙烯聚合的系统,其特征在于,所述原料进料管道包括:
    进料管,用以向所述气相进料管道输送气相原料;
    压缩机,其与所述进料管相连,用以为物料的输送提供动力;
    冷却器,其与所述压缩机相连,用以对所述压缩机输出的物料进行冷却;
    溶剂进料管,其与所述进料管相连并设置在所述共聚单体进料管下游处,用以将溶剂输送至所述气相进料管道内部;
    共聚单体进料管,其与所述进料管相连并设置在所述冷却器出口处,用以将共聚单体输送至所述气相进料管道内部;
    引发剂进料管,其与所述进料管相连并设置在所述溶剂进料管下游处,用以 将引发剂输送至所述气相进料管道内部。
  4. 根据权利要求3所述的强化乙烯聚合的系统,其特征在于,所述微界面发生器包括:
    第一微界面发生器,其设置在所述进料管与所述溶剂进料管之间的汇流处,用以将乙烯破碎形成微米尺度的微米级气泡以与溶剂混合形成气液乳化物;
    第二微界面发生器,其设置在所述进料管与所述引发剂进料管的汇流处,用以将引发剂破碎形成微米尺度的微米级气泡并与所述第一微界面发生器输出的含有共聚单体的气液乳化物混合形成混合物料。
  5. 根据权利要求3所述的强化乙烯聚合的系统,其特征在于,所述催化剂进料管道包括:
    催化剂加料器,用以储存和输送液相催化剂;
    催化剂进料阀门,其设置在所述催化剂加料器出口处,用以控制催化剂的流量。
  6. 根据权利要求2所述的强化乙烯聚合的系统,其特征在于,所述反应单元为一反应器,用以为微米级气泡提供反应空间,包括:
    物料进料口,其开设在所述反应器底部并与所述物料进料管道相连,用以使物料进料管道将物料输出至反应器内部;
    催化剂进料口,其开设在所述反应器侧壁并与所述催化剂进料管道相连,用以使催化剂进料管道将催化剂输出至反应器内部;
    减粘剂进料口,其开设在所述反应器侧壁并与所述减粘剂进料管道相连,用以使减粘剂进料管道将减粘剂输出至反应器内部;
    物料出口,其开设在所述反应器下部侧壁并与所述出料单元相连,用以将反应后的混合物输出至所述出料单元;
    尾气出口,其开设在所述反应器顶部,用以将反应后生成的尾气排出系统。
  7. 根据权利要求6所述的强化乙烯聚合的系统,其特征在于,所述反应单元与所述物料进料管道之间设有回流管,用以将反应单元中未反应的乙烯回流至所述物料进料单元以对乙烯进行重复使用。
  8. 根据权利要求1所述的强化乙烯聚合的系统,其特征在于,所述出料单元包括:
    出料中间罐,其与所述反应单元相连,用以对反应单元输出的物料进行气液分离;
    产品料仓,其设置在所述出料中间罐底部并与出料中间罐相连,用以接收所述出料中间罐输出的液相物料,对物料进行干燥并对物料中聚乙烯进行造粒。
  9. 根据权利要求1所述的强化乙烯聚合的系统,其特征在于,所述反应单元和所述出料单元输出的尾气均会进入火炬,火炬会对尾气进行燃烧,以防止尾气污染环境。
  10. 一种强化乙烯聚合的工艺,其特征在于,包括:
    步骤1:向所述物料进料管道内通入氮气,使氮气流经系统以置换系统内的水分和氧气,置换完成后,向物料进料管道内通入乙烯以继续进行置换;
    步骤2:置换后,将液相催化剂通入所述催化剂进料管道,催化剂进料管道将催化剂输出至所述反应单元内部,将减粘剂通入所述减粘剂进料管道,减粘剂进料管道将减粘剂输出至反应单元内部,将减粘剂通入所述减粘剂进料管道;
    步骤3:所述压缩机开始运作,使乙烯在所述进料管内沿指定方向流动,在输送乙烯时,分别通过溶剂进料管输送溶剂,通过所述共聚单体进料管输送共聚单体,通过引发剂进料管输送引发剂;
    步骤4:所述第一微界面发生器将乙烯破碎形成微米尺度的微米级气泡,并将乙烯微米级气泡与溶剂混合形成气液乳化物,所述第二微界面发生器将引发剂破碎形成微米尺度的微米级气泡,并将引发剂微米级气泡与含有共聚单体的气液乳化物混合形成混合物料输送至所述反应单元内部;
    步骤5:混合物料中的乙烯在催化剂、共聚单体和引发剂的作用下发生聚合反应生成聚乙烯,含有聚乙烯的混合物料会输送至所述出料单元,其中,减粘剂会防止聚乙烯凝固;
    步骤6:在聚合过程中残留的尾气会通过所述尾气出口进入火炬以进行处理,未聚合的乙烯通过所述回流管回流至所述进料管,经所述压缩机输送流经所述冷却器,冷却器将乙烯冷却至指定温度以进行重复使用;
    步骤7:聚合完成的物料经所述出料口输送至所述出料中间罐,出料中间罐会对聚合后物料进行气液分离,将聚合后物料中残留的气体分离并将气体输送至火炬以进行处理,分离后出料中间罐将物料输送至所述产品料仓;
    步骤8:分离后所述出料中间罐将物料输送至所述产品料仓,产品料仓对物料进行干燥以去除减粘剂,并在干燥后对聚乙烯进行造粒,在造粒完成后将聚乙烯输出系统。
PCT/CN2019/120188 2019-09-14 2019-11-22 一种强化乙烯聚合的系统和工艺 WO2021047049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910867780.2A CN112500509B (zh) 2019-09-14 2019-09-14 一种强化乙烯聚合的系统和工艺
CN201910867780.2 2019-09-14

Publications (1)

Publication Number Publication Date
WO2021047049A1 true WO2021047049A1 (zh) 2021-03-18

Family

ID=74865615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120188 WO2021047049A1 (zh) 2019-09-14 2019-11-22 一种强化乙烯聚合的系统和工艺

Country Status (2)

Country Link
CN (1) CN112500509B (zh)
WO (1) WO2021047049A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115636886A (zh) * 2022-10-11 2023-01-24 清华大学 微反应器系统及利用其制备聚合物的方法和eva的应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912698A (en) * 1971-10-15 1975-10-14 Du Pont Ethylene/{60 -olefin copolymerization process
EP0069593A2 (en) * 1981-07-07 1983-01-12 Mitsui Petrochemical Industries, Ltd. Polymerization process
JP2002145910A (ja) * 2000-12-28 2002-05-22 Mitsui Chemicals Inc 重合方法および重合設備
CN1431927A (zh) * 2000-06-23 2003-07-23 池田好明 微小气泡发生器及具有该发生器的微小气泡发生装置
CN101754987A (zh) * 2007-06-27 2010-06-23 Hrd有限公司 生产聚乙烯和聚丙烯的系统和方法
CN101998967A (zh) * 2008-04-10 2011-03-30 埃克森美孚研究工程公司 含丙烯聚合物的单体/溶剂分离和循环方法
CN102688709A (zh) * 2006-10-17 2012-09-26 金强 高速旋回式气液混合型微纳米泡沫发生装置
CN105524204A (zh) * 2014-09-28 2016-04-27 中国石油化工股份有限公司 乙烯-乙酸乙烯酯溶液共聚反应方法及反应装置
CN106215730A (zh) * 2016-08-05 2016-12-14 南京大学 微米气泡发生器
CN106268544A (zh) * 2016-08-05 2017-01-04 南京大学 塔式超细气泡反应器
CN107335390A (zh) * 2017-08-30 2017-11-10 南京大学 微界面强化反应器相界面积构效调控模型建模方法
CN208066329U (zh) * 2018-03-05 2018-11-09 山东豪迈化工技术有限公司 一种微泡式气液反应器及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146713B (zh) * 2015-03-27 2018-10-16 中国石油天然气股份有限公司 一种釜式淤浆生产聚乙烯的方法及应用
CN107759717B (zh) * 2016-08-19 2020-05-08 中国石油天然气股份有限公司 在气相流化床反应器快速建立乙烯聚合/共聚合反应的方法
CN109776702A (zh) * 2017-11-10 2019-05-21 北京华福工程有限公司 聚丙烯或丙烯乙烯共聚物的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912698A (en) * 1971-10-15 1975-10-14 Du Pont Ethylene/{60 -olefin copolymerization process
EP0069593A2 (en) * 1981-07-07 1983-01-12 Mitsui Petrochemical Industries, Ltd. Polymerization process
CN1431927A (zh) * 2000-06-23 2003-07-23 池田好明 微小气泡发生器及具有该发生器的微小气泡发生装置
JP2002145910A (ja) * 2000-12-28 2002-05-22 Mitsui Chemicals Inc 重合方法および重合設備
CN102688709A (zh) * 2006-10-17 2012-09-26 金强 高速旋回式气液混合型微纳米泡沫发生装置
CN101754987A (zh) * 2007-06-27 2010-06-23 Hrd有限公司 生产聚乙烯和聚丙烯的系统和方法
CN101998967A (zh) * 2008-04-10 2011-03-30 埃克森美孚研究工程公司 含丙烯聚合物的单体/溶剂分离和循环方法
CN105524204A (zh) * 2014-09-28 2016-04-27 中国石油化工股份有限公司 乙烯-乙酸乙烯酯溶液共聚反应方法及反应装置
CN106215730A (zh) * 2016-08-05 2016-12-14 南京大学 微米气泡发生器
CN106268544A (zh) * 2016-08-05 2017-01-04 南京大学 塔式超细气泡反应器
CN107335390A (zh) * 2017-08-30 2017-11-10 南京大学 微界面强化反应器相界面积构效调控模型建模方法
CN208066329U (zh) * 2018-03-05 2018-11-09 山东豪迈化工技术有限公司 一种微泡式气液反应器及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHINA PETROLEUM PETROCHEMICAL ENGINEERING INSTITUTE : "Handbook of Contemporary Technologies in Petroleum and Petrochemical Industry: Synthetic Resinâ€", 31 October 2000, CHINA PETROCHEMICAL PRESS, CN, ISBN: 7-80043-955-0, article CHINA PETROLEUM PETROCHEMICAL ENGINEERING INSTITUTE : "Still Method", pages: 17 - 22, XP009526741 *
ZHANG ZHIBING; TIAN HONGZHOU; ZHANG FENG; ZHOU ZHENG: "Overview of Microinterface Intensification in Multiphase Reaction Systems", CIESC JOURNAL, vol. 69, no. 1, 6 November 2007 (2007-11-06), pages 44 - 49, XP009526633, ISSN: 0438-1157, DOI: 10.11949/j.issn.0438-1157.20171400 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115636886A (zh) * 2022-10-11 2023-01-24 清华大学 微反应器系统及利用其制备聚合物的方法和eva的应用
CN115636886B (zh) * 2022-10-11 2024-01-23 清华大学 微反应器系统及利用其制备聚合物的方法和eva的应用

Also Published As

Publication number Publication date
CN112500509A (zh) 2021-03-16
CN112500509B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
CN101754987B (zh) 生产聚乙烯和聚丙烯的系统和方法
CN102892792B (zh) 聚合反应器的连续取出技术和压力控制
KR101770086B1 (ko) 개선된 슬러리 펌프 성능을 갖는 에틸렌 중합 방법
EP2531534B2 (en) Compressible liquid diluent in polyolefin polymerization
WO2008095807A1 (en) Apparatus for the liquid-phase polymerization of olefins
EP2723781A1 (en) Method and apparatus for discharging a polymer from a gas-phase reactor
WO2021047049A1 (zh) 一种强化乙烯聚合的系统和工艺
JP4718185B2 (ja) 物質変換のためのテイラー反応器
Minsker et al. Plug-flow tubular turbulent reactors: A new type of industrial apparatus
CN112495310B (zh) 一种强化丙烯聚合的系统和工艺
CN213506692U (zh) 一种强化乙烯聚合的系统
CN115253954B (zh) 一种连续反应装置及应用
CN212119946U (zh) 一种基于本体法制备聚乙烯的强化系统
CN212128041U (zh) 基于溶液法制备聚乙烯的智能强化系统
CN213506693U (zh) 一种氯乙烯聚合物的制备系统
CN213506694U (zh) 一种基于本体法制备聚乙烯的智能强化系统
CN212128043U (zh) 一种强化丙烯聚合的系统
CN1917943A (zh) 用于将反应物优化注射到反应器中的装置和方法
CN112500512A (zh) 一种基于本体法制备聚乙烯的强化系统及工艺
CN112500506A (zh) 基于溶液法制备聚乙烯的智能强化系统及工艺
CN208776630U (zh) 一种丙烯连续变温预聚合装置
WO2021047035A1 (zh) 基于溶液法制备聚乙烯的强化系统及工艺
US2596975A (en) Slurry polymerization process
CN219942844U (zh) 一种液面下进料的丙烯酸树脂合成系统
CN219615514U (zh) 一种聚烯烃弹性体的聚合反应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944667

Country of ref document: EP

Kind code of ref document: A1