WO2024026921A1 - 一种tpu/pla熔喷复合无纺布的制备方法 - Google Patents

一种tpu/pla熔喷复合无纺布的制备方法 Download PDF

Info

Publication number
WO2024026921A1
WO2024026921A1 PCT/CN2022/112266 CN2022112266W WO2024026921A1 WO 2024026921 A1 WO2024026921 A1 WO 2024026921A1 CN 2022112266 W CN2022112266 W CN 2022112266W WO 2024026921 A1 WO2024026921 A1 WO 2024026921A1
Authority
WO
WIPO (PCT)
Prior art keywords
tpu
woven fabric
pla
melt
weight
Prior art date
Application number
PCT/CN2022/112266
Other languages
English (en)
French (fr)
Inventor
宾家荃
宾家齐
Original Assignee
广东汇齐新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东汇齐新材料有限公司 filed Critical 广东汇齐新材料有限公司
Publication of WO2024026921A1 publication Critical patent/WO2024026921A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/551Resins thereof not provided for in groups D04H1/544 - D04H1/55

Definitions

  • the invention relates to the field of non-woven fabrics, and in particular, to a method for preparing TPU/PLA melt-blown composite non-woven fabrics.
  • Non-woven fabric also known as non-woven fabric, non-woven fabric, non-woven fabric, is a fiber product.
  • the forming principle of non-woven fabrics is completely different from that of ordinary textiles. It mainly uses oriented or randomly arranged fibers to form sheets, webs or mats that are combined with each other through friction, cohesion or adhesion, or a combination of the above methods.
  • Polylactic acid is a polymer with excellent biocompatibility and biodegradability. It is derived from renewable resource crops (such as corn). The most outstanding advantage is biodegradability. It can It is completely degraded by microorganisms in nature, eventually producing carbon dioxide and water, which does not pollute the environment and is very beneficial to protecting the environment. Compared with PET, PA and PAN, the three major synthetic fiber wastes are not biodegradable, and PLA fiber has good biodegradability. The decomposition rate of polylactic acid fiber is low and stable, and it will gradually disappear after being buried in the soil for 2 to 3 years. But mixed with microorganisms and composite organic waste, it can complete degradation in a short time. Therefore, polylactic acid fiber is an ideal biodegradable fiber.
  • Polylactic acid can be used to produce melt-blown non-woven fabrics in a wide temperature range and has high tensile strength and compression modulus.
  • the resulting polylactic acid melt-blown non-woven fabric has a smaller surface than ordinary melt-blown fabrics. Rough, brittle and poor in impact resistance.
  • PLA material has poor thermal stability. The terminal ester molecular chain is easily hydrolyzed in a humid environment and is not resistant to acid or alkali. Processing below the melting temperature and thermal decomposition temperature will also significantly reduce its molecular weight. Therefore, PLA materials need to be compounded with other fibers to improve the performance of polylactic acid composite materials and expand the scope of use.
  • the purpose of the present invention is to provide a method for preparing a TPU/PLA melt-blown composite non-woven fabric, so that the TPU/PLA melt-blown composite non-woven fabric has excellent hydrolysis resistance and stability. Good, high mechanical properties and strength.
  • a method for preparing TPU/PLA melt-blown composite non-woven fabric including the following steps:
  • step (2) Mix the raw materials described in step (1) evenly by weight, transfer them to a twin-screw extruder, melt, draw and solidify, cut into pellets, and dry to obtain TPU/PLA plastic pellets;
  • step (3) Slice the TPU/PLA plastic pellets obtained in step (2) and transfer them to a twin-screw extruder for heating, melting, and homogenization.
  • the TPU/PLA melt is drawn by the high-speed hot air flow to form extremely fine fibers that are condensed onto the roller.
  • a non-woven fabric is formed by self-adhesion, and a TPU/PLA melt-blown composite non-woven fabric is obtained.
  • step (3) involves slicing the TPU/PLA plastic pellets obtained in step (2) and transferring them to a twin-screw extruder. After passing through three heating zones on the extruder, the temperature is gradually raised to a molten state. After homogenization, Extruded from the die, the TPU/PLA melt passes through the spinneret holes of the die to form a thin stream of melt. The thin stream of melt is stretched by the high-speed hot air flow and cooled by the cold air on both sides of the die, forming ultra-fine fibers. , the ultrafine fibers are condensed on the roller under the action of air flow, and form a non-woven fabric through self-bonding.
  • the die temperature is 250°C.
  • the pressure of the high-speed hot air flow is 0.15-0.2MPa.
  • the TPU/PLA melt flow rate is 5-10g/min.
  • the extruder frequency is 1.5Hz
  • the receiving distance is 25cm
  • the high-speed hot air flow temperature is 230°C.
  • twin-screw extruder is divided into a first temperature zone, a second temperature zone and a third temperature zone, and the temperatures are maintained at: 190°C, 210°C, and 220°C respectively, and the materials are sequentially moved along the first temperature zone , second temperature zone, and third temperature zone for transportation.
  • the melting point of the polyurethane elastomer is 210-220°C.
  • the compatibilizer is polypropylene.
  • the plasticizer is one or more of acetyl tributyl citrate, acetyl triethyl citrate, tributyl citrate, and triethyl citrate.
  • the present invention provides a method for preparing TPU/PLA melt-blown composite non-woven fabric.
  • polylactic acid as an aggregate has good mechanical properties, that is, it has good tensile strength and ductility. degree, other components can also be embedded into the aggregate formed by polylactic acid, so that the integrity of the entire material can be better. It can not only improve the impact strength of the material, but also improve the tensile strength and bending strength of the material. .
  • Thermoplastic polyurethane has very good elasticity. When the material is subjected to external force, it can well improve the material's ability to withstand bending force or tensile force, and it can also well absorb impact force. Thermoplastic polyurethane can prevent the material from breaking or cracking, and improves the material's bending strength and tensile strength.
  • Citrate plasticizers can weaken the secondary valence bonds between components, increase the mobility of each component, reduce the crystallinity and plasticity of each component, make the material more flexible, and make it easier to process.
  • Antioxidants prevent high-temperature oxidation during plastic processing, allowing the plastic to retain its proper properties to the maximum extent after being sheared by the screw at high temperature.
  • the compatibilizer polypropylene has high strength mechanical properties and good wear-resistant processing properties. It also has good grafting and compounding functions. It can have a grafting effect on each component in the material, and it can Within each tiny range, polypropylene can form tiny vertical structures distributed in parallel in a grid-like form; therefore, when the material is subjected to external forces, the structure of the grid-like part is affected The force can be conducted around, so that the force can be dispersed, so local damage is well prevented. Therefore, from the outside, the material has strong bending or impact strength; at the same time, because polypropylene itself is easy to It has sufficient strength, so the overall strength of the material is further improved.
  • the TPU/PLA melt-blown composite non-woven fabric in the present invention has excellent hydrolysis resistance, thermal stability and mechanical properties compared with polylactic acid as the matrix resin.
  • the first temperature zone is 190°C
  • the second temperature zone is 210°C
  • the third temperature zone is 220°C, it gradually heats up to a molten state, and is extruded from the die after homogenization.
  • the die temperature It is 250°C; the TPU/PLA melt passes through the spinneret hole of the die to form a thin melt stream.
  • the TPU/PLA melt flow rate is 10g/min.
  • the melt thin stream is stretched by the high-speed hot air flow and cooled by the cold air on both sides of the die.
  • the cooling effect of the air, the high-speed hot air flow pressure is 0.2Mpa, forms ultra-fine fibers, which condense on the roller under the action of the air flow, and form a non-woven fabric by self-bonding, and the TPU/PLA melt-blown composite non-woven fabric is produced. Spinning cloth.
  • the machine passes through three heating zones on the extruder, the first temperature zone is 190°C, the second temperature zone is 210°C, and the third temperature zone is 220°C. It gradually heats up to a molten state, and is extruded from the die after homogenization.
  • the temperature is 250°C; the TPU/PLA melt passes through the spinneret hole of the die to form a thin stream of melt.
  • the flow rate of the TPU/PLA melt is 5g/min.
  • the thin stream of melt is stretched by the high-speed hot air flow and reaches both sides of the die.
  • the cooling effect of cold air, the high-speed hot air flow pressure is 0.15Mpa, forms ultra-fine fibers, which condense on the roller under the action of the air flow, and form a non-woven fabric by self-adhesion, producing TPU/PLA melt-blown composite Non-woven fabric.
  • the first temperature zone is 190°C
  • the second temperature zone is 210°C
  • the third temperature zone is 220°C, it gradually heats up to a molten state, and is extruded from the die after homogenization.
  • the die temperature It is 250°C; the TPU/PLA melt passes through the spinneret hole of the die to form a thin stream of melt.
  • the flow rate of the TPU/PLA melt is 8g/min.
  • the thin stream of melt is stretched by the high-speed hot air flow and cooled by the cold air on both sides of the die.
  • the cooling effect of the air is 0.18Mpa, forms ultra-fine fibers, which condense on the roller under the action of the air flow, and form non-woven fabrics by self-bonding, producing TPU/PLA melt-blown composite non-woven fabrics. Spinning cloth.
  • the machine passes through three heating zones on the extruder, the first temperature zone is 190°C, the second temperature zone is 210°C, and the third temperature zone is 220°C. It gradually heats up to a molten state, and is extruded from the die after homogenization.
  • the temperature is 250°C; the TPU/PLA melt passes through the spinneret hole of the die to form a thin stream of melt.
  • the flow rate of the TPU/PLA melt is 5g/min.
  • the thin stream of melt is stretched by the high-speed hot air flow and reaches both sides of the die.
  • the cooling effect of cold air, the high-speed hot air flow pressure is 0.2Mpa, forms ultra-fine fibers, which condense on the roller under the action of the air flow, and form non-woven fabrics by self-bonding to produce TPU/PLA melt-blown composite Non-woven fabric.
  • the tensile strength (MPa) and breaking strength of the material are tested through GB1040-79,
  • TPU/PLA melt-blown composite non-woven fabric produced in this embodiment has higher strength and better stretchability, and can meet the needs of practical applications.
  • the TPU/PLA melt-blown composite non-woven fabric in the present invention has excellent hydrolysis resistance, thermal stability and mechanical properties compared with polylactic acid as the matrix resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

一种TPU/PLA熔喷复合无纺布的制备方法,包括如下步骤:将聚乳酸80-90重量份、聚氨酯弹性体10-20重量份、相容剂5-10重量份、抗氧化剂0.1-0.5重量份、稳定剂0.5-1重量份、增塑剂1-3重量份混合均匀,转入双螺杆挤出机,熔融,牵伸凝固成型,切粒,干燥,得到TPU/PLA塑料粒;将所得TPU/PLA塑料粒切片,转入双螺杆挤出机加热、熔融、均化,TPU/PLA熔体被高速热空气流牵伸形成极细的纤维凝聚到辊筒上,通过自身粘合形成无纺布,制得TPU/PLA熔喷复合无纺布。制得的TPU/PLA熔喷复合无纺布具有良好耐水解性、且稳定性好、力学性能强度高。

Description

一种TPU/PLA熔喷复合无纺布的制备方法
相关申请的交叉引用。
本申请要求于2022年08月02日提交中国专利局,申请号为CN202210921641.5,发明名称为“一种TPU/PLA熔喷复合无纺布的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无纺布领域,尤其是涉及一种TPU/PLA熔喷复合无纺布的制备方法。
背景技术
无纺布又称非织布,无纺布,不织布,是一种纤维制品。无纺布的成型原理与普通纺织原理截然不同,其主要通过定向或随即排列的纤维,通过摩擦,抱合或黏合,或者上述方法的组合,互相结合制成的薄片,纤网或絮垫,但不包括纸,以及机织物,针织物或带有缝编纱线的缝编织物等。
聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的聚合物,其来源于可再生资源农作物(如玉米),最突出的优点是生物可降解性,其使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,对保护环境非常有利。相比PET,PA和PAN三大合成纤维的废弃物不能生物降解,PLA纤维具有良好的可生物降解性。聚乳酸纤维的分解速度低且稳定,埋入土壤中2~3年后逐渐才消失。但与微生物和复合有机废料混合,它可以在短时间内完成降解,因此,聚乳酸纤维是一种理想的可生物降解纤维。
技术问题
聚乳酸可以在较宽的温度范围内进行熔喷成型无纺布生产,具有较高的拉伸强度,压缩模量,但得到的聚乳酸熔喷无纺布较普通熔喷布,其表面较粗糙,脆性强,抗冲击性差。PLA材料热稳定性差,潮湿环境下的末端酯基分子链易水解,不耐酸不耐碱,在低于熔融温度和热分解温度下加工也会使其分子量大幅下降。因此,PLA材料需与其他纤维进行复合,提高聚乳酸复合材料的性能,扩 宽使用范围。
技术解决方案
根据本申请的各种实施例,本发明的目的是提供一种TPU/PLA熔喷复合无纺布的制备方法,制得TPU/PLA熔喷复合无纺布具有优异的耐水解性、稳定性好、力学性能强度高。
一种TPU/PLA熔喷复合无纺布的制备方法,包括如下步骤:
(1)准备原料:聚乳酸80-90重量份、聚氨酯弹性体10-20重量份、相容剂5-10重量份、抗氧化剂0.1-0.5重量份、缩水甘油醚0.5-1重量份、增塑剂1-3重量份;
(2)将步骤(1)中所述原料按照重量份混合均匀,转入双螺杆挤出机,熔融,牵伸凝固成型,切粒,干燥,得到TPU/PLA塑料粒;
(3)将步骤(2)所得TPU/PLA塑料粒切片,转入双螺杆挤出机加热、熔融、均化,TPU/PLA溶体被高速热空气流牵伸形成极细的纤维凝聚到辊筒上,通过自身粘合形成无纺布,制得TPU/PLA熔喷复合无纺布。
进一步地,所述步骤(3)为将步骤(2)所得TPU/PLA塑料粒切片,转入双螺杆挤出机,经过挤出机上的三个加热区域,逐渐升温达到熔融状态,均化后从模头挤出,TPU/PLA熔体经过模头的喷丝孔形成熔体细流,熔体细流受到高速热空气流的牵伸和模头两侧冷空气的冷却作用,形成超细纤维,超细纤维在气流作用下凝聚到辊筒上,通过自身粘合形成无纺布。
进一步地,所述模头温度是250℃。
进一步地,所述高速热空气流压力是0.15-0.2MPa。
进一步地,所述TPU/PLA熔体流量是5-10g/min。
进一步地,所述挤出机频率为1.5Hz、接收距离为25cm、高速热空气流温度为230℃。
进一步地,所述双螺杆挤出机被划分为第一温区、第二温区以及第三温区且温度分别保持为:190℃、210℃、220℃,物料依次沿着第一温区、第二温区、第三温区进行输送。
进一步地,所述聚氨酯弹性体的熔点是210-220℃。
进一步地,所述相容剂为聚丙烯。
进一步地,所述塑化剂为乙酰柠檬酸三丁酯、乙酰柠檬酸三乙酯、柠檬酸三丁酯、柠檬酸三乙酯中一种或几种。
有益效果
与现有技术相比,本发明提供了一种TPU/PLA熔喷复合无纺布的制备方法,首先作为骨料的聚乳酸具有很好的机械性能,即具有很好的抗拉强度以及延展度,其他的组分还能够嵌入到聚乳酸形成的骨料中,从而使得整个材料的整体性能够更佳,其不仅能够提高材料的冲击强度,同时还能够提高材料的拉伸强度和弯曲强度。
热塑性聚氨酯具有很好的弹性,当材料受到外部作用力的时候,能够很好的提升材料承受弯折力或拉力的作用,同时也可以很好的吸收冲击作用力。热塑性聚氨酯可以很好的防止材料发生断裂或破裂,提高了材料的弯曲强度以及拉伸强度。
柠檬酸酯类增塑剂可以减弱各组分间的次价键,增加各组分的移动性,降低各组分的结晶性以及可塑性,使材料柔韧性增强,同时也更容易进行加工。
抗氧化剂防止塑料加工过程中高温氧化,使得塑料在经过螺杆高温剪切后最大限度的保留其应有的性能。
相容剂聚丙烯具有高强度机械性能和良好的高耐磨加工性能,同时也具有良好的接枝和复合功能,能够对于材料内的各个组份之间均起到枝接的效果,并且在每个微小的范围内,通过聚丙烯能够形成微小的竖直状结构分布,并行呈类似于网格状的形态;因此当材料受到外部作用力的时候,该网格状部分的结构受到的作用力均可朝向四周进行传导,从而使得作用力能够分散开来,所以很好的防止了局部发生损坏,所以从外部看来,材料具备很强的弯折或冲击强度;同时由于聚丙烯本身便具备充足的强度,所以整体使得材料的强度得到了进一步的提高。
本发明中的TPU/PLA熔喷复合无纺布,与作为基体树脂的聚乳酸相比,具有优异的耐水解性、热稳定性和力学性能。
本发明的实施方式
下面将结合本发明的具体实施方式,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将聚乳酸80重量份、熔点是210-220℃的聚氨酯弹性体20重量份、聚丙烯5重量份、抗氧化剂0.3重量份、缩水甘油醚0.5重量份、柠檬酸三乙酯1重量份在混合机中混合均匀,转入双螺杆挤出机,熔融,牵伸凝固成型,切粒,60℃干燥12h,得到TPU/PLA塑料粒;将TPU/PLA塑料粒切片,转入双螺杆挤出机,经过挤出机上的三个加热区域,第一温区190℃、第二温区210℃以及第三温区220℃,逐渐升温达到熔融状态,均化后从模头挤出,模头温度是250℃;TPU/PLA熔体经过模头的喷丝孔形成熔体细流,TPU/PLA熔体流量是10g/min,熔体细流受到高速热空气流的牵伸和模头两侧冷空气的冷却作用,高速热空气流压力是0.2Mpa,形成超细纤维,超细纤维在气流作用下凝聚到辊筒上,通过自身粘合形成无纺布,制得TPU/PLA熔喷复合无纺布。
实施例2
将聚乳酸90重量份、熔点是210-220℃的聚氨酯弹性体10重量份、聚丙烯10重量份、抗氧化剂0.1重量份、缩水甘油醚1重量份、乙酰柠檬酸三乙酯3重量份在混合机中混合均匀,转入双螺杆挤出机,熔融,牵伸凝固成型,切粒,60℃干燥12h,得到TPU/PLA塑料粒;将TPU/PLA塑料粒切片,转入双螺杆挤出机,经过挤出机上的三个加热区域,第一温区190℃、第二温区210℃以及第三温区220℃,逐渐升温达到熔融状态,均化后从模头挤出,模头温度是250℃;TPU/PLA熔体经过模头的喷丝孔形成熔体细流,TPU/PLA熔体流量是5g/min,熔体细流受到高速热空气流的牵伸和模头两侧冷空气的冷却作用,高速热空气流压力是0.15Mpa,形成超细纤维,超细纤维在气流作用下凝聚到辊筒上,通过自身粘合形成无纺布,制得TPU/PLA熔喷复合无纺布。
实施例3
将聚乳酸80重量份、熔点是210-220℃的聚氨酯弹性体20重量份、聚丙烯5重量份、抗氧化剂0.5重量份、缩水甘油醚0.8重量份、柠檬酸三丁酯1重量份在混合机中混合均匀,转入双螺杆挤出机,熔融,牵伸凝固成型,切粒,60℃ 干燥12h,得到TPU/PLA塑料粒;将TPU/PLA塑料粒切片,转入双螺杆挤出机,经过挤出机上的三个加热区域,第一温区190℃、第二温区210℃以及第三温区220℃,逐渐升温达到熔融状态,均化后从模头挤出,模头温度是250℃;TPU/PLA熔体经过模头的喷丝孔形成熔体细流,TPU/PLA熔体流量是8g/min,熔体细流受到高速热空气流的牵伸和模头两侧冷空气的冷却作用,高速热空气流压力是0.18Mpa,形成超细纤维,超细纤维在气流作用下凝聚到辊筒上,通过自身粘合形成无纺布,制得TPU/PLA熔喷复合无纺布。
实施例4
将聚乳酸90重量份、熔点是210-220℃的聚氨酯弹性体10重量份、聚丙烯8重量份、抗氧化剂0.2重量份、缩水甘油醚0.6重量份、乙酰柠檬酸三丁酯2重量份在混合机中混合均匀,转入双螺杆挤出机,熔融,牵伸凝固成型,切粒,60℃干燥12h,得到TPU/PLA塑料粒;将TPU/PLA塑料粒切片,转入双螺杆挤出机,经过挤出机上的三个加热区域,第一温区190℃、第二温区210℃以及第三温区220℃,逐渐升温达到熔融状态,均化后从模头挤出,模头温度是250℃;TPU/PLA熔体经过模头的喷丝孔形成熔体细流,TPU/PLA熔体流量是5g/min,熔体细流受到高速热空气流的牵伸和模头两侧冷空气的冷却作用,高速热空气流压力是0.2Mpa,形成超细纤维,超细纤维在气流作用下凝聚到辊筒上,通过自身粘合形成无纺布,制得TPU/PLA熔喷复合无纺布。
对实施例1-4制得TPU/PLA熔喷复合无纺布及对比例1(市场上购买的改性聚乳酸无纺布)进行力学性能测试:
通过GB1040-79测试材料的拉伸强度(MPa)和断裂强度,
通过GB/T 1843-2008/ISO180:2000测试材料的冲击强度(KJ/m 2),
每组的测试10个数据分别求平均值,记录测试结果如表1所示。
表1
Figure PCTCN2022112266-appb-000001
Figure PCTCN2022112266-appb-000002
由表1可以看出,本实施例制得的TPU/PLA熔喷复合无纺布具有较高的强度、较好的伸缩性,能够满足实际应用的需求。
本发明中的TPU/PLA熔喷复合无纺布,与作为基体树脂的聚乳酸相比,具有优异的耐水解性、热稳定性和力学性能。
根据上述说明书的揭示,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种TPU/PLA熔喷复合无纺布的制备方法,其特征在于:包括如下步骤:
    (1)准备原料:聚乳酸80-90重量份、聚氨酯弹性体10-20重量份、相容剂5-10重量份、抗氧化剂0.1-0.5重量份、缩水甘油醚0.5-1重量份、增塑剂1-3重量份;
    (2)将步骤(1)中所述原料按照重量份混合均匀,转入双螺杆挤出机,熔融,牵伸凝固成型,切粒,干燥,得到TPU/PLA塑料粒;
    (3)将步骤(2)所得TPU/PLA塑料粒切片,转入双螺杆挤出机加热、熔融、均化,TPU/PLA溶体被高速热空气流牵伸形成极细的纤维凝聚到辊筒上,通过自身粘合形成无纺布,制得TPU/PLA熔喷复合无纺布。
  2. 根据权利要求1所述的TPU/PLA熔喷复合无纺布的制备方法,其特征在于:所述步骤(3)为将步骤(2)所得TPU/PLA塑料粒切片,转入双螺杆挤出机,经过挤出机上的三个加热区域,逐渐升温达到熔融状态,均化后从模头挤出,TPU/PLA熔体经过模头的喷丝孔形成熔体细流,熔体细流受到高速热空气流的牵伸和模头两侧冷空气的冷却作用,形成超细纤维,超细纤维在气流作用下凝聚到辊筒上,通过自身粘合形成无纺布。
  3. 根据权利要求2所述的TPU/PLA熔喷复合无纺布的制备方法,其特征在于:所述模头温度是250℃。
  4. 据权利要求2所述的TPU/PLA熔喷复合无纺布的制备方法,其特征在于:所述高速热空气流压力是0.15-0.2MPa。
  5. 根据权利要求2所述的TPU/PLA熔喷复合无纺布的制备方法,其特征在于:所述TPU/PLA熔体流量是5-10g/min。
  6. 根据权利要求2所述的TPU/PLA熔喷复合无纺布的制备方法,其特征在于:所述挤出机频率为1.5Hz、接收距离为25cm、高速热空气流温度为230℃。
  7. 根据权利要求2所述的TPU/PLA熔喷复合无纺布的制备方法,其特征在于:所述双螺杆挤出机被划分为第一温区、第二温区以及第三温区且温度分别保持为:190℃、210℃、220℃,物料依次沿着第一温区、第二温区、第三温区进行输送。
  8. 根据权利要求1所述的TPU/PLA熔喷复合无纺布的制备方法,其特征在于: 所述聚氨酯弹性体的熔点是210-220℃。
  9. 根据权利要求1所述的TPU/PLA熔喷复合无纺布的制备方法,其特征在于:所述相容剂为聚丙烯。
  10. 根据权利要求1所述的TPU/PLA熔喷复合无纺布的制备方法,其特征在于:所述塑化剂为乙酰柠檬酸三丁酯、乙酰柠檬酸三乙酯、柠檬酸三丁酯、柠檬酸三乙酯中一种或几种。
PCT/CN2022/112266 2022-08-02 2022-08-12 一种tpu/pla熔喷复合无纺布的制备方法 WO2024026921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210921641.5A CN115387023A (zh) 2022-08-02 2022-08-02 一种tpu/pla熔喷复合无纺布的制备方法
CN202210921641.5 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024026921A1 true WO2024026921A1 (zh) 2024-02-08

Family

ID=84119508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112266 WO2024026921A1 (zh) 2022-08-02 2022-08-12 一种tpu/pla熔喷复合无纺布的制备方法

Country Status (2)

Country Link
CN (1) CN115387023A (zh)
WO (1) WO2024026921A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117552183B (zh) * 2023-10-31 2024-10-22 黄河三角洲京博化工研究院有限公司 一种弹性非织造布及其制作工艺和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110171868A1 (en) * 2008-05-29 2011-07-14 Akira Okamura Multilayer composite fiber
CN103255503A (zh) * 2013-06-05 2013-08-21 东华大学 一种弹性聚乳酸纤维的制备方法
US20130316608A1 (en) * 2012-05-25 2013-11-28 Taiwan Textile Research Institute Nonwoven Fabric and Method and Apparatus for Manufacturing the Same
CN105584171A (zh) * 2014-10-24 2016-05-18 张家港骏马无纺布有限公司 一种高强力聚乳酸sms复合非织造材料及其制备方法
CN112375357A (zh) * 2020-12-04 2021-02-19 温州市隆昌塑料有限公司 一种可降解的改性聚乳酸组合物及其应用
CN112647191A (zh) * 2020-12-22 2021-04-13 临泉县圣茂纺织品有限公司 一种口罩用聚乳酸熔喷无纺布
CN114539750A (zh) * 2022-03-11 2022-05-27 深圳光华伟业股份有限公司 一种用于3d打印pla的共聚增韧改性材料及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332626B2 (ja) * 2003-01-24 2009-09-16 三井化学株式会社 伸縮性不織布及びその製造方法
CN102268178A (zh) * 2011-05-27 2011-12-07 东华大学 一种透明低迁移率增塑聚乳酸纳米树脂切片及其制备方法
CN104160077B (zh) * 2012-02-10 2016-09-28 金伯利-克拉克环球有限公司 改性的聚乳酸纤维
CN103232689B (zh) * 2013-04-03 2015-06-03 西安理工大学 一种韧性聚乳酸薄膜的制备方法
CN105239359A (zh) * 2015-09-24 2016-01-13 安庆市花蕾纺织材料有限公司 一种阻燃抗菌弹性复合吸音棉及其制备方法
CN110552083A (zh) * 2018-05-31 2019-12-10 句容市华冠服帽厂 一种具有抗菌性能的长丝的制备方法
CN111944307A (zh) * 2019-05-17 2020-11-17 朴哲范 一种纳米弹性体纤维增韧的聚合物材料
CN110144638A (zh) * 2019-06-06 2019-08-20 东华大学 一种填充用抗水解聚乳酸纤维及其制备方法
CN110468468A (zh) * 2019-08-28 2019-11-19 江苏金聚合金材料有限公司 聚乙醇酸全生物降解复合纤维及其制备方法
CN111560140B (zh) * 2020-06-19 2020-10-20 金发科技股份有限公司 口罩用熔喷无纺布专用有机驻极母粒及其制备方法、制成的熔喷无纺布
CN111875886B (zh) * 2020-08-06 2023-09-12 广州鹿山新材料股份有限公司 聚丙烯驻极母粒及其制备方法、聚丙烯熔喷无纺布
CN112176427A (zh) * 2020-10-14 2021-01-05 安徽伯辉智能装备有限公司 一种熔喷布的生产工艺
CN113293517B (zh) * 2021-05-27 2022-05-13 河南驼人医疗器械研究院有限公司 一种聚乳酸弹性超细纤维非织造材料及其制备方法和应用
CN113417029B (zh) * 2021-06-24 2022-09-16 杭州惠丰化纤有限公司 一种加弹海岛丝及其生产工艺
CN113845761A (zh) * 2021-08-18 2021-12-28 浙江中科应化生态新材料科技有限公司 一种高透明完全可降解薄膜及其制备方法
CN114351286B (zh) * 2021-12-07 2023-12-22 广东金发科技有限公司 一种高强聚乳酸熔喷纤维及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110171868A1 (en) * 2008-05-29 2011-07-14 Akira Okamura Multilayer composite fiber
US20130316608A1 (en) * 2012-05-25 2013-11-28 Taiwan Textile Research Institute Nonwoven Fabric and Method and Apparatus for Manufacturing the Same
CN103255503A (zh) * 2013-06-05 2013-08-21 东华大学 一种弹性聚乳酸纤维的制备方法
CN105584171A (zh) * 2014-10-24 2016-05-18 张家港骏马无纺布有限公司 一种高强力聚乳酸sms复合非织造材料及其制备方法
CN112375357A (zh) * 2020-12-04 2021-02-19 温州市隆昌塑料有限公司 一种可降解的改性聚乳酸组合物及其应用
CN112647191A (zh) * 2020-12-22 2021-04-13 临泉县圣茂纺织品有限公司 一种口罩用聚乳酸熔喷无纺布
CN114539750A (zh) * 2022-03-11 2022-05-27 深圳光华伟业股份有限公司 一种用于3d打印pla的共聚增韧改性材料及其制备方法

Also Published As

Publication number Publication date
CN115387023A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN108929527B (zh) 一种兼具高延展性和高阻隔性能的pbat/改性淀粉全生物降解薄膜及其制备方法和应用
CN113278268B (zh) 一种强韧性聚酯复合材料及其制备方法
CN109183281B (zh) 一种pe纺粘无纺布及其制造方法
CN108589028B (zh) 一种海岛纤维合成革基布及其生产工艺
CN108659491B (zh) 一种增强增韧的聚乳酸复合材料及其制备方法
CN111454545A (zh) 一种可降解高流动性改性聚酯合金材料及其制备方法和应用
CN108660524B (zh) 以水可溶的改性pva为海的海岛纤维复合熔融纺丝方法
US20220281150A1 (en) Filament composition
CN108505190B (zh) 利用水溶性聚乙烯醇海岛纤维制备桃皮绒面料基布的方法
WO2024026921A1 (zh) 一种tpu/pla熔喷复合无纺布的制备方法
CN111593484A (zh) 一种易降解的sms纺粘无纺布的制备方法
CN104530673A (zh) 一种可生物降解的纺粘无纺布切片及其制备方法
CN109333897B (zh) 一种致密串晶化超强超耐磨聚乙烯复合材料及其制备方法
WO2015046637A1 (ko) 유연성이 향상된 폴리락트산 블렌드 부직포 및 그 제조방법
CN114410091A (zh) 一种耐高温抗冲击高强度的改性聚乳酸材料及其制备方法
CN114351286A (zh) 一种高强聚乳酸熔喷纤维及其制备方法和应用
CN113442401A (zh) 一种高强高阻隔pga/pbat食品包装膜及其制备方法
CN112778603A (zh) 一种抗蠕变性透气膜组合物及其制备方法
CN103881351A (zh) 可生物降解的纺粘无纺布切片及其制备方法
CN111411417A (zh) 一种石墨烯增强聚酮纤维及其制备方法
CN115304853B (zh) 一种原位异型结构微纤增强聚合物复合材料及其制备方法
CN113956488B (zh) 基于pbat的自增强弹性体及其制备方法和应用
KR101013446B1 (ko) 셀룰로오스 유도체 및 화학섬유를 포함하는 생분해성 수지 조성물
KR102418918B1 (ko) 가요성 및 연성이 개선된 생분해성 부직포, 이의 제조 방법 및 이를 사용한 생분해성 마스크
KR20190126890A (ko) 기계적으로 필름을 멀칭할 수 있는 완전생물분해멀칭필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953718

Country of ref document: EP

Kind code of ref document: A1