JP2023081837A - 車両の走行模擬装置、および車両の走行模擬方法 - Google Patents
車両の走行模擬装置、および車両の走行模擬方法 Download PDFInfo
- Publication number
- JP2023081837A JP2023081837A JP2022170744A JP2022170744A JP2023081837A JP 2023081837 A JP2023081837 A JP 2023081837A JP 2022170744 A JP2022170744 A JP 2022170744A JP 2022170744 A JP2022170744 A JP 2022170744A JP 2023081837 A JP2023081837 A JP 2023081837A
- Authority
- JP
- Japan
- Prior art keywords
- opening
- vehicle
- dynamo
- floor
- roller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000002093 peripheral effect Effects 0.000 claims abstract description 48
- 230000001629 suppression Effects 0.000 claims abstract description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 31
- 238000009434 installation Methods 0.000 claims description 26
- 230000003068 static effect Effects 0.000 claims description 20
- 238000005259 measurement Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000000470 constituent Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 230000008602 contraction Effects 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 230000000452 restraining effect Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005206 flow analysis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
【課題】風洞内の気流が車両の下面と床面との間のスペース内で乱されることを低減することが可能な走行模擬装置および走行模擬方法を提供する。【解決手段】床面に設けられた開口と、開口に対して、非接触式に回転可能に設けられる円筒状ダイナモローラー14と、ダイナモローラー14を回転駆動する回転駆動手段とを有し、ダイナモローラー14は、円筒の中心軸線が床面下方に位置するように配置され、ダイナモローラー14の開口から臨む上部外周面に、車両Vの車輪WHを載置した状態で、車両Vは、風洞T内に配置され、風洞T内で、車両Vの前方から後方に向かって、床面から少なくとも車高までの高さに亘って、気流Aを送るように構成され、ダイナモローラー14の回転に伴われて発生する連行気流が、開口を通じて、車両V下面と床面との間のスペースに及ぶのを抑制する連行気流抑制手段を、開口とダイナモローラー14との間の隙間に設ける。【選択図】図1
Description
本発明は、車両の走行模擬装置、および車両の走行模擬方法に関し、より詳細には、静止車両を用いて、風洞内で気流を車両の前方から後方に向けて流しつつ、ダイナモローラーの回転により車輪を回転させる車両の走行模擬において、車両の走行に応じて生じる風速を模擬する風洞内の気流が、ダイナモローラーの回転に伴われて発生する連行気流により車両の下面と床面との間のスペース内で乱されることを低減することが可能な走行模擬装置、および走行模擬方法を提供する。
従来から、車両の性能試験、耐久試験、環境試験用に、静止車両による走行模擬が行われている。
走行模擬は、たとえば、特許文献1、2に開示されているように、通常、風洞内に車両を配置し、車輪を床面下方に設置するダイナモローラーの回転により回転させつつ、車両の前方から後方に向けて気流を流して、走行中の風速を模擬することにより行われる。
風洞内の車両の前後方向の気流は、走行中の車両が受ける風速を模擬するもので、平行流であり、車両の下面と床面との間のスペースにも、車両の前後方向に流れる。
その際、ダイナモローラーの回転により、以下のような技術的問題が引き起こされる。
走行模擬は、たとえば、特許文献1、2に開示されているように、通常、風洞内に車両を配置し、車輪を床面下方に設置するダイナモローラーの回転により回転させつつ、車両の前方から後方に向けて気流を流して、走行中の風速を模擬することにより行われる。
風洞内の車両の前後方向の気流は、走行中の車両が受ける風速を模擬するもので、平行流であり、車両の下面と床面との間のスペースにも、車両の前後方向に流れる。
その際、ダイナモローラーの回転により、以下のような技術的問題が引き起こされる。
すなわち、ダイナモローラーは、通常、風洞内の床面に設けられた開口から上方に臨むように、開口に対して非接触態様で設けられ、開口とダイナモローラーの周縁との間に不可避的に隙間を設けざるを得ないところ、ダイナモローラーの回転に伴って、連行気流が不可避的に発生し、連行気流は、床面の開口を介して、車両の下面と床面との間のスペース内に斜流として、風洞内の気流と同様、車両の前後方向へ流れる。
それにより、スペース内で、風洞内の気流が乱され、精確に走行模擬した試験を行うことが困難となる。
昨今、電気自動車のバッテリーの走行中の放熱評価を行うのに、バッテリーは、車両の下部に設置されることから、車両の下面と床面とのスペースを流れる気流による放熱試験は重要である。
このような技術的問題は、走行模擬速度が高くなるほど、連行気流が強くなるので、顕著となる傾向である。
それにより、スペース内で、風洞内の気流が乱され、精確に走行模擬した試験を行うことが困難となる。
昨今、電気自動車のバッテリーの走行中の放熱評価を行うのに、バッテリーは、車両の下部に設置されることから、車両の下面と床面とのスペースを流れる気流による放熱試験は重要である。
このような技術的問題は、走行模擬速度が高くなるほど、連行気流が強くなるので、顕著となる傾向である。
以上に関連して、本発明者は、ダイナモ設置室を床面下方に設けることにより、車両の下面と床面との間のスペースとダイナモ設置室内との静圧差に起因して、ダイナモローラを回転させない場合であっても、静圧の高いダイナモ設置室内から、静圧の低い車両の下面と床面との間のスペースに向かう連行気流が発生することを発見するに至った。
本発明者は、ダイナモローラ―の回転に伴って生じる連行気流だけでなく、車両の下面と床面との間のスペースとダイナモ設置室内との静圧差に起因する連行気流の発生により、車両の下面と床面との間のスペースを流れる気流が乱れるのを抑制することを企図するものである。
特開2006-105899号
特開2011-158351号
本発明者は、ダイナモローラ―の回転に伴って生じる連行気流だけでなく、車両の下面と床面との間のスペースとダイナモ設置室内との静圧差に起因する連行気流の発生により、車両の下面と床面との間のスペースを流れる気流が乱れるのを抑制することを企図するものである。
以上の技術的問題点に鑑み、本発明の目的は、静止車両を用いて、風洞内で気流を車両の前方から後方に向けて流しつつ、ダイナモローラーの回転により車輪を回転させる車両の走行模擬において、ダイナモローラーの回転に伴われて発生する連行気流により、車両の走行に応じて生じる風速を模擬する風洞内の気流が車両の下面と床面との間のスペース内で乱されることを低減することが可能な走行模擬装置、および走行模擬方法を提供することにある。
以上の技術的問題点に鑑み、本発明の目的は、静止車両を用いて、風洞内で気流を車両の前方から後方に向けて流しつつ、ダイナモローラーの回転により車輪を回転させる車両の走行模擬において、車両の下面と床面との間のスペースとダイナモ設置室内との静圧差に起因して発生する連行気流により、車両の走行に応じて生じる風速を模擬する風洞内の気流が車両の下面と床面との間のスペース内で乱されることを低減することが可能な走行模擬装置、および走行模擬方法を提供することにある。
以上の技術的問題点に鑑み、本発明の目的は、静止車両を用いて、風洞内で気流を車両の前方から後方に向けて流しつつ、ダイナモローラーの回転により車輪を回転させる車両の走行模擬において、車両の下面と床面との間のスペースとダイナモ設置室内との静圧差に起因して発生する連行気流により、車両の走行に応じて生じる風速を模擬する風洞内の気流が車両の下面と床面との間のスペース内で乱されることを低減することが可能な走行模擬装置、および走行模擬方法を提供することにある。
上記課題を達成するために、本発明の走行模擬装置は、
床面に設けられた開口と、
該開口に対して、非接触式に回転可能に設けられる円筒状ダイナモローラーと、
該ダイナモローラーを円筒の中心軸線を中心に回転駆動する回転駆動手段とを有し、
該ダイナモローラーは、円筒の中心軸線が床面下方に位置するように配置され、
前記ダイナモローラーの前記開口から臨む外周面に、車両の車輪を載置した状態で、前記ダイナモローラーを回転駆動することにより、車両の走行を模擬する走行模擬装置であって、
車両は、円筒の中心軸線に対して、直交する向きに、風洞内に配置され、
該風洞内で、車両の前方から後方に向かって、床面から少なくとも車高までの高さに亘って、気流を送るように構成され、
前記ダイナモローラーの回転に伴われて発生する連行気流が、前記開口を通じて、車両下面と床面との間のスペースに及ぶのを抑制する連行気流抑制手段を、前記開口と前記ダイナモローラーとの間の隙間に設ける、構成としている。
床面に設けられた開口と、
該開口に対して、非接触式に回転可能に設けられる円筒状ダイナモローラーと、
該ダイナモローラーを円筒の中心軸線を中心に回転駆動する回転駆動手段とを有し、
該ダイナモローラーは、円筒の中心軸線が床面下方に位置するように配置され、
前記ダイナモローラーの前記開口から臨む外周面に、車両の車輪を載置した状態で、前記ダイナモローラーを回転駆動することにより、車両の走行を模擬する走行模擬装置であって、
車両は、円筒の中心軸線に対して、直交する向きに、風洞内に配置され、
該風洞内で、車両の前方から後方に向かって、床面から少なくとも車高までの高さに亘って、気流を送るように構成され、
前記ダイナモローラーの回転に伴われて発生する連行気流が、前記開口を通じて、車両下面と床面との間のスペースに及ぶのを抑制する連行気流抑制手段を、前記開口と前記ダイナモローラーとの間の隙間に設ける、構成としている。
以上の構成を有する走行模擬装置によれば、風洞内で、車両の前方から後方に向かって、床面から少なくとも車高までの高さに亘って、気流を送りつつ、ダイナモローラーの開口から臨む外周面に、車両の車輪を載置した状態で、ダイナモローラーを回転駆動することにより、静止車両により、車両の走行を模擬することが可能である。
その際、ダイナモローラーの回転に伴われて連行気流が不可避的に発生するところ、連行気流は、風洞内の気流と同様に、車両の後方に向かう向きであるが、風洞内の気流が平行流なのに対して、床面の開口から車両の下面に向かう斜流であることから、車両下面と床面との間のスペース内で風洞内の気流が乱されるところ、開口とダイナモローラーとの間の隙間に連行気流抑制手段を設けることにより、このような連行気流が床面の開口を通じて、車両下面と床面との間のスペースに及ぶのを抑制することが可能であり、以て、車両の走行に応じて生じる風速を模擬する風洞内の気流が車両の下面と床面との間のスペース内で乱されることを低減することが可能である。
その際、ダイナモローラーの回転に伴われて連行気流が不可避的に発生するところ、連行気流は、風洞内の気流と同様に、車両の後方に向かう向きであるが、風洞内の気流が平行流なのに対して、床面の開口から車両の下面に向かう斜流であることから、車両下面と床面との間のスペース内で風洞内の気流が乱されるところ、開口とダイナモローラーとの間の隙間に連行気流抑制手段を設けることにより、このような連行気流が床面の開口を通じて、車両下面と床面との間のスペースに及ぶのを抑制することが可能であり、以て、車両の走行に応じて生じる風速を模擬する風洞内の気流が車両の下面と床面との間のスペース内で乱されることを低減することが可能である。
上記課題を達成するために、本発明の走行模擬方法は、
風洞内の床面に設けられた開口から外周面が臨むダイナモローラーに、車両の車輪を載置する段階と、
前記開口と前記ダイナモローラーとの間の隙間を狭める段階と、
風洞内で気流を車両の前方から後方に向けて流しつつ、ダイナモローラーの回転により車輪を回転させる車両の走行模擬段階とを、
有する、構成としている。
また、前記隙間を狭める段階は、請求項5ないし請求項14のいずれかに記載の連行気流抑制手段を用いて行うのがよい。
また、前記隙間を狭める段階は、前記開口は矩形状であり、前記連行気流抑制手段は、前記開口の上流側縁と対応する前記ダイナモローラーとの隙間、および前記開口の下流側縁と対応する前記ダイナモローラーとの隙間それぞれに配置される平板である連行気流抑制手段を用いて行うのがよい。
さらに、 前記隙間を狭める段階は、前記開口は矩形状であり、前記開口の上流側縁および下流側縁それぞれから、車輪と前記ダイナモローラーとの接触部に向かって延びるブラシであり、該ブラシは、前記側縁の幅方向全体に亘って、密接して設けられる連行気流抑制手段を用いて行うのがよい。
さらにまた、前記隙間を狭める段階は、前記開口は矩形状であり、前記床面を構成する床躯体構造を利用して支持され、床面の下面レベルから前記ダイナモローラーの上部外周面レベルまで及び、前記開口縁の延び方向に沿って延びる堰き止め面を備えた連行気流堰き止め部材である連行気流抑制手段を用いて行うのがよい。
加えて、前記隙間を狭める段階は、前記開口は矩形状であり、前記床面を構成する床躯体構造を利用して支持され、吸い込み開口を上流側に臨むように差し向けた、連行気流を吸い込む吸い込み管であり、該吸い込み開口は、前記床面と前記ダイナモローラーの上部外周面レベルとの間に設けられる連行気流抑制手段を用いて行うのがよい。
また、 前記隙間を狭める段階は、前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、前記開口の対向側縁に沿って延びる堰き止め板であり、該堰き止め板の上縁は、床面レベルに設定され、下縁は、ダイナモローラーの上部外周面に接触しない範囲に設定される連行気流抑制手段を用いて行うのがよい。
さらに、前記連行気流抑制手段は、取り外し式または可動式であり、
車輪が対応する開口に位置決めされるように、車両を床面上で移動する際は、前記連行気流抑制手段を取り外し、または可動として、車両の移動後に、取り付ける段階を有するのがよい。
風洞内の床面に設けられた開口から外周面が臨むダイナモローラーに、車両の車輪を載置する段階と、
前記開口と前記ダイナモローラーとの間の隙間を狭める段階と、
風洞内で気流を車両の前方から後方に向けて流しつつ、ダイナモローラーの回転により車輪を回転させる車両の走行模擬段階とを、
有する、構成としている。
また、前記隙間を狭める段階は、請求項5ないし請求項14のいずれかに記載の連行気流抑制手段を用いて行うのがよい。
また、前記隙間を狭める段階は、前記開口は矩形状であり、前記連行気流抑制手段は、前記開口の上流側縁と対応する前記ダイナモローラーとの隙間、および前記開口の下流側縁と対応する前記ダイナモローラーとの隙間それぞれに配置される平板である連行気流抑制手段を用いて行うのがよい。
さらに、 前記隙間を狭める段階は、前記開口は矩形状であり、前記開口の上流側縁および下流側縁それぞれから、車輪と前記ダイナモローラーとの接触部に向かって延びるブラシであり、該ブラシは、前記側縁の幅方向全体に亘って、密接して設けられる連行気流抑制手段を用いて行うのがよい。
さらにまた、前記隙間を狭める段階は、前記開口は矩形状であり、前記床面を構成する床躯体構造を利用して支持され、床面の下面レベルから前記ダイナモローラーの上部外周面レベルまで及び、前記開口縁の延び方向に沿って延びる堰き止め面を備えた連行気流堰き止め部材である連行気流抑制手段を用いて行うのがよい。
加えて、前記隙間を狭める段階は、前記開口は矩形状であり、前記床面を構成する床躯体構造を利用して支持され、吸い込み開口を上流側に臨むように差し向けた、連行気流を吸い込む吸い込み管であり、該吸い込み開口は、前記床面と前記ダイナモローラーの上部外周面レベルとの間に設けられる連行気流抑制手段を用いて行うのがよい。
また、 前記隙間を狭める段階は、前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、前記開口の対向側縁に沿って延びる堰き止め板であり、該堰き止め板の上縁は、床面レベルに設定され、下縁は、ダイナモローラーの上部外周面に接触しない範囲に設定される連行気流抑制手段を用いて行うのがよい。
さらに、前記連行気流抑制手段は、取り外し式または可動式であり、
車輪が対応する開口に位置決めされるように、車両を床面上で移動する際は、前記連行気流抑制手段を取り外し、または可動として、車両の移動後に、取り付ける段階を有するのがよい。
上記課題を達成するために、本発明の走行模擬装置は、前記ダイナモローラーの外周面の最上部は、床面と面一に設定されるのがよい。
さらに、車両は、車輪ごとに、前記ダイナモローラーの回転駆動により、回転されるのでもよい。
さらにまた、前記開口は矩形状であり、前記連行気流抑制手段は、前記開口の上流側縁と対応する前記ダイナモローラーとの隙間、および前記開口の下流側縁と対応する前記ダイナモローラーとの隙間それぞれに配置される平板であるのでもよい。
さらに、車両は、車輪ごとに、前記ダイナモローラーの回転駆動により、回転されるのでもよい。
さらにまた、前記開口は矩形状であり、前記連行気流抑制手段は、前記開口の上流側縁と対応する前記ダイナモローラーとの隙間、および前記開口の下流側縁と対応する前記ダイナモローラーとの隙間それぞれに配置される平板であるのでもよい。
加えて、前記開口は矩形状であり、前記連行気流抑制手段は、前記開口の上流側縁および下流側縁それぞれから、車輪と前記ダイナモローラーとの接触部に向かって延びるブラシであり、該ブラシは、前記側縁の幅方向全体に亘って、密接して設けられるのでもよい。
また、前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、床面の下面レベルから前記ダイナモローラーの上部外周面レベルまで及び、前記開口縁の延び方向に沿って延びる堰き止め面を備えた連行気流堰き止め部材であるのでもよい。
また、前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、床面の下面レベルから前記ダイナモローラーの上部外周面レベルまで及び、前記開口縁の延び方向に沿って延びる堰き止め面を備えた連行気流堰き止め部材であるのでもよい。
さらに、前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、吸い込み開口を上流側に臨むように差し向けた、連行気流を吸い込む吸い込み管であり、該吸い込み開口は、前記床面と前記ダイナモローラーの上部外周面レベルとの間に設けられるのがよい。
さらにまた、前記吸い込み管は、互いに前記開口縁の幅方向に所定間隔を隔てて、複数設けられるのでもよい。
加えて、前記吸い込み開口は、前記開口縁の幅方向に亘り、前記吸い込み管の上面は、多孔板により構成されるのでもよい。
さらにまた、前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、前記開口の対向側縁に沿って延びる堰き止め板であり、該堰き止め板の上縁は、床面レベルに設定され、下縁は、ダイナモローラーの上部外周面に接触しない範囲に設定されるのがよい。
さらにまた、前記吸い込み管は、互いに前記開口縁の幅方向に所定間隔を隔てて、複数設けられるのでもよい。
加えて、前記吸い込み開口は、前記開口縁の幅方向に亘り、前記吸い込み管の上面は、多孔板により構成されるのでもよい。
さらにまた、前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、前記開口の対向側縁に沿って延びる堰き止め板であり、該堰き止め板の上縁は、床面レベルに設定され、下縁は、ダイナモローラーの上部外周面に接触しない範囲に設定されるのがよい。
加えて、前記開口の下流縁近傍の床面の下面に、隙間調整板がさらに設けられるのでもよい。
また、前記隙間調整板は、前記ダイナモローラーの回転数に応じて、隙間を調整可能であるのがよい。
さらに、前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、床面に対向する上面、前記ダイナモローラーの上部外周面に対向する下曲面および床面から前記ダイナモローラーの上部外周面に向かって延びる後面とから構成されるほぼ三角形状断面を有し、前記下流縁に沿って延びるエゼクタ流路形成部材であり、床面の下面と該エゼクタ流路形成部材の上面との間に、上方エゼクタ流路、該エゼクタ流路形成部材の下曲面と前記ダイナモローラーの上部外周面との間に、下方エゼクタ流路を形成するのでもよい。
さらにまた、車両の車輪の複数それぞれに対して、請求項5ないし請求項14に規定される連行気流抑制手段を個別に選択するのがよい。
加えて、前記開口の前記上流縁および前記下流縁それぞれにおいて、請求項5ないし請求項14に規定される連行気流抑制手段を個別に選択するのでもよい。
また、前記隙間調整板は、前記ダイナモローラーの回転数に応じて、隙間を調整可能であるのがよい。
さらに、前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、床面に対向する上面、前記ダイナモローラーの上部外周面に対向する下曲面および床面から前記ダイナモローラーの上部外周面に向かって延びる後面とから構成されるほぼ三角形状断面を有し、前記下流縁に沿って延びるエゼクタ流路形成部材であり、床面の下面と該エゼクタ流路形成部材の上面との間に、上方エゼクタ流路、該エゼクタ流路形成部材の下曲面と前記ダイナモローラーの上部外周面との間に、下方エゼクタ流路を形成するのでもよい。
さらにまた、車両の車輪の複数それぞれに対して、請求項5ないし請求項14に規定される連行気流抑制手段を個別に選択するのがよい。
加えて、前記開口の前記上流縁および前記下流縁それぞれにおいて、請求項5ないし請求項14に規定される連行気流抑制手段を個別に選択するのでもよい。
上記課題を達成するために、本発明の走行模擬装置は、
床面に設けられた開口と、
該開口に対して、非接触式に回転可能に設けられる円筒状ダイナモローラーと、
該ダイナモローラーを円筒の中心軸線を中心に回転駆動する回転駆動手段とを有し、
該ダイナモローラーは、円筒の中心軸線が床面下方に位置するように、床面下方に設けられ、前記開口に臨むダイナモ設置室内に配置され、
前記ダイナモローラーの前記開口から臨む外周面に、車両の車輪を載置した状態で、前記ダイナモローラーを回転駆動することにより、車両の走行を模擬する走行模擬装置であって、
車両は、円筒の中心軸線に対して、直交する向きに、風洞内に配置され、
該風洞内で、車両の前方から後方に向かって、床面から少なくとも車高までの高さに亘って、気流を送るように構成され、
ダイナモ設置室と車両下面と床面との間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流が、前記開口を通じて、車両下面と床面との間のスペースに及ぶのを抑制する連行気流抑制手段を、前記開口と前記ダイナモローラーとの間の隙間に設ける、構成としている。
床面に設けられた開口と、
該開口に対して、非接触式に回転可能に設けられる円筒状ダイナモローラーと、
該ダイナモローラーを円筒の中心軸線を中心に回転駆動する回転駆動手段とを有し、
該ダイナモローラーは、円筒の中心軸線が床面下方に位置するように、床面下方に設けられ、前記開口に臨むダイナモ設置室内に配置され、
前記ダイナモローラーの前記開口から臨む外周面に、車両の車輪を載置した状態で、前記ダイナモローラーを回転駆動することにより、車両の走行を模擬する走行模擬装置であって、
車両は、円筒の中心軸線に対して、直交する向きに、風洞内に配置され、
該風洞内で、車両の前方から後方に向かって、床面から少なくとも車高までの高さに亘って、気流を送るように構成され、
ダイナモ設置室と車両下面と床面との間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流が、前記開口を通じて、車両下面と床面との間のスペースに及ぶのを抑制する連行気流抑制手段を、前記開口と前記ダイナモローラーとの間の隙間に設ける、構成としている。
また、 前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、前記ダイナモローラーの回転軸線に直交する各端面の対応する前記開口の対向側縁側近傍に、対応する対向側縁に沿って延びる堰き止め板であり、該堰き止め板の上縁は、床面レベルに設定されるのがよい。
さらに、前記堰き止め板の下縁は、前記ダイナモローラーの対応する前記端面の上部レベルに及ぶのでもよい。
さらに、前記開口の下流縁近傍の床面の下面に、隙間調整板が設けられるのでもよい。
さらにまた、前記隙間調整板は、前記ダイナモ設置室と車両下面と床面との間の静圧差に応じて、隙間を調整可能であるのがよい。
さらに、前記堰き止め板の下縁は、前記ダイナモローラーの対応する前記端面の上部レベルに及ぶのでもよい。
さらに、前記開口の下流縁近傍の床面の下面に、隙間調整板が設けられるのでもよい。
さらにまた、前記隙間調整板は、前記ダイナモ設置室と車両下面と床面との間の静圧差に応じて、隙間を調整可能であるのがよい。
図1ないし図4を参照しながら、本発明の走行模擬装置および走行模擬方法の第1実施形態を以下に詳細に説明する。
走行模擬装置10は、風洞Tにより内部に気流を流す測定室100の床面下方に設置され、測定室100内には、測定対象である車両Vが設置され、静止車両Vの車輪WHが走行模擬装置10により回転駆動されるように構成している。
風洞Tは、開放タイプであり、測定対象である車両Vを設置する測定室100と、整流洞102、縮流洞104を経て、測定室100に開口する吹出し口106と、測定室100に開口する流入口108とを有し、たとえば、送風機(図示せず)で発生した気流は、整流洞102、縮流洞104を経て、測定室100に開口する吹出し口106から測定室100に流入し、流入口108へ流れ込むようになっている。
送風機によって送風された気流は、いったん気流全体としての風速(動圧)を低下させて中間胴部における圧力(静圧)を上昇させた後、縮流洞を通過させることで、測定するのに必要十分な風量(風速)の気流を吹出し口から測定室に吹き出すことができるようにしている。
これにより、後に説明するように、測定室100内において、静止車両を走行模擬する際、設定する走行速度に応じて、車両Vの前方から後方に流れる平行気流を模擬するようにしており、設定する走行速度に応じて、送風機により気流の風速を調整することにより、静止車両でありながら走行車両を模擬できるようにしている。
走行模擬装置10は、風洞Tにより内部に気流を流す測定室100の床面下方に設置され、測定室100内には、測定対象である車両Vが設置され、静止車両Vの車輪WHが走行模擬装置10により回転駆動されるように構成している。
風洞Tは、開放タイプであり、測定対象である車両Vを設置する測定室100と、整流洞102、縮流洞104を経て、測定室100に開口する吹出し口106と、測定室100に開口する流入口108とを有し、たとえば、送風機(図示せず)で発生した気流は、整流洞102、縮流洞104を経て、測定室100に開口する吹出し口106から測定室100に流入し、流入口108へ流れ込むようになっている。
送風機によって送風された気流は、いったん気流全体としての風速(動圧)を低下させて中間胴部における圧力(静圧)を上昇させた後、縮流洞を通過させることで、測定するのに必要十分な風量(風速)の気流を吹出し口から測定室に吹き出すことができるようにしている。
これにより、後に説明するように、測定室100内において、静止車両を走行模擬する際、設定する走行速度に応じて、車両Vの前方から後方に流れる平行気流を模擬するようにしており、設定する走行速度に応じて、送風機により気流の風速を調整することにより、静止車両でありながら走行車両を模擬できるようにしている。
次に、走行模擬装置が設けられる測定室内の床面Fの躯体構造について、説明すれば、床面Fの下方スぺ―スには、内部をダイナモ設置室11とする筐体と、ダイナモ設置室11内に配置される一対のダイナモローラー14及びダイナモとが概略設けられる。筐体は、本実施形態では、上部を構成する天板(図示せず)と、下部を構成する底板(図示せず)と、側部を構成する四枚の側板(図示せず)と、とを有し、全体として直方体状の構成となっている。
一つの側板には、ダイナモと、一対のダイナモローラー14とのそれぞれと対応するように開口部が形成されて、扉が設けられ、開閉可能となっている。底板と天板との間には、側板に沿って支持柱が複数設けられており、天板を支持している。そして、天板は、車両Vが直接乗り入れられる床面Fを構成し、一対のダイナモローラー14の周面の上部がそれぞれ露出する開口12が形成されている。ダイナモローラー14及びダイナモは、底板上に支持されてダイナモ設置室11内に設けられている。
以上のようなシャーシダイナモ装置1では、ダイナモとダイナモローラー14とは、筐体に設けられた底板に支持されてダイナモ設置室11内に設けられ、筐体とともに一体となっている。このため、ダイナモ及びダイナモローラー14を、筐体を外郭としてユ ニット化して一体的に取り扱うことができ、また、全体として安定的である。このため、装置全体を一体的に容易にかつ安全に運搬し、また、所定の試験室内に容易に設置することができる。また、本実施形態では、天板が床面Fを構成するので、別途床面Fを設ける必要がなく、装置を設置するのみで良いので、設置コストの低減とともに、全体として装置スペースの低減を図ることができる。
次に、走行模擬装置10の詳細について、図3および図4を参照しながら、説明する。
測定室100内に、一対の前輪WHおよび一対の後輪WHそれぞれ(図面では、それぞれ1つを表示)に対して、走行模擬装置10が対応して設けられている。これらの走行模擬装置10を用いて、測定室100上に進めた自動車の各種特性が測定される 。
測定室100内に、一対の前輪WHおよび一対の後輪WHそれぞれ(図面では、それぞれ1つを表示)に対して、走行模擬装置10が対応して設けられている。これらの走行模擬装置10を用いて、測定室100上に進めた自動車の各種特性が測定される 。
各ダイナモローラー14は、床面FL下方のダイナモ設置室11内に設けられ、自身の中心軸に設けられた回転軸13が、底板上に設けられた軸受(図示せず)に回転可能に支持されている。両ダイナモローラー14の間には、連結軸(図示せず)が同軸配置され、両ダイナモローラー14の回転軸とカップリング(図示せず)によって連結されており、これにより両ダイナモローラー14は一体的に回転可能となっている。
ダイナモは、ダイナモローラー14の回転駆動源で液冷式であり、入出力軸(図示せず)は、一方のダイナモローラー14の回転軸と同軸配置されていて、ロック用ディスク(図示せず)によって連結されている。また、ダイナモの入出力軸には、トルクメータ(図示せず)が設けられており、入出力軸におけるトルクを検出可能となっている。
走行模擬装置10は、測定室100上に進めた自動車の車輪WHを、測定室100の床面Fに設けた開口12から天頂部を露出させたダイナモローラー14の上に配置して走行させながら、ダイナモでダイナモローラー14を介して車輪WHにトルクを加えたり、車輪WHより加わるトルクをロードセル(図示せず)で計測するように構成している。
本実施形態に係る走行模擬装置10としては、各々一つのダイナモローラー14と 一つのダイナモとを備えた二つの走行模擬装置10を用いる代わりに、 各々車輪WHがひとつずつ載置される二つのダイナモローラー14とこの二つのダイナモローラー14を回転駆動する一つのダイナモを備えた走行模擬装置10を用いるようにしてもよい。
各開口について、開口12の上流縁24および下流縁28の直下方には、中実バー状のセンタリングパイプ34が開口12の幅方向に亘って設けられ、各センタリングパイプ34は、開口12の床面Fの長手方向中心位置から等距離に位置決めされ、車両Vを測定室100内で位置決めする際、車両Vの車輪WHを対応する開口12に対してセンタリングして、対応するダイナモローラー14により回転駆動可能なように、その目安として利用される。
各開口について、開口12の上流縁24および下流縁28の直下方には、中実バー状のセンタリングパイプ34が開口12の幅方向に亘って設けられ、各センタリングパイプ34は、開口12の床面Fの長手方向中心位置から等距離に位置決めされ、車両Vを測定室100内で位置決めする際、車両Vの車輪WHを対応する開口12に対してセンタリングして、対応するダイナモローラー14により回転駆動可能なように、その目安として利用される。
以上の走行模擬装置10においては、車両Vは、ダイナモローラー14の円筒の中心軸線に対して、直交する向きに、風洞T内に配置され、風洞T内で、車両Vの前方から後方に向かって、床面Fから少なくとも車高までの高さに亘って、気流Aを送るように構成され、開口12に対して、非接触式に回転可能に設けられる円筒状ダイナモローラー14が、円筒の中心軸線が床面F下方に位置するように配置され、ダイナモローラー14の開口12から臨む上部外周面22に、車両Vの車輪WHを載置した状態で、ダイナモローラー14を回転駆動することにより、車両Vの走行を模擬するようにしている。
さらに、各開口12について、ダイナモローラー14の上部外周面22の最上部23は、床面Fと面一に設定されるところ、ダイナモローラー14の回転に伴われて発生する連行気流B1,B2が、開口12を通じて、車両V下面と床面Fとの間のスペースSに及ぶのを抑制する連行気流抑制手段20を、開口12とダイナモローラー14との間の隙間Cに設ける。
より詳細には、開口12は矩形状であり、連行気流抑制手段20は、開口12の上流側縁24と対応するダイナモローラー14との隙間C、および開口12の下流側縁28と対応するダイナモローラー14との隙間Cそれぞれに配置される平板である
図5に示すように、開口12の大きさは、ダイナモローラー14の大きさに依存し、ダイナモローラー14に接触しない観点から定められるが、通常、幅Wは600ミリないし700ミリ、気流の流れ方向の長さLは600ミリないし700ミリであり、ダイナモローラー14と開口縁との隙間Cは、通常、幅は10ミリないし20ミリである。
平板の材質、大きさは、連行気流抑制手段20により連行気流を有効に抑制する観点から、適宜定めればよく、たとえば、材質は、柔軟性が確保される限り任意であり、金属製、樹脂製等、大きさについて、幅は、開口の幅に亘ることにより、床面Fに常設固定されるのでよく、車両の前後方向の長さは、開口12の上下流縁24、28それぞれから最上部23までの半分を覆う程度でよい。常設固定であれば、車両Vが上を通過する際、耐える程度の厚みが必要である。なお、常設固定でなく、取り外し式としてもよい。
これにより、ダイナモローラー14の開口12に向かう上向きの回転により発生する、車両Vの下面と床面Fとの間のスぺースSに向かう吹き出し連行気流B1に対しては、開口12の上流側縁24に設けられる平板がスぺ―スSに及ぶのを抑制する一方、ダイナモローラー14の開口12からの下向きの回転により発生する、車両Vの下面と床面Fとの間のスぺースSからの吸い込み連行気流B2に対しては、開口12の下流側縁28に設けられる平板が吸い込まれるのを抑制することが可能である。
より詳細には、開口12は矩形状であり、連行気流抑制手段20は、開口12の上流側縁24と対応するダイナモローラー14との隙間C、および開口12の下流側縁28と対応するダイナモローラー14との隙間Cそれぞれに配置される平板である
図5に示すように、開口12の大きさは、ダイナモローラー14の大きさに依存し、ダイナモローラー14に接触しない観点から定められるが、通常、幅Wは600ミリないし700ミリ、気流の流れ方向の長さLは600ミリないし700ミリであり、ダイナモローラー14と開口縁との隙間Cは、通常、幅は10ミリないし20ミリである。
平板の材質、大きさは、連行気流抑制手段20により連行気流を有効に抑制する観点から、適宜定めればよく、たとえば、材質は、柔軟性が確保される限り任意であり、金属製、樹脂製等、大きさについて、幅は、開口の幅に亘ることにより、床面Fに常設固定されるのでよく、車両の前後方向の長さは、開口12の上下流縁24、28それぞれから最上部23までの半分を覆う程度でよい。常設固定であれば、車両Vが上を通過する際、耐える程度の厚みが必要である。なお、常設固定でなく、取り外し式としてもよい。
これにより、ダイナモローラー14の開口12に向かう上向きの回転により発生する、車両Vの下面と床面Fとの間のスぺースSに向かう吹き出し連行気流B1に対しては、開口12の上流側縁24に設けられる平板がスぺ―スSに及ぶのを抑制する一方、ダイナモローラー14の開口12からの下向きの回転により発生する、車両Vの下面と床面Fとの間のスぺースSからの吸い込み連行気流B2に対しては、開口12の下流側縁28に設けられる平板が吸い込まれるのを抑制することが可能である。
以上の構成を有する走行模擬装置10について、以下に、走行模擬装置10を用いる走行模擬方法として、その作用を説明する。
走行模擬装置10を用いる走行模擬方法は、概略的には、風洞T内の床面Fに設けられた開口12から外周面が臨むダイナモローラー14に、車両Vの車輪WHを載置する段階と、開口12とダイナモローラー14の周縁18との間の隙間Cを狭める段階と、
風洞T内で気流Aを車両Vの前方から後方に向けて流しつつ、ダイナモローラー14の回転により車輪WHを回転させる車両Vの走行模擬段階とから構成され、隙間Cを狭める段階は、連行気流抑制手段20により実現可能である。
この場合、隙間を狭める段階は、連行気流抑制手段12を用いて行うが、連行気流抑制手段12は、取り外し式または可動式であり、車輪WHが対応する開口12に位置決めされるように、車両Vを床面F上で移動する際は、連行気流抑制手段12を取り外し、または可動として、車両Vの移動後に、取り付ける段階を有するのがよい。
走行模擬装置10を用いる走行模擬方法は、概略的には、風洞T内の床面Fに設けられた開口12から外周面が臨むダイナモローラー14に、車両Vの車輪WHを載置する段階と、開口12とダイナモローラー14の周縁18との間の隙間Cを狭める段階と、
風洞T内で気流Aを車両Vの前方から後方に向けて流しつつ、ダイナモローラー14の回転により車輪WHを回転させる車両Vの走行模擬段階とから構成され、隙間Cを狭める段階は、連行気流抑制手段20により実現可能である。
この場合、隙間を狭める段階は、連行気流抑制手段12を用いて行うが、連行気流抑制手段12は、取り外し式または可動式であり、車輪WHが対応する開口12に位置決めされるように、車両Vを床面F上で移動する際は、連行気流抑制手段12を取り外し、または可動として、車両Vの移動後に、取り付ける段階を有するのがよい。
より詳細には、風洞T内で、車両Vの前方から後方に向かって、床面Fから少なくとも車高までの高さに亘って、気流Aを送りつつ、ダイナモローラー14の開口12から臨む上部外周面22に、車両Vの車輪WHを載置した状態で、ダイナモローラー14を回転駆動することにより、静止車両Vにより、車両Vの走行を模擬することが可能である。
その際、ダイナモローラー14の回転に伴われて連行気流Bが不可避的に発生するところ、連行気流Bは、風洞T内の気流Aと同様に、車両Vの後方に向かう向きであるが、風洞T内の気流Aが平行流なのに対して、床面Fの開口12から車両Vの下面に向かう斜流であることから、車両V下面と床面Fとの間のスペースS内で風洞T内の気流Aが乱されるところ、開口12とダイナモローラー14の周縁18との間の隙間Cに連行気流抑制手段20を設けることにより、このような連行気流Bが床面Fの開口12を通じて、車両V下面と床面Fとの間のスペースSに及ぶのを抑制することが可能であり、以て、車両Vの走行に応じて生じる風速を模擬する風洞T内の気流Aが車両Vの下面と床面Fとの間のスペースS内で乱されることを低減することが可能である。
それにより、たとえば、バッテリーが車両の下部に設置される電気自動車の走行中におけるバッテリーの放熱試験を行うのに、電気自動車の下面と路面との間のスペース内において、ダイナモローラー14の回転に伴われて連行気流Bにより乱れることなく、車両の前方から後方へ通過する気流を精確に模擬し、放熱試験の信頼性を確保することが可能となる。
なお、車両が四輪駆動の場合には、ダイナモローラー14を利用して、前輪および後輪を同時に回転させることから、各車輪WHに対応する開口12に対して、連行気流抑制手段20を適用するのがよいが、車両がFFまたはFRの場合には、 駆動されない後輪または前輪に対応する開口12に対しては、ダイナモローラー14を利用する必要がなく、車両の床下気流を重視する試験の場合には、開口12とダイナモローラー14とを一体で移動したり、開口12に蓋をするのがよい。
その際、ダイナモローラー14の回転に伴われて連行気流Bが不可避的に発生するところ、連行気流Bは、風洞T内の気流Aと同様に、車両Vの後方に向かう向きであるが、風洞T内の気流Aが平行流なのに対して、床面Fの開口12から車両Vの下面に向かう斜流であることから、車両V下面と床面Fとの間のスペースS内で風洞T内の気流Aが乱されるところ、開口12とダイナモローラー14の周縁18との間の隙間Cに連行気流抑制手段20を設けることにより、このような連行気流Bが床面Fの開口12を通じて、車両V下面と床面Fとの間のスペースSに及ぶのを抑制することが可能であり、以て、車両Vの走行に応じて生じる風速を模擬する風洞T内の気流Aが車両Vの下面と床面Fとの間のスペースS内で乱されることを低減することが可能である。
それにより、たとえば、バッテリーが車両の下部に設置される電気自動車の走行中におけるバッテリーの放熱試験を行うのに、電気自動車の下面と路面との間のスペース内において、ダイナモローラー14の回転に伴われて連行気流Bにより乱れることなく、車両の前方から後方へ通過する気流を精確に模擬し、放熱試験の信頼性を確保することが可能となる。
なお、車両が四輪駆動の場合には、ダイナモローラー14を利用して、前輪および後輪を同時に回転させることから、各車輪WHに対応する開口12に対して、連行気流抑制手段20を適用するのがよいが、車両がFFまたはFRの場合には、 駆動されない後輪または前輪に対応する開口12に対しては、ダイナモローラー14を利用する必要がなく、車両の床下気流を重視する試験の場合には、開口12とダイナモローラー14とを一体で移動したり、開口12に蓋をするのがよい。
以下に、本発明の第2実施形態について、図6および図7を参照しながら説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について詳細に説明する。
本発明の第2実施形態の特徴は、連行気流抑制手段20にあり、第1実施形態においては、ダイナモローラー14と開口縁との隙間を狭める平板であるのに対して、本実施形態においては、ブラシとした点にある。
より詳細には、開口12は矩形状であり、連行気流抑制手段20は、開口12の上流側縁24および下流側縁28それぞれから、車輪WHとダイナモローラー14との最上部23に向かって延びるブラシ32であり、ブラシ32は、側縁の幅方向全体に亘って、密接して設けられる。
本発明の第2実施形態の特徴は、連行気流抑制手段20にあり、第1実施形態においては、ダイナモローラー14と開口縁との隙間を狭める平板であるのに対して、本実施形態においては、ブラシとした点にある。
より詳細には、開口12は矩形状であり、連行気流抑制手段20は、開口12の上流側縁24および下流側縁28それぞれから、車輪WHとダイナモローラー14との最上部23に向かって延びるブラシ32であり、ブラシ32は、側縁の幅方向全体に亘って、密接して設けられる。
ブラシ32の材質、長さは、連行気流抑制手段20により連行気流を有効に抑制する観点から、適宜定めればよく、たとえば、材質は、樹脂製、長さは、開口の上下流縁それぞれから最上部23まで延び、ダイナモローラー14に接するのが隙間を塞ぐ観点から好ましく、この場合、ブラシ23は、柔軟性を有するので、ダイナモローラー14に接しても問題は引き起こされない。これにより、ダイナモローラー14の開口12に向かう上向きの回転により発生する、車両Vの下面と床面Fとの間のスぺースSに向かう吹き出し連行気流B1に対しては、開口12の上流側縁24に植設されるブラシ32がスぺ―スSに及ぶのを抑制する一方、ダイナモローラー14の開口12からの下向きの回転により発生する、車両Vの下面と床面Fとの間のスぺースSからの吸い込み連行気流B2に対しては、開口12の下流側縁28に植設されるブラシ32が吸い込まれるのを抑制することが可能である。
以下に、本発明の第3実施形態について、図8および図9を参照しながら説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について詳細に説明する。
本発明の第3実施形態の特徴は、連行気流抑制手段20にあり、第1実施形態においては、ダイナモローラー14と開口縁との隙間を狭める平板であるのに対して、本実施形態においては、連行気流堰き止め部材とした点にある。
より詳細には、開口12は矩形状であり、連行気流抑制手段20は、床面Fを構成する床躯体構造を利用して支持され、床面Fの下面レベルからダイナモローラー14の上部外周面レベルまで及び、開口縁の延び方向に沿って延びる堰き止め面35を備えた連行気流堰き止め部材36である。
本発明の第3実施形態の特徴は、連行気流抑制手段20にあり、第1実施形態においては、ダイナモローラー14と開口縁との隙間を狭める平板であるのに対して、本実施形態においては、連行気流堰き止め部材とした点にある。
より詳細には、開口12は矩形状であり、連行気流抑制手段20は、床面Fを構成する床躯体構造を利用して支持され、床面Fの下面レベルからダイナモローラー14の上部外周面レベルまで及び、開口縁の延び方向に沿って延びる堰き止め面35を備えた連行気流堰き止め部材36である。
連行気流堰き止め部材36の材質、高さは、連行気流抑制手段20により連行気流を有効に抑制する観点から、適宜定めればよく、たとえば、材質は、樹脂製、高さは、ダイナモローラー14の上部外周面22に接触しない範囲で、近接するのがよい。これにより、ダイナモローラー14の開口12に向かう上向きの回転により発生する、車両Vの下面と床面Fとの間のスぺースSに向かう吹き出し連行気流B1に対しては、開口12の上流側縁24側に設けられる連行気流堰き止め部材36がスぺ―スSに及ぶのを抑制することが可能である。
以下に、本発明の第4実施形態について、図10および図11を参照しながら説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について詳細に説明する。
本発明の第4実施形態の特徴は、連行気流抑制手段20にあり、第1実施形態においては、ダイナモローラー14と開口縁との隙間を狭める平板であるのに対して、本実施形態においては、吸い込み管とした点にある。
より詳細には、開口12は矩形状であり、連行気流抑制手段20は、床面Fを構成する床躯体構造を利用して支持され、 吸い込み開口38を上流側に臨むように差し向けた、連行気流Bを吸い込む吸い込み管40であり、吸い込み開口38は、床面Fとダイナモローラー14の上部外周面22レベルとの間に設けられる。
変形例として、吸い込み管40は、単一でなく、互いに開口縁の幅方向に所定間隔を隔てて、複数設けられるのでもよく、または、吸い込み開口40は、開口縁の幅方向に亘り、吸い込み管40の上面が、多孔板により構成されるのでもよい。
本発明の第4実施形態の特徴は、連行気流抑制手段20にあり、第1実施形態においては、ダイナモローラー14と開口縁との隙間を狭める平板であるのに対して、本実施形態においては、吸い込み管とした点にある。
より詳細には、開口12は矩形状であり、連行気流抑制手段20は、床面Fを構成する床躯体構造を利用して支持され、 吸い込み開口38を上流側に臨むように差し向けた、連行気流Bを吸い込む吸い込み管40であり、吸い込み開口38は、床面Fとダイナモローラー14の上部外周面22レベルとの間に設けられる。
変形例として、吸い込み管40は、単一でなく、互いに開口縁の幅方向に所定間隔を隔てて、複数設けられるのでもよく、または、吸い込み開口40は、開口縁の幅方向に亘り、吸い込み管40の上面が、多孔板により構成されるのでもよい。
吸い込み管40の口径、長さおよび隣接する吸い込み管40の所定間隔は、連行気流抑制手段20により連行気流を有効に抑制する観点から、適宜定めればよく、たとえば、材質は、樹脂製でよい。これにより、ダイナモローラー14の開口12からの下向きの回転により発生する、車両Vの下面と床面Fとの間のスぺースSからの吸い込み連行気流B2に対しては、開口12の下流側縁28側に設けられる複数の吸い込み管40が吸い込まれるのを抑制することが可能である。
以下に、本発明の第5実施形態について、図12および図13を参照しながら説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について詳細に説明する。
本発明の第5実施形態の特徴は、連行気流抑制手段20にあり、第1実施形態においては、ダイナモローラー14と開口縁との隙間を狭める平板であるのに対して、本実施形態においては、堰き止め板とした点にある。
より詳細には、開口12は矩形状であり、連行気流抑制手段20は、床面Fを構成する床躯体構造を利用して支持され、開口12の対向側縁26に沿って延びる堰き止め板42であり、堰き止め板42の上縁43は、床面Fレベルに設定され、下縁45は、ダイナモローラー14の上部外周面22に接触しない範囲に設定される。
堰き止め板42の形状は、任意であるが、たとえば、矩形状、下縁が半円、台形、多角形状でもよい。
本発明の第5実施形態の特徴は、連行気流抑制手段20にあり、第1実施形態においては、ダイナモローラー14と開口縁との隙間を狭める平板であるのに対して、本実施形態においては、堰き止め板とした点にある。
より詳細には、開口12は矩形状であり、連行気流抑制手段20は、床面Fを構成する床躯体構造を利用して支持され、開口12の対向側縁26に沿って延びる堰き止め板42であり、堰き止め板42の上縁43は、床面Fレベルに設定され、下縁45は、ダイナモローラー14の上部外周面22に接触しない範囲に設定される。
堰き止め板42の形状は、任意であるが、たとえば、矩形状、下縁が半円、台形、多角形状でもよい。
堰き止め板42の材質は、連行気流抑制手段20により連行気流を有効に抑制する観点から、適宜定めればよく、たとえば、材質は、樹脂製でよい。これにより、ダイナモローラー14の開口12に向かう上向きの回転により発生する、車両Vの下面と床面Fとの間のスぺースSに向かう吹き出し連行気流および/またはダイナモ設置室と車両Vの下面と床面Fとの間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流B1に対しては、開口12の上流側縁24側に設けられる堰き止め板42がスぺ―スSに及ぶのを抑制する一方、ダイナモローラー14の開口12からの下向きの回転により発生する、車両Vの下面と床面Fとの間のスぺースSからの吸い込み連行気流B2に対しては、開口12の下流側縁28側に設けられる堰き止め板42が吸い込まれるのを抑制することが可能である。
以下に、本発明の第6実施形態について、図14および図15を参照しながら説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について詳細に説明する。
本発明の第6実施形態の特徴は、連行気流抑制手段20にあり、第1実施形態においては、ダイナモローラー14と開口縁との隙間を狭める平板であるのに対して、本実施形態においては、第5実施形態の堰き止め板42に対して、開口12の下流縁28まわりに隙間調整板44を追加した点にある。
より詳細には、開口12の下流縁近傍の床面Fの下面に、隙間調整板44が設けられる。
隙間調整板44は、ダイナモローラー14の回転数に応じて隙間を調整可能であり、たとえば、走行模擬速度が高速である場合、それに応じて、ダイナモローラー14の回転数を高くする必要があり、これに起因して、ダイナモローラー14の回転に伴って発生する連行気流は強くなることから、このような強い連行気流を抑制可能なように、隙間調整板44により隙間を調整すればよい。
また、ダイナモ設置室と車両下面と床面との間の静圧差に応じて、隙間調整板44により隙間を調整するのでもよい。
なお、車両Vの下面と床面Fとの間のスぺースSに向かう吹き出し連行気流および/またはダイナモ設置室と車両Vの下面と床面Fとの間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流B1に対しては、開口12の上流側縁24側に設けられる堰き止め板42がスぺ―スSに及ぶのを抑制する点は、第5実施形態と共通である。
本発明の第6実施形態の特徴は、連行気流抑制手段20にあり、第1実施形態においては、ダイナモローラー14と開口縁との隙間を狭める平板であるのに対して、本実施形態においては、第5実施形態の堰き止め板42に対して、開口12の下流縁28まわりに隙間調整板44を追加した点にある。
より詳細には、開口12の下流縁近傍の床面Fの下面に、隙間調整板44が設けられる。
隙間調整板44は、ダイナモローラー14の回転数に応じて隙間を調整可能であり、たとえば、走行模擬速度が高速である場合、それに応じて、ダイナモローラー14の回転数を高くする必要があり、これに起因して、ダイナモローラー14の回転に伴って発生する連行気流は強くなることから、このような強い連行気流を抑制可能なように、隙間調整板44により隙間を調整すればよい。
また、ダイナモ設置室と車両下面と床面との間の静圧差に応じて、隙間調整板44により隙間を調整するのでもよい。
なお、車両Vの下面と床面Fとの間のスぺースSに向かう吹き出し連行気流および/またはダイナモ設置室と車両Vの下面と床面Fとの間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流B1に対しては、開口12の上流側縁24側に設けられる堰き止め板42がスぺ―スSに及ぶのを抑制する点は、第5実施形態と共通である。
以下に、本発明の第7実施形態について、図16および図17を参照しながら説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について詳細に説明する。
本発明の第7実施形態の特徴は、連行気流抑制手段20にあり、第1実施形態においては、ダイナモローラー14と開口縁との隙間を狭める平板であるのに対して、本実施形態においては、エゼクタ流路形成部材とした点にある。
より詳細には、開口12は矩形状であり、連行気流抑制手段20は、床面Fを構成する床躯体構造を利用して支持され、床面Fに対向する上面46、ダイナモローラー14の上部外周面22に対向する下曲面48および床面Fからダイナモローラー14の上部外周面22に向かって延びる後面50とから構成されるほぼ三角形状断面を有し、下流縁28に沿って延びるエゼクタ流路形成部材52であり、床面Fの下面とエゼクタ流路形成部材52の上面46との間に、上方エゼクタ流路54、エゼクタ流路形成部材52の下曲面48とダイナモローラー14の上部外周面22との間に、下方エゼクタ流路56を形成する。
本発明の第7実施形態の特徴は、連行気流抑制手段20にあり、第1実施形態においては、ダイナモローラー14と開口縁との隙間を狭める平板であるのに対して、本実施形態においては、エゼクタ流路形成部材とした点にある。
より詳細には、開口12は矩形状であり、連行気流抑制手段20は、床面Fを構成する床躯体構造を利用して支持され、床面Fに対向する上面46、ダイナモローラー14の上部外周面22に対向する下曲面48および床面Fからダイナモローラー14の上部外周面22に向かって延びる後面50とから構成されるほぼ三角形状断面を有し、下流縁28に沿って延びるエゼクタ流路形成部材52であり、床面Fの下面とエゼクタ流路形成部材52の上面46との間に、上方エゼクタ流路54、エゼクタ流路形成部材52の下曲面48とダイナモローラー14の上部外周面22との間に、下方エゼクタ流路56を形成する。
上方エゼクタ流路54および下方エゼクタ流路56の傾斜、長さは、連行気流抑制手段20により連行気流を有効に抑制する観点から、エゼクタ内部の空間が圧力の低下を引き起こし、外部の空気を吸い込むように、適宜定めればよく、これにより、ダイナモローラー14の開口12からの下向きの回転により発生する、車両Vの下面と床面Fとの間のスぺースSからの吸い込み連行気流B2に対しては、開口12の下流側縁28に設けられるエゼクタ流路形成部材52が吸い込まれるのを抑制することが可能である。
本出願人は、第6実施形態の連行気流抑制効果を確認するために、以下に示す流動解析数値シミュレーションを行った。
コンピューターによる数値シミュレーション用の3次元モデルを図18に示す。
流動解析ソフトは、市販されているFluent (version 19.2)である。
図18に示すように、床面に配置される車両、前輪および後輪、およびダイナモローラ―が設置されるダイナモ設置室11をモデル化しており、ダイナモ設置室11の開口には、第6実施形態で述べたように、ダイナモローラーの回転軸線に直交する各端面の対応する開口の対向側縁側近傍に、対応する対向側縁に沿って延びる堰き止め板と、開口の下流縁近傍の床面の下面に、隙間調整板とをモデル化し、車両の前後方向に気流を流すことによる風速分布をシミュレーション計算しており、車両の前後方向に延びる中心線に関して軸対称であることから、車両の前後方向に延びる中心線に関して、一方の側のみをモデル化している。
走行模擬装置の連行気流抑制手段を設けない場合(図19)と、第6実施形態に係る走行模擬装置の連行気流抑制手段を設ける場合(図20)との比較評価を行った。
シミュレーション結果として、車両まわりの風速分布の平面図を、図19および図20に示す。
コンピューターによる数値シミュレーション用の3次元モデルを図18に示す。
流動解析ソフトは、市販されているFluent (version 19.2)である。
図18に示すように、床面に配置される車両、前輪および後輪、およびダイナモローラ―が設置されるダイナモ設置室11をモデル化しており、ダイナモ設置室11の開口には、第6実施形態で述べたように、ダイナモローラーの回転軸線に直交する各端面の対応する開口の対向側縁側近傍に、対応する対向側縁に沿って延びる堰き止め板と、開口の下流縁近傍の床面の下面に、隙間調整板とをモデル化し、車両の前後方向に気流を流すことによる風速分布をシミュレーション計算しており、車両の前後方向に延びる中心線に関して軸対称であることから、車両の前後方向に延びる中心線に関して、一方の側のみをモデル化している。
走行模擬装置の連行気流抑制手段を設けない場合(図19)と、第6実施形態に係る走行模擬装置の連行気流抑制手段を設ける場合(図20)との比較評価を行った。
シミュレーション結果として、車両まわりの風速分布の平面図を、図19および図20に示す。
図19によれば、各前輪、後輪の後方には、帯状に風速の低いゾーン(青色)が形成され、一対の前輪と一対の後輪との間のエリアに着目すれば、各前輪の後方エリアの風速の低いゾーン(青色)の両側において後方に向かう風速の低いゾーン(緑色)が形成され、これらが連行気流を示している。
これに対して、図20によれば、各前輪の後方エリアの風速の低いゾーン(青色)の両側において後方に向かう風速の低いゾーン(緑色)が風速の高いゾーン(黄色)に変わっていることが確認できる。これは、静圧の高いダイナモ設置室11から静圧の低い床面と車両下面との間のスペースに向かう流入空気の流れ込みが、堰き止め板と隙間調整板とにより、抑制されていることを示す。
これに対して、図20によれば、各前輪の後方エリアの風速の低いゾーン(青色)の両側において後方に向かう風速の低いゾーン(緑色)が風速の高いゾーン(黄色)に変わっていることが確認できる。これは、静圧の高いダイナモ設置室11から静圧の低い床面と車両下面との間のスペースに向かう流入空気の流れ込みが、堰き止め板と隙間調整板とにより、抑制されていることを示す。
以上のシミュレーション結果によれば、ダイナモ設置室11において、ダイナモローラーの回転軸線に直交する各端面と開口の対応する対向側縁との間には、開口隙間が必然的に形成されるところ、ダイナモ設置室11の静圧と、床面と車両下面との間のスペースの静圧との静圧差により、静圧の高いダイナモ設置室11から静圧の低い床面と車両下面との間のスペースに向かって流速の低い連行気流である流入空気が流れ込むのを、ダイナモローラーの回転軸線に直交する各端面の対応する開口の対向側縁側近傍に、対応する対向側縁に沿って延びる堰き止め板を設けることにより、抑制可能であり、さらに、開口の下流縁近傍の床面の下面に、隙間調整板を設けることにより、開口の下流縁とダイナモローラーの側周面との開口隙間からのこのような流入空気の流れ込みを抑制し、以て、車両の走行に応じて生じる風速を模擬する風洞内の気流が車両の下面と床面との間のスペース内で乱されることを低減することが可能である点が示されている。
以上、本発明の実施形態を詳細に説明したが、本発明の範囲から逸脱しない範囲内において、当業者であれば、種々の修正あるいは変更が可能である。
たとえば、本実施形態においては、各車輪に適用する連行気流抑制手段は、同じであるものとして説明したが、これに限定されることなく、連行気流抑制手段による抑制後の気流が左右で異なることから、一対の前輪、一対の後輪それぞれにおいて、左右は同じ連行気流抑制手段が好ましいが、前輪と後輪で異なる連行気流抑制手段を適用するのでよい。
たとえば、本実施形態においては、一つ車輪に対応する開口の上流縁および下流縁に適用する連行気流抑制手段は、同じであるものとして説明したが、これに限定されることなく、上流側がブラシ、下流側がブラシ、上流側が連行気流堰き止め部材、下流側がブラシでもよく、あるいは、一つの車輪の上流縁に複数の抑制手段を設置する、たとえば、ブラシと連行気流堰き止め部材とを同時に併用するのでもよく、一つの車輪の下流縁に複数の抑制手段を設置する、たとえば、ブラシとエゼクターとを同時に併用するのでもよい。
たとえば、本実施形態において、各車輪に適用されるダイナモローラーに対して、連行気流抑制手段として共通に、第1実施形態においては、平板、第2実施形態においては、ブラシ、第3実施形態においては、連行気流堰き止め部材、第4実施形態においては、吸い込み管、第5実施形態においては、側面に設けた堰き止め板、第6実施形態においては、第5実施形態に加えて追加隙間調整板、第7実施形態においては、エゼクタ流路形成部材として説明したが、それに限定されることなく、各車輪ごとに、いずれかの実施形態のいずれかの連行気流抑制手段を採用すればよく、各車輪ごとに、連行気流抑制手段が異なるのでもよい。
たとえば、第1実施形態において、各車輪に適用されるダイナモローラーに対して、連行気流抑制手段を開口の上流縁および下流縁に設置する点について、車輪全体に共通のものとして説明したが、それに限定されることなく、ある車輪は、開口の上流縁および下流縁、ある車輪は、開口の上流縁のみ、ある車輪は、開口の下流縁のみに設置でもよい。
たとえば、本実施形態においては、各車輪に適用する連行気流抑制手段は、同じであるものとして説明したが、これに限定されることなく、連行気流抑制手段による抑制後の気流が左右で異なることから、一対の前輪、一対の後輪それぞれにおいて、左右は同じ連行気流抑制手段が好ましいが、前輪と後輪で異なる連行気流抑制手段を適用するのでよい。
たとえば、本実施形態においては、一つ車輪に対応する開口の上流縁および下流縁に適用する連行気流抑制手段は、同じであるものとして説明したが、これに限定されることなく、上流側がブラシ、下流側がブラシ、上流側が連行気流堰き止め部材、下流側がブラシでもよく、あるいは、一つの車輪の上流縁に複数の抑制手段を設置する、たとえば、ブラシと連行気流堰き止め部材とを同時に併用するのでもよく、一つの車輪の下流縁に複数の抑制手段を設置する、たとえば、ブラシとエゼクターとを同時に併用するのでもよい。
たとえば、本実施形態において、各車輪に適用されるダイナモローラーに対して、連行気流抑制手段として共通に、第1実施形態においては、平板、第2実施形態においては、ブラシ、第3実施形態においては、連行気流堰き止め部材、第4実施形態においては、吸い込み管、第5実施形態においては、側面に設けた堰き止め板、第6実施形態においては、第5実施形態に加えて追加隙間調整板、第7実施形態においては、エゼクタ流路形成部材として説明したが、それに限定されることなく、各車輪ごとに、いずれかの実施形態のいずれかの連行気流抑制手段を採用すればよく、各車輪ごとに、連行気流抑制手段が異なるのでもよい。
たとえば、第1実施形態において、各車輪に適用されるダイナモローラーに対して、連行気流抑制手段を開口の上流縁および下流縁に設置する点について、車輪全体に共通のものとして説明したが、それに限定されることなく、ある車輪は、開口の上流縁および下流縁、ある車輪は、開口の上流縁のみ、ある車輪は、開口の下流縁のみに設置でもよい。
たとえば、本実施形態において、ある車輪に対して、連行気流抑制手段を開口の上流縁および下流縁に設置する場合において、開口の上流縁に対しては、第1実施形態の平板、開口の下流縁に対しては、第2実施形態のブラシを設置する等、第1ないし第7実施形態の組合わせでもよい。
たとえば、本実施形態において、車両V下面と床面Fとの間のスペースSに及ぶのを抑制する連行気流抑制手段20を、開口12とダイナモローラー14の周縁18との間の隙間Cに設けるものとして説明したが、連行気流抑制手段20により連行気流が車両V下面と床面Fとの間のスペースSに及ぶのを完全に遮断する必要はなく、車両Vの走行に応じて生じる風速を模擬する風洞T内の気流Aが車両Vの下面と床面Fとの間のスペースS内で乱されることを低減することが可能である限りにおいて、連行気流を抑制すればよい。
たとえば、本実施形態において、車両V下面と床面Fとの間のスペースSに及ぶのを抑制する連行気流抑制手段20を、開口12とダイナモローラー14の周縁18との間の隙間Cに設けるものとして説明したが、連行気流抑制手段20により連行気流が車両V下面と床面Fとの間のスペースSに及ぶのを完全に遮断する必要はなく、車両Vの走行に応じて生じる風速を模擬する風洞T内の気流Aが車両Vの下面と床面Fとの間のスペースS内で乱されることを低減することが可能である限りにおいて、連行気流を抑制すればよい。
たとえば、本実施形態において、車両V下面と床面Fとの間のスペースSに及ぶのを抑制する連行気流抑制手段20を設定したら、それに基づき、走行模擬する車両を用いて、性能試験、環境試験、耐久試験等を行うものとして説明したが、走行模擬する際、模擬走行速度に応じてダイナモローラー14の回転数、および風洞T内の気流Aの速度が変動するところ、ダイナモローラー14の回転数に応じて、たとえば、第1実施形態の平板の位置または大きさを調整し、隙間を塞ぐ度合いを調整してもよい。
V 車両
WH 車輪
T 風洞
F 床面
W 幅方向
A 気流
B1,B2 連行気流
C 隙間
S スペース
10 走行模擬装置
12 開口
13 回転軸
14 ダイナモローラー
16 回転駆動手段
18 周縁
20 連行気流抑制手段
22 外周面
23 最上部
24 上流側縁
26 対向側縁
28 下流側縁
32 ブラシ
34 センタリングパイプ
35 堰き止め面
36 連行気流堰き止め部材
38 吸い込み開口
40 吸い込み管
42 堰き止め板
43 上縁
44 隙間調整板
45 下縁
46 上面
48 下曲面
50 後面
52 エゼクタ流路形成部材
54 上方エゼクタ流路
56 下方エゼクタ流路
100 測定室
102 整流洞
104 縮流洞
106 吹出し口
108 流入口
WH 車輪
T 風洞
F 床面
W 幅方向
A 気流
B1,B2 連行気流
C 隙間
S スペース
10 走行模擬装置
12 開口
13 回転軸
14 ダイナモローラー
16 回転駆動手段
18 周縁
20 連行気流抑制手段
22 外周面
23 最上部
24 上流側縁
26 対向側縁
28 下流側縁
32 ブラシ
34 センタリングパイプ
35 堰き止め面
36 連行気流堰き止め部材
38 吸い込み開口
40 吸い込み管
42 堰き止め板
43 上縁
44 隙間調整板
45 下縁
46 上面
48 下曲面
50 後面
52 エゼクタ流路形成部材
54 上方エゼクタ流路
56 下方エゼクタ流路
100 測定室
102 整流洞
104 縮流洞
106 吹出し口
108 流入口
Claims (28)
- 床面に設けられた開口と、
該開口に対して、非接触式に回転可能に設けられる円筒状ダイナモローラーと、
該ダイナモローラーを円筒の中心軸線を中心に回転駆動する回転駆動手段とを有し、
該ダイナモローラーは、円筒の中心軸線が床面下方に位置するように配置され、
前記ダイナモローラーの前記開口から臨む外周面に、車両の車輪を載置した状態で、前記ダイナモローラーを回転駆動することにより、車両の走行を模擬する走行模擬装置であって、
車両は、円筒の中心軸線に対して、直交する向きに、風洞内に配置され、
該風洞内で、車両の前方から後方に向かって、床面から少なくとも車高までの高さに亘って、気流を送るように構成され、
前記ダイナモローラーの回転に伴われて発生する連行気流が、前記開口を通じて、車両下面と床面との間のスペースに及ぶのを抑制する連行気流抑制手段を、前記開口と前記ダイナモローラーとの間の隙間に設ける、ことを特徴とする、走行模擬装置。 - 風洞内の床面に設けられた開口から外周面が臨むダイナモローラーに、車両の車輪を載置する段階と、
前記開口と前記ダイナモローラーとの間の隙間を狭める段階と、
風洞内で気流を車両の前方から後方に向けて流しつつ、ダイナモローラーの回転により車輪を回転させる車両の走行模擬段階とを、
有することを特徴とする、車両の走行模擬方法。 - 前記ダイナモローラーの外周面の最上部は、床面と面一に設定される、請求項1に記載の走行模擬装置。
- 車両は、車輪ごとに、前記ダイナモローラーの回転駆動により、回転される、請求項1に記載の走行模擬装置。
- 前記開口は矩形状であり、前記連行気流抑制手段は、前記開口の上流側縁と対応する前記ダイナモローラーとの隙間、および前記開口の下流側縁と対応する前記ダイナモローラーとの隙間それぞれに配置される平板である、請求項1に記載の走行模擬装置。
- 前記開口は矩形状であり、前記連行気流抑制手段は、前記開口の上流側縁および下流側縁それぞれから、車輪と前記ダイナモローラーとの接触部に向かって延びるブラシであり、該ブラシは、前記側縁の幅方向全体に亘って、密接して設けられる、請求項1に記載の走行模擬装置。
- 前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、床面の下面レベルから前記ダイナモローラーの上部外周面レベルまで及び、開口縁の延び方向に沿って延びる堰き止め面を備えた連行気流堰き止め部材である、請求項1に記載の走行模擬装置。
- 前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、吸い込み開口を上流側に臨むように差し向けた、連行気流を吸い込む吸い込み管であり、該吸い込み開口は、前記床面と前記ダイナモローラーの上部外周面レベルとの間に設けられる、請求項1に記載の走行模擬装置。
- 前記吸い込み管は、互いに前記開口縁の幅方向に所定間隔を隔てて、複数設けられる、請求項8に記載の走行模擬装置。
- 前記吸い込み開口は、前記開口縁の幅方向に亘り、前記吸い込み管の上面は、多孔板により構成される、請求項8に記載の走行模擬装置。
- 前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、前記開口の対向側縁に沿って延びる堰き止め板であり、該堰き止め板の上縁は、床面レベルに設定され、下縁は、ダイナモローラーの上部外周面に接触しない範囲に設定される、請求項1に記載の走行模擬装置。
- さらに、前記開口の下流縁近傍の床面の下面に、隙間調整板が設けられる、請求項11に記載の走行模擬装置。
- 前記隙間調整板は、前記ダイナモローラーの回転数に応じて隙間を調整可能である、請求項12に記載の走行模擬装置。
- 前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、床面に対向する上面、前記ダイナモローラーの上部外周面に対向する下曲面および床面から前記ダイナモローラーの上部外周面に向かって延びる後面とから構成されるほぼ三角形状断面を有し、前記下流縁に沿って延びるエゼクタ流路形成部材であり、床面の下面と該エゼクタ流路形成部材の上面との間に、上方エゼクタ流路、該エゼクタ流路形成部材の下曲面と前記ダイナモローラーの上部外周面との間に、下方エゼクタ流路を形成する、請求項1に記載の走行模擬装置。
- 車両の車輪の複数それぞれに対して、請求項5ないし請求項14いずれか1項に規定される連行気流抑制手段を個別に選択する走行模擬装置。
- 前記開口の前記上流縁および前記下流縁それぞれにおいて、請求項5ないし請求項14いずれか1項に規定される連行気流抑制手段を個別に選択する走行模擬装置。
- 前記隙間を狭める段階は、前記開口は矩形状であり、前記連行気流抑制手段は、前記開口の上流側縁と対応する前記ダイナモローラーとの隙間、および前記開口の下流側縁と対応する前記ダイナモローラーとの隙間それぞれに配置される平板である連行気流抑制手段を用いて行う、請求項2に記載の車両の走行模擬方法。
- 前記隙間を狭める段階は、前記開口は矩形状であり、前記開口の上流側縁および下流側縁それぞれから、車輪と前記ダイナモローラーとの接触部に向かって延びるブラシであり、該ブラシは、前記側縁の幅方向全体に亘って、密接して設けられる連行気流抑制手段を用いて行う、請求項2に記載の車両の走行模擬方法。
- 前記隙間を狭める段階は、前記開口は矩形状であり、前記床面を構成する床躯体構造を利用して支持され、床面の下面レベルから前記ダイナモローラーの上部外周面レベルまで及び、前記開口縁の延び方向に沿って延びる堰き止め面を備えた連行気流堰き止め部材である連行気流抑制手段を用いて行う、請求項2に記載の車両の走行模擬方法。
- 前記隙間を狭める段階は、前記開口は矩形状であり、前記床面を構成する床躯体構造を利用して支持され、吸い込み開口を上流側に臨むように差し向けた、連行気流を吸い込む吸い込み管であり、該吸い込み開口は、前記床面と前記ダイナモローラーの上部外周面レベルとの間に設けられる連行気流抑制手段を用いて行う、請求項2に記載の車両の走行模擬方法。
- 前記隙間を狭める段階は、前記開口は矩形状であり、前記床面を構成する床躯体構造を利用して支持され、前記開口の対向側縁に沿って延びる堰き止め板であり、該堰き止め板の上縁は、床面レベルに設定され、下縁は、ダイナモローラーの上部外周面に接触しない範囲に設定される連行気流抑制手段を用いて行う、請求項2に記載の車両の走行模擬方法。
- 前記隙間を狭める段階は、前記開口は矩形状であり、前記床面を構成する床躯体構造を利用して支持され、床面に対向する上面、前記ダイナモローラーの上部外周面に対向する下曲面および床面から前記ダイナモローラーの上部外周面に向かって延びる後面とから構成されるほぼ三角形状断面を有し、前記下流縁に沿って延びるエゼクタ流路形成部材であり、床面の下面と該エゼクタ流路形成部材の上面との間に、上方エゼクタ流路、該エゼクタ流路形成部材の下曲面と前記ダイナモローラーの上部外周面との間に、下方エゼクタ流路を形成する連行気流抑制手段を用いて行う、請求項2に記載の車両の走行模擬方法。
- 前記連行気流抑制手段は、取り外し式または可動式であり、
車輪が対応する開口に位置決めされるように、車両を床面上で移動する際は、前記連行気流抑制手段を取り外し、または可動として、車両の移動後に、取り付ける段階を有する、請求項17に記載の車両の走行模擬方法。 - 床面に設けられた開口と、
該開口に対して、非接触式に回転可能に設けられる円筒状ダイナモローラーと、
該ダイナモローラーを円筒の中心軸線を中心に回転駆動する回転駆動手段とを有し、
該ダイナモローラーは、円筒の中心軸線が床面下方に位置するように、床面下方に設けられ、前記開口に臨むダイナモ設置室内に配置され、
前記ダイナモローラーの前記開口から臨む外周面に、車両の車輪を載置した状態で、前記ダイナモローラーを回転駆動することにより、車両の走行を模擬する走行模擬装置であって、
車両は、円筒の中心軸線に対して、直交する向きに、風洞内に配置され、
該風洞内で、車両の前方から後方に向かって、床面から少なくとも車高までの高さに亘って、気流を送るように構成され、
ダイナモ設置室と車両下面と床面との間の静圧差によりダイナモ設置室側からの流入空気によって発生する連行気流が、前記開口を通じて、車両下面と床面との間のスペースに及ぶのを抑制する連行気流抑制手段を、前記開口と前記ダイナモローラーとの間の隙間に設ける、ことを特徴とする、走行模擬装置。 - 前記開口は矩形状であり、前記連行気流抑制手段は、前記床面を構成する床躯体構造を利用して支持され、前記ダイナモローラーの回転軸線に直交する各端面の対応する前記開口の対向側縁側近傍に、対応する対向側縁に沿って延びる堰き止め板であり、該堰き止め板の上縁は、床面レベルに設定される、請求項24に記載の走行模擬装置。
- 前記堰き止め板の下縁は、前記ダイナモローラーの対応する前記端面の上部レベルに及ぶ、請求項25に記載の走行模擬装置。
- さらに、前記開口の下流縁近傍の床面の下面に、隙間調整板が設けられる、請求項26に記載の走行模擬装置。
- 前記隙間調整板は、ダイナモ設置室と車両下面と床面との間の静圧差に応じて、隙間を調整可能である、請求項27に記載の走行模擬装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021195282 | 2021-12-01 | ||
JP2021195282 | 2021-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023081837A true JP2023081837A (ja) | 2023-06-13 |
Family
ID=86728020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022170744A Pending JP2023081837A (ja) | 2021-12-01 | 2022-10-25 | 車両の走行模擬装置、および車両の走行模擬方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2023081837A (ja) |
-
2022
- 2022-10-25 JP JP2022170744A patent/JP2023081837A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009074939A (ja) | 風洞試験装置の測定部およびこれを用いた風洞試験装置 | |
JP7286223B1 (ja) | 境界層制御装置、境界層制御方法及び風洞試験装置、並びに車両の走行模擬方法 | |
Landstrom et al. | Aerodynamic effects of different tire models on a sedan type passenger car | |
CN110296808B (zh) | 一种一比二汽车模型车轮旋转风洞试验平台 | |
JP6993311B2 (ja) | 境界層制御装置、及び風洞試験装置 | |
JP7412114B2 (ja) | 風洞試験装置 | |
JP3716158B2 (ja) | 車両の風洞試験方法及び装置 | |
JP5390242B2 (ja) | 除湿装置および除湿装置の制御方法 | |
JP4456007B2 (ja) | 地下空間の空調システム | |
JP2023081837A (ja) | 車両の走行模擬装置、および車両の走行模擬方法 | |
KR20190025254A (ko) | 이동식 대기오염 측정 장치 | |
EP1338881A1 (en) | Chassis dynamometer for testing a vehicle in a wind tunnel | |
Koitrand et al. | A computational investigation of ground simulation for a saloon car | |
WO2024111134A1 (ja) | 走行模擬試験設備 | |
JP4950844B2 (ja) | 自走車の環境試験用風洞装置 | |
JP7397392B1 (ja) | 走行模擬試験設備 | |
JP5208225B2 (ja) | 防熱用扉 | |
JP2000065690A (ja) | 自走車用の環境試験装置 | |
JP6318972B2 (ja) | 空調ユニット | |
CN103092290A (zh) | 散热系统 | |
CN103883549B (zh) | 地铁隧道风机背压试验装置及试验方法 | |
JP3004450B2 (ja) | 模擬地面駆動装置 | |
de Souza et al. | Investigation of Drag Reduction Technologies for Light-Duty Vehicles Using Surface, Wake and Underbody Pressure Measurements to Complement Aerodynamic Drag Measurements | |
JP2534048Y2 (ja) | シャシーダイナモメータ用通風路装置 | |
JPH08292124A (ja) | 乱流格子 |