WO2024026908A1 - 一种高匀度双层梯度孔碳纸原纸的制备方法 - Google Patents

一种高匀度双层梯度孔碳纸原纸的制备方法 Download PDF

Info

Publication number
WO2024026908A1
WO2024026908A1 PCT/CN2022/111212 CN2022111212W WO2024026908A1 WO 2024026908 A1 WO2024026908 A1 WO 2024026908A1 CN 2022111212 W CN2022111212 W CN 2022111212W WO 2024026908 A1 WO2024026908 A1 WO 2024026908A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
paper
carbon fiber
mixed slurry
minutes
Prior art date
Application number
PCT/CN2022/111212
Other languages
English (en)
French (fr)
Inventor
郭大亮
沙力争
赵会芳
李静
许银超
张欣
刘蓓
苑田忠
常紫阳
孙倩玉
孟亚会
Original Assignee
浙江科技学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江科技学院 filed Critical 浙江科技学院
Publication of WO2024026908A1 publication Critical patent/WO2024026908A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/08Dispersing agents for fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating
    • D21H25/06Physical treatment, e.g. heating, irradiating of impregnated or coated paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of carbon fiber modification, and specifically relates to a method for preparing a high-formation double-layer gradient hole carbon paper base paper.
  • Uniform dispersion of carbon fibers in water and wet forming process to achieve good interweaving between fibers is a prerequisite for uniform thickness of carbon paper base paper, and is also an important factor in determining the pore structure and basic strength properties of carbon paper base paper.
  • carbon fiber fibers are slender and have a large aspect ratio. The fibers are easily entangled with each other and difficult to separate. As a result, the fibers are difficult to disperse evenly in water and are easy to re-flocculate in the flow system, thus causing carbon Problems with uneven thickness and hole structure of the paper base.
  • the team's research shows that fiber length and suspension mass fraction are important factors affecting the dispersion of carbon fibers.
  • carbon fibers with a length of 3-6mm reach the maximum in water.
  • the optimal dispersion state significantly improves the uniformity of carbon paper base paper. It can be seen that in order to prepare carbon paper base paper with uniform thickness, the carbon fibers must be uniformly dispersed in water and have good dispersion stability.
  • carbon fiber is an inert fiber material with a carbon content of more than 95%. It is mainly composed of c-c bonds. It has low surface energy and lacks active groups. It is difficult to soak with water, and it cannot be made into fibers by beating on the surface like plant fibers. Broomification. And during the dispersion process, carbon fibers tend to flocculate in water to form flocculation. These reasons will lead to uneven dispersion of carbon fibers, thereby affecting the performance of carbon paper.
  • the object of the present invention is to provide a method for preparing a high-formation double-layer gradient hole carbon paper base paper.
  • the carbon paper base paper prepared by the invention has the advantages of uniform thickness and pore structure, improves the tensile strength of the base paper and reduces the resistivity.
  • a preparation method of high-formation double-layer gradient hole carbon paper base paper including the following steps:
  • the preparation method of the above-mentioned high-formation double-layer gradient hole carbon paper base paper is to configure alkali lignin into an aqueous solution of 0.25-1mol/L, add carbon fiber to the alkali lignin aqueous solution, and control the alkali lignin aqueous solution to reach 150-200°C. Subcritical water conditions, treatment 20min-70min.
  • the concentration of the alkali lignin aqueous solution is 0.25mol/L, 0.5mol/L, 0.75mol/L or 1mol/L; the subcritical water condition The temperature is 160°C, 170°C, 180°C or 190°C; the treatment time is 30min or 60min.
  • the aforementioned preparation method of double-layer gradient hole carbon paper base paper with high uniformity is to dip-coat the surface of the carbon fiber with nickel chloride hexahydrate, then put it into a high-purity N2 tubular atmosphere furnace and evacuate it for 10 minutes, and then heat it up to 400°C. Then feed 0.35L/min hydrogen for catalyst reduction, and then feed a mixed gas of ethylene and hydrogen at 700°C to carry out a reaction to generate a carbon nanotube cluster structure on the surface of the carbon fiber.
  • the reaction time is 10 minutes.
  • the preparation method of the aforementioned high-formity double-layer gradient hole carbon paper base paper is to add 1-2 parts of surface thermally modified carbon fiber with a length of 1-3mm into a mass concentration of 1-2L in parts by mass Add 0.5-1.5 parts/L APAM solution and stir for 20-40 minutes using a high-speed dispersion device; then add 0.1-0.2 parts of polyvinyl alcohol and continue stirring for 3-8 minutes to obtain the mixed slurry required for making base paper.
  • the preparation method of the aforementioned high-level double-layer gradient hole carbon paper base paper is to mix 0.5-1.5 parts of surface thermally modified carbon fiber with a length of 7-9mm and 0.01-0.1 parts of microfibers in parts by mass. Add 1-2L of APAM solution with a mass concentration of 0.5-1.5 parts/L, use a high-speed disperser to stir for 20-40 minutes, then add 0.2-1 parts of microfibrillated polyvinyl alcohol fiber, and continue stirring for 3- In 8 minutes, the mixed slurry required for making base paper is obtained.
  • the mixed slurry includes mixed slurry A and mixed slurry B;
  • the mixed slurry A is to add 1-2 parts by mass of surface thermally modified carbon fiber with a length of 1-3 mm into 1-2L of APAM solution with a mass concentration of 0.5-1.5 parts/L, and stir using a high-speed disperser 20-40 minutes; then add 0.1-0.2 parts of polyvinyl alcohol and continue stirring for 3-8 minutes to obtain;
  • the mixed slurry B is made by adding 0.5-1.5 parts of surface thermally modified carbon fiber with a length of 7-9mm and 0.01-0.1 parts of microfibrillated cellulose to 1-2L by mass, with a mass concentration of 0.5-1.5 parts/L.
  • APAM solution use a high-speed disperser to stir for 20-40 minutes, then add 0.2-1 part of microfibrillated polyvinyl alcohol fiber, and continue stirring for 3-8 minutes to obtain;
  • the wet paper web is sandwiched between two pieces of silicone paper, and then dried to remove most of the moisture in the wet paper web to prevent the wet paper web from cracking during subsequent pressure drying;
  • the wet paper web is then dried in a flat vulcanizer to obtain a double-layer carbon paper base paper with gradient pore sizes.
  • the present invention uses sodium phenolate active groups under alkali lignin subcritical water conditions to modify carbon fibers, thereby improving the hydrophilic groups and surface roughness on the surface of the carbon fibers.
  • the mechanism is that alkali metal ions are not
  • the key to oxygen migration is that the complex formed by alkali metal ions on the carbon surface plays an important role as a mediator.
  • These two surface complex groups are in the form of phenolate (-COM) and carboxylate (-CO 2 M), which will react with C to form hydrophilic groups and increase surface roughness, thereby modifying the carbon fiber.
  • the present invention further generates a carbon nanotube cluster structure on the surface of the carbon fiber, thereby obtaining a surface thermally modified carbon fiber.
  • the thickness and pore structure of the carbon paper base paper can be further made uniform, thereby increasing the tensile strength of the base paper and reducing the resistivity.
  • Figure 1 is a schematic diagram of the preparation process of carbon paper base paper from shorter carbon fibers
  • Figure 2 is a schematic diagram of the preparation process of carbon paper base paper made from longer carbon fibers
  • Figure 3 is a schematic diagram of the preparation process of double-layer carbon paper base paper
  • Figure 4 is a diagram of the steps for evaluating the carbon fiber dispersion effect
  • Figure 5 is a schematic diagram of the suspension obtained by dispersing carbon fibers with and without pretreatment
  • Figure 6 shows the effect of different alkali lignin concentrations on carbon fiber dispersion
  • Figure 7 shows the effect of different processing times on the dispersion effect of carbon fibers
  • Figure 8 is a microscopic view of the carbon paper base paper prepared from 2mm surface thermally modified carbon fiber (mixed slurry A);
  • Figure 9 is a microscopic view of the carbon paper base paper prepared from 8mm surface thermally modified carbon fiber (mixed slurry B).
  • Example A method for preparing high-formation double-layer gradient hole carbon paper base paper, including the following steps:
  • alkali lignin is configured into aqueous solutions of 0.25mol/L, 0.5mol/L, 0.75mol/L and 1mol/L
  • carbon fiber is added to the alkali lignin aqueous solution
  • the alkali lignin aqueous solution is controlled to reach 160°C, 170°C
  • Subcritical water conditions of 180°C or 190°C, treatment for 30min or 60minmin.
  • mixed slurry A Add the surface thermally modified carbon fiber to the dispersant to disperse, then add auxiliary materials and stir to prepare a mixed slurry; specifically, the mixed slurry is prepared by adding 1-2 parts by mass of 1-3 mm in length. Add 1-2L of APAM solution with a mass concentration of 0.5-1.5 parts/L and stir for 20-40 minutes using a high-speed dispersion device; then add 0.1-0.2 parts of polyvinyl alcohol and continue stirring for 3-8 minutes , to obtain the mixed slurry required for making base paper (hereinafter referred to as mixed slurry A).
  • the mixed slurry is prepared by adding 0.5-1.5 parts of surface thermally modified carbon fiber with a length of 7-9mm and 0.01-0.1 parts of microfibrillated cellulose into 1-2L of mass. In an APAM solution with a concentration of 0.5-1.5 parts/L, stir for 20-40 minutes using a high-speed dispersion device, then add 0.2-1 parts of microfibrillated polyvinyl alcohol fiber, and continue stirring for 3-8 minutes to obtain the base paper required for papermaking.
  • the mixed slurry (hereinafter referred to as mixed slurry B).
  • wet paper web is placed in a flat vulcanizer, a pressure of 0.5MPa is applied, and it is dried in an environment of 130°C for 20 minutes to obtain the carbon paper base paper.
  • mixed slurry A and mixed slurry B are prepared into wet paper web A and wet paper web B respectively, and then wet paper web A and wet paper web B are superimposed. Obtain a wet paper web of double-layer carbon paper base paper with gradient pore size,
  • the wet paper web is sandwiched between two pieces of silicone paper, and then dried to remove most of the moisture in the wet paper web to prevent the wet paper web from cracking during subsequent pressure drying;
  • the wet paper web is then dried in a flat vulcanizer to obtain a double-layer carbon paper base paper with gradient pore sizes.
  • the applicant used photos and software to process photos of carbon fiber mixed slurry to evaluate the carbon fiber dispersion effect (the steps are shown in Figure 4); used a multiple light scattering instrument to detect the stability index of the mixed slurry to evaluate the mixing Stability of the slurry; prepare the mixed slurry into carbon paper base paper through a wet molding process, and use a formation meter, air permeability detector, four-probe detector, and horizontal paper tensile strength tester to test the carbon paper performance.
  • the performance of carbon paper is evaluated through data, and the dispersion effect of carbon fiber is indirectly evaluated through the dispersion coefficient of data measured at different positions on the same base paper.
  • Figure 5 shows the suspension obtained by dispersing carbon fibers after pretreatment (the pretreatment described below is carbon fiber treated with alkali lignin subcritical water conditions in step S1) and without pretreatment (where a is the untreated 4mm carbon fiber, b is treated 4mm carbon fiber, c is untreated 6mm carbon fiber, d is treated 6mm carbon fiber, e is untreated 8mm carbon fiber, f is treated 4mm carbon fiber,), it can be seen that carbon fibers of different lengths are processed through this After the invention treatment, the dispersion effect is improved.
  • Figure 6 shows the effect of different alkali lignin concentrations on carbon fiber dispersion (a is untreated carbon fiber, b is carbon fiber treated with alkali lignin at a concentration of 0.25 mol/L, c is carbon fiber treated with alkali lignin at a concentration of 0.50 mol/L , d is the carbon fiber treated with alkali lignin at a concentration of 0.75 mol/L, e is the carbon fiber treated with alkali lignin at a concentration of 1 mol/L,). It can be seen that as the alkali lignin concentration increases, the dispersion effect is further improved.
  • Figure 7 shows the effect of different treatment times on the dispersion effect of carbon fibers (a is untreated carbon fiber, b is carbon fiber treated with alkali lignin at a concentration of 0.50mol/L for 30 minutes, c is treated with alkali lignin at a concentration of 0.75mol/L for 30min)
  • Carbon fiber d is the carbon fiber treated with alkali lignin at a concentration of 1 mol/L for 30 minutes
  • e is the carbon fiber treated with alkali lignin at a concentration of 0.50 mol/L for 60 minutes
  • f is the carbon fiber treated with alkali lignin at a concentration of 0.75 mol/L for 60 minutes
  • g (For carbon fibers treated with alkali lignin at a concentration of 1 mol/L for 30 minutes), it can be seen that the longer the alkali lignin concentration below 1 mol/L is treated, the better the dispersion effect will be.
  • Figure 8 is a microscopic picture of the carbon paper base paper prepared from 2mm surface thermally modified carbon fiber (mixed slurry A).
  • Figure 9 is a microscopic picture of the carbon paper base paper prepared from 8mm surface thermally modified carbon fiber (mixed slurry B). It can be seen from Figure 8 and Figure 9 that the carbon paper base paper prepared by 2mm surface thermally modified carbon fiber (mixed slurry A) has more small pore sizes, and the carbon paper prepared by 8mm surface thermally modified carbon fiber (mixed slurry B) The carbon paper base paper has more large pores, and the uniformity of the pores of the two carbon paper base papers is also very uniform.
  • the applicant also conducted experiments on two types of carbon paper base papers (abbreviated as A and B) prepared in the examples, as well as a double-layer carbon paper base paper with gradient pores (abbreviated as C) and a carbon paper base paper prepared by a commercial enterprise (abbreviated as D). Comparison of porosity, air permeability, tensile index, thickness and conductivity, the results are described in Table 1 below:
  • the carbon paper base paper prepared by the present invention has better performance in porosity, air permeability, tensile index, thickness and electrical conductivity. Compared with the carbon paper base paper prepared by commercial enterprises, it has better performance.
  • a large improvement which shows that the present invention uses sodium phenolate active groups under alkali lignin subcritical water conditions to modify carbon fibers, which improves the hydrophilic groups and surface rough structure of the carbon fiber surface, making it have good dispersion in water.
  • a carbon nanotube cluster structure is generated on the surface of the carbon fiber to obtain surface thermally modified carbon fiber.
  • the thickness and pore structure of the carbon paper base paper can be further made uniform. , and increase the porosity, thereby increasing the tensile strength of the base paper and reducing the resistivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)

Abstract

一种高匀度双层梯度孔碳纸原纸的制备方法,将碳纤维加入碱木质素水溶液中处理,控制碱木质素水溶液达到亚临界水条件,利用碱木质素亚临界水条件下的酚钠活性基团改性碳纤维,提高碳纤维表面亲水基团及表面粗糙结构,进一步改性碳纤维使得碳纤维表面碳纳米管丛结构生成,得到表面热改性碳纤维,将表面热改性碳纤维加入到分散剂中分散,然后加入辅料搅拌后制备混合浆料,将混合浆料通过湿法成型的工艺制备成碳纸原纸。制备得到的碳纸原纸具有厚度和孔结构均匀优点,提高了原纸的抗张强度和降低了电阻率。

Description

一种高匀度双层梯度孔碳纸原纸的制备方法 技术领域
本发明涉及碳纤维改性技术领域,具体涉及一种高匀度双层梯度孔碳纸原纸的制备方法。
背景技术
碳纤维在水中及湿法成形过程均匀分散实现纤维之间的良好交织,是碳纸原纸厚度均匀的先决条件,也是决定碳纸原纸孔隙结构和基础强度特性的重要因素。但是由于碳纤维与天然植物纤维相比,纤维细长,长径比大,纤维之间容易互相缠绕,不易分开,导致纤维在水中难以均匀分散,在流送系统中易再絮聚,进而造成碳纸原纸厚度和孔结构不均匀问题。团队研究显示,纤维长度和悬浮液质量分数是影响碳纤维分散的重要因素,在质量分数0.1%、分散剂用量60ppm、表面活性剂用量0.2‰的分散体系中,长度3-6mm碳纤维在水中达到最佳分散状态,抄造碳纸原纸均匀性明显提高。可见,要制备厚度均一的碳纸原纸首先需要使碳纤维在水中均匀分散,且具有好的分散稳定性。但是碳纤维是一种含碳量高于95%的惰性纤维材料,主要由c-c键组成,表面能低,缺乏活性基团,难以用水浸润,也无法像植物纤维那样可以通过打浆使其表面分丝帚化。且在分散过程中,碳纤维容易会在水中发生絮聚产生絮团,这些原因都会导致碳纤维的分散不均匀,进而影响碳纸的性能表现。
发明内容
本发明的目的在于,提供一种高匀度双层梯度孔碳纸原纸的制备方法。本发明制备得到的碳纸原纸具有厚度和孔结构均匀优点,提高了原纸的抗张强度和降低了电阻率。
为解决上述技术问题,本发明提供的技术方案如下:一种高匀度双层梯度孔碳纸原纸的制备方法,包括如下步骤:
S1、将碳纤维加入碱木质素水溶液中处理,控制碱木质素水溶液达到亚临界水条件,利用碱木质素亚临界水条件下的酚钠活性基团改性碳纤维,提高碳纤维表面亲水基团及表面粗糙结构;
S2、再将碳纤维表面浸渍涂覆六水合氯化镍,然后放入高纯N 2管式气氛炉中排空5-15min,然后升温至350-450℃,再通入0.3-0.8L/min氢气进行催化剂还原,之后在650-750℃下,通入乙烯和氢气的混合气体,进行碳纤维表面碳纳米管丛结构生成反应,反应时间5-15min,获得表面热改性碳纤维;
S3、将表面热改性碳纤维加入到分散剂中分散,然后加入辅料搅拌后制备混合浆料;
S4、将混合浆料通过湿法成型的工艺制备成碳纸原纸。
上述的高匀度双层梯度孔碳纸原纸的制备方法,将碱木质素配置成0.25-1mol/L的水溶液,将碳纤维加入碱木质素水溶液中,控制碱木质素水溶液达到150-200℃的亚临界水条件,处理20min-70min。
前述的高匀度双层梯度孔碳纸原纸的制备方法,所述碱木质素水溶液的浓度为0.25mol/L、0.5mol/L、0.75mol/L或1mol/L;所 述亚临界水条件的温度为160℃、170℃、180℃或190℃;所述处理时间为30min或60min。
前述的高匀度双层梯度孔碳纸原纸的制备方法,将碳纤维表面浸渍涂覆六水合氯化镍,然后放入高纯N 2管式气氛炉中排空10min,然后升温至400℃,再通入0.35L/min氢气进行催化剂还原,之后在700℃下,通入乙烯和氢气的混合气体,进行碳纤维表面碳纳米管丛结构生成反应,反应时间10min。
前述的高匀度双层梯度孔碳纸原纸的制备方法,所述混合浆料的制备是按质量份将1-2份长度为1-3mm的表面热改性碳纤维加入1-2L的质量浓度为0.5-1.5份/L的APAM溶液中,使用高速分散仪搅拌20-40分钟;再加入0.1-0.2份聚乙烯醇,继续搅拌3-8分钟,得到抄造原纸所需要使用的混合浆料。
前述的高匀度双层梯度孔碳纸原纸的制备方法,所述混合浆料的制备是按质量份将0.5-1.5份长度为7-9mm的表面热改性碳纤维和0.01-0.1份微纤化纤维素加入1-2L的质量浓度为0.5-1.5份/L的APAM溶液中,使用高速分散仪搅拌20-40分钟,再加入0.2-1份微纤化聚乙烯醇纤维,继续搅拌3-8分钟,得到抄造原纸所需要使用的混合浆料。
前述的高匀度双层梯度孔碳纸原纸的制备方法,所述混合浆料包括混合浆料A和混合浆料B;
所述混合浆料A是按质量份将1-2份长度为1-3mm的表面热改性碳纤维加入1-2L的质量浓度为0.5-1.5份/L的APAM溶液中,使用 高速分散仪搅拌20-40分钟;再加入0.1-0.2份聚乙烯醇,继续搅拌3-8分钟得到;
所述混合浆料B是按质量份将0.5-1.5份长度为7-9mm的表面热改性碳纤维和0.01-0.1份微纤化纤维素加入1-2L的质量浓度为0.5-1.5份/L的APAM溶液中,使用高速分散仪搅拌20-40分钟,再加入0.2-1份微纤化聚乙烯醇纤维,继续搅拌3-8分钟得到;
将混合浆料A和混合浆料B分别制备成湿纸幅A和湿纸幅B,再将湿纸幅A和湿纸幅B进行叠加得到具备梯度孔径的双层碳纸原纸的湿纸幅,
将湿纸幅夹在两张硅油纸的中间,然后干燥去除湿纸幅中的大多数水分,防止湿纸幅在后续的加压干燥中裂开;
再将湿纸幅置于平板硫化机中干燥得到具备梯度孔径的双层碳纸原纸。
与现有技术相比,本发明利用碱木质素亚临界水条件下的酚钠活性基团改性碳纤维,提高了碳纤维表面亲水基团及表面粗糙结构,该机理是认为碱金属离子并不是发生氧迁移的关键,碱金属离子在碳表面形成的复合体才是起到了重要的作用媒介。这两种表面复合体基团为酚盐(-COM)和羧酸盐(-CO 2M)的形式,会与C反应形成亲水基团并提高表面粗糙度,以此使得碳纤维改性,使其在水中具有良好的分散性,同时本发明进一步的对碳纤维表面进行碳纳米管丛结构生成,从而获得表面热改性的碳纤维,利用该表面热改性的碳纤维来制 备碳纸原纸后,可以进一步地使得碳纸原纸厚度和孔结构均匀,从而提高了原纸的抗张强度和降低了电阻率。
附图说明
图1为较短的碳纤维制备碳纸原纸制备工艺示意图;
图2为较长的碳纤维制备碳纸原纸制备工艺示意图;
图3为双层碳纸原纸制备工艺示意图;
图4是碳纤维分散效果评价步骤图;
图5为经过预处理和无预处理的碳纤维分散得到的悬浮液示意图;
图6为不同碱木质素浓度对碳纤维分散的影响;
图7为不同处理时间对碳纤维分散效果的影响;
图8为2mm表面热改性碳纤维(混合浆料A)制备得到的碳纸原纸的微观图;
图9为8mm表面热改性碳纤维(混合浆料B)制备得到的碳纸原纸的微观图。
具体实施方式
下面结合实施例和附图对本发明作进一步的说明,但并不作为对本发明限制的依据。
实施例:一种高匀度双层梯度孔碳纸原纸的制备方法,包括如下步骤:
S1、将碳纤维加入碱木质素水溶液中处理,控制碱木质素水溶液达到亚临界水条件,利用碱木质素亚临界水条件下的酚钠活性基团改 性碳纤维,提高碳纤维表面亲水基团及表面粗糙结构。
其中,将碱木质素配置成0.25mol/L、0.5mol/L、0.75mol/L和1mol/L的水溶液,将碳纤维加入碱木质素水溶液中,控制碱木质素水溶液达到160℃、170℃、180℃或190℃的亚临界水条件,处理30min或60minmin。
S2、将碳纤维表面浸渍涂覆六水合氯化镍,然后放入高纯N2管式气氛炉中排空10min,然后升温至400℃,再通入0.35L/min氢气进行催化剂还原,之后在700℃下,通入乙烯和氢气的混合气体,进行碳纤维表面碳纳米管丛结构生成反应,反应时间10min。
S3、将表面热改性碳纤维加入到分散剂中分散,然后加入辅料搅拌后制备混合浆料;具体的,所述混合浆料的制备是按质量份将1-2份长度为1-3mm的表面热改性碳纤维加入1-2L的质量浓度为0.5-1.5份/L的APAM溶液中,使用高速分散仪搅拌20-40分钟;再加入0.1-0.2份聚乙烯醇,继续搅拌3-8分钟,得到抄造原纸所需要使用的混合浆料(以下称为混合浆料A)。
在一种实施例中,所述混合浆料的制备是按质量份将0.5-1.5份长度为7-9mm的表面热改性碳纤维和0.01-0.1份微纤化纤维素加入1-2L的质量浓度为0.5-1.5份/L的APAM溶液中,使用高速分散仪搅拌20-40分钟,再加入0.2-1份微纤化聚乙烯醇纤维,继续搅拌3-8分钟,得到抄造原纸所需要使用的混合浆料(以下称为混合浆料B)。
S4、将混合浆料通过湿法成型的工艺制备成碳纸原纸。具体地, 如图1和图2所示,将混合浆料A或混合浆料B导入纸页成型器中,并倒入等量的水。将高压水枪浸入液面下,通过高压水柱充分搅拌混合浆料,使碳纤维充分分散在混合浆料中。除去混合浆料上部存在的浮沫,以同时去除会影响纸页成型的泡沫和附在浮沫上会影响碳纸性能的纤维束。打开纸页成型器的滤水阀门,使混合浆料中的碳纤维自由沉降在金属网上形成碳纸原纸的湿纸幅;
将湿纸幅倒扣于硅油纸上,使用滤纸从金属网吸去湿纸幅中过多的水分。揭下湿纸幅,夹在两张硅油纸的中间。
再置于平板干燥器中在105℃的环境下干燥3分钟,以去除碳纸原纸的湿纸幅中的大多数水分,防止湿纸幅在后续的加压干燥中裂开。
最后将湿纸幅置于平板硫化机中,施加0.5MPa的压力,在130℃的环境中干燥20分钟,便可以得到碳纸原纸。
在另外一种实施例中,如图3所示,将混合浆料A和混合浆料B分别制备成湿纸幅A和湿纸幅B,再将湿纸幅A和湿纸幅B进行叠加得到具备梯度孔径的双层碳纸原纸的湿纸幅,
将湿纸幅夹在两张硅油纸的中间,然后干燥去除湿纸幅中的大多数水分,防止湿纸幅在后续的加压干燥中裂开;
再将湿纸幅置于平板硫化机中干燥得到具备梯度孔径的双层碳纸原纸。
为了验证本发明的有益效果,申请人使用拍照和软件处理碳纤维混合浆料的照片来评价碳纤维分散效果(步骤如图4所示);使用多 重光散射仪检测混合浆料稳定性指数来评价混合浆料的稳定性;将混合浆料通过湿法成型的工艺制备成碳纸原纸,使用匀度仪、透气性检测仪、四探针检测仪、卧式纸张抗张强度测定仪来测试碳纸的性能。通过数据来评价碳纸的性能,通过同一张原纸的不同位置测得的数据的离散系数来间接评价碳纤维的分散效果。
图5为经过预处理(以下所述的预处理为步骤S1中的碱木质素亚临界水条件处理炭纤维)和无预处理的碳纤维分散得到的悬浮液(其中a为没有处理的4mm碳纤维,b为经过处理的4mm碳纤维,c为没有处理的6mm碳纤维,d为经过处理的6mm碳纤维,e为没有处理的8mm碳纤维,f为经过处理的4mm碳纤维,),可见不同长度的碳纤维在经过本发明处理后,分散效果都得到改善。图6为不同碱木质素浓度对碳纤维分散的影响(a为无处理的碳纤维,b为浓度为0.25mol/L碱木质素处理的碳纤维,c为浓度为0.50mol/L碱木质素处理的碳纤维,d为浓度为0.75mol/L碱木质素处理的碳纤维,e为浓度为1mol/L碱木质素处理的碳纤维,),可见随着碱木质素浓度的提升,分散效果进一步提升。图7为不同处理时间对碳纤维分散效果的影响(a为无处理的碳纤维,b为浓度为0.50mol/L碱木质素处理30min的碳纤维,c为浓度为0.75mol/L碱木质素处理30min的碳纤维,d为浓度为1mol/L碱木质素处理30min的碳纤维,e为浓度为0.50mol/L碱木质素处理60min的碳纤维,f为浓度为0.75mol/L碱木质素处理60min的碳纤维,g为浓度为1mol/L碱木质素处理30min的碳纤维),可见浓度低于1mol/L的碱木质素处理时间越长,分散 效果越好。1mol/L的碱木质素在处理30分钟时分散效果达到最好。
图8为2mm表面热改性碳纤维(混合浆料A)制备得到的碳纸原纸的微观图,图9为8mm表面热改性碳纤维(混合浆料B)制备得到的碳纸原纸的微观图,从图8和图9中可以看出,2mm表面热改性碳纤维(混合浆料A)制备得到的碳纸原纸具有更多的小孔径,8mm表面热改性碳纤维(混合浆料B)制备得到的碳纸原纸具有更多的大孔径,而且这两种碳纸原纸在孔的均匀度也看出是非常的均匀。
申请人还将实施例中制得的两种碳纸原纸(简称A、B)以及具备梯度孔径的双层碳纸原纸(简称C)和市售企业制备的制碳纸原纸(简称D)进行孔隙率、透气性、抗张指数、厚度和导电率的对比,结果如下表1所述:
Figure PCTCN2022111212-appb-000001
表1
从表1可以看出,本发明制备的碳纸原纸在孔隙率、透气性、抗张指数、厚度和导电率均有较好的表现,相对市售企业制备的制碳纸原纸来说具有较大的提升,这说明本发明利用碱木质素亚临界水条件 下的酚钠活性基团改性碳纤维,提高了碳纤维表面亲水基团及表面粗糙结构,使其在水中具有良好的分散性,再进一步的对碳纤维表面进行碳纳米管丛结构生成,从而获得表面热改性的碳纤维,利用该表面热改性的碳纤维来制备碳纸原纸后,可以进一步地使得碳纸原纸厚度和孔结构均匀,并且提高了孔隙率,从而提高了原纸的抗张强度和降低了电阻率。

Claims (7)

  1. 一种高匀度双层梯度孔碳纸原纸的制备方法,其特征在于:包括如下步骤:
    S1、将碳纤维加入碱木质素水溶液中处理,控制碱木质素水溶液达到亚临界水条件,利用碱木质素亚临界水条件下的酚钠活性基团改性碳纤维,提高碳纤维表面亲水基团及表面粗糙结构;
    S2、再将碳纤维表面浸渍涂覆六水合氯化镍,然后放入高纯N 2管式气氛炉中排空5-15min,然后升温至350-450℃,再通入0.3-0.8L/min氢气进行催化剂还原,之后在650-750℃下,通入乙烯和氢气的混合气体,进行碳纤维表面碳纳米管丛结构生成反应,反应时间5-15min,获得表面热改性碳纤维;
    S3、将表面热改性碳纤维加入到分散剂中分散,然后加入辅料搅拌后制备混合浆料;
    S4、将混合浆料通过湿法成型的工艺制备成碳纸原纸。
  2. 根据权利要求1所述的高匀度碳纸原纸的制备方法,其特征在于:将碱木质素配置成0.25-1mol/L的水溶液,将碳纤维加入碱木质素水溶液中,控制碱木质素水溶液达到150-200℃的亚临界水条件,处理20min-70min。
  3. 根据权利要求1所述的高匀度碳纸原纸的制备方法,其特征在于:所述碱木质素水溶液的浓度为0.25mol/L、0.5mol/L、0.75mol/L或1mol/L;所述亚临界水条件的温度为160℃、170℃、180℃ 或190℃;所述处理时间为30min或60min。
  4. 根据权利要求1所述的高匀度碳纸原纸的制备方法,其特征在于:将碳纤维表面浸渍涂覆六水合氯化镍,然后放入高纯N 2管式气氛炉中排空10min,然后升温至400℃,再通入0.35L/min氢气进行催化剂还原,之后在700℃下,通入乙烯和氢气的混合气体,进行碳纤维表面碳纳米管丛结构生成反应,反应时间10min。
  5. 根据权利要求1所述的高匀度碳纸原纸的制备方法,其特征在于:所述混合浆料的制备是按质量份将1-2份长度为1-3mm的表面热改性碳纤维加入1-2L的质量浓度为0.5-1.5份/L的APAM溶液中,使用高速分散仪搅拌20-40分钟;再加入0.1-0.2份聚乙烯醇,继续搅拌3-8分钟,得到抄造原纸所需要使用的混合浆料。
  6. 根据权利要求1所述的高匀度碳纸原纸的制备方法,其特征在于:所述混合浆料的制备是按质量份将0.5-1.5份长度为7-9mm的表面热改性碳纤维和0.01-0.1份微纤化纤维素加入1-2L的质量浓度为0.5-1.5份/L的APAM溶液中,使用高速分散仪搅拌20-40分钟,再加入0.2-1份微纤化聚乙烯醇纤维,继续搅拌3-8分钟,得到抄造原纸所需要使用的混合浆料。
  7. 根据权利要求1所述的高匀度碳纸原纸的制备方法,其特征在于:所述混合浆料包括混合浆料A和混合浆料B;
    所述混合浆料A是按质量份将1-2份长度为1-3mm的表面热改性碳纤维加入1-2L的质量浓度为0.5-1.5份/L的APAM溶液中,使用高速分散仪搅拌20-40分钟;再加入0.1-0.2份聚乙烯醇,继续搅拌 3-8分钟得到;
    所述混合浆料B是按质量份将0.5-1.5份长度为7-9mm的表面热改性碳纤维和0.01-0.1份微纤化纤维素加入1-2L的质量浓度为0.5-1.5份/L的APAM溶液中,使用高速分散仪搅拌20-40分钟,再加入0.2-1份微纤化聚乙烯醇纤维,继续搅拌3-8分钟得到;
    将混合浆料A和混合浆料B分别制备成湿纸幅A和湿纸幅B,再将湿纸幅A和湿纸幅B进行叠加得到具备梯度孔径的双层碳纸原纸的湿纸幅,
    将湿纸幅夹在两张硅油纸的中间,然后干燥去除湿纸幅中的大多数水分,防止湿纸幅在后续的加压干燥中裂开;
    再将湿纸幅置于平板硫化机中干燥得到具备梯度孔径的双层碳纸原纸。
PCT/CN2022/111212 2022-08-01 2022-08-09 一种高匀度双层梯度孔碳纸原纸的制备方法 WO2024026908A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210915000.9 2022-08-01
CN202210915000.9A CN115262278B (zh) 2022-08-01 2022-08-01 一种高匀度双层梯度孔碳纸原纸的制备方法

Publications (1)

Publication Number Publication Date
WO2024026908A1 true WO2024026908A1 (zh) 2024-02-08

Family

ID=83746417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111212 WO2024026908A1 (zh) 2022-08-01 2022-08-09 一种高匀度双层梯度孔碳纸原纸的制备方法

Country Status (3)

Country Link
US (1) US20240044081A1 (zh)
CN (1) CN115262278B (zh)
WO (1) WO2024026908A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116657439A (zh) * 2023-06-29 2023-08-29 浙江科技学院 一种pH响应型分散体系的高匀度碳纸原纸的制备方法
CN116732814A (zh) * 2023-06-30 2023-09-12 浙江科技学院 一种多层梯度孔碳纸的制备方法
CN116716755A (zh) * 2023-06-30 2023-09-08 浙江科技学院 一种碳纸原纸的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556543A (zh) * 2013-10-24 2014-02-05 浙江科技学院 一种燃料电池气体扩散层专用高性能碳纸及其制备方法
CN103709772A (zh) * 2013-12-16 2014-04-09 华南理工大学 无机/木质素系聚合物复合纳米颗粒及其制备方法与应用
CN106082159A (zh) * 2016-06-06 2016-11-09 太原理工大学 松针状碳纳米管/碳纤维导电网络复合碳材料的制备方法
CN106971859A (zh) * 2017-04-14 2017-07-21 同济大学 一种碳纤维/碳纳米管柔性超级电容器电极材料及其制备
CN108914681A (zh) * 2018-07-06 2018-11-30 天津工业大学 一种碳纤维纸的制备方法
JP2019011523A (ja) * 2017-06-29 2019-01-24 独立行政法人国立高等専門学校機構 複合化繊維および複合化繊維の製造方法
US20200164542A1 (en) * 2017-06-07 2020-05-28 Timothée BOITOUZET Process for supercritical or subcritical partial delignification and filling of a lignocellulosic material
CN113322713A (zh) * 2021-04-28 2021-08-31 中南大学 一种梯度孔隙结构碳纸的制备方法
CN114181494A (zh) * 2020-09-14 2022-03-15 中国科学院福建物质结构研究所 一种碳纳米管巴基纸原位沉积碳纤维制备抗分层高导电聚合物基复合材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100745736B1 (ko) * 2006-02-23 2007-08-02 삼성에스디아이 주식회사 카본나노튜브, 이를 포함한 담지 촉매 및 상기 담지 촉매를이용한 연료전지
JP2010037669A (ja) * 2008-07-31 2010-02-18 Toray Ind Inc 炭素繊維基材の製造方法
EP3561177A1 (en) * 2018-04-26 2019-10-30 Sca Forest Products AB Method of producing hydrophobic paper
CN108642882B (zh) * 2018-05-09 2020-02-11 东华大学 一种碳纤维表面改性的方法
CN110512459B (zh) * 2019-08-16 2020-10-27 华南理工大学 一种用于燃料电池的高性能碳纸及其制备方法与应用
CN112726028B (zh) * 2020-12-28 2022-01-07 中南大学 具有粗糙结构的超亲水复合纳米纤维膜及其制备和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556543A (zh) * 2013-10-24 2014-02-05 浙江科技学院 一种燃料电池气体扩散层专用高性能碳纸及其制备方法
CN103709772A (zh) * 2013-12-16 2014-04-09 华南理工大学 无机/木质素系聚合物复合纳米颗粒及其制备方法与应用
CN106082159A (zh) * 2016-06-06 2016-11-09 太原理工大学 松针状碳纳米管/碳纤维导电网络复合碳材料的制备方法
CN106971859A (zh) * 2017-04-14 2017-07-21 同济大学 一种碳纤维/碳纳米管柔性超级电容器电极材料及其制备
US20200164542A1 (en) * 2017-06-07 2020-05-28 Timothée BOITOUZET Process for supercritical or subcritical partial delignification and filling of a lignocellulosic material
JP2019011523A (ja) * 2017-06-29 2019-01-24 独立行政法人国立高等専門学校機構 複合化繊維および複合化繊維の製造方法
CN108914681A (zh) * 2018-07-06 2018-11-30 天津工业大学 一种碳纤维纸的制备方法
CN114181494A (zh) * 2020-09-14 2022-03-15 中国科学院福建物质结构研究所 一种碳纳米管巴基纸原位沉积碳纤维制备抗分层高导电聚合物基复合材料的制备方法
CN113322713A (zh) * 2021-04-28 2021-08-31 中南大学 一种梯度孔隙结构碳纸的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANG, JIANJIE: "Study on The Continuous Growth of Carbon Nanotubes on Carbon Fiber Surfaces And Their Reinforced Composites", ENGINEERING SCIENCE AND TECHNOLOGY I, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, vol. 11, 15 November 2021 (2021-11-15), ISSN: 1674-022X *

Also Published As

Publication number Publication date
CN115262278A (zh) 2022-11-01
US20240044081A1 (en) 2024-02-08
CN115262278B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
WO2024026908A1 (zh) 一种高匀度双层梯度孔碳纸原纸的制备方法
CN110528314A (zh) 一种含熔喷聚苯硫醚超细纤维的复合片材及其制备方法和应用
EP2506352B1 (en) Porous electrode base material and process for production thereof
CN111900418B (zh) 一种燃料电池气体扩散层用碳纸前驱体的制备方法
US20020058179A1 (en) Electrical conducting, non-woven textile fabric
CN111576079B (zh) 一种导电性炭纸及其制备方法
WO2022126935A1 (zh) 一种气体扩散层及制备方法
CN105541147B (zh) 氧化石墨烯提高碳纤维在水泥砂浆中的分散均匀性的应用
CN106854833A (zh) 一种轻质抗静电超高分子量聚乙烯纤维及其制备方法
CN112941965B (zh) 碳纤维滤纸及其制备方法
KR20170107480A (ko) 다공질 탄소 시트 및 그의 전구체 섬유 시트
CN112356200A (zh) 一种提高木制工艺品表面碳化层防腐保护效果的加工工艺
CN112250450A (zh) 一种可耐2000℃高温的隔热瓦坯体的制备方法
US10923732B2 (en) Method for producing roll-type gas diffusion layer having excellent spreading property
US20220109161A1 (en) Gas diffusion layer and method for preparing same
KR20200040423A (ko) 탄소섬유의 디사이징 방법 및 이를 이용한 연료전지용 가스확산층의 제조방법
CN111908847B (zh) 一种抗冻抗开裂混凝土及其制备方法
CN108517714A (zh) 一种高韧性无机耐火纸材料的制备方法
CN115262277B (zh) 一种碱木质素亚临界水处理改性碳纤维及其方法和应用
JP6265028B2 (ja) 多孔質炭素電極
CN113846512B (zh) 一种自支撑活性炭纤维纸及其制备方法与应用
KR102259398B1 (ko) 연료전지용 가스확산층용 탄소 종이의 제조방법
CN116516719A (zh) 一种燃料电池碳纸及其制备方法
CN115368110A (zh) 一种对气凝胶纸进行粉体掺杂的方法
CN112295316B (zh) 高孔隙率泡沫镍过滤材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953707

Country of ref document: EP

Kind code of ref document: A1