WO2024023899A1 - 境界層制御装置、境界層制御方法及び風洞試験装置、並びに車両の走行模擬方法 - Google Patents

境界層制御装置、境界層制御方法及び風洞試験装置、並びに車両の走行模擬方法 Download PDF

Info

Publication number
WO2024023899A1
WO2024023899A1 PCT/JP2022/028665 JP2022028665W WO2024023899A1 WO 2024023899 A1 WO2024023899 A1 WO 2024023899A1 JP 2022028665 W JP2022028665 W JP 2022028665W WO 2024023899 A1 WO2024023899 A1 WO 2024023899A1
Authority
WO
WIPO (PCT)
Prior art keywords
boundary layer
vehicle
suction
control device
static pressure
Prior art date
Application number
PCT/JP2022/028665
Other languages
English (en)
French (fr)
Inventor
遠藤浩司
由尚 小松
Original Assignee
三菱重工冷熱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工冷熱株式会社 filed Critical 三菱重工冷熱株式会社
Priority to JP2023513765A priority Critical patent/JP7286223B1/ja
Priority to PCT/JP2022/028665 priority patent/WO2024023899A1/ja
Priority to JP2023082453A priority patent/JP7407362B1/ja
Priority to JP2023082452A priority patent/JP7407361B1/ja
Publication of WO2024023899A1 publication Critical patent/WO2024023899A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details

Definitions

  • the present invention provides a boundary layer control device and a wind tunnel test device that can accurately simulate the wind speed distribution and/or flow direction on the lower surface and floor surface of a running vehicle, and on the rear rear surface of a vehicle by using a stationary vehicle in a wind tunnel facility.
  • the present invention also relates to a method for simulating driving of a vehicle.
  • circulation type wind tunnel equipment or streamer type wind tunnel equipment used for aerodynamic experiments that simulate natural wind have been used for testing the wind speed distribution of vehicles such as automobiles. More specifically, by generating a jet stream in the wind tunnel and ejecting it from the wind tunnel's air outlet toward the stationary vehicle in the measurement room outside the wind tunnel, the mainstream air (steady flow rate) generates a jet stream while the vehicle is running. The wind speed distribution around the vehicle is simulated. In this case, the jet stream generated in the wind tunnel in the longitudinal direction of the vehicle simulates the wind speed experienced by the moving vehicle, and is a parallel flow. Flows in the front and back direction.
  • the boundary layer refers to a layer in the flow of mainstream air near the floor surface where the velocity changes rapidly from above the floor surface to the flow velocity of the mainstream air, for example, when the flow velocity of the mainstream air is 100%.
  • a layer in which the flow velocity is reduced to 99% or less when in order to reduce the influence of such a boundary layer for example, as shown in Patent Document 1, a boundary layer suction device is provided in the measurement section of a wind tunnel test device.
  • This boundary layer suction device was designed to reduce the influence of the boundary layer by sucking the jet stream from the floor surface on the upstream side of the actual vehicle installed in the measuring section and releasing it into the atmosphere. More specifically, the boundary layer suction device has a suction port that sucks the jet air stream into the floor surface of the measurement unit on the upstream side of the actual vehicle that is the test object, and a suction duct that feeds the sucked jet air stream. , and a suction pump that sucks in the jet stream.
  • the boundary layer generated by the jet stream ejected from the outlet is sucked in in a direction perpendicular to the flow direction of the jet stream ejected from the outlet, sucked in by the suction pump via the suction duct, and discharged as exhaust air.
  • Patent Document 2 it is difficult to uniformly eliminate the boundary layer on the ground plate with a device that blows out and sucks air with a nozzle, whereas with a device that uses a moving belt, it is difficult to uniformly eliminate the boundary layer on the ground plate, while a device that uses a moving belt Since testing is not possible, as a ground simulator for wind tunnels, the upper surface of the ground plate that simulates the ground, which is installed in the wind tunnel and is placed almost parallel to the wind tunnel airflow, is equipped with a large number of fine holes to suck in the boundary layer.
  • a chamber divided in the flow direction of the wind tunnel airflow the chamber is connected to the suction pump via the suction duct, and the chamber is connected to the suction pump via the suction duct, It is disclosed that a plurality of valves are provided to set the suction flow rate from each chamber, and the opening degrees of the valves are set by a valve controller based on instructions from a computer.
  • Patent Document 2 according to such a wind tunnel ground simulating device, a boundary layer that develops on the ground plate through a large number of micropores in the porous surface of the ground plate can be uniformly and It is stated that it can be effectively sucked, can eliminate the influence of the boundary layer on the ground plate in wind tunnel tests, and can accurately simulate conditions such as aircraft flight and vehicle driving. ing.
  • Patent Document 2 describes the significance of dividing the chamber in the flow direction of the wind tunnel airflow in order to uniformly and effectively suction the boundary layer that develops on the ground plate, and/or the significance of dividing the chamber in the flow direction of the wind tunnel airflow. The significance of the porous surface provided with a large number of micropores is not necessarily clarified.
  • boundary layer control reduces the obstruction of the flow in the mainstream direction of the jet stream blown out from the outlet due to the inhaled jet stream, and reduces the reduction in wind speed.
  • a device and a wind tunnel test device boundary layer are disclosed.
  • This boundary layer control device uses a blower to circulate a jet stream through a continuous annular air passage, and when the jet stream is blown out to the measuring section through an air outlet, the mainstream air of the jet stream is generated on the floor interface side.
  • a wind guiding part formed on the upstream side of the suction duct to guide a part of the jet air flow into the suction duct, or near the edge of the suction duct on the downstream side of the suction port.
  • the mainstream air of the jet stream forms a boundary layer generated on the floor interface side in the vertical axis direction with respect to the mainstream direction of the jet stream. Since it is possible to reduce the stagnation pressure of the jet stream sucked into the suction duct which is sucked into and discharged from the jet stream, it is possible to reduce the obstruction to the flow of the jet stream in the mainstream direction.
  • such a boundary layer control device only reduces the obstruction of the flow in the mainstream direction of the jet stream regarding the suction of the boundary layer that occurs on the floor interface side immediately after the wind tunnel outlet, and as shown below. , is insufficient to accurately simulate the wind speed distribution and/or flow direction between the underside of the vehicle and the floor, or at the rear of the vehicle.
  • the boundary layer control device is simply installed immediately downstream of the wind tunnel outlet, that is, upstream of the vehicle body that is the subject of the wind speed distribution measurement test. Boundary layers can be avoided even when the main flow passes through the length of the car body in the longitudinal direction, which extends for several meters, from the front to the rear of the car. However, if a boundary layer control device is only installed directly downstream of the wind tunnel outlet, the airflow between the underside of the vehicle and the floor (wind speed distribution and/or or the direction of flow), the countermeasures are insufficient.
  • driving simulation is usually performed by placing a vehicle in a measurement chamber outside a wind tunnel, and rotating the wheels by the rotation of dynamo rollers installed below the floor surface, while jets are directed from the front of the vehicle toward the rear. This is done by flowing airflow to simulate the wind speed while driving.
  • the dynamo roller is usually installed in a non-contact manner so as to face upward from an opening in the floor of the wind tunnel, and a gap is unavoidably provided between the opening and the periphery of the dynamo roller.
  • an object of the present invention is to use a stationary vehicle in a wind tunnel facility to excessively change the wind speed distribution and/or flow direction on the underside and floor surface of a running vehicle and on the rear rear surface of the vehicle.
  • An object of the present invention is to provide a boundary layer control device and a wind tunnel test device that can be simulated practically and accurately without increasing costs.
  • an object of the present invention is to accurately measure the wind speed distribution and/or flow direction on the underside and floor of a running vehicle and on the rear rear surface of the vehicle by using a stationary vehicle in a wind tunnel facility.
  • the object of the present invention is to provide a method for controlling a boundary layer that can be simulated.
  • the boundary layer control device of the present invention includes: When blowing a jet stream generated in a wind tunnel onto a vehicle, A boundary layer suction surface is provided on the floor surface and is disposed above the vehicle so as to be covered by the vehicle so as to be able to suck in the boundary layer of the jet stream generated in the space between the lower surface of the vehicle and the floor surface, A suction duct facing the boundary layer suction surface is provided below the floor surface, comprising a suction means for sucking the boundary layer through the boundary layer suction surface, and a suction amount adjusting means for adjusting the amount of the boundary layer sucked by the suction means, Additionally, static pressure can be adjusted to adjust the static pressure distribution in the longitudinal direction of the vehicle in the space between the lower surface of the vehicle and the floor surface, which is generated when the jet stream flows in the longitudinal direction of the vehicle in the space between the lower surface of the vehicle and the floor surface.
  • the configuration includes a distribution adjustment means.
  • the boundary layer control device having the above configuration, when a jet stream is blown into a wind tunnel toward an outlet, for example, by a blower toward a vehicle disposed downstream of the outlet, the main flow of the jet stream is , where a boundary layer occurs between the lower surface of the vehicle and the floor surface, the boundary layer is sucked into the suction duct facing the boundary layer suction surface through the boundary layer suction surface disposed above so as to be covered by the vehicle.
  • the suction means can suck in the boundary layer, and in this case, the static pressure distribution adjustment means can absorb the boundary layer from the underside of the vehicle, which is generated when the jet stream flows in the longitudinal direction of the vehicle through the space between the underside of the vehicle and the floor.
  • the static pressure distribution adjusting means adjusts the static pressure in the space between the underside of the vehicle and the floor and the pressure below the floor when the jet stream flows through the space between the underside of the vehicle and the floor in the longitudinal direction of the vehicle. It is preferable to have a static pressure difference adjustment means that can adjust the static pressure difference between the static pressure inside the suction duct and the static pressure inside the suction duct. Further, the static pressure difference adjusting means preferably includes means for adjusting the static pressure in the suction duct below the floor surface with respect to the static pressure in the space between the lower surface of the vehicle and the floor surface.
  • the static pressure difference adjusting means preferably includes means for adjusting the static pressure in the space between the lower surface of the vehicle and the floor surface with respect to the static pressure in the suction duct below the floor surface.
  • the static pressure difference adjusting means is a partition plate that partitions the suction duct into a plurality of regions by extending across the width direction of the boundary layer suction surface, so that the suction duct is arranged between the front and rear of the vehicle. Divided into multiple areas in the direction, It is preferable that the suction amount of the boundary layer is adjusted in each region by the suction amount adjusting means according to the area of the divided boundary layer suction surface determined according to the longitudinal position of the vehicle.
  • the static pressure difference adjusting means preferably includes a resistor provided on the boundary layer suction surface and forming a resistance to the suction jet stream.
  • the resistor is a porous body, and resistors having different resistance coefficients are laminated, thereby reducing unevenness in the suction wind speed distribution and/or unevenness in the flow direction on the boundary layer suction surface.
  • the suction duct has a suction pipe that is communicatively connected to the suction means, and that a damper is attached to the suction pipe.
  • stagnation pressure reducing means for reducing stagnation pressure of the jet stream sucked into the suction duct.
  • a driving simulation device is placed on the floor below each wheel.
  • the driving simulation device has an opening provided in the floor, a cylindrical dynamo roller rotatably provided in a non-contact manner with respect to the opening; and a rotational drive means for rotationally driving the dynamo roller around the central axis of the cylinder,
  • the dynamo roller is arranged so that the central axis of the cylinder is located below the floor surface, Simulating the running of a vehicle by rotationally driving the dynamo roller with the wheels of the vehicle placed on the outer peripheral surface facing from the opening of the dynamo roller,
  • the boundary layer control device may be arranged in an area other than the opening on a floor surface facing a lower surface of the vehicle.
  • boundary layer control device is provided such that the boundary layer suction surface is located at a predetermined position behind the opening of the dynamo roller on a floor surface facing the lower surface of the vehicle, and the boundary layer control device Boundary layer suction means connects the dynamo roller and the opening from the dynamo installation chamber side using an entrained airflow generated by the rotation of the dynamo roller and/or a static pressure difference between the dynamo installation chamber and the lower surface and floor surface of the vehicle. It may also serve as an entrained airflow suppressing means for suppressing entrained airflow generated by air flowing in through the gap from reaching the space between the lower surface and the floor surface of the vehicle through the opening.
  • a second boundary layer control device is further provided immediately after the air outlet of the wind tunnel,
  • the second boundary layer control device has a stagnation pressure reducing means for reducing the stagnation pressure of the jet stream sucked into the suction duct, thereby reducing the stagnation pressure of the jet stream from the underside of the vehicle and the floor before blowing out to the vehicle. It is preferable to reduce obstruction to the flow of the jet stream flowing between the surface and the surface.
  • the boundary layer control method of the present invention includes: When the boundary layer control device according to claim 1 is used to blow a jet stream generated in a wind tunnel toward a stationary vehicle disposed in a measurement chamber outside the wind tunnel to simulate running, measuring the thickness of the boundary layer generated in the vehicle installation area at a portion of the boundary layer suction surface corresponding to each region while changing the speed of the jet stream without the vehicle being placed; adjusting the amount of boundary layer suction in each region based on the measured thickness of the boundary layer; The jet stream generated in the wind tunnel is blown out toward a stationary vehicle placed in a measurement chamber outside the wind tunnel, with the amount of boundary layer suction adjusted in each region, and various tests are performed on the vehicle.
  • the static pressure within the suction duct be lower than the static pressure between the lower surface of the vehicle and the floor surface.
  • the resistance coefficient of the boundary layer suction surface on the front side of the vehicle is set larger than that of the boundary layer suction surface on the rear side of the vehicle and/or the center of the vehicle. Further, it is preferable that the amount of suction is set smaller on the boundary layer suction surface on the rear side of the vehicle than on the boundary layer suction surface on the front side of the vehicle and/or the center of the vehicle.
  • the wind tunnel test device of the present invention has the following features: comprising the boundary layer control device according to claim 1; When the jet stream generated inside the wind tunnel is blown out through the air outlet toward the vehicle placed in the measurement chamber outside the wind tunnel, The structure is such that the boundary layer generated on the floor side of the jet stream is sucked almost vertically downward to the floor surface. Further, the wind tunnel is preferably of a circulation type or a windsock type.
  • the boundary layer control device is arranged in a region between a front wheel and a rear wheel and/or between a pair of front wheels, and/or between each front wheel and an edge of the boundary layer suction surface, and/or between a pair of rear wheels. It may be located between the wheels and/or between each rear wheel and the edge of the boundary layer suction surface. Furthermore, it is preferable that the boundary layer control device is further disposed in a region between the front end of the vehicle and the front wheels, and/or in a region between the rear end and the rear wheels of the vehicle. In addition, it is preferable that the partition plate is adjustable in position in the longitudinal direction of the vehicle. Further, it is preferable that the aperture ratio and/or the number of stacked layers of the resistor be adjusted for each region.
  • the driving simulation method of the present invention includes: By blowing a jet stream generated in a wind tunnel toward the vehicle, the boundary layer generated in the space between the underside of a specific vehicle and the floor surface during driving simulation is sucked into a predetermined amount using the floor surface as a boundary layer suction surface.
  • the stage of inhaling in quantity measuring the longitudinal static pressure distribution in the space between the bottom surface and the floor surface of the specific vehicle during driving simulation;
  • the boundary layer suction surface is divided into longitudinal directions so that the measured longitudinal static pressure distribution approximates the longitudinal actual static pressure distribution in the space between the lower surface and the running surface of a specific vehicle that is actually running.
  • a step of roughly adjusting the longitudinal static pressure distribution by adjusting a predetermined suction amount for each divided boundary layer suction surface according to the area of the divided boundary layer suction surface As a result, the configuration is such that the wind speed and/or flow direction of the jet stream in the space between the bottom surface and the floor surface of a specific vehicle during simulated driving is approximated to that during actual driving. Furthermore, for each divided boundary layer suction surface, the vertical static pressure difference between the boundary layer suction surface and the boundary layer can be adjusted by selecting the resistance coefficient for the boundary layer suction airflow when passing through the divided boundary layer suction surface. Accordingly, it is preferable to include a step of finely adjusting the static pressure distribution in the longitudinal direction. Further, the step of sucking in the boundary layer may include a step of calculating a boundary layer thickness according to a jet stream velocity.
  • the wind tunnel test device 100 includes a wind tunnel T that generates a jet stream MF inside, boundary layer control devices 10A and 10B provided in a measurement chamber 109 provided between an air outlet 106 and an inlet 108 of the wind tunnel T, and running simulation devices. Both the boundary layer control device 10 and/or the travel simulator 34 are provided below the floor surface FL of the measurement chamber 109. As shown in FIG.
  • the wind tunnel test apparatus 100 is of a circulation type, and is equipped with a fan (blower) 101 that supplies jet airflow MF into the wind tunnel T, and collects jet airflow MF collected at an inlet (collector).
  • the wind speed is adjusted by a fan 101, and the air is forced to circulate through a continuous air passage 103 in an almost annular shape, and a jet stream MF is blown into a measurement chamber 109 through an air outlet 106, and from the measurement chamber 109 through an inlet 108.
  • the jet stream MF is collected and circulated again through the air blowing path 103.
  • the wind speed at the air outlet 106 is determined by the rotational speed of the fan 101 as a steady flow rate of the jet stream MF flowing through the air passage 103 .
  • a corner vane 105 that changes the flow direction of the jet air flow MF is provided at each corner in the middle of the air passage 103, and an air cooling device (not shown) is installed on the upstream side of the corner vane 105 on the downstream side of the fan 101.
  • a measuring chamber 109 the inside of which is a measuring section, is arranged surrounding the suction port 106 and the blowout port 108.
  • a vehicle V which is a test object, is placed in the measurement chamber 109, and a jet stream MF is sent toward the vehicle V to perform fuel efficiency, electricity consumption (EV vehicle), air conditioner test, thermal management test, etc. that simulate actual driving. We are conducting tests such as blizzard tests and rain tests.
  • the wind tunnel T has a semi-open circulation type measurement chamber 109, and an air outlet that opens into the measurement chamber 109 through the measurement chamber 109 where the vehicle V to be measured is installed, the rectification tunnel 102, and the contraction tunnel 104. 106 and an inlet 108 that opens into the measurement chamber 109.
  • the airflow generated by the fan 101 passes through the rectification cavity 102 and the contraction cavity 104, and then flows from the air outlet 106 that opens into the measurement chamber 109 to the measurement chamber. 109 and flows into the inlet 108 of the inflow portion 107 .
  • the airflow blown by the fan 101 is measured by first reducing the wind speed (dynamic pressure) of the entire airflow and increasing the pressure (static pressure) in the intermediate body, and then passing it through the contraction tunnel.
  • the airflow with sufficient air volume (wind speed) can be blown out from the outlet into the measurement chamber.
  • the lower space of the floor FL has an architectural concrete frame structure with the floor as a ceiling.
  • a rectangular parallelepiped space is formed within the apparatus chamber, and a pair of dynamo rollers 38 and a dynamo are approximately provided within the space.
  • the ceiling constitutes a floor surface FL into which the vehicle V can directly enter, and has openings 36 through which the upper portions of the circumferential surfaces of the pair of dynamo rollers 38 are exposed.
  • the dynamo roller 38 and the dynamo are supported on the bottom surface and provided inside the apparatus chamber.
  • the dynamo and the dynamo roller 38 may be supported by a bottom plate provided in the housing and provided in the device chamber, and may be integrated with the housing. According to this, the dynamo and the dynamo roller 38 can be handled as a unit by using the casing as an outer shell, and the dynamo and the dynamo roller 38 are stable as a whole. Therefore, the entire device can be easily and safely transported as one unit, and can be easily installed in a predetermined test room. Furthermore, in this embodiment, since the ceiling constitutes the floor FL, and it is only necessary to install the equipment, which reduces installation costs and reduces the equipment space as a whole. be able to.
  • suction duct of the boundary layer control device which will be described later, is also the same as that of the running simulator in that it is provided below the floor surface, and the frame structure is also the same as described above.
  • the most preferable material for the suction duct of the boundary layer control device and the partition plate described later is stainless steel, but it may also be made of steel treated with anti-corrosion treatment (hot-dip galvanizing or painting).
  • a second boundary layer control device 10B is provided, and in both cases, a fan (air blower) is used to forcefully circulate the jet stream MF through an annular continuous air passage, and the jet stream is sent to the measuring section through the air outlet.
  • a fan air blower
  • the second boundary layer control device 10B will be described. As shown in FIGS.
  • the jet stream MF is sucked in from the boundary layer suction surface 12 formed on the floor surface on the upstream side of the vehicle, and the jet stream MF is sucked into the suction pipe 26.
  • the effect of the boundary layer is reduced by discharging the jet stream MF to the atmosphere through the fan 29.
  • a guide section (not shown) is provided to guide a part of the jet stream MF into the suction duct, and the inhaled jet MF is By turning the direction of the airflow MF and guiding it to the suction duct, the turning angle of the flow when the sucked jet airflow MF turns in the vertical axis direction with respect to the mainstream direction of the jet airflow MF is reduced.
  • the stagnation pressure of the jet stream MF sucked into the suction duct may be reduced, thereby reducing the obstruction to the flow of the jet stream MF in the mainstream direction.
  • the second boundary layer control device 10B provided immediately after the air outlet of the wind tunnel has a stagnation pressure reducing means (not shown) that reduces the stagnation pressure of the jet stream MF sucked into the suction duct, thereby reducing the stagnation pressure of the jet stream MF.
  • the suction duct 14 is constituted by a recess provided in a floor frame structure whose upper surface constitutes the floor surface FL.
  • a boundary layer suction surface 12 having a larger area than the lower surface LS of the vehicle V is provided on the floor surface FL.
  • the boundary layer suction surface 12 has a rectangular shape, and below the pair of front wheels FW and the pair of rear wheels RW of the vehicle V are provided with openings 36 constituting a part of a driving simulation device to be described later.
  • the layer suction surface 12 is provided in a region excluding the opening 36 on the floor surface FL facing the lower surface LS of the vehicle V.
  • a suction duct 14 facing the boundary layer suction surface 12 is provided below the floor surface FL,
  • the suction duct 14 is partitioned into a plurality of regions 16 in the longitudinal direction of the vehicle V,
  • Each region 16 includes a suction means 18 for sucking the boundary layer through the boundary layer suction surface 12, and a suction amount adjusting means 20 for adjusting the amount of boundary layer sucked by the suction means 18.
  • the amount of boundary layer suction is adjusted depending on the area of the boundary layer suction surface 12 that is partitioned by the partition plate 22 and corresponds to each of the plurality of regions 16 (described later).
  • each of the plurality of regions 16 is partitioned by a partition plate 22, and each of the plurality of regions 16 constitutes a rectangular parallelepiped space.
  • the partition plates extend across the width direction W of the boundary layer suction surface 12.
  • the position of each partition plate 22 in the longitudinal direction of the vehicle may be determined depending on the static pressure distribution in the longitudinal direction between the lower surface of the vehicle and the floor surface, the required volume of each of the plurality of regions 16, or the length in the longitudinal direction of the vehicle. For example, if you want to precisely simulate the airflow between the bottom surface of the vehicle and the floor surface in a driving simulation state, reduce the distance between adjacent partition plates in the vehicle longitudinal direction, and reduce the number of partition plates 22 accordingly. You can increase it. In particular, since the static pressure in the area corresponding to the wheels between the lower surface LS and the floor FL of the vehicle V is lower than in other areas, it is preferable to divide the area corresponding to the wheels by the partition plate 22.
  • the boundary layer suction surface 12 is provided with a resistor 24 which forms a resistance to the suction jet stream MF.
  • a resistor 24 which forms a resistance to the suction jet stream MF.
  • a porous ventilation body especially a perforated plate, in which the aperture ratio is changed. If the perforated plate alone is not strong enough, a strong grid, grating, etc. is used at the bottom of the perforated plate. It is best to reinforce it with In this case, it is preferable not to provide such a strength member in the direction perpendicular to the jet stream MF.
  • resistors 24 having different resistance coefficients are laminated, and the type and/or number of laminated resistors 24 are adjusted for each region 16, so that the lower surface LS of the vehicle V and the floor
  • the resistance coefficient of the resistor is made different depending on the static pressure distribution between the surface FL and the boundary layer suction surface 12 in each region, thereby reducing partial unevenness in the suction wind speed distribution.
  • the suction duct 14 has a suction pipe 26 that is connected to the suction means 18, and a damper 27 is attached to the suction pipe 26.
  • a damper 27 is attached to the suction pipe 26.
  • the partitions and/or the resistors 24 are movable in the longitudinal direction of the vehicle V, so that the interval between adjacent partitions in each region 16 of the plurality of regions 16 in the longitudinal direction of the vehicle V can be adjusted. Thereby, the interval between adjacent partitions in the longitudinal direction of the vehicle V in each region 16 may be adjusted depending on the test purpose, vehicle type, variation in simulated running speed for the same vehicle type, and the like.
  • the suction means 18 may be a fan, and the suction amount adjusting means 20 may adjust the suction amount using an inverter (not shown) that controls the rotation speed of the fan.
  • a fan may also be shared in multiple regions 16, as long as adequate suction of the boundary layer is possible in each region 16, for example in combination with resistors 24 and/or dampers 27. You may share a fan for everything.
  • the static pressure distribution adjusting means is capable of adjusting the static pressure difference between the space between the lower surface LS of the vehicle V and the floor and the suction duct 14 below the floor. It further includes static pressure difference adjusting means 32.
  • the static pressure difference adjusting means 32 includes a plurality of partition plates 22 that partition the suction duct 14 in the longitudinal direction of the vehicle, and resistors 24 provided on the boundary layer suction surface 12 corresponding to each region of the suction duct 14 partitioned by the partition plates 22. It is composed of In an actual running vehicle, the jet stream MF causes a static pressure distribution in the front-rear direction within the space between the lower surface LS of the vehicle V and the floor surface, but due to boundary layer suction, this This deviates from the longitudinal static pressure distribution. More specifically, in each region partitioned by the partition plate 22, unevenness in wind speed and/or flow direction of the suction airflow via the boundary layer suction surface 12 affects the longitudinal static pressure distribution in the space.
  • a static pressure distribution adjustment means is provided in order to reduce the static pressure distribution in the longitudinal direction in the space between the lower surface LS of the vehicle V and the floor surface in the driving simulation vehicle to approximate that in the actual driving.
  • the static pressure distribution adjustment means is configured to adjust the pressure distribution between the lower surface LS of the vehicle V and the floor surface when the jet airflow flows in the longitudinal direction of the vehicle V through the space between the lower surface LS and the floor surface of the vehicle V.
  • It has a static pressure difference adjusting means 32 that can adjust the static pressure difference between the static pressure of the space and the static pressure in the suction duct 14 below the floor surface. They are constructed by having different resistance coefficients, or by stacking ones with the same or different resistance coefficients.
  • resistors 24 with the same aperture ratio are used to stack a plurality of resistors 24, the overall aperture ratio can be adjusted by stacking the resistors 24 with the holes of each resistor 24 shifted from the center.
  • a porous body with a large pore diameter whose strength is ensured by its thickness may be laminated with a lightweight wire mesh with a small pore diameter.
  • the basic resistor 24 is fixedly installed, and the adjustment resistor 24 is removably installed.
  • the body 24 may be additionally laminated.
  • the boundary layer control device 10 is provided so that the boundary layer suction surface is located at a predetermined position behind the opening 36 of the dynamo roller 38 on the floor surface FL facing the lower surface LS of the vehicle, and the boundary layer control device 10 is
  • the boundary layer suction means of the device 10 uses the entrained airflow generated by the rotation of the dynamo roller 38 and/or the static pressure difference between the dynamo installation chamber and the lower surface LS and floor surface FL of the vehicle V to draw the dynamo roller from the dynamo installation chamber side.
  • It also serves as an entrainment airflow suppressing means for suppressing the entrainment airflow generated by the inflowing air through the gap between the opening 38 and the opening 36 from reaching the space between the lower surface LS of the vehicle V and the floor surface FL through the opening 36. good.
  • the boundary layer control method uses the above-mentioned boundary layer control device 10 to blow out a jet stream MF generated in a wind tunnel toward a stationary vehicle V placed in a measurement chamber 109 outside the wind tunnel to simulate running. measuring the thickness of the boundary layer generated in the vehicle V installation area at a portion of the boundary layer suction surface 12 corresponding to each region 16 while changing the speed of the jet stream MF without the vehicle being placed; adjusting the drag coefficient and/or the suction amount of the boundary layer in each region 16 so as to reduce the uneven suction wind speed on the boundary layer suction surface 12 based on the measured boundary layer thickness; While adjusting the intake amount of the boundary layer in each region 16, the jet stream MF generated in the wind tunnel is blown toward the stationary vehicle V placed in the measurement chamber 109 outside the wind tunnel, and the wind speed distribution around the vehicle V is measured.
  • the step further includes measuring the static pressure between the lower surface of the vehicle and the floor surface FL at each position in the longitudinal direction of the vehicle V and the static pressure inside the suction duct 14; and/or adjusting the resistance coefficient of each of the resistors 22 while adjusting the suction air volume according to the wind speed of the jet stream MF, whereby, the static pressure within the suction duct 14 is made lower than the static pressure between the lower surface of the vehicle and the floor surface FL.
  • the maximum suction amount in the suction means is determined by the boundary layer thickness, the width of the boundary layer suction surface (in the width direction of the vehicle), and/or the main jet stream MF, since the velocity gradient in the boundary layer is steep. It may be set by considering the safety factor depending on the flow velocity.
  • the flow velocity of the suction airflow at the boundary layer suction surface is determined according to the area of the boundary layer suction surface in each area.
  • the flow resistance of the boundary layer suction surface 12 on the front side of the vehicle is larger than that on the boundary layer suction surface 12 on the rear side of the vehicle and/or the center of the vehicle by selecting the resistor 24.
  • static pressure is lower on the boundary layer suction surface 12 on the front side of the vehicle than on the rear side of the vehicle, so in some cases, the space between the floor surface FL and the lower surface LS of the vehicle V may be drawn from inside the suction duct. Where backflow occurs, it is possible to suppress such backflow and reduce unevenness in suction wind speed in the front-rear direction of the boundary layer suction surface 12.
  • the amount of suction is set smaller on the boundary layer suction surface 12 on the rear side of the vehicle than on the boundary layer suction surface 12 on the front side of the vehicle and/or the center of the vehicle. This makes it possible to easily reproduce the phenomenon of wind blowing up at the rear of the vehicle V.
  • the thickness of the boundary layer is measured based on actual values measured in actual test equipment. Compared to determining the thickness, in actual equipment, the thickness of the boundary due to construction accuracy is thicker than in simulations or theoretical formulas, so it is possible to control the boundary layer more precisely, and it is possible to control the boundary layer more precisely.
  • the range of variation in the speed of the jet stream MF may be determined depending on the purpose of the test used.
  • the wind tunnel may be of a circulation type or a windsock type as long as the boundary layer can be sucked in substantially vertically downward with respect to the floor surface FL.
  • the boundary layer control device having the above configuration, when the jet air flow MF is blown into the wind tunnel T toward the air outlet, for example, by a blower toward the vehicle V disposed downstream of the air outlet, the jet air flow MF is Where a boundary layer is formed between the lower surface of the vehicle V and the floor surface FL with respect to the main flow, a suction facing the boundary layer suction surface 12 is formed through the boundary layer suction surface 12 arranged above so as to be covered by the vehicle.
  • the boundary layer can be sucked into the duct 14 by a suction means for sucking the boundary layer, and in this case, the static pressure difference adjusting means 32 allows the jet stream MF to fill the space between the lower surface of the vehicle and the floor surface FL of the vehicle.
  • the running simulator 34 is installed below the floor surface FL of a measurement chamber 109 in which airflow is caused by a wind tunnel T. Inside the measurement chamber 109, a vehicle V to be measured is installed, and the wheels WH of the stationary vehicle V are It is configured to be rotationally driven by the driving simulation device 34.
  • driving simulators 34 are provided corresponding to the pair of front wheels FW and the pair of rear wheels RW (one each is shown in the drawing). Using these driving simulators 34, various characteristics of the vehicle advanced onto the measurement chamber 109 are measured.
  • Each dynamo roller 38 is provided in the dynamo installation room below the floor surface FL, and the rotating shaft 13 provided on its own central axis is rotatably supported by a bearing (not shown) provided on the bottom plate. There is.
  • a connecting shaft (not shown) is coaxially arranged between both dynamo rollers 38, and is connected to the rotating shaft of both dynamo rollers 38 by a coupling (not shown), whereby both dynamo rollers 38 are integrally connected. It can be rotated.
  • the dynamo is a liquid-cooled rotary drive source for the dynamo roller 38, and an input/output shaft (not shown) is arranged coaxially with the rotation shaft of one of the dynamo rollers 38, and a locking disc (not shown) connected by. Further, a torque meter (not shown) is provided on the input/output shaft of the dynamo, so that the torque on the input/output shaft can be detected.
  • the driving simulation device 34 places the wheels WH of a car advanced onto the measurement chamber 109 on a dynamo roller 38 whose zenith portion is exposed through an opening 36 provided in the floor surface FL of the measurement chamber 109, while driving the vehicle.
  • the dynamo is configured to apply torque to the wheel WH via the dynamo roller 38, and the torque applied from the wheel WH is measured by a load cell (not shown).
  • the running simulator 34 uses two dynamos each having one wheel WH mounted thereon. It is also possible to use a traveling simulation device 34 that includes a roller 38 and one dynamo that rotationally drives the two dynamo rollers 38.
  • a traveling simulation device 34 that includes a roller 38 and one dynamo that rotationally drives the two dynamo rollers 38.
  • a solid bar-shaped centering pipe 35 is provided directly below the upstream edge 24 and downstream edge 28 of the opening 36, extending in the width direction W of the opening 36.
  • the vehicle V is placed in the measurement chamber 109 outside the wind tunnel T in a direction perpendicular to the central axis of the cylinder of the dynamo roller 38, and is placed in front of the vehicle V within the wind tunnel T.
  • a cylindrical dynamo roller configured to send a jet stream MF toward the rear from the floor surface FL to at least the height of the car, and rotatably provided in a non-contact manner with respect to the opening 36. 38 is arranged so that the central axis of the cylinder is located below the floor surface FL, and the dynamo roller 38 is rotated with the wheels WH of the vehicle V placed on the upper outer peripheral surface facing from the opening 36 of the dynamo roller 38.
  • the top 23 of the upper outer circumferential surface of the dynamo roller 38 is set flush with the floor surface FL, so that the entrained airflow generated by the rotation of the dynamo roller 38 and/or the dynamo installation chamber. Due to the static pressure difference between the lower surface LS of the vehicle and the floor FL, the entrained airflows B1 and B2 generated by the air flowing in from the dynamo installation room are caused to flow through the opening 36 into the space between the lower surface LS of the vehicle V and the floor FL.
  • An entrained airflow suppressing means 21 is provided in the gap C between the opening 36 and the dynamo roller 38.
  • the opening 36 has a rectangular shape
  • the entrained airflow suppressing means 21 corresponds to the gap C between the upstream edge 24 of the opening 36 and the corresponding dynamo roller 38 and/or the downstream edge 28 of the opening 36. It is a flat plate placed in each gap C between the dynamo roller 38 and the dynamo roller 38.
  • the size of the opening 36 depends on the size of the dynamo roller 38, and is determined from the viewpoint of not coming into contact with the dynamo roller 38, but usually the width W is 600 mm to 700 mm, and the width W is 600 mm to 700 mm.
  • the length L in the direction is 600 mm to 700 mm, and the width of the gap C between the dynamo roller 38 and the opening edge is usually 10 mm to 20 mm.
  • the material and size of the flat plate may be determined as appropriate from the viewpoint of effectively suppressing the entrained airflow by the entrained airflow suppressing means 21.
  • the material may be any material as long as flexibility is ensured, and metal, resin, etc.
  • the length of the vehicle V in the front and back direction is equal to the width of the opening 36
  • the length of the vehicle V in the front and back direction is equal to the width of the opening 36, respectively. It is enough to cover half of the area from the top to the top 23. If it is permanently fixed, it needs to be thick enough to withstand when a vehicle V passes over it. In addition, it may be a removable type instead of a permanently fixed one.
  • the entrained airflow is caused by the following entrained airflow generated by the rotation of the dynamo roller 38 and/or from the dynamo installation room side due to the static pressure difference between the dynamo installation room where the dynamo roller 38 is accommodated, the lower surface of the vehicle, and the floor surface.
  • a predetermined gap is provided between the periphery of the dynamo roller 38 and the periphery of the opening 36, and due to the static pressure difference between the dynamo installation chamber and the lower surface LS and floor surface FL of the vehicle V, air flowing in from the dynamo installation chamber side
  • the entrained airflow generated by this mainly extends to the space between the lower surface LS of the vehicle V and the floor surface FL through a predetermined gap.
  • the boundary layer suction surface 12 is located at a predetermined position behind the opening 36 of the dynamo roller 38 (see 12F and 12G in FIG. 13).
  • a layer control device 10 is provided, and the boundary layer suction means 18 of the boundary layer control device 10 absorbs the entrained airflow generated by the rotation of the dynamo roller 38 and/or between the dynamo installation room and the lower surface LS and floor surface FL of the vehicle V. It also serves as an entrainment airflow suppression means for suppressing the entrainment airflow generated by the inflowing air from the dynamo installation room side from reaching the space between the lower surface LS and the floor surface FL of the vehicle V through the opening 36 due to the static pressure difference. preferable. As shown in FIG.
  • the dynamo installation chamber corresponding to the opening 36 and the suction duct 14 corresponding to each of the boundary layer suction surfaces 12F and 12G are separated from each other without communicating with each other, but the boundary layer suction surface
  • the spacing between the leading edge of each of 12F and 12G and the trailing edge of the opening 36 is preferably determined from the viewpoint that the boundary layer suction means 18 can also serve as the entrained airflow suppressing means, as described above. For example, in the case of a test in which the rotation of the wheels FW is stopped, the dynamo roller 38 is not rotated, so no entrained airflow is generated due to the rotation of the dynamo roller 38.
  • the boundary layer suction surfaces 12F and 12G function particularly effectively, sucking in the boundary layer between the lower surface LS of the vehicle V and the floor surface FL, and This inflowing air can be sucked into the suction duct 14, and it is also possible to suppress turbulence in the airflow between the lower surface LS and the floor surface FL of the vehicle V.
  • the operation of the driving simulating device 34 having the above configuration will be described below as a driving simulating method using the driving simulating device 34.
  • the driving simulation method using the driving simulator 34 generally involves placing wheels WH of the vehicle V on a dynamo roller 38 whose outer peripheral surface 40 faces through an opening 36 provided in the floor FL of the measurement chamber 109 outside the wind tunnel T.
  • the step of narrowing the gap is carried out using an entrained airflow suppression means 21, which is removable or movable and is arranged on the vehicle so that the wheel WH is positioned in the corresponding opening 36.
  • a jet stream MF is sent from the front to the rear of the vehicle V from the floor FL to at least the height of the vehicle, and the dynamo roller 38 is By rotationally driving the dynamo roller 38 with the wheels WH of the vehicle V placed on the upper outer circumferential surface facing through the opening 36, it is possible to simulate running of the vehicle V using a stationary vehicle V.
  • the boundary layer control device 10 is configured such that the entrained airflow suppressing means 21 is provided in the gap C between the peripheral edge and/or the boundary layer suction surface 12 is located at a predetermined position behind the opening 36 of the dynamo roller 38.
  • the space between the lower LS of an electric vehicle and the road surface can be used to conduct various tests such as fuel efficiency, electricity consumption (EV vehicles), air conditioner tests, heat management tests, blizzard tests, rain tests, etc. that simulate actual driving.
  • EV vehicles electricity consumption
  • air conditioner tests heat management tests
  • blizzard tests rain tests, etc. that simulate actual driving.
  • the dynamo roller 38 is used to simultaneously rotate the front wheels FW and/or the rear wheels RW, so that the entrained airflow is directed to the openings 36 corresponding to each wheel WH. It is preferable to apply the suppressing means 21, but if the vehicle V is FF or FR, there is no need to use the dynamo roller 38 for the opening 36 corresponding to the rear wheel RW or front wheel FW that is not driven. In the case of a test that emphasizes the underfloor airflow of the vehicle V, it is preferable to move the opening 36 and the dynamo roller 38 together or to cover the opening 36.
  • the entrained airflow suppressing means 21 is a brush 32 extending from the upstream edge 24 and the downstream edge 28 of the opening 36 toward the top 23 of the wheel WH and the dynamo roller 38, and the brush 32 is They may be provided closely over the entire width direction W of the side edges.
  • the entrained airflow suppressing means 21 is supported using the floor frame structure constituting the floor surface FL, extends from the lower surface LS level of the floor surface FL to the upper outer peripheral surface level of the dynamo roller 38, and extends from the opening edge. It may be an entrained airflow damming member with a damming surface extending along the extension direction.
  • the entrained airflow suppressing means 21 is a suction pipe that sucks in the entrained airflow B, with the suction opening 36 oriented toward the upstream side and supported using the floor frame structure constituting the floor surface FL.
  • the suction opening 36 may be provided between the floor surface FL and the upper outer peripheral surface level of the dynamo roller 38.
  • the entrained airflow suppressing means 21 is a dam plate that is supported using the floor frame structure that constitutes the floor surface FL and extends along the opposite side edge 26 of the opening 36, The edge may be set at the floor surface FL level, and the lower edge may be set within a range that does not contact the upper outer peripheral surface of the dynamo roller 38.
  • the entrained airflow suppressing means 21 is supported using the floor frame structure that constitutes the floor surface FL, and includes an upper surface facing the floor surface FL, a lower curved surface facing the upper outer circumferential surface of the dynamo roller 38, and the floor. It is an ejector flow path forming member extending along the downstream edge 28, and has a substantially triangular cross section consisting of a rear surface extending from the surface FL toward the upper outer circumferential surface of the dynamo roller 38, and a lower surface LS of the floor surface FL.
  • An upper ejector flow path may be formed between the upper surface of the ejector flow path forming member, and a lower ejector flow path may be formed between the lower curved surface of the ejector flow path forming member and the upper outer peripheral surface of the dynamo roller 38.
  • the inclination and length of the upper ejector flow path and the lower ejector flow path are determined from the viewpoint of effectively suppressing the entrained airflow by the entrained airflow suppressing means 21, so that the space inside the ejector causes a decrease in pressure and prevents external air from flowing.
  • This may be determined as appropriate so that the airflow B2 is sucked in from the space between the lower surface LS of the vehicle V and the floor surface FL, which is generated by the downward rotation of the dynamo roller 38 from the opening 36.
  • it is possible to suppress the ejector flow path forming member provided on the downstream edge 28 of the opening 36 from being sucked in.
  • the rotational speed of the dynamo roller and the jet air velocity to be generated in the wind tunnel are determined accordingly, and the thickness of the boundary layer is determined according to the jet air velocity, thereby controlling the boundary layer.
  • the boundary layer suction amount by the device 10 is set, if the entrained airflow is generated by the rotation speed of the dynamo roller, the suction amount of the entrained airflow is determined according to the rotation speed of the dynamo roller, and the dynamo installation In the case of an entrained airflow generated by air flowing in from the dynamo installation room due to the static pressure difference between the chamber, the vehicle lower surface LS, and the floor surface FL, the airflow is provided between the pair of front wheels FW as determined by the jet air velocity.
  • the amount of boundary layer suction in the area 16 or the area 16 provided between the pair of rear wheels RW is easily influenced by the entrainment airflow caused by the running simulator 34 adjacent to the vehicle in the longitudinal direction.
  • the position of the partition plate in the longitudinal direction of the vehicle may be finely adjusted depending on the rotation speed of the partition plate.
  • a second embodiment of the present invention will be described below with reference to FIG. 6.
  • the same reference numerals will be given to the same components as in the first embodiment, and the description thereof will be omitted, and the characteristic portions of this embodiment will be described in detail below.
  • the feature of the second embodiment of the present invention lies in the first boundary layer control device 10A, and in the first embodiment, the second boundary layer control device 10B provided immediately downstream of the air outlet 106 of the wind tunnel is disposed in the measurement section.
  • the first boundary layer control device 10A provided below the vehicle is separate and independent, in this embodiment, the first boundary layer control device 10A is connected to the second boundary layer control device 10B. and the arrangement of the first boundary layer control device 10A. More specifically, as shown in FIG.
  • the suction duct 14 of the first boundary layer control device 10A and the suction duct 14 of the second boundary layer control device 10B are connected by a common single recess provided in the floor surface.
  • the suction duct of the second boundary layer control device 10B is partitioned into a plurality of regions 16 by the partition plate 22, the suction duct 14 of the first boundary layer control device 10A and the second boundary layer control device
  • the suction duct 14 of the device 10B is separated by a partition plate.
  • the boundary layer suction surface 12 includes a suction surface portion 12A configured between a pair of front wheels FW, a suction surface portion 12B configured between a front wheel FW and a rear wheel RW, and A suction surface section 12C formed between a pair of rear wheels RW, an area 12D between the front end of the vehicle V and the front wheels FW, and an area 12E between the rear end of the vehicle V and the rear wheels RW are each divided into rectangular shapes. Good too.
  • each of the suction surfaces 12A and 12C corresponds to the length of the wheel WH in the longitudinal direction of the vehicle, and corresponds to the length of the wheel WH in the width direction of the vehicle, excluding the width of the opening for the dynamo roller from the vehicle width.
  • the length of the suction surface portion 12B may be the distance between the front wheels FW and the rear wheels RW in the longitudinal direction of the vehicle, and the length equivalent to the vehicle width in the width direction of the vehicle. Note that by adjusting the longitudinal position of the partition plate 22, the suction duct 14 of the first boundary layer control device 10A may be communicated with the region of the suction duct 14 of the first boundary layer control device 10B at the frontmost portion of the vehicle. As described above, compared to the case where the first boundary layer control device 10A and the first boundary layer control device 10B are independent, it is possible to adjust them flexibly according to the test conditions.
  • the present applicant conducted the flow analysis numerical simulation shown below in order to confirm the boundary layer suction effect by the boundary layer control device.
  • a three-dimensional model for computer numerical simulation is shown in FIG.
  • the flow analysis software is commercially available Fluent (version 19.2).
  • the vehicle, front wheels, rear wheels, and suction duct placed on the floor are modeled, and the suction duct is located behind the opening for the dynamo roller installed below each front wheel. (12F and 12G), and a space extending between the pair of front wheels and between the pair of rear wheels (12A), and a boundary layer suction for each wheel and covering the front of the pair of front wheels and the rear of the pair of rear wheels.
  • a suction duct is provided below the floor surface facing the lower surface of the vehicle, extending from the front to the rear of the vehicle, and the suction duct is partitioned in the longitudinal direction of the vehicle (5 12E and 12F as well as 12E and 12F, and if a resistor with a given resistance coefficient is provided on the boundary layer suction surface corresponding to each compartment, the space between the underside of the vehicle and the floor.
  • the internal static pressure is higher than the static pressure in the duct of each section uniformly in the longitudinal direction of the vehicle near the boundary layer suction surface, and the internal static pressure clearly shows that the low static pressure area has been eliminated. Therefore, as shown in Fig.
  • the method of partitioning the suction duct in the longitudinal direction of the vehicle (number of sections) and/or the boundary layer suction corresponding to each section By adjusting the resistance coefficient of the resistor provided on the surface, when the boundary layer near the floor is sucked in, the difference between the underside of the vehicle and the floor due to uneven wind speed and/or direction of the suction airflow at the boundary layer suction surface can be adjusted. It is shown that it is possible to suppress the occurrence of a wind speed distribution and/or flow direction that differs from the actual driving in the airflow in the space between the two.
  • the dynamo has been described as being placed below the floor for each wheel, but if the dynamo is installed not below the floor but above the floor in the measurement chamber.
  • the wheel does not rotate by rotating the dynamo with the dynamo roller, but the dynamo is directly connected to the rotation axis of the tire, so the boundary layer suction surface has no dynamo roller, so It will be placed in the area where each wheel has been removed.
  • a resistor provided on the boundary layer suction surface and a damper 27 provided on the suction pipe are used to control the suction amount of the boundary layer in each partitioned area of the suction duct.
  • each region for example, a resistor provided on the boundary layer suction surface in one region, a damper 27 provided on the suction pipe in another region, and also in the same region, the boundary layer
  • a plurality of adjustment methods such as a resistor provided on the suction surface and the rotation speed of the blower may be used.
  • the boundary layer control device includes a second boundary layer control device 10B provided immediately downstream of the air outlet 106 of the wind tunnel, and a first boundary layer control device 10A provided below the vehicle in the measurement section.
  • the first boundary layer control device 10A is driven at the same time, the present invention is not limited to this, and for example, only the first boundary layer control device 10A may be driven as long as the boundary layer can be sucked in appropriately so that the main flow is not obstructed.
  • the second boundary layer control device 10B is stopped, the first boundary layer control device 10A is stopped and only the second boundary layer control device 10B is driven, or the first boundary layer control device 10A is controlled in each area.
  • the boundary layer when the boundary layer is properly sucked in by the boundary layer control device so as not to cause obstruction to the mainstream, in the wind tunnel test device, under a predetermined Jot airflow velocity based on the set driving simulation speed, although it has been explained that the thickness of the boundary layer that actually occurs is measured and the amount of boundary layer sucked by the boundary layer control device is adjusted based on the measurement results, the method is not limited to this, and there is no obstruction to the mainstream. As long as it is possible to suck in the boundary layer appropriately, a theoretical formula for laminar flow on a flat plate or a numerical simulation analysis using a flow model may be used instead of actual measurements.
  • the jet air flow speed generated in the wind tunnel is set based on the set running simulation speed, and according to the set jet air flow speed,
  • the boundary layer control device determines the amount of boundary layer suction
  • the invention is not limited to this, and as long as the boundary layer can be properly sucked in so as not to cause obstruction to the mainstream, it can be used to simulate driving of the same type of vehicle.
  • the entrained airflow suppressing means 21 applied to the upstream edge and the downstream edge of the opening 36 corresponding to one wheel are the same, but the upstream The side may be a brush, the downstream side may be a brush, the upstream side may be a brush, the downstream side may be a brush, or multiple restraining means may be installed on the upstream edge of one wheel, e.g., a brush and an entrained airflow dam at the same time. They may be used in combination, or a plurality of suppression means may be installed on the downstream edge of one wheel, for example, a brush and an ejector may be used simultaneously.
  • the entrained airflow suppressing means 21 is installed at the upstream edge and the downstream edge of the opening 36, which is explained as being common to all wheels.
  • some wheels may be installed on the upstream and downstream edges of the opening 36, some wheels may be installed only on the upstream edge of the opening 36, and some wheels may be installed only on the downstream edge of the opening 36.
  • the entrained airflow suppressing means 21 is set to suppress airflow from reaching the space between the lower surface LS of the vehicle V and the floor surface FL.
  • the performance Although it has been explained that tests, environmental tests, durability tests, etc. are carried out, when simulating driving, the number of revolutions of the dynamo roller 38 and the speed of the jet stream MF in the wind tunnel T fluctuate depending on the simulated driving speed.
  • the position or size of the flat plate of the first embodiment may be adjusted to adjust the degree to which the gap is closed.
  • FIG. 1 is an overall schematic diagram of a wind tunnel test apparatus according to a first embodiment of the present invention.
  • FIG. 3 is a plan view of the measurement section of the wind tunnel test device according to the first embodiment of the present invention.
  • FIG. 2 is a detailed partial side view of the measurement section of the wind tunnel test device according to the first embodiment of the present invention.
  • FIG. 2 is a detailed partial side view of the boundary layer control device of the measurement section of the wind tunnel test device according to the first embodiment of the present invention.
  • FIG. 2 is a partially detailed side view of the area around the boundary layer suction surface of the measurement section of the wind tunnel test apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a plan view similar to FIG.
  • FIG. 2 showing a boundary layer control device of a measurement section of a wind tunnel test device according to a second embodiment of the present invention.
  • FIG. 2 is a schematic explanatory diagram showing airflow on the lower surface and floor surface of the vehicle and/or the rear portion of the vehicle, which are arranged in the measurement section of the wind tunnel test device.
  • FIG. 3 is a three-dimensional model diagram for numerical simulation of static pressure distribution around a vehicle in the boundary layer control device of the measurement section of the wind tunnel test device according to the first embodiment of the present invention.
  • FIG. 2 is a side view showing simulation results of static pressure distribution around a vehicle when a boundary layer suction duct is provided in the boundary layer control device of the measurement section of the wind tunnel test device according to the first embodiment of the present invention.
  • the boundary layer suction duct is divided into a plurality of regions, and when a resistor is provided on the boundary layer suction surface of each region, FIG. 3 is a side view showing simulation results of static pressure distribution.
  • 10 is a side view showing the wind speed distribution in FIG. 9.
  • FIG. 11 is a side view showing the wind speed distribution in FIG. 10.
  • FIG. 9 is a plan view showing the arrangement of boundary layer suction surfaces in the three-dimensional model diagram of FIG. 8.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

【課題】風洞設備において静止車両を利用して、走行中の車両の下面と床面、および/または車輛後部背面の風速分布および/または流れ方向を精度よく模擬可能な境界層制御装置及び風洞試験装置を提供する。 【解決手段】 風洞T内で発生させるジェット気流を車両に吹き付ける場合において、 車両下面と床面FLとの間のスペース内に生じるジェット気流MFの境界層を吸い込み可能なように、車両Vが覆うように上方に配置される境界層吸い込み面12が床面FLに設けられ、 床面FLの下方には、該境界層吸い込み面12に臨む吸い込みダクト14が設けられ、 該境界層吸い込み面12を介して、境界層を吸い込む吸い込み手段18と、吸い込み手段18により吸い込む境界層の吸い込み量を調整する吸い込み量調整手段20とを、有し、 さらに、ジェット気流MFが車両下面と床面FLとの間のスペースを車両Vの前後方向に流れる際に発生する車両下面と床面FLとの間のスペースの車両前後方向の静圧分布を調整可能な静圧分布調整手段を有する、 ことを特徴とする境界層制御装置10。 

Description

[規則26に基づく補充 08.08.2022] 境界層制御装置、境界層制御方法及び風洞試験装置、並びに車両の走行模擬方法
本発明は、風洞設備において静止車両を利用して、走行中の車両の下面と床面、および車輛後部背面の風速分布および/または流れ方向を精度よく模擬可能な境界層制御装置及び風洞試験装置並びに車両の走行模擬方法に関する。
従来、自動車等車両の風速分布などの試験用として、自然風を模擬する空力実験等に使用される回流式風洞設備又は吹流し式風洞設備が利用されてきた。
より詳細には、風洞内でジェット気流を発生し、風洞の吹出口から風洞外の測定室の静止車両に向かってジェット気流を噴出することにより、主流空気(定常流量)により、走行中に発生する車両まわりの風速分布を模擬するようにしている。
この場合、風洞内で発生させる車両の前後方向のジェット気流は、走行中の車両が受ける風速を模擬するもので、平行流であり、車両の下面と床面との間のスペースにも、車両の前後方向に流れる。
しかしながら、吹出口から噴出するジェット気流は、主流空気による主流層の他に主流層と床面との間で抵抗が生じるために風速が遅れた境界層が床面に沿って生じる。そのため、車両の風速分布の試験を行う際、境界層の影響を受けることになる。
ここに、境界層とは、床面表面付近の主流空気の流れにおいて、速度が床面表面上から主流空気の流速にまで急激に変化する範囲の層をいい、例えば主流空気の流速を100%とした時、流速が99%以下に減速する層をいう。
 このような境界層の影響を減少させるために、たとえば、特許文献1に示すように、風洞試験装置の測定部に、境界層吸込み装置が設けられている。
この境界層吸込み装置は、測定部に設けた実車の上流側の床面からジェット気流を吸取り、大気に放出することによって、境界層の影響を減少させるようにしていた。より詳細には、境界層吸込み装置は、測定部において、被試験体である実車の上流側の測定部の床面にジェット気流を吸込む吸込み口と、吸込んだジェット気流を送給する吸込みダクトと、ジェット気流を吸込む吸込みポンプとからなる。
このような構成により、吹出口から噴出したジェット気流で生じる境界層を吹出口から吹出したジェット気流の流れ方向に対して直角方向に吸込み、吸込みダクトを介して吸込みポンプにより吸込み、排出空気として排出することで、境界層の影響を抑制しつつ、被試験体の風速分布などの試験を行うようにしていた。
しかしながら、吸込み口内に流入してきたジェット気流の流れが転向する時、ジェット気流の流れが転向することにより淀み圧が生じ、この淀み圧に起因してジェット気流の流れが転向するジェット気流の主流方向の後流側での静圧が上昇するため、吹出口から吹出すジェット気流の主流方向の流れが阻害され、風速低下を生じてしまう、という問題が生じていた。
この点、たとえば、特許文献2において、ノズルによって吹出し、吸込みを行う装置では、地面板上の境界層を一様に無くすことは困難である一方、移動べルトを用いた装置では、高速の風洞試験が不可能であることから、風洞用地面模擬装置として、風洞内に設けられ風洞気流とほぼ平行に配置された地面を模擬する地面板の上表面を、境界層を吸込むため多数の微細孔を全面に有するポーラス面で形成し、ポーラス面の下には、風洞気流の流れ方向に分割されたチャンバが設けられ、チャンバは吸込みダクトを介して吸込みポンプに接続され、チャンバと吸込みダクトの間には各チャンバからの吸込み流量を設置するバルブが 複数個設けられ、同バルブの開度は、コンピュータの指示により、バルブコントローラにより設定されるようになっているものが開示されている。
特許文献2において、このような風洞用地面模擬装置によれば、簡単な構成の装置によって、地面板のポーラス表面の多数の微細孔を経て地面板上に発達する境界層を一様に、かつ、効果的に吸引することができ、風洞試験において地面板上の境界層による影響を無くすることができ、航空機の飛行、車両の走行等の状態を正確に模擬することができる点が記載されている。
しかしながら、特許文献2には、地面板上に発達する境界層を一様に、かつ、効果的に吸引するうえでの、チャンバを風洞気流の流れ方向に分割する意義、および/または各チャンバに設けられる、多数の微細孔を具備するポーラス表面の意義については、必ずしも明らかにされていない。
この点、たとえば、特許文献3に示すように、吸込んだジェット気流に起因して吹出口から吹出すジェット気流の主流方向の流れが阻害されるのを低減し、風速低下を軽減した境界層制御装置及び風洞試験装置境界層が開示されている。
この境界層制御装置は、環状に連続する送風路を通じて、送風機によりジェット気流を循環回流させ、吹出口を 通じて測定部に前記ジェット気流を吹き出す際、ジェット気流の主流空気が床界面側で発生する境界層をジェット気流の主流方向に対して鉛直軸方向に吸込み、排出する 吸込みダクトを有する境界層制御装置であって、吸込みダクト内に吸込まれたジェット気流の淀み圧を低減し、ジェット気流の主流方向の流れの阻害を低減するのに、吸込みダクトの上流側に形成され、ジェット気流の一部を吸込みダクト内に導く導風部や、吸込みダクトの吸込み口の下流側の縁近傍に湾曲部を設けたり、吸込みダクトの吸込み口の下流側に鍔部を設けたりすることにより、ジェット気流の主流空気が床界面側で発生する境界層をジェット気流の主流方向に対して鉛直軸方向に吸込み、排出する吸込みダクト内に吸込まれたジェット気流の淀み圧を低減することができるため、ジェット気流の主流方向の流れの阻害を低減することができる。
しかしながら、このような境界層制御装置は、風洞の吹き出し口直後における床界面側で発生する境界層の吸い込みに関し、ジェット気流の主流方向の流れの阻害を低減するに過ぎず、以下に示すように、車両下面と床面との間、あるいは、車両後部背面での風速分布および/または流れ方向の正確な模擬には不十分である。
すなわち、風洞の吹き出し口の直下流部、すなわち風速分布測定試験対象である車体の上流側に、境界層制御装置が設けられるに過ぎず、境界層は、ジェット気流の主流層と床面との間の抵抗に起因して生じるものである以上、車体の前部から後部に至るまでの、数メートルに及ぶ車体の前後方向長さを主流が通過する際にも、境界層の発生は避けがたく、風洞の吹き出し口の直下流部にのみ境界層制御装置を設けるだけでは、実走行では発生しない床面境界層の発達によって、車両の下面と床面との間の気流(風速分布および/または流れ方向)が阻害される点に対して、対処不十分となる。
 この場合、車両の下面に相当する床面に、同様に境界層制御装置を設けるとすれば、車両の下面と床面の間の静圧分布を考慮しないと境界層吸込み面において部分的な境界層の吸込みムラが生じる。
単に車両まわりの風速分布を測定するのではなく、実走行を模擬した燃費、電費(EV車)、エアコン試験、熱マネージメント試験、吹雪試験、雨試験等を行うには、走行模擬車両まわりの精度の高い風速分布および/または流れ方向の再現が必須であるところ、このような主流への阻害により、信頼性の高い評価が困難となる。
一方、走行車両の車両後部背面での吹き上がり現象を模擬するには、車両後部背面に生じ得る渦の再現が必要であり、この意味において、気流の風速分布および/または流れ方向が重要となる。
この点に関連して、走行模擬は、通常、風洞外の測定室に車両を配置し、車輪を床面下方に設置するダイナモローラーの回転により回転させつつ、車両の前方から後方に向けてジェット気流を流して、走行中の風速を模擬することにより行われる。
ダイナモローラーは、通常、風洞内の床面に設けられた開口から上方に臨むように、開口に対して非接触態様で設けられ、開口とダイナモローラーの周縁との間に不可避的に隙間を設けざるを得ないところ、ダイナモローラーの回転に伴って、または、ダイナモ設置室と、車両下面と床面との間のスペースとの間の静圧差に起因して、測定室から引き込む連行気流や、測定室へ流出する連行気流が不可避的に発生し、連行気流は、床面の開口を介して、車両の下面と床面との間のスペース内に斜流として、風洞内のジェット気流と同様、車両の前後方向へ流れる。
それにより、スペース内で、風洞内のジェット気流が乱され、精確に走行模擬した試験を行うことが困難となる。
昨今、ラジエタからの排熱の車両下部への放熱評価や、電燃試験の一部として、電気自動車のバッテリーの走行中の放熱評価を行うのに、バッテリーは、車両の下部に設置されることから、車両の下面と床面とのスペースを流れる気流による放熱試験は重要である。
このような技術的問題は、走行模擬速度が高くなるほど、連行気流が強くなるので、顕著となる傾向である。
以上のように、従来、風洞試験設備を利用する際、床面近傍に発生する境界層を吸い込む点について、注目はされていたが、特に、車両下面と床面との間のスペース内をジェット気流が流れる場合において、境界層の吸込による、スペース内の車両前後方向において発生する風速ムラおよび/または流れ方向ムラについてはなんら着目されておらず、車両下面と床面との間のスペース内のジェット気流の状態を走行車両と同等な状態に模擬するものは皆無であった。
 
実公平1-29558号公報 特開平06-213764号公報 特開2009-156695号公報
以上の技術的問題点に鑑み、本発明の目的は、風洞設備において静止車両を利用して、走行中の車両の下面と床面、および車輛後部背面の風速分布および/または流れ方向を過大なコスト増を招くことなく実用的に、精度よく模擬可能な境界層制御装置及び風洞試験装置を提供することにある。
以上の技術的問題点に鑑み、本発明の目的は、風洞設備において静止車両を利用して、走行中の車両の下面と床面、および車輛後部背面の風速分布および/または流れ方向を精度よく模擬可能な境界層の制御方法を提供することにある。
 上記課題を達成するために、本発明の境界層制御装置は、
風洞内で発生させるジェット気流を車両に吹き付ける場合において、
車両下面と床面との間のスペース内に生じるジェット気流の境界層を吸い込み可能なように、車両が覆うように上方に配置される境界層吸い込み面が床面に設けられ、
 床面の下方には、該境界層吸い込み面に臨む吸い込みダクトが設けられ、
 該境界層吸い込み面を介して、境界層を吸い込む吸い込み手段と、吸い込み手段により吸い込む境界層の吸い込み量を調整する吸い込み量調整手段とを、有し、
さらに、ジェット気流が車両下面と床面との間のスペースを車両の前後方向に流れる際に発生する車両下面と床面との間のスペースの車両前後方向の静圧分布を調整可能な静圧分布調整手段を有する、構成としている。
以上の構成を有する境界層制御装置によれば、風洞内に吹き出し口に向かって、たとえば送風機によりジェット気流を吹き出し口の下流に配置された車両に向かって吹き出す際、ジェット気流の主流に対して、車両の下面と床面との間には、境界層が生じるところ、車両が覆うように上方に配置される境界層吸い込み面を通じて、境界層吸い込み面に臨む吸い込みダクト内に、境界層を吸い込む吸い込み手段により、境界層を吸い込むことが可能であり、この場合、静圧分布調整手段により、ジェット気流が車両下面と床面との間のスペースを車両の前後方向に流れる際に発生する車両下面と床面との間のスペースの車両前後方向の静圧分布を調整可能であることから、ジェット気流が車両下面と床面との間のスペースを車両の前後方向に流れる際、床面近傍の境界層を吸い込むのに、境界層の吸い込みに起因して、実走行で発生する車両下面と床面との間のスペースの車両前後方向の静圧分布から乖離するのを抑制可能であり、それにより、車両下面と床面との間のスペースにおいて、車両の前後方向に、実走行と異なる風速分布および/または流れ方向が生じたり、吸い込みダクト内から車両下面と床面との間のスペースへの逆流を抑制することが可能であり、以て、走行模擬車両を用いて、実走行に近似した精緻な試験を行うことが可能となる。
前記静圧分布調整手段は、ジェット気流が車両下面と床面との間のスペースを車両の前後方向に流れる際の、車両下面と床面との間のスペースの静圧と、床面下方の該吸い込みダクト内の静圧との静圧差を調整可能な静圧差調整手段を有するのがよい。
また、前記静圧差調整手段は、車両下面と床面との間のスペースの静圧に対して、床面下方の該吸い込みダクト内の静圧を調整する手段を有するのがよい。
さらに、前記静圧差調整手段は、床面下方の該吸い込みダクト内の静圧に対して、車両下面と床面との間のスペースの静圧を調整する手段を有するのがよい。
さらにまた、前記静圧差調整手段は、前記境界層吸い込み面の幅方向に亘って延びることにより、前記吸い込みダクトを複数の領域に仕切る仕切板であり、それにより、前記吸い込みダクトは、車両の前後方向に複数の領域に仕切られ、
 該仕切り板の車両の前後方向位置に応じて定まる分割された境界層吸い込み面の面積に応じて、前記吸い込み量調整手段により、各領域において、境界層の吸い込み量を調整するのがよい。
加えて、前記静圧差調整手段は、前記境界層吸い込み面に設けられた、吸い込みジェット気流に対する抵抗を形成する抵抗体を有するのがよい。
また、前記抵抗体は、多孔体であり、異なる抵抗係数の抵抗体が積層され、それにより、前記境界層吸込み面における吸込風速分布ムラおよび/または流れ方向ムラを低減するのがよい。
さらに、前記吸い込みダクトは、前記吸い込み手段に連通接続される吸い込み管を有し、該吸い込み管には、ダンパーが付設されるのがよい。
さらにまた、前記吸込みダクト内に吸込まれるジェット気流の淀み圧を低減する淀み圧低減手段をさらに有するのがよい。
加えて、各車輪下方の床面には、走行模擬装置が配置され、
走行模擬装置は、床面に設けられた開口と、
 該開口に対して、非接触式に回転可能に設けられる円筒状ダイナモローラーと、
 該ダイナモローラーを円筒の中心軸線を中心に回転駆動する回転駆動手段とを有し、
 該ダイナモローラーは、円筒の中心軸線が床面下方に位置するように配置され、
 前記ダイナモローラーの前記開口から臨む外周面に、車両の車輪を載置した状態で、前記ダイナモローラーを回転駆動することにより、車両の走行を模擬し、
 前記境界層制御装置は、車両の下面に対向する床面において、前記開口を除いた領域に配置されるのでもよい。
また、車両の下面に対向する床面において、前記 ダイナモローラーの開口の後方の所定位置に、前記境界層吸い込み面が位置するように、前記境界層制御装置を設け、前記境界層制御装置の前記境界層吸い込み手段が、前記ダイナモローラーの回転によって発生する連行気流、および/またはダイナモ設置室と車両の下面と床面との間の静圧差によりダイナモ設置室側から前記ダイナモローラーと前記開口との隙間を介する流入空気によって発生する連行気流が、前記開口を通じて、車両の下面と床面との間のスペースに及ぶのを抑制する連行気流抑制手段を兼ねるのでもよい。
さらに、風洞の吹き出し口直後に第2境界層制御装置がさらに設けられ、
 該第2境界層制御装置は、前記吸込みダクト内に吸込まれたジェット気流の淀み圧を低減する淀み圧低減手段を有し、それにより、ジェット気流の車両への吹き出し前に、車両下面と床面との間を流れるジェット気流の流れの阻害を低減するのがよい。
上記課題を達成するために、本発明の境界層制御方法は、
請求項1に記載の境界層制御装置を用いて、風洞内に発生するジェット気流を風洞外の測定室に配置される静止車両に向かって吹き出し、走行模擬する場合において、
車両を配置しない状態で、ジェット気流の速度を変えながら、車両設置エリアに生じる境界層の厚みを前記各領域に対応する前記境界層吸い込み面の部分において測定する段階と、
 測定した境界層の厚みに基づいて、前記各領域において、境界層の吸い込み量を調整する段階と、
 前記各領域において境界層の吸い込み量を調整した状態で、風洞内に発生するジェット気流を風洞外の測定室に配置される静止車両に向かって吹き出し、車両の各種試験を行う、構成としている。
さらに、車両の前後方向の各位置の車両下面と床面との間の静圧分布と、前記吸い込みダクト内静圧とを測定する段階と、
および/またはジェット気流の風速に応じて吸込み風量を調整しながら、前記抵抗体の各々の抵抗係数を調整する段階とを有し、
それにより、前記吸い込みダクト内の静圧を車両下面と床面との間の静圧よりも低くするのがよい。
また、車両前部側の前記境界層吸い込み面では、車両後部側および/または車両中央部の前記境界層吸い込み面よりも、抵抗係数を大きく設定するのがよい。
さらに、車両後部側の前記境界層吸い込み面では、車両前部側および/または車両中央部の前記境界層吸い込み面よりも、吸い込み量を小さく設定するのがよい。
上記課題を達成するために、本発明の風洞試験装置は、
請求項1に記載の境界層制御装置を有し、
風洞内に生じさせるジェット気流を吹出口を通じて、風洞外の測定室に配置される車両に向かって吹き出す際に、
ジェット気流の床面側で発生する境界層を床面に対してほぼ鉛直下方に吸込む、構成としている。
また、前記風洞は、回流式または吹き流し式であるのがよい。
さらに、前記境界層制御装置は、前輪と後輪との間の領域および/または一対の前輪間、および/または各前輪と前記境界層吸い込み面の縁部との間、および/または一対の後輪間、および/または各後輪と前記境界層吸い込み面の縁部との間に配置されるのがよい。
さらにまた、前記境界層制御装置は、さらに、車両の前端と前輪までの領域、および/または車両の後端と後輪までの領域に配置されるのがよい。
加えて、前記仕切り板は、車両の前後方向位置の調整可能であるのがよい。
また、前記各領域ごとに、前記抵抗体の開口率および/または積層数が調整されるのがよい。
上記課題を解決するために、本発明の走行模擬方法は、
風洞内で発生させるジェット気流を車両に向かって吹き付けることにより、走行模擬中の特定車両の下面と床面との間のスペース内に生じる境界層を、床面を境界層吸い込み面として、所定吸い込み量で吸い込む段階と、
走行模擬中の特定車両の下面と床面との間のスペース内の前後方向静圧分布を測定する段階と、
前記測定した前後方向静圧分布を、実走行中の特定車両の下面と走行面との間のスペース内の前後方向実静圧分布に近似させるように、境界層吸い込み面を前後方向に区分けし、区分けした境界層吸い込み面ごとに、区分けした境界層吸い込み面の面積に応じて、所定吸い込み量を調整することにより、前後方向静圧分布を粗調整する段階と、を有し、
それにより、走行模擬中の特定車両の下面と床面との間のスペース内のジェット気流の風速および/または流れ方向を実走行のそれに近似させる、構成としている。
さらに、区分けした境界層吸い込み面ごとに、境界層の吸い込み気流に対する区分けした境界層吸い込み面を通過する際の抵抗係数の選択により、境界層吸い込み面を境界とする上下方向静圧差を調整することにより、前記前後方向静圧分布を微調整する段階、を有するのがよい。
また、前記境界層の吸い込む段階は、ジェット気流速度に応じて、境界層厚みを算出する段階を含むのがよい。
図1ないし図6を参照しながら、本発明の境界層制御装置および/または走行模擬装置を具備する風洞試験装置の第1実施形態を以下に詳細に説明する。
風洞試験装置100は、内部にジェット気流MFを発生する風洞Tと、風洞Tの吹き出し口106と流入口108との間に設けられる測定室109に設けられる境界層制御装置10A,10Bおよび走行模擬装置34を有し、境界層制御装置10および/または走行模擬装置34いずれも、測定室109の床面FLの下方に設けられる。
図1に示すように、風洞試験装置100は、回流式であり、風洞T内にジェット気流MFを供給するファン( 送風機)101が設けられ、吸込口( コレクタ)で収集されたジェット気流MFをファン101により風速調整して、ほぼ環状に連続する送風路103を通じて強制的に循環回流させ、吹出口106を通じて測定室109 に対しジェット気流MFを吹き出すものであり、測定室109 から吸込口108 を通じてジェット気流MFを収集し、送風路103を通じて再びジェット気流MF を循環回流させるようになっている。吹出口106での風速は、ファン101の回転数により、送風路103を流れるジェット気流MFの定常流量として決定される。
 送風路103の途中の各コーナー部には、ジェット気流MFの流れの方向を変えるコーナーベーン105が設けられ、ファン101の下流側のコーナーベーン105の上流側には図示しない空気冷却装置( 熱交換器) が設けられ、吸込口106および吹出口108を囲んで、内部が測定部である測定室109が配置されている。測定室109には、被試験体である車両Vを配置し、ジェット気流MFを車両Vに向けて送給し、実走行を模擬した燃費、電費(EV車)、エアコン試験、熱マネージメント試験、吹雪試験、雨試験等などの試験を行うようにしている。
風洞Tは、測定室109がセミオープンタイプの回流型であり、測定対象である車両Vを設置する測定室109と、整流洞102、縮流洞104を経て、測定室109に開口する吹出し口106と、測定室109に開口する流入口108とを有し、たとえば、ファン101で発生した気流は、整流洞102、縮流洞104を経て、測定室109に開口する吹出し口106から測定室109に流入し、流入部107の流入口108へ流れ込むようになっている。
ファン101によって送風された気流は、いったん気流全体としての風速(動圧)を低下させて中間胴部における圧力(静圧)を上昇させた後、縮流洞を通過させることで、測定するのに必要十分な風量(風速)の気流を吹出し口から測定室に吹き出すことができるようにしている。
これにより、後に説明するように、測定室109内において、静止車両Vを走行模擬する際、設定する走行速度に応じて、車両Vの前方から後方に流れる平行気流を模擬するようにしており、設定する走行速度に応じて、ファン101により気流の風速を調整することにより、静止車両Vでありながら走行車両Vを模擬できるようにしている。
次に、走行模擬装置34が設けられる測定室内の床面FLの躯体構造について、説明すれば、床面FLの下方スぺ―スには、床面を天井とする建築コンクリート躯体構造であり、装置室内には、直方体状のスペースが形成され、スペース内に一対のダイナモローラー38及びダイナモとが概略設けられる。
天井は、車両Vが直接乗り入れられる床面FLを構成し、一対のダイナモローラー38の周面の上部がそれぞれ露出する開口36が形成されている。ダイナモローラー38及びダイナモは、底面上に支持されて装置室内に設けられている。
変形例として、ダイナモとダイナモローラー38とが、筐体に設けられた底板に支持されて装置室内に設けられ、筐体とともに一体となっていてもよい。これによれば、ダイナモ及びダイナモローラー38を、筐体を外郭としてユニット化して一体的に取り扱うことができ、また、全体として安定的である。このため、装置全体を一体的に容易にかつ安全に運搬し、また、所定の試験室内に容易に設置することができる。また、本実施形態では、天井が床面FLを構成するので、別途床面FLを設ける必要がなく、装置を設置するのみで良いので、設置コストの低減とともに、全体として装置スペースの低減を図ることができる。
なお、後述する境界層制御装置の吸い込みダクトについても、床面の下方に設ける点で走行模擬装置と共通であり、躯体構造も、上述と同様である。境界層制御装置の吸い込みダクトや後述する仕切り板の材質は、ステンレス材が最も好ましいが、防食の処理(溶融亜鉛メッキや塗装)を施した鋼材でもよい。
 
 次に、境界層制御装置について説明すれば、図2に示すように、測定部に配置される車両下方に設けられる第1境界層制御装置10Aと、車両の上流側の風洞吹き出し口106直下流に設けられる第2境界層制御装置10Bとが設けられ、いずれも、環状に連続する送風路を通じて、ファン( 送風機)によりジェット気流MFを強制的に循環回流させ、吹出口を通じて測定部にジェット気流MFを吹き出す際、ジェット気流MFの主流空気が床界面側で発生する境界層をジェット気流MFの主流方向に対して鉛直軸方向に吸込み、排出する吸込みダクトを有する点で共通である。
 先に、第2境界層制御装置10Bについて説明すれば、図3および図4に示すように、車両の上流側の床面に構成する境界層吸い込み面12からジェット気流MFを吸い込み、吸い込み管26を介してファン29により大気に放出することにより、境界層の影響を減少させるものであり、ジェット気流MFの一部を吸込みダクト内に導く導風部(図示せず)を設け、吸込んだジェット気流MFの流れの向きを転向させて、吸込みダクトに導くことにより、吸込んだジェット気流MFがジェット気流MFの主流方向に対して鉛直軸方向に転向する際の流れの転向角度を低減する結果、吸込みダクト内に吸込まれたジェット気流MFの淀み圧を低減し、以て、ジェット気流MFの主流方向の流れの阻害を低減するのでもよい。
風洞の吹き出し口直後に設けられる第2境界層制御装置10Bは、吸込みダクト内に吸込まれたジェット気流MFの淀み圧を低減する淀み圧低減手段(図示せず)を有し、それにより、ジェット気流MFの車両Vへの吹き出し前に、ジェット気流MFの主流方向の流れの阻害を低減するのでもよい。
吸い込みダクト14は、上面が床面FLを構成する床躯体構造に設けられる凹部により構成される。
次に、第1境界層制御装置10Aについて、車両Vの下面LSより広い面積を有する境界層吸い込み面12が床面FLに設けられる。なお、第1境界層制御装置10Aは、第2境界層制御装置10Bと同様に、吸い込みダクト内の空気を 吸い込み管26を介して、ファン29により大気に放出する点で共通である。
境界層吸い込み面12は、矩形状であり、車両Vが一対の前輪FWおよび一対の後輪RWそれぞれの下方には、後に説明する走行模擬装置の一部を構成する開口36が設けられ、境界層吸い込み面12は、車両Vの下面LSに対向する床面FLにおいて、開口36を除いた領域に設けられる。
 床面FLの下方に、境界層吸い込み面12に臨む吸い込みダクト14が設けられ、
 吸い込みダクト14は、車両Vの前後方向に複数の領域16に仕切られ、
各領域16は、境界層吸い込み面12を介して、境界層を吸い込む吸い込み手段18と、吸い込み手段18により吸い込む境界層の吸い込み量を調整する吸い込み量調整手段20とを、有する。境界層の吸い込み量は、仕切板22により仕切られ、複数の領域16(後述)の各領域に対応する境界層吸い込み面12の面積に応じて、調整する。
複数の領域16において、隣接する領域16は、仕切板22により仕切られ、複数の領域16各々は、直方体状スペースを構成する。
複数の領域16において、仕切り板は、境界層吸い込み面12の幅方向Wに亘って延びる。
各仕切板22の車両前後方向位置は、車両下面と床面の間の前後方向の静圧分布、複数の領域16それぞれの必要容積、あるいは、車両前後方向の長さに応じて決定すればよく、たとえば、走行模擬状態での車両の下面と床面との間の気流を精緻に模擬したい場合には、隣接する仕切り板の車両前後方向の間隔を狭め、その分、仕切板22の枚数を増やしてもよい。特に、車両Vの下面LSと床面FLの間の車輪に相当する領域の静圧は他の領域よりも低いことから、車輪に相当する領域は仕切板22にて分割するのがよい。
境界層吸い込み面12には、吸い込みジェット気流MFに対する抵抗を形成する抵抗体24が設けられる。
たとえば、抵抗体24としては、多孔な通気体、特に、多孔板により、開口率を変えた組み合わせが好ましく、多孔板のみでは強度がない場合は、多孔板の下部に強度のあるグリッドやグレーチング等で補強するのがよい。この場合、ジェット気流MFに直交する方向には、このような強度部材を設けないのが好ましい。
抵抗体24は、異なる抵抗係数の抵抗体24が積層され、各領域16ごとに、抵抗体24の種類および/または積層数が調整され、それにより、各領域において、車両Vの下面LSと床面FLとの間の静圧分布に応じて、抵抗体の抵抗係数が異なるようにして、各領域内の境界層吸込み面12における部分的な吸込風速分布ムラを低減する。
吸い込みダクト14は、吸い込み手段18に連通接続される吸い込み管26を有し、吸い込み管26には、ダンパー27が付設され、通常どおり、ダンパー27の調整により、吸い込み管26内を流れる吸い込み空気の流量を調整可能である。
仕切りおよび/または抵抗体24は、車両Vの前後方向に可動であり、それにより、複数の領域16の各領域16の車両Vの前後方向の隣接する仕切り間の間隔が調整可能である。
これにより、試験目的、車型、同じ車型での走行模擬速度の変動等に応じて、各領域16の車両Vの前後方向の隣接する仕切り間の間隔を調整してもよい。
吸い込み手段18は、ファンであり、吸い込み量調整手段20は、ファンの回転数を制御するインバータ(図示せず)により、吸い込み量を調整するのでもよい。
複数の領域16において、ファンが共用されるのでもよく、たとえば、抵抗体24および/またはダンパー27との組み合わせにより、各領域16において境界層の適切な吸い込みが可能である限り、複数の領域16すべてについて、ファンを共用するのでもよい。
ジェット気流MFが車両Vの下面LSと床面との間のスペースを車両Vの前後方向に流れる際に発生する車両Vの下面LSと床面との間のスペースの車両前後方向の静圧分布を調整可能な静圧分布調整手段を有し、静圧分布調整手段は、車両Vの下面LSと床面との間のスペースと、床面下方の吸い込みダクト14内の静圧差を調整可能な静圧差調整手段32をさらに有する。
静圧差調整手段32は、吸い込みダクト14を車両の前後方向に仕切る複数の仕切り板22と、仕切り板22により仕切られる吸い込みダクト14の各領域に対応する境界層吸い込み面12に設ける抵抗体24とに構成される。
実走行の車両において、ジェット気流MFが車両Vの下面LSと床面との間のスペース内に前後方向に静圧分布が生じるところ、境界層吸込みに起因して、走行模擬車両においては、このような前後方向静圧分布から乖離する。より詳細には、仕切り板22により仕切られた各領域において、境界層吸い込み面12を介する吸い込み気流の風速ムラおよび/または流れ方向ムラが、スペース内の前後方向静圧分布に影響を及ぼすことから、車両Vの下面LSと床面との間のスペース内の静圧と、吸い込みダクト14内の静圧との差を調整することにより、このような吸い込み気流の風速ムラおよび/または流れ方向ムラを低減し、以て、走行模擬車両における車両Vの下面LSと床面との間のスペース内の前後方向の静圧分布を、実走行のそれに近似させるために、静圧分布調整手段を設けるものであり、静圧分布調整手段は、ジェット気流が車両Vの下面LSと床面との間のスペースを車両Vの前後方向に流れる際の、車両Vの下面LSと床面との間のスペースの静圧と、床面下方の吸い込みダクト14内の静圧との静圧差を調整可能な静圧差調整手段32を有し、静圧差調整手段32は、具体的には、抵抗体24の抵抗係数を異ならせたり、同抵抗係数または異なる抵抗係数のものを積層させて構成する。
複数の抵抗体24を積層するのに、同じ開口率の抵抗体24を用いる場合には、各抵抗体24の孔の中心をずらして積層することにより、全体的な開口率の調整が可能であり、異なる開口率の抵抗体24を用いる場合には、孔径が大で、強度を厚みにより確保した多孔体と、孔径が小さい軽量な金網との積層でもよい。
いずれの場合においても、車両Vの下面と床面FLとの間のスペースの静圧分布が車種によって異なる場合に備えて、基本となる抵抗体24を固定設置し、取り外し可能に、調整用抵抗体24を追加積層するのでもよい。
変形例として、車両の下面LSに対向する床面FLにおいて、ダイナモローラー38の開口36の後方の所定位置に、境界層吸い込み面が位置するように、境界層制御装置10を設け、境界層制御装置10の境界層吸い込み手段が、ダイナモローラー38の回転によって発生する連行気流、および/またはダイナモ設置室と車両Vの下面LSと床面FLとの間の静圧差によりダイナモ設置室側からダイナモローラー38と開口36との隙間を介する流入空気によって発生する連行気流が、開口36を通じて、車両Vの下面LSと床面FLとの間のスペースに及ぶのを抑制する連行気流抑制手段を兼ねるのでもよい。
境界層制御方法は、上述の境界層制御装置10を用いて、風洞内に発生するジェット気流MFを風洞外の測定室109に配置される静止車両Vに向かって吹き出し、走行模擬する場合において、
車両を配置しない状態で、ジェット気流MFの速度を変えながら、車両V設置エリアに生じる境界層の厚みを各領域16に対応する境界層吸い込み面12の部分において測定する段階と、
 測定した境界層の厚みに基づいて、境界層吸い込み面12における吸い込む風速ムラを低減するように、各領域16において、抵抗係数および/または境界層の吸い込み量を調整する段階と、
 各領域16において境界層の吸い込み量を調整した状態で、風洞内に発生するジェット気流MFを風洞外の測定室109に配置される静止車両Vに向かって吹き出し、車両Vまわりの風速分布を測定し、各種試験を行う。
より詳細には、さらに、車両Vの前後方向の各位置の車両下面と床面FLとの間の静圧と、吸い込みダクト14内静圧とを測定する段階と、
および/またはジェット気流MFの風速に応じて吸込み風量を調整しながら、抵抗体22の各々の抵抗係数を調整する段階とを有し、
それにより、吸い込みダクト14内の静圧を車両下面と床面FLとの間の静圧よりも低くする。
吸い込み手段における最大吸い込み量については、境界層内の速度勾配が急激であることから、境界層厚さ、境界層吸い込み面の幅(車両の幅方向)、および/または主流であるジェット気流MFの流速により、安全率を考慮して設定すればよい。
このような最大吸い込み能力を具備する吸い込み手段を用いる際、仕切板により仕切られた各領域において、各領域における境界層吸い込み面の面積に応じて、境界層吸い込み面における吸い込み気流の流速(面風速)が定まるところ、境界層吸い込み面の面積が過小であると、吸い込み気流の流速が過大となり、それにより、車両下面と床面との間のスペースにおいて、各領域に対応する部分の静圧が高くなり、実走行の車両V周囲の静圧場から乖離することになるので、仕切板により仕切られた各領域の車両前後方向の長さは、このような影響がない程度に確保するのが好ましい。
また、車両前部側の境界層吸い込み面12では、車両後部側および/または車両中央部の境界層吸い込み面12よりも、抵抗体24の選択により、流れ抵抗を大きく設定するのがよい。これにより、車両前部側の境界層吸い込み面12では、車両後部側に比べて、静圧が低いので、場合により、吸い込みダクト内から床面FLと車両Vの下面LSとの間のスペースへ逆流が発生するところ、このような逆流を抑制し、境界層吸い込み面12の前後方向における吸い込み風速ムラを低減することが可能である。
 さらに、車両後部側の境界層吸い込み面12では、車両前部側および/または車両中央部の境界層吸い込み面12よりも、吸い込み量を小さく設定するのがよい。これにより、車両Vの後部での風の吹き上がり現象を再現しやすくすることが可能である。
このような境界層制御方法によれば、実際の試験設備における実測値に基づいて、境界層の厚みを測定するので、たとえば、数値シミュレーションまたは平板に沿う層流の理論式に基づいて境界層の厚みを決定するのに比べて、実設備では施工精度に伴う境界の厚みがシミュレーションや理論式よりも厚くなることから、より精緻に境界層の制御を行うことが可能であり、走行模擬車両を用いた試験目的に応じて、ジェット気流MFの速度の変動範囲を決定すればよい。
以上、風洞は、風洞内に生じさせるジェット気流MFを吹出口を通じて、風洞外の測定室109に配置される車両Vに向かって吹き出す際に、ジェット気流MFの主流が床面FL側で発生する境界層を床面FLに対してほぼ鉛直下方に吸込み可能である限り、風洞は、回流式または吹き流し式でよい。
以上の構成を有する境界層制御装置によれば、風洞T内に吹き出し口に向かって、たとえば送風機によりジェット気流MFを吹き出し口の下流に配置された車両Vに向かって吹き出す際、ジェット気流MFの主流に対して、車両Vの下面と床面FLとの間には、境界層が生じるところ、車両が覆うように上方に配置される境界層吸い込み面12を通じて、境界層吸い込み面12に臨む吸い込みダクト14内に、境界層を吸い込む吸い込み手段により、境界層を吸い込むことが可能であり、この場合、静圧差調整手段32により、ジェット気流MFが車両下面と床面FLとの間のスペースを車両の前後方向に流れる際に発生する車両下面と床面FLとの間のスペースの車両前後方向の静圧分布を調整可能であることから、ジェット気流MFが車両下面と床面FLとの間のスペースを車両の前後方向に流れる際、床面近傍の境界層を吸い込むのに、境界層の吸い込みに起因して、実走行で発生する車両下面と床面FLとの間のスペースの車両前後方向の静圧分布から乖離するのを抑制可能であり、それにより、車両下面と床面FLとの間のスペースにおいて、車両の前後方向に、実走行と異なる風速分布および/または流れ方向が生じたり、吸い込みダクト14内から車両下面と床面FLとの間のスペースへの逆流を抑制することが可能であり、以て、走行模擬車両Vを用いて、実走行に近似した精緻な試験を行うことが可能となる。
 次に、走行模擬装置34の詳細について、図5を参照しながら、説明する。
 走行模擬装置34は、風洞Tにより内部に気流を流す測定室109の床面FL下方に設置され、測定室109内には、測定対象である車両Vが設置され、静止車両Vの車輪WHが走行模擬装置34により回転駆動されるように構成している。
測定室109内に、一対の前輪FWおよび一対の後輪RWそれぞれ(図面では、それぞれ1つを表示)に対して、走行模擬装置34が対応して設けられている。これらの走行模擬装置34を用いて、測定室109上に進めた自動車の各種特性が測定される 。
各ダイナモローラー38は、床面FL下方のダイナモ設置室内に設けられ、自身の中心軸に設けられた回転軸13が、底板上に設けられた軸受(図示せず)に回転可能に支持されている。両ダイナモローラー38の間には、連結軸(図示せず)が同軸配置され、両ダイナモローラー38の回転軸とカップリング(図示せず)によって連結されており、これにより両ダイナモローラー38は一体的に回転可能となっている。
ダイナモは、ダイナモローラー38の回転駆動源で液冷式であり、入出力軸(図示せず)は、一方のダイナモローラー38の回転軸と同軸配置されていて、ロック用ディスク(図示せず)によって連結されている。また、ダイナモの入出力軸には、トルクメータ(図示せず)が設けられており、入出力軸におけるトルクを検出可能となっている。
走行模擬装置34は、測定室109上に進めた自動車の車輪WHを、測定室109の床面FLに設けた開口36から天頂部を露出させたダイナモローラー38の上に配置して走行させながら、ダイナモでダイナモローラー38を介して車輪WHにトルクを加えたり、車輪WHより加わるトルクをロードセル(図示せず)で計測するように構成している。
本実施形態に係る走行模擬装置34としては、各々一つのダイナモローラー38と 一つのダイナモとを備えた四つの走行模擬装置34を用いる代わりに、 各々車輪WHがひとつずつ載置される二つのダイナモローラー38とこの二つのダイナモローラー38を回転駆動する一つのダイナモを備えた走行模擬装置34を用いるようにしてもよい。
各開口36について、開口36の上流縁24および下流縁28の直下方には、中実バー状のセンタリングパイプ35が開口36の幅方向Wに亘って設けられ、各センタリングパイプ35は、開口36の床面FLの長手方向中心位置から等距離に位置決めされ、車両Vを測定室109内で位置決めする際、車両Vの車輪WHを対応する開口36に対してセンタリングして、対応するダイナモローラー38により回転駆動可能なように、その目安として利用される。
以上の走行模擬装置34においては、車両Vは、ダイナモローラー38の円筒の中心軸線に対して、直交する向きに、風洞T外の測定室109に配置され、風洞T内で、車両Vの前方から後方に向かって、床面FLから少なくとも車高までの高さに亘って、ジェット気流MFを送るように構成され、開口36に対して、非接触式に回転可能に設けられる円筒状ダイナモローラー38が、円筒の中心軸線が床面FL下方に位置するように配置され、ダイナモローラー38の開口36から臨む上部外周面に、車両Vの車輪WHを載置した状態で、ダイナモローラー38を回転駆動することにより、車両Vの走行を模擬するようにしている。
 さらに、各開口36について、ダイナモローラー38の上部外周面の最上部23は、床面FLと面一に設定されるところ、ダイナモローラー38の回転によって発生する連行気流、および/またはダイナモ設置室と車両下面LSと床面FLとの間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流B1,B2が、開口36を通じて、車両V下面LSと床面FLとの間のスぺースに及ぶのを抑制する連行気流抑制手段21を、開口36とダイナモローラー38との間の隙間Cに設ける。
より詳細には、開口36は矩形状であり、連行気流抑制手段21は、開口36の上流側縁24と対応するダイナモローラー38との隙間C、および/または開口36の下流側縁28と対応するダイナモローラー38との隙間Cそれぞれに配置される平板である
 図5に示すように、開口36の大きさは、ダイナモローラー38の大きさに依存し、ダイナモローラー38に接触しない観点から定められるが、通常、幅Wは600ミリないし700ミリ、気流の流れ方向の長さLは600ミリないし700ミリであり、ダイナモローラー38と開口縁との隙間Cは、通常、幅は10ミリないし20ミリである。
平板の材質、大きさは、連行気流抑制手段21により連行気流を有効に抑制する観点から、適宜定めればよく、たとえば、材質は、柔軟性が確保される限り任意であり、金属製、樹脂製等、大きさについて、幅は、開口36の幅に亘ることにより、床面FLに常設固定されるのでよく、車両Vの前後方向の長さは、開口36の上下流縁24、28それぞれから最上部23までの半分を覆う程度でよい。常設固定であれば、車両Vが上を通過する際、耐える程度の厚みが必要である。なお、常設固定でなく、取り外し式としてもよい。
連行気流としては、以下に示すダイナモローラー38の回転によって発生する連行気流、および/またはダイナモローラー38が収容されるダイナモ設置室と車両下面と床面との間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流があり得る。
この場合、図5に示すように、ダイナモローラー38の開口36から、車両Vの下面LSと床面FLとの間のスぺースに向かう吹き出し(流入空気)流による連行気流B1に対しては、開口36の上流側縁24に設けられる平板21Aがスぺースに及ぶのを抑制する一方、ダイナモローラー38の開口36からの下向きの回転により発生する、車両Vの下面LSと床面FLとの間のスぺースからの吸い込み連行気流B2に対しては、開口36の下流側縁28に設けられる平板21Bが吸い込まれるのを抑制することが可能である。
 ダイナモローラー38の周縁と開口36の周縁との間には、所定隙間が設けられ、ダイナモ設置室と車両Vの下面LSと床面FLとの間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流は、主として、所定隙間を通じて、車両Vの下面LSと床面FLとの間のスペースに及ぶ。
この場合、車両Vの下面LSに対向する床面FLにおいて、ダイナモローラー38の開口36の後方の所定位置に、境界層吸い込み面12が位置するように(図13の12Fおよび12G参照)、境界層制御装置10を設け、境界層制御装置10の境界層吸い込み手段18が、ダイナモローラー38の回転によって発生する連行気流、および/またはダイナモ設置室と車両Vの下面LSと床面FLとの間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流が、開口36を通じて、車両Vの下面LSと床面FLとの間スペースに及ぶのを抑制する連行気流抑制手段を兼ねるのが好ましい。
図13に示すように、開口36に対応するダイナモ設置室と、境界層吸い込み面12Fおよび12G各々に対応する吸い込むダクト14とは、連通せずに、互いに仕切られているが、境界層吸い込み面12Fおよび12G各々の前縁と開口36の後縁との間の間隔は、上述のように、境界層吸い込み手段18が、連行気流抑制手段を兼ねるのが可能な観点から定めるのがよい。
たとえば、車輪FWの回転を停止した試験の場合には、ダイナモローラー38を回転させないことから、ダイナモローラー38の回転に伴う連行気流は発生しないが、ダイナモ設置室と車両Vの下面LSと床面FLとの間の静圧差により、静圧が高いダイナモ設置室側からダイナモローラー38のローラー端面と開口36との隙間を介する流入空気による連行気流が発生し、車両Vの下面LSと床面FLとの間の気流を大きく乱す場合があり、この場合には、境界層吸い込み面12Fおよび12Gが、特に有効に機能し、車両Vの下面LSと床面FLとの間の境界層を吸い込むとともに、このような流入空気を吸い込みダクト14内へ吸い込み可能とし、車両Vの下面LSと床面FLとの間の気流の乱れを抑制することも可能となる。
以上の構成を有する走行模擬装置34について、以下に、走行模擬装置34を用いる走行模擬方法として、その作用を説明する。
走行模擬装置34を用いる走行模擬方法は、概略的には、風洞T外の測定室109の床面FLに設けられた開口36から外周面40が臨むダイナモローラー38に、車両Vの車輪WHを載置する段階と、開口36とダイナモローラー38の周縁との間の隙間Cを狭める段階と、
風洞T内でジェット気流MFを車両Vの前方から後方に向けて流しつつ、ダイナモローラー38の回転により車輪WHを回転させる車両Vの走行模擬段階とから構成され、隙間Cを狭める段階は、連行気流抑制手段21により実現可能である。
この場合、隙間を狭める段階は、連行気流抑制手段21を用いて行うが、連行気流抑制手段21は、取り外し式または可動式であり、車輪WHが対応する開口36に位置決めされるように、車両Vを床面FL上で移動する際は、連行気流抑制手段21を取り外し、または可動として、車両Vの移動後に、取り付ける段階を有するのがよい。
より詳細には、風洞T外の測定室109で、車両Vの前方から後方に向かって、床面FLから少なくとも車高までの高さに亘って、ジェット気流MFを送りつつ、ダイナモローラー38の開口36から臨む上部外周面に、車両Vの車輪WHを載置した状態で、ダイナモローラー38を回転駆動することにより、静止車両Vにより、車両Vの走行を模擬することが可能である。
 その際、ダイナモローラー38の回転によって発生する連行気流、および/またはダイナモ設置室と車両Vの下面LSと床面FLとの間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流が、不可避的に発生し、車両Vの下面LSと床面FLとの間のスぺース内で風洞T外の測定室109のジェット気流MFが乱されるところ、開口36とダイナモローラー38の周縁との間の隙間Cに連行気流抑制手段21を設けることにより、および/または、ダイナモローラー38の開口36の後方の所定位置に、境界層吸い込み面12が位置するように境界層制御装置10を設けることにより、このような連行気流が床面FLの開口36を通じて、車両V下面LSと床面FLとの間のスぺースに及ぶのを抑制することが可能であり、以て、車両Vの走行に応じて生じる風速を模擬する風洞T内のジェット気流MFが車両Vの下面LSと床面FLとの間のスぺース内で乱されることを低減することが可能である。
それにより、実走行を模擬した燃費、電費(EV車)、エアコン試験、熱マネージメント試験、吹雪試験、雨試験等の各種試験を行うのに、電気自動車の下面LSと路面との間のスペース内において、ダイナモローラー38の回転によって発生する連行気流、および/またはダイナモ設置室と車両Vの下面LSと床面FLとの間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流により乱れることなく、車両Vの前方から後方へ通過する気流を精確に模擬し、放熱試験の信頼性を確保することが可能となる。
なお、車両Vが四輪駆動の場合には、ダイナモローラー38を利用して、前輪FWおよび/または後輪RWを同時に回転させることから、各車輪WHに対応する開口36に対して、連行気流抑制手段21を適用するのがよいが、車両VがFFまたはFRの場合には、 駆動されない後輪RWまたは前輪FWに対応する開口36に対しては、ダイナモローラー38を利用する必要がなく、車両Vの床下気流を重視する試験の場合には、開口36とダイナモローラー38とを一体で移動したり、開口36に蓋をするのがよい。
変形例として、連行気流抑制手段21は、開口36の上流側縁24および下流側縁28それぞれから、車輪WHとダイナモローラー38との最上部23に向かって延びるブラシ32であり、ブラシ32が、側縁の幅方向W全体に亘って、密接して設けられるのでもよい。
さらなる変形例として、連行気流抑制手段21は、床面FLを構成する床躯体構造を利用して支持され、床面FLの下面LSレベルからダイナモローラー38の上部外周面レベルまで及び、開口縁の延び方向に沿って延びる堰き止め面を備えた連行気流堰き止め部材でもよい。
さらなる変形例として、連行気流抑制手段21は、床面FLを構成する床躯体構造を利用して支持され、 吸い込み開口36を上流側に臨むように差し向けた、連行気流Bを吸い込む吸い込み管であり、吸い込み開口36は、床面FLとダイナモローラー38の上部外周面レベルとの間に設けられるのでもよい。
さらなる変形例として、連行気流抑制手段21は、床面FLを構成する床躯体構造を利用して支持され、開口36の対向側縁26に沿って延びる堰き止め板であり、堰き止め板の上縁は、床面FLレベルに設定され、下縁は、ダイナモローラー38の上部外周面に接触しない範囲に設定されるのでもよい。
さらなる変形例として、連行気流抑制手段21は、床面FLを構成する床躯体構造を利用して支持され、床面FLに対向する上面、ダイナモローラー38の上部外周面に対向する下曲面および床面FLからダイナモローラー38の上部外周面に向かって延びる後面とから構成されるほぼ三角形状断面を有し、下流縁28に沿って延びるエゼクタ流路形成部材であり、床面FLの下面LSとエゼクタ流路形成部材の上面との間に、上方エゼクタ流路、エゼクタ流路形成部材の下曲面とダイナモローラー38の上部外周面との間に、下方エゼクタ流路を形成するのでもよい。この場合、上方エゼクタ流路および下方エゼクタ流路の傾斜、長さは、連行気流抑制手段21により連行気流を有効に抑制する観点から、エゼクタ内部の空間が圧力の低下を引き起こし、外部の空気を吸い込むように、適宜定めればよく、これにより、ダイナモローラー38の開口36からの下向きの回転により発生する、車両Vの下面LSと床面FLとの間のスぺースからの吸い込み連行気流B2に対しては、開口36の下流側縁28に設けられるエゼクタ流路形成部材が吸い込まれるのを抑制することが可能である。
走行模擬速度が設定されると、それに応じて、ダイナモローラ―の回転数および風洞内に発生させるべきジェット気流速度が定められ、ジェット気流速度に応じて、境界層の厚みが定まり、境界層制御装置10による境界層吸い込み量が設定される一方、連行気流がダイナモローラ―の回転数により発生する場合には、ダイナモローラ―の回転数に応じて、連行気流の吸い込み量が定められ、ダイナモ設置室と車両下面LSと床面FLとの間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流の場合には、ジェット気流速度により定められるところ、一対の前輪FW間に設けられる領域16、あるいは、一対の後輪RW間に設けられる領域16における境界層吸い込み量は、車両の前後方向に隣接する走行模擬装置34による連行気流により影響を受けやすいことから、設定されるダイナモローラ―の回転数に応じて、各領域を仕切り仕切り板の車両前後方向位置を微調整するのでもよい。
以下に、本発明の第2実施形態について、図6を参照しながら説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について詳細に説明する。
本発明の第2実施形態の特徴は、第1境界層制御装置10Aにあり、第1実施形態においては、風洞の吹き出し口106直下流に設ける第2境界層制御装置10Bは、測定部に配置される車両の下方に設けられる第1境界層制御装置10Aとは、別個独立であるが、本実施形態においては、第1境界層制御装置10Aを第2境界層制御装置10Bと接続して設けた点、および第1境界層制御装置10Aの配置にある。
より詳細には、図6に示すように、第1境界層制御装置10Aの吸い込みダクト14と、第2境界層制御装置10Bの吸い込みダクト14とが、床面に設けた共通の単一凹部により構成され、第2境界層制御装置10Bの吸い込みダクトが仕切り板22により複数の領域16に仕切られているのと同様に、第1境界層制御装置10Aの吸い込みダクト14と、第2境界層制御装置10Bの吸い込みダクト14とが仕切り板により仕切られている。
第1境界層制御装置10Aの配置について、境界層吸い込み面12は、一対の前輪FWの間に構成される吸い込み面部12A、前輪FWと後輪RWとの間に構成される吸い込み面部12B、および一対の後輪RWの間に構成される吸い込み面部12C、車両Vの前端と前輪FWまでの領域12D、および車両Vの後端と後輪RWまでの領域12Eそれぞれに矩形状に区画されていてもよい。
車両Vの前端と前輪FWまでの領域12Dは、前輪FWより下流側の流れにとって支配的であり、一方、車両Vの後端と後輪RWまでの領域12Eは、車両Vの後部背面における吹き上がり現象を再現するのに重要である。
より詳細には、吸い込み面部12Aおよび12Cはそれぞれ、車両の前後方向には、車輪WHの長さに相当し、車両の幅方向には、車幅からダイナモローラ―用の開口の幅を除いた長さ、吸い込み面部12Bは、車両の前後方向には、前輪FWと後輪RWとの間隔、車両の幅方向には、車幅相当長さでよい。
なお、仕切り板22の前後位置の調整により、第1境界層制御装置10Aの吸い込みダクト14を第1境界層制御装置10Bの吸い込みダクト14の車両最前部の領域と連通接続してもよい。
以上のように、第1境界層制御装置10Aと第1境界層制御装置10Bとが別個独立である場合に比べて、試験条件に応じて、柔軟に調整可能である。
 本出願人は、境界層制御装置による境界層吸い込み効果を確認するために、以下に示す流動解析数値シミュレーションを行った。
 コンピューターによる数値シミュレーション用の3次元モデルを図8に示す。
流動解析ソフトは、市販されているFluent (version 19.2)である。
図8および図13に示すように、床面に配置される車両、前輪および後輪、および吸い込みダクトをモデル化しており、吸い込みダクトは、各前輪の下方に設置するダイナモローラ―用開口の後方(12Fおよび12G)、および一対の前輪の間と一対の後輪の間を延びるスペース(12A)、および一対の前輪の前部と一対の後輪の後部とをカバーする各車輪と境界層吸い込み面の縁との間のスペースに設置され、車両の前後方向に延びる中心線に関して軸対称であることから、車両の前後方向に延びる中心線に関して、一方の側のみをモデル化している。
床面に配置される車両に向かって、前後方向に流れる気流を前提に、吸い込みダクトから空気を吸い込む点を模擬している。
シミュレーション結果として、車両まわりの静圧分布の側面図を、図9および図10に示す。
図9に示すように、車両下面に対向する床面の下方に、車両の前部から後部に亘って吸い込みダクトを設ける場合には、車両下面と床面との間のスペース内において、車両前後方向の中央部あたりの境界層吸い込み面には、スペース内の他の部位に比べて静圧の低い部分が存在する。
このような静圧の低い部分の存在により、車両下面と床面との間のスペース内静圧と、対応する床面下方の吸い込みダクト内の静圧との差が、車両前後方向の位置により、異なる。それにより、図11に示すように、境界層吸込み面における吸込み気流の風速ムラが生じ、このために車両下面と床面との間のスペース内の気流に実走行と異なる風速分布および/または流れ方向が引き起される。このような風速分布および/または流れ方向が発生している状態では、床面近傍の境界層吸い込みはなされるとしても、静止車両による走行模擬した精緻な試験を行うことが困難である。
それに対して、図10に示すように、12Aにおいて、車両下面に対向する床面の下方に、車両の前部から後部に亘って吸い込みダクトを設け、吸い込みダクトを車両の前後方向に仕切る(5区画)とともに、12Eおよび12Fも含め、吸い込み量を設定し、各区画に対応する境界層吸い込み面に、所与抵抗係数の抵抗体を設ける場合には、車両下面と床面との間のスペース内静圧は、境界層吸い込み面近傍に亘って車両の前後方向に一様に、区画それぞれのダクト内静圧よりも高い状態が明示され、車両前後方向の中央部あたりの境界層吸い込み面には、静圧の低い部分が解消されている点が明示されている。
 よって、図12に示すように、車両下面と床面との間のスペース内の気流に実走行と異なる風速分布および/または流れ方向が発生するのが抑制され、床面近傍の境界層吸い込みを行うことにより、静止車両による走行模擬した精緻な試験を行うことが可能となる。
以上のシミュレーション結果によれば、車両の前後方向長さおよび/またはジェット気流の風速に応じて、吸い込みダクトを車両の前後方向に仕切り方法(区画数)および/または各区画に対応する境界層吸い込み面に設ける抵抗体の抵抗係数を調整することにより、床面近傍の境界層を吸い込む際、境界層吸い込み面における、吸い込み気流の風速ムラおよび/または方向ムラに起因する、車両下面と床面との間のスペース内の気流に実走行と異なる風速分布および/または流れ方向の発生が抑制可能である点が示されている。
以上、本発明の実施形態を詳細に説明したが、本発明の範囲から逸脱しない範囲内において、当業者であれば、種々の修正あるいは変更が可能である。
たとえば、本実施形態においては、各車輪に対してダイナモが床面下方に配置されているものとして説明したが、ダイナモが床面下方でなく、測定室内の床面よりも上部に設置される場合もあり、この場合には、ダイナモローラーによりダイナモを回転することにより、車輪が回転するのでなく、ダイナモがタイヤの回転軸と直結となることから、境界層吸込み面は、ダイナモローラーが無いので、各車輪を外したエリアに配置されることになる。
たとえば、本実施形態においては、境界層制御装置において、吸い込みダクトの仕切られた各領域において、境界層の吸い込み量を制御するのに、境界層吸い込み面に設ける抵抗体、吸い込む管に設けるダンパー27、吸い込みに利用する送風機の回転数または送風機内のダンパー27、いずれかを調整することにより行うものとして説明したが、各領域において、主流に阻害が生じないように境界層を適切に吸い込み可能である限り、各領域において、たとえば、ある領域は境界層吸い込み面に設ける抵抗体、別の領域は吸い込む管に設けるダンパー27等、異なる調整方法を用いてもよく、また、同じ領域において、境界層吸い込み面に設ける抵抗体、および送風機の回転数等の複数の調整方法を用いてもよい。
たとえば、本実施形態においては、境界層制御装置において、風洞の吹き出し口106直下流に設ける第2境界層制御装置10Bと、測定部に配置する車両の下方に設ける第1境界層制御装置10Aとを同時に駆動するものとして説明したが、これに限定されることなく、主流に阻害が生じないように境界層を適切に吸い込み可能である限り、たとえば、第1境界層制御装置10Aのみを駆動して、第2境界層制御装置10Bを休止したり、第1境界層制御装置10Aを停止して、第2境界層制御装置10Bのみを駆動したり、第1境界層制御装置10Aにおいて、各領域中、車両後部側のみを駆動したりするものでもよい。たとえば、風洞試験装置を利用して、車両に対して吹雪を模擬して、吹き付け試験を行う場合、境界層制御装置の吸い込みダクト内に境界層吸い込み面を介して、境界層を吸い込もうとすると、吹雪を吸い込むことにもなり、吹雪が境界層吸い込み面および/または吸い込む管内に付着して、面または管を閉鎖する自体が生じ得ることから、風洞の吹き出し口106直下流に設ける第2境界層制御装置10Bのみ駆動し、測定部に配置する車両の下方に設ける第1境界層制御装置10Aを停止、または、第1境界層制御装置10A中、車両後部側の領域のみを停止することにより、このような事態を防ぐのに有効である。
たとえば、本実施形態においては、境界層制御装置により、主流に阻害が生じないように境界層が適切に吸い込む際、風洞試験装置において、設定走行模擬速度に基づく所定ジョット気流速度のもとで、実際に発生する境界層の厚みを測定し、その測定結果に基づき、境界層制御装置による境界層吸い込み量を調整するものとして説明したが、これに限定されることなく、主流に阻害が生じないように境界層を適切に吸い込むことが可能である限り、実際の測定でなく、平板上の層流の理論式、または、流動モデルによる数値シミュレーション解析を利用するのでもよい。
たとえば、本実施形態においては、風洞試験装置において車両の走行を模擬する場合、設定する走行模擬速度に基づいて、風洞内に発生させるジェット気流速度を設定し、設定したジェット気流速度に応じて、境界層制御装置により、境界層吸い込み量を定めるものとして説明したが、これに限定されることなく、主流に阻害が生じないように境界層が適切に吸い込み可能である限り、同種車両の走行模擬をする場合、境界層吸い込み面に設ける抵抗体、吸い込む管に設けるダンパー27、吸い込みに利用する送風機の回転数または送風機内のダンパー27として同じ境界層吸い込み量調整方法による限り、予め走行模擬速度と境界層吸い込み量とをデータベース化しておくのでもよい。
たとえば、本実施形態においては、一つ車輪に対応する開口36の上流縁および下流縁に適用する連行気流抑制手段21は、同じであるものとして説明したが、これに限定されることなく、上流側がブラシ、下流側がブラシ、上流側が連行気流堰き止め部材、下流側がブラシでもよく、あるいは、一つの車輪の上流縁に複数の抑制手段を設置する、たとえば、ブラシと連行気流堰き止め部材とを同時に併用するのでもよく、一つの車輪の下流縁に複数の抑制手段を設置する、たとえば、ブラシとエゼクターとを同時に併用するのでもよい。
たとえば、第1実施形態において、各車輪に適用されるダイナモローラー38に対して、連行気流抑制手段21を開口36の上流縁および下流縁に設置する点について、車輪全体に共通のものとして説明したが、それに限定されることなく、ある車輪は、開口36の上流縁および下流縁、ある車輪は、開口36の上流縁のみ、ある車輪は、開口36の下流縁のみに設置でもよい。
たとえば、本実施形態において、車両V下面LSと床面FLとの間のスぺースに及ぶのを抑制する連行気流抑制手段21を設定したら、それに基づき、走行模擬する車両Vを用いて、性能試験、環境試験、耐久試験等を行うものとして説明したが、走行模擬する際、模擬走行速度に応じてダイナモローラー38の回転数、および風洞T内のジェット気流MFの速度が変動するところ、ダイナモローラー38の回転数に応じて、たとえば、第1実施形態の平板の位置または大きさを調整し、隙間を塞ぐ度合いを調整してもよい。
本発明の第1実施形態に係る風洞試験装置の全体概略図である。 本発明の第1実施形態に係る風洞試験装置の測定部の平面図である。 本発明の第1実施形態に係る風洞試験装置の測定部の詳細部分側面図である。 本発明の第1実施形態に係る風洞試験装置の測定部の境界層制御装置の詳細部分側面図である。 本発明の第1実施形態に係る風洞試験装置の測定部の境界層吸い込み面まわりの部分詳細側面図である。 本発明の第2実施形態に係る風洞試験装置の測定部の境界層制御装置を示す、図2と同様な平面図である。 風洞試験装置の測定部に配置される車両の下面と床面、および/または車両後部における気流を示す概略説明図である。 本発明の第1実施形態に係る風洞試験装置の測定部の境界層制御装置において、車両まわりの静圧分布の数値シミュレーション用の3次元モデル図である。 本発明の第1実施形態に係る風洞試験装置の測定部の境界層制御装置において、境界層吸い込みダクトを設ける場合の車両まわりの静圧分布のシミュレーション結果を示す側面図である。 本発明の第1実施形態に係る風洞試験装置の測定部の境界層制御装置において、境界層吸い込みダクトを複数の領域に分け、各領域の境界層吸い込み面に抵抗体を設ける場合の車両まわりの静圧分布のシミュレーション結果を示す側面図である。 図9における風速分布を示す側面図である。 図10における風速分布を示す側面図である。 図8の3次元モデル図における境界層吸い込み面の配置を示す平面図である。
V 車両
T 風洞
WH 車輪
RW 後輪
FW 前輪
W 幅方向
 B1,B2 連行気流
C  隙間
LS 下面
FL 床面
 MF ジェット気流 
 SW 渦
 10A 第1境界層制御装置
10B 第2境界層制御装置
12 境界層吸い込み面
14 吸い込みダクト
16 複数の領域
 18 吸い込み手段
20 吸い込み量調整手段
21 連行気流抑制板
22 仕切板
 24 抵抗体
 26 吸い込み管
27 ダンパー
29 送風機
30 インバータ
32 静圧差調整手段
34 走行模擬装置
36 開口
38 ダイナモローラー
 23 最上部
24 上流側縁
28 下流側縁
35 センタリングパイプ
100 風洞試験装置
101 ファン
102 整流洞
103 送風路
104 縮流洞
105 コーナーベーン
106 吹出し口
107 流入部
108 流入口
109 測定室

Claims (25)

  1. 風洞内で発生させるジェット気流を車両に吹き付ける場合において、
    車両下面と床面との間のスペース内に生じるジェット気流の境界層を吸い込み可能なように、車両が覆うように上方に配置される境界層吸い込み面が床面に設けられ、
     床面の下方には、該境界層吸い込み面に臨む吸い込みダクトが設けられ、
     該境界層吸い込み面を介して、境界層を吸い込む吸い込み手段と、吸い込み手段により吸い込む境界層の吸い込み量を調整する吸い込み量調整手段とを、有し、
    さらに、ジェット気流が車両下面と床面との間のスペースを車両の前後方向に流れる際に発生する車両下面と床面との間のスペースの車両前後方向の静圧分布を調整可能な静圧分布調整手段を有する、
     ことを特徴とする境界層制御装置。
  2. 前記静圧分布調整手段は、ジェット気流が車両下面と床面との間のスペースを車両の前後方向に流れる際の、車両下面と床面との間のスペースの静圧と、床面下方の該吸い込みダクト内の静圧との静圧差を調整可能な静圧差調整手段を有する、請求項1に記載の境界層制御装置。
  3. 前記静圧差調整手段は、車両下面と床面との間のスペースの静圧に対して、床面下方の該吸い込みダクト内の静圧を調整する手段を有する、請求項2に記載の境界層制御装置。
  4. 前記静圧差調整手段は、床面下方の該吸い込みダクト内の静圧に対して、車両下面と床面との間のスペースの静圧を調整する手段を有する、請求項2に記載の境界層制御装置。
  5. 前記静圧差調整手段は、前記境界層吸い込み面の幅方向に亘って延びることにより、前記吸い込みダクトを複数の領域に仕切る仕切板であり、それにより、前記吸い込みダクトは、車両の前後方向に複数の領域に仕切られ、
     該仕切り板の車両の前後方向位置に応じて定まる分割された境界層吸い込み面の面積に応じて、前記吸い込み量調整手段により、各領域において、境界層の吸い込み量を調整する、請求項2に記載の境界層制御装置。
  6. 前記静圧差調整手段は、前記境界層吸い込み面に設けられた、吸い込みジェット気流に対する抵抗を形成する抵抗体を有する、請求項2ないし請求項5のいずれか1項に記載の境界層制御装置。
  7. 前記抵抗体は、多孔体であり、異なる抵抗係数の抵抗体が積層され、それにより、前記境界層吸込み面における吸込風速分布ムラおよび/または流れ方向ムラを低減する、請求項6に記載の境界層制御装置。
  8. 前記吸い込みダクトは、前記吸い込み手段に連通接続される吸い込み管を有し、該吸い込み管には、ダンパーが付設される、請求項1に記載の境界層制御装置。
  9. 前記吸込みダクト内に吸込まれるジェット気流の淀み圧を低減する淀み圧低減手段をさらに有する、請求項1に記載の境界層制御装置。
  10. 各車輪下方の床面には、走行模擬装置が配置され、
    走行模擬装置は、床面に設けられた開口と、
     該開口に対して、非接触式に回転可能に設けられる円筒状ダイナモローラーと、
     該ダイナモローラーを円筒の中心軸線を中心に回転駆動する回転駆動手段とを有し、
     該ダイナモローラーは、円筒の中心軸線が床面下方に位置するように配置され、
     前記ダイナモローラーの前記開口から臨む外周面に、車両の車輪を載置した状態で、前記ダイナモローラーを回転駆動することにより、車両の走行を模擬し、
     前記境界層制御装置は、車両の下面に対向する床面において、前記開口を除いた領域に配置される、請求項1に記載の境界層制御装置。
  11. 車両の下面に対向する床面において、前記 ダイナモローラーの開口の後方の所定位置に、前記境界層吸い込み面が位置するように、前記境界層制御装置を設け、前記境界層制御装置の前記境界層吸い込み手段が、前記ダイナモローラーの回転によって発生する連行気流、および/またはダイナモ設置室と車両の下面と床面との間の静圧差によりダイナモ設置室側から前記ダイナモローラーと前記開口との隙間を介する流入空気によって発生する連行気流が、前記開口を通じて、車両の下面と床面との間のスペースに及ぶのを抑制する連行気流抑制手段を兼ねる、請求項10に記載の境界層制御装置。
  12. 風洞の吹き出し口直後に第2境界層制御装置がさらに設けられ、
     該第2境界層制御装置は、前記吸込みダクト内に吸込まれたジェット気流の淀み圧を低減する淀み圧低減手段を有し、それにより、ジェット気流の車両への吹き出し前に、車両下面と床面との間を流れるジェット気流の流れの阻害を低減する、請求項1に記載の境界層制御装置。
  13. 請求項1に記載の境界層制御装置を用いて、風洞内に発生するジェット気流を風洞外の測定室に配置される静止車両に向かって吹き出し、走行模擬する場合において、
    車両を配置しない状態で、ジェット気流の速度を変えながら、車両設置エリアに生じる境界層の厚みを前記各領域に対応する前記境界層吸い込み面の部分において測定する段階と、
     測定した境界層の厚みに基づいて、前記各領域において、境界層の吸い込み量を調整する段階と、
     前記各領域において境界層の吸い込み量を調整した状態で、風洞内に発生するジェット気流を風洞外の測定室に配置される静止車両に向かって吹き出し、車両の各種試験を行う、ことを特徴とする境界層制御方法。
  14. さらに、車両の前後方向の各位置の車両下面と床面との間の静圧分布と、前記吸い込みダクト内静圧とを測定する段階と、
    および/またはジェット気流の風速に応じて吸込み風量を調整しながら、前記抵抗体の各々の抵抗係数を調整する段階とを有し、
    それにより、前記吸い込みダクト内の静圧を車両下面と床面との間の静圧よりも低くする、請求項13に記載の境界層制御方法。
  15.  車両前部側の前記境界層吸い込み面では、車両後部側および/または車両中央部の前記境界層吸い込み面よりも、抵抗係数を大きく設定する、請求項13に記載の境界層制御方法。
  16.  車両後部側の前記境界層吸い込み面では、車両前部側および/または車両中央部の前記境界層吸い込み面よりも、吸い込み量を小さく設定する、請求項13に記載の境界層制御方法。
  17. 請求項1に記載の境界層制御装置を有し、
    風洞内に生じさせるジェット気流を吹出口を通じて、風洞外の測定室に配置される車両に向かって吹き出す際に、
    ジェット気流の床面側で発生する境界層を床面に対してほぼ鉛直下方に吸込む、風洞試験装置。
  18. 前記風洞は、回流式または吹き流し式である、請求項17に記載の風洞試験装置。
  19. 前記境界層制御装置は、前輪と後輪との間の領域および/または一対の前輪間、および/または各前輪と前記境界層吸い込み面の縁部との間、および/または一対の後輪間、および/または各後輪と前記境界層吸い込み面の縁部との間に配置される、請求項1に記載の境界層制御装置。
  20. 前記境界層制御装置は、さらに、車両の前端と前輪までの領域、および/または車両の後端と後輪までの領域に配置される、請求項19に記載の境界層制御装置。
  21. 前記仕切り板は、車両の前後方向位置の調整可能である、請求項5に記載の境界層制御装置。
  22. 前記各領域ごとに、前記抵抗体の開口率および/または積層数が調整される、請求項7に記載の境界層制御装置。
  23. 風洞内で発生させるジェット気流を車両に向かって吹き付けることにより、走行模擬中の特定車両の下面と床面との間のスペース内に生じる境界層を、床面を境界層吸い込み面として、所定吸い込み量で吸い込む段階と、
    走行模擬中の特定車両の下面と床面との間のスペース内の前後方向静圧分布を測定する段階と、
    前記測定した前後方向静圧分布を、実走行中の特定車両の下面と走行面との間のスペース内の前後方向実静圧分布に近似させるように、境界層吸い込み面を前後方向に区分けし、区分けした境界層吸い込み面ごとに、区分けした境界層吸い込み面の面積に応じて、所定吸い込み量を調整することにより、前後方向静圧分布を粗調整する段階と、を有し、
    それにより、走行模擬中の特定車両の下面と床面との間のスペース内のジェット気流の風速および/または流れ方向を実走行のそれに近似させる、ことを特徴とする、車両の走行模擬方法。
  24. さらに、区分けした境界層吸い込み面ごとに、境界層の吸い込み気流に対する区分けした境界層吸い込み面を通過する際の抵抗係数の選択により、境界層吸い込み面を境界とする上下方向静圧差を調整することにより、前記前後方向静圧分布を微調整する段階、を有する、請求項23に記載の車両の走行模擬方法。
  25. 前記境界層の吸い込む段階は、ジェット気流速度に応じて、境界層厚みを算出する段階を含む、請求項23または24に記載の車両の走行模擬方法。

     
PCT/JP2022/028665 2022-07-25 2022-07-25 境界層制御装置、境界層制御方法及び風洞試験装置、並びに車両の走行模擬方法 WO2024023899A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023513765A JP7286223B1 (ja) 2022-07-25 2022-07-25 境界層制御装置、境界層制御方法及び風洞試験装置、並びに車両の走行模擬方法
PCT/JP2022/028665 WO2024023899A1 (ja) 2022-07-25 2022-07-25 境界層制御装置、境界層制御方法及び風洞試験装置、並びに車両の走行模擬方法
JP2023082453A JP7407362B1 (ja) 2022-07-25 2023-05-18 境界層制御装置及び風洞試験装置
JP2023082452A JP7407361B1 (ja) 2022-07-25 2023-05-18 境界層制御装置及び風洞試験装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028665 WO2024023899A1 (ja) 2022-07-25 2022-07-25 境界層制御装置、境界層制御方法及び風洞試験装置、並びに車両の走行模擬方法

Publications (1)

Publication Number Publication Date
WO2024023899A1 true WO2024023899A1 (ja) 2024-02-01

Family

ID=86611088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028665 WO2024023899A1 (ja) 2022-07-25 2022-07-25 境界層制御装置、境界層制御方法及び風洞試験装置、並びに車両の走行模擬方法

Country Status (2)

Country Link
JP (3) JP7286223B1 (ja)
WO (1) WO2024023899A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7397392B1 (ja) * 2022-11-24 2023-12-13 三菱重工冷熱株式会社 走行模擬試験設備
CN116499686B (zh) * 2023-06-29 2023-08-22 中国航空工业集团公司沈阳空气动力研究所 一种风洞试验地面高速弹射模拟系统及模拟方法
CN117007274B (zh) * 2023-10-07 2023-12-29 中国空气动力研究与发展中心设备设计与测试技术研究所 一种亚声速风洞回路质量流量测量方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851249U (ja) * 1981-10-05 1983-04-07 三菱重工業株式会社 吹口位置調整式風洞
JPH01145542A (ja) * 1987-12-01 1989-06-07 Mitsubishi Heavy Ind Ltd 地面効果試験装置
JPH0476433A (ja) * 1990-07-18 1992-03-11 Nishi Nippon Riyuutai Giken:Kk 風洞試験用境界層制御装置
JPH06213764A (ja) * 1993-01-20 1994-08-05 Mitsubishi Heavy Ind Ltd 風洞用地面模擬装置
JPH10221202A (ja) * 1997-02-05 1998-08-21 Mitsubishi Heavy Ind Ltd 風洞試験用地面装置
US20020152799A1 (en) * 2001-04-02 2002-10-24 Gleason Mark E. Multiple stage system for aerodynamic testing of a vehicle on a static surface and related method
JP2009074939A (ja) * 2007-09-20 2009-04-09 Mitsubishi Heavy Ind Ltd 風洞試験装置の測定部およびこれを用いた風洞試験装置
JP2020046401A (ja) * 2018-09-21 2020-03-26 三菱重工業株式会社 境界層制御装置、及び風洞試験装置
CN111272377A (zh) * 2020-02-27 2020-06-12 北京航空航天大学 一种大型双循环回冷式的低温环境风洞

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851249U (ja) * 1981-10-05 1983-04-07 三菱重工業株式会社 吹口位置調整式風洞
JPH01145542A (ja) * 1987-12-01 1989-06-07 Mitsubishi Heavy Ind Ltd 地面効果試験装置
JPH0476433A (ja) * 1990-07-18 1992-03-11 Nishi Nippon Riyuutai Giken:Kk 風洞試験用境界層制御装置
JPH06213764A (ja) * 1993-01-20 1994-08-05 Mitsubishi Heavy Ind Ltd 風洞用地面模擬装置
JPH10221202A (ja) * 1997-02-05 1998-08-21 Mitsubishi Heavy Ind Ltd 風洞試験用地面装置
US20020152799A1 (en) * 2001-04-02 2002-10-24 Gleason Mark E. Multiple stage system for aerodynamic testing of a vehicle on a static surface and related method
JP2009074939A (ja) * 2007-09-20 2009-04-09 Mitsubishi Heavy Ind Ltd 風洞試験装置の測定部およびこれを用いた風洞試験装置
JP2020046401A (ja) * 2018-09-21 2020-03-26 三菱重工業株式会社 境界層制御装置、及び風洞試験装置
CN111272377A (zh) * 2020-02-27 2020-06-12 北京航空航天大学 一种大型双循环回冷式的低温环境风洞

Also Published As

Publication number Publication date
JP7286223B1 (ja) 2023-06-05
JP7407361B1 (ja) 2024-01-04
JP7407362B1 (ja) 2024-01-04
JP2024015963A (ja) 2024-02-06
JP2024015964A (ja) 2024-02-06

Similar Documents

Publication Publication Date Title
JP7407362B1 (ja) 境界層制御装置及び風洞試験装置
CN100401034C (zh) 汽车风洞的水平抽吸系统及抽吸控制方法
JP6993311B2 (ja) 境界層制御装置、及び風洞試験装置
CN203550165U (zh) 一种空调回风道
JP5844310B2 (ja) 回流式開放型風洞装置および回流式開放型風洞内の気流の整流化方法
CN105270636A (zh) 空气扩散器系统、方法以及装置
WO2012011865A2 (en) Air handling unit with bypass to the rotary heat exchanger
JP7397392B1 (ja) 走行模擬試験設備
JP4456007B2 (ja) 地下空間の空調システム
CN110395285A (zh) 一种新型司机室空调风道
WO2024111134A1 (ja) 走行模擬試験設備
US20150211670A1 (en) Methods and apparatuses to moderate an airflow
CN206107376U (zh) 纯电动汽车前舱减阻装置
CN104875887B (zh) 一种垂直提升组件以及具有其的扇翼飞行器
JP2000065690A (ja) 自走車用の環境試験装置
Tortosa et al. General motors’ new reduced scale wind tunnel center
CN207225019U (zh) 车载空调及其离心风机安装结构
JPS59107127A (ja) 駐車場換気方法
Duell et al. Scania’s new CD7 climatic wind tunnel facility for heavy trucks and buses
Chow Design and characterization of the UTIAS anechoic wind tunnel
JP2023081837A (ja) 車両の走行模擬装置、および車両の走行模擬方法
CN209372360U (zh) 一种带有排流段的吹式阵风风洞
Buckisch et al. Daimler Aeroacoustic Wind Tunnel: 5 Years of Operational Experience and Recent Improvements
JP5674435B2 (ja) 内燃機関の冷却試験用送風装置
JPH09145534A (ja) 超音速ノズル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952158

Country of ref document: EP

Kind code of ref document: A1